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@ Vortices/Strings — line defects — basic objects in various
domains of Physics: from condensed matter to cosmology

@ high energy physics paradigm: the Nielsen-Olesen vortex
Abelian Higgs model ( in superconductivity: Abrikosov vortex
in the Landau-Ginzburg theory)

e Extended Abelian Higgs model: introducing several (complex)
scalars with a global symmetry acting on the scalars —
semilocal models

@ The case of 2 complex scalars with an SU(2) symmetry:
— sin%#,, — 1 limit of the bosonic sector of the standard
electroweak model (decoupling of the SU(2) gauge fields).
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Semilocal vortices

The SU(2) Semilocal model.

o Abelian Higgs model with an extended scalar sector

1
g2

p

S /d4x {—i Fu F" + (D, ®) Dt — 5 (dTd — 1)2} ,

where
& = (¢1,¢2), D,=0,—iA., Fu =0,A —0,AL,

@ global SU(2) symmetry acting on the scalars (¢1, ¢2) and
local U(1) gauge symmetry.

@ mass spectrum: a massive vector particle of mass my, = gn,
(1 is the vev of the scalar field)

one scalar particle of mass mgy = /3, (i.e. /B = mg/m,)
and two Nambu-Goldstone bosons.
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Semilocal vortices.

o 7 finite energy static solutions in the 3+ 1 dim. Abelian Higgs
theory

e Jinfinitely long stringlike solutions with finite energy per unit
length. = the planar section of a straight
Abrikosov-Nielsen-Olesen (ANO) string is the vortex.

@ Topological stability of the ANO vortex in the Abelian Higgs
model with a single component complex Higgs field:

Vi ={¢lp =1} =St and m;(V1) = Z

@ In the case of two complex scalars the vacuum manifold
V={old=1}=5% = n(V)=0

— 7 topological vortex solutions in the plane
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The ANO vortex can be trivially embedded in a semilocal
model with several scalar fields:

Ai(X) = AANO(X) , ®= ¢ANO(X)¢O

Surprisingly the embedded ANO vortices in the SU(2)
semilocal model are stable for 5 < 1 (type | superconductors)
(Hindmarsh, Vachaspati, Preskill, Kibble,...)

For 3 > 1 the embedded ANO vortex becomes unstable, with
respect to the delocalization of the magnetic flux in the whole
plane (“spreading instability”)

for 3 =1 the SU(2) semilocal model admits a new family of
vortices (“skyrmions”) (Hindmarsh). These vortices are
energetically degenerate with the corresponding ANO
solutions.

Their magnetic field, B, does not decrease exponentially as for
the ANO vortices: B ~ |w|?/r*.
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Twisted semilocal vortices.

@ Main point: In the case for 5 > 1 new vortices/strings exist
when one allows for a z-dependent relative phase (twist)
between the two complex scalar field; = a current is induced
flowing along the z-direction.

@ The relative phase can also depend on time:
=> stationary, “internally” rotating strings with a nonzero
momentum, angular momentum and a (shielded) electric field.

@ An important parameter of these new solutions is the value of
the twist (0 < w < wmax(3, n, m)) (or the corresponding
current), 0 < |Z3| < co. The fields of the twisted strings
exhibit exponential localization!

@ For 73 — 0 (w — wpit(3, n, m)) the twisted vortices bifurcate
with the embedded ANO vortex.

@ Their energy per unit length is smaller than that of the
embedded ANO vortices!
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The stationary Ansatz

The general stationary Ansatz.

The most general z-translationally symmetric and stationary
Ansatz:
Ay, = (Aa(X17X2)7Ai(X17X2))7 (0% :073a = 1723

¢1 = fi(xi, %), @2 = h(x,xp)eCottesz)
where f1,f> are complex functions and w, € R.

@ a space-time translation moves the fields along gauge orbits

@ interpretation of the phases: relative rotation, wyg, resp. twist
along the z-axis, w3, between (1, $2).

@ the Ansatz breaks the global SU(2) symmetry to U(1).

@ The Noether current corresponding to the remaining U(1)
global symmetry:

J,u = 2’.(§Z_52D,u¢2 - CZ)ZWQ)
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The stationary Ansatz

@ 7 conserved Noether charge per unit length, Q

Qx Ty = / P x(wo — Ao)Bad.

@ the z-component of the “string worldsheet” current Z,,,

I3 = /dZX(w3 — A3)otha .

@ translational symmetry of the Ansatz — conserved
momentum, P:

P = / d’x T® = 2wyZs,

and for configurations with rotational symmetry in the plane a
conserved angular momentum, J:

J:/d2x 7%, xIo. (1)
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Lorentz symmetry.

@ Lorentz symmetry of the Ansatz : boosts in the (t, z)-plane:

t = t' coshy + 2’ sinhy z = 7/ cosh + t'sinh~y
o = Ag coshy + Az sinhy A, = Agsinhy + As coshy
w) = wp coshy + w3 sinhy wj = w3 coshy + wp sinh~y

2_ 2 2
= W3 — Wy,

@ = only the Lorentz invariant combination w
appears in the egs. of motion.

@ Therefore the space of solutions decomposes into three classes
labelled by the possible Lorentz types of the length of w?

(Carter):

=0 null or chiral case — ANO, Hindmarsh, Abraham
w ¢ < 0 time-like or electric case

> (0 space-like or magnetic case — new twisted vortices

()
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Decomposition of the phase space

superconducting
vortices/ Z < 0

ANO vortices,
skyrmions
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If w? > 0 (magnetic case) by a Lorentz boost one can always
achieve wg = 0, A9 = 0, i.e. it is sufficient to consider the static

case.
The two “Gauss-law” egs. for A, = (Ao, A3):

w3

DAy = 2A0|®[? + 2wodagr = 0 wo
5 - = Ap = —As.
AAg — 2A3’¢‘ + 2W3¢52¢2 =0

2 2
Ox{ Oxs
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@ We shall consider solutions with cylindrical symmetry: the
most general such Ansatz in polar coordinates can be written
as:
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where the integer n € Z determines the magnetic flux,
m=20,...n—1.
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@ We shall consider solutions with cylindrical symmetry: the
most general such Ansatz in polar coordinates can be written
as:

Ap = woao(P) ) Ap = 0>A<p = ”a(P) A3 = w333(0),
¢1 = fl(p)einsov ¢2 = fz(p)e/m@ei(th+W3z) )

where the integer n € Z determines the magnetic flux,
m=20,...n—1.
@ Note that the electric potential is given either by

Ao = As
chiral case (|wp| = |ws3|), or by
Ao = woAs /w3
magnetic case, i.e. in both cases one can take

ao(p) = a3(p)
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The stationary Ansatz
°

@ A Bogomoln'y-type rearrangement of the energy yields:

oo

E:27Tn+(w(2)+w§)Q+7r(/8—1)/pdp (1= 1f[})%+... (3)
0
@ where
Q=27T/pdp(1 —a3)fy = 27r/pdpaef127
0 0

determines the vortex worldsheet current,
To = wa Q.

@ the momentum and the angular momentum can be expressed
as

P = 2&)0(,03 Q s

J = —2wovQ, wherev:=n—m=1,...,n.
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Field Equations

@ the cylindrically symmetric field equations can be written as:
1 1\/ 2 2 l
;(pa3) = 2a3|f|* —2f;, where' =d/dp.
a\’ m
) =2f3(a-1)+2f(a— —
o(2) 22— 1)+ 26700 - D),
1—a)?
oy = PO w2 s 1)

(m — na)?

(oY = | e - - 1)

DI D=

@ These equations depend only on the Lorentz-invariant
combination w? = w?f — wg, — any solution determines a
whole class, i.e. its Lorentz orbit corresponding to boosts.

o Finite energy implies that w? > 0 (space-like or null classes).
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@ There is a 4-parameter family of local solutions regular at the
origin, p = 0:
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Field Equations
°

Regularity conditions

@ There is a 4-parameter family of local solutions regular at the
origin, p = 0:

a=a®p? 4+ 0(p*m+?), asz = ag ) 4 O(p*™+?),
fi=K""+0(™2), ="+ 0(p™?),
@ possible asymptotic behaviours for p — oo (w > 0):
a=1+A/pe V2 _ D2 [(1 —m/n)/(1 - 2w2)} ey

a3=Be V) 5+ D?/(1—2w2)e 2P p+ ...
=1+ Ce V2Pr) /p— D2e 2 /p 4 (A2 + BY)e V% /p+ ...
fo=De “P/\/p+...,

where {a(?), ago)’ fl("), f2(m)} and {A, B, C, D} are free
parameters.
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°

The profile of the ANO vortex for 5 =2 and n = 1.

- p
08 | B=2 E
0.6 - ]

04| B

02} i

In(t + )
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°

The profile of a typical member of the 7 =1 family
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Twisted semilocal vortex solutions forn=1, § =2
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00®0000

B = 0o — CP-modell

e For 3 =00 & |f]? + |K|?> = 1, the semilocal model reduces
to a CP1-model.

@ It is convenient to parameterize the scalars as f; = cos ¥,
f» = sinf, and the field eqs. become

1
;(rag)’ — a3 —sin4,
/
r(a—)’ = a—cos? ),
r
1 1 1-2
~(rt) = 5 |w?(1 - 225) - — 21 sin(26).

@ For 8 = oo the vortices are completely different from the
corresponding ANO ones, whose energy is divergent in this
limit.
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A superconducting vortex solution for § = co,w =1
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Phase space of the n=1 twisted vortices.
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Energy landscape of the n=1 twisted vortices.
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The current, Z3 as a function of w for § = 1.5, 2, 3.
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