
32

2. Mössbauer Spectroscopy Based on Detection of Electromagnetic Radiation

There are two types of Mössbauer spectroscopic experiments based on scattering and
transmission techniques. Scattering Mössbauer experiments involve either the detection
of resonantly scattered γ-quanta or other radiations which are emitted in the process of
resonant scattering or immediately after it. The observed effect depends on the spectra
of the scattered radiation, on the interaction of the radiation with matter and, to a greater
extent than in transmission mode spectroscopy, it depends on the spectrometer design
especially on the detector and its' position relative to the sample and the primary beam.
In transmission mode experiments the resonant scattering leads to the sharp
attenuation of the radiation intensity registered by a detector, therefore it is sometimes
referred to as resonant absorption. The resonant absorption cross section is the total
cross section of resonant scattering; the probability of detecting the scattered radiation
in transmission spectroscopy may be neglected when the geometrical arrangement is
appropriate.
Classical transmission mode Mössbauer spectroscopy is sometimes used in studies of
surface layers. Indeed, the analysis of Mössbauer spectra to date has been mainly
based on the theory and techniques developed for transmission mode Mössbauer
spectroscopy. These problems are dealt with in the first Section of this Chapter,
thereafter a concept of scattering channels will be introduced and finally a classification
will be given of low-energy γ-quanta scattering in solids. Resonance scattering channels
are of prime interest in Mössbauer spectroscopy, hence it is necessary to introduce
concepts of resonance fluorescence, coherence, interference and γ-γ correlations.
Based on all these, a theory can be developed of spectral shape and the energy
distributions of incident and scattered radiation. Special attention will be paid to
backscattering Mössbauer spectroscopy, which is the most promising technique for
applied research and industrial applications. Problems of detector design, the evaluation
of scattered intensities, and some experimental aspects are given in the last sections of
the Chapter.

2.1. Radiation Transmission through Matter

 Most surface studies by Mössbauer spectroscopy have been carried out with 57Fe and
119Sn nuclides. Most methodology problems for those isotopes have been successfully
overcome, hence the information available for 57Fe is frequently used in the
considerations that follow.
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 A diagram is given in Fig.2.1 of the nuclear transformations which produce 57Fe. The
57Mn nuclide decays by β--emission with a half-life of 1.7 min. 57Co nuclide also decays
by electron capture (EC) with a half-life of 270 d to 57Fe. The short half-life period of
57Mn makes it practically impossible to use the nuclide in applied research. The
Mössbauer 3/2 level with the probability 1/(1 + α) decays by the 14.4 keV γ-quantum
emission, where α is the total internal conversion coefficient. For the rest of the cases
de-excitation of the nucleus is via the emission of conversion electrons followed by
rearrangement of the excited atomic shell by X-ray emission and Auger processes.
Considering that for approximately 88 cases out of 100, the 57Co decay populates the
14.4 keV level a limiting value of 9.55 f Mössbauer quanta per 100 disintegrations of
57Co can be obtained [1.24]. The number of the Mössbauer quanta cannot exceed 9.55f
and is determined by the source material and the quality of its preparation. For further
numerical evaluations 57Co will be assumed to be in a rhodium matrix at room
temperature and f = 0.77. The yields for γ-quanta of different energies for 57Co , 57Fe
and 119Sn nuclides are listed in Table 2.1. Table 2.2 gives the nuclear characteristics of
interest for these Mössbauer nuclei.

Fig.2.1 Decay scheme of 57Fe and parent nuclei (from [1.24]).

Mössbauer sources are prepared by introducing the radioactive parent nuclei for the
Mössbauer isotope into a substrate with a fairly perfect crystal structure. There are often
several parent nuclides of the Mössbauer isotope, but one of them that is mostly used in
practice.
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Table 2.1     Energies and intensities of photons emitted after resonant excitation of the
14.4 keV state of 57Fe, 23.8 keV state of 119Sn and decay of 57Co.

Intensity*

 E
 KeV 57Co 57Fe 119Sn

0.7 (L X-rays 57Fe) 0.2
3.6 (L X-rays 119Sn) 5
6.47 (K X-rays 57Fe) 54 26.3
14.41 9.55 10.8
23.87 16
122 85.6
136 10.6

* The intensities are given per 100 decays of the excited nuclear states.

Table 2.2    Nuclear data for the ground and first excited states of 57Fe and 119Sn.

57Fe 119Sn
Ground

state
Excited

state
Ground

state
Excited
state

The γ-ray
energies E (keV) 0 14.41 0 23.87
Half-life
(10-6 sec)

 0.098  0.178

Natural line width
(neV)
(mm×s-1)

0 4.66
(0.097)

0 25.8
(0.323)

Spin and parity 1/2- 3/2- 1/2+ 3/2+
Quadrupole
moment
(10-24 cm2) 0 +0.20 0 -0.064
Factor g +0.181 -0.103 -2.09 +0.455
Total internal con-
version coefficient 8.21 5.1
Natural isotopic
abundance a (%) 2.14 8.58
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The observed effect is determined firstly by the interaction of Mössbauer quanta with
matter. The γ-quanta interact not only with the sample under study, but also with the
various construction materials used to make detection windows, cryostat windows,
collimator and sample holders. The effect may be largely influenced by self-absorption
in the source and the saturation absorption due to the finite thickness of the absorber.
The correct evaluation of these effects is needed to select the optimum experimental
conditions, such as sample and substrate thickness, source - absorber - detector
distances and corresponding angles, and concentrations of Mössbauer isotopes in the
source and absorber. The evaluation is necessary to carry out a phase analysis, and
also to obtain a theoretical equation for the shape of the observed Mössbauer spectra.
Some aspects of the passage of the Mössbauer radiation through matter and the
dependence of spectrum shapes, line amplitudes and areas on the sample thickness
and resonant isotope abundance are given below.
If the source is considered to be a cylinder of a unit cross section (see Fig.2.2), the
number of parent radioactive

Fig.2.2 Self-absorption in a Mössbauer source.

nuclei for the Mössbauer isotope in a unit volume of the source n(x) is a function of x
only. We can consider that the number of the Mössbauer nuclei in a unit volume of the
source, ns , is constant; fs is the Mössbauer factor determining self-absorption in the
source. If a volume element of a unit cross section with a coordinate x and the thickness
dx is taken, the decay of n(x)dx radioactive nuclei produces a flux of γ-quanta dI(x) =
Cn(x) dx in the direction close to normal to the source surface (C is a constant). The
fraction (1 - f) of the disintegrations occurs with the energy transferred to the lattice, and
the fraction f is recoilless. If the energy distribution of the corresponding radiations is
JR(E) and JM(E), the following normalization conditions may be assumed:

f1dE)E(JR −=∫
∞

∞−

 ; fdE)E(JM =∫
∞

∞−

 .                                                                                        (2.1)
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The particular dependence JR(E) is of no interest but it should be noted that the centre
of gravity of this distribution is shifted by the amount of recoil energy ER relative to the
transition energy Es in the source. The energy distribution of the Mössbauer γ-quanta
JM(E) may be considered as Lorentzian L(E) with the full half-width Γ such that Γ =
Γnat. Due to the normalization conditions (2.1) JM(E) may be written as:
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 Radiation from the layer dx of the depth x of a Mössbauer source is described by the
expression

[ ] )x(dIe)E(J)E(J)x,E(dJ x)E(s
MR

µ−+= ,                                (2.3)

where
µs(E) = µs + µrs(E) = µs + nsfsσs

'(E) ,                      (2.4)

and where µs(E) is the total linear extinction (absorption) coefficient for the source
material, µrs(E) and σs

'(E)are the linear coefficient and cross section of γ-radiation
resonant scattering in the source material, and µs is the nonresonant linear absorption
coefficient. For a single-line source
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where σ0 is the maximum cross section of the resonant interaction, D  is the
wavelength of γ-radiation, and Ie , Ig are the nuclear spins for excited and ground
states. In general, Ls(E) differs from L(E), however, for many sources such as 57Co in
Rh- or Cr-matrices they may be assumed to be equal. Ls(E) = L(E). Then the energy
distribution of γ-radiation from the source (2.3) needs to be integrated over x from 0 to
∞
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If the source moves at a velocity v relative to the absorber, the energy distribution is
determined by (2.2), where the L(E) Lorentzian is written as:

In the last expression the variable has been changed so that

 Since it is always the relative velocity that is experimentally measured, v (the channel
number) is usually given on the abscissa. In theoretical considerations the energy
distributions of γ-quanta and intensities of detected radiations are often written as
functions of energy E of incident γ-quanta and of parameter S. In theoretical aspects of
scattering spectroscopy, especially for multilayer samples, the last of the three
expressions (2.7) proves to be extremely useful. In this case the energy distribution of
γ-quanta emitted by the moving source is treated as a function of the difference
between the variable E, which takes on random values and has a Lorentzian distribution

relative to the transition energy Es and the energy parameter εε which is determined by
the spectrometer. To simplify the formulae the energies are usually taken in units of
Γ/2. Since ∆E >> Γ , in usual transmission or scattering experiments, the detector
is an effective integrator. Not only does it detect the Mössbauer recoil and recoilless
quanta, it also detects the background radiation in the energy region which is
incommensurably more than Γnat.
When the sample under study is placed between the source and the absorber of
thickness da , the sample is characterized by the parameters Ea , σa(E) = σr(E) +

σa , Γa , f' , na , µa , the Lorentzian La(E), where µa and σa are the linear
absorption coefficient and the cross section for non-resonant interactions, respectively.
The intensity of γ-quanta passed through the sample which gives the experimental
Mössbauer spectrum is given by the following equation:
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where ta is the effective thickness of the sample. It is used as frequently as the linear
coefficient of resonant scattering or absorption µr(E) and its maximum value, µr

without splitting, or µr
i at a velocity vi for the split spectrum.

 By use of (2.4), (2.8) and the effective thickness ta an expression for I(v,da) can be
obtained:

where t'(x) = nsfsσ0x.
The evaluation of the integral in the first term of (2.9) over energy is based on the fact
that the distance between the centres of gravity of the distribution  )v,E(JR , and of the

resonant scattering cross section σr(E), is equal to the recoil energy ER. Since ER

>> Γ , in the region where σr ≠ 0,JR (E,v) is infinitesimal and the two exponents of
the first term describing the resonant scattering are equal to unity. This means that the
recoil radiation is virtually resonantly unscattered both in the source and the absorber.
Using normalization conditions (2.1) and equation (2.2) and integrating over energy in
the first term gives the expression (2.9) in the form:
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This is the general expression for the intensity of γ-quanta emitted by the source and
passed through a layer of thickness da. In transmission mode Mössbauer spectroscopy
it is the I(v,da) function that determines the line shape.
 A source with a uniform distribution of radioactive nuclei: n(x) = g1 if 0 ≤ x ≤ ds and n(x)
= 0 if x > ds must now be considered. Integrating (2.10) over x from 0 to ds and dividing
by Cg1ds gives the following expression

If for the source of thickness ds self-absorption is neglected, i.e. 0fn '
ss = , then the

intensity of radiation passing through a sample of thickness da may be written as:
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This can be rewritten in the following form:

)d,v(I)d(I
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a +=  ,                            (2.13)

where IR(da) and IM(v,da) are the normalized intensities of recoil- and recoilless
γ-quanta passed through the layer of thickness da. The IM(v,x) function is very important
in scattering experiments. It determines the total intensity of γ-quanta which at a
velocity v have reached a layer dx at a depth x. The resonant scattering of a part of this
radiation in a layer dx results in emission of radiation from this layer. At v → ∞ , we
can write
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.                           (2.14)

 It is evident from a comparison of (2.11) and (2.12) that instead of Lorentzian (2.7) and
provided µsds → 0, self-absorption in the source allows the energy distribution of the
emitted resonant γ-quanta to be described by the following

It is natural that for a thin source, i.e. when t'→ 0, the shape of the emission line should
approach the Lorentzian. From now on it can be assumed that the source is thin, that
the line is single and is a Lorentzian. Returning now to (1.36), by use of (2.12) and
(2.14) we obtain:

If the resonant scattering cross section σa(E), as well as JM(E,v), are characterized
by a Lorentzian of natural width, Γ = Γa = Γnat, the maximum effect value (v = 0) is
given by



41

where J0 is the Bessel function of zeroth order, p(ta) is the function which undergoes a
fairly fast saturation on increasing ta. Integral (2.16) cannot be given in an analytical
form, however numerical calculations show that up to ta ~ 10 it is closely approximated
by a Lorentzian curve. Its width at half-height Γexp is a function of the absorber
thickness:

Γexp = 2 Γnat h(ta) ,                                      (2.18)

where the function h(ta) may be written as:

h(ta) = 1 + 0.135 ta             for 0 ≤ ta ≤ 4 ,
                                                         (2.19)

h(ta) = 1 + 0.145 ta - 0,0025 ta
2 for 4 ≤ ta ≤ 10.

Mössbauer nuclei in the absorber as well as in the source may be in slightly different
conditions due to fluctuations of their local environment. This results in fluctuations of
energy of the nuclear transition Ea in the absorber which causes the lines to broaden
and change their shape. Nonetheless in many cases the lines may be described by
Lorentzian curves whose widths are different from the natural ones:

 A relation between '
0σ  and σ0 can be found since the area under the total

absorption curve is the sum of individual absorption curves with natural widths. Since
the area under a Lorentzian with the amplitude ε and the width Γ is πεΓ/2 , we
may write nπσ’

0Γa/2 = nπσ0Γnat/2, from which it follows that σ0
' = σ0 Γnat/Γa ;
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ta is defined as

ta = σ0f
'nadaΓnat / Γa .                                (2.23)

 The quantity Γa depends on the sample structure. It is only for idealized samples that
Γa approaches Γnat . If Γ = Γa > Γnat , expression (2.16) may be used as
before, and (2.18) is replaced by Γexp = 2Γh(ta), where ta is given by (2.23). If Γ ≠
Γa , the observed line width is given by

Γexp = Γ + Γa + 0.27 σ0f
'nadaΓnat ,                      (2.24)

and (2.16) may be rewritten as

For not very thick samples (ta < 10) the line is still a Lorentzian, and (2.25) may be
written as

In Mössbauer spectroscopy equations (2.17) and (2.18) are often used to determine
parameters f and f' . For a very thin absorber we can write

2/tf)0(lim a
0at

=ε
→

 .                                                                                            (2.27)

However, time-consuming measurements have to be carried out to reach a satisfactory
statistical accuracy.
In general σ0 and Γnat are known and there are four unknown quantities: f, f' , Γ and
Γa. The dependence of ε(0) and Γexp on da can be measured providing Γa = Γ.
Thereafter the dependence of Γexp/Γ on the easily measured parameter σ0nada can be
plotted. This should be a straight line with slope 0.27 f' and which gives f' immediately
[1.14]. The intercept with the y-axis (da = 0) is Γ + Γa. The dependence of ε(0)/f
on ta can then be plotted.
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By the method of least squares the experimental data are approximated by (2.17) which
yields f . However, since J0(ita/2) is not a rapidly changing function of ta , the accuracy of
the procedure is low. Besides , if Γ ≠ Γa, the method is more complicated. Similar
consistent treatment can be carried out by assuming the lines in the source and
absorber to be non-Lorentzian but Gaussian or combinations of the two.
 A dependence of e(0) on ta for the case f = 1 (Fig.2.3) can be obtained by numerical
integration of equation (2.17). The dependence when ta ≥0.15 deviates substantially
from linear.

Fig.2.3 Dependences of ε(0) (1) and spectral area (2) on ta upon detecting the
radiation caused by the Mössbauer transition and having passed through the sample of
resonant atoms.

For large values of ta the situation becomes more complicated. The intensity transmitted
through a sample falls off rapidly with the sample thickness (2.12), therefore it becomes
extremely difficult to observe the limiting ε(0) value accurately at ta > 10. Indeed, it
can then only be derived after lengthy measurements. Furthermore, the limiting ε(0)
values (Fig.2.3) cannot be reached since equations (2.17) or (2.26) are derived from the
sample consisting only of the resonant atoms. Even for monatomic samples having
a ≠ 100 % the photo-effect on non-resonant atoms causes the experimental
dependence of ε(0) on ta to be non-monotonous and to have a maximum at a certain
ta and then to approach zero.
In Mössbauer spectroscopy the shape of the spectrum and its area are the "signals"
conveying quantitative information on a phase.
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There is a particular shape of the Mössbauer spectrum which corresponds to every
given phase or state of resonant atoms. When the shape is known to be Lorentzian, for
example, the amplitudes and the line positions are often used as parameters of the
signal. The amplitudes of the lines are assumed to unambiguously determine the
amount of a given phase in a sample. As can be seen from Fig.2.3, saturation effects
can significantly complicate the phase analysis. Furthermore, some experimental
features may greatly affects the line amplitudes. That is why it is a good practice to
measure the areas under the spectral lines. A dependence is given on ta of the spectral
area obtained by numeric integration of expression (2.16) in Fig.2.3. By definition, the
area under the spectrum is:

Taking into account the normalization conditions, we have

 A significant deviation of this dependence from proportionality occurs at greater
thicknesses. The area under the spectrum does not then depend on the line shape and
self- absorption in the source, neither does it depend on the cross section of
non-resonant interaction in the sample or on the geometry of the experiment or the
instrumental line broadening.
 The study by transmission Mössbauer spectroscopy of surface layers is of special
interest when ta << 1. Expression (2.29) is then considerably reduced and due to
normalization (2.1) it can be written:

A = πftaΓa/2 = πff'nadaσ0Γnat/2 .                          (2.30)

Thus the area under a given line of the spectrum is proportional to f' and the density of
Mössbauer nuclei na in the phase.
 The phase analysis from a fairly well resolved spectra requires no special treatment
and (2.29) holds even when there is instrumental line broadening. Indeed, the addition
of the noise velocity un to the average velocity of the source results in an additional
energy change of γ-quanta Eun/c. The distribution function for noise may itself depend
on the average velocity v. If p(un ,v) is defined as the probability that at a given average
velocity the actual velocity is between v + un and v + un+ dun , the normalized function
can be expressed
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where

The area under the spectrum is given by an expression which is analogous to (2.29):

where

If the distribution function does not depend on v the equation is reduced, f* = f, and the
area under the spectrum is not affected by noise. If the noise distribution function does
depend on v , the area depends on the line shape of the source. Hence it follows from
(2.29) and (2.30) that for the simplest case of single lines the area under the spectrum
depends only on f , f' , Γa and nada.
Up to now we have assumed implicitly the detector to register only the γ-rays of the
Mössbauer transition. In practice this is not so because of the background noise. In
transmission experiments there are three sources of the background: i) γ-and X-rays of
higher energies which may be Compton-scattered before reaching the detector;
Bremsstrahlung produced outside the detector may contribute to this, too; ii)
High-energy γ-and X-rays having lost only a part of their energy in the detector; iii)
X-rays that are not distinguished by the detector from the Mössbauer quanta.
The relative intensity of the background also increases sharply as the thickness of the
absorber increases. The experimentally observed effect is given not by (1.36) but by the
following
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There is analogous relationship for the relative area under the spectrum

Aexp = pA .                                              (2.32)

The background coefficient p is always less than unity. Usually the difficulties in
determining p do not permit the absolute measurement of f by the above method.
Furthermore, the measured f-value may also be lower since the Mössbauer quanta may
lose a part of their energy as a result of the Compton effect. This effect is more
significant with detectors of poor resolution.
With the exception of emission Mössbauer spectroscopy, work can be performed with
standard sources with f-values which are provided with the details of this source.
Otherwise f-values are determined using the "black" absorber which completely
resonantly absorbs only the Mössbauer radiation [1.15,16].
 Mössbauer spectroscopy requires a knowledge of the absolute values and ratios of the
cross sections of both resonant and non-resonant processes. For 57Fe in transmission
experiments it is the 14.4 keV γ-quanta interaction which is of interest as it also is in
scattering experiments together with the 6.46keV X- rays. In both theoretical and
practical studies of the interaction of radiation with matter the appropriate absorption
coefficients are expressed in different units. Thus, the atomic absorption cross sections
σe are expressed in [cm2] or barn [10-24cm2] per atom; the linear scattering (absorption)
coefficients µ expressed in [cm-1]; and the mass absorption coefficients µm in [cm2g-1].
For an element they are related by the following expression:

µ = µmρ = σeρN/A ,                                        (2.33)

where ρ is the density, N is Avogadro number, and A is the mass number.
 Theoretical aspects of Mössbauer spectroscopy use the interaction cross section per
atom whilst for transmission experiments the mass absorption coefficients are preferred
and, in scattering experiments, the linear scattering coefficient is used. A review of cross
sections for the interaction of electromagnetic radiations in the energy range of interest
can be found in [1.17,2.1]. For the Mössbauer 14.4 keV radiation and an iron absorber
the following values apply: σ0 = 2.56 106 barn/atom,
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σa = 5.9 103 barn/atom, µa = 0.0504 µm-1 and µm = 64 cm2 g-1. It is sometimes of
convenience to use the quantities of the following type to quantify the non-resonant
absorption length

1 = µa
-1 .                                                (2.34)

It shows, for instance, that a 18 mm thick iron foil will attenuate the 14.4 keV
non-resonant γ-quanta by a factor e. Figures 2.4 and 2.5 depict the calculated
dependence of the 14.4 keV γ-quanta and the 6.46 keV X-rays intensities on the filter
thicknesses for some frequently used substances.

Fig.2.4 Intensity dependence of the 14.4 keV 57Co γ-quanta on the filter thickness.

It is now possible to consider two iron absorbers with 57Fe abundances of 2.14 % and
90 %, with f' = O.67 for iron [2.2] and Heff = 33.0 Tesla. If v = v0 ,v1 ,v2 ,v3 be the relative
velocities at which the source line JM(E,v) excites the centre of the spectrum and the
first, second and third line in it, intensity ratios can be assumed to be 3:2:1:1:2:3. The
maximum value of the linear resonant absorption coefficient for a line whose partial
intensity is ki may be written as:
µr

i = naf
'kiσO .                                           (2.35)
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Fig.2.5 Intensity dependence of the 6.46 keV K-X-rays on the filter thickness.

In subsequent discussions of spectral simulations we shall use the hypothetical
substance non-magnetic iron (Heff= 0). The values of the linear resonant scattering
coefficients for iron and the hypothetical substance are given in Table 2.3.

Table 2.3
Linear coefficients of resonant scattering µr(cm-1) at room temperature for α-iron and
non-magnetic iron.

Heff = 33. Tesla Heff = 0
a, %

v0 v1 v2 v3 v0

2.2 2 790 527 263 3160
90 83 32 800 21 900 10 900 131 000

Notes: 1. v0, v1, v2 and v3 for α-iron correspond to the spectrum centre and to line I, II,
and III, respectively. 2. Linear coefficient of non-resonant absorption of the 14.4 keV
γ-rays in α-iron are µph = 497.5, µR = 5.75 and µC = 0.71 cm-1 for the
photoeffect, Rayleigh scattering and the Compton effect, respectively.
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The dependences of the γ-quanta intensity (E0 = 14.4 keV, f = 0.77) on thicknesses of
the "non-magnetic iron" absorber are shown in Fig.2.6 whilst Fig.2.7 shows similar
dependences for α-Fe absorbers. Curves 1 and 4 are obtained for the source line at
resonance with the first line of the sextet. The difference between the curves is caused
by the different abundances of 57Fe in the absorber.

Fig.2.6 Intensity dependence of the 14.4 keV γ-quanta from a 57Co(Rh) source (f =
0.77) on the thickness of a sample of non- magnetic iron (f' = 0.7, δ = 0) at room
temperature: 1 - resonant and non-resonant interactions are accounted for, a = 2.14 %;
2 - beam of non-resonant γ-quanta; 3 - beam of resonant γ-quanta, a = 90 %.

An examination of the results presented in Figs.2.6 and 2.7 enable an evaluation of the
amount of substance needed to obtain a required effect, and also the optimum
thickness of the windows and substrates. In particular, from curves 2 and 3 in Fig.2.6 it
follows that the maximum ε(0) value in transmission experiments cannot exceed the
value of f. Indeed, at a → 100 %, only the non-resonant γ-quanta will pass through an
absorber whose thickness is ~ 0.4 µm and ε(0) → f.
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Fig.2.7 Intensity dependence of the 14.4 keV γ-quanta from a 57Co (Rh) source on the
thickness of a sample of metal iron at a constant velocity of the source. 1 and 5 are for v
= v(1), 2 - for v = v(0), 3 - for v = v(3), 4 - for v = v(2); a = 2.14 % for 1, a = 90 % for 2 -
5.

2.2. Low-energy γ-quanta Scattering

There are various scattering channels of incident Mössbauer radiation, including the
channels which give conversion electrons as opposed to γ-quanta. It is important in
transmission Mössbauer spectroscopy, that if the secondary scattering is not taken into
account every resonant scattering leads to the attenuation of the transmitted intensity,
i.e. to absorption. Neither the type of the scattering channel nor the interaction of the
scattered radiation with matter are of any significance here. Of primary interest in
scattering experiments are the types of the scattering channels, their probabilities and
the properties of the scattered radiation.
Let us divide all the scattering channels into two groups. The first group includes
scattering channels yielding γ-quanta. Scattering channels of the second group
correspond to all other possible interaction processes. As in transmission experiments,
in a scattering geometry γ-quanta are detected but the background is caused by
different processes. The main process competing with resonance interactions in the
transmission mode experiments is the photoelectric effect (see Table 2.3). The
Compton effect is to be taken into account when the source emits high-energy γ-rays in
addition to the Mössbauer radiation.
In scattering Mössbauer spectroscopy the processes competing with Mössbauer
scattering are the Compton effect, Rayleigh scattering and classical resonant scattering
of γ -rays [2.3]. Non-resonant scattering of γ-rays occurs on free or bound electrons.
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The maximum energy change is for the electrons which are assumed to be free, i.e. in
Compton scattering. The minimum energy E' for the backscattered γ-quantum is given
by '

bE = E /(1 + 2β), where β is the ratio of the incident γ-quantum energy to the rest
energy of the electron. For low-energy quanta the energy change is small. Thus, for
57Fe E' = 13.6 keV. Ordinary detectors cannot discriminate the quanta backscattered
due to resonance from the Rayleigh scattering and Compton scattering. Typical energy
losses for the Compton effect are of the order of 102 - 104 eV. Compton scattering may
or may not influence lattice vibrations, but the energy losses may be neglected since
they are several orders of magnitude less than the energy transferred to the electron.
Rayleigh scattering is the scattering of γ-quanta from atomic shells and is completely
analogous to X-rays scattering which leads to diffraction from the crystal lattice. Hence,
there is no ionization or excitation of the atom. Rayleigh scattering occurs on atomic
shells and the energy may or may not be transferred to the lattice. Hence, Rayleigh
scattering is either elastic or inelastic. In scattering spectroscopy, as opposed to
transmission mode experiments, Rayleigh scattering may play an important role.
Interference between Rayleigh and resonant scattering results in series of interesting
effects and allows a deeper insight into composition and structure of the substance.
Phase analysis for even relatively simple samples may prove to be incorrect if the
contribution of Rayleigh scattering is not taken into account. This is discussed in more
detail in Chapt.4.
It is now necessary to examine the dependence of the Rayleigh scattering cross section
on the γ-ray energy, the scattering angle and the atomic number Z of the scatterer. The
Rayleigh scattering of high-energy γ-rays results in more than three-quarters of the
scattered radiation within a cone of angle θ0 [2.4]

θ0 = 2 arc sin [2.6 10-2 Z1/3 β-1] .                                 (2.36)

The scattering cross section for this radiation at θ → 0 is approximately proportional
to Z2 and independent of E. Thus, inside the cone classical X-ray elastic scattering
occurs, and the cross section can be found from tables, e.g. [2.1].
At scattering angles θ > θ0 the cross section falls off rapidly and is given by [2.4]:
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For the 145 keV Mössbauer transition in 141Pr θ0 = 40° , and the backscattering cross
section can be evaluated from formula (2.37). If the γ-transition energy is less than 40
keV, the formula is inappropriate. Indeed, for E = 40 keV and Z = 26 (Fe), (2.36) gives
θ0 = 170°. At these and lower energies, the photon wave length is of the order of an
atomic radius and the angle dependence is determined not by (2.37) but by the atomic
form factors. In backscattering Mössbauer experiments involving 57Fe and 119Sn the
Rayleigh scattering mainly contributes to the background if there is no Compton
scattering of higherenergy radiation. Indeed, from Table 2.3 it can be seen that for the
14.4 keV γ-quanta Rµ = 5.75 cm-1 and the probability of Compton scattering is 8 times
lower than for Rayleigh scattering.
The main processes of γ-rays scattering in solids for energies bellows 200 keV will be
classified provided that scattering of γ-rays, whose energy is equal to the binding energy
of atomic electrons, is not considered. Within this classification (Table 2.4) scattering
processes are divided

Table 2.4
Classification of γ-ray scattering processes in solids.

Classification of γ-ray scattering processesType of
Scattering Fundamental classification Empirical

classification
recoilless elastic or

quasi-elastic
coherent

Nonrecoilless inelastic

recoilless elastic or
quasi-elastic

Nuclear
elastic
and
Rayleigh

resonant

non-resonant
incoherent

nonrecoilless inelastic
recoilless inelastic

Compton non-resonant incoherent
nonrecoilless inelastic

Recoilless energy-shiftedNuclear
inelastic resonant incoherent

nonrecoilless inelastic
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primarily into resonant and non-resonant ones [2.5]. Resonant scattering occurs on
nuclei if the energy of a γ-quantum is close to the γ-transition energy. Non-resonant
scattering is the scattering by electrons. Both resonant and non-resonant scattering may
be elastic or inelastic, coherent and incoherent. Elastic scattering is a process which
results in no energy change of the scattered quantum.
A change of γ-quanta energy may occur in resonant scattering as a result of recoil.
Typical energy changes are of the order of 10-2eV. If resonant scattering is recoilless it
may still be inelastic since, after scattering, the nuclear quantum state may change and
the energy of the scattered γ-quantum will differ from the energy of the incident quantum
by the value of the ground level splitting. Typical energy changes are about 10-8 eV.
Only Mössbauer spectroscopy allows the observation of inelasticity in this type of
scattering. Finally, different scattering channels may be coherent or incoherent.
Coherence is the property of several stochastic processes characterizing their ability to
strengthen or weaken each other. Even inelastic processes may be coherent.
In addition to the classification based on physical processes occurring in scattering,
another classification is possible based on the energy resolution of the method used. An
example of this classification is given in the right-hand column of the Tab. 2.4. In
accordance with the classification, quasi-elastic scattering is the scattering where
energy losses due to recoil are of the same order as Γnat. Energy shifted scattering is
the scattering where the recoil energy is not transferred to the solid at the moment of
scattering, but the energy of scattered γ-quantum differs from that of the incident
quantum by a fixed amount which is determined by hyperfine interactions. We end this
classification of scattering processes by noting that every scattering process has its own
angular distribution.
The greatest advantage of scattering experiments as opposed to transmission mode
experiments is that they may involve a significantly smaller background contribution.
This has applications when observing the effect in relatively high-energy transitions
[2.6]. A typical experimental arrangement is shown in Fig.2.8. The source is assumed to
be a point source and a tungsten shield is used to shield the detector completely from
direct γ-rays of the source. Such an axially symmetric backscattering arrangement
ensures a higher efficiency and is convenient for low temperature measurements.
Indeed, for a scatterer of 141PrO2 at 20 K and a source of 141CeO2 at 18 K (E0 = 145
keV) the signal-to-background ratio is found to be 0.20, whereas for the equivalent
transmission experiment the ratio would not exceed 0.01.
The gain in the observed effect is caused by the fact that in idealized scattering
experiments only the radiation from the scatterer is detected; the direct radiation of the
source is not registered by the detector neither is the radiation scattered by
surroundings. If there are no γ-quanta with energies higher than
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the Mössbauer transition energy the radiation from the scatterer consists of three
components: Mössbauer, Rayleigh and Compton. The last one can be discriminated if
the incident quanta energy is sufficiently high. If there is no hyperfine splitting in both the
source and the scatterer then for a thin scatterer consisting of the resonant isotope only
the observed effect will satisfy the relation:

ε ≤ )d/d()d/d(ff
2
1

RM ωσωσ′  ,                     (2.38)

where dσM/dù is the differential cross section for Mössbauer scattering at resonant
energy; and dσR/dù is the differential cross section for Rayleigh scattering.

Fig.2.8 Scattering Mössbauer experiment in an axially symmetric geometry [2.6]. γ1

and γ2 are the angles of incidence and the scattering angle respectively; k0 and kf are
the wave vectors of γ-quanta.

For 141Pr the ratio of the differential cross sections turns out to be 70400, and (2.38)
takes the form
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ε  ≤  f (3.5 104 f ' ) .                                                                                    (2.39)

In transmission mode geometry ε is always less than or equal to f'. In scattering
geometry the situation is different. For a hypothetical scatterer of 141Pr with f' of only
0.01 %, the effect due to (2.39) may be 3.5 times larger than f' [2.6].
 The Rayleigh and Compton scattering cross sections taken per Mössbauer atom are
usually many orders of magnitude less than the maximum cross section for resonant
scattering by the atom. However, it should not be concluded that Mössbauer scattering
makes the main contribution to the observed intensity of the scattered radiation. Indeed,
Rayleigh or Compton scattering will arise from all atoms of all elements in the sample
under study and will not depend on the isotopic composition. In contrast, the Mössbauer
effect is observed on the isotope only. Even if the sample is monatomic, a factor a/100
must be introduced where "a" is the percent abundance of the resonant isotope. For
natural iron this will lower the maximum value of the resonant scattering cross section
by a factor of about 45. The hyperfine splitting, in its turn, lowers the maximum possible
cross section value for Mössbauer scattering in the sample. It should be noted that if
γ-quanta scattering from iron is observed which corresponds to the absorption
maximum for the third or the fourth line, a factor f'/12 should be introduced in the
expression for the scattered cross section. There are some other reasons for lowering
the maximum value of the Mössbauer scattering cross section and these are outlined
below.
In general, the classical resonance scattering should be accounted for. This arises from
a partial overlap of emission and absorption γ-ray spectra which are significantly
broadened by thermal motion of atoms in the source and the absorber. The centres of
gravity of such spectra are shifted relatively to the transition energy E0 in opposite
directions by an amount equal to the recoil energy ER. As a rule, classical resonance
scattering does not change the shape and intensity of Mössbauer scattering spectra,
since the process cross section is small and practically unchanged in the energy region
used in Mössbauer spectroscopy.

2.3. Resonance Fluorescence and Interference Effects

The principles of resonance scattering of γ-rays have been detailed in the well known
monograph of W. HEITLER [2.7]. The scattering of electromagnetic radiation of an
energy very close to that E0 of the scattering system was called resonance
fluorescence. An important feature of the process is that the cross section on resonance
is significantly larger than for any other scattering process and that the phase of the
scattered radiation is definitely shifted. The shift is significant in the vicinity of
resonance. On passing through the resonance the shift changes from π/2 to 0 at
E << E0 and to π at E >> E0 .
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It was shown by W. Heitler that for an individual process of resonance fluorescence the
energy E' of the emitted photon should not differ from energy E of the absorbed photon
by more than the ground state width. For scattering Mössbauer spectroscopy involving
stable ground states and no level splitting due to hyperfine interactions the energy of the
scattered quantum is equal to that of the incident quantum within the ground-state
width. If a beam of monochromatic γ-quanta of energy E which is close to the resonance
energy E0 is directed onto a resonant scatterer, the scattered radiation will be also
monochromatic with energy E, as opposed to Lorentzian with linewidth Γ which is the
case for an emission line.
Resonance fluorescence is a single coherent quantum process if there are no external
perturbations. In a stationary case, it cannot be regarded as two subsequent unrelated
processes of absorption and emission because the nucleus would not "remember"
which γ-quantum had been absorbed and the relative probability to emit a γ-quantum of
energy E would be given by a Lorentzian distribution of width Γ with a maximum at
energy E0 . For resonance fluorescence the scattered wave is coherent with the incident
radiation. Its phase is shifted relative to the phase of the incident wave. Fundamental
results for the development of resonance scattering theory for nuclear physics were
obtained by LAMB [2.8] who developed a theory of resonance absorption of neutrons by
nuclei bound in the crystal lattice. This theory was used by R. Mössbauer to explain his
experiments on resonance γ-quanta scattering by nuclei in solids.
All Mössbauer scattering experiments show two types of dependence. The first type
concerns the angular dependences of the scattered radiation. As a rule, the intensities
are measured depending on either angles γ1 and γ2 for the incident and outgoing
radiation or on the scattering angle θ. The experimental arrangement for the particular
case of the scattering angle θ = γ1 + γ2 = 90° is shown in Fig.2.9. The angular
dependence is determined by the parameters of the nuclear-excited and -ground levels
as well as by other parameters of the sample such as the vibration spectrum, the crystal
structure, texture, the resonant isotope abundance and hyperfine interactions. The
intensity is considerably dependent on the collimation of the incident and scattered
radiation, as well as on interference with Rayleigh scattering even at θ = 90° if the
transition is not M1.
The second type of dependence is evident in various spectra. Most of the Mössbauer
spectra are obtained by methods similar to those used in transmission experiments, i.e.
by detection of all γ-quanta scattered by the sample at different Doppler velocities.
Sometimes a more sophisticated experimental arrangement is used, allowing the
energy spectrum of recoilless γ-rays at fixed Doppler velocity to be examined.
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The analysis can be approached by considering the elastic scattering from an atom in a
crystal where the divergences of incident and scattered radiation are small. It is initially
necessary to consider the interference effects on the scattered

Fig.2.9 Experimental geometry for scattering θ = γ1 + γ2 = 90°, allowing the
simultaneous recording of the transmission spectra (detector 1) and scattering spectra
(detector 2). γ-radiation is incident at an angle  γ1  within the solid angle dω onto the
sample under study of thickness da .

electromagnetic radiation with a wavelength of about 1 Å by a single atom. Rayleigh
scattering by atomic electrons always produces interference, since the distance
between electrons in an atom is also about 1 Å. The interference processes are
accounted for by means of the atomic form factors. If this radiation is resonantly
scattered by a nucleus, elastic Mössbauer scattering may occur and there will also be
interference between incident and scattered radiation. Thereafter, the resonantly
scattered radiation may interfere with the radiation scattered by electrons of the atom.
Finally, Mössbauer scattering gives a specific interference which occurs if the hyperfine
splitting is of the order of Γnat.
 The problems related to Rayleigh scattering and atomic form factors are described in
most textbooks on X-ray diffraction. We shall start with the interference effects taking
place on resonant scattering. A theoretical problem is to derive an expression for the
elastic resonant scattering amplitude Fr , where all the experimental conditions are
taken into consideration. For a given transition multipolarity, Fr will depend on the
parameters of levels or sublevels of the initial and final nuclear states, on the direction of
the quantization axis, on the energy of the incident γ-quantum, and on the wave-
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vectors of the incident and scattered radiation and on the polarization vector. If these
parameters are fixed, the scattering amplitude is the sum of partial amplitudes
corresponding to all intermediate excited states. When the incident radiation is a mixture
of multipoles, each of the partial amplitudes will contain contributions from each
multipolarity.
 The amplitude of the elastic nuclear resonance scattering for which the nuclear spin
projection on the quantization axis changes as mg → me → mg , may be written [2.9,10]
in the following form:

where the values of ø are the crystal wave functions, εε describe their energy
eigenvalues, C is a factor depending on polarization or multipolarity, E is the energy of
an incident γ-quantum, k0 and kf are the wave vectors of incident and scattered
γ-quanta; E0 - iΓ/2 is the resonance energy, Γγ is the partial width for de-excitation of the
nuclear level by emission of a γ-quantum, Γγ = Γ/(1 + α). The nuclear matrix
element, which depends on the multipolarity of the γ-transition and determines the
nuclear part of the angular dependence for the scattered radiation, is factorized and
included in C.
 The terms "collision time" and "scattering length" are sometimes used in the theory of
resonance scattering (see [2.9]). In Mössbauer spectroscopy the collision time, which is
proportional to Γ-1 , is by several orders of magnitude longer than the lattice vibration
periods. There is no correlation here between the initial r(0) and final r(t) positions of the
atom and the process is considered in terms of slow collisions. Some times one speak
about "slow scattering". Despite this the scattered wave remains coherent with the
incident one. The quantity

Γγ / 2k0[E - E0 -(εεn - εεn0) + iΓ/2]

in the expression for the scattering amplitude (2.40) is the free-particle resonance

scattering length [2.9]. In the centre- of-mass system the energy E - (εεn - εεn0)
corresponds to this scattering length. Summation in (2.40) causes the main contribution
to be made by the term with n = n0 . Therefore, for the elastic resonance scattering of γ
-quanta we have
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which, for a cubic isotropic crystal, reduces to:

The nuclear transition energy in (2.40) in the presence of hyperfine splitting depends on
the quantum numbers mg and me . Let us assume that the initial and final nuclear states
for a γ-transition are the eigen states of the angular momentum operators, and denote
them by Ieme> and Igmg> respectively. The theory of angular momenta can be used
to evaluate the matrix elements for the transition. To obtain an expression for the
amplitude Fcoh of the coherent resonance scattering of γ-quanta, it is necessary to sum
the amplitudes Fr over all me values and to average the result over initial spin states mg

. The plane wave representation of the wave function is transformed into the spheric

wave one. The amplitude F 2fk10k
coh

σ→σ
 of the elastic resonant scattering of a γ-quantum

with energy E and polarization σ1 , incident in the direction k0 on a nucleus whose
spin projection to the quantization axis z is mg , and scattered in the direction kf with
polarization σ2 = ±1 for right- or left-hand circularly polarized waves and axially
symmetric hyperfine interactions, is written [2.9, 11] as:

where K = me - mg . For an atom in an isotropic crystal the probability amplitudes of the
Mössbauer effect are:
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where u is the displacement vector of an atom from equilibrium. The parity conservation
for the system "nucleus - γ-quantum" leads to the following selection rule for the
transitions between the two states of parities πe and πg: ∆(π) = (-1)L and (-1)L+1

for EL and ML transitions, respectively. For M1 transitions ∆(π) = 1. The
transformation of the angular momentum eigen-functions from the ẑ  coordinate system,
where spins of the excited and ground nuclear states are quantized, into the 0k̂  or fk̂

coordinate system connected with the propagation direction of the γ -quantum, is
determined by special rotation functions - the D functions which are rotation matrices of
the angular momentum eigenfunctions. The D-functions give the angular dependence of
polarization and intensities of transmissions with energies E0(mg ,me).
If a scatterer is an isotropic substance then, for an M1 transition and in the absence of
hyperfine splitting the expression for the coherent resonant scattering amplitude

 F 2fk10k
coh

σ→σ
(E) is reduced to:

The approach presented here may be compared with other ways which have been used
to derive the expression for the nuclear resonant scattering amplitude [2.12,13].
In parallel with the nuclear resonant scattering it is necessary to also consider Rayleigh
scattering. If Rayleigh scattering is elastic the phase shift equals π. For the elastic
scattering channel there will be two corresponding coherent (although phase-shifted)
scattering processes, the Mössbauer and Rayleigh. The amplitude of the total elastic
scattering of a γ-quantum of energy E turns out to be a sum of the Mössbauer amplitude
Fr and the Rayleigh FR . The energy distribution J(E,S) of the scattered γ -radiation (at S
= const) may differ substantially from that of the incident one.
Let γ -radiation with the energy distribution L(E) be incident on a sample. Let us
measure energy in units of Γ/2 . If there are no hyperfine splittings the energy
distribution of γ -radiation after elastic scattering by an atom in an isotropic crystal may
be written as [2.14-16]:
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where fR is the Debye-Waller factor, C1 is a constant that accounts for different
scattering by nuclei and electrons of differently polarized quanta, C2 is a constant, which
is proportional to the resonant scattering length of a γ-quantum by a nucleus exactly in
resonance, C3 is a constant, which is proportional to the Rayleigh scattering length
[2.15].
Each of the three terms in (2.44) has its own energy dependence. The energy
distribution J(E) of the scattered radiation, corresponding to every term in (2.44) at S =
5, is given in Fig.2.10. For the calculations it may assumed that 1ffCfC 212R3 == .

Two lines of equal widths are observed in the spectrum resulting only from resonant
scattering (Fig.2.10a). Their amplitudes and areas are determined by convolution of the
emission and scattering spectra. The large distance between the centres of the spectra
means that the amplitudes of the lines are only 4 % of the scattering line amplitude in
resonance, i.e. at S = 0. The Rayleigh scattering spectrum intensity in Fig.2.10c
effectively coincides with the emission spectrum. As seen from Fig.2.10a and c at S = 5
it is the Rayleigh scattering that mainly contributes to the elastic scattering process. The
interference term (Fig.2.10b) becomes zero for the γ-quanta energy corresponding to
resonance in the scatterer. When the γ -quanta energies are greater than the resonant
energy in the scatterer the interference term increases the total intensity of the
elastically scattered radiation whereas for lower energies the total intensity is
decreased.
The Mössbauer effect allows the observation of the energy distribution of the scattered γ
-radiation when resonance detectors are used. However, such experiments are time
consuming. In conventional Mössbauer spectroscopy the radiation detector usually
serves as an energy integrator. It detects all γ -radiation of a given velocity which
reaches the detector from a scatterer. It is now necessary in a way similar to that used
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Fig.2.10 Contributions to the energy distributions of the radiation elastically scattered by
a single atom of an isotropic crystal: a) - resonant scattering, b) - the interference term,
c) - Rayleigh scattering. S = 5 Γnat/2. γ-Ray energy is in units of Γnat/2 .

to analyze the separate spectral components (Fig.2.10), to analyze separately the
radiation intensities resulting from the resonant scattering process, the Rayleigh
scattering process, and the interference effects. As seen in Fig.2.11a the intensity of
Rayleigh scattering is independent of S. Indeed, since it is not a resonant process, the
energy change of the γ-quanta by an amount greater than, say a million natural widths,
will not significantly change the cross section for scattering by electrons. The intensity of
the resonantly scattered radiation (Fig.2.11b) follows the usual Lorentzian curve, whilst
the contribution of the interference term (Fig.2.11c) to the total intensity of the scattered
radiation takes the form of a dispersion curve. The maximum radiation intensity changes
which arise from interference occur at S = ± Γ.
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Fig.2.11 Partial contributions to the total radiation intensity as a function of the energy
parameter S. a) - resonant scattering, b) - the interference term, c) - Rayleigh scattering.

The dependence of three terms in (2.44) on the scattering angle θ are determined in the
first instances by the angular dependences of the scattering processes. The electric
dipole interaction in Rayleigh scattering leads to an angular dependence of the form (1
+ cos2θ)/2. For the magnetic dipole transition, resonance scattering has an angular
dependence of the same type, but the polarization of the magnetic and electric
radiation components differ by 90° and the interference term in this case contains the
angular factor cosθ/(1 + cos2θ). Thus, for a scattering angle of 90°, the interference term
for M1- transitions vanishes. The Debye-Waller factor for Rayleigh scattering is
anisotropic even for an isotropic crystal. It also causes the line shape I(S) to depend on
θ . It is significant that all these dependences are smooth, and a change of the
scattering angle, say by 1°, will not lead to an appreciable change of the line shape or
the intensity of the scattered radiation.
Apart from the interference effects mentioned above, interference is possible as a result
of scattering by sublevels of magnetic or electric hyperfine structures [2.17]. To an inci-
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dent γ -quantum of any energy E there correspond different (and, in general, nonzero)
amplitudes for scattering by all transitions of the hyperfine structure. Hence interference
should occur which will manifest itself in an asymmetry of the energy distribution of the
scattered radiation. If the scattering atom is in an ideal polycrystal the γ-radiation
scattered into the solid angle dù' as a result of the Mössbauer effect can be written in
the following form:

where Ie , Ig , me and mg are the spins of the excited and ground nuclear states and their
projections onto the quantization axis respectively. The coefficients Bk(mg,me,me

')
depend on quantum properties and the transition multipolarity. The Legendre
polynomials Pk(cosθ) describe the dependence of the separate spectral intensities on
the scattering angle. The subscript k takes all even integral values from zero to the
minimal 2L and 2Ie values, where L is the highest multipolarity of the transition. It should
be recalled that k = 2 for the M1 transition. v(mg,me) is the Doppler velocity at which the
line is observed corresponding to the γ-transition Eo(mg,me). The second term (in
braces) in (2.45) takes into account the departure of the line shape from Lorentzian as a
result of interference between scattering by different sublevels. The interference
amplitudes Bk(mg,me,me

') contribute to the intensity at resonance.
The relative contribution of the interference term to the total intensity of the scattered
radiation is determined by the energy of hyperfine interactions. It has been calculated
[2.18] that for Mössbauer scattering at an angle of 135° in the transition Ig = 0, Ie = 1 and
in the presence of magnetic hyperfine interaction the relative contribution of the
interference term in (2.45) does not exceed 1 % for µ Heff/Γnat = 5 and rises to 5 % as
this ratio decreases to 0.5.
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Interference effects are observed on scattering from a real sample and not from an isolated
atom. Interference effects were observed for the first time on scattering from a polycrystalline
α-Fe foil (a = 65 %) using 57Co in α-Fe γ-ray source [2.19]. Interference led to a slight
asymmetry of the resonant scattering peak. The asymmetry agrees with a classical model of
scattering by a damped resonator [2.20]. In this model resonant scattering is in phase with
Rayleigh scattering when the incident radiation energy is above resonance but is in
antiphase when below resonance and is in quadrature when on exact resonance. The
use of Bragg reflections in single-crystal scatterer permits a substantial reduction in the
contribution from incoherent scattering. The interference pattern in this case may be
unambiguously connected with the crystallographic and electronic structure. It is
therefore important that Mössbauer diffraction from single-crystal scatterers should be
considered.
An analysis of interference effects on scattering by single crystals can be carried out in
a similar manner to the above consideration of scattering from an isolated atom. The
observed pattern is a sum of the three contributions: Rayleigh scattering, nuclear
resonant scattering and interference between Rayleigh and nuclear scattering. The
reader interested in Rayleigh scattering from single crystals is referred to textbooks and
numerous monographs on X-ray diffraction. In addition, there are reviews, e.g. [2.5] and
a monograph on coherent Rayleigh scattering of Mössbauer radiation [2.21]. We restrict
ourselves here to a note on the fact that the scattering from crystals requires that the
structure factors be used instead of the atomic form factors and that the absorption of
the scattered radiation should be always taken into account. A correct estimation of the
contribution by Rayleigh scattering to the total intensity of the scattered radiation is
important when attempting to find the optimum geometry for the scattering of relatively
hard radiations.
The detection of Rayleigh scattering of Mössbauer radiation enables samples which do
not contain resonant nuclei to be studied. For this purpose a Mössbauer absorber must
be placed between the scatterer and the detector. The absorber then serves as an
analyser of the scattered radiation. The elastic Rayleigh scattering amplitude can be
evaluated by measuring the difference between the intensities at a velocity
corresponding to the isomer shift of the source relative to the analyzer, and the
intensities at a very large velocity.
The measurement of a continuous velocity scanning experiment enables the
Mössbauer spectrum to be obtained which provides more information about the sample.
Detecting elastically and inelastically scattered γ-quanta with a resolution of ~ 10-7 - 10-9

eV allows the study of the effect of the low energy phonons on scattering. Experiments
on thermal neutrons scattering require an energy resolution of better then 10-6 eV. The
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technique is extremely convenient for studies of phase transitions, ordering phenomena,
and dynamic effects, including diffusion. The angular dependence of the intensity of the
elastically scattered radiation provides information on the static radial distribution
function, and the inelastically scattered radiation gives information on diffusion and
thermal motion.
 Let us consider now coherent resonant scattering by single crystals [2.22,23]. The
interaction of the scattered radiation with the sample material has a significant influence
on the shape of the spectrum. The observed pattern will be a result of the competing
resonant absorption and coherent scattering processes.The resonant absorption cross
section in a monatomic scatterer is determined by the forward coherent elastic
scattering amplitude, i.e. for k0 = kf

σa(E) = - m
0

J
k
4 Fcoh (k0 = kf) = aσ0f 

' L(E) .                                                         (2.46)

Fcoh has been taken from equation (2.43) which was derived for an isolated scattering
atom. This is fairly well justified for a polycrystalline scatterer. For a single-crystal
scatterer, scattering by other atoms must be taken into account. Inserting the Fcoh

amplitude corresponding to the scattering by one atom into (2.46) when k0 is within a
Bragg angle results in an underestimation of the total scattering cross section.
The coherent resonant scattering amplitude determines the scattering cross section. To
obtain it, the squared Fcoh modulus must be calculated, integrated over all angles and
then summed over all polarizations
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The p-factor, which determines the cross section ratio for the competing processes, is
always less than unity. Thus, for example, for an α-57Fe scatterer the coherent
scattering cross section is less than 2 % of the total resonant scattering cross section.
 Using the results obtained above, it is easy to find the total differential resonant (elastic
and inelastic) scattering cross section of γ-rays. If there are no diffraction effects on
scattering, then
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Resonant absorption leads to the incident radiation reaching deeper layers of the
scatterer to have a different spectral composition. To evaluate the radiation intensity
which is elastically scattered by an isotropic sample of thickness d, one should use an
expression of the following type:

∫ ∫
∞

∞−

=
d

0

dxdE)x,S,E(F)S,E(J)S(I  , (2.47)

where a change of the spectral composition of the incident and scattered radiation is
taken into account using a certain function F(E,S,x). For J(E,S) expression (2.44) may
be used. On diffraction the expression for the spectral shape is significantly more
complicated and in the case of interference between the resonant scattering and
Rayleigh scattering the spectrum is generally a combination of peaks (intensity maxima)
and dips (intensity minima).
 The directions of Mössbauer diffraction, when the hyperfine splitting is absent, coincide
generally with the θhkl directions of Rayleigh coherent scattering. However, the angular
dependence of diffraction line intensities from nuclear scattering and Rayleigh scattering
are different. Since the Debye-Waller factor decreases with the scattering angle it is
necessary to use large scattering angles in order to increase the contribution of nuclear
diffraction to the total spectrum. Sometimes, when there are several atoms in a unit cell,
the Rayleigh scattering amplitudes from the atoms in the unit cell may compensate each
other. This has made it possible to observe for the first time the pure Mössbauer
diffraction from the (080) plane in a single crystal of potassium ferrocyanide
K4

57Fe(CN)6·3H2O [2.14]. Since the Rayleigh scattering amplitude from iron atoms is
nearly exactly equal and opposite in the sign to the scattering amplitude from other
atoms of the unit cell, a Bragg peak is observed at resonance whereas there is no peak
at positions far from resonance.
When the hyperfine splitting is present the diffraction pattern caused by resonant
scattering is substantially complicated. The line intensities of Mössbauer scattering then
manifest an azimuthal dependence in contrast to Rayleigh scattering. The polarization
of a scattered γ-ray is then determined not by scattering angle as in Rayleigh scattering,
but by the mutual orientation of the axes system for the hyperfine interactions and kf.
Thus the coherent resonant scattering by nuclei, whose hyperfine interaction axes'
orientations are different, leads to a different polarization. The interference of the waves
with these different polarizations within a unit cell gives spectra which contain
information on structure, both the hyperfine interaction axes orientation, and the relative
positions of nuclei in the unit cell. The azimuthal dependence leads to the necessity of
using structure matrices [2.11] instead of the scalar scattering amplitudes (see (2.41,
43)) for the analysis of scattering by a unit cell in terms of polarization transformations.
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The periodic repeat of lattices and numbers of resonant atoms which give rise to
scattering and diffraction lines may give different effects in resonant and Rayleigh
scattering. The scattering by a magnetic sublattice in a simple antiferromagnetic with the
spins up means that the nuclei of another sublattice do not participate in the coherent
scattering. When the nuclear level degeneracy is completely lifted as a result of a
magnetic dipole interaction the purely nuclear maxima resulting from Mössbauer
diffraction may be detected. This has been observed by SMIRNOV et al. [2.24] for an
antiferromagnetic haematite crystal - α-57Fe2O3 during investigations of diffraction in the
[111] direction. Although the unit cells of the magnetic and crystallographic structure
coincide for this case, the symmetry of the unit cell is such that the total Rayleigh
scattering amplitude for the ((2n + 1)(2n + 1)(2n + 1)) reflections becomes zero.
Magnetic fields at the iron atoms are not parallel. Only one of the spin subsystems
participates in the coherent scattering of the quantum and there is no cancellation of the
scattering amplitudes. This leads to the observation of pure nuclear diffraction maxima.
Some works have reported a purely nuclear diffraction in scatterers when only
quadrupole splitting is present. For example [2.25] studies of the diffraction of the 125Te
Mössbauer radiation by a Te single crystal have enabled the observation of pure
nuclear reflections (001) and (002) which are caused by electric quadrupole interactions
in the scatterer.
 The Mössbauer lines are fairly symmetric when pure nuclear diffraction due to the
absence of interference with Rayleigh scattering occurs. Nevertheless, thorough
analysis of Mössbauer lines at the ((2n + 1)(2n + 1)(2n + 1)) reflections from an α-Fe2O3

single-crystal (a = 85 %, mosaicity ~ 30'') has shown that a dispersion term caused by
interference of scattering from various components of the hyperfine structure can be
separated [2.26]. For the (999) reflection,the line asymmetry of the central lines of the
spectra (i.e. the ratio of the dispersion curve amplitude to the line amplitude) is
approximately 5 %. The value of the interference term decreases rapidly with the
distance between the resonances, which is about 30Γnat even for the central lines of
haematite. However, the high sensitivity of the resonance line shape, measured under
pure nuclear diffraction conditions, allows the detection of such a small interference
effect.
The nuclear transition energies in spin sublattices of a crystal may happen to be close.
This leads to a complex interference pattern. Thus, for example, in Fe3BO6 the γ
-transition energies in ferric ions in 4c and 8d positions are close and, as a result, the
first line of the spectrum obtained at the (1100) reflection is split [2.27].
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The most complex spectral shapes are observed when the interference occurs between
Rayleigh and nuclear scattering from single crystals at Bragg angles. The coherent
elastic scattering amplitude from all atoms and resonant nuclei may be considered as a
sum of the amplitudes of elastic scattering from each of them if the corresponding
phase shifts are taken into account. An idea of the Mössbauer spectrum from a
monatomic substance in the absence of both the hyperfine splitting and resonant
absorption is given by the following expression which is obtained from Born's
approximation [2.15]

where rn , rm are the atom positions in the lattice. The second factor of the right-hand
part (cf.(2.44)) shows that the scatterer is a crystal. Bragg peaks are observed in the
directions for which the condition k0 - kf = τ  holds (τ, the reciprocal lattice vector). In
an idealized case of diffraction of Mössbauer radiation from a perfect crystal, the
γ-quanta should be elastically scattered only in those directions; in all other directions
the intensities will be quenched due to coherence of the processes involved. A change
of the incident and scattering angles by several minutes may lead to a sharp change in
intensity of the scattered radiation. Under these conditions the angular dependence of
the first factor in (2.48) may be neglected.
The experimental investigation of the shape of Mössbauer spectra on diffraction
requires that the Fr  values be changed, as well as ratios of the elastic nuclear
scattering amplitude to the elastic Rayleigh scattering amplitude ξ = Fr / FR; and the
resonant absorption cross section. The Fr value can be increased by lowering the
temperature, but under such conditions the resonant absorption is also significantly
changed. The elastic Rayleigh scattering amplitude can be decreased (and thereby the
ξ parameter value increased), by using higher-order reflections. Thus, for example, the
reflection of the 23.8 keV Mössbauer radiation from a source of 119mSnO2 from the (020)
plane of a tin single-crystal film (a = 88 %) gives rise to a typical diffraction peak (see
Fig.2.12) [2.28], FR = 1.15 10-11cm. At room temperature ξ = 0.45, and the Mössbauer
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spectrum obtained on diffraction at an angle of 5°7' is given in Fig.2.13. Lowering the
temperature to 110 K results in the increase of the ξ value by a factor of ~ 7 due to the
sharp increase of the f' factor. Further lowering of the temperature leads to an
insignificant increase of the ξ parameter, but causes the resonant absorption to play a
greater role. An increase in the contribution of the resonant channel without changing
the resonant absorption cross section was achieved by using higher-order reflections
from the (020) plane (see Fig.2.13).
 The appearance in the Mössbauer spectrum of a dip instead of a peak may in the first
instance be associated with resonant absorption which leads to a sharp reduction of the
penetration depth where Rayleigh scattering occurs. A smaller value of ξ also favours
the appearance of dips in the Mössbauer spectrum. To observe peaks, the ξ parameter
should be sufficiently large (i.e. more than 6, see [2.28]).
 Mössbauer spectra, corresponding to Bragg reflections, are significantly complicated if
the hyperfine splitting is present. The interference of differently polarized waves may be
weakened by polarization factors and this depends on the additional polarization phase
shift [2.11]. These features of Mössbauer spectra were demonstrated by observation of
the (2n 2n 2n) reflections from a haematite single crystal [2.29], but not the ((2n + 1)(2n
+ 1)(2n + 1)) reflections, where coherent Rayleigh scattering is absent [2.24]. The
Mössbauer spectra were classified into three groups: asymmetric peaks at the (101010)
and (888) reflections; asymmetric dips at the (444) reflection, and dispersion-like curves
at the (666) and (222) reflections.

Fig.2.12 Angular dependence of the 23.8 keV γ-radiation intensity scattered by a single
crystal tin film 5 µm thick.

Dips were observed when Rayleigh scattering was dominant, peaks when the
Mössbauer scattering dominated, and dispersion-like
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Fig.2.13 Mössbauer diffraction spectrum from a mosaic single crystal of tin (a = 88 %, d
= 5 µm) [2.28] : solid circles - T = 293 K, the (020) reflection; open circles - T = 110 K,
the (020) reflection; crosses - T = 110 K, the (040) reflection; triangles - T = 110 K, the
(060) reflection. The curves have been calculated assuming a mosaic structure of the
crystal and are normalized at v = - 6.7 mm/s.

curves were associated with interference when Fr ≈ FR.At certain scattering angles the
phase relationships on scattering from the unit cell may be such that, unlike scattering
by a single atom or by a polycrystalline foil [2.19], the interference between Rayleigh
and nuclear resonant scattering is constructive for incident energies below resonance
and destructive above resonance.
The interference of the elastically scattered radiation gives rise to a mirror reflected
wave. The mirror scattered wave intensity becomes significant when the angle of
incidence is less than the angle of total reflection - γcr. This is discussed later in Sec.2.5
where the total reflection of Mössbauer radiation applied for thin surface layer studies is
considered.
The diffraction effects are observed when the incident beam of γ-quanta is strongly
collimated such that the divergence angle is usually not more than 20''. This
considerably lowers the radiation intensity and requires long exposures to record
statistically reliable spectra. No considerable decrease in the intensities of the scattered
radiation is usually observed on departure from Bragg angles. There are many reasons
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for that. Not all resonantly scattered radiation is coherent, even for scattering by a single
atom. Indeed, if the ground-state spin is not zero the nucleus may, after scattering, be in
some other spin state and coherence is lost despite there being no energy loss due to
recoil (see Table 2.4). If it is also assumed that a magnetic field Heff causes the levels
with spins Ie , Ig to split, then the recoilless resonant scattering of γ-quanta, which is
followed by a change of the spin state, is an inelastic (or energy-shifted) and an
uncoherent process. The nuclear transition of multipolarity M1 from the ground state
with mg = +1/2, into an excited state with me = - 1/2, may be followed by the elastic
transition into the initial state with mg = +1/2, or by the inelastic one into the state with
mg = - 1/2 (see Fig.1.3).
The diffraction peaks are significantly influenced by the isotopic abundance and for
scatterers with a low enrichment of the resonant isotope an isotopic incoherence results
since σcoh ~ a2. For ordinary iron a2 ≈ 5 10-4. Spin incoherency also reduces the effects
related to nuclear diffraction.
Each resonantly scattered γ-quanta may have a coherent counterpart in Rayleigh
inelastic scattering which occurs with a probability f(1 - fR). For this coherence to be
realized it is initially necessary that the lattice be in the same state after each of the
processes. The total contribution of coherent inelastic scattering also depends on
temperature. The contribution is small and may be considered as a second-order
process relative to elastic scattering. A contribution to the intensity registered at a Bragg
angle by the source recoil radiation arises if elastical scattering resulting from Rayleigh
scattering occurs. Incoherent scattering (elastic and inelastic) does not cause any
interference effects since it only appears in the background.
To summarize, two physical problems which have been studied in detail due to the
progress in nuclear diffraction of Mössbauer radiation must be considered. Firstly, it is
dynamical diffraction of Mössbauer radiation. The dynamical theory of Bragg reflection
predicts that the reflectivity of a perfect crystal reaches nearly unity within a small
angular region around the exact Bragg angle. The width and absolute position of this
region is determined primarily by the real part of the scattering amplitude . The
existence of the total reflection region near exact Bragg angle results in a broadeing of
the effective energy width of the resonance. This occurs because, for a plane wave at
the Bragg angle, the reflectivity is always high, even if the range of reflection is small.
The energy broadening is significant and of the same order as the splitting of the
multiplet [2.30].
At first dynamical diffraction of resonant radiation has been only studied in forward
directions. Backward reflections are much weaker than forward reflections in the case of
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electronic scattering, because the spatial extension of the atomic shell causes a loss of
coherency at large scattering angles. Nuclear resonant scattering, by contrast, is not
affected by such a spatial incoherence, and strong reflections are also expected here in
backward scattering. Back-reflections in Bragg geometry offer in addition an essential
practical advantage: the cross section off the beam accepted by the crystals is usually
much larger in the back-reflection geometry than for the forward reflections.
Characteristic features of resonant dynamical diffraction appeared in the Mössbauer
spectrum of the reflection (3311) from 57FeBO3 measured with a high angular resolution
[2.31]. A considerable broadening of the resonance peaks and interference between the
hyperfine transitions were observed.
Secondly, the suppression of inelastic scattering channels requires attention. The effect
is the nuclear resonant analogue of the Borman effect and is realized when a thick
perfect crystal containing Mössbauer nuclei is set up at a diffraction angle and the
transmittance of the crystal increases when the source velocity is such that the system
is brought into resonance. The problem is reviewed in [2.22, 23].
Considerable interest in pure nuclear back-reflections arises also from possible
applications in γ -optical devices, such as the filtering of Mössbauer radiation from the
white spectrum of synchrotron radiation [2.31 - 35]. The observation of nuclear resonant
diffraction of synchrotron radiation has opened a new field of experiments with sub-ìeV
beams of high brilliance. The use of pure nuclear back-reflections (with almost total
reflectivity in an angular region of 10'' - 20'' ) as a pre-monochromator allows more
Mössbauer radiation to be extracted from the synchrotron beam. Filtered X-ray beams
with extremely narrow band width (10-6 - 10-8 eV) and small angular width (0.4 arc sec)
have been obtained from the synchrotron radiation continuum. Progress in this
technique has made it feasible to produce diffracted γ-quanta with intensities
unattainable from conventional Mössbauer sources [2.32], thereby increasing interest in
hyperfine spectroscopy.
Previously, the nuclear resonance of 57Fe at 14.4 keV was used for pure nuclear Bragg
reflection from highly enriched single crystals. Yttrium iron garnet and iron borate are
well known examples. In 1990, it was shown that enriched epitaxial crystals provided an
alternative to the use of large amounts of expensive bulk isotope for monochromating
synchrotron X-ray beams to sub-µeV bandwidths. Later the measurement of coherent
nuclear diffraction of synchrotron radiation from grazing- incidence antireflection films
(GIAR films) containing 57Fe showed that nuclear resonant filtering by the films was
possible.
At present, resonant beams of a few hundreds of photon/sec have been obtained using
synchrotron radiation. By optimizing the diffraction techniques and using more intense
primary beams expected from undulators in future synchrotron light sources, it is
anticipated that beams about 105 photons/sec will be obtained [2.33].
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This new technique promises to become a powerful tool not only for hyperfine
spectroscopy but also for γ-optical experiments. The standard experiment in the future
will be the time-resolved observation of forward scattering from a polycrystalline target
instead of the pure nuclear reflection from a single crystal which has been used to date.
Using the time of excitation, which is known precisely and the spectrum of the delayed
resonant quanta from the sample, the hyperfine interaction parameters may be
determined within a few hours, even with resonant counting rates of only 1 Hz [2.34].
The use of synchrotron radiation may allow the Mössbauer effect to be observed in new
isotopes. Such isotopes would need low-energy excited nuclear levels but need not
have appropriate parent nuclei and hence they are not given in Table 1.1.
Additionally, this technique may be especially promising for magnetic field and EFG
structure studies in crystals [2.35], and the measurement of the total external reflection
of sub-µeV beams of high brilliance may be useful in the analysis of near surface layers
(see subcec. 2.5 and 3.8).


