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1.  Singularity in quantum mechanics
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3.  N = 3 Calogero Model

N particle Calogero
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solution for the relative part

N = 3:  polar coordinates

to U = −12, but we argue that the U = σ1 case is in a sense more natural, since under this
boundary condition all eigenvalues and eigenstates are smoothly connected to those of the
standard 2-dimensional harmonic oscillator arising from Hrel (1.4)-(1.6) in the g → 0 limit.

Some further comments on our results and on open problems are given in Section 8.

2 Separation of variables

Although we will consider in detail the N = 3 case only, is worth explaining our strategy to
construct a self-adjoint operator from the formal expression Hrel (1.4) in general terms.

The first step is to choose a domain for the formal operator HΩ so that it yields a self-
adjoint operator of the Hilbert space L2(SN−2), which we denote here by ĤΩ. We assume
that L2(SN−2) can be decomposed into a direct sum of the eigensubspaces of ĤΩ,

L2(SN−2) = ⊕λVλ, (2.1)

where λ is the corresponding eigenvalue. Since L2(RN−1) = L2(R+, rN−2dr)⊗L2(SN−2), the
direct sum (2.1) induces the decomposition

L2(RN−1) = ⊕λ L2(R+, rN−2dr)⊗ Vλ. (2.2)

The next step is to construct a self-adjoint radial Hamiltonian, Ĥr,λ, of the Hilbert space
L2(R+, rN−2dr) out of the formal expression Hr,λ that appears in (1.7). Finally, we obtain a
self-adjoint version of the formal relative Hamiltonian Hrel (1.4) by the infinite direct sum

Ĥrel = ⊕λĤr,λ ⊗ idVλ
, (2.3)

in correspondence with the direct sum decomposition (2.2) of the Hilbert space of our system.

Let us now specialize to N = 3. Following closely the lines of Calogero [1] we set

! = 2m = 1, (2.4)

and introduce polar coordinates (r,φ) on the reduced configuration space R2 in such a way
that we have

x1 − x2 = r
√

2 sin φ

x2 − x3 = r
√

2 sin(φ +
2

3
π)

x3 − x1 = r
√

2 sin(φ +
4

3
π). (2.5)

The angle φ counts modulo 2π and r ≥ 0. The angular Hamiltonian acts on functions on S1

by

M := HΩ = − d2

dφ2
+

g

2

9

sin2 3φ
. (2.6)
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The radial Hamiltonian associated with an eigenvalue λ of M acts on functions on R+ by

Hr,λ = − d2

dr2
− 1

r

d

dr
+

3

8
ω2r2 +

λ

r2
. (2.7)

Because of (2.4), our assumption (1.3) on the range of g becomes

−1

2
< g <

3

2
, (2.8)

and it will be convenient to parametrize g as

g = 2ν(ν − 1) with
1

2
< ν <

3

2
, (ν "= 1). (2.9)

In the above we have assumed that the eigenvectors of ĤΩ form a complete set yielding
the decomposition (2.1). We shall see later that this assumption is satisfied for all self-adjoint
angular Hamiltonians if N = 3, since these operators all have pure discrete spectra. As for
the radial Hamiltonian Ĥr,λ, the discreteness of its spectrum follows from general theorems for
any N . This implies, by (2.2), that the eigenvectors of Ĥrel (2.3) obtained by the separation of
variables span the Hilbert space L2(RN−1) whenever ĤΩ admits a complete set of eigenvectors
in L2(SN−2). In the subsequent sections we describe the possible operators ĤΩ and Ĥr,λ that
arise for N = 3, and characterize their spectra and their eigenvectors.

3 The definition of the angular Hamiltonian MU

We now begin to study the angular Hamiltonian M given by (2.6) with (2.9). At the formal
level, the differential operator M admits D6 symmetry, i.e., the geometric symmetry of the
regular hexagon. We wish to maintain this symmetry in our quantization of the Calogero
model, and for this reason we select a self-adjoint domain for M which is left invariant
under the D6 transformations. The physical motivation for the D6 symmetry comes from
the following two assumptions. First, the 3 particles be identical. Second, the pairwise
collisions of 2 particles be equivalent for the situations when the spectator particle that does
not participate in the collision is located to the left or to right of the point of collision on the
line. Technically, the first assumption leads to the usual S3 symmetry group generated by
the exchanges of the particles, while the addition of the second assumption renders the total
symmetry group to be D6 containing the S3 as a subgroup. In other words, the symmetry
generators of D6 that are not in the ‘exchange-S3’ subgroup are required in order to ensure
the identical nature of those singular points of M at the quantum level which are not related
by the particle exchanges, like the singular points at φ = 0 and at φ = π (see Figure 1).

Referring to Figure 1, let us note that the group D6 is generated by the reflections P3 and
R3 that operate on the circle as

P3 : φ #→ −φ, R3 : φ #→ π

3
− φ (mod 2π). (3.1)

6
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for connection connectionssymmetry

together with their first derivatives are absolutely continuous on any closed interval (in φ)
contained in S1\S and for which both ψ and Mψ belong to L2(S1). It is a standard matter to
show that M+

D0
= MD1 . Therefore MD0 is a symmetric operator, and its self-adjoint extensions

are restrictions of MD1 that can be obtained by imposing suitable boundary conditions on the
wave functions at the singular points of the potential.

Note that the deficiency indices [7, 8, 15] of MD0 are (12, 12) since any eigenfunction of M
on any of the six ‘sectors’ on the circle (see Figure 1) is square integrable due to (2.9). One can
check this (well-known) result by means of the explicit description of the eigenfunctions given
in Section 4.1. The facts that MD0 has finite deficiency indices and its self-adjoint extension
constructed by Calogero possesses pure discrete spectrum permit one to conclude (see, e.g.,
Theorem 8.18 in [15]) that all self-adjoint extensions of MD0 possess pure discrete spectrum,
and thus also a complete set of eigenvectors in L2(S1).

We shall describe the self-adjoint boundary conditions in terms of certain ‘reference modes’
defined in pointed neighbourhoods of the elements of S (3.5). We first choose two reference
modes around φ = 0, which we denote as ϕ0

i for i = 1, 2. These are some real eigenfunctions
of M in some neighbourhood of φ = 0 (excluding φ = 0), normalized by the Wronskian
condition

W [ϕ0
1,ϕ

0
2] := ϕ0

1

dϕ0
2

dφ
− dϕ0

1

dφ
ϕ0

2 = 1. (3.7)

After having chosen the reference modes around 0, we introduce reference modes ϕθ
i around

any θ ∈ S by requiring that

ϕRiθ
k (φ) = (−1)kϕθ

k(Riφ) ∀k = 1, 2, i = 1, 2, 3, θ ∈ S. (3.8)

This defines the ϕθ
k uniquely. We remark that

ϕPθ
k (φ) = ϕθ

k(P−1φ). (3.9)

Moreover, if the initial reference modes are chosen to satisfy

ϕ0
k(−φ) = (−1)kϕ0

k(φ), (3.10)

then we also have

ϕPiθ
k (φ) = (−1)kϕk(Piφ) and ϕ

θ+π
3

k (φ) = ϕθ
k(φ−

π

3
). (3.11)

Using that the reference modes are square integrable due to (2.9), one can show (for
elementary arguments, see [6, 16]) that the following ‘boundary vectors’ are well-defined for
any ψ ∈ D1:

Bθ(ψ) :=

[
W [ψ, ϕθ

1]θ+
W [ψ, ϕθ

1]θ−

]
, B′

θ(ψ) :=

[
W [ψ, ϕθ

2]θ+
−W [ψ, ϕθ

2]θ−

]
for θ = 0,

2π

3
,
4π

3
, (3.12)

and

Bθ(ψ) :=

[
W [ψ, ϕθ

1]θ−
W [ψ, ϕθ

1]θ+

]
, B′

θ(ψ) :=

[
−W [ψ, ϕθ

2]θ−
W [ψ, ϕθ

2]θ+

]
for θ =

π

3
,π,

5π

3
. (3.13)
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where φ may vary as −π
6 < φ "= 0 < π

6 , Θ is the usual step function, and µ0 is an arbitrary
real number. (The value of µ0 does not affect the boundary condition; only the asymptotic
behaviour of the reference modes around 0 matters.)

From this point on we study the operator MU := MDU , where the self-adjoint domain DU

is specified by (3.14) using a matrix U from (3.18) and the above reference modes. Note that
eq. (3.10) holds, and thus MU admits the D6 symmetry.

It is clear that the eigenfunctions of MU yield smooth functions on S1 \ S. In order to
find them, we adopt the following strategy. We first write down all eigenfunctions of the
differential operator M that are smooth on S1 \ S. We then select the admissible eigenvalues
and eigenfunctions by imposing the ‘connection conditions’ (3.14).

Let us define the functions η1
±,µ on S1 \ S by

η1
+,µ(φ) =






b2(µ)v1,µ(φ)− b1(µ)v2,µ(φ) if 0 < φ ≤ π
6 mod 2π

b2(µ)v1,µ(π
3 − φ)− b1(µ)v2,µ(π

3 − φ) if π
6 ≤ φ < π

3 mod 2π
0 otherwise

(4.5)

and

η1
−,µ(φ) =






a2(µ)v1,µ(φ)− a1(µ)v2,µ(φ) if 0 < φ ≤ π
6 mod 2π

−a2(µ)v1,µ(π
3 − φ) + a1(µ)v2,µ(π

3 − φ) if π
6 ≤ φ < π

3 mod 2π
0 otherwise

(4.6)

The functions η1
±,µ are supported on ‘sector 1’ on the circle (see Figure 1) , and enjoy the

symmetry property R̂3η1
±,µ = ±η1

±,µ. In correspondence with the other five sectors on S1, we
introduce the rotated functions ηk

±,µ by

ηk
±,µ(φ) = η1

±,µ(φ− (k − 1)
π

3
), for k = 2, . . . , 6. (4.7)

All these functions belong to C∞(S1 \ S) and are eigenfunctions of M ,

Mηk
±,µ = 9µ2ηk

±,µ. (4.8)

They are square integrable for any µ. The most general smooth eigenfunction of M on S1 \S
can be written as the linear combination

ηµ(φ) =
6∑

k=1

(
Ck

+ηk
+,µ(φ) + Ck

−ηk
−,µ(φ)

)
, (4.9)

with arbitrary complex numbers Ck
±.

Our problem is to select those linear combinations (4.9) that are compatible with the
boundary condition (3.14). To do this, we need to compute the boundary vectors Bθ(ηµ) and
B′

θ(ηµ) for θ ∈ S (3.5). By using the standard formulae for the asymptotic behaviour of the
hypergeometric function, we easily find that

B0(ηµ) = (3(2ν − 1))
1
2

[
−C1

+b1(µ)− C1
−a1(µ)

−C6
+b1(µ) + C6

−a1(µ)

]
,

B′
0(ηµ) = (3(2ν − 1))

1
2

[
C1

+b2(µ) + C1
−a2(µ)

C6
+b2(µ)− C6

−a2(µ)

]
. (4.10)
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representations of

1 dim. 2 dim. 

conjugacy
class {e} {Ri} {Pi} {R±1

π/3} {R±2
π/3} {R3

π/3}

χ++ 1 1 1 1 1 1

χ−+ 1 -1 1 -1 1 -1

χ+− 1 1 -1 -1 1 -1

χ−− 1 -1 -1 1 1 1

χ(2) 2 0 0 1 -1 -2

χ̃(2) 2 0 0 -1 -1 2

Figure 6: Character table of the group D6.

C The monotonicity of the function FA

We here demonstrate that the function FA defined in (5.2) is strictly monotonically decreasing
for µ ∈ (µ∞m , µ∞m+1), with any m ≥ 0 in (5.14), as well as for µ ∈ [0, µ∞0 ).

Consider the logarithmic derivative of FA,

2
F ′

A(µ)

FA(µ)
= ψ

(
ν + 1 + µ

2

)
− ψ

(
ν + 1− µ

2

)
− ψ

(
2− ν − µ

2

)
+ ψ

(
2− ν + µ

2

)
. (C.1)

Remember that
ψ(1− z) = ψ(z)− π cot πz, (C.2)

where ψ(z) is strictly monotonically increasing on the positive real semi-axis, cotπz is de-
creasing between two consecutive singularities. We can rewrite (C.1) as

2
F ′

A(µ)

FA(µ)
=

[
ψ

(
ν + 1 + µ

2

)
− ψ

(
2− ν + µ

2

)]

+

[
ψ

(
ν + µ

2

)
− ψ

(
1− ν + µ

2

)]

+
[
π cot

π

2
(ν + µ)− π cot

π

2
(1− ν + µ)

]
. (C.3)

The contributions of the first two lines are positive, since

(ν + 1) > (2− ν) and ν > (1− ν) (C.4)

due to ν > 1
2 .

Referring to (5.14), (5.15) for the notations, suppose now that

µ0
m < µ < µ∞m , (C.5)

where the function FA is negative. By using the periodicity of cot, we find that

cot
π

2
(ν + µ)− cot

π

2
(1− ν + µ) = cot

π

2
(ν + µ− 2m− 2)− cot

π

2
(1− ν + µ− 2m) > 0, (C.6)

42
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U(1) self-adjoint extensions

boundary condition at

which must be self-adjoint on a corresponding domain in L2(R+, dr). It is easy to check that,
for any eigenvalue, both of the two independent eigenfunctions of the differential operatorHr,λ

are locally square integrable around r = 0 if and only if λ < 1. For this reason [7, 8, 9], Hr,λ

admits inequivalent choices of self-adjoint domains if and only if λ < 1. It follows from general
theorems, collected in Appendix A from [7], that any self-adjoint version of Hr,λ possesses
pure discrete spectrum.

If λ ≥ 1, then the unique self-adjoint domain of Hr,λ consists of those complex functions
ρ on R+ for which ρ and ρ′ are absolutely continuous away from r = 0 and both ρ and
Hr,λρ belong to L2(R+, dr). It is straightforward to show that the spectrum is given by the
eigenvalues

Em,λ = 2c(2m + 1 +
√

λ), c :=

√
3

8
ω, m = 0, 1, 2, . . . , (6.3)

with the corresponding eigenfunctions

ρm,λ(r) = r
1
2+

√
λe−

1
2 cr2

L
√

λ
m (cr2), (6.4)

where L
√

λ
m is the (generalized) Laguerre polynomial [20],

√
λ ≥ 1. This result is contained,

for example, in [1, 4].

From now on we consider the case
λ < 1. (6.5)

Let ϕ1 and ϕ2 be two independent real eigenfunctions of Hr,λ associated with an arbitrary
real eigenvalue. In fact (see [8, 16]), in addition to the same properties they have for λ ≥ 1,
the functions ρ in a self-adjoint domain of Hr,λ must now also satisfy a boundary condition of
the following form:

W [ρ,ϕ1]0+

W [ρ,ϕ2]0+
= κ(λ), (6.6)

where κ(λ) is a real number or is infinity. Here κ(λ) = 0 means that W [ρ,ϕ1]0+ = 0, and
similarly W [ρ,ϕ2]0+ = 0 is required if κ(λ) is infinite. Our notation emphasizes that one
can in principle choose different constants on the right hand side of (6.6) for different λ. We
remark that the condition (6.6) can be regarded as a special case of the boundary conditions
of the form in (3.14), where one restricts to the positive side of the singular point r = 0 of
Hr,λ considered on R (accordingly U reduces to a phase), prohibiting the particle from going
into r < 0 from r > 0. With the ‘reference modes’ ϕk fixed subsequently, the self-adjoint
radial Hamiltonian specified by condition (6.6) is denoted as Hr,λ,κ(λ). (In the notation used

in (2.3), one may substitute Ĥr,λ,κ(λ) := 1√
r ◦Hr,λ,κ(λ) ◦

√
r for Ĥr,λ.)

In order to determine the spectrum of Hr,λ,κ(λ), we first write down the solutions of

Hr,λρ = Eρ (6.7)

for any real number E. To do this, it is convenient to introduce

σ := cr2, ξ :=
E

4c
−
√

λ + 1

2
(6.8)
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basic solution

confluent 
hypergeometric 

function

U(1) parameter



spectral condition

if

generalized Laguerre polynomial

Calogero’s choice



explicitly solvable cases 

1) Dirichlet case 

total eigenstates 

Calogero’s 
solution 

restriction to boson/fermion sectors

multiplicity 6 



2) free case 

1 dim. irrep. angular states 

total eigenstates 



2 dim. irrep. angular states 

total eigenstates 



harmonic oscillator limit 

reduces to the standard 2 dim. harmonic oscillator 

smooth limit (unlike other cases) 

distingiuished quantization 



total energy spectrum 
(free case)

angular spectra 

Calogero free 



angular spectra 

free 

total energy spectrum 

cf.) Mirror- and scale invariant quantizations

parameter of 
inequivalent 
quantizations



Summary

• U(2) family of different singularities (self-adjoint 
extensions) for each singularity on a line

• Resultant quantum systems exhibit distinct physical 
properties (e.g., energy spectra or pressure) 
depending on the characteristics of the singularity

• These properties may also depend on the statistics 
and the number of the particles in a particular 
manner (scaling laws in quantum well)

• Calogero model admits a variety of inequivalent 
quantizations with distinct spectra including 
Calogero’s original one as a special case


