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Main theme:

the strength of Lagrangian methods in CFT

One of the best illustrations:

Lochlainn’s team work on Toda reductions of WZW models:

- L. Fehér, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui & A. Wipf

“On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten

theories”, Phys. Rep. 222 (1992), 1-64



A step back:

WZW models with non-simply connected targets

Problem: Wess-Zumino term with Kalb-Ramond B = d
−1
H

field in a topologically not-trivial target

Needs proper math tools:

• for closed string amplitude: gerbes

• for open string amplitudes: gerbe modules



Crash course on line bundles
(with unitary connections):

• For an exact 2-form F = dA on space M

Z

S

F =

Z

∂S

A Stokes Theorem

• If F is closed and has periods
R

c2

F belonging to 2πZ then

Z

S

F =
1

i
ln holL(∂S) mod 2π

if L is a line bundle of curvature F where holL(ℓ) stands
for the holonomy of L along closed curve ℓ : S1 →M
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• L that are different (modulo isomorphism) are classified by

H1(M, U(1)) = π1(M)∗

• The holonomy of the closed loop ℓ : S1 :→M is defined by:

holL(ℓ) = [ℓ∗L] ∈ H1(S1, U(1)) = U(1)

• Local data (Ai, gij) on a covering (Oi) :

F = dAi on Oi

Aj − Ai = i d ln gij on Oij ≡ Oi ∩ Oj

gijgjk = gik on Oijk



• Local formula for the holonomy of the loop ℓ : S1 →M :

holL(ℓ) = exp
h

i
P

b

R

ℓ(b)

Aib

i

Q

v∈b

givib
(ℓ(v))

where {b, v} is a split of the circle S1 into intervals
b joined at vertices v s.t. ℓ(b) ⊂ Oib

and ℓ(v) ⊂ Oiv

• Feynman amplitude of a particle in electromagnetic field

F is given by

A(ℓ) = exp
h

− 1
2
‖dℓ‖2

i

holL(ℓ)



Crash course on (bundle) gerbes
(with unitary connections):

• For an exact 3-form H = dB on space M

Z

V

H =

Z

∂V

B Stokes Theorem

• If H is closed and has periods
R

c3

H belonging to 2πZ then

Z

V

H =
1

i
ln holG(∂V ) mod 2π

if G is a gerbe of curvature H where holG(φ) stands
for the holonomy of G along closed surface φ : Σ→M



φ

MΣ

• G that are different (modulo isomorphism) are classified by

H2(M, U(1))

• The holonomy of the closed surface φ : Σ→M is defined by:

holG(φ) = [φ∗G] ∈ H2(Σ, U(1)) = U(1)

• Local data (Bi, Aij , gijk) on a covering (Oi) :

H = dBi on Oi

Bj −Bi = dAij on Oij

Aij + Ajk −Aik = i d ln gijk on Oijk

gijkg−1
ijl giklg

−1
jkl = 1 on Oijkl



• Local formula for the holonomy of the surface φ : Σ→M :

holG(φ) =

exp
h

i
P

t

R

φ(t)

Bit + i
P

b⊂t

R

φ(b)

Aitib

i

Q

v∈b⊂t

gitibiv (φ(v))

where {t, b, v} is a triangulation of Σ into triangles t
with edges b and vertices v s.t. ℓ(f) ⊂ Oif

for f = t, b, v

• Feynman amplitude of a closed string in Kalb-Ramond field
H is given by

A(φ) = exp
h

− 1
2
‖dφ‖2

i

holG(φ)



Application to the WZW models

M = G is a simple, compact Lie group

Hk =
k

12π
tr (g−1dg)3 is a closed 3-form on G

• For G simply connected, the periods of Hk are in 2πZ

iff the level k is an integer

The corresponding gerbe is unique (up to isom.) and has been

constructed:

- for SU(2) by K.G. (1986)

- for SU(N) by Chatterjee-Hitchin (1998)

- for G general by Meinrenken (2002)



• For G = G̃/Z non-simply connected (for Z a subgroup

of the center of the covering group G̃), the periods of Hk are

in 2πZ iff the level k is an integer and satisfying

selection rules found by Felder-K.G.-Kupiainen (1987)

The corresponding gerbe Gk on G was constructed by

K.G.-Reis (2003)

It is unique but for G = Spin(4n)/(Z2 ×Z2) where there are

2 non-isomorphic gerbes Gk
± since H2(G, U(1)) = Z2

In the latter case, Witten’s definition

holG(φ) = exp
h

i
R

Φ(B)

Hk

i

for Φ extending φ to B with ∂B = Σ does not always work



Quantization of the bulk WZW models

• By transgression (roughly integration along loops)

gerbe G line bundle L
G−−−−>

on M on loop space LM

• Space of quantum states of the WZW model:

H = Γ(LGk) ← space
of sections

with a geometric action of the current algebra ĝ × ĝ

• Decomposition into the highest weight (H.W.) level k irreps

H ∼= ⊕
λ,λ′

Mλ,λ′ ⊗ V̂λ ⊗ V̂λ′

obtained by finding the H.W. subspaces Mλ,λ′ ⊂ Γ(LGk) −−>

spectrum + partition fcts (Felder-K.G.-Kupiainen 1987)



Gerbe modules (Kapustin 1999)

• Let G be a gerbe with loc. data (Bi, Aij , gijk)

A G-module E (with unitary connection) is determined

by local data (Ai,Gij) with values in N ×N matrices s.t.

Aj = G−1
ij AiGij − iG−1

ij dGij + Aij1 = 0 on Oij

Gij Gjk = gijk Gik on Oijk

≡ “twisted gauge field”

• For ℓ : S1 →M , the Wilson loop

holE (ℓ) = tr
→
Q

v∈b

P exp
h

i
P

b

R

ℓ(b)

Aib

i

Givib
(ℓ(v))

is not unambiguously defined but



• If φ : Σ→M for ∂Σ = ⊔Sα

MΣ

φ

1

3

S
S2

S

and Eα are G-modules then for ℓα = φ|Sα the combination

holG(φ)
Q

α

WEα(ℓα)

is unambiguously defined !!!

• Problem ! G-modules exist only for G with exact H



• Solution: One defines a G-brane as a pair (D, E) ≡ D

where D ⊂M and E is a G|
D

-module

• If φ : Σ→M for ∂Σ = ⊔Sα

D2

D3

1D

MΣ

3 φ

S1

S

S2

and Dα = (Dα, Eα) are G-branes s.t. φ(Sα) ⊂ Dα then

holG(φ)
Q

α

WEα(ℓα)

for ℓα = φ|Sα is still unambiguously defined



Example: symmetric branes in the WZW model

• These are Gk-branes D = (D, E) s.t.

D = {h e2πiλ/kh−1 | h ∈ G } ≡ Cλ

for λ a weight and the curvature of the Gk
D

-module E is

F = k
4π

tr (h−1dh) e2πiλ/k(h−1dh) e−2πiλ/k

• If φ : Σ→ G , φ(Sα) ⊂ Dα and Dα = (Dα, Eα)

are symmetric Gk-branes then

A(φ) = exp
h

− k
4π
‖dφ‖2

i

holG(φ)
Q

α

WEα(ℓα)

defines the Feynman amplitudes of the boundary WZW

model preserving the diagonal current algebra symmetry



Classification of symmetric branes
(K.G.-Reis 2002, K.G. 2004)

• For simply connected G the symmetric Gk-branes are

of the form D = (Cλ, E) with

E = C
N ⊗ E1

λ

for the unique rank 1 Gk|
Cλ

-module E1
λ

• For non-simply connected G = G̃/Z the symmetric Gk-branes

supported by Cλ
∼= C̃λ/Zλ are D = (Cλ, E) with

E = C
n1 ⊗ E1

λ(i1)⊕ · · · ⊕C
nI ⊗ E1

λ(iI)

for I = |Zλ| = |π1(Cλ)| different rank 1 Gk|
Cλ

-modules E1
λ(i)



Examples:

• For G = SU(2) ∼= S3 the conjugacy classes Cj are spheres

S2 ⊂ S3 viewed under angles 2πj
k

for j = 0, 1
2
, . . . , k

2

.

.

.

.
.

2πj
k

1

−1

SU(2)
k=4

Each carries a single Gk-brane

• For G = SO(3) ∼= RP 3 the level k must be even

Cj
∼= C̃j for j = 0, 1

2
, . . . , k−2

4
carry one rank 1 sym. Gk-brane

C k
4

∼= C̃ k
4

/Z2
∼= RP 2 carries two rank 1 symmetric Gk-branes



Exceptional case:

• For G = Spin(4n)/(Z2 ×Z2) and Cλ
∼= C̃λ/(Z2 × Z2)

all symmetric Gk
−

-branes of the form D = (Cλ, E) have

E = C
N ⊗ E2

λ

where E2
λ is the unique rank 2 Gk

−
|
Cλ

-module

(there is an obstruction in H2(Zλ, U(1)) = Z2

to the existence of rank 1 branes)

−−> geometric generation of non-abelian gauge

symmetry



Quantization of the boundary WZW models

• By transgression

gerbe G on M vector bundle E
D1

D0

a pair (D0,D1) −−−−> on the space
of G−branes of curves I

D1

D0

where I
D1

D0

= { ℓ : [0, π]→M | ℓ(0) ∈ D0 , ℓ(π) ∈ D1 }

• Space of the quantum states of the boundary WZW model
with a geometric action of the current algebra ĝ :

H
D1

D0

= Γ(E
D1

D0

) ← space
of sections

• By identifying the H.W. subspaces Mλ of sections, one gets

H
D1

D0

∼= ⊕
λ

Mλ ⊗ V̂λ

−−> spectrum + partition fcts + bdary OPE (K.G. 2004)



Orientifolds

• In order to define Feynman amplitudes on non-orientable

surfaces in the topologically non-trivial Kalb-Ramond field

H one needs additionally a Jandl structure (JS) on a gerbe

G of curvature H (Schreiber-Schweigert-Waldorf 2005)

• JS is a triple (κ, ι, η) where

- κ is an involution of M s.t. κ∗H = −H

- ι is an isomorphism κ∗G
ι
∼= G∗

- η is an equivalence of gerbe isomorphisms ι2
η
∼= Id

• On Lie groups G one takes κ(g) = zg−1 for z in the center



• Given κ for simply connected G there are two different

JS’s on Gk giving amplitudes that differ by (−1)# crosscaps

• For non-simply connected G = G̃/Z there may be obstructions

to the existence of a JS with given κ

If Z = Zn and the obstruction vanishes then there are two

JS’s on Gk for n odd and four for n even

(K.G.-Suszek-Schweigert-Waldorf, work in progress)



Conclusions

• Gerbes (with JS) and gerbe modules encode the structure

needed to define the Feynman amplitudes in the presence

of topologically non-trivial Kalb-Ramond field H

• In the case of compact Lie groups, such structures may be

completely classified

• In WZW models, due to the current algebra symmetry,

the geometric analysis permits to extract directly information

about the quantum theory

• Open problems include extension of the analysis to SUSY

and coset models and, more importantly, the problem

of dynamics of gerbes and gerbe modules and of its relation to

RG flows, brane condensation and twisted K-theory


