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LIE GROUPS IN A DUAL LANGUAGE

A Lie group B can be viewed as the commutative
Hopf algebra Fun(B) equipped with the coproduct A :
Fun(B) — Fun(B) ® Fun(B), the counit ¢ : Fun(B) — R
and the antipode S : Fun(B) — Fun(B). We have

S)(b) =z(b"), z€ Fun(B),bc B,

e(x) = z(ep),
where ep is the unit element of B. The coproduct is
often written as

Ar =Y 12 @2l =2 ®1",
where 2’s are in Fun(B) and
l’,(bl)x”(bz) = x(blbg), bl, by € B.

The Lie algebra Lie(B) is the space of e-derivations of
Fun(B):

Lie(B) = {t : Fun(B) — R, t(xy) = e(x)t(y) + t(z)e(y)},

where z,y € Fun(B). The commutator [,.] of Lie(B) is
defined as

(1, ta] () = ta(2')ta(2”) — ta(2")ta(2").



POISSON-LIE GROUPS

Let (M,{.,.}»s) and (N,{.,.}n) be Poisson manifolds.
The direct product manifold M x N can be naturally
equipped with the so-called product Poisson bracket
{., . }mxn which is fully determined by two conditions:

1) Both Fun(M)®1 and 1® Fun(N) are Lie subalgebras
of Fun(M x N);

2)Fun(M)®1 commutes with 1® Fun(N) in Fun(M x N).

A smooth map ¢ : M — N is called Poisson, if it pre-
serves the Poisson brackets, i.e. if

o fuo fotu = o {f1, fain,  f1, fo € Fun(N).

A Lie group B equipped with a Poisson bracket {.,.}5 is
called the Poisson-Lie group if the group multiplication
B x B — B is the Poisson map. Equivalently, in the dual
language, this means

A{x7y}B — {ZL’/,y/}B®x//y”+x/y/®{x//,y//}B, x,y c FUH(B)



THE DRINFELD DOUBLE

Let D be an even-dimensional Lie group equipped with
a maximally Lorentzian biinvariant metric. If Lie(D) =
Lie(G) + Lie(B), where G and B are null subgroups, D is
called the Drinfeld double of G or the Drinfeld double
of B.

Although the word ”Poisson” does not appear in the
definition of D, the structure of the Drinfeld double nat-
urally permits to construct many examples of Poisson-
Lie groups and of Poisson manifolds. Indeed, let ¢; form
a basis of Lie(B). We can choose the dual basis T' of
Lie(G) such that

(t:,T9)p = &,

where the non-degenerate Ad-invariant inner product
(.,.)p in Lie(D) is given by the metric tensor at the unit
element of D. Then the following expression defines the
Poisson-Lie bracket on D:

{f17f2}D:V:%ifl VtLZf2_V¥Zf1 Vﬁf% fthGFU,TL(D)
Note the definition of the objects %, V%, e.g.:
vif =T(f) ", vif=t(f")f"

Because of the property of e-derivation of t;, 7%, the
v, v® are differential operators verifying the Leibniz
rule.



POISSON-LIE SUBGROUPS

Let G,{.,.}¢ be a Poisson-Lie group and H its subgroup.
Denote Iy the ideal of Fun(G) consisting of functions
vanishing on H. If [y is the Poisson ideal, i.e. if

{[H, Fun(G)}G C Iy,

the Poisson bracket {.,.}; naturally descends to a Pois-
son bracket {.,}y on Fun(G)/Iy = Fun(H). It turns out
that {.,.}y is in fact the Poisson-Lie bracket on H.

Example: Both null (or isotropic) subgroups G and
B are the Poisson-Lie subgroups of the Drinfeld dou-
ble (D,{.,.}p). Actually, the Poisson-Lie groups G and
B equipped with the respective induced Poisson-Lie
brackets {.,.}; and {, .} 5 are called mutually dual to each
other.

Note: Modulo a subtle issue of factoring by a dis-
crete subgroup, the Drinfeld double (D,{.,.}p) can be
uniquely reconstructed from (G,{.,.}¢). Thus, given a
Poisson-Lie group (G,{.,.}s), we can find its (unique)
double (D,{.,.}p) and, hence, its (unique) dual Poisson-
Lie group (B,{.,.}5). If H is the Poisson-Lie subgroup
of (G, its dual Poisson-Lie group C' is the factor group
B/N, where N is a normal subgroup of B.



POISSON-LIE SYMMETRY

G-definition: Let (M,w);) be a symplectic manifold and
denote {.,.},; the Poisson bracket obtained by the in-
version of the symplectic form wy. Let (G,{. .}s) be
a Poisson-Lie group acting on M. We say that M is
Poisson-Lie symmetric if the action map G x M — M is
Poisson.

B-definition: Let (M,w);) be a symplectic manifold and
denote {.,.},; the Poisson bracket obtained by the in-
version of the symplectic form w,;. Let (B,{.,.}5) be a
Poisson-Lie group and p : M — B be a smooth map.
To every function x € Fun(B) we can associate a vector
field w, € Vect(M) acting on functions on M as follows:

wef = {f, 12" by S(2").
We say that u realizes the Poisson-Lie symmetry of M

if the map w : Fun(B) — Vect(M) is homomorphism of
Lie algebras.

The B-definition (based on {.,.}5) is not quite equiva-
lent to the G-definition (based on {.,.};) due to global
topological effects. For instance, starting from the B-
definition, one can show that the image of the map
w in Vect(M) is isomorphic to Lie(G), but we cannot
conclude that the Lie(G)-action on M can be lifted to
the G-action. On the other hand, starting from the G-
definition, the global topology of M may prevent the
existence of the (moment) map u.
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SYMPLECTIC REDUCTION

GENERALITIES

The symplectic reduction is the method of construction
of a new symplectic manifold R starting from the old one
M. Tt works as follows: First we note that Fun(M) is
the Poisson algebra, i.e. the Lie algebra compatible with
the commutative point-wise multiplication in Fun(M).
By the compatibility is meant the Leibniz rule:

{f7gh}M:{fag}kfh+{f7h}Mga f,g,hEFUTL(M)

Let J be a multiplicative ideal of the algebra Fun(M)
which is also the Poisson subalgebra of Fun(M), i.e.

{J,J }~M C J. We can now construct a new Poisson alge-
bra A defined as follows

A={f e Fun(M); {f,J}x € J}.

By construction, J is not only the multiplicative ideal of
A but it is also the Poisson ideal, i.e. {4,J},; C J. Ob-
viously, the factor algebra Ap = fl/ J inherits the Pois-
son bracket from A hence it becomes itself the Poisson
algebra. In ”good” cases, the algebra Ai can be identi-
fied with a Poisson algebra Fun(R) of functions on a (so
called reduced) symplectic manifold R.



SYMPLECTIC REDUCTION

GAUGING THE POISSON-LIE SYMMETRY

The symplectic reduction is often put in relation with
the Poisson-Lie actions of Lie groups on the symplectic
manifold M and with the corresponding moment maps
i: M — B. In this context, the symplectic reduction is
often referred to as gauging the Poisson-Lie symmetry.

The fact that the group multiplication B x B — B is
the Poisson map implies that the kernel of the counit
Ker(e) is the Poisson subalgebra of (Fun(B),{.,.}5). Sup-
pose that the moment map p is also Poisson, the pull-
back p*(Ker(e)) is therefore the Poisson subalgebra of
(Fun(M),{.,.}»). Thus the role of the ideal J from the
general definition of the symplectic reduction is played
by the ideal of Fun(M) generated by u*(Ker(c)).

Let us suppose that the set P of points of M/ mapped by
1t to the unit element e of B forms a smooth submani-
fold of M. It turns out that the action of the symmetry
group G (locally induced by the moment map u) leaves
P invariant. Let us moreover suppose that the G-action
on P is free. The basis P/G of this G-fibration can be
then identified with the reduced symplectic manifold R.

If the moment map p is not Poisson, the Poisson-Lie
symmetry cannot be gauged and it is therefore called
anomalous.



TWISTED HEISENBERG DOUBLE

DEFINITION

Consider a metric preserving outer automorphism x
of the Drinfeld double D and suppose that D is k-
decomposable, i.e. for every element K € D it exists
a unique g € G and a unique b € B such that K = x(b)g "
and a unique § € G and a unique b € B such that
K = r(g)b 1.

Denote App: D — B, E; p — G the maps defined by the
decompositions above, i.e.

AL(K)=b, Ar(K)=b, Er(K)=g, Zi(K)=37

THEOREM: Let D be a decomposable Drinfeld double
and T' € Lie(G) the dual basis of t; € Lie(B). Then

1) The (basis independent) expression

{f1, foYu = VEAVEfo — Vﬁ(ti)flvim)f% fi, fo € Fun(D)
is Poisson bracket defining a symplectic structure on D.

2) The twisted left action of G on D: g> K = k(g)K is
the Poisson-Lie symmetry whose moment map is A;.

3) The right action of G on D: g> K = Kg ! is the
Poisson-Lie symmetry whose moment map is Ag.

DEFINITION: The pair (D,{.,.}n) is called the twisted
Heisenberg double.



TWISTED HEISENBERG DOUBLE

VECTOR GAUGING

Let H be a Poisson-Lie subgroup of G and C = p(B)
its dual Poisson-Lie group. Suppose that «(B) = B and
consider two actions H x D — D:

(1) h> K = k[h|KZg(k[RAL(K)]), he H, K€ D,
(2) ho K =x[EH AR (K)RDKR™!, heH, KecD.
It is easy to verify that, in both cases, it holds:
(hihe) > K = hy > (ho> K).

THEOREM: Both actions above are Poisson-Lie sym-
metries of (D,{.,,}y). Their moment maps p;5,: D — C
are non-anomalous and they are given, respectively, by

i(K) = p(WALK)AR(K) ), pa(K) = p(n AR(K)AL(K)).

The theorem implies that the actions (1) and (2) can be
gauged. The corresponding reduced symplectic mani-
fold can be called the gauged (twisted) Heisenberg dou-
ble. Note also a special case when B is Abelian group.
The actions (1) and (2) then coincide and they are both
given by a much simpler formula:

ho K = k[h|Kh™t,
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WZW MODEL

The phase space of the standard WZW model is a par-
ticular twisted Heisenberg double D. The group struc-
ture on D reads

(x:9)-(X, 9) = (x + AdyX, 97),

(x:9) " = (=Adg1x, 97),
where ¢ is an element of a loop group LG and x an
element of Lie(LG).

The Lie algebra Lie(D) consists of pairs of elements of
Lie(LG) with the following commutator

p@ave ] = (/0 + oyl [a b))

The bi-invariant metric on D comes from Ad-invariant
bilinear form (.,.)p on Lie(D)

(0@, ¢ @ B)p = (4]8) + (Yl|a),
where 1

(a]8) = 5 | doTr(a(0) (o).
The metric preserving automorphism « of the group D
reads

k(x,9) = (X +kDsgg~", 9),
where £ is an (integer) parameter. The null Poisson-Lie
subgroups are

G =1{(x,9) € D;x =0},
B={(x,9) € D;g=e}.
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GAUGED WZW MODEL

Every subgroup LH of LG is automatically Poisson-Lie
subgroup because B is Abelian. The dual Poisson-Lie
group C to LH can be identified with Lie(LH) whose
(Abelian) group structure is given by the addition of
vectors. The actions (1) and (2) then coincide and they
are both given by a simple formula:

ho K =k[h|Kh™t, heLH.
The moment maps ;; and o also coincide:

p12(9, x) = Pr(Je(g, x) + Jr(9, X)),
where Py is the orthogonal projector on Lie(LH) and
the standard Kac-Moody currents are given by:
J(g:x) =X, Jr(g,X) = —Adg1x + kg~ 0yg.

Fix two elements «, 3 of Lie(LH) and calculate:
{(Jele), (JelB) yu = (Jilla, B]) + k(v 055),

{(Jrla), (Jr|B)}u = (Jrlla, B]) — k(a, 0,0),
{(ale), pa|B) = (palfe, B])-

We observe that the Poisson brackets of the moment
map u; are indeed non-anomalous, therefore the mo-
ment map p; can serve as the basis for the symplectic
reduction. The reduced symplectic structure is that of
the gauged WZW model.
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u-DEFORMED WZW MODEL

The structure of the twisted Heisenberg double D of
the u-deformed WZW model is the same as that of the
standard WZW model except for the definition of the
null subgroup B. Let 7 be the Cartan subalgebra of
Lie(G) and denote Pr the projector from Lie(G) to 7,
orthogonal with respect to the scalar product (.|.). Let
U :7 — 7 be a linear operator, skew-symmetric with
respect to (.|.). Define u = U o Pr. Then

B={(x,9) € D;g = e"W}.

The non-Abelian modification of B results in the mod-
ification of the symplectic structure. In particular, the
u-deformed symplectic form becomes

1 1 1 1
Wy = §(dJL/\\dgg_1)—5(dJR/\|g_1dg)+§(U(dJL)/\‘dJL)+§(“(dJR)/\|dJR)'

Thus e.g. the brackets of the Kac-Moody currents
change correspondingly:
(T TP g = P T < o U(HY) >< 8, H > J3™ T,

where H" form an orthonormal basis of 7, ¢*’ are the
structure constants in [E®, EY] = ¢ E**# and

JOM = (Jp|E®e™).

Remind that the u-deformed WZW model is Poisson-
Lie symmetric with respect to the twisted left and or-
dinary right action of LG.
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GAUGED uv-WZW MODEL

In the presence of the u-deformation, the Poisson-Lie
bracket on LG does not vanish and a subgroup LS of
LG is not necessarily Poisson-Lie subgroup. However,
define a set

N ={(x.9) € D;g=e"™, x € (Lie(LS))"}.

It turns out that if v is such that N is a normal subgroup
of B, then LS is the Poisson-Lie subgroup of LG and
B/N = C' is its dual Poisson-Lie group. In what follows,
we suppose that this is the case.

The actions (1) and (2) of LS on D do not coincide,
nevertheless their gaugings produce the same gauged
u-deformed WZW model. Thus, for concreteness, we
make explicit only the action (1). It reads

s> (x,9) = (sxs™ ' + kOysst, sgsp ),

where
sp = e uexsTH0ss T gou(x) g LG

It turns out, that (modulo the Cartan subalgebra cur-
rent modes) the phase of the gauged u-WZW model can
be obtained by imposing the constraints PsJ;, = PgJr =0
on the non-gauged phase space. The reduced symplec-
tic form is simply the pull-back of the non-reduced one
to the submanifold determined by the constraints.
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