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Charges in nature

The building blocks of particle physics
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The theoretical challenge of charges

Theoretical description

The relativistic concept of a charged particle does not
exist.

Kulish and Faddeev, 1970

Massless photon

Long range nature of force between (electric) charges
Non-trivial asymptotic dynamics

Soft infrared divergences in QED

Massless charges produce additional collinear divergences.
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The party line

e The Bloch-Nordsieck (1937) method in QED:
suitable inclusive cross-sections are finite

e Does not work for massless charges
e Unnatural time asymmetry

@ The Lee-Nauenberg ‘theorem’ (1964):
remove divergences by summing over all degenerate states

e Works fine for final state degeneracies (so for collinear
structures as in LEP)

e Does not work for initial and final state degeneracies
[M Lavelle and DM JHEP 2006]

@ Only calculate observables that are insensitive to the
infrared (infrared safe)
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The theoretical challenge of charges

Can we do better?

@ Basic Question: Should we identify particles directly with
the matter fields ¢ that enters the Lagrangian?
e Coupling does not switch off as ¢t — oo
o Matter ¢ (z) is never gauge invariant ¢(z) — U(z)y(z)
e Matter field is never a physical field.
@ Our response [M.Lavelle and DM]: Need to ‘dress’ matter
to make a charge
o Find a field dependent dressing h~!(z) that transforms as

A (z) — A (z) U ()

under a gauge transformation.
o Identify a charged particle with the gauge invariant
combination
h=H (2)y(x)
e Other conditions on the dressing are needed for a particle
description.
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The theoretical challenge of charges

A static charge

Dirac’s dressed electron

The state has the proper Coulombic field for a static
charge
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The theoretical challenge of charges

Some results

[E.Bagan, M.Lavelle, DM]

Can extend Dirac’s suggestion to moving and colour
charges

Find that the dressing has structure

-1 -13-1
h=" = h_gqh

min

Structure responsible for different infrared effects.

Structure in non-abelian theory reflects screening and
anti-screening forces between charges.

Global obstruction to construction of coloured charges.

Direct interplay between Gribov copies and confinement.
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Magnetic charges

Monopoles

Common lore: condensation of magnetic monopoles is
responsible for confinement

@ Numerous lattice investigations
e Many open questions
@ Analytic description lacking

o Want a gauge invariant description of monopole operator.
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Magnetic charges

Monopole operator

A magnetic monopole operator M(r) should:

@ Create a one monopole state
[M(r)) := M(r)|0)
@ Create a Coulombic magnetic charge

Bi(x) | M(r)) = 2

.
glz—rl3

o Gauge invariant

o Finite energy



Magnetic charges

Monopoles in electrodynamics

Dirac: the need for singular potentials




Magnetic charges

Monopoles in electrodynamics

Dirac: the need for singular potentials




Magnetic charges

Monopoles in electrodynamics

Dirac: the need for singular potentials

A candidate operator

M) =esp (£ [ oo nEw)

o Gauge invariant v/



Magnetic charges

Monopoles in electrodynamics

Dirac: the need for singular potentials

A candidate operator

M) =esp (£ [ oo nEw)

o Gauge invariant v/
@ Generates Coulombic field v



Magnetic charges

Monopoles in electrodynamics

Dirac: the need for singular potentials

A candidate operator

M) =esp (£ [ oo nEw)

o Gauge invariant v/
@ Generates Coulombic field v

o Generates Dirac string X



Magnetic charges

Monopoles in electrodynamics

Dirac: the need for singular potentials

Gauge invariant v/
Generates Coulombic field v/
Generates Dirac string X

No overall magnetic charge X
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Magnetic charges

Monopoles on R? — {0}

Removing the position of the monopole means we can introduce
multi-valued potentials

A(r) = 0()AY +6(—2)A5 + ;6<z>¢<r>z

An improved operator

e L Swhi(w — ) Ey(w
M(r) = p(g/ﬂ@_{r}d Aq( ) Ei( ))

e Gauge invariant v/

o Now generates only the Coulombic field v/
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Magnetic charges

Georgi-Glashow model

e SU(2) gauge field coupled to adjoint Higgs
L=-1F?4 (DH)* - V(H?)

@ Can define a gauge invariant field strength

H* . 11
[H| " g |HPP

Fu = e H*(D,H)"(D,H)*

@ Define magnetic current J,ﬁ” = %euy,\ga” Fhe

o Magnetic charge exists as a physical observable.

I 1 0. BP0, HE
Qu = / d*zJ)" = 879 / d*Siegpe ™ HO0;H 9. H
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Magnetic charges

Monopole creation operator

We find [A. Khvedelidze, A. Kovner, DM, JHEP 2006]

M(r) = D(r)Ma(r)

where we first create monopole and string

Ma(r) =exp (£ [ (= () B (w))




Magnetic charges

Monopole creation operator

We find [A. Khvedelidze, A. Kovner, DM, JHEP 2006]

multi-valued but now allowed by the (vanishing) Higgs.
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Magnetic charges

Perturbative tests (M(r))

o In Higgs phase monopoles are massive so expect that in a
finite but large volume L,

(M) o exp (—pL)
@ In the confining phase we expect that
(M) #0

This is a non-perturbative effect.

@ In a perturbative calculation expect a milder volume
dependence.

We find within path integral calculation

(steepest descent method, dandelion configuration)

(M) = exp (_g_g ln(AL)>
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Conclusions

Conclusions

@ Charges can be defined in gauge theories and a relativistic
description of a charged particle s possible.

@ Charges have structure which is reflected in their infrared
behaviour and forces between them.

@ A promising approach to magnetic charges has been
initiated.

@ Subtle interplay between construction of charges and
topology of Yang-Mills configuration space.
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