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LIE GROUPS IN A DUAL LANGUAGE

A Lie group B can be viewed as the commutative
Hopf algebra Fun(B) equipped with the coproduct ∆ :
Fun(B) → Fun(B) ⊗ Fun(B), the counit ε : Fun(B) → R
and the antipode S : Fun(B) → Fun(B). We have

S(x)(b) = x(b−1), x ∈ Fun(B), b ∈ B,

ε(x) = x(eB),

where eB is the unit element of B. The coproduct is
often written as

∆x =
∑
α
x′α ⊗ x′′α ≡ x′ ⊗ x′′,

where x’s are in Fun(B) and

x′(b1)x
′′(b2) = x(b1b2), b1, b2 ∈ B.

The Lie algebra Lie(B) is the space of ε-derivations of
Fun(B):

Lie(B) = {t : Fun(B) → R, t(xy) = ε(x)t(y) + t(x)ε(y)},

where x, y ∈ Fun(B). The commutator [, .] of Lie(B) is
defined as

[t1, t2](x) = t1(x
′)t2(x

′′)− t1(x
′′)t2(x

′).
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POISSON-LIE GROUPS

Let (M, {., .}M) and (N, {., .}N) be Poisson manifolds.
The direct product manifold M × N can be naturally
equipped with the so-called product Poisson bracket
{., .}M×N which is fully determined by two conditions:

1) Both Fun(M)⊗ 1 and 1⊗ Fun(N) are Lie subalgebras
of Fun(M ×N);

2)Fun(M)⊗1 commutes with 1⊗Fun(N) in Fun(M ×N).

A smooth map ϕ : M → N is called Poisson, if it pre-
serves the Poisson brackets, i.e. if

{ϕ∗f1, ϕ
∗f2}M = ϕ∗{f1, f2}N , f1, f2 ∈ Fun(N).

A Lie group B equipped with a Poisson bracket {., .}B is
called the Poisson-Lie group if the group multiplication
B×B → B is the Poisson map. Equivalently, in the dual
language, this means

∆{x, y}B = {x′, y′}B⊗x′′y′′+x′y′⊗{x′′, y′′}B, x, y ∈ Fun(B).
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THE DRINFELD DOUBLE

Let D be an even-dimensional Lie group equipped with
a maximally Lorentzian biinvariant metric. If Lie(D) =
Lie(G)

.
+ Lie(B), where G and B are null subgroups, D is

called the Drinfeld double of G or the Drinfeld double
of B.

Although the word ”Poisson” does not appear in the
definition of D, the structure of the Drinfeld double nat-
urally permits to construct many examples of Poisson-
Lie groups and of Poisson manifolds. Indeed, let ti form
a basis of Lie(B). We can choose the dual basis T i of
Lie(G) such that

(ti, T
j)D = δj

i ,

where the non-degenerate Ad-invariant inner product
(., .)D in Lie(D) is given by the metric tensor at the unit
element of D. Then the following expression defines the
Poisson-Lie bracket on D:

{f1, f2}D = 5L
T if1 5L

ti
f2 −5R

T if1 5R
ti
f2, f1, f2 ∈ Fun(D).

Note the definition of the objects 5L,5R, e.g.:

5L
T if = T i(f ′)f ′′, 5R

ti
f = ti(f

′′)f ′.

Because of the property of ε-derivation of ti, T
i, the

5L,5R are differential operators verifying the Leibniz
rule.
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POISSON-LIE SUBGROUPS

Let G, {., .}G be a Poisson-Lie group and H its subgroup.
Denote IH the ideal of Fun(G) consisting of functions
vanishing on H. If IH is the Poisson ideal, i.e. if

{IH , Fun(G)}G ⊂ IH ,

the Poisson bracket {., .}G naturally descends to a Pois-
son bracket {., }H on Fun(G)/IH ≡ Fun(H). It turns out
that {., .}H is in fact the Poisson-Lie bracket on H.

Example: Both null (or isotropic) subgroups G and
B are the Poisson-Lie subgroups of the Drinfeld dou-
ble (D, {., .}D). Actually, the Poisson-Lie groups G and
B equipped with the respective induced Poisson-Lie
brackets {., .}G and {, .}B are called mutually dual to each
other.

Note: Modulo a subtle issue of factoring by a dis-
crete subgroup, the Drinfeld double (D, {., .}D) can be
uniquely reconstructed from (G, {., .}G). Thus, given a
Poisson-Lie group (G, {., .}G), we can find its (unique)
double (D, {., .}D) and, hence, its (unique) dual Poisson-
Lie group (B, {., .}B). If H is the Poisson-Lie subgroup
of G, its dual Poisson-Lie group C is the factor group
B/N , where N is a normal subgroup of B.
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POISSON-LIE SYMMETRY

G-definition: Let (M,ωM) be a symplectic manifold and
denote {., .}M the Poisson bracket obtained by the in-
version of the symplectic form ωM . Let (G, {., .}G) be
a Poisson-Lie group acting on M . We say that M is
Poisson-Lie symmetric if the action map G×M →M is
Poisson.

B-definition: Let (M,ωM) be a symplectic manifold and
denote {., .}M the Poisson bracket obtained by the in-
version of the symplectic form ωM . Let (B, {., .}B) be a
Poisson-Lie group and µ : M → B be a smooth map.
To every function x ∈ Fun(B) we can associate a vector
field wx ∈ V ect(M) acting on functions on M as follows:

wxf = {f, µ∗x′}Mµ
∗S(x′′).

We say that µ realizes the Poisson-Lie symmetry of M
if the map w : Fun(B) → V ect(M) is homomorphism of
Lie algebras.

The B-definition (based on {., .}B) is not quite equiva-
lent to the G-definition (based on {., .}G) due to global
topological effects. For instance, starting from the B-
definition, one can show that the image of the map
w in V ect(M) is isomorphic to Lie(G), but we cannot
conclude that the Lie(G)-action on M can be lifted to
the G-action. On the other hand, starting from the G-
definition, the global topology of M may prevent the
existence of the (moment) map µ.
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SYMPLECTIC REDUCTION
GENERALITIES

The symplectic reduction is the method of construction
of a new symplectic manifold R starting from the old one
M . It works as follows: First we note that Fun(M) is
the Poisson algebra, i.e. the Lie algebra compatible with
the commutative point-wise multiplication in Fun(M).
By the compatibility is meant the Leibniz rule:

{f, gh}M = {f, g}Mh+ {f, h}Mg, f, g, h ∈ Fun(M).

Let J be a multiplicative ideal of the algebra Fun(M)
which is also the Poisson subalgebra of Fun(M), i.e.
{J, J}M ⊂ J. We can now construct a new Poisson alge-
bra Ã defined as follows

Ã = {f ∈ Fun(M); {f, J}M ∈ J}.

By construction, J is not only the multiplicative ideal of
Ã but it is also the Poisson ideal, i.e. {Ã, J}M ⊂ J. Ob-
viously, the factor algebra AR ≡ Ã/J inherits the Pois-
son bracket from Ã hence it becomes itself the Poisson
algebra. In ”good” cases, the algebra AR can be identi-
fied with a Poisson algebra Fun(R) of functions on a (so
called reduced) symplectic manifold R.
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SYMPLECTIC REDUCTION
GAUGING THE POISSON-LIE SYMMETRY

The symplectic reduction is often put in relation with
the Poisson-Lie actions of Lie groups on the symplectic
manifold M and with the corresponding moment maps
µ : M → B. In this context, the symplectic reduction is
often referred to as gauging the Poisson-Lie symmetry.

The fact that the group multiplication B × B → B is
the Poisson map implies that the kernel of the counit
Ker(ε) is the Poisson subalgebra of (Fun(B), {., .}B). Sup-
pose that the moment map µ is also Poisson, the pull-
back µ∗(Ker(ε)) is therefore the Poisson subalgebra of
(Fun(M), {., .}M). Thus the role of the ideal J from the
general definition of the symplectic reduction is played
by the ideal of Fun(M) generated by µ∗(Ker(ε)).

Let us suppose that the set P of points of M mapped by
µ to the unit element eB of B forms a smooth submani-
fold of M . It turns out that the action of the symmetry
group G (locally induced by the moment map µ) leaves
P invariant. Let us moreover suppose that the G-action
on P is free. The basis P/G of this G-fibration can be
then identified with the reduced symplectic manifold R.

If the moment map µ is not Poisson, the Poisson-Lie
symmetry cannot be gauged and it is therefore called
anomalous.

8



TWISTED HEISENBERG DOUBLE
DEFINITION

Consider a metric preserving outer automorphism κ

of the Drinfeld double D and suppose that D is κ-
decomposable, i.e. for every element K ∈ D it exists
a unique g ∈ G and a unique b ∈ B such that K = κ(b)g−1

and a unique g̃ ∈ G and a unique b̃ ∈ B such that
K = κ(g̃)b̃−1.

Denote ΛL,R : D → B, ΞL,R → G the maps defined by the
decompositions above, i.e.

ΛL(K) = b, ΛR(K) = b̃, ΞR(K) = g, ΞL(K) = g̃.

THEOREM: Let D be a decomposable Drinfeld double
and T i ∈ Lie(G) the dual basis of ti ∈ Lie(B). Then

1) The (basis independent) expression

{f1, f2}H ≡ ∇R
T if1∇R

ti
f2 −∇L

κ(ti)f1∇L
κ(T i)f2, f1, f2 ∈ Fun(D)

is Poisson bracket defining a symplectic structure on D.

2) The twisted left action of G on D: g . K = κ(g)K is
the Poisson-Lie symmetry whose moment map is ΛL.

3) The right action of G on D: g . K = Kg−1 is the
Poisson-Lie symmetry whose moment map is ΛR.

DEFINITION: The pair (D, {., .}H) is called the twisted
Heisenberg double.
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TWISTED HEISENBERG DOUBLE
VECTOR GAUGING

Let H be a Poisson-Lie subgroup of G and C = ρ(B)
its dual Poisson-Lie group. Suppose that κ(B) = B and
consider two actions H ×D → D:

(1) h . K = κ[h]KΞR(κ[hΛL(K)]), h ∈ H, K ∈ D,

(2) h . K = κ[Ξ−1
L (Λ−1

R (K)h−1)]Kh−1, h ∈ H, K ∈ D.
It is easy to verify that, in both cases, it holds:

(h1h2) . K = h1 . (h2 . K).

THEOREM: Both actions above are Poisson-Lie sym-
metries of (D, {., , }H). Their moment maps µ1,2 : D → C

are non-anomalous and they are given, respectively, by

µ1(K) = ρ
(
κ[ΛL(K)]ΛR(K)

)
, µ2(K) = ρ

(
κ−1[ΛR(K)]ΛL(K)

)
.

The theorem implies that the actions (1) and (2) can be
gauged. The corresponding reduced symplectic mani-
fold can be called the gauged (twisted) Heisenberg dou-
ble. Note also a special case when B is Abelian group.
The actions (1) and (2) then coincide and they are both
given by a much simpler formula:

h . K = κ[h]Kh−1.
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WZW MODEL

The phase space of the standard WZW model is a par-
ticular twisted Heisenberg double D. The group struc-
ture on D reads

(χ, g).(χ̃, g̃) = (χ+ Adgχ̃, gg̃),

(χ, g)−1 = (−Adg−1χ, g−1),

where g is an element of a loop group LG and χ an
element of Lie(LG).

The Lie algebra Lie(D) consists of pairs of elements of
Lie(LG) with the following commutator

[φ⊕ α, ψ ⊕ β] = ([φ, β] + [α, ψ], [α, β]).

The bi-invariant metric on D comes from Ad-invariant
bilinear form (., .)D on Lie(D)

(φ⊕ α, ψ ⊕ β)D = (φ|β) + (ψ|α),

where

(α|β) =
1

2π

∫ π

−π
dσTr(α(σ)β(σ)),

The metric preserving automorphism κ of the group D

reads
κ(χ, g) = (χ+ k∂σgg

−1, g),

where k is an (integer) parameter. The null Poisson-Lie
subgroups are

G = {(χ, g) ∈ D;χ = 0},
B = {(χ, g) ∈ D; g = e}.
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GAUGED WZW MODEL

Every subgroup LH of LG is automatically Poisson-Lie
subgroup because B is Abelian. The dual Poisson-Lie
group C to LH can be identified with Lie(LH) whose
(Abelian) group structure is given by the addition of
vectors. The actions (1) and (2) then coincide and they
are both given by a simple formula:

h . K = κ[h]Kh−1, h ∈ LH.

The moment maps µ1 and µ2 also coincide:

µ1,2(g, χ) = PH(JL(g, χ) + JR(g, χ)),

where PH is the orthogonal projector on Lie(LH) and
the standard Kac-Moody currents are given by:

JL(g, χ) = χ, JR(g, χ) = −Adg−1χ+ kg−1∂σg.

Fix two elements α, β of Lie(LH) and calculate:

{(JL|α), (JL|β)}H = (JL|[α, β]) + k(α, ∂σβ),

{(JR|α), (JR|β)}H = (JR|[α, β])− k(α, ∂σβ),

{(µ1|α), µ1|β)}H = (µ1|[α, β]).

We observe that the Poisson brackets of the moment
map µ1 are indeed non-anomalous, therefore the mo-
ment map µ1 can serve as the basis for the symplectic
reduction. The reduced symplectic structure is that of
the gauged WZW model.
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u-DEFORMED WZW MODEL

The structure of the twisted Heisenberg double D of
the u-deformed WZW model is the same as that of the
standard WZW model except for the definition of the
null subgroup B. Let T be the Cartan subalgebra of
Lie(G) and denote PT the projector from Lie(G) to T ,
orthogonal with respect to the scalar product (.|.). Let
U : T → T be a linear operator, skew-symmetric with
respect to (.|.). Define u = U ◦ PT . Then

B = {(χ, g) ∈ D; g = eu(χ)}.

The non-Abelian modification of B results in the mod-
ification of the symplectic structure. In particular, the
u-deformed symplectic form becomes

ωu =
1

2
(dJL∧|dgg−1)−1

2
(dJR∧|g−1dg)+

1

2
(u(dJL)∧|dJL)+

1

2
(u(dJR)∧|dJR).

Thus e.g. the brackets of the Kac-Moody currents
change correspondingly:

{Jα,m
L , Jβ,n

L }H = cαβJα+β,m+n
L − < α,U(Hµ) >< β,Hµ > Jα,m

L Jβ,n
L ,

where Hµ form an orthonormal basis of T , cαβ are the
structure constants in [Eα, Eβ] = cαβEα+β and

Jα,m
L = (JL|Eαeimσ).

Remind that the u-deformed WZW model is Poisson-
Lie symmetric with respect to the twisted left and or-
dinary right action of LG.
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GAUGED u-WZW MODEL

In the presence of the u-deformation, the Poisson-Lie
bracket on LG does not vanish and a subgroup LS of
LG is not necessarily Poisson-Lie subgroup. However,
define a set

N = {(χ, g) ∈ D; g = eu(χ), χ ∈ (Lie(LS))⊥}.

It turns out that if u is such that N is a normal subgroup
of B, then LS is the Poisson-Lie subgroup of LG and
B/N = C is its dual Poisson-Lie group. In what follows,
we suppose that this is the case.

The actions (1) and (2) of LS on D do not coincide,
nevertheless their gaugings produce the same gauged
u-deformed WZW model. Thus, for concreteness, we
make explicit only the action (1). It reads

s . (χ, g) = (sχs−1 + k∂σss
−1, sgs−1

L ),

where
sL = e−u(sχs−1+κ∂ss−1)seu(χ), s ∈ LS.

It turns out, that (modulo the Cartan subalgebra cur-
rent modes) the phase of the gauged u-WZW model can
be obtained by imposing the constraints PSJL = PSJR = 0
on the non-gauged phase space. The reduced symplec-
tic form is simply the pull-back of the non-reduced one
to the submanifold determined by the constraints.
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