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Potts-Models

27 /q

generalized Ising models:
0x € {2mk/q}, 1<k<gq

H=-J Z<Xy> cos (05 — 0,)
Zq:0x — 0 +2mn/q
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Potts-Models

2m/q generalized Ising models:
0x € {2mk/q}, 1<k<gq
H=-J Z<Xy> cos (05 — 0,)
> Zq:0x — 0 +2mn/q
» ferromagnetic phase: g ground states
phase transition symmetric < ferromagnetic

d = 2 : second order g < 4, first order g > 4
d = 3 : second order g < 2, first order g > 2
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21/q generalized Ising models: A. Wipf
0 € {2rk/q}, 1<k<gq Potts-Models
H=—J Z<Xy> cos (05 — 0,)
- Zq:0x — Ox+2mn/q

» ferromagnetic phase: g ground states
phase transition symmetric < ferromagnetic
d = 2 : second order g < 4, first order g > 4
d = 3 : second order g < 2, first order g > 2

O e anti-ferromagnetic phase:
*“Tr rich vacuum structures
) i e 0 g symmetric < antiferrom:
L L
J | d = 3,9 = 3: second order

> . ° entropy of ground states?



» entropy Sg(p) = — > p(w) log p(w) = free energy
BF = if;f (B{H), — SB) = pcibhs ~ e "
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» entropy Sg(p) = — > p(w) log p(w) = free energy
BF = if;f (B(H), — Sg) = pcibps ~ e 71

> variational characterization of (convex) effective action:

] = inf (B(H), — S(p) ("), = m(x))
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entropy Sg(p) = — > p(w) log p(w) = free energy
BF = if;f (B(H), — Sg) = pcibps ~ e 71

variational characterization of (convex) effective action:

. - i0(x) o
] = inf (B(H), — S(p) ("), = m(x))
mean field approximation:

p(w) = [T px(6:) = Tnaplm]

translational invariance: py = p = m(x) = m
effective potential: Tyip[m] = V uyr(m)

upp(m) = inf ( — Kmm* + " p(6) log p(9))
0

m = > p0)e”, K=d
6
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» antiferromagnetic phase:
translational invariance on sublattices A = A; U Ay
two neighbours in different sublattices
p(x) = pi = m(x) = m; for x € A\;

umr (my, mp) =

[y

2

Klmy — mo? + ) uae(mi) |

1
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» antiferromagnetic phase:

translational invariance on sublattices A = A; U Ay

two neighbours in different sublattices
p(x) = pi = m(x) = m; for x € A\;

1
uvp (M, mp) = 5 Kimy — mp|? + Z uvr(m;) |,

1

» K> Kfe>0= my = my #0, Zg-broken
K < Kac <0= mq # my #0, Zpqg-broken

v e

symmetric ferromagn.

antiferromagnetic
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Polyakov-Loop Dynamics

» finite temperature gluodynamics
order parameter for confinement: Polyakov loop
effective action:

N
e Sert[P] — /'DU5 PmH Ut,z:0 e~ SwIU]
t=0
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Phases of

Polyakov-Loop Dynamics generafzed

Potts-Models and
their Relevance for
.. . Gauge Theories
» finite temperature gluodynamics

order parameter for confinement: Polyakov loop
effective action:

A. Wipf

Polyakov-Loop

N; Dynamics
e SealPl — /DU5 (PmH Ut,m;O) e~ SwIU]

t=0
3z gauge invariance:

Seﬂ‘ = Seff[L], L;,, = Ter

3
3z global Z3 center symmetry:
Seﬂ‘[L] == 583[2 . L]

> /322 good ansatz for S.g7?



» strong coupling expansion for Seg[P]
= Zs-invariant character expansion
nearest neighbour interaction

Sef = A10S510 + A21521 + A20520 + A11511 + - -

S0 = Z (XlO(Pm)XOI(Py) + h.C) , So1 = ..
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» strong coupling expansion for Seg[P]
= Zs-invariant character expansion
nearest neighbour interaction

Sefi = A10S10 + A21521 + A20S20 + A11S11 + - -
S0 = Z (X10(Pz)x01(Py) + h.c), So1 = ...

» center-transformation:
Xpg(zP) = 2P Ixpg(P), 22 =z"z=1
With L = TrP: leading terms

St = ()\10 — )\21) Z (LmLZ + h.C.)
+ A Y (Lly+ Ly +he)
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strong coupling expansion for Seg[P]
= Zs-invariant character expansion
nearest neighbour interaction

Sefi = A10S10 + A21521 + A20S20 + A11S11 + - -
S0 = Z (X10(Pz)x01(Py) + h.c), So1 = ...

center-transformation:
Xpq(ZP) = 2P~ X pq(P), B=zz=1
With L = TrP: leading terms

St = ()\10 — )\21) Z (LmLZ + h.C.)
+ A Y (Lly+ Ly +he)

complex field with compact target space, [[(reduced
Haar measures), close relation to 3-state Potts model
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Gluodynamics and Pott-Models

» naive reduction to Potts: P, — e'¥=1 € centre
Sef — H with  J = 18(X\o1 + 4X21)

true for all Se = Sefr is extension of Z3 model.
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Seff —H with J= 18(>\01 + 4)\21)

true for all Se = Sefr is extension of Z3 model. Sireiiemies o
otts-Models
» Conjecture (Svetitsky, Yaffe):

effective finite-temperature SU(N)-gluodynamics in
d dimensions = Zp spin model in d — 1 dimensions.



Gluodynamics and Pott-Models

» naive reduction to Potts: P, — e'¥=1 € centre
Sef — H with  J = 18(X\o1 + 4X21)

true for all Se = Sefr is extension of Z3 model.

» Conjecture (Svetitsky, Yaffe):

effective finite-temperature SU(N)-gluodynamics in
d dimensions = Zp spin model in d — 1 dimensions.

> same critical exponents SU(2) and Ising (Engels et.al)
same universality class (symmetric < ferrom.)

Blv v v
4d SU(2) | 0545 1.93 0.65
3d Ising | 0.516 1.965 0.63
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» relevance for finite temperature SU(N) with N > 27
transition first order! — phase diagrams
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» relevance for finite temperature SU(N) with N > 27
transition first order! — phase diagrams

» classical analysis: minimize S.¢

A21

—0.2 -

0.6

7

ferromagnetic symmetric

anticenter

antiferromagnetic

-3 -2 -1 0 )\10 1
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» relevance for finite temperature SU(N) with N > 27

transition first order! — phase diagrams

» classical analysis: minimize S.¢

A21
—0.2 | /
ferromagnetic symmetric
0.2
o6 L anticenter
= antiferromagnetic
1.0 L L
—4 -3 —2 -1 0

1
A0

» quantum fluctuations = include symmetric phase

new ferromagnetic anti-center phase
qualitatively correct phase diagram
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Modified mean field approximation

» variational characterisation of I:
fix (x;j(Pz)) for all x; in Seg
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Modified mean field approximation

» variational characterisation of I':
fix (x;j(Pz)) for all x; in Seg
» mean field approximation = product measure

DP — | [ direa(Pz) pz (Pa)
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» variational characterisation of I:

fix (x;j(Pz)) for all x; in Seg

» mean field approximation = product measure

DP — Hdﬂred(Pm)pm (Pm) N
x fier Iaﬁpr&ieri:\tion

» translational invariance on sublattices in A = A; U A,
= nontrivial variational problem on two-sites



Modified mean field approximation

» variational characterisation of I':
fix (x;j(Pz)) for all x; in Seg
» mean field approximation = product measure

DP — | [ direa(Pz) pz (Pa)

» translational invariance on sublattices in A = A; U A,
= nontrivial variational problem on two-sites

» most simple effective model (Polonyi)
Seft = AS10 = /\Z (L;BLZ + h.C>

Lagrangean multiplier for L; on A;
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» mean field effective potential for minimal model

vamr(L, L*) = dA| L 4+ ~o(L, L¥)

Yo Legendre-transform of

Modified mean
field approximation

wo(j,j*) = Iog/dured exp (JL + j L")



Phases of

generalized
» mean field effective potential for minimal model [otts Models and.
Gauge Theories
* * 2 % -
2UMF(L1)I—17L2’L2) = —d)\|L]_ — L2‘ + E VMF(LI"I-,') A. Wipf

vamr(L, L*) = dA| L 4+ ~o(L, L¥)

Yo Legendre-transform of

Modified mean
field approximation

wo(j,j*) = Iog/dured exp (JL + j L")
» order parameters:

1 1
LZE(L1+L2), MZE(Ll—Lg), £:|L|, m:\l\/l\



Phases of
generalized
Potts-Models and

» mean field effective potential for minimal model Frur s ——
Gauge Theories
2upp(Ly, L, Lo, L) = —dA|Ly — Lo|* + (L, LY) A. Wipf
MF\t1, L1, L2, L2 1 2 VMF\Li, L;

vuir(L, L*) = dA|L|? + yo(L, L*)

Yo Legendre-transform of

Modified mean
field approximation

wo(j,J*) = Iog/dured exp (JL + j L")
» order parameters:
1 1
L= E(Ll + L2), M = E(Ll — Lg), ! = |L|, m= |M|

» group integral in closed form not known for SU(3)!!
[ exp (j Tr(U)) =hypergeometric function
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» Why is mean field so good?
conjecture: 3 = upper crit. dimension for 3-state potts
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» Why is mean field so good?

conjecture: 3 = upper crit. dimension for 3-state potts

> critical exponents of S < AF:

exponent | 3-state Potts minimal S.
v 0.664(4) 0.68(2)
v/v 1.973(9) 1.96(2)

critical exponents in mean field?
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» Why is mean field so good?

conjecture: 3 = upper crit. dimension for 3-state potts

> critical exponents of S < AF:

exponent | 3-state Potts minimal S.
v 0.664(4) 0.68(2)
v/v 1.973(9) 1.96(2)

critical exponents in mean field?

» finite temperature gluodynamics

— effective Z3 models with compact target spaces

— 3-state Potts-model

universality test in 'unphysical region’

(for gluodynamics)
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Results of MC-Simulations

» phase diagram and transitions — histograms
large statistics, expensive — fast algorithms!
standard Metropolis: 5% to 10% accuracy
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Results of MC-Simulations

» phase diagram and transitions — histograms
large statistics, expensive — fast algorithms!
standard Metropolis: 5% to 10% accuracy

» multicanonical algorithm: up to 203 lattices near first
order transitions
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Results of MC-Simulations

» phase diagram and transitions — histograms
large statistics, expensive — fast algorithms!
standard Metropolis: 5% to 10% accuracy

» multicanonical algorithm: up to 203 lattices near first
order transitions

» new cluster algorithm near second order transitions:
auto-correlation times down by two orders of magnitude
on larger lattices
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» phase diagram and transitions — histograms h UL

large statistics, expensive — fast algorithms!
standard Metropolis: 5% to 10% accuracy

» multicanonical algorithm: up to 203 lattices near first
order transitions
» new cluster algorithm near second order transitions:
auto-correlation times down by two orders of magnitude  Resuits of
. MC-simulations
on larger lattices
» comparison with mean field results for two-coupling
(costy).



Results of MC-Simulations

» phase diagram and transitions — histograms
large statistics, expensive — fast algorithms!
standard Metropolis: 5% to 10% accuracy

» multicanonical algorithm: up to 203 lattices near first
order transitions

» new cluster algorithm near second order transitions:
auto-correlation times down by two orders of magnitude
on larger lattices

» comparison with mean field results for two-coupling
(costy).

» rich phase structure: 4 different phases, second und first
order transitions, tricritical points(?), mean field very
good.
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A10 = —0.13958
A21 = 0.0020833

Ao = —0.13971
A21 = 0.0019583

A0 = —0.13983
A21 = 0.0018333

. 0 L 0 . -
1 1 /
—1 0 1 —1 0 1 —1 0 1
A10 = —0.13996 A10 = —0.14008 A0 = —0.14021
A21 = 0.0017083 A21 = 0.0015833 A21 = 0.0014583
\ —1 A —1 A
. — 0 0 -
/ ! / ! /
~1 0 1 1 0 1 —1 0 1

e 1: Histogramm of L, S <~ FM, 1st
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Conclusions

» strong coupling for Polykaov-loops effective action

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012
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Conclusions

» strong coupling for Polykaov-loops effective action

» modified MF for non-translationally invariant states

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012
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Conclusions

» strong coupling for Polykaov-loops effective action
» modified MF for non-translationally invariant states
» new efficient cluster algorithm!

» rich phase structure for simple Z3-models

» mean field unexpectedly accurate (d. = 37?)

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012
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Conclusions

» strong coupling for Polykaov-loops effective action
» modified MF for non-translationally invariant states

» new efficient cluster algorithm!

» rich phase structure for simple Z3-models

» mean field unexpectedly accurate (d. = 37?)

» calculate () via IMC (cp. SU(2))

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012
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» strong coupling for Polykaov-loops effective action A, Wipf
» modified MF for non-translationally invariant states

» new efficient cluster algorithm!

» rich phase structure for simple Z3-models

» mean field unexpectedly accurate (d. = 37?)

» calculate () via IMC (cp. SU(2)) Conclusions

» efficient 'group-theoretic’ Schwinger-Dyson equations!
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Conclusions

» strong coupling for Polykaov-loops effective action
» modified MF for non-translationally invariant states

» new efficient cluster algorithm!

» rich phase structure for simple Z3-models

» mean field unexpectedly accurate (d. = 37?)

calculate \j(3) via IMC (cp. SU(2))
efficient 'group-theoretic’ Schwinger-Dyson equations!

vacuum-sector of AF phase? SU(N) group integrals?

vV v v Y

is AC-phase relevant for gluodynamics?

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012
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Conclusions

» strong coupling for Polykaov-loops effective action
» modified MF for non-translationally invariant states

» new efficient cluster algorithm!

» rich phase structure for simple Z3-models

» mean field unexpectedly accurate (d. = 37?)

calculate \j(3) via IMC (cp. SU(2))
efficient 'group-theoretic’ Schwinger-Dyson equations!
vacuum-sector of AF phase? SU(N) group integrals?

is AC-phase relevant for gluodynamics?

vV v v v Y

include fermions in effective Polyakov-loop dynamics.

JHEP 06 (2004) 005, PRD 72 (2005) 065005, hep-lat/0605012
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