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This new technique promises to become a powerful tool not only for hyperfine
spectroscopy but also for γ-optical experiments. The standard experiment in the future
will be the time-resolved observation of forward scattering from a polycrystalline target
instead of the pure nuclear reflection from a single crystal which has been used to date.
Using the time of excitation, which is known precisely and the spectrum of the delayed
resonant quanta from the sample, the hyperfine interaction parameters may be
determined within a few hours, even with resonant counting rates of only 1 Hz [2.34].
The use of synchrotron radiation may allow the Mössbauer effect to be observed in new
isotopes. Such isotopes would need low-energy excited nuclear levels but need not
have appropriate parent nuclei and hence they are not given in Table 1.1.
Additionally, this technique may be especially promising for magnetic field and EFG
structure studies in crystals [2.35], and the measurement of the total external reflection
of sub-µeV beams of high brilliance may be useful in the analysis of near surface layers
(see subcec. 2.5 and 3.8).

2.4. Angular Dependences of the Scattered γ -radiation

 The angular dependence of intensities is also important in conventional Mössbauer
spectroscopy despite the fact that these dependences are not so sharp as in diffraction.
It is of special importance in studies of surface layer where the Mössbauer spectra are
the superposition of several partial spectra. For example, if EM

m(EQ
m) >> Γnat for each of

the partial spectra then, since line intensities corresponding to the transition between
different sublevels possess different angular dependences, spectra recorded at the
scattering angles where these differences are maximized, are easier to interpret.
 In another limiting case when EM

m(EQ
m) ~ Γnat , it is practically only the analysis of the

angular dependence of the resonantly scattered radiation that permits the origin of line
broadening in the Mössbauer spectrum to be understood.
 Let us find what determines the intensity dependence on the scattering angle in the
absence of interference. Suppose that a nucleus gives its excitation energy by a
cascade of γ-quanta. The emission of a γ-quantum, followed by a change of the total
nuclear momentum by L > 1, results in a definite orientation of the nuclear spin with
respect to the direction of the emitted γ-spectrum. Let us assume that the emission of
the subsequent γ-quantum occurs immediately after the emission of the preceding one.
Radiation from such an oriented nucleus will be anisotropic. If the nuclear orientation is
changed by perturba-
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tions, the angular distribution of the subsequent γ-quanta will be also changed. The
angular distribution of the direction of two successive γ-quanta is independent of
whether the two quanta have been emitted or whether resonant scattering has
occurred. This has made it possible to use the well developed theory of angular
correlations [2.35] in resonant scattering of γ-quanta. In this theory, the directional
correlation function W(θ) of resonantly scattered γ-quanta with respect to the direction of
the primary beam should be the same as for the two successively emitted γ-quanta in
transitions between levels with the same parameters as for the levels corresponding to
resonant scattering. There are theoretical expression for the correlation functions W(θ)
for all cases of interest [2.37,38]. It should be noted that Mössbauer scattering allows
the observation only of the integral time dependence of the angular correlation function,
since it is impossible to determine the exact moment of absorption of the incident
γ-quantum.
 The correlation function W(θ) is determined by the directional distribution of radiation for
every γ-transition and by the Clebsh-Gordon coefficients. If the excited nucleus is not
affected by any fields changing its orientation, the angular distribution of the γ-quanta for
a given transition with respect to a chosen quantization axis is given by

where P(me) are relative populations of all sublevels m, FL
M(θ) is the angular function of

γ-rays for the transition between sublevels (M = me - mg). Functions FL
M(θ) depend only

on the radiation multipolarity. For M1 transitions FL(θ) is a sum of three terms with the
angular dependences

F1
0(θ) = 3 sin2 θ = 2 - 2P2(cos θ) ,

F1
±1(θ) = 3(1 + cos2 θ) / 2 = 2 + P2(cos θ) .

If the excited nuclei are randomly oriented, i.e. all the P(me) are equal in any
coordinate system, it follows from (2.49) that FL(θ) is independent of θ and that
radiation is isotropically emitted.
 Generally, the directional correlation function is determined by the angular function for
both the absorption process (FL

M(θ))a and the scattering process (FL
M(θ))s . However, it

is convenient to choose the direction of the quantization axis to coincide with the
direction of the first quantum emitted in a cascade, since the function W(θ) is
determined only by the function (FL(θ)).
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For given transition multipolarity the directional correlation function is usually written in
the form

W(θ) = 1 + A22P2(cosθ) + ... + )(cosPA
mkmkmk θ .                                        (2.50)

km is given by the selection rule km = min (2Ie ,2L). The coefficients Akk can be explicitly
calculated since they can be represented by two factors of the same form, each one
being determined by the properties of one of the transitions in a cascade. If there are
hyperfine fields, either static or fluctuating, a perturbation of angular correlations occurs.
In a semiclassical approach, interactions of the nuclear magnetic dipole moment with
the magnetic field Heff , or the nuclear electric quadrupole moment with the electric field
gradient EFG, result in the appearance of a rotation moment and the nucleus begins to
precess about the symmetry axis (the quantization axis). Such changes in the nucleus
orientation lead to a change in angular correlations. Coefficients Akk in (2.50) are to be
multiplied with the perturbation factors Gkk(t), which are, in general, time dependent and
depend also on the nature and energy of hyperfine interactions. Expression (2.50) now
takes the form

)(cosP)t(GA)t,(W k
k

kkkk θ=θ ∑      .

In this approach the random perturbation will not change the shape of the angular
correlation function but will only diminish the coefficient at Pk(cos θ).
 The most important feature of the integrated perturbation factors for a randomly
oriented static interaction (i.e. a scatterer of an ideal polycrystallite) is that they have
finite lower limits Gkk. If the quantization axis is randomly oriented, the integrated
angular correlation will not disappear even for very strong static hyperfine interactions in
the solid. For axially symmetric fields :

Gkk = 1 / (2k + 1)

 For M1 transition Gkk = G2 = 0.2 .
 In a single crystal scatterer the angular distribution is completely determined by the
crystal orientation with respect to the scattered radiation. If the direction of Heff or EFG
coincides with the direction of the incident radiation, then the relative populations P(me)
characterizing the nuclei orientation in the scatterer remain constant. At any energy of
hyperfine interactions the correlations will be unperturbed. In other cases of static
interactions the correlations are perturbed.
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For time-dependent hyperfine interactions the angular correlations may vanish
completely. Such a situation in the Mössbauer effect for 57Fe is realized in paramagnetic
substances. Indeed, the direction of Heff changes stochastically at each nucleus. There
are no quantization axes, whose populations could remain constant, hence all the
sublevels are equally populated irrespective of the chosen quantization axes. Hence the
directional correlation becomes isotropic. Therefore, the Mössbauer γ-quanta resonantly
scattered from a scatterer whose Mössbauer spectrum is a single line of width Γnat will
have an isotropic distribution.
 Returning to the static hyperfine interactions let us now consider resonant scattering of
the magnetic dipole radiation when the overlap of the spectrum components may be
neglected. The angular distribution W1(θ) of the components' intensities of the
quadrupole doublet for the ( ±1/2 ⇔ ±3/2) transition, and W2(θ) for the (±1/2 ⇔ ±1/2)
transition, may be written as

W1(θ) = 
16
1

(25 - 15 cos2β1 - 15 cos2β2 + 9 cos2β1cos2β2) ,

W2(θ) = 
16
9

 (1 + cos2β1 + cos2β2 + cos2β1cos2β2) ,                                                (2.51)

where θ is the angle between vectors k0 and kf, angles β1 and β2 specify the orientation
of k0 and kf with respect to the quantization axis.
 If the scatterer is an ideal polycrystallite the experimentally observed angular
dependence (2.51) is to be averages over all orientations of the EFG tenzor to give

W1(θ) = W2(θ) = 1 + 0.05 P2(cos θ) .                                                                      (2.52)

This means that even when the quadrupole interaction energy is very high, the angular
correlations do not vanish completely. If EQ

m ≈ Γnat, i.e. on scattering of the γ-quantum
with a given energy, the excited state of the scattering nucleus is not known, and the
perturbation factor is written [2.39] as:

G2 = 0.2 [1 + 4 / (1 + EQ/Γ2)] .                                                                               (2.53)

 When Γnat ≤ 2Γnat , the angular distribution of the resonantly scattered radiation will
determined by the nature of line broadening. For example, if the broadening is due to
the difference in the isomer shifts caused by nonequivalent positions of the resonant
atoms then the angular distribution of the intensity of the scattered radiation will be
isotropic. If the broadening is due to small quadrupole splitting the angular distribution is
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W(θ) = 1 + 0.25 G2 P2(cos θ) ,                                                                          (2.54)

where G2 is given by (2.53), and the anisotropy of the radiation intensity may be large.
When the quadrupole interaction energy increases expression (2.54) in the limiting case
transforms into (2.52).
 The anisotropy of the resonantly scattered radiation also depends on the anisotropy of
the factor f' . At EQ

m < Γ the factor f' has little effect on the angular dependence.
Increasing EQ requires that the anisotropy of the f' factor be taken into account. Now
(2.52) may not be obtained from (2.51) as before since angular dependences of the
Mössbauer effect probability in the scatterer should be introduced into the angular
dependences of the resonantly scattered radiation (2.51) before averaging. The angular
dependences of the scattered radiation intensity are strongly affected by the factor f'
anisotropy. This provides an efficient method of experimentally investigating the factor f'.
 If the scatterer is an ideal polycrystalline antiferromagnet, where the effective magnetic
fields are strong and randomly oriented, the dependence of the intensities on the
scattering angle for the first and the sixth lines of the spectra - W1(θ), for the second and
the fifth lines - W2(θ), and for the third and the fourth lines W3(θ), are given by the
following expressions [2.11,37] :

To obtain the spectral line intensities, expressions (2.55) have to be averaged over θ,
and for a thin sample the intensity ratios will be 3 : 2 : 1 : 1 : 2 : 3 .
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2.5. Mössbauer γ-quanta Scattering as a Method of Surface Study

Let us analyse the line shape of scattering Mössbauer spectra when γ-quanta are
detected, and the energy distributions of the resonant quanta. Similar problems for
transmission have been considered in Sect. 2.1. Experiments in geometry (Fig. 2.9) are
used in a variety of studies, e.g. diffraction, angular correlations, phase analysis. In
studies of angular dependences this geometry allows the best angular resolution to be
achieved when using large scatterers. We start the analysis with the spectra obtained in
this geometry.
 Let us make some simplifying assumptions. At first, let there be no splitting of the
energy levels in either the source or the absorber. The recoilless part of the source
γ-radiation of integral intensity I0 may be written as

IM(E,S) = )S,E(LI
f2

0Γπ
 .                                                                                         (2.56)

For this part of the beam it is always necessary to take into account the dependence of
the interaction probability on the energy parameters E and S. Unless otherwise stated,
the total beam I0 is normalized to unity. If the energy distribution of the γ-quanta is of
prime interest, the normalized beam JM(E,S) is called the energy distribution of the
γ-quanta. This can be used to evaluate the spectral shape and the intensities of the
detected radiation which can be obtained by integrating over all the γ-quanta energies.
The beam or the intensity of radiation will be denoted by I(S).
 The shape of the energy distribution of radiation changes as it penetrates the scatterer.
At a certain depth x it is given by

where θ = γ1 + γ2.
If the energy distribution of the Mössbauer radiation at a depth x is known together with
the differential cross sections for all the scattering processes contributing to the
detected intensity and the thickness and composition of the scatterer, then the line
shape of the Mössbauer spectrum and the energy distribution of the scattered radiation
can be found. Both components of the recoilless and non-recoilless resonantly
scattered radiation have different energy distributions. Resonant self-absorption of the
scattered radiation in the sample may cause the partial contributions of the two
components to the resulting Mössbauer spectrum to be quite different from the
ratio f'/(1 - f').
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 Let us consider first the resonant scattering process without the loss of recoil energy
and find the energy distribution Jr(E',S,x) for γ-quanta scattered by a layer dx/sinã1 at a
depth x in the scatterer

where na is the number of resonant nuclei per unit volume.
 For the general case the process cross section in (2.59) is a function of both the
incident γ-quanta energy and the energy E' of the γ-quanta emitted as a result of
scattering. For an isotropic crystal in the absence of diffraction effects the differential
cross section of the process can be written in the form [2.40,41] :

where the function W(θ) is normalized to 4π , and γ is the ground state width due to the
radiation field. The width γ is very small and by appropriate modification of (2.60) may
be taken as zero. This is usually done in the following way. As the incident radiation is
generally not monochromatic, we can assume it to have a Lorentzian distribution of
width Γ. To describe the scattering of this radiation, γ in (2.60) can be replaced by Γ. If
the centre of gravity of the energy distribution of the incident radiation L(E,v) is shifted
relative to the resonance energy in the scatterer (say, by 5Γnat/2, as in Fig.2.10a), there
will be two lines present in the scattering spectrum at energies E and E0.
 The total differential resonant scattering cross section without recoil energy loss, when
the energy distribution L(E,v) of the incident radiation is taken into account, is obtained
by integration of (2.60) over the energy of scattered γ-quanta
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In order to obtain the energy distribution of γ-quanta scattered recoillessly by a layer dx
at a parameter S, (2.57) and (2.60) can be substituted in (2.59):

where dω is the solid angle within which the source radiation reaches the scatterer. The
energy distribution of the γ-quanta which reaches the detector from the scatterer of
thickness da , is obtained from (2.62) multiplied by the probability of the radiation leaving
the scatterer at an angle γ2 (Fig. 2.9), and integrated over x from 0 to da:

D = dω dω'/ (1 + α) .                                                                                              (2.65)

dω' is the solid angle within which the γ-quanta emitted by the scatterer reach the
detector. It is to be noted that the factor D causes the substantial drop in the count rate
of the γ-quanta in scattering experiments as compared to those performed in
transmission mode. The shape of the energy distribution of the scattered γ-quanta
substantially depends on the factor Fr

' determined by the experimental geometry.
The calculated distribution for bulk scatterers when all backscattered radiation is
detected are presented in Fig. 2.14.



82

The isomer shift δ and the ratio of linear coefficients for resonant and nonresonant
interactions x = µr/µa are the tabulated parameters. The value of µr in this case is
determined by the enrichment of the resonant isotope. Energies are given in units of
Γnat/2. A comparison of the dependences shown in Figs. 2.10a and 2.14.2 shows that
the interaction of γ-radiation with matter must be taken into account when a real sample,
as opposed to the hypothetical case of a single atom scatterer, is considered.
 A scatterer can be called thin if the following relation holds

ts = (ta + ta
e) cscγ1 + b cscγ2 << 1 .                                                               (2.66)

Fig.2.14 Energy distribution of γ-quanta scattered by a bulk sample of non-magnetic iron
at different 57Fe abundances. The dashed curve is calculated for x = 128, curve 1 - for x
= 8, curve 2 - for x = 4, curve 3 - for x = 1. The zero energy corresponds to the centre of
incident radiation spectrum. For convenience the intensities of curves 1 - 3 are enlarged
by a factor of 3.
In Mössbauer scattering spectroscopy the effective Mössbauer sample thickness ta (see
(2.8) and (2.23)) used in
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transmission spectroscopy together with two more analogous parameters: ta
e= µada ;

and b = νda , where ν is the linear absorption coefficient for the detected radiation, must
also be considered.
The spectrum line shape from thin scatterer (2.64) can be described by the following
expression:

Since in this case the lines in the source and the scatterer are Lorentzian, the integral in
(2.67) has the value:

If the scatterer is thin, the contribution of the recoillessly scattered γ-quanta into the
Mössbauer spectrum is

If the finite thickness of the scatterer is taken into account, the expression for the line
shape becomes much more complicated. However, the expression for Ir(S) can be
written in the form:
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If the detector registers only nonrecoillessly scattered γ-quanta the beam of γ-quanta
Irn(S) can be described by an expression analogous to (2.69) with the exception that f'
must be replaced by (1 - f'). These quanta cannot be resonantly absorbed. For the thin
absorber the intensities ratio is:

Ir(S)/Irn(S) = f'/(1 - f') .                                                                                            (2.71)

 To obtain Irn(S) which is the contribution of the resonantly scattered nonrecoilless
γ-quanta in the total spectrum, it is necessary to make the following substitutions: (1 - f')
for f', Frn(S) for Fr(S) and βrn

2= 1 + ta/µa(1 + sinγ1 cscγ2) for β2
2. The functions Fr(S) and

Frn(S) have been calculated for various absorbers and thicknesses and are tabulated
elsewhere [2.29]. The tables and plots for Frn(S) can be used for any radiation where the
attenuation in the scattering material follows the exponential law. This means that the
formalism may also be used when scattered X-rays are detected.
 It is now necessary to consider the situation when hyperfine interactions are present,
the excited level splitting is such that the distance between the sublevels is much
greater than Γ, and the interference effects on scattering from different sublevels are
neglected. The resonant scattering occurs at energies Eij = Ej

e - Ei
g which are allowed

by the selection rules (see Fig.1.3). The distance between the two ground-state
sublevels is denoted by ∆ii' = Ei

g- Ei'
g.

It is now possible to consider various contributions to the total spectrum recorded for the
sample of α-iron and study the effects of the thickness of the scatterer and of the
resonant isotope abundance on the line shape of the experimental spectra, the relative
line intensities, and the effects on these of saturation phenomena. The most thorough
methodology studies have been carried out by BALKO and HOY [2.41,43] and BARA et
al [2.44,45]. The linear resonant scattering coefficient in the presence of hyperfine
splitting is

where θ1 and ϕ1 are the polar and azimuthal angles of γ-rays incident upon the
scatterer. The directional correlation function Wij(θ 1,ϕ1) for the transition of energy Eij is
determined by the corresponding FL

M(θ) angular functions. The energy distribution of
resonantly scattered recoilless γ-quanta



85

is determined as before (2.59). However, there is in this situation no unique relation
between the energies of the incident and scattered γ-quanta. The scattered quantum
may have the energy E' = E of the incident quantum, as well as the energy E' = E - ∆ii' .
If θ2, ϕ2 are the polar and azimuthal angles for the scattered γ-rays, the differential
resonant scattering cross section when the Lorentzian distribution of the incident
radiation is taken into account can be written as

Let us assume that the correlation functions Wij(θ,ϕ) are axially symmetric and
normalized. The summation in (2.73) is over all the transitions allowed by the selection
rules. If the allowed excitation of a sublevel takes place with energy Ej

e , corresponding
to the transition Ei

g → Ej
e (see, for example transition 3 in Fig.1.3), the decay of the level

is possible via the Ej
e → Ei

g and Ej
e → Ei'

g transitions (solid arrows in Fig.1.3). Thus, for
scatterers with hyperfine split levels, the energies E of incident- and E' of scattered - γ
-quanta may be different. If the source radiation has Lorentzian line shape and the
factor f is assumed to be anisotropic (2.59), integration over E gives expression in the
form [2.41] :

where θ - is the angle between vectors k0 and kf . If splitting of the levels is such that
interference of Mössbauer scattering from different sublevels may be neglected (see
Sec. 2.3), the energy distribution of γ-quanta from a scatterer with thickness da is
obtained by integration of (2.74) over x from 0 to da :
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where the function Fr
' is determined by an expression analogous to (2.64)

where ar is a constant determined by the particular experimental set-up [2.41].
 The Mössbauer spectrum of the resonantly scattered recoilless γ-quanta is given by

  ∫
+∞

∞−

′′= Ed)S,E(J)S(I rr                                                                   (2.77)

The Mössbauer spectrum Irn(S) due to nonrecoillessly scattered γ-quanta may be
obtained by replacing f'2 by f'(1 - f') and the function Fr

' in (2.77) by the function F'rn :

It is important to note that Rayleigh scattering of the resonant radiation also contributes
to the Mössbauer spectrum. The contributions should be distinguished - the elastic
Rayleigh scattering of Mössbauer quanta IR(S) and the inelastic Rayleigh scattering
IRn(S) (see Table 2.4):
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where n' is the number of scattering atoms per unit volume.
Expressions (2.79) and (2.80) were initially used in [2.41] which considered scattering at
90° when fR = f'2 and the value of the angular term W(θ) was included in the constant aR

which is determined by the Rayleigh scattering cross section and the experimental
set-up.
It is convenient to represent the experimental Mössbauer spectrum as the result of the
combined action of four processes. If the fraction f is considered of γ -quanta recoillessly
emitted from the source, then the total intensity of Mössbauer scattering at a velocity v
may be written [2.41] in the form:

I(S) = Ir(S) + Irn(S) + IR(S) + IRn(S) .                                                              (2.81)

The contributions of the individual processes will be analysed in more details in Chapter
4. In backscattering geometry it is necessary to simply integrate over x. The spectra to
be expected from (2.81) may be considered by examining an iron powder enriched in
57Fe (a = 91 %) with parameters ta= 153, f' = 0,7, µa = 205 cm-1, and subjected to the
calculations described in [2.41]. Difficulties in computation are at the last stage when it
is not possible to integrate explicitly (2.75) over E' . The calculations may be
substantially simplified by assuming that the radiation which is incident on the scatterer
is monochromatic, i.e. Γ = 0. The results are presented in Fig.2.15 and 10-3 of the
incident radiation intensity is taken as a unit of the scattered radiation intensity.
 A characteristic feature of the spectra recorded from elastic resonant scattering as
compared with spectra recorded in transmission experiments is the unusual effect of the
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scatterer thickness on the line amplitudes. The amplitudes of all the lines approach
different limiting values with that of the second line becoming the largest. The reason
concerns the velocity v2 which corresponds to the centre of the second spectral line. At
this velocity the scattered radiation Jr(E', v2) consists of two components contributing to
the intensities of the second and fourth lines of the spectra (Fig.1.3). The second
component of the scattered radiation is less resonantly scattered than the first
component (see Table 2.3). A nonresonant detector would register both components
with equal probability. Hence, if attenuation of the scattered beam on the way to the
detector is not taken into account the radiation penetration appears to increase and the
amplitude of the second line increases as compared to scattering from a single atom.
The opposite is true if scattering is at a velocity corresponding to the forth line and
penetration of the elastically scattered radiation Jr(E', v4) appears to decrease in
comparison with transmission experiments.
Nonrecoillessly scattered γ-quanta are not resonantly scattered on the way to the
detector, and the amplitudes of all the lines of the spectrum Irn(S) are approximately
equal.

Fig.2.15 Calculated Mössbauer scattering spectrum I(v) and separate contributions to it
[2.41].
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At resonance velocities the count rate of γ-quanta scattered by electrons is at a
minimum. This occurs because the Rayleigh scattering cross section is independent of
energy in the energy region of interest: E0 ± 1000 Ã . The incident γ-quanta passing
through the scatterer are strongly attenuated at resonance energies, and the number of
γ-quanta capable of Rayleigh scattering on resonance is therefore considerably less
than at non-resonant conditions.
Although, we are considering here a thick scatterer enriched in 57Fe, the total intensity
of the scattered quanta even for such an ideal case will not exceed several percent of
the incident intensity. For nonenriched scatterers the relative contribution of Rayleigh
scattering into the total spectrum will be appreciably more than in the case being
considered here.
The calculated spectra for thick scatterers of natural iron which correspond to the
scattering of monochromatic radiation show neither significant line broadening nor
saturation effects. However just the opposite is true for the enriched samples. This can
be illustrated by considering the same scatterer but with a = 90 % 57Fe. As the linear
coefficient µa increases and at

Fig.2.16 Calculated effect of the factor f' on the line shape of scattering Mössbauer
spectra. The absorber is iron powder (a = 91 %; µa = 200 cm-1; ta = 175). The spectra
are normalized such that the intensities of the first lines are the same [2.41].
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constant values of f' and ta the lines of the Mössbauer spectrum become narrower
because the contribution from deeper layers of the sample is less. As the f' factor
increases and at constant values of µa and ta the lines are significantly broader (Fig.
2.16) since the situation is equivalent to a higher enrichment of the resonant isotope in
the scatterer.
 Any attempt to observe the Mössbauer effect in scattering geometry, using only the
principles of transmission experiments, would usually produce unsatisfactory results.
Even with a scatterer of α-57Fe (see Fig. 2.9) the magnitude of the effect would be in the
order of 10 %. A successful experiment requires the proper collimation of the incident
and scattered beams and correct distances between the source, the scatterer and the
detector. Experience in Mössbauer scattering spectroscopy shows that the optimal
geometry is realized in an experimental set-up where the removal of the sample under
investigation results in only the γ-radiation caused by single scattering cannot reach the
detector. In such a geometry the observed effect in α-57Fe foils is between 150 % and
250 % .
The γ-spectra resulting from the scattering of radiation from a 57Co (Cr) source by a 9
µm α-57Fe foil are shown in Fig. 2.17. There are no filters between the source and the
scatterer or between the scatterer and the detector. The solid circles show the
amplitude spectrum obtained at a velocity near v1. Open circles depict the spectrum at v
= 0.

Fig. 2.17 Pulse-height spectra of the 57Co radiation scattered from α-Fe.
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The background measured in the absence of the scatterer is given by the solid line. The
background detected in the absence of the source is represented by the dashed line. All
the lines correspond to the same measuring time and are characteristics of the
experimental conditions. The observed effect for the first line of the sextet is about 250
%.
 By decreasing the diameter of the collimator and increasing the distance it is possible
to exclude the γ-quanta resulting from multiple scattering. This gives an increase in the
observed effect but with a decrease in intensity. Examples of this technique are given
elsewhere [2.44, 45] where, using a geometry similar to that shown in Fig. 2.9 and with
proper collimation, the dependence of the magnitude of the effect on the thickness of
57Fe enriched and nonenriched iron and haematite scatterers have been studied.
 Three Mössbauer spectra were recorded simultaneously using scintillation counters.
These were the transmission spectrum and both γ- and X-rays scattering spectra. The
authors succeeded in substantially lowering the background to obtain a large ε(0) value.
 The dependence of the effect ε(0) and the intensities on the thickness of a haematite
scatterer are shown in Fig. 2.18 [2.45]

ε(0) = [I(0) - I(∞)]/ I(∞) .                                                                                          (2.82)

It can be seen that in Mössbauer scattering spectroscopy the maximum effect is
observed for the thinnest sample. The largest effect can be observed when the
resolution of the detector is high and when it is properly shielded from the hard radiation
of the source and from the quanta scattered from surroundings such as the walls of the
collimator.
 The γ-quanta emitted nonrecoillessly from the source also contribute to the total
intensity as a result of Rayleigh scattering and the Compton effect. The fraction of these
quanta is (1 - f) and the contribution IR+C is independent of the Doppler energy shift.
Therefore, in [2.45] an expression is given for I(S) which contains five terms:

I(S) = Ir(S) + Irn(S) + IR(S) + IRn+C(S) + IR+C .                                                 (2.83)

 In the authors' opinion (2.83) is more adequate than (2.81), since it more thoroughly
accounts for the interaction of the scattered radiation with the sample. Resonant
scattering has different effects on the first four contributions defined in (2.83) to the total
Mössbauer spectrum. Thus, Ir(S) depends on resonant scattering when radiation
passes into the sample as well as on its way back to the detector. It could be important
for selective excitation when the resonant interaction cross sections for the incident and
scattered γ-quanta may not be the same.
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Fig. 2.18 Dependences of the effect value ε1 and radiation intensities on the sample
thickness for the Mössbauer spectrum of haematite (a = 80 %) [2.45]. a - transmission;
b and c - scattering (b - γ-rays, c -X-rays).

The terms in (2.83) have their own angular dependences and, in addition, interference
is possible between Mössbauer and Rayleigh scattering. However, on considering the
angular distribution for I(S), all the interference effects in experiments of interest are
usually neglected. There are two reasons for this. First, the contribution of interference
to the total intensity is usually small. Second, the requirement to obtain a sufficient count
rate leads to the use of large solid angles causing the interference effects to "smear
out". It must also be remembered that there is no interference if the energy of the
incident γ-quanta corresponds exactly to a resonant absorption peak.
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The calculated [2.45] ε(v1) values are given in Fig. 2.19 for monochromatic source
γ-radiation in transmission and scattering experiments as a function of the thickness of
an iron sample for a = 2 % and 100 %, and for a series of hypothetical values of µa. The
results show good agreement between the calculated results and the experimental data
of Fig.2.18.
 If relaxation processes or hyperfine interactions occur in the scatterer the interpretation
of conventional scattering (or transmission) experiments is often complicated and the
results are ambiguous. If the interpretation is possible the information on µa(E) (σa(E)) is
usually obtained. The information on µa(E) alone does not help in detailed studies of
hyperfine interactions in the samples mentioned above. Of much more help is any direct
information on the differential cross sections (see e.g., (2.73) and (2.75)) which are a
function of the incident and scattered γ-quanta energy. The incident γ-quanta energy
should be fixed and the energy spectrum J'(E', vi) observed to show directly the energy
change of γ-quanta on scattering. If there is no phonon spectrum excitation:

J'(E',vi) = Jr(E
',vi) + JR(E',vi) .                                                                                  (2.84)

Fig.2.19 Dependence of the effect value ε1 of the Mössbauer spectrum of iron on the
sample thickness d in scattering experiments (solid lines) and in transmission
experiments (dashed lines). For samples of natural abundance, hypothetical cases of
different µa have been considered.
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The scattering angle θ = 90° should be taken for the minimum interference contribution.
For a thin scatterer JR(E', vi) is always Lorentzian (see Fig. 2.10c). The Jr(E',vi)
distribution gives the necessary information and for a thin sample may be written as

I(v,vi) = Ed]d)v,E(1)[v,E(J ai ′′µ′−′′∫
+∞

∞−

 ,                                                   (2.85)

where µa
'(E',v) is the total linear scattering coefficient in the "analyzer" moving at a

velocity v, and d is the "analyzer's" thickness.
 It is desirable that the J'(E', vi) distribution should not be different from the Jr(E', vi)
distribution. For this purpose a constant velocity vi is chosen so that the incident
radiation is on resonance with one of the scatterer's lines. Rayleigh scattering
contributes only to the amplitude of the elastic resonant scattering, does not change the
line shape, and cannot result in misleading information.
To obtain the I(v, vi) dependence a γ-ray detector is needed with an energy resolution of
approximately Ãnat. For this purpose a resonant filter is placed in front of a conventional
detector. This filter is a "single line" Mössbauer absorber and an enrichment in the
resonant isotope is desirable. Driving the filter ("analyzer") in the constant acceleration
mode and detecting the outgoing radiation allows the I(v, vi) spectrum to be produced
(see Fig. 2.20). The observed effect is determined now by the two elastic resonant
scattering processes (by four f factors). Two synchronized drive system are necessary
to observe the two scattering processes. This is known as selective excitation double
Mössbauer spectroscopy (SEDMS) [2.46 - 48].
The method is demonstrated by considering the SEDM spectrum recorded at vi = v2

from a 9 µm thick iron foil with a = 90 % 57Fe (Fig. 2.21), that is for scattering at the
energy corresponding to the -1/2 → -1/2 transition in the scatterer (Fig. 1.3). The
Mössbauer spectrum I(v,vi) consists of the second and fourth lines of the usual
spectrum of α-Fe, i.e. the lines corresponding to the -1/2 → -1/2 transition as well as to
the -1/2 → +1/2 transition. The method has been applied to determine the f' factor for
the first time in stainless steel [2.46]. Time-dependent effects have subsequently
become the main field for SEDMS research [2.49, 50].
A SEDMS theory for time-independent hyperfine interactions has been given elsewhere
[1.4, 2.43] and all the necessary energy distributions and SEDM spectral components
have been
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Fig.2.20 A schematic experimental arrangement used for Selective Excitation Double
Mössbauer Spectroscopy.

considered. Three processes have been taken into account: resonant- and
Rayleigh-scattering, and γ-rays absorption in the scatterer due to the photoeffect. The
scattering angle has been selected as 90º. It has been shown that in the experimental
spectra a line is always observed at an energy that is exactly equal to the energy of the
incident γ-quanta. If this energy coincides with a transition energy in the scatterer, one
more fairly intensive line may also appear in the spectrum.

Fig.2.21 SEDM spectrum of α-Fe.
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Energies of the incident γ-quanta which are much different from the transition energy in
non-enriched scatterers result in the Rayleigh scattering contribution becoming so
dominant that in the spectrum a line due to Rayleigh scattering occurs [2.51]. The
Rayleigh scattering can be separated out and studied by SEDMS in a different manner.
For example, if the velocity vi is set to excite the -1/2 → -1/2 transition then the
corresponding line in a SEDM spectrum will contain the Rayleigh scattering contribution
although the line -1/2 → +1/2 that is observed in the same spectrum will not contain the
contribution. By considering all the parameters affecting the line intensity ratio in the
Mössbauer effect the Rayleigh scattering cross section can be obtained.
 The main advantage of SEDMS is that the method offers a direct means by which the
relaxation processes between sublevels of the excited nucleus can be observed.
Indeed, the experimental spectrum I(v,vi) gives direct information on time- dependent
hyperfine interactions which determine the nuclear level splitting. The relaxation times in
the region of 10-7- 10-10 sec are the most convenient to measure. The first studies in this
field have been connected with the Morin transition in haematite. In the vicinity of the
Morin temperature TM there is a 90o change in the direction of spins of iron atoms [2.43].
Below TM the spins of iron atoms are parallel to the [111] direction, above TM they are in
the (111) plane. Two different Mössbauer spectra correspond to these different
orientations (see Fig.2.22). In the transmission spectrum taken at T = 298 K, i.e. above
TM, the sixth line is at v = 8.34 mm/sec (Fig. 2.22.a), and in the spectrum taken at 77 K
(below TM) this line is at v = 9.2 mm/sec (see Fig. 2.22.f). Near TM (parts of the
transmission spectrum, taken at 269.5 K; 265 K; 263.5 K and 261 K are given in Figs.
2.22.b - 2.22.e) the sixth line is significantly broadened and distorted. This may be due
to either the existence near TM of two ionic states with different orientations of the
magnetic field direction with respect to the crystallographic axes, or to relaxation
phenomena. SEDMS experiments allow these two possibilities to be examined. An
experimental spectrum is given in Fig. 2.23 in which the calculated spectrum is shown in
the absence of relaxation by the dashed line. The arrow shows the source velocity. The
value of the relaxation time in haematite at 263.5 K is (1.1 ± 0.2)·10-7 sec.
 A recent development in SEDMS line shape calculations is the superoperator approach
[2.52]. This has made possible the analysis of the effects of various parameters and
experimental conditions on the line shape. In studies of a classical paramagnetic
tris-(pyrrolydine)dithiocarbamate Fe(III), (TPDC [Fe(III)]), which can be described by any
of three possible relaxation models, one has been chosen [2.53]. The authors have
shown the relaxation processes to depend on the sample temperature.
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Fig.2.22 Transmission Mössbauer spectra from a thin sample of haematite (a = 90 %) in
the vicinity of line VI (see text).

Fig.2.23 SEDM spectrum from a thin haematite sample at 263.5 K. The spectral line
shape is given by the solid line calculated for a relaxation time of 1.1·10-7 s.
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Thus, at 5.4 K the relaxation is due to transitions between the sublevels of the Kramers
doublet corresponding to the ground state. The relaxation rate was found to be in the
order of 5·109 sec-1. The use of ordinary Mössbauer transmission spectroscopy for
similar systems does not permit the selection of the correct relaxation model from
several possible ones.
To summarize, it should be noted that SEDMS has some substantial limitations
connected with the insufficient strength of Mössbauer sources. The necessity to have
two successive resonant interaction processes results in a very low detected intensity.
Indeed, the second part of a SEDMS experiment is a transmission experiment with the
scatterer being the Mössbauer source. If the levels are split, even for a scatterer
enriched in the resonant isotope, the intensity of this source is not more than a percent
of the intensity reaching the scatterer from the source. The observed effect in such a
transmission experiment with an enriched analyzer is about 10 % (see Fig. 2.23). This
means that studies of samples with only natural abundances of Mössbauer isotopes are
very time-consuming.
 Resonance detectors have been successfully used in Mössbauer emission
spectroscopy. Since SEDMS experiments require the energy analysis of the Mössbauer
radiation when the scatterer is the source, the use of a resonance detector as the
"analyzer" allows a better signal-to-background ratio. A spectrum given in Fig. 2.21 is
not typical for SEDMS experiments (cf. Fig. 2.23). It is taken using a resonance detector
and the observed effect is several hundred percent. The effect with an ordinary
Mössbauer source (without any scatterer) is about 1500 %. Most important in the use of
resonance detectors in SEDMS is the low noise level. Thus, the use of a scintillation
resonance detector, which is conveniently used in transmission experiments, is not
efficient in SEDMS due to the high noise level of the detector. The use of gas-filled
resonance detectors allows a shortening of the measuring time by a factor of 9 with the
same statistic accuracy. Such resonance detectors can be made very light and the
detector itself can be driven. Massive samples of any form may be studied, and SEDMS
is a convenient technique in applied fields where the observed spectra are more
complicated.
 As noted in Sect. 2.3, one of the interference phenomena, the total reflection of ã-rays,
may be used for studies of very thin surface layers. It is known that if electromagnetic
radiation falls onto a mirror surface characterized by the complex index of refraction n =
1 - σ - iβ at a glancing angle γ1 ≤ γcr ≤ δ2  the reflectivity R, i.e. the ratio of the reflected
and incident intensities, becomes equal to unity [2.5, 11]. For real media there is always
some absorption and the imaginary part of the index of refraction is not zero. However,
if the R value rises sharply when γ1 becomes less than γcr the situation is described as
total external reflection (TER). The coherent amplification of the scattered wave under
conditions of TER is analogous to diffraction on scattering from single
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crystals. The index of refraction depends on the coherent scattering amplitude FFcoh(k0 =
kf) per scattering centre in the forward direction

where n' is the number of scattering centres per unit volume.
 Where the scattering of Mössbauer radiation is concerned, FFcoh(k0 = kf) is a complex
scattering amplitude and consists of two contributions: Fcoh(k0 = kf) and FR(k0 = kf) [2.54].
As has been noted, near resonance the Fcoh(k0 = kf) values vary significantly with the
incident γ-quanta energy whereas FR(k0 = kf) remains constant. Thus, the resulting value
of FFcoh(k0 = kf), and hence n and R, depend on γ-quanta energy and velocity v near the
resonance. The index of refraction (2.86) depends only on the forward scattering
amplitude and hence there is no phase shift between the waves scattered by various
atoms and nuclei in the unit cell. Unlike the situation in diffraction, the structure factor of
the basis need not be used for the unit cell.
 Interference effects and, as a consequence, the dependence of R on the incident
γ-quanta energy and the glancing angle γ1 , have been observed by the Mössbauer
effect [2.54-56]. At the same time it has been shown that in the presence of hyperfine
splitting and of non-randomly oriented quantization axes in the scatterer, polarization
effects should also be taken into consideration. FFcoh(k0= kf) must then be replaced by a
matrix of forward scattering amplitudes for various polarization components in the
incident and scattered radiation. The medium becomes doubly refractive and a single
refractive index is insufficient to describe the phenomena observed upon the action of
Mössbauer radiation. Moreover, the effect can be sufficiently large to affect the line
shape (σr(E)) in Mössbauer transmission spectroscopy.
 An experimental set-up is given for studies of TER of Mössbauer quanta in Fig. 2.24
[2.57]. The design of the Mössbauer spectrometer for TER studies ensure: 1) simple
and reliable setting and measurement the grazing angle γcr; 2) convenience in the
adjustment of the angular beam divergence; 3) sample replacement without affecting
the experimental geometry 4) reproducibility of all source-collimator-sample distances;
5) sample rotation in the range from 0o to 90o. The spectrometer consists of the
analytical unit and electronic system for control, acquisition and processing of
spectrometric data.
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Fig. 2.24 An experimental set-up for studies of total external reflection of Mössbauer
quanta. 1 - the Doppler modulator, S - source, 2 - slit collimator, 3 - the dual proportional
counter, 4 - sample, 5 - screen, 6 - collimator, 7 - scintillation detector.

The analytical unit of the spectrometer comprises a vibration damping platform
suspended on shock-absorbers. Mounted on the platform are guides of the "wedge
slide" type which carry the Doppler modulator, shielding screens, collimator to form
narrow directed plane-parallel radiation beams, proportional counter and scintillation
detector. A narrow plane-parallel γ-rays beam from source S rigidly attached to Doppler
modulator is formed by collimator 1 and through the entrance window of the dual
detector - 3 falls on the sample 4. The γ-radiation reflected from the sample surface and
passed through the exit window of the dual detector and slotted mask 5 is detected by
scintillation detector D1.
 The geometric dimensions for the analytical part of the spectrometer were optimized
based on the following requirements: the divergence value of the collimated γ-rays
beam incident on the sample surface must ensure measurements for the angles γ ≤ γcr

and the luminosity should be high enough at the reasonable analytical unit sizes. It is
obvious, that near the grazing angle the divergence must be really less, then one half of
mrad. As a starting point at the optimization of the geometric dimensions of the
spectrometer the active part of the radioactive source were used. Solving the
multiparameter optimization problem yielded the following values of basic dimensions
and their adjustment intervals for the spectrometer : <Lo> ~ 600 mm, <L1> ~ 700 mm,
<L2> ~ 400 mm, maximum sizes of collimation slits "h" should be set below 1 mm and
adjust with an accuracy better than 0,05 mm.
 The critical angle for the metal iron mirror is γcr = 3.8·10-3 sr [2.51]. On reflection at
angles less than γcr the electromagnetic field intensity falls off rapidly. The penetration
depth for the radiation (i.e. the thickness LL of a
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layer under study) is taken to be equal to the depth at which the intensity is less by
times e. For β = 0 and γ1 < γcr the asymptotic LL value is

If only the elastic scattering by electrons is considered, LL is evaluated to be 1.3 nm for
an iron mirror. In [2.54] the mirror was produced on an optically flat surface of a Pyrex
plate by depositing an iron layer (91.2 % 57Fe) 15 nm thick. It was shown that the metal
surface, i.e. in the 2 nm thick layer, small amounts of wustite and nonmagnetic iron
were present.
Although the analyzed layer is very thin, the technique has not been widely used. The
reasons reflect the very low luminosity and difficulties in preparing the special surfaces
for analysis. Of no less importance is the fact that interference effects complicate the
interpretation of the experimental data. Substantial progress is achieved as shall be
explained in Subsec. 3.9, by detecting not the scattered γ-quanta, but the electrons
leaving the surface when Mössbauer radiation is incident at an angle which is less than
critical. In this situation the intensity of the detected radiation increases and interference
effects become less significant.

2.6. Scattering Experiments with Detection of Characteristic X-rays

 It is known that Mössbauer transitions are usually highly converted and are followed by
the emission of characteristic X- rays and Auger electrons. Typical parameters of
characteristic X-rays for iron are given in Table 2.5. It can be seen that the weighted
average energy of the K X-rays for Fe is 6.47 keV. The difference between the energies
of the X- and γ-rays allows the X-rays to be filtered out of the Mössbauer radiation (see
Figs. 2.4 and 2.5).
 The detection of the characteristic X-rays instead of γ-rays was used in the first
Mössbauer scattering experiments [2.58-60]. Such experiments involving 57Fe were
favoured by the fluorescence yield ω and the internal conversion coefficient α being
overestimated. In fact the gain in intensity of the detected radiation is not as large as
has been previously supposed [2.59] in studies aimed at showing that the scattered
γ-radiation was more expedient to measure than the characteristic X-rays. The intensity
gain for 57Fe is less than 2.5. Of prime importance for the experimentalist is the quality
of the spectrum. The maximum effect at a given intensity is a matter of experience.
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Table 2.5
Energies of K-characteristic transitions in iron and their relative intensities.

Transition
Type

Transition
Energy, eV

Relative Intensity
of the Transition

1
K α 6403.9 100

2
K α 6390.9 51.1

1
Kβ 7058.4 12

2
Kβ 7058.4 6.1

 It is usually believed that in the scattering geometry depicted in Fig.2.9 a larger effect is
observed on detection of the scattered γ-quanta, the spectrum quality (see Sect. 4.5)
being higher (see Fig. 2.18). This is not generally true. Actually for such a gain it is
necessary that the direct radiation does not reach the detector and is properly
collimated. The sample must be relatively thin and the resonant isotope abundance
must not be low. If any of this conditions is not fulfilled, and also if the parameter D (see
(2.65)) is large as is necessary for applied research, the detection of X-rays may be
preferable. Experiments involving the detection of different radiations are not competing,
but may be considered as supplementing each other. The reason is that the difference
in the penetration depth of the Mössbauer radiation and of the characteristic X-rays
allows the acquisition of information from layers of different thickness by detecting
 γ-rays and X-rays in turn. There are exceptions to this however when, for example, the
K- X-ray absorption in iron is such that µa values for the 14.4 and 6.46 keV rays are
close.
Scattering experiments involving the detection of X-rays are easier to interpret because
of the absence of resonant self- absorption of the radiation leaving the scatterer. In
addition, except for the E1 Mössbauer transition, the detection of the backscattered
characteristic X-rays means that interference effects may be neglected since they
average out over all directions detected by the detector. This averaging causes the
interference terms for the Mössbauer transitions of multipolarity M1 and E2 to cancel
each other [2.61-63].
Based on numerical calculations, methods of surface layer analysis have been
suggested for different experimental situations [2.64-67]. By assuming that the incident
and the scattered radiation are well collimated, the dependence of the areas under the
spectra and the intensities of K-X-rays, on the γ1 and γ2 angles have been investigated
(see Fig. 2.9). The model calculations have been carried out for the two cases: γ1 = γ2

and γ1+ γ2 = 90°.
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It was found that the thickness of the effective surface layer which contributes to the
spectrum from iron atoms in any given state j depends on the experimental geometry,
the total concentration of iron atoms in the sample and in the state j. The possibility of
layer-by-layer analysis has been illustrated by the calculation of areas (A) (Fig. 2.25) in
the spectra of a model sample consisting of four different layers which each give a
well-resolved spectrum [2.67]. The upper spectrum corresponds to the first layer, the
fourth (lowest) layer is the bulk consisting of non-magnetic iron with nFe= 1.0 (curve 4).
The first, second and third layers were 3 µm thick with nFe = 0.9, 0.8 and 0.7,
respectively (curves 1,2,3 in Fig. 2.25). The areas under the spectra are given for the
two geometric arrangements in Fig. 2.25a for γ1 + γ2 = 90° and in Fig. 2.25b for γ1 = γ2.

Fig. 2.25 Areas under the partial spectra from three layers (1,2 and 3) successively
deposited onto a bulk sample, and the area of the spectrum from the bulk (4). a) γ1 + γ2

= 90o; b) γ1 = γ2.

The two dependences show that there may be two ways of layer-by- layer analysis. By
the first one, in the geometry γ1 + γ2 = 90º, the succession of the layers and their
composition are revealed on decreasing the angle of incidence from 90º to 45º. First,
the spectrum from a layer of the minimum thickness is obtained, using the maximum
angle of incidence γ1 , and then by decreasing γ1 the thickness of the analyzed layer is
increased. By the method of successive approximations, adding and subtracting the
spectra, it is possible to evaluate the thickness of the layers and their order. If the
Mössbauer spectra corresponding to different layers overlap, the problem is too
complicated and will be treated in a general form later in Chapter 4.
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In the second method the angle of incidence is set equal to the scattering angle. The
first spectrum is recorded at a minimum angle γ1. The successive spectra are taken at
larger γ1 angles. The rest of the procedure is the same as for the first method. If
collimation of the incident and scattered radiation is fairly good, it is possible to change
the thickness of the analyzed layer from several micrometres to several tens of
micrometres simply by changing the angle of the incident radiation. The effect and the
line widths depend also on the solid angles dω and dω' (see Fig. 2.9). It is desirable that
dω and dω' should be less than 5º, since larger radiation divergences diminish the
contribution to the Mössbauer spectrum of the sample layers which are nearer to the
surface. It should be noted that a better collimation of the radiation beam to increase the
depth resolution necessitates longer measurements.
 Other sources of the characteristic X-rays may substantially complicate the
interpretation of the experimental data. In general the multiple scattering processes
should be accounted for. Usually γ-quanta of higher energies are also emitted from the
source and the photoeffect due to these quanta may contribute to the detected intensity.
In the sample material there may be atoms whose characteristic X-rays are close in
energy to the X-rays of interest and hence these are also detected. If the energy is
higher, this relatively hard radiation may cause the subsequent emission of
experimentally detectable characteristic X-rays. A limitation of the technique is that it is
not possible to study a rough surface, for example, the surface of fractures.
 The backscattering geometry of Fig. 1.9c makes it possible to work with intensities
which are ten times as high as those given in Fig. 2.9. The backscattering geometry is
not so flexible but it is simple, efficient, and suitable for any type of radiation. However,
to detect γ-quanta a special detector is needed.
 The principles of backscattering Mössbauer spectroscopy with detection of X-rays in
the 2π solid angle have been given earlier in [2.68] devoted to forward scattering. The
technique has also been used in studies of very thin films. The films were placed onto
the detector window (Fig. 2.26). The X-rays of the source were filtered off and all X-rays
leaving the scatterer were detected. In such experiments the only source of the
background is the low photoeffect due to the 14.4 keV γ-quanta.
 The scattered radiation may be at any angle θ (0 < θ < π/2) with respect to the surface
(see Fig. 2.26). The intensity of X- rays scattered as a result of the Mössbauer effect at
an angle θ from the layer dx at a depth x is given by:



105

Fig. 2.26 Schematic diagram for studies of thin films in a forward-scattering geometry.

Cx = ω αK / (1 + α) ,                                                                                          (2.89)

where JM(E,v,x) is given by (2.57) for cscγ1 = 1, νx is the total linear absorption
coefficient for the X-rays.
 The required integration over θ complicates the expression for the lineshape and the
evaluation of the area under the spectrum. The area can be evaluated using the
approximation method described elsewhere [2.67]. The area under the spectrum
determined by (2.88) may be estimated in the following manner. Let the velocity change
be linear from -vmax to +vmax with a period ô. In this case dt = dv(τ/2vmax) and integration
over v may be replaced by integration over t.

where G = [µph + µr(E)]x + νx(da - x) / cosθ , µa ≈ µph . The integration over one cycle of
the velocity change and also over scattering angles and γ-quanta energies yields the
following:
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where

By means of (2.90) and assuming that µa << µr , numerical calculations have been
carried out [2.68] of areas under Mössbauer spectra and their dependence on the
scatterer thickness.
To estimate the possibilities of studying thin films in the forward scattering geometry, the
above mentioned dimensionless parameters ta = µrda , ta

e= µada, b = νxda

can be used. The film is thin if the following conditions are fulfilled simultaneously:

ta << 1 , ta
e << 1 , b << 1 .                                                                                     (2.91)

 The question as to whether transmission geometry or scattering geometry is a more
efficient means to study these films can now be approached. The efficiency is the time
required to record spectra of the same statistical accuracy. In general, this time depends
on both the areas under the spectra and the signal-to-background ratio. For thin films
the area may be evaluated by the expression:

Even for νx/µr = 2, the contribution of the last term is small.
The ratio of the area under the spectrum recorded from scattering experiments to that
recorded from transmission experiments is Cx / 2 . In the limiting case of Cx → 1 the
ratio may reach 0.5. For 57Fe it is 0.15. The fact that the area in transmission
experiments is larger does not mean that the transmission experiments are more
informative.


