
Prediction of Emerging Technologies Based on
Analysis of the U.S. Patent Citation Network

Péter Érdi1,2, Kinga Makovi1,2,4, Zoltán Somogyvári2,
Katherine Strandburg5, Jan Tobochnik1,

Péter Volf2,3, László Zalányi2,1

1Center for Complex Systems Studies,
Kalamazoo College, Kalamazoo, Michigan

Kalamazoo, MI 49006, USA

2Department of Biophysics
KFKI Research Institute for Particle and Nuclear Physics,

Hungarian Academy of Sciences, Budapest, Hungary
H-1525 Budapest, P.O. Box 49

3Department of Measurement and Information Systems
Budapest University of Technology and Economics

4Department of Sociology,
Columbia University

5New York University School of Law
40 Washington Square South New York, NY 10012

Correspondence to Péter Érdi, address: Kalamazoo College, 1200 Academy Street,
Kalamazoo, MI 49006, USA; phone: +(269) 337-5720; fax: +(269) 337-7101; e-mail:
perdi@kzoo.edu

Abstract

The network of patents connected by citations is an evolving graph, which
faithfully represents the innovation process. A patent citing another implies that
the cited patent reflects a piece of previously existing knowledge that the citing
patent builds upon. A methodology presented here (i) identifies actual clusters of
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patents: i.e. technological branches, and (ii) gives predictions about the temporal
changes of the structure of the clusters. A predictor, called the citation vector, is
defined for characterizing technological development to show how a patent cited by
other patents belongs to various industrial fields. The clustering technique adopted
is able to detect the new emerging recombinations, and predicts emerging high-
impact technology clusters. The predictive ability of our new method is illustrated
on the example of USPTO subcategory 11, Agriculture, Food, Textiles. We have
determined a cluster of patents based on citation data up to 1991, which show sig-
nificant overlap of the class 442 formed at the beginning of 1997. These new tools
of predictive analytics will support policy decision making processes in science
and technology, and helps to formulate recommendations for action.

Keywords: patent citation; network; co-citation clustering; technological evolution

1 Introduction
In this paper we present a conceptual and computational framework for making pre-
dictions about technological development. The framework is based on patent data,
which long has been recognized as a rich and potentially fruitful source of information
about innovation and technological change. Besides describing and claiming inven-
tions, patents cite previous patents and other references to identify any ”prior art.”
Patents, as nodes, and citations between them, as edges, form a directed network.

Complex networks have garnered much attention in the last decade. The application
of complex network analysis to innovation networks has provided a new perspective
from which to understand the innovation landscape [42]. The patent citation network,
a huge, growing directed graph, is the result of a social game played by governmental
institutions, universities, individual inventors, private firms, research institutes, patent
lawyers, patent examiners and attorneys. Given that the citation network encapsulates
information about technological relationships and progress provided by those players,
understanding its development could help to inform policy makers as to how to allocate
resources optimally to research and development.

Our approach belongs to the field of predictive analytics, which is a branch of
data mining concerned with the prediction of future trends. The technique we develop
and implement is based on mining the patent citation network. The evolution of the
patent citation network reflects (if imperfectly) technological evolution. Both patentees
and patent examiners have incentives to cite materially related prior patents. Patent
applicants are legally required to list related patents of which they are aware. Patent
examiners seek out the most closely related prior patents so that they can evaluate
whether a patent should be granted. Consequently, citation of one patent by another
represents a technological connection between them and the patent citation network
reflects information about technological connections known to patentees and patent
examiners.

The central element of predictive analytics is the predictor, a mathematical object
that can be defined for an individual, organization or other entity and employed to pre-
dict its future behavior. Here we define a citation vector for each patent to play the role
of a predictor, i.e., to characterize the temporal change of technological fields. Each
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coordinate of the citation vector represents how frequently the patent has been cited
by other patents in a particular technological category. Changes in this citation vector
over time reflect the changing role that a particular patented technology is playing as a
contributor to later technological development.

To track the development of technological clusters, we employ clustering algo-
rithms based on a measure of similarity defined using the citation vectors. We hy-
pothesize that patents with similar citation vectors will belong to the same techno-
logical field. Thus, the formation over time of new clusters should correspond to the
emergence of new technological directions. Using this approach we test whether past
changes in the clusters can be detected, and future changes can be predicted.

To summarize, we present a new computational algorithm for recognizing emerg-
ing fields of technology based on the temporal evolution of patent clusters defined by
patterns in the citations they receive. Our methodological approach is to identify the
community structure of non-assortative patents - those which receive citations from
outside their own technological areas - and to make predictions about the near future
by describing the evolution of that structure in terms of elementary events such as the
birth, merging, and splitting of clusters.

When a new predictive method is constructed, it should be able to ”predict” evo-
lution from the ”more distant” past to the ”more recent” past, a process called back-
testing. To illustrate the potential of our approach and demonstrate the emergence of
new technological fields from the patent citation data, we illustrate in this paper the
”prediction” of an emerging new technological area by comparing our clustering re-
sults with the recognition of a new technological class by the US Patent and Trademark
Office (USPTO). In other words, we validated our method by looking at real histor-
ical changes. We believe that the method will be useful for analyzing the historical
evolution of patent technology and predicting possible near-future changes.

2 Literature review
There is a huge literature on making predictions on emerging technologies based on
the analysis of patents or scientific papers, and we can review a small fraction of the
most important ones from the perspective of our goal.

2.1 Citation analysis
Citation analysis has a big tradition to evaluate research performance [14, 33]. Co-
citation analysis goes back to the now classical works of Small [52, 15]: ”...A new
form of document coupling called co-citation is defined as the frequency with which
two documents are cited together. The co-citation frequency of two scientific papers
can be determined by comparing lists of citing documents in the Science Citation In-
dex and counting identical entries. Networks of co-cited papers can be generated for
specific scientific specialties, and an example is drawn from the literature of parti-
cle physics. Co-citation patterns are found to differ significantly from bibliographic
coupling patterns, but to agree generally with patterns of direct citation. Clusters of
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co-cited papers provide a new way to study the specialty structure of science. They
may provide a new approach to indexing and to the creation of SDI profile...”

Weng et al. [62] investigated the technological role and technological position of
patents based on the concept of structural equivalence, a fundamental notion it the
classical theory of social networks. Patents sufficiently close to each other in their ci-
tation patterns are considered as equivalents. The method was specifically adopted to
insurance business methods patents. The analysis was done at the level of individual
patterns. Recently OuYang and Weng [37] adopted, among others patent citation anal-
ysis for new product design. Their method is restricted, however, for two-step citations
only. Patents and their citations were used as indicators for technology forecasting by
Chang et al. [4]. They found a small set of "basic" patents and than to group them
into clusters. Lee at al. [27] analyzed the patent citation network to study the case
of electrical conducting polymer nanocomposite. A distance-based citation map was
constructed mostly to visualize technology evolution.

It is very remarkable the extensive work of Kajikawa and his coworkers in using
citation analysis and clustering techniques for predicting emerging technologies. The
roadmap technique [24, 25] is applied to make links among such different concepts, as
product, technology and science. Some directions in the sustainable energy industry
(fuel cell, solar cell) were detected by citation analysis. Another citation-based method
(analyzing the scientific publications) was used for biomass and bio-fuels [23]. Cita-
tion networks of scientific publications were analyzed to detect emerging knowledge
domains (adopted to specific fields). Citation networks were divided into co-cited clus-
ters [50]. Topological clustering is also was used to detect emerging fields in organic
light-emitting diodes. A similar work addressed the emerging research fields in regen-
erative medicine [51]. A comparative study of the structures of the citation network of
scientific publications with those of patents were given by [49]. The time-lag between
scientific discovery and its commercialization needs more thorough investigation. Co-
citation based clustering (in the scientific literature) related to the possibility of tracking
modularity was offered [56].

Co-citation clusters were also derived by Wallace et al [29] for scientific specialties.
Specifically, they adopted a method [2] relies on the topology of the weighted network.
Several recent papers also used co-citation analysis [3], specifically patent co-citation
analysis was adopted more than a decade ago [31, 30, 32].

2.2 Understanding the patent system
Understanding the interaction between innovation and the patent system is difficult
for many reasons. Increased patenting, for example, can stem from various causes,
including an increased pace of technological change, an increased range of patented
technology due either to expansion of the scope of legally patentable subject matter
or to the birth of new fields of technology, a growing perception of the usefulness of
patents as business tools, or the issuance of lower quality patents. Empirical investiga-
tion of the patent system can play an important role in understanding how to maintain
the appropriate balance. Some basic works are briefly reviewed here.

The use of patent titles for identifying the topics of invention and forecasting trends
was offered by Courtial et al [22] using co-word analysis. Ernst [11] used patent data
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for technological forecasting of some technology categories in the machine tool indus-
try.

Lai and Wu [26] offers an approach to develop a patent classification system based
on patent similarities to assist patent manager in understanding the basic patents for a
specific industry, the relationships among categories of technologies and the evolution
of a technology category.

In two papers [54, 55] our goal was to explain legal scholar why and how to use the
methodologies offered by the modern network science and related fields. Patents and
their citations form a directed network, meaning that citations go from later patents
to earlier patents and not in the opposite direction, in which patents are the network
nodes and citations are directed links. Citations convey valuable information about the
relationships between the technologies covered by the citing and cited patents. One
can thus view the patent citation network as a kind of map of the space of patented
technology, indicating the relationships between various pieces of” property” in that
space.

2.3 Emerging technologies
Emerging technologies can be identified by technical innovations which represent pro-
gressive developments within a field for competitive advantage. A recurring theme for
having a conceptual framework of this emergence is the relationship between biolog-
ical and technological evolution [43]. It is interesting to realize that both fields are
characterized by two extreme approaches: the first emphasizes the gradual, incremen-
tal nature of changes, while the other sees rapid, often discontinuous transitions, in the
spirit of the theory of punctuated equilibrium [17].

As Adner and Levithal [43] writes: ”Just as biological speciation is not a genetic
revolution - the DNA of the organism doesn’t suddenly mutate - technological specia-
tion is not usually the result of a sudden technological revolution. The revolution is in
the shift of application domain. The distinct selection criteria and new resources avail-
able in the new application domain can result in a technology quite distinct from its
technological lineage. Framing technology evolution in terms of speciation leads us to
differentiate between a technology’s technical development and a technology’s market
application. This distinction is useful in understanding broad patterns of technological
change, and leads to specific strategic implications for technology management.”

”The continuous emergence of new technologies and the steady growth of most
technologies suggest that relying on the status quo is deadly for any firm...” [53]. Day
and Schoemaker argued [8]: ”...The biggest dangers to a company are the ones you
don’t see coming. Understanding these threats -and anticipating opportunities- requires
strong peripheral vision.”

2.4 The Role of Metrics in Science and Innovation Policy
Understanding the development of the patent citation network has both scientific in-
terest and practical potential from the policymakers’ point of view. Developing a new
technology is a highly risky and costly activity. Often, economically significant patents
are the result of considerable basic research and product development. Basic research
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is funded by the government and, to a lesser extent, by large firms such as those found
in the medical and pharmaceutical industries. Product development is carried out by
a range of players, including start-up companies spending large fractions of their rev-
enues on innovation. Not surprisingly research and development (R&D) costs have
risen rapidly in the past few decades. For example, in 2002, the United States spent
2.5% of its national income on R&D and was 7th in a World Bank ranking of countries
by R&D investment.

Because innovation is unpredictable, R&D investment is often risky. The risks in-
herent in R&D investment are deemed worthwhile as new technologies are the token of
economic development and new products are a means of keeping or increasing market
share [46, 45, 47]. Patent citation analysis directly offers metrics for characterizing
innovative developmental projects. In the long term, understanding the emergence of
new technological fields could help to orient investment and reduce risk, resulting in
improved economic efficiency.

Daim et al. [7] combined bibliometrics, and system dynamics to make predictions.
While the dynamic modeling based on patent number is very interesting, patent citation
was not really used. It is very important to see what emerging technologies could
change the game?

Performance metrics (the quantitative evaluation of research activity, outputs, im-
pacts) is used by science and technology decision-makers who may not be technical
experts, but are interested in having objective credible measures of quality that could
support resource allocation decisions. It is far from trivial how to choose ”appropri-
ate metrics”, for the unintended consequences of metrics in technology evaluation, see
[44].

Our general approach and the specific proposed method provide improved under-
standing of the evolution of innovation. Specifically, the computational technique pre-
sented here seems to be able to identify emerging high-impact technology clusters as
they emerge.

The literature reviewed here very briefly (and similar other papers not mentioned
here) support our view that clustering of citation networks is an efficient tool of pre-
dicting emerging fields. Our approach is unique, since we analyzed much larger subset
of citation network, than other works did before. Accordingly, the identified objects of
the development are large clusters of patents, thus our approach is a more systematic
one.

3 The USPTO Technology classification system
The US patent system is not only the largest but also the best documented patent cita-
tion dataset. Thus, we have chosen this as a primary field of our investigation, keeping
in mind, that our analysis could be applied to other patent databases as well.

The USPTO has developed a classification system of about 450 classes, and over
120,000 subclasses. The system is used by patent examiners and by applicants and
their attorneys and agents as a primary resource for assisting them in searching for rel-
evant prior art. Classes and sub-classes are subject to ongoing modification, reflecting
the USPTO’s assessment of technological change. Not only are new classes added to
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the system, but also patents can be reclassified. As we discuss later, that reclassifi-
cation provides us with a natural experiment, which offers an opportunity to test our
methodology for detecting emerging new fields [19]. Within the framework of a project
sponsored by the National Bureau of Economic Research (NBER), a higher-level clas-
sification system was developed, in which the 400+ USPTO classes were aggregated
into 36 subcategories1, which were further lumped into six categories (Computers and
Communications, Drugs and Medical, Electrical and Electronics, Chemical, Mechan-
ical and Others). As with any classification system, this system also reflects ad hoc
decisions on what constitutes a category or a subcategory, however the classifications
appear to show sufficient robustness.

4 Lessons from network theory

4.1 Patent citation analysis: from microscopic to mesoscopic and
macroscopic description

The structure and dynamics of the patent citation network, like those of many other
complex networks, can be studied at different levels. We have previously studied the
growth of the patent citation network at the ”microscopic” level of individual patents
[6, 9, 54, 5, 55]. The USPTO-defined classes and NBER database subcategories and
categories can be seen as the essential structural units at higher levels of abstraction.
Recently Ref. [18] analyzed the net flows of citations between NBER categories and
subcategories in an attempt to determine the relative influence of different fields on
technology growth at the "macroscopic" level. In this paper we focus our attention
on phenomena at what might be termed the "mesoscopic" level to look at structures
within the network on scales intermediate between individual patents and categories
containing large numbers of patents.

4.2 Evolving clusters
As detailed below, in searching for evolving technology clusters we make use of pat-
terns of citation based on NBER subcategories to group patents that are cited similarly
together. The dynamics of the community structure of the patents allow us to make pre-
dictions about the near future by describing the evolution of clusters in terms of birth,
death, growth, shrinking, splitting and merging, which are analogous to the cluster
dynamical elementary events found in Ref. [38]. Figure 1 illustrates these events.

[Figure 1 about here.]
111 – Agriculture,Food,Textiles, 12 – Coating, 13 – Gas, 14 – Organic Compounds, 15 – Resins, 19

– Miscellaneous-Chemical, 21 – Communications, 22 – Computer Hardware&Software, 23 – Computer
Peripherials, 24 – Information Storage, 31 – Drugs, 32 – Surgery&Med Inst, 33 – Biotechnology, 39 –
Miscellaneous-Drgs&Med, 41 – Electrical Devices, 42 – Electrical Lighting, 43 – Measuring&Testing,
44 – Nuclear&X-rays,45 – Power Systems, 46 – Semiconductor Devices, 49 – Miscellaneous-Electric, 51
– Mat.Proc&Handling, 52 – Metal Working, 53 – Motors&Engines+Parts, 54 – Optics, 55 - Transporta-
tion, 59-Miscellaneous-Mechanical, 61 – Agriculture,Husbandry,Food, 62 – Amusement Devices, 63 – Ap-
parel&Textile, 64 – Earth Working&Wells, 65 – Furniture,House,Fixtures, 66 – Heating, 67 – Pipes&Joints,
68 – Receptacles, 69 – Miscellaneous-Others.
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It is important to study whether recombination of preexisting technologies to create
new innovations - reflected in the patent citation data - can be identified as combinations
of such elementary events.

Because the patent citation network is a social system, the potential scope and limi-
tations of prediction are different from those in the natural sciences. Patent laws, habits
of patent examiners, the pace of economic growth and many other factors influence
the development of the patent network, and, correspondingly, the creation of patents
changes the innovative environment. Our methodology relies heavily on assessments
of technological relationships made by grass root participants in the system. This limits
the scope of predictions: we can predict only relatively short term patterns of behavior.

5 Research methodology

5.1 Definition of a predictor for the technological development
We constructed a quantity which we call a citation vector and devised a method that
enables us to capture the time evolution of technological fields at the level of subcate-
gories.

Specifically, we define the citation vector for every patent at any given time in the
following way:

1. For each patent, we calculate the sum of the citations received by that patent in
each of the technological subcategories defined in Ref. [19] not including its own
subcategory. The coordinate corresponding to each patent’s own subcategory is
set to zero to concentrate on the recombination of different technologies. This
gives us 36 sums for each patent, which we treat as entries in a 36-component
vector.

2. For each patent, we normalize the 36-component vector obtained in the previous
step using a Euclidean norm to obtain our citation vector. The citation vector’s
components may be interpreted as describing the relative influence that a patent
has had on different technological areas. Patents that have not received any cita-
tions are assigned a vector with all 0 entries.

The impact of a patent on future technologies changes over time, and thus the
citation vector evolves to reflect the changing ways in which a patented invention is
used in different technological fields.

Similarly to the method of the pioneer of co-citation analysis, Henry Small [52],
we hypothesize that a group of patents that are cited by patents from the same set of
technological areas with similar proportion have similar roles in the patent universe.
We seek to group patents into functional clusters based on their roles in the space
of technologies. To do this, we define the similarity between two patents as the scalar
product of their citation vectors and apply clustering algorithms based on this similarity
measure.

Our focus is on those innovations that were influential in industries other than
their own. In other words we are concentrating on those patents which received non-
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assortative citations [34]. Because a high number of patents with only intra subcat-
egory citations tend to mask the recombinant process, citations within the same sub-
category have been eliminated from the citation vector to highlight those innovations
which took part in the recombination of technologies. Finally, we eliminated all the
patents with a 0 citation vector i.e. all the patents which either did not receive any
citations or received citations only from their own subcategory.

Our algorithm for predicting for the technological development consists of the fol-
lowing steps:

1. Select a time point t1 between 1975 and 2007 and drop all patents that were
issued after t1.

2. Keep some subset of subcategories: c1, c2, . . . , cn – to work with a reasonably
sized problem.

3. Compute the citation vector. Drop patents with assortative citation only.

4. Compute the similarity matrix of patents by using the scalar product between the
corresponding citation vectors.

5. Apply a hierarchical clustering algorithm to reveal the functional clusters of
patents.

6. Repeat the above steps for several time points t1 < t2 < · · · < tn.

7. Compare the dendrogram obtained by the clustering algorithm for different time
points to identify structural changes (as emergence and/or disappearance of sub-
categories).

The discussion thus far leaves us with two key issues: (i) What algorithms should
be chosen to cluster the patents? (ii) How should we link the clustering results from
consecutive time steps? We briefly discuss each in the following subsections.
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[Table 1 about here.]
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5.2 Identification of patent clusters
Several clustering and graph partitioning algorithms are reasonable candidates for our
project. An important pragmatic constraint in choosing clustering algorithms is their
time complexity. Given the fact that we are working on a huge database, we face an
unavoidable trade-off between accuracy and time-consumption. Because we do not
know a priori the appropriate number of clusters, hierarchical methods are appropri-
ate, since they do not require the specification of the number of clusters in advance.
Available clustering methods include the k-means and the Ward methods, which are
point clustering algorithms [60]. Graph clustering algorithms, such as methods us-
ing edge-betweenness [16, 36], random walks [41] and the MCL [58] method are also
available. The otherwise celebrated clique-percolation method [38] employs a very
restrictive concept of a k-clique, making it difficult to mine communities from the
patent database. Spectral methods [35] are not satisfactory due to their extreme time-
consumption, because we have to calculate the eigenvalues of a relatively dense matrix.
In the application presented here we adopted the Ward method.

5.3 Detection of structural changes in the patent cluster system
The structure of dendrograms resulting from hierarchical clustering methods such as
the Ward method reflects the structural relationships between patent clusters. In this
hierarchy, each branching point is binary and defined only by its height on the den-
drogram, corresponding to the distance between the two branches. Thus, all types of
temporal changes in the cluster structure can be divided into four elementary events:
1) increase or 2) decrease in the height of an existing branching point, 3) insertion of a
new and 4) fusion of two existing branching points. To find these substantial, structural
changes, we identify the corresponding branching points in the dendrograms represent-
ing the consecutive time samples of the network and follow their evolution through the
time period documented in the database.

To test where our clusters are meaningful we compare the emergence of new clus-
ters to the introduction of new classes by the USPTO. Potential new classes can be
identified in the clustering results by comparing the dendrogram structure with the
USPTO classification. While some of the branching points of the dendrogram are re-
flected in the current classification structure, there could be (and we have shown that
there exist) significant branches which are not identified by the current system. we
test our approach by seeing whether clusters that emerge at a particular time are later
identified as new classes by the USPTO.

6 Results and model validation
[Figure 2 about here.]

We have chosen the NBER subcategory 11, Agriculture, Food, Textiles as an ex-
ample, to demonstrate our analysis methods. The rationals of our choice are:

1. Subcategory 11 (SC 11) has moderate size (comparing to other subcategories),
which was appropriate to the first test of our algorithm.
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2. SC 11 is heterogeneous enough to show non-trivial structure.

3. A new USPTO class, the class 442 was established recently within the subcate-
gory 11.

Note, that restriction of the field of investigation does not restrict the possibility
of cross-technological interactions, since the citation vector remained 36 dimensional,
including all the possible interactions between the actually investigated and all the other
technological fields.

6.1 Patent clusters: existence and detectability
We begin by demonstrating the existence of local patent clusters based on the citation
vector. Such clusters can be seen even with the naked eye by perusing a visualization
of the 36 dimensional citation vector space projected onto two dimensions, or can be
extracted by a clustering algorithm. See Fig. 2.

6.2 Changes in the structure of clusters reflects technological evo-
lution

Temporal changes in the cluster structure of the patent system can be detected in the
changes of dendrograms. We present the dendrogram structure of the subcategory 11
at two different times (Fig. 3). Comparing the hierarchical structure in 1994 and 2000,
we can observe both quantitative changes, when only the height of the branching point
(branch separation distance) changed, and qualitative changes, when a new branching
point has appeared.

[Figure 3 about here.]

6.3 The emergence of new classes: an illustration
[Figure 4 about here.]

The most important preliminary validation of our methodology is our ability to
"predict" the emergence of a new technology class that was eventually identified by the
USPTO. As we mentioned earlier, the USPTO classification scheme not only provides
the basis for the NBER subcategories that define our citation vector, it also provides a
number of natural experiments to test the predictive power of our clustering method.
When the USPTO identifies a new technological category it defines a new class and
then may reclassify earlier patents that are now recognized to have been part of that
incipient new technological category. (Recall that there are many more USPTO classes
than NBER subcategories – within a given subcategory there are patents from a number
of USPTO classes.) If our clustering method is sensitive to the emergence of new
technological fields, we might hope that it will identify new technological branches
before the USPTO recognizes their existence and defines new classes.

Figures 4 and 5 illustrate the emergence of class 442, which was not defined by the
USPTO until 1997. Figure 4 shows how patents that will eventually be reclassified into
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class 442 can be seen to be splitting off from other patents in subcategory 11 as early as
1991. The visually recognizable cluster of patents in Fig. 4 that will later be reclassified
into class 442 can be identified by the Ward method with cutoff at 7 clusters in 1991,
as is shown in Fig. 5. The histogram in Fig. 5 shows the frequency of patents with a
given cluster number and USPTO class. Patents that will eventually be reclassified into
class 442 are already concentrated in cluster 7. The Pearson-correlation between the
class 442 and the correspondig clusters in our analysis resulted in high values: 0.9106
in 1991; 0.9005 in 1994; 0.8546 in 1997 and 0.9177 in the end of 1999. This example
thus demonstrates that the citation vector can play the role of a predictor: emerging
patent classes can be identified.

Based on this and other historical examples of new class formation, we have tested
and validated our clustering methods. In future work, we will seek to answer the
question: what is the time difference between the detection of the first signs of the
splitting and the official formation of the new class? The characteristic time of new
class formation could be field-specific, and hence we will compare results between
categories.

[Figure 5 about here.]

7 Discussion
The patent citation network can be viewed as a time-evolving complex system. His-
torically, scholars have sought to understand technological change using evolutionary
analogies, describing it as a process of recombination of already existing technologies
[48, 57, 21, 61, 20]. Inventions are often described as combinations of prior technolo-
gies. "... For example, one might think of the automobile as a combination of the
bicycle, the horse carriage, and the internal combustion engine" [12, 39, 40, 13]. This
feature of technological advance is well-recognized in patent law and has been the sub-
ject of recent Supreme Court attention. See KSR Int’l Co. v. Teleflex, Inc., 550 U.S.
398 (2007).

We assume that social systems are causal systems – complex systems with circu-
lar causality and feedback loops [9, 10] – and we also assume that their statistical
properties may allow us to uncover rules that govern their development. (For similar
attempts see Refs. [28] and [1]). "... Analogously to what happened in physics, we
are finally in the position to move from the analysis of the "social atoms" or "social
molecules" (i.e., small social groups) to the quantitative analysis of social aggregate
states ..." [59]. Our study of the specific example of the patent citation network will
help to advance the study of how complex social systems evolve.

As scientific predictions in general, our work is also based on the analysis of past
events and and present state. We assumed, that co-citation clusters represents the
species of the technological evolution, thus the recognition of new clusters could be
used for predicting new emergent technologies.

The main limitation of our work is the time lag between the birth of a new technique
and its appearance in the patent databases as the accumulation of new citations. Csárdi
et al. [5] showed, that patents receive the majority of their citations around 15 month
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after their issuing and this time lag show little variance across different fields. This time
constant set the horizon of our method. However, the specific example we showed, that
we were able to identify a new class well before its official introduction in spite of the
limitations of the database.

The presented methodology oversimplifies the patent system in many ways. The
technological fields are not homogeneous in respect to their propensity to patents, av-
erage number of citations per patents, etc. For the sake of simplicity, these differences
were not taken into account in this work, but should be included in the future work, to
refine the current approach.

Since obviously there is no proper method to determine the appropriate number
clusters, the method suggested here is able to provide only necessary but not sufficient
criterion for the identification of a new technological branch. To put it another way, we
offer a decision support system: we are able to identify the candidates of the hot spots
of the technological development, which worth attention.

In future work, we will also investigate the specific mechanisms of new class for-
mation. New technological branches can be generated either by a single (cluster dy-
namical) elementary event or by combinations of such events. For example, a new
cluster might arise from a combination of a merging and a splitting. By examining
historical examples, we will clarify how the elementary events interact to build the
recombination process and identify the typical "microscopic mechanisms" underlying
new class formation.

Finally, we will scan the database to identify "hot spots" that may reflect the incip-
ient development of new technological clusters. In this way, we hope to come up with
predictions for the near future and give answers to the question: which might be the
technologies of tomorrow?

Acknowledgments
PE thanks the Henry Luce Foundation for its support. KJS acknowledges the generous
support of The Filomen D’Agostino and Max E. Greenberg Research Fund. Thanks
for Fülöp Bazsó, Mihály Bányai, Judit Szente, Balázs Ujfalussy for discussions.

References
[1] M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis. Mining graph evolution

rules. In W. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor, edi-
tors, Machine Learning and Knowledge Discovery in Databases, volume 5781
of European Conference on Machine Learning and Knowledge Discovery in
Databases., pages 115–130. Springer, 2009.

[2] Lambiotte R Blondel VD, Guillaume J-L and Lefebvre E. Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Exper-
iment, page P10008, 2008.

14



[3] J Hou C. Chen, F. Ibekwe-SanJuan. The structure and dynamics of co-citation
clusters: A multiple-perspective co-citation analysis. Journal of the American
Society for Information Science and Technology, 61:1386–1409, 2010.

[4] S B Chang, K K Lai, and S M Chang. Exploring technology diffusion and classifi-
cation of business methods: using the patent citation network. Technol. Forecast.
Soc. Change, 76:107–117, 2009.

[5] G. Csárdi, K.J. Strandburg, J. Tobochnik, and P. Érdi. Chapter 10. The inverse
problem of evolving networks - with application to social nets. In B. Bollobás,
R. Kozma, and D. Miklós, editors, Handbook of Large-Scale Random Networks,
pages 409–443. Springer-Verlag, 2009.

[6] G. Csárdi, K.J. Strandburg, L. Zalányi, J. Tobochnik, and P. Érdi. Modeling
innovation by a kinetic description of the patent citation system. Physica A, 74(1–
2):783–793, 2007.

[7] T. U. Daim, G. Rueda, H. Martin, and P. Gerdsri. Forecasting emerging technolo-
gies: Use of bibliometrics and patent analysis. Technol. Forecast Social Change,
73:981–1012, 2006.

[8] GS Day and Schoemaker PJH. Scanning the periphery. Harvard Business Review,
pages 1–12, 2005.

[9] P. Érdi. Complexity Explained. Springer Verlag, 2007.

[10] P. Érdi. Scope and limits of predictions by social dynamic models: Crisis, innova-
tion, decision making. Evolutionary and Institutional Economic Review, 7:21–42,
2010.

[11] H Ernst. The use of patent data for technological forecasting: The diffusion
of cnc-technology in the machine tool industry. Small Business Economics,
9(4):361–381, 1997.

[12] L. Fleming. Recombinant uncertainty in technological search. Management Sci-
ence, 47(1):117–132, 2001.

[13] L. Fleming and O. Sorenson. Technology as a complex adaptive system: evidence
from patent data. Research Policy, 30:1019–1039, 2001.

[14] E. Garfield. Citation Indexing - Its Theory and Application in Science, Technology
and Humanities. Philadelphia:ISI Press, 1983.

[15] E. Garfield. Co-citation analysis of the scientific literature: Henry small on map-
ping the collective mind of science. Current Contents, 19(3-13, May 10), 1993.

[16] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. PNAS, 99(12):7821–7826, 2002.

[17] SJ Gould and N Eldredge. Punctuated equilibria: the tempo and mode of evolu-
tion reconsidered. Paleobiology, 3(2):115–151, 1977.

15



[18] Bernard Gress. Properties of the USPTO patent citation network: 1963-2002.
World Patent Information, 32(1):3–21, 2010.

[19] Bronwyn H. Hall, Adam B. Jaffe, and Manuel Trajtenberg. The NBER patent
citation data file: Lessons, insights and methodological tools. Working Paper
8498, National Bureau of Economic Research, October 2001.

[20] A. Hargadon and R. Sutton. Technology brokering and innovation in a product
development firm. Administrative Science Quarterly, 42:716–749, 1997.

[21] Rebecca M. Henderson and Kim B. Clark. Architectural innovation: The recon-
figuration of existing product technologies and the failure of established firms.
Administrative Science Quarterly, 35(1):9–30, 1990.

[22] M. Callon J. P. Courtial and A. Sigogneau. The use of patent titles for identifying
the topics of invention and forecasting trends. Scientometrics, 26:231–242, 1993.

[23] Y. Kajikawa and Y. Takeda. Structure of research on biomass and bio-fuels: A
citation-based approach. Technological Forecasting and Social Change, 75:1349–
1359, 2008.

[24] Y. Kajikawa, O. Usui, K. Hakata, Y. Yasunaga, and K. Matsushima. Sructure of
knowledge in the science and technology roadmaps. Technological Forecasting
and Social Change, 75:1–11, 2008.

[25] Y. Kajikawa, J. Yoshikawa, Y. Takeda, and K. Matsushima. Tracking emerging
technologies in energy researc: Toward a roadmap for sustainable energy. Tech-
nological Forecasting and Social Change, 75:771–782, 2008.

[26] KK Lai and Wu S-J. Using the patent co-citation approach to establish a new
patent classification system. Information Processing and Management, 41:313–
330, 2005.

[27] Pei-Chun Lee, Hsin-Ning Su, and Feng-Shang Wu. Quantitative mapping of
patented technology – the case of electrical conducting polymer nanocomposite.
Technological Forecasting and Social Change, 77(3):466 – 478, 2010.

[28] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densi-
fication laws, shrinking diameters and possible explanations. In KDD 2005: Pro-
ceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 177–187, New York, NY, USA, 2005. ACM.

[29] Russell J. Duhon Matthew L. Wallace, Yves Gingras. A new approach for detect-
ing scientific specialties from raw cocitation networks. Journal of the American
Society for Information Science and Technology, page 240 246, 2009.

[30] RG Kolar ME Mogee. Patent citation analysis of allergan pharmaceutical patents.
Expert Opinion on Therapeutic Patents, 8(10):1323–1346, 1998.

[31] RG Kolar ME Mogee. Patent citation analysis of new chemical entities claimed
as pharmaceuticals. Expert Opinion on Therapeutic Patents, 8(3):213–222, 1998.

16



[32] RG Kolar ME Mogee. Patent co-citation analysis of eli lilly & co. patents. Expert
Opinion on Therapeutic Patents, 9(3):291–305, 1998.

[33] H.F Moed. Citation Analysis in Research Evaluation. Dordrecht (Netherlands):
Springer, 2005.

[34] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett.,
89(20):208701, Oct 2002.

[35] M. E. J. Newman. Finding community structure in networks using the eigenvec-
tors of matrices. Physical Review E, 74:036104, 2006.

[36] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review, E 69(026113), 2004.

[37] K. OuYang and C.S. Weng. A new comprehensive patent analysis approach for
new product design in mechanical engineering. Technol. Forecast Social Change,
pages 1–17, 2011.

[38] G. Palla, A-L. Barabasi, and T. Vicsek. Quantifying social group evolution. Na-
ture, 446:664–667, 2007.

[39] Joel M. Podolny and Toby E. Stuart. A role-based ecology of technological
change. The American Journal of Sociology, 100(5):1224–1260, 1995.

[40] Joel M. Podolny, Toby E. Stuart, and Michael T. Hannan. Networks, knowledge,
and niches: Competition in the worldwide semiconductor industry, 1984-1991.
The American Journal of Sociology, 102(3):659–689, 1996.

[41] Pascal Pons and Matthieu Latapy. Computing communities in large networks
using random walks. J. of Graph Algorithms and Applications, 10:191–218, 2006.

[42] A Pyka, A Scharnhost. Innovation Networks. New Approaches in Modelling and
Analyzing. Springer Verlag., 2009.

[43] Adner R and Levinthal DA. The emergence of emerging technologies. California
Management Review, 45:50–66, 2002.

[44] Kostoff RN and Geisler E. The unintended consequences of metrics in technology
evaluation. Journal of Infometrics, 1:103–114, 2007.

[45] P.P. Saviotti. On the co-evolution of Technologies and Institutions. Berlin, Hidel-
berg, 2005.

[46] P.P. Saviotti, M.A. de Looze, and M.A. Maopertuis. Knowledge dynamics and
the mergers of firms in the biotechnology based sectors. International Journal of
Biotechnology, 5(3–4):371–401, 2003.

[47] P.P. Saviotti, M.A. de Looze, and M.A. Maopertuis. Knowledge dynamics, firm
strategy, mergers and acquisitions in the biotechnology based sectors. Economics
of Innovation and New Technology, 14(1–2):103–124, 2005.

17



[48] J. Schumpeter. Business Cycles. McGraw-Hill, New York., 1939.

[49] N. Shibata, Y. Kajikawa, and I. Sakata. Extracting the commercialization gap
between science and technology - case study of a solar cell. Technological Fore-
casting and Social Change, 77:1147–1155, 2010.

[50] N. Shibata, Y. Kajikawa, Y. Takeda, and K. Matsushima. Detecting emerging
researc fronts based on topological measures in citation networks of scientific
publications. Technovation, 28:758–775, 2008.

[51] N. Shibata, Y. Kajikawa, Y. Takeda, I. Sakata, and K. Matsushima. Detecting
emerging research fronts in regenerative medicine by the citation network anal-
ysis of scientific publications. Technological Forecasting and Social Change,
78:274–282, 2011.

[52] H Small. Cocitation in scientific literature: New measure of relationship be-
tween two documents. Journal of The American Society For Information Science,
24:265–269, 1973.

[53] A. Sood and GJ. Tellis. Technological evolution and radical innovation. Journal
of Marketing, 69:152–168, 2005.

[54] K. Strandburg, G. Csardi, J. Tobochnik, P. Érdi, and L. Zalányi. Law and the
science of networks: An overview and an application to the ”patent explosion”.
Berkeley Technology Law Journal, 21:1293, 2007.

[55] K. Strandburg, G. Csardi, J. Tobochnik, P. Érdi, and L. Zalányi. Patent citation
networks revisited: signs of a twenty-first century change? North Carolina Law
Review, 87:1657–1698, 2009.

[56] Y. Takeda, N. Shibata, Y. Kajikawa, I. Sakata, and K. Matsushima. Tracking
modularity in citation networks. Scientometrics, pages 783–792, 2010.

[57] A. Usher. A History of Mechanical Invention. Dover, Cambridge, MA., 1954.

[58] S. van Dongen. A cluster algorithm for graphs. Technical Report INS-R0010,
National Research Institute for Mathematics and Computer Science in the Nether-
lands, Amsterdam, 2000.

[59] Alessandro Vespignani. Predicting the behavior of techno-social systems. Sci-
ence, 325(5939):425–428, 2009.

[60] J.H. Ward. Hierarchical grouping to optimize an objective function. Journal of
the American Statistical Association, 58(301):236–244, 1963.

[61] Martin L Weitzman. Hybridizing growth theory. American Economic Review,
86(2):207–12, 1996.

[62] C.S. Weng, W.-Y. Chen, H.-Y. Hsu, and S.-H. Chien. To study the technologgi-
cal network by structural equivalence. Journal of High Technology Management
Research, 21:52–63, 2010.

18



8 Biographies
Péter Érdi is the is the Henry R. Luce Professor of Complex Systems studies in Kala-
mazoo College, and also the head of the Department of Biophysics, KFKI Research
Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences. He has
been working on the fields of computational neuroscience and computational social
sciences.

Kinga Makovi is a PhD student in the Department of Sociology of Columbia Uni-
versity, and holds an MS in mathematical economics from Corvinus University in Bu-
dapest (2010). Her interests include social networks, sociology of education, quantita-
tive methods and simulation techniques in social sciences

Zoltán Somogyvári is a senior research fellow of the Department of Biophysics,
KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sci-
ences. He is an expertise in developing new methods of analysing large data sets,

Katherine Strandburg is a Professor of Law at New York University School of Law.
Her teaching and research activities are in the areas of intellectual property law, cyber-
law, and information privacy law. Prior to her legal career, she was a research physicist
at Argonne National Laboratory, having received her Ph.D. from Cornell University.

Jan Tobochnik is the Dow Distinguished Professor of Natural Science in Kalama-
zoo College. He also serves as the Editor, American Journal of Physics. His research
involves using computer simulations to understand a wide variety of systems. In the
last decade he was involved in investigating the structural properties of some social
networks.

Péter Volf just get his MSc in the Department of Measurement and Information
Systems of the Budapest University of Technology and Economics and works as a
junior fellow at the Department of Biophysics, KFKI Research Institute for Particle and
Nuclear Physics, Hungarian Academy of Sciences. His main interest is now developing
efficient clustering algorithms.

László Zalányi is the acting head of of the Department of Biophysics, KFKI Re-
search Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences. His
research areas are the application of stochastic methods to neural and social systems,
and network theory.

19



Figure 1: Possible elementary events of cluster evolution. Based on Ref. [38].
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Figure 2: Cluster structure of patents in the citation space. Two-dimensional repre-
sentation of patent similarity structure in the subcategory 11 in Dec. 31, 1999, by using
the Fruchterman-Reingold algorithm. Local densities corresponding to technological
areas can be recognized by naked eye or identified by clustering methods. The colors
encode the US patent classes: red corresponds to class 8; green: 19; blue: 71; magenta:
127; yellow: 442; cyan: 504.
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Figure 3: Temporal changes in the cluster structure of the patent system. Dendro-
grams representing the results of the hierarchical Ward clustering of patents in subcat-
egory 11, based on their citation vector similarity on Jan. 1, 1994 (18833 patents in
graph A) and Dec. 31, 1999 (25624 in graph B). The x axis denotes a list of patents
in subcategory 11, while the distances between them, as defined by the citation vector
similarity, are drawn on the y axis. (Patents separated by 0 distance form thin lines on
the x axis.) The 7 colors of the dendrogram correspond to the 7 most widely separated
clusters. While the overall structure is similar in 1994 and 1999, interesting structural
changes emerged in this period. The cluster marked with the red color and asterix ap-
proximately corresponds to the new class 442, which was established in 1997, but was
clearly identifiable by our clustering algorithm as early as 1991.
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Figure 4: An example of the splitting process in the citation space, underlying the
formation of a new class. In the 2D projection of the 36 dimensional citation space,
position of the circles denote the position of the patents in subcategory 11 in the cita-
tion space in three different stages of the separation process (Jan. 1,1994, Jan. 1,1997,
Dec. 31,1999). Red circles show those patents which were reclassified into the newly
formed class 442, during the year 1997. The rest of the patents which reserved their
classification after 1997 are denoted by blue circles. Precursors of the separation ap-
pear well before the official establishment of the new class.

23



7* 2 1 3 6 4 5

A B

USPTO classes

Clusters

Clusters

D
is

ta
nc

e s

# 
of

 p
at

e n
ts

Figure 5: Separation of the patents by clustering in the citation space, based on the
Jan. 1,1991 data. A: Distribution of the patents issued before 1991 in the subcategory
11, within the 6 official classes in 1997 on the class axis (also marked with different col-
ors) and within the 7 clusters in the citation space. The clustering algorithm collected
the majority of those patents which were later reclassified into the newly formed class
442 (orange line) into the cluster 7 (marked with an asterisk). Vice-verse, the cluster 7
contains almost exclusively those patents which were later reclassified. Thus, we were
able to identify the precursors of the emerging new class by clustering in the citation
space. B: The dendrogram belonging to the hierarchical clustering of the patents in the
subcategory 11 in year 1991 shows that the branch which belongs to the cluster 7 is the
most widely separated branch of the tree. The coloring here refers to the result of the
clustering, unlike graph A where coloring marks the USPTO classes.
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Number of Jan. 1, 1991 Jan. 1, 1994 jan. 1, 1997 Dec. 31, 1999
patents in the whole database 4980927 5274846 5590420 6009554
patents in the subcategory 11 18833 21052 23191 25624

patents belong to class 442 from 1997 2815 3245 3752 4370
patents with non-zero citation vector in 11 7671 9382 11245 13217

citations connected to patents in SC 11 70920 92177 120380 161711

Table 1: Number of patents in the examined networks and subnetworks in different
moments.
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