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e AIM : to show the intimate relation between algebraic notions and quantities (namely
q—Poisson coalgebras ) and geometric ones (integrable motions on 2D manifolds with
constant and non-constant curvature)

o TOOLS: Hopf-algebra structure of Non — Standard g—deformations



PLAN OF THE LECTURE

1. Hamiltonians with co-algebra symmetry

2. Non-Standard deformations

3. Integrable Hamiltonians and non-constant curvature
4. Super-integrable Hamiltonians and constant curvature
5. More degrees of freedom. Separation of variables

6. From Classical to Quantum



I. Poisson Coalgebra (si(2,C),A)

sU(2,C) = {Js, Jo, J_)
(3, Jo} = £2J,

{Jo, J }=4J;

co-associative Poisson Homomorphism:

A (sl(2,C) — (sl(2,C) @ (sl(2,C))

AJy) =@ I +1aJ;



e One particle symplectic realization:
1 1 1
IW=g¢ JV=p+v0/¢ 1" =aqp

e Casimir function

CW =J J, +J2 =0

e From 1- to 2- (and to many-) particle symplectic realization through A

J£2) = qf + q% Jf) = pf +p§ + b1/Q% + bz/qg

9
Jg( ) = q1P1 + q2p2



e Fundamental property:

Any smooth function H? = H(J@, JJ(FQ), Jéz)) (*) defines a completely inte-
grable two-particle system, as it is equipped with the extra-integral of motion
C? reading:

c?® =A(C) =
b b

(q1p2 — qop1)* + (q_; + %)(Q% +q3)
1 5

e Hence, integrability of any Hamiltonian (*) is merely a consequence of co-
algebra symmetry



It is worth to notice that, moreover, there are exceptional hamiltonians of type (*)
which are Superintegrable (SI), namely, a further integral of motion exists:

{H? TP} =0

Example: if we consider a generic hamiltonian of the form:

1
H =] F(])

for linear F we get a super-integrable system.



II. Integrable Systems through Non-Standard
Deformations of (si(2,C), A)

e Deformed PB:
sinh zJ_

{J3, J.}y=2J,coshzd_  {J5,J_} = =2 {J_,J. } =4J;
e Casimir function .
C. — sinh z.J_ J, - J??
2z

e Deformed Coproduct
AJ)=J@1+10J. AJ)=Jc +e*®J i=+73

z: real deformation parameter



e One and two particle symplectic realization

One-particle:

sinh zq?
Jo =g Js = —5—qp
2q7
sinh z¢7
Jy = 2 1
2q7
Two-particle:
sinh z¢? > sinh 2g3 9
J_=qi+¢ Jy = —— L qip e + 2 gopye 0
2q] 245
sinh zq? zb sinh zq2 2b
2q7 sinh zq7 2q5 sinh zg3

Two-particle Casimir:

sinh z¢? sinh zg2
Cz _ qi 2@2 (lez . qu1)2 e—zq%ezq% + (ble2zq% + b26—2zq%)

2
247 245
sinh 2¢3 sinh zq} o a2
+ blSinhZ2+b RN e “fle™z,
qi sinh zg5



1

Most general integrable deformation of the free motion in E* ( H = 5(pi + p3)) :

1
H = §J+f (2J-)
Simplest choice: f(x) = 1: however, not superintegrable!
Superintegrable hamiltonian:
g 1
H, = §J+ exp(zJ_)

ie: f(z) = exp(z)
Extra-integral:
_sinh 2q;

7. = " prexp(q?) = JS) exp(zJEl))
1

H?,T.,C. : functionally independent




Natural interpretation:

Hamiltonians of the form J, f(zJ_) are deformed kinetic energies:

H. =T.(q,pi)
We will show:

1. Hg: geodesic motion in 2D Riemannian space or 141 rel. space-time, with
curvature depending both on z and on the point (q,p);

2. H?: geodesic motion . .. with curvature depending just on z

10



ITI. Integrable Deformations and Non-Constant
Curvature

Let H(gi,pi) — TX(qi,¢) (Legendre Transformation):

rpooay L (61)7 exp(—2(q2)” | (G2)° exp(2(q1)’
Faw = E T @ )

sin(zx)

s.(x) = o

yields a geodesic flow on a 2D space.

e Metric: ) )
exp(—2(q2) exp(2(q1)

s-(q7) s:(q3)
911(q)dgi + go2(q)dgs

ds’ dg; + dgs =
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e (Gaussian curvature:

1 Jd -10 1 0O _10 1
A== ’ L)+ (9" =—911)} = —zsinh[z(q] + ¢
(911922)%{8611 (9 3(11922) 8q2(g22 aq2911>} 2(q1 + ¢3)]

K negative and nonconstant!

Notice: To give a nonconstant curvature, the exponentials appearing in the de-

formed coproducts are essential

12



Geometry is better seen through a change of variables.

cosh(A1p) = exp 2(q; +q3) (p>0)
exp(2z2¢7) — 1
exp (g7 + ¢3) — 1

Sinz()\ztg) =

Remarks

e We have set 2 = A7 and we have introduced a new real parameter \o, related
with the signature of the metric.

e The new variable cosh(A1p) is a collective variable, function of A(J_); its role
will be further specified later.

e The zero-deformation limit (improperly called the “classical limit”) z — 0 is

2
in fact the flat limit K — 0. In this limit p — 2(¢? + ¢3), sin*(A\e0) — qﬁq?
1142
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Metric in the new variables:

2
dsg

1 by 1
ds® = dp® + 55 sinh®( A p)d6?) =
i cosh(p)( e A2 sl (Aup)dd) cosh(p)
ds; : so — called CK (Cayley — Klein) metric.
1 ,sinh?(Aip)
K = K(p) = —- 2222 \AP)
2 2" cosh(Aip)
zeR": K <0; z € R™ : Kperiodic
Kinetic energy and Hamiltonian:
TH(0.) = S (3 + N2 sinh () 0)2)
= —= sin
I 1 0 M 2
H.(g,p) = 5 cosh(Aip)(p), + 15 sinh " (A1p)(po)°)
2
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Moreover, as (py)? = CZ, the usual reduction to the radial coordinate can be per-
formed.

Specializations:

o \» € R: z € Rt : def. Hyperbolic — space; z € R~ : def. sphere
e s €iR: z € RT: def. DS — space; z € R~ : def. ADS — space
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IV. Super-Integrable Deformations and Constant
Curvature

e We start from the Superintegrable Hamiltonian:

1
HY = §J+ exp(zJ_)

e Legendre Transform — the two-body “free” Lagrangian (Kinetic energy):

T (0.0) = 5“2 g S
e Associated metric:
2 exp(—2(qf +2¢3)), . o exp(—2¢3),. .,
e W g @)

e (Gaussian curvature:

K(q,z) =z = const.
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e Change of variables (as before):

1 A3
ds® = dp? + Z2 sinh*(\;p)dh?) =
e LGRS RO
1
_ d 2
cosh*( A p) %0

e New radial variable:

whence:
tan(A7r) = sinh(A1p)

1

\Np) = — -
cos(r) cosh(A1p)
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Finally:

T = S0+ R ()0
= S0+ o)
Integrals of motion:
A1 cos(A20)

Co = pg; If = (sin(\0)p, +

z

A 2
A2 tan(/\lr)pe)

Comment:

The change of variable p — r through dr = dp(cosh(\; p))_% is of course admissible
even in the non-superintegrable case; however, with negligible advantage.
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e (Question : Are there other choices for the Hamiltonian yielding constant
curvature?

e Answer: Yes, there are ! However, I cannot say at the moment whether they
all yield superintegrable systems.

In fact, let:
S = ST ()
and ask for K (p, z) be costant. It turns out:
K(z,2)/z= f'coshx + (f" — f — (f')?/f)sinhz =
= flgcoshz + (¢' — 1)sinhz]; ¢g:=f"/f
K' =0=2ycoshz+¢'sinhz=0: y:=2¢ +¢°—1

A .
sinh?(z)’

yielding: y =
Solving for g, we get for F' := f%:

1 A
F// _ Zl(l +

whose general solution is (A := A(A — 1)):
F = (sinh )*[Cy sinh(z/2)"' Y + Cy cosh(z/2)' Y]

ira

sinh? z
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V. Many-Body Case; preliminary results

Co-algebra symmetry — N-body integrable version.

Example: N-body version of the simplest Hamiltonian:

Z ()07 exp(z > _sen(k — j)q7)

j=1 k#j

Again we get a “free” Lagrangian:

l\DIr—k

Z QZ eXp ZZI{:#]’ SgH(j T k)%%)

— s:(q7)

DO | —

with the obvious corresponding metric.

The following coordinates are the most suitable to understand the nature of the
problem, and to enforce separation (here I put for simplicity A\; = 1,A9 = 0):
& = cosh?(p) = II;\ | exp 2z¢?

&, = sinh?(p )Hk !sinh® 6 cosh? O = 1" exp(22¢7) (exp(22q% 40 — 1) (k=1,...
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En = SiHhQ<p>H§-\;1 sinh? 0

—

e Geodesic flow in (p, #) variables:

The Hamiltonian reads

N
1 i
H!™) = cosh(p)[p? + — > (-

P

and the Integrals of motion are:

So we are left with a one-dimensional problem.

e Main advantage (and limitation) of dynamical systems with co-algebra symme-
try: for any IV, you end up with a typical mean field dynamics: The system has
a cluster structure: each cluster, whose dynamical variables are given by the

21



partial coproducts of the (q-deformed) Lie algebra generators, moves as a sin-
gle particle in a field generated self-consistently by the individual constituents.
The coupling between the clusters and the mean field is parametrized by the
appropriate partial Casimirs.

e The models can be extended to incorporate the interaction with an external
central field, preserving integrability. It is enough modifying the Hamiltonian
by adding an arbitrary function of J_. In this way, we have constructed Hamil-
tonian describing an integrable deformation of Harmonic or Kepler motion on
a curved background, reducing to the usual one as z — 0.
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VI. Towards Quantization

The Poisson brackets relations are replaced by the following CRs:

e Deformed CRs:

inh zJ_
s T | = coshz, J)e [ J )= =20 [, ] = 4y
e Casimir operator
1 sinh zJ_
Cz:§[ 7J+]+—J??

e Realization.

As the coproduct map has no ordering ambiguities, also in the quantum case
the basic information is encoded in the one-dimensional case. We use the
coordinate x = Ap and get:

J_ = A\ 2log cosh x

-1
Jy = 5[&,;, sinh(x)].

J, = N(0,h(2)0, + ) h(x) =2coshz

e
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e Notice the additional term h(%) with respect to the classical case.

As an example we consider just the quantum analog of the geodesic motion with
nonconstant curvature, thus taking J, as the Hamiltonian operator. After a further
(trivial) gauge transformation, we arrive at the equation (u: “spectral parameter”)

1
O )., = (usecha + Z)w

1. [ is a special case of Heun differential equation with parameters:
a=-1;, pu=q: v=0;, d=1a,0==+1/2

2. Extra-dimensions result in the addition of appropriate centrifugal terms, con-
trolled by the partial Casimirs.
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e Examples

1. Ey: Geodesic motion on constant curvature surfaces
2. Ey: Deformed Harmonic motion on constant curvature surfaces.

3. F3: Geodesic motion on nonconstant curvature surfaces
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EXAMPLE I

Let:

exp(2zq* — 1)p2

H=J exp(zJ_ ) = 5

22q
Define

a; = Jgji exp(zJ_,i); bz = J—l—,i exp(zJ_,i); C; = J_ﬂ'

2z¢;) — 1
C..= exp(—QZCZ-)(CLZ2 — biexp( 22) )
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We don’t work with single particle variables, but first use:

@(ay) = AP (J51) exp(zAPJ_ ;) =
a1 + exp(2 )
AP (b)) = by + exp(2z¢1)by = Ho
)(cl) =1+ 6

Then, turn to aq, b1, ¢1
Remark: Geometric variables: cosh(\;p) = exp(2z¢)  sin*(\of) = %
According with the previous outlined strategy, we start by solving the simplest

equation, involving collecting variables, then solve for single-particle dynamics
Evolution equations for collective variables:

a =20+ 40> = E + 4a>
b=0

¢ = 4a
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There are two cases, according to the sign of z F.

1. 22E = 4% >0, v €R; then:

a = %tanh(?y(t —1p))
cosh(A1p) = exp(2z¢) = cosh(2y(t — t))

Notice: The "radius” p grows linearly in time.

2.22F = —~% <0, ~ € R. Hyperbolic functions are replaced by trigono-
metric ones. However, having to do with free motion, the energy E has to be
taken as positive. So it is z that changes sign, and consequently the variable
p, which again evolves linearly in time, has to be viewed as an angle.
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The one-body variables obey the system of nonlinear equations:

exp(2c1z) — 1
2z

a; = 2by + 4za% + 4by exp(2¢12)

by = 8zay exp(2zcy )bo

él = 4&1

which can be explicitly solved in terms of trigonometric/hyperbolic functions.
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You may proceed as follows:

e [rom the second and the third equation, you get:
E — b
by

exp(2zcy) = by : constant of the motion

e Then, you use the one-body Casimir 6V, such that:

za3 + by

escp(chl) = m

to eliminate aq in favor of by, cq, finally getting the evolution equation for
v = exp(2z¢):

A1 = 81/ zba(m — v ) (n — 1)
the parameters 7. being given in terms of the constants by, 61V, E.

e For 2 < 0,7+ € R the solution is given in terms of trigonometric functions
and reads:
+7-

i cos?(V2E(t — b)) + v sin*(V2E(t — b))

7=
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EXAMPLE II

Let
psinh(zJ-)

H =exp(zJ_)(Jyw )

It describes the motion of a particle in the field given by a ¢g—deformed harmonic
oscillator, on a surface with constant curvature.

The dynamical variables and the Casimir are defined as before. The equations for
the collective variables are easily written down in terms of variables a, b, v := exp(2z¢) = cosh(A1p).

2zc) — 1
a = 2b + 4za* + w* exp(ch)(eXp( 2) )
2
b= —4wary
v = 8zay

Thanks to the integrals of motion H,C. one finally gets a first order evolution
equation for v (— for p):

¥ =82yv/wi(y — 1) (- =)

For suitable values of H,C. the motion for ~ is periodic, expressed in terms of
trigonometric functions, just as that for the one-body variables derived in the pre-
vious example, and confined in the interval [y_, v.].
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Following again the same path, one now considers evolution equations for single-
particle variables:

1 — 2exp(2c¢12)

a1 = 2by + 4za] + 2 exp(2zc) (22by exp(—2zcy + w?)

2z
w? + by exp(—2z¢y)

2z
Cl = 4CL1 (01)

b, = 8zay exp(2z¢)

As for the geodesic case, the constants of the motion H,C., V), §?) yield finally
first order equations for the above degrees of freedom. The simplest one involves
exp(2z¢;) = yand reads:

=8V k(& — )€ —m1)

which is again solvable in terms of trigonometric/hyperbolic functions.
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EXAMPLE III

As for the geodesic motion on surfaces with noncostant curvature, just a few pre-
liminary remarks.

Recall that in polar variables p, p,, 0, pg for the so-called deformed ADS space-time
the Hamiltonian reads:

pz)

sin%(p)
The corresponding evolution equation for the collective variable cos p is obtained

H = cos p(p;, +

by inverting the integral:

cos p dy
\/y pe?J)

In suitable rescaled variables (a = cot(p3/ |E|)7 one get for cos p a periodic motion,
with the following period:

t =

NJI»—l

= (1)~

/ \/:I:x—a Nz +a™t)
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