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Overview
Aim of Talk: To explain an interesting connection between properties of the Virasoro
algebra and a number of exceptional Lie and finite groups.
 The Virasoro algebra and the vacuum Verma module.
 The Kac determinant and its relationship to certain exceptional Lie and finite groups.
 Vertex Operator Algebras (VOAs) and the Li-Zamalodchikov metric
 VOA automorphism group invariant quadratic Casimirs.
 Expansions of rational matrix elements.
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The Virasoro Algebra and Verma Modules
Virasoro Algebra Vir of Central Charge C

Lm,Ln  m − nLmn  m3 − m C
12 m,−n, Lm,C  0.

The Vacuum Verma Module VC, 0. Let 1 denote the vacuum vector where
L01  0, L−11  0, L11  0

Consider the Virasoro descendents of the vacuum
VC, 0  L−n1L−n2…L−nk1|n1 ≥ n2 ≥…≥ nk ≥ 2

VC, 0 is a module for Vir graded by L0 where
L0L−n1…L−nk1 n1 …nkL−n1…L−nk1

n  n1 …nk ≥ 0 is the Virasoro level.
Then

VC, 0 
n≥0

VnC, 0

where VnC, 0 denotes the vectors of level n.
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General Verma Module VC,h. Let v denote a vector such that
Lnv  hn,0v for all n ≥ 0

v is called a Primary Vector of level h. Then for each primary vector we obtain a module
VC,h for Vir generated by the Virasoro descendents of v

L−n1L−n2…L−nkv|n1 ≥ n2 ≥…≥ nk ≥ 1

The Kac Determinant
We consider V  VC, 0 only here. V is irreducible provided no descendent vector is
itself a primary vector.
Define a symmetric bilinear form 〈,  on V with 〈1,1  1 where

〈L−nu,v  〈u,Lnv.
for arbitrary vectors u,v. Note 〈u,v  0 for u,v of different Virasoro level.
Consider the Gram matrix 〈u,v for all vacuum descendents u,v. Then V is irreducible
iff the Gram matrix is invertible i.e. The level n Kac determinant

det
Vn
〈u,v

is non-vanishing (Kac, Feigen and Fuchs).
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Level 2: V2    L−21.  is called the conformal vector. The Gram matrix is
〈,  〈1,L2L−21  〈1, 4L0  C

12 8 − 21  C
2

Level 4: V4  L−2L−21,L−41 with Gram matrix

C4  1
2 C 3C

3C 5C

and Kac determinant C25C  22.
Level 6: dimV6  4 with Kac determinant 3

4 C45C  2222C − 17C  68.
Level 8: dimV8  7 with Kac determinant

3C75C  2242C − 127C  6823C  465C  3

Level 10: dimV10  12 with Kac determinant
225
2 C

12
5C  2282C − 157C  6843C  4625C  3211C  232
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Some Exceptional Group Numerology
Consider the prime factors of the Kac determinant for level ≤ 10 for particular values of
C. We observe some coincidences with properties of a number of exceptional Lie and
finite groups.
Deligne’s Exceptional Lie groups: A1,A2,G2,D4,F4,E6,E7,E8. The dimension of the
adjoint representation of each of these groups for dual Coxeter no h∨ is (Vogel)

d  25h∨ − 6h∨  1
h∨  6

Compare d to the level 4 Kac det factors C and 5C  22 for certain values of C:
A1 A2 G2 D4 F4 E6 E7 E8

h∨ 2 3 4 6 9 12 18 30
d 3 23 2.7 22. 7 22. 13 2.3. 13 7.19 23. 31
C 1 2 2.7

5 22 2.13
5 2. 3 7 23

5C  22 33 25 22. 32 2. 3. 7 24. 3 22. 13 3.19 2.31
Every prime divisor of d is a prime divisor of the numerator of the Kac det.
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Some Exceptional Finite Groups. The prime divisors of the order of a number of
exceptional finite groups are also related to the Kac determinant factors. We highlight
three examples.
The Monster Simple Group M. The classification theorem of finite simple groups states
that a finite simple group is either one of several infinite families of simple groups (e.g.
the alternating groups An for n ≥ 5) or else is one of 26 sporadic finite simple groups. The
largest sporadic group is the Monster group M of order

|M| 246. 320. 59. 76. 112. 133. 17.19.23.29.31.41.47.59.71 ≃ 8  1053

The two lowest dimensional irreducible representations are of dimension
d1  196883  47.59.71
d2  21296876  22. 31.41.59.71

Consider the level 10 Kac determinant factors for C  24
C 5C  22 2C − 1 7C  68 3C  46 5C  3 11C  232

23. 3 2.71 47 22. 59 2.59 3.41 24. 31
All of the prime divisors 2,31,41,47,59,71 of d1 and d2 are divisors of the Kac det!
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The Baby Monster Simple Group B. The second largest sporadic group is the Baby
Monster group B of order

|B| 241. 313. 56. 72. 11.13.17.19.23.31.47

Consider the level 6 Kac determinant factors for C  23 1
2

C 5C  22 2C − 1 7C  68
47
2

32.31
2 2. 23 3.5.31

2

The prime divisors 2,3, 5, 23,31,47 are divisors of the numerator of the Kac det.
The Simple Group O10

 2. This group has order
|O10

 2| 220. 35. 52. 7. 17.31

Consider the level 6 Kac determinant factors for C  8
C 5C  22 2C − 1 7C  68
23 2.31 3.5 22. 31

The prime divisors 2,3, 5, 31 are divisors of the Kac det.
What is going on?
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Vertex Operator Algebras
These observations can be understood in the context of Vertex Operator Algebras
(Borcherds, Frenkel, Lepowsky, Meurmann, Goddard,...). The basic idea is that the
groups appearing above arise as symmetry groups of particular VOAs. The relationship
with the Kac determinant (and many other properties) follows from the existence of
particular group invariant vectors which are Virasoro descendents of the vacuum.
A Vertex Operator Algebra (VOA) consists of a Z-graded vector space V  k≥0 Vk

with dimVk   and with the following properties:
Vacuum. V0  1 for vacuum vector 1.
Vertex Operators (State-Field Correspondence). For each a ∈ Vk we have a vertex
operator

Ya, z ∑
n∈Z

anz−n−k,

with component operators (modes) an ∈ EndV such that
Ya, z.1|z0  a−k.1  a

Here z is a formal variable (taken as a complex number in physics).
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Virasoro Structure. For the conformal vector  ∈ V2 we have

Y, z ∑
n∈Z

Lnz−n−2

where Ln forms a Virasoro algebra of central charge C.
The Z −grading is determined by L0 i.e. Vk  a ∈ V|L0a  ka.
L−1 acts as translation operator with

YL−1a, z  ∂zYa, z i.e. L−1an  −n  kan for a ∈ Vk

Locality. For any pair of vertex operators we have for integer N  0.
x − yNYa,x,Yb,y  0

These axioms easily lead to the following basic VOA properties:
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Translation. For any a ∈ V then for |y|  |x| (formally expanding in y/x)
eyL−1Ya,xe−yL−1  Ya,x  y

Skew-symmetry. For a,b ∈ V then
Ya, zb  ezL−1Yb,−za.

Associativity. For a,b ∈ V then for |x − y|  |y|  |x|.
Ya,xYb,y  YYa,x − yb,y

Borcherd’s Commutator Formula. For a ∈ Vk and b ∈ V then

am,bn ∑
j≥0

m  k − 1
j aj−k1bmn.

Example. For a   ∈ V2 and m  0 and any b
L0,bn  L−1bn  L0bn  −nbn

i.e. bn : Vm → Vm−n. In particular, the zero mode b0 is a linear operator on Vm.
Similarly for all m and any primary vector b ∈ Vh

Lm,bn  h − 1m − nbmn.
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Invariant Bilinear Form - Li-Zamalodchikov metric. Assume that V0  1 and
L1v  0 for all v ∈ V1. Then there exists a unique invariant bilinear form 〈, , which we
call the Li-Z metric, with 〈1,1  1 where (Li)

〈Lna,b  〈a,L−nb for all a,b ∈ V
〈cna,b  −1k〈a,c−nb for all a,b ∈ V, and primary c ∈ Vk

〈,  symmetric (Frenkel Huang Lepowsky). 〈,  non-degenerate iff V is semisimple (Li).
Lie and Kac-Moody Algebras. Consider a,b ∈ V1. Define a,b  adab  a0b
( −b0a by skew-symmetry) and which satisfies the Jacobi identity. Then V1 is a Lie
algebra. Furthermore 〈a,b is an invariant invertible symmetric bilinear form

〈a,b,c  〈−b0a,c  〈a,b0c  〈a, b,c

The full commutator formula gives a Kac-Moody algebra.
am,bn  a0bmn  a1bmn  a,bmn − m〈a,bmn,0

Griess Algebras. Suppose dimV1  0. Consider a,b ∈ V2. Then a2b  〈a,b1.
Skew-symmetry implies a0b  b0a.Thus we define a ∙ b  a0b to form a commutative
non-associative Griess algebra on V2 with invariant bilinear form

〈a ∙ b,c  〈b,a ∙ c for all a,b,c ∈ V2
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The Automorphism Group of a VOA
g ∈ GLV is an element of the VOA automorphism group AutV iff

gYa, zg−1  Yga, z for all a ∈ V
with g   the conformal vector. Thus the grading is preserved by AutV. Furthermore,
every Virasoro descendent of the vacuum is invariant under AutV.
The Li-Z metric is automorphism group invariant

〈ga,gb  〈a,b for all a,b ∈ V

For VOAs with dimV1  0 then AutV contains continuous symmetries generated by
the Lie algebra V1.
VOAs for which dimV1  0 are of particular interest. Examples include the Moonshine
Module V of central charge C  24 where AutV  M, the Monster group. In this case,
V2 is the original Griess algebra of dimension 196884  1  196883 where  is M
invariant. (Frenkel, Lepowsky and Meurman)
Other examples include VOAs with C  23 1

2 with AutV  B, the Baby Monster where
dimV2  1  96255 (Hoen) and C  8 with AutV  O10

 2 and dimV2  1  155
(Griess).
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Quadratic Casimirs
Consider a VOA with an invertible Li-Z metric and with d  dimV1  0. Let V1 have
a basis a|  1. .d and dual basis a|  1. .d i.e. 〈a,a   . We define the
AutV invariant quadratic Casimir vectors ( summed)

n  a1−na ∈ Vn

In general 0  −d1 and 1  0. Furthermore, using Lm,an
  −namn

 it follows that

Lmn  n − 1n−m for all m  0

Suppose n is a Virasoro descendent of the vacuum (Matsuo). Then n can be
determined exactly via the invertible Li-Z metric.
Example. Suppose 2 is a Virasoro descendent i.e. 2   for some . Hence

〈,2  〈, i.e. 〈1,L22   C
2

But L22  0  −d1 implies 2  − 2d
C  i.e.

  − C
2d a−1 a "Sugawara Construction"

Note that the zero mode is then 0
2  − 2d

C L0.
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Rational Matrix Elements and the V1 Killing Form
Consider the following matrix element for a,a,b,c ∈ V1

Fx,y  〈b,Ya,xYa,yc
Locality implies Fx,y must be a rational function of x,y of the form

Fx,y  gx,y
x2y2x − y2 , g  Ax4  y4  Bx3y  xy3  Cx2y2

g is a homogeneous, symmetric polynomial of degree 4. Associativity implies
Fx,y  〈b,YYa,x − ya,yc

∑
n≥0
〈b,Yn,ycx − yn−2

 x − y−2∑
n≥0
〈b,0

nc x − y
y n

Assuming 2 is a Virasoro descendent then 0
2  − 2d

C L0. Thus expanding in
|x − y|  |y| the leading terms are

Fx,y  −dx − y−21  0  2
C  x − y

y 2 . . . 〈b,c

Comparing to g leads to two conditions on A,B,C.
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We may alternatively expand Fx,y as follows
Fx,y  〈b,Ya,xeyL−1Yc,−ya Skew-symmetry

 〈b,eyL−1Ya,x − yYc,−ya Translation
 〈eyL1b,Ya,x − yYc,−ya Invariant LiZ metric
 〈b,Ya,x − yYc,−ya Primary b

Expanding in |y|  |x − y| the leading terms are
〈b,a−1 c1a−y−2  〈b,a0

c0a−y1x − y1 …

 −〈b,cy−2 − 〈a,b0c0ay−1x − y−1 …
 −〈b,cy−2 − TrV1 b0c0y−1x − y−1 …

using c1a  −〈c,a1 and a0
b  −b0a etc.

The leading term determines g completely. The subleading term is the Killing form of the
Lie algebra V1

Kb,c  TrV1 adbadc  −2 d − C
C 〈b,c

For d ≠ C, K is invertible and V1 is semi-simple. (Schellekens, Dong and Mason, T)
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Deligne’s Exceptional Lie Groups
Suppose furthermore that 4 is a vacuum Virasoro descendent. Then

4  3d
C22  5C 4L−2L−21  2  CL−41

Expanding Fx,y in |x − y|  |y| to the next leading terms we obtain

dC  C22  5C
10 − C

Ka,b  12 2  C
C − 10 〈a,b  −2h∨〈a,b

Note the necessary appearance of the Kac factors C22  5C. This is precisely the
original Vogel formula for Deligne’s exceptional Lie groups for dual Coxeter number

h∨  6 2  C
10 − C

The only semi-simple Lie algebras solutions are the Deligne series. (Maruoka, Matsuo
and Shimakura - with many more assumptions, T)
If 6 is a vacuum descendent then only C  1 or C  8 possible i.e. A1 and E8. (T)
If n a vacuum descendent for n  8 then A1 lattice VOA. (T)
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Griess Algebras
Consider a VOA with an invertible Li-Z metric with dimV1  0. Let V̂2  V2 − 
be the level 2 primary states with basis a and dual basis a with d  dim V̂2  0.
We again define AutV invariant quadratic Casimir vectors

n  a2−n
 a ∈ Vn

with
0  d1, 1  0

Lmn  m  n − 2n−m for m  0

Consider the matrix element for a,a,b,c ∈ V2

Fx,y  〈b,Ya,xYa,yc
In this case Fx,y is a rational function

Fx,y  gx,y
x4y4x − y4

where gx,y is a homogeneous, symmetric polynomial of degree 8 determined by 5
independent parameters.
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Associativity implies expanding in |x − y|  |y| that
Fx,y  x − y−4∑

n≥0
〈b,0

nc x − y
y n

Similarly, we may expand in |x − y|  |y| to obtain

Fx,y  〈b,cy−4  0  TrV̂2 b0c0y−2x − y−2 …

In this case it is necessary to assume that 2…4 are vacuum descendents in order to
determine gx,y.
Find V2 is a simple Griess algebra via the invertible trace form on V2 (T)

TrV2 b ∙ c0 
8d  1

C 〈b,c

If furthermore, 6 is a vacuum descendent then d is determined (Matsuo,T)

dC  1
2
68  7C2C − 122  5C

748 − 55C  C2

and V̂2 is an irreducible representation of AutV (if finite) (T)
Examples. Reproduce dimensions of irred reps of M with d24  196883, for B with
d23 1

2   96255 and O10
 2 with d8  155.
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Other results and goals
 If furthermore 8 (or 8 and 10) are vacuum descendents then C  24. (Matsuo,
T).
 12 cannot be a vacuum descendent. There must exist a primary AutV invariant
vector of level 12. This is related to existence of an SL2,Z modular cusp form of
weight 12. (T)
 Can also consider the Casimirs n for the primary vectors of level 3
V̂3  V3 − L−1V2 with d  dim V̂3  0. Then if 2… 10 are vacuum
descendents then V̂3 is an irreducible representation of AutV (if finite) and
d  pC/qC with (T)

pC  5C5C  223C  462C − 15C  311C  2327C  68
qC  75C6 − 9945C5  472404C4 − 9055068C3

 39649632C2  438468672C  2976768
Since C  24 we thus find d  21296876  22. 31.41.59.71 as obtains for the

Moonshine module V.
 Can considerable weaken the vacuum descendent condition on n.
 Prove M simple?.
 Prove Moonshine Module unique?-Frenkel, Lepowsky, Meurmann conjecture.
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