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Preface

This book is the union of two books: the new edition of the former one “Non-
linear Analysis on Manifolds. Monge-Ampere Equations” (Grundlehren 252
Springer 1982) mixed with a new one where one finds, among other things,
up-to-date results on the problems studied in the earlier one, and new methods
for solving nonlinear elliptic problems. We will give below successively the
prefaces of the two books, and at the end of the volume, the two bibliographies
(the references * are new).

A very interesting area of nonlinear partial differential equations lies in the
study of special equations arising in Geometry and Physics. This book deals with
some important geometric problems that are of interest to many mathematicians
and scientists but have only recently been partially solved.

Each problem is explained, up-to-date results are given and proofs are pre-
sented. Thus the reader is given access, for each specific problem, to its present
status of solution as well as to most up-to-date methods for approaching it.

The book deals with such important subjects as variational methods, the
continuity method, parabolic equations on fiber bundles, ideas concerning points
of concentration, blowing up technique, geometric and topological methods.

My book “Nonlinear Analysis on Manifolds. Monge-Ampere Equations”
(Grundlehren 252) is self-contained, and is an introduction to research in non-
linear analysis on manifolds, a field that was almost unexplored when the book
appeared. Ever since then, the field has undergone great development. This new
book deals with concrete applications of the knowledge contained in the earlier
one.

This book is adressed to researchers and advanced graduate students special-
izing in the field of partial differential equations, nonlinear analysis, Riemannian
geometry, functional analysis and analytic geometry. Its objectives are to deal
with some basic problems in Geometry and to provide a valuable tool for the
researchers. It will allow readers to apprehend not only the latest results on most
topics, but also the related questions, the open problems and the new techniques
that have appeared recently. Some may find the pace of presentation rather fast,
but ultimately, it represents an economy of time and effort for the reader. In
the space of a few pages, for instance, the ideas and methods of proof of an
important result may be sketched out completely here, whereas the full details
are only to be found dispersed in several very long original articles.
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Some problems studied here are not treated in any other book. For instance:

- Very few people know if the remaining cases of the Yamabe problem
are really solved. The results were announced ten years ago, but parts
of the proofs appeared only recently and in different articles, some not
easily available.

~ On prescribed scalar curvature. Between the author’s first article on the
topics in 1976, and the second one in 1991 which poses the problem
again, only a few results appeared. Ever since, a lot of results have been
proved. The same thing applies to the Nirenberg problem, the Kahler
manifolds with C;(M) > 0 and the problem of Einstein metrics. The last
chapter of the book deals with a very broad topic, on which there are
many books: it is discussed here so that the reader may obtain an idea
of the subject.

—~ About the methods. There are books on the variational method or on
topological methods, but is there any book where we can find so many
methods together ? Of course it is of advantage, when we attack a prob-
lem, to have many methods at one’s disposal, and in this book there are
also new techniques.

The reader can find most of the backgroung knowledge needed in [*1]. Some
additional material is given in Chapter 1.

Chapter 2 is devoted to the Yamabe Problem. Thirty years were necessary
to solve it entirely. After a proof with all the details, we will find new proofs
which do not use the method advocated by Yamabe (minimizing his functional).
The study of the Yamabe functional is not completed. We know very little about
[L = sup g, where fig) is the inf of the Yamabe functional in the conformal
class [g]. This problem is related to Einstein metrics.

Chapter 3 is concerned with the problem of prescribing the scalar curvature
by a conformal change of metrics. When the manifolds is the sphere (Sy, go)
endowed with its canonical metric, the problem is very special: we study it in
Chapter 4.

Chapter 5 deals with Einstein~Kéhler metrics. Although there has been a
great progress when C;(M) > 0O, not everything is clear yet.

Chapter 6 deals with Ricci curvature. A problem that remains open for the
next few years is the existence (or the non-existence) of Einstein metrics on a
given manifold.

Lastly, Chapter 7 studies harmonics maps. We present the pioneer article of
Eells—Sampson on this topics, then we mention some new results. The subject
is very large and is continually developing ; several books would be necessary
to cover it!

There are many other interesting subjects, but it is not the ambition of this
book to treat all the field of research ! To explain some methods and to apply
them is our main aim.

It is my pleasure and privilege to express my deep thanks to my friends
Melvyn Berger, Dennis DeTurck, Jerry Kazdan, Albert Milani and Joel Spruck
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who agreed to read one or two chapters. They suggested some mathematical
improvements, and corrected many of my errors in English.

I am also extremely grateful, to Pascal Cherrier, Emmanuel Hebey and
Michel Vaugon, who helped me in the preparation of the book.

February 1997 Thierry Aubin



Preface to “Grundlehren 252”

This volume is intended to allow mathematicians and physicists, especially
analysts, to learn about nonlinear problems which arise in Riemannian
Geometry.

Analysis on Riemannian manifolds is a field currently undergoing great
development. More and more, analysis proves to be a very powerful means
for solving geometrical problems. Conversely, geometry may help us to solve
certain problems in analysis.

There are several reasons why the topic is difficult and interesting. It is very
large and almost unexplored. On the other hand, geometric problems often lead
to limiting cases of known problems in analysis, sometimes there is even more
than one approach, and the already existing theoretical studies are inadequate to
solve them. Each problem has its own particular difficulties.

Nevertheless there exist some standard methods which are useful and which
we must know to apply them. One should not forget that our problems are
motivated by geometry, and that a geometrical argument may simplify the
problem under investigation. Examples of this kind are still too rare.

This work is neither a systematic study of a mathematical field nor the
presentation of a lot of theoretical knowledge. On the contrary, I do my best to
limit the text to the essential knowledge. I define as few concepts as possible
and give only basic theorems which are useful for our topic. But I hope that the
reader will find this sufficient to solve other geometrical problems by analysis.

The book is intended to be used as a reference and as an introduction to
research. It can be divided into two parts, with each part containing four chap-
ters. Part I is concerned with essential background knowledge. Part II develops
methods which are applied in a concrete way to resolve specific problems.

Chapter 1 is devoted to Riemannian geometry. The specialists in analysis
who do not know differential geometry will find, in the beginning of the chapter,
the definitions and the results which are indispensable. Since it is useful to
know how to compute both globally and in local coordinate charts, the proofs
which we will present will be a good initiation. In particular, it is important to
know Theorem 1.53, estimates on the components of the metric tensor in polar
geodesic coordinates in terms of the curvature.

Chapter 2 studies Sobolev spaces on Riemannian manifolds. Successively,
we will treat density problems, the Sobolev imbedding theorem, the Kondrakov
theorem, and the study of the limiting case of the Sobolev imbedding theorem.
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These theorems will be used constantly. Considering the importance of Sobolev’s
theorem and also the interest of the proofs, three proofs of the theorem are
given, the original proof of Sobolev, that of Gagliardo and Nirenberg, and my
own proof, which enables us to know the value of the norm of the imbedding,
an introduction to the notion of best constants in Sobolev’s inequalities. This
new concept is crucial for solving limiting cases.

In Chapter 3 we will find, usually without proof, a substantial amount of
analysis. The reader is assumed to know this background material. It is stated
here as a reference and summary of the versions of results we will be using.
There are as few results as possible. I choose only the most useful and applicable
ones so that the reader does not drown in a host of results and lose the main
point. For instance, it is possible to write a whole book on the regularity of weak
solution for elliptic equations without discussing the existence of solutions. Here
there are six theorems on this topic. Of course, sometimes other will be needed;
in those cases there are precise references.

It is obvious that most of the more elementary topics in this Chapter 3
have already been needed in the earlier chapters. Although we do assume prior
knowledge of these basic topics, we have included precise statements of the most
important concepts and facts for reference. Of course, the elementary material in
this chapter could have been collected as a separate “Chapter 0” but this would
have been artificial, and probably less useful to the reader. And since we do
not assume that the reader knows the material on elliptic equations in Sobolev
spaces, the corresponding sections should follow the two first chapters.

Chapter 4 is concerned with the Green'’s function of the Laplacian on com-
pact manifolds. This will be used to obtain both some regularity results and
some inequalities that are not immediate consequences of the facts in Chapter 3.

Chapter 5 is devoted to the Yamabe problem concerning the scalar curvature.
Here the concept of best constants in Sobolev’s inequalities plays an essential
role. We close the chapter with a summary of the status of related problems
concerning scalar curvature such as Berger’s problem, for which we also use
the results from Chapter 2 concerning the limiting case of the Sobolev imbedding
theorem.

In Chapter 6 we will study a problem posed by Nirenberg.

Chapter 7 is concerned with the complex Monge-Ampere equation on com-
pact Kéhlerian manifolds. The existence of Einstein~Kdhler metrics and the
Calabi conjectﬁre are problems which are equivalent to solving such equations.

Lastly, Chapter 8 studies the real Monge-Ampére equation on a bounded
convex set of R™. There is also a short discussion of the complex Monge~
Ampéere equation on a bounded pseudoconvex set of C™.

Throughout the book I have restricted my attention to those problems whose
solution involves typical application of the methods. Of course, there are many
other very interesting problems. For example, we should at least mention that,
curiously, the Yamabe equation appears in the study of Yang-Mills fields, while
a corresponding complex version is very close to the existence of complex
Einstein—K#hler metrics discussed in Chapter 7.
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It is my pleasure and privilege to express my deep thanks to my friend Jerry
Kazdan who agreed to read the manuscript from the beginning to end. He sug-
gested many mathematical improvements, and, needless to say, corrected many
blunders of mine in this English version. I also have to state in this place my
appreciation for the efficient and friendly help of Jiirgen Moser and Melvyn
Berger for the publication of the manuscript. Pascal Cherrier and Philippe
Delanoé deserve special mention for helping in the completion of the text.

May 1982 Thierry Aubin
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Chapter 1

Riemannian Geometry

§1. Introduction to Differential Geometry

1.1 A manifold M,, of dimension n, is a Haussdorff topological space such
that each point of M, has a neighborhood homeomorphic to R". Thus a
manifold is locally compact and locally connected. Hence a connected
manifold is pathwise connected.

1.2 A local chart on M, is a pair (€, ¢), where Q is an open set of M, and ¢ a
homeomorphism of Q onto an open set of R".

A collection (Q;, ¢;);<; of local charts such that U,.e 1Q; = M,iscalled an
atlas. The coordinates of P € ), related to ¢, are the coordinates of the point
o(P) of R".

1.3 An atlas of class C* (respectively, C®, C*) on M, is an atlas for which all
changes of coordinates are C* (respectively, C*, C*). That is to say, if (Q,, @,)
and (€24, @) are two local charts with Q, N Q; # (&, then the map ¢, - ¢; !
of p4(Q, N Qp) onto @ (Q, N Qp)is a diffeomorphism of class C* (respectively,
C>, C%).

1.4 Two atlases of class C* on M,, (U;, ¢,);c; and (W,, /), a are said to be
equivalent if their union is an atlas of class C.

By definition, a differentiable manifold of class C* (respectively, C*®, C®) is a
manifold together with an equivalence class of C* atlases, (respectively,
C®,C%).

1.5 A mapping f of a differentiable manifold C*: W, into another M,, is
called differentiable C" (r < k) at PeU < W, if Y ofo @~ ! is differentiable
C" at (P), and we define the rank of f at P to be the rank of o fo ™! at
@(P). Here (U, o) is a local chart of W, and (Q. y) a local chart of M, with
f(P)eqQ.

A C’ differentiable mapping f is an immersion if the rank of fis equal to p
for every point P of W,. It is an imbedding if f is an injective immersion such
that f is a homeomorphism of W, onto f(W,) with the topology induced
from M,,.
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1.1. Tangent Space

1.6 Let (€, ¢) be a local chart and f a differentiable real-valued function
defined on a neighborhood of P € Q. We say that fis flat at P if d(fo ¢~ !') is
zero at ¢(P).

A tangent vector at Pe M, isa map X:f — X(f) € R defined on the set of
functions differentiable in a neighborhood of P, where X satisfies:

(@) IfAd, ueR X(Af + ug) = AX(f) + pX(9).
(b) X(f) = 0, if fis flat.
() X(fg) =f(P)X(g) + g(P)X(f); this follows from (a) and (b).

1.7 The tangent space Tp(M) at Pe M, is the set of tangent vectors at P.
It has a natural vector space structure. In a coordinate system {x'} at P, the
vectors (9/0x")p defined by (6/0x")p (f) = [6(f° ¢~ ')/0x'] (. form a basis.

The tangent space T(M) is | Jpc s T,(M). It has a natural vector fiber
bundle structure. If T#(M) denotes the dual space of Tp(M), the cotangent
space is T*(M) = ( Jpey TE(M). Likewise, the fiber bundle Ti(M) of the
tensor of type (r, 5) is | Jpe y @ To(M) ® TEM).

1.8 Let Pe M, and ® be a differentiable map of M, into W,. Set Q = ®(P).
The map ® induces a linear map ®,, of the tangent space Tp(M) into T (W)
defined by (®, X)(f) = X(f- @), where X € T,(M) and f'is a differentiable
function in a neighborhood of Q. We call @ the linear tangent mapping of ®.

By duality, we define the linear cotangent mapping ®* of T*(W) into
T*(M) as follows: T§W) 3w - ®*(w) € T3(M), which satisfies

(D), X> = <w, (X)), for all X € To(M).

One verifies easily that ®*(df) = d(fo ®).

1.9 A differentiable vector field is a section of T(M). A section of vector
fiber bundle (E, =, M) is a differentiable map & of M into E, such thatn > ¢ =
identity. If E = T(M), n is the mapping of E onto M: Ty(M)3 X — P.

The bracket [ X, Y] of two vector fields X and Y is the vector field defined
by

(X, YI(f) = X[Y(/)] — Y[X(S)].

A differentiable tensor field of type (r, s) is a section of T5(M).

1.10 An exterior differential p-form n is a section of APT*(M). In a local chart

= a; odxlt A dxI2 A - A dXIP,
Ji " Jp
J1<jz2<<jp
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and the exterior differentiation dn of n is

dn = Y daj,..;, A dX A - A dX.

J1<jz<<jp

Clearly ddn = 0.

Denote by I'; (M) the space of differentiable vector fields and by A?(M)
the space of exterior differential p-forms. For xe A?(M) and f € A%(M),
da A B) = da A B+ (—1)2 A dp, as it is easy to verify.

1.2. Connection

1.11 A connection is a map D (called the covariant derivative) of T(M) x
I'1(M) into T'(M) such that:

@ D(Xp,Y)=Dx,(Y)e Tp(M) when Xp € Tp(M).
(b) For any P € M, the restriction of D to Tp(M) x I';(M) is bilinear.
(c) If f is a differentiable function

Dxp(fY)=Xp(f)Y + f(P)Dx,(Y).

(d) If X and Y belong to I',(M), X of class C™ and Y of class C™!, then
DxY is of class C.

In alocal chart (Q, @), denote V; Y = D,;.. Y. Conversely, if we are given,
for all pairs (i, j),

d d
Vl—] =T ——
'(éx j> L ox*’

then a unique connection D is defined.
The functions I'¥; are called the Christoffel symbols of the connection D
with respect to the local coordinate system x', ..., x".

1.12 The torsion of the connection is the map of I'; x I, into I, defined by
T(X,Y)=DyY - DyX - [X,Y]

TX/0x', 0/0x’) = T%, — T’ are the components of a tensor.
i J p

1.3. Curvature

1.13 The curvature of the connection is the 2-form with valuesin Hom([',, T",)
defined by:

R(X, Y) = Dny - DyDX - D[x' Y]
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One verifies that R(X, Y)Z at P depends only upon the values of X, Y, and
ZatP.

In a local chart, denote by Rj;; the Ith component of R(6/x’, 3/6x7)d/dx*.
R};; are the components of a tensor, called the curvature tensor, and

(1) R:‘UZ“ = V.V)Z' - VJ'V"Z‘.
It follows that
R;u'j =9, - ajr‘ik + rﬁ,,,r';; ™ 8

1.14 The definition of covariant derivative extends to differentiable tensor
fields as follows:

(a) For functions, Dy f = X(f).

(b) Dy preserves the type of the tensor.

(c) Dy commutes with the contraction.

(d) Dy(u®v)=(Dyu) ® v + u® (Dyv), where uand v are tensor fields.

For simplicity, we set V u=V,V,,--- Va,d.

L IRRr 1]

§2. Riemannian Manifold

1.15 A C® Riemannian manifold is a pair (M,,, g), where M, is a C* differenti-
able manifold and g a C® Riemannian metric. A Riemannian metric is a
twice-covariant tensor field g (that is to say, a section of T*(M) ® T*(M)),
such that at each point Pe M, g, is a positive definite bilinear symmetric
form:

gp(X,Y)=gp(Y,X) and gp(X,X)>0 ifX #0.

Hereafter, unless otherwise stated, a Riemannian manifold M, is a connected
C* Riemannian manifold of dimension n.

1.16 Theorem. On a paracompact C® differentiable manifold, there exists a
C* Riemannian metric g.

Proof. Let (Q;, ¢.);; be an atlas and {a,} a C® partition of unity subordinate
to the covering {Q;}. Such {«;} exists since the manifold M, is paracompact.
Set & = (&) be the Euclidean metric on R" (in an orthonormal basis
&5 = 0%, Kronecker’s symbol). Then g = Yier %9f(£) is a Riemannian
metric on M,, as one can easily verify. [ |

For an alternate proof of Theorem (1.16) one can also use Whitney’s
theorem and give M, the imbedded metric. Whitney’s theorem asserts that
every differentiable manifold M, has an immersion in R?" and an imbedding
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inR2"* !, So let ® be an imbedding of M, in R?"* !. On M, define the Rieman-
nian metric g by g(X, Y) = 6(®, X, @, Y) This is the metric induced by the
imbedding.

Let {x;},(i = 1,2,...,n), bealocal coordinate system at a point P € M,, and
{y"} (@ =1,2,...,2n + 1) the coordinates of ®(P) € R*"*!. The components
of g can be expressed as follows:

2n+1

_N oy
9 = ,; ox' ox!°

By definition, g*/ are the components of the inverse matrix of the metric matrix
((gij)): gijglk = 5’;-

2.1. Metric Space

1.17 Definition. Let C be a differentiable curve in a Riemannian manifold

M,,9):R o [a,b]at— C(t) e M, with C differentiable (namely the restric-

tion of a differentiable mapping of a neighborhood of [a, b] into M,).
Define the arc length of C by:

dC dC dC'dC’
@ wo= [ Joel G 5o - [ Jakcon G

where C'(t) are the coordinates of C(t) in a local chart, and dC'/dt the com-
ponents of the tangent vector at C:dC,dt = C (¢/Cr), ¢/Ct being the unit
vector of R.

One verifies easily that the definition of L(C) makes sense; the integral
depends neither on the local chart, nor on a change of parametrization
s = s(t)withds/dt # 0. Henceforth we suppose that the manifold is connected.
This implies that it is pathwise connected. Two points P and Q of M, are the
endpoints of a differentiable curve. Indeed, a continuous curve from P to Q
is covered by a finite number of open sets Q; homeomorphic to R", and in
each Q; one replaces the continuous curve by a differentiable one.

Set d(P, Q) = inf L(C) for all differentiable curves from P to Q.

1.18 Theorem. d(P, Q) defines a distance on M, and the topology determined
by d is equivalent to the topology of M, as a manifold.

Proof. Clearly d(P, Q) = d(Q, P) and d(P, Q) < d(P, R) + d(R, Q). Since

d(P, P) = 0, the only point remaining to be proved is that d(P, Q) =

P = Q. Assume that P # Q and let (Q, ¢) be a local chart with ¢(P) =

P e Q. There exists a ball of radius r, B, = R", with center 0, such that B, <
¢(Q) and Q¢ ¢~ '(B,). At a point M define A(M) = inf; =, gu(é, & and

u(M) = supy¢ = gu(& &), where ||| is the Euclidean norm of £ € R" and
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E=¢,'¢. MM) and w(M) are strictly positive real numbers, because the
sphere S,_,(1) is compact. Clearly 4 = inf A(M) and u = sup u(M) for
Me@™'(B,), satisfy 0 < 1 < p < 0, because A(M) and u(M) are strictly
positive continuous functions on the compact set ¢~ Y(B,).

Let I” be the connected component in ¢ ~'(B,) of P on the curve C from P to
Q. T has P and R as extremities, C(a) = P, C(b) = R. We have

dC'dC’ b
e dt > A
9ij dt dt

L(C) 2 LTI) = de > Ar,

d(e - C) {
dt |

since the arc length of ¢(I') is at least r.

Therefore d(P, Q) > 0if P # Q. Setting Sp(r) = {Q € M, d(P, Q) < r}, we
have SiAr) c ¢~ *(B,), according to the above inequality. Likewise, it is
possible to prove: ¢~ (B,) = S,(ur). Hence the topology defined by the
distance d is the same as the manifold topology of M. [ ]

2.2. Riemannian Connection

1.19 Defimition. The Riemannian connection is the unique connection with
vanishing torsion tensor, for which the covariant derivative of the metric
tensor is zero.

Let us compute the expression of the Christoffel symbols in a local coordi-
nate system. The computation gives a proof of the existence and uniqueness
of the Riemannian connection.

The connection having no torsion, I';; = I'%;. Moreover.

ngu = 51:9:‘1 - r;u'gjl - r;:jgil =0,
Vigjk = aigjk - rf'kgjt - rgjgkl = 0.
Vigu = 0igu — r_likgil - r_liigkl = 0.

Taking the sum of the last two equalities minus the first one, we obtain:

3) rﬁj = i’[ai.llkj + 090 — ak.fIij].‘I“-

2.3. Sectional Curvature. Ricci Tensor. Scalar Curvature

1.20 Consider the 4-covariant tensor R(X, Y, Z, T) = g[X,R(Z, T)Y] with
components Ry;; = g,,,Ryi;. For the definition of the curvature tensor see
1.13. It has the following properties: Rija = =Ry (by definition), Ry =
Ruyj, and the Bianchi identities: R;z + Ryy; + Ry =0,

@ VuRiju + ViRijim + Vi R;jpy = 0.
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1.21 Definition. o(X, Y) = R(X, Y, X, Y) is the sectional curvature of the
2-dimensional subspace of T(M) defined by the vectors X and Y, which are
chosen orthonormal (ie., g(X, X) = 1,g(Y, Y) = 1,9(X, Y) = 0).

1.22 Definition. From the curvature tensor, only one nonzero tensor (or its
negative) is obtained by contraction. It is called the Ricci tensor. Its com-
ponents are R;; = R%;. The Ricci tensor is symmetric and its contraction
R = R;;g" is called the scalar curvature.

The Ricci curvature in the direction of the unit tangent vector X = {&'} is

R; &

1.23 Definition. An Einstein metric is a metric for which the Ricci tensor and
the metric tensor are proportional:

) Ri(P) = f(P)g;{P).

Contracting this equality, we obtain f(P) = R(P)/n, which is a constant when
n > 3. Indeed, if we multiply the second Bianchi identity (4) by g’", we
obtain:

VjRijkl + ViRy = V|Ry =0,

which multiplied by g resultsin V, R = 2V'R,,. But contracting the covariant
derivative of (5) gives V, R = nV'R;,. Hence when n # 2, the scalar curvature
R must be constant.

1.24 Definition. A normal coordinate system at Pe M, is a local coordinate
system {x'}, for which the components of the metric tensor at P satisfy:
g9i{P) = 6! and d,9,(P) = 0, for all i, j, k (according to 1.19, 8,g;(P) = 0
is equivalent to T'¥{P) = 0).

1.25 Proposition. At each point P, there exists a normal coordinate system.

Proof. Let (Q, ¢) be a local chart with ¢(P) = 0, and {x'} the corresponding
coordinate system. At first we may choose in R" an orthogonal frame, so
that g,(P) = &/. Then consider the change of coordinates defined by:

xt = Y= =3P
In the coordinate system {y*}, the components of the metric tensor are:

since 9x*/0y' = 8f — T{{(P)y’. Q is a point in the local charts corresponding
to {x'} and {y*}; {)*} is a coordinate system, according to the inverse function



8 1. Riemannian Geometry
theorem 3.10, the Jacobian matrix ((9x*/3)’)) being equal to the unit matrix

at P.
The first order in y* of g;{Q) — g:(Q) is:

- rieey + T = - () - ()

Hence (dg:;/0y*)p = 0 and all ["j(P) are zero. n

2.4. Parallel Displacement. Geodesic

1.26 Definition. Let C(t) be a differentiable curve. A vector field X is said to
be parallel along C if its covariant derivative in the direction of the tangent
vector to C is zero. Letting X(¢t) = X(C()):

dci()
Tdr

C‘(t)

D iy X(t) = —— V, X(1)

[0:X7(r) + TW(C @)X "(t)] =0

Thus X(t) is a parallel vector field along C if, in a local chart:

dx’ dc’
j Yk —
6) TS + I'LX I 0.

1.27 Definition. Let P and Q be two points of M,,, C(t) a differentiable curve
from P to Q, (C(a) = P, C(b) = Q), and X, a vector of Tp(M).

According to Cauchy’s theorem, 3.11, the initial value problem X(a) = X,,
of Equation (6), has a unique solution X(t) defined for all ¢ € [a, b] since (6)
is linear. The vector X(b) of this parallel vector field along C (with X(a) = X,)
is called the parallel translate vector of X, from P to Q along C(t).

1.28 Definition. A differentiable curve C(t) of class C? is a geodesic if its field
of tangent vectors is parallel along C(t). Thus C(t) is a geodesic if and only if

d*Ci() acC '(t) dCk(t)

) =+ THCO) 5= =0,

according to (6) with X = dC/dt.

Applying Cauchy’s theorem, 3.11, to Equation (7) yields:
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1.29 Proposition. Given P ¢ M, and X € To(M), X # 0, there exists a unique
geodesic, starting at P, such that X is its tangent vector at P. This geodesic
depends differentiably on the initial conditions P and X.

§3. Exponential Mapping

1.30 Let (Q, @) be a local chart related to a normal coordinate system {x'} at
PeQ, X a tangent vector of To(M), X = (¢!, &%,...,&" # 0, and C(t) the
coordinates of the point C(t), belonging to the geodesic defined by the initial
conditions C(0) = P, (dC/dt),—-q = X. C(t) is defined for the values of ¢
satisfying 0 < ¢t < B (f given by the Cauchy theorem). Since

Ci(t) dC?
g.(c) S0 L0

is constant along C (the covariant derivative along C of each of the three
terms is zero), s, the parameter of arc length, is proportional to t: s = || X]||t.
Ci(t) are C* functions not only of 1, but also of the initial conditions. We may
consider Ci(t, x!, x2,...,x" &, &2,...,&™). According to the Cauchy theorem
3.11, B may be chosen valid for initial conditions in an entire open set, for
instance for Pe ¢~ !(B,) and || X|| < 2, (B, < ¢(Q) being a ball of radius
r>0,and o > 0).

It is easy to verify that C(t, AX) = C(At, X) for all 4, when one of the two
numbers exists. Thus in all cases, if a is small enough, we may assume § > 1,
without loss of generality. By Taylor’s formula:

Cie, &4, 8%, ..., 8 = x' + 18 + 12, EL, E2,..., &M,

1.31 Theorem. The exponential mapping: expp(X), definedby: R" > ©3 X —
C(1, P, X)e M, is a diffeomorphism of © (a neighborhood of zero, where the
mapping is defined) onto a neighborhood of P. By definition expp(0) = P, and
the identification of R" with T(M) is made by means of ¢,: X = (¢;")p X,
(¢ is introduced in 1.30).

Proof. expp(X) is a C* map of a neighborhood of 0 € R" into M,,. This follows
from 1.30 (8 may be chosen greater than 1). At P the Jacobian matrix of this
map is the unit matrix; then, according to the inverse function theorem 3.10,
the exponential mapping is locally a difftomorphism: &!, &2, ..., " can be
expressed as functions of C!, C?,..., C™. n

1.32 Corollary. There exists a neighborhood Q of P, such that every point
Q €Qcan be joined to P by a unique geodesic entirely included in Q. (Q, exps ')
is a local chart and the corresponding coordinate system is called a normal
geodesic coordinate system.
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Proof. Let {&'} be the coordinates of a point Q€ and C(t) = {C¥(1)} the
geodesic from P to Q lying in Q. C(r) = t&, fort € [0, 1]. Since the arc length
s =Xt

®) g{Q)E'¢ = ¥ (&) = IIX|%
i=1

The length of the geodesic from Pto Q is | X|.
Since C(t) is a geodesic, by (1.28) we conclude that

Cy[C1EE = 0

Letting t — 0, we have I'(P)c/¢* = 0 for all {¢'}. Thus [y(P) = 0; all
Christoffel symbols are zero at P. [ |

1.33 Proposition. Every geodesic through P is perpendicular to ZP (r), the
subset of the points Q € Q satisfying Y-, (¢')* = r?, with r small enough (&'
are geodesic coordinates of Q).

Proof.Let Q € Y » (r) = Q. Choose an orthonormal frame of R” such that the
geodesic coordinatesof Qare &' = rand &2 =8 =--- =& = 0.
We are going to prove that g,(Q) = &, for all i; thus the desired result will
be established. because a vector in Q tangent to Y » (r) has a zero first
component; (if y(u) is a differentiable curve in Y » (r) through Q, Y 7., 7(u)
x (d7'(u)/du) = 0, and that implies d7'(u)/du = 0 at Q).

Clearly, by (8), g,,(Q) = 1. Differentiation of (8) with respect to * yields:

0 gi{Q) + 2g,(Q)¢ = 2&.
Hence, at Q, if k # 1:
70, g11(r) + 2g,(r) = 0,

where g;(r) are the components of g at the point with coordinates & =r,
& = 0for i > 1. Moreover, I'{r)¢'¢/ = 0 for all h leads to

20,9.11(r) = 3xgy1(r).

Thus g, (r) + r0,g,,(r) = 0.(¢/dr)[rg.(r)] = 0.and rg,,(r)is constant along
the geodesic from P to Q, so

g1x(Q) =0, fork # 1. n



§3. Exponential Mapping 1

1.34 Definition. C is called a minimizing curve from Pto Q if L(C) = d(P, Q).
See 1.17 for the definition of L(C) and d(P, Q).

1.35 Proposition. A minimizing differentiable curve C from P to Q is a geodesic.

Proof. Consider C parametrized by arc length s ([0, 1] 3s —» C(s) e C), and
suppose that C(s) is of class C? and lies in a chart (Q, ¢).

Let [';(s) be a C? differentiable curve from P to Q close to C, defined by
7(s) = Ci(s) + AZ'(s), with &(0) = &(z) = 0 for all i, and 4 small enough.
The first variation of arc length L(I";) at 1 = 0, (dL;(T")/d4); - , must be zero.
Now

dL (I ! dCidC g dC
( ;j_ ))A=0 j [ akgu(c(s)) T g,j(C( )) ]ds

Integration by parts of the second term, using (3), leads to Euler’s equation:

d*C' dcidc*

) d2+T(C()) I_O

Hence C is a geodesic. Moreover, let Sp(r) = {Q e M,,d(P, Q) < r}.
According to Corollary 1.32, there exists an rq such that every point of Sp(rq)
can be joined to P by a unique geodesic lying in Sp(ry). If we suppose Q €
Sp(ro), this unique geodesic is the minimizing curve C, and its length is
d(P, Q). Indeed, any other curve from P to Q does not satisfy Euler's equation
(9) if it is included in Sp(ry); if it is not its length is greater than r,. and then
it cannot be minimizing. Thus we have proved that a minimizing curve C is a
geodesic, because, if at a point P the Euler equation (9) were not satisfied,
the above result would imply C is not minimizing. Finally,a C' differentiable
minimizing curve must satisfy (9) as a distribution and will be C* (Theorem
3.54) by induction. n

1.36 Theorem. There exists 3(P), a strictly positive continuous function on M.,
such that every point Q satisfying d(P, Q) < o(P) can be joined to P by a unique
geodesic of length d(P, Q). Moreover d(P) can be chosen so that Sp(d(P)) is a
convex neighborhood: every pair (Q, T) of points of Sp((P)) can be joined by a
unique minimizing geodesic lying in Sp(d(P)).

Proof. a) According to 1.30 and Corollary 1.32, for every P € M,, there exists
o(P) > 0, such that each Q = exp, X with || X|| < 2(P) can be joined to P by
a unique geodesic C included in Q, where (©, expp ') is the chart related to the
normal geodesic coordinate system. We have to prove that the length of this
geodesic is d(P, Q).

Let {¢'} be the geodesic coordinates of Q. We suppose that ¢' = r and
& =0fori > 1. The equation of C is [0, 1]3t — Ci(t) = t&', its length is r.
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Consider ¥(t), t€[0, 1] a differentiable curve from P to Q lying in Q. Its
length is

According to Proposition 1.33, if (p, 6) are geodesic polar coordinates,
ds? = (dp)? + p*ge,, d0' d6’; therefore

dy dy'  (dp\* _ [dlvoll]?
”[Y()]dt de = ( ) —[ dt ]

Hence

d!lv(t)ﬂ dlly(t)n dt = |y =

>
0

Consequently r = d(P, Q).

Thus there exists an a such that expp X is a diffeomorphism of a ball with
center 0 and radius «: B, = R" onto Sy(a). Also, every geodesic through P
is minimizing in Sp(a).

b) By 1.31, consider the following differentiable map y defined on a
neighborhood of (P, 0) e T(M):

T(M)3(Q, X) - (Q, €expg (p*}?)eM x M.

The Jacobian matrix of 1 at (P,0) is invertible; thus, by the inverse function
Theorem 3.10. The restriction of 9 to a neighborhood 6 of (P,0) in T(M)
is a diffeomorphism onto ¥(6). This result allows us to choose 6(P) to be
continuous. Moreover, we choose 6 as Sp(3) x Bg, with B small enough (in
particular 8 < a/2).

Pick 4 small enough so that Sx(1) x Sp(1) = Y(®). Then Sp(A) is a neighbor-
hood of P such that every pair (Q, T) of points belonging to Sp(4) can be
joined by a geodesic.

Since A < f < /2, the length of this geodesic is not greater than f. Thus it
is included in Sp(x), and is minimizing and unique.

c) Let us prove that this geodesic y is included in Sp(1) for A small enough.
Denote by R, the (or a) point of y, whose distance to P is maximum. If R is not
Qor T, [x0))?* = ¥7-, [+'(t)]* has a maximum at R for t = t,. Thus its
second derivative at t, is less than or equal to zero:

Z Yl(to) (to) + Z (— (to)>
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Since y is a geodesic,

‘Izl'i(fo) d(to) dy (fo)
dr? CR) =5~ dr dr =0
Multiplying by 7¥(t,) and summing over i leads to:
l dy dy*
[zm(P)— Y. 7o) (R)] 4 < <o,
i=1

since ) Iy (dy'/dt)* = g;(dy’/dr)(dy*/dr).

But this inequality is impossible, if A is small enough, because when A — 0,
R - P, %(to) - 0, and I (R) — 0. Hence, for A small enough, R is Q or T,
and y = Sp(4). N

§4. The Hopf-Rinow Theorem

1.37. The following four propositions are equivalent:

(@) The Riemannian manifold M is complete as a metric space.

(b) For some point P € M, all geodesics from P are infinitely extendable.
(c) All geodesics are infinitely extendable.

(d) All bounded closed subsets of M are compact.

Moreover, we also have the following:

1.38 Theorem. If M is connected and complete, then any pair (P, Q) of points
of M can be joined by a geodesic arc whose length is equal to d(P, Q).

Proof. a) = b) and c).

Let Pe M and a geodesic C(s) through P be defined for 0 < s < L, where s
is the canonical parameter of arc length. Consider s,, an increasing sequence
converging to L, and set x, = C(s,). We have d(x,, x,) < |s, — s,|. Hence
{x,} is a Cauchy sequence in M, and it converges to a point,say Q, which does
not depend on the sequence {s,}.

Applying Theorem 1.31 at Q, we prove that the geodesic can be extended for
all values of s such that L < s < L + ¢ for some ¢ > 0.

Proof. b) = d) and Theorem 1.38.

Denote by Ep(r) the subset of the points Q € Sp(r), such that there exists a
minimizing geodesic from P to Q. Recall Sp(r) = {Q e M, d(P, Q) < r}.

We are going to prove that E(r) = Ep(r) is compact and is the same as
S(r) = Sp(r).
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Let {Q;} be a sequence of pointsin E(r), X (with | X;|| = 1 (recall X; = ¢, X))
the corresponding tangent vectors at P to the minimizing geodesic (or one of
them) from P to Q;, and s; = d(P, Q,). Since the sphere S,_,(1) is compact
and the sequence {s;} bounded, there exists a subsequence {Q;} of {Q;} such
that {X;} converges to a unit vector X, €S,_,(1)and s; = s.

Assuming b), Q, = exp; so X, exists. It follows that Q; — Qyand d(P,Q,) =
5o < r. Hence E(r) is compact. Indeed, exp, is continuous: We have only to
consider a finite covering of the geodesic, from P to Q, by open balls, where
we can apply Proposition 1.29.

According to Theorem 1.36, E(r) = S(r) for 0 < r < 6(P). Suppose E(r) =
S(r)for0 < r < ry and let us prove first, that equality occurs for r = r,, then
forr > ry. Let Q € S(ro) and {Q;} be a sequence, which converges to Q, such
that d(P, Q;) < r,. Such a sequence exists because P and Q can be joined by
a differentiable curve whose length is as close as one wants to ry. Q; € E(ry),
which is compact; hence E(r,) = S(ro). By Theorem 1.36, 6(Q) is continuous.
It follows that there exists a §, > 0 such that 6(Q) > &, when Q € E(r,),
since E(ry) is compact.

Let us prove that E(ry + do) = S(ro + 9¢)-
Pick Q € S(ro + do), Q ¢ S(r,). For every k € N, there exists C,, a differentiable
curve from P to Q, whose length is smaller than d(P, Q) + 1/k. Denote by T,
the last point on C,, which belongs to E(r,). After possibly passing to a
subsequence, since E(r,) is compact, T, converges to a point T. Clearly,
d(P, Ty =ry,d(T, Q) < 6o < &T), and

d(P, T) + d(T, Q) = d(P, Q), sinced(P, T,) + d(T,, Q) < d(P, Q) + 1/k.

There exists a minimizing geodesic from P to T and another from T to Q.
The union of these two geodesics is a piecewise differentiable curve from P
to @, whose length is d(P, Q). Hence it is a minimizing geodesic from P to Q.
This proves d) and Theorem 1.38, any bounded subset of M being in-
cluded in S(r) for r large enough, and S(r) = E(r) being compact.
Finally, d) = a), obviously. |

1.39 Definition. Cut-locus of a point P on a complete Riemannian manifold.
According to Theorem 1.37, expp(rX) with | X| = 1 is defined for all re R
and X € S,_ ,(1). Moreover the exponential mapping is differentiable.

Consider the following map S, ,(1)3 X — w(X) € ]0, + «], u(X) being
the upper bound of the set of the r, such that the geodesic [0,r]3s — C(s) =
expp sX is minimizing. It is obvious that, for 0 < r < u(X), the geodesic
C(s) is minimizing,

The set of the points expp[(X) X], when X varies over S, _ (1), is called
the cut-locus of P.

It is possible to show that u(X) is a continuous function on S, _ (1) with
value in JO, co] (Bishop and Crittenden [53]). Thus the cut-locus is a closed
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subset of M. So when M is complete, expp, which is defined and differentiable
on the whole R", is a difffomorphism of

© ={rXeR"0 <r < uX)} ontoQ = exp,®.
M is the union of the two disjoint sets: Q and the cut-locus of P.

1.40 Definition. Let u(X) be as above and 6, = inf u(X), X €S,_,(1). 3, is
called the injectivity radius at P. Clearly 6, > 0. The injectivity radius é of a
manifold M is the greatest real number such that § < 6, for all Pe M.
Clearly 6 may be zero. But according to Theorem 1.36, 4 is strictly positive if
the manifold is compact.

§5. Second Variation of the Length Integral

5.1. Existence of Tubular Neighborhoods

1.41 Let C(s) be an imbedded geodesic [a, b] 35 —» C(s)e M. At P = (C(a),
fixan orthonormal frame of Tp(M), {e;},(i = 1,2,...,n)withe, = (dC;ds),=,,
s being the parameter of arc length. Consider ¢;(s), the parallel translate
vector of ¢; from P to C(s) (see Definition 1.27).
{ei(s)} forms an orthonormal frame of T, (M) with e(s) = dC(s)/ds, since
deseds), e(s)) is constant along C.
Consider the following map I' defined on an open subset of R":R x R""!3
(s, E) — €Xpcis &. To define T, associate to Ee R"! the vector ¢ € R", whose
first component ¢! is zero. According to Cauchy's theorem (see Proposition
1.29), T is differentiable. Moreover, by 1.30, the differential of I' at each point
C(s) is the identity map of R" if we identify the tangent space with R"; thus [" is
locally invertible in a neighborhood of C, by the inverse function theorem,
3.10.

For y > 0, define T, = {the set of the I'(s, £) with s & [a,b] and ||| < u}.
T, is called a tubular neighborhood of C. The restriction I', of I to [a, b] x
B, = R"is adiffeomorphism onto T, provided y is small enough. Indeed, it is
sufficient to show that for 4 small enough I', is one-to-one. Suppose the
contrary: there exists a sequence {Q;} of points belonging to Ty, such that
Qi = I'(si, X)) = (6, Y) with (s;, X)) # (0, Y) and | Xi| < [ Y]] < 1/i.
After possibly passing to a subsequence Q;, when j — x, Q; converges to a
point of C, say C(s,). Accordingly, s; = so and g — s, . This yields the desired
contradiction, since I is locally invertible at C(s,), as proved above.

5.2. Second Variation of the Length Integral

1.42 Let C be a geodesic from P to Q, [0, r] 2 s — C(s) € M being injective.
Choose y small enough so that I, is injective (for the definition of I', see 1.41).
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On T,, the tubular neighborhood of C, (s, &) forms a coordinate system
(called Fermi coordinates), which is normal at each point of C, as it is possible
to show. We are going to compute the second variation of arc length in this
chart (T,, I ). Set x' = sand x* = &, fori > 1.

Let {C,} be a family of curves close to C, defined by the C? differentiable
mappings: [0, r] x ]—¢, +&[ 3(s, 4) = x'(s, 4), the coordinates of the point
0(s, A) € C,. In addition, suppose that Q(s, 0) = C(s), x'(s, 4) = s, and that
¢ > 01is chosen small enough so that C, isincluded in T, for all Ae ] —¢, +¢[.
The first variation of the length integral

L) = f \/g.,[Q(s mi{@x

is zero at A = 0, since C, = C is a geodesic. A straightforward calculation
leads to

2 r[ a i\ 2
0 1=(Z) -1 (L) - ragconors]
Ai=0 0 Li

i=2

where yi(S) = [axi(s, }.)/62.]).=0. Indeed, by 1.13, Rll'lj = —%a;jgu on C.
Recall that on C, g'l = 5‘,1and 5,,gij = 0.

5.3. Myers’ Theorem

143 A connected complete Riemannian manifold M, with Ricci curvature
>(n — Dk? > 0 is compact and its diameter is <mn/k.

Proof. Let P and Q be two points of M, and let C be the (or a) minimizing
geodesic from P to Q, r its length.

Consider the second variation I; (j > 2) related to the family C, defined by
x¥(s, &) = A sin(rs/r) and x(s, 1) = 0 for all i > 1, i # j. According to (10):

2
Ij=f[%cos E—le(.s)51n ]ds
0

Adding these equations and using the hypothesis R,, > (n — 1)k?, it follows
that

5:11 J‘[("—l)rzcos ——Ru(s)sm ——]ds<(n—-l) (_Z-k)
j=2

If r > m/k, this expression will be negative and at least one of the I; must be
negative. It follows that C is not minimizing, since there exists a curve from
P to Q with length smaller than r. Hence d(P, Q) < n/k for all pair of points
P and Q. By Theorem 1.37, M is compact. n
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§6. Jacobi Field

1.44 Definition. A vector field Z(s), along a geodesic C, is a Jacobi field if its
components &(s) satisfy the equations:

(1n €)' (s) = —Ry;u(5)EKs)

in a Fermi coordinate system (see 1.42).

The set of the Jacobi fields along C forms a vector space of dimension 2n,
because by Cauchy’s Theorem, 3.11, there is a unique Jacobi field which
satisfies Z(so) = Z, and Z'(sq) = Yy, 5o € [0, r], when Z, and Y, belong to
Te(so)(M). The subset of the Jacobi fields which vanish at a fixed s, forms a
vector subspace of dimension n. Those, which are in addition, orthogonal to
C, form a vector subspace of dimension (n — 1). Indeed, if £!(s,) = 0 and
(&) (so) = 0, ¢'(s) = 0 for all se[0, r], since (¢')"(s) = 0, for all s (by
definition 1.44).

1.45 Definition. If there exists a non-identically-zero Jacobi field which
vanishes at P and Q, two points of C, then Q is called a conjugate point to P.

1.46 Theorem. expp X is singular at X if and only if Q = expp X, is a con-
Jjugate point to P.

Proof. expp X is singular at X, if and only if there exists a vector Y # 0
orthogonal to X, such that

0 expp( X,y + lY))
12 _ =0.
(12 (fomlerit)

Consider the family {C;} of geodesics through P, defined by [0, r]3s —
0i(s) = expp[(s/rl(X, + AY)] € C;, with r = || X,||.

In a Fermi coordinate system (see 1.41) on a tubular neighborhood of C,,
the coordinates x(s, 1) of Q,(s) satisfy:

32x(s, A) ‘ ox7 ox*
1 N T —_—
(13) ds? r]k(Q).(S)) 35 05’
for A small enough, Ae ]—¢, +¢[, by (7), since C, is a geodesic.
The first order term in 4 of (13) leads to

d*y'(s)
ds?

= —-6’,-1"'“(Q0(s))yj(s) = "Ruu(Qo(S))yj(S),

where yi(s) = (0x(s, A)/0A);-, (recall that Christoffel’s symbols are zero
on Cy).



18 I. Riemannian Geometry

Hence {y'(s)} are the components of a Jacobi field Z(s) along C,, orthogonal
to Co.

If (12) holds, the preceding Jacobi field Z(s) vanishes at P and Q, and it is
not identically zero, since Z'(0) = Y/r. Conversely, if there exists a Jacobi
field Z(s) # 0, which vanishes at P and Q, then (12) holds with Y = rZ’(0)
# 0. R" and Tp(M) are identified by (I',), (for the definition of (T',), see 1.8
and 1.41). m

1.47 Theorem. If Q belongs to the cut-locus of P, then one at least of the
following two situations occurs:

(a) Q is a conjugate point to P;

(b) There exist at least two minimizing geodesics from P to Q.

For the proof see Kobayashi and Nomizu [167].

1.48 Theorem. On a complete Riemannian manifold with nonpositive curvature,
two points are never conjugate.

Proof. Let {)(s)} be the components of Z(s) % 0, a Jacobi field which vanishes
at P, as above. Then

| [T (. 1o
E[wa]=zuwr+z@ww
i=2 i=2

i=2
= SIOYT - Ru o0V > T 1077

Now f(s) = §Z(s)§*> = Y-, [)(s)]* cannot be zero for s > 0, since f(0) =
f'(0) = 0 and f"(0) > O, with f"(s) > Oforall s > 0. [ |

§7. The Index Inequality

1.49 Proposition. Let Y and Z be two Jacobi fields along (C), as in 1.44. Then
o(Y,Z") — g(Y', Z) is constant along (C). In particular, if Y and Z vanish at P,
theng(Y,Z') = g(Y', Z).

Indeed, [} 7, (" — y'z)]) = 0.

1.50 Defimition (The Index Form). Let Z be a differentiable (or piecewise
differentiable) vector field along a geodesic (C): [0,r] 2t —» C(t)e M. For Z
orthogonal to dC/dt, the index form is

(14) I(Z) = J; {g(Z’(t), Z() + g[R(%%, Z) d?f-, Z]} de.
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1.51 Theorem (The Index Inequality). Let P and Q be two points of M,,, and
let (C) be a geodesic from P to Q: [0, r] 35 — C(s) € M such that P admits no
conjugate point along (C). Given a differentiable (or piecewise differentiable)
vector field Z along (C), orthogonal to dC/dt and vanishing at P, consider the
Jacobifield Y along (C)suchthat Y(0) = Qand Y(r) = Z(r). Then I(Y) < I(Z).
Equality occursifand only if Z = Y.

Proof. First of all, such a Jacobi field exists. Indeed, by 1.44, the Jacobi fields
V, vanishing at P and orthogonal to dC/dt, form a vector space ¥~ of di-
mension n — 1.

Since P has no conjugate point on (C), the map V'(0) — V(r) is one-to-one,
from the orthogonal complement of dC/dt in Ty(M) to that of dC/dr in
To(M). Thus this map is onto. And given Z(r), Y exists.

Let {V.} (i=2,3,..., n) be a basis of ¥". For the same reason as above,
{V(s)} (2 <i<n)and dC/ds form a basis of T (M). Hence there exist
differentiable (or piecewise differentiable) functions fi(s), such that Z(s) =
Y12 HEOVS).

Furthermore, set W(s) = ZLZ fi(s)V{(s) and e, = dC/ds. Then by (11),
glR(ey, 2)ey, Z1 = )7, fig[R(ey, Vey, Z] = Y 7., fig(Vi. Z). Thus:

1@ - | [g(w, W)+ T ahiVifiV) + L ofVif W)
L LJ
+ L gV + N aUiVis; V,-)] ds.

By virtue of Proposition 1.49, g(V;, V%) = g(V}, V)). Thus, integrating the
last term of I(Z) by parts gives

12) = f g(W, W)ds + g[Y'(r), Y()),

0

because Y(s) = )1, fi(r)Vi(s) and Y'(s) = Y1, SNV i(s).
If f; are constant for all i, we find :

15) I(Y) = g[Y'(r), Y(r)].

Hence I(Z) > 1(Y) and equality occurs if and only if W = 0, which is equiva-
lent to f; = O for all i, that is to say, if Y = Z. ||

1.52 Proposition. Let b? be an upper bound for the sectional curvature of M
and § its injectivity radius. Then the ball Sy(r) is convex, if r satisfies r < 6/2
and r < n/4b.
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Proof. Let Q € Sp(r) with d(P, Q) = 1, and (C) the minimizing geodesic from
P to Q. In a tubular neighborhood of (C), we consider a Fermi coordinate
system, (see 1.42).

Given a geodesic y through Q orthogonal to (C) at Q, so that ] —¢, +¢[ 31 —
¥A) e M, with %0) = Q, set Y, = (dy/dA);=o- The first coordinate of (1) is
equal to r, for all 4 ‘

By (10), the second variation of d(P, 1(4)) at A = 0 is I(Y), where Y is the
Jacobi field along (C) satisfying Y(P) = 0, Y(Q) = Y. But

1Y) > J: [9(Y', Y') — b%(Y, Y)] ds = I(Y);

I(Y) is the index form (14) on a manifold with constant sectional curvature

On such a manifold, the solutions of (11) vanishing at s = 0 are of the type
& = B sin bs, for i > 2, where f' are some constants. If br < =, a solution
does not vanish for some s € ]J0, r], without being identically zero. In that
case, according to Theorem 1.51, and by (15):

sin bs

() = I"(sin br

Yo) = b cot br g( Yo, Yo)

If r < =/2b, then I(Y) > 0 and for ¢ small enough, the points of y, except Q,
lie outside Sx(r). Henceforth suppose r < 6/2 and r < m/4b.

Consider Q, and Q,, two points of Sp(r), and y a minimizing geodesic
from Q, to Q, (see Theorem 1.38). Since d(Q,, Q,) < 2r < 4, y is unique and
included in Sy(2r). Let T be the (or a) point of y, whose distance to P is
maximum. Since d(P, T) < 2r < n/2b, T is one end point of y. Indeed, if T is
not Q, or Q,, 7 is orthogonal at T to the geodesic from P to T and by virtue
of the above result, y is not included in Sp(d(P, T)) and that contradicts the
definition of T. ]

§8. Estimates on the Components of the Metric Tensor

1.53 Theorem. Let M, be a Riemannian manifold whose sectional curvature K
satisfies the bounds —a® < K < b, the Ricci curvature being greater than
a = (n — 1)a®. Let Sp(r,) be a ball of M with center P and radius r, < p the
injectivity radius at P. Consider (Sp(r,), exps ), a normal geodesic coordinate
system. Denote the coordinates of a point Q = (r, 6)€[0, ro] x S,-,(1),
locallyby @ = {6}, (i = 1,2,...,n — 1). The metric tensor g can be expressed
by

ds? = (dr)?* + r’geqr, 0) d6* do”.
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For convenience let ggg be one of the components ggiqi and |g| = det((gpies))-
Then ggq and | g| satisfy the following inequalities:

(a) 0/0r log \/gee(r, 6) > 0/0r log[sin(br)/r], gee(r, 6) > [sin(br)/br]?

when br < =,
(B) 0/0r log \/gee(r. 8) < 6/0r log[sinh(ar)/r], ges(r, 8) < [sinh(ar)/ar]?;
(y) 0/orlog /lg(r, 8)| < (n — 1)(8/0r)log[sin(ar)/r] < —a'r/3,
(16)

n-1

S0 < [S"‘(“”] :

ar

(8) 0/orlog /Ig(r, B)] > (n — 1)(0/or)log[sin(br)/r],

1 n-1
V1g(r, )| = |:smb(:)r)} when br < .

As usual, if @ = a =0, we set sin(ar)/x = r, while if (n — 1) =a' <0,
sinh iar = i sin ar and cosh ixr = cos ar.

Proof. Let Y be a Jacobi field along (C), the minimizing geodesic from P to Q,
[0, r]3s— C(s)e M, Y satisfying Y(0) =0 and Y # 0. When br < n,
according to the proof of Proposition 1.52, and using (15):

gLY'(r), Y(r)] = I(Y) > I,(Y) > bcot br g[Y (). Y(r)],

where I,(Y) is the index form (14) on a manifold with constant sectional
curvature b2,

Moreover, according to the proof of Theorem 1.46,

’

=0

Yo) = (6 exp,,(Xg; AY'(O)))I1

where X, = expy ' Q and we identify Tp(M) with R".
Thus g[Y(r), Y(r)] = r’gee(r, 6)| Y'(0)||%, 8 being in the direction defined by
Y(r). Differentiating this equality, we obtain:

(0/0r)log \/gee(r, 8) = gLY'(r), Y(r))/g[ Y (r), Y(r)] — 1/r = b cot br — 1/r.
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The inequality «) follows, since gy, is equal to 1 at P and lim, ., [sin(br)/br]
= 1. To establish B), let us use the index inequality, Theorem 1.51:

5 'coshaszd ZJ* sinh as?
= [a ,[, (sinh ar) st o \sinh ar 4 oL Y (0. Y()]

= acoth ar g[Y(r), Y(r)].

g(Y'(n), Y() = I(Y) < [

Thus (3/0r)log \/ges(r, 8) < acoth ar — 1/r.

Let us now prove y). Consider {e(s)}, an orthonormal frame on T, (M),
as in 1.41. Denote by Y, Y3, ..., Y,, the Jacobi fields along (C), such that
Y{0) =0 and Y{(r) = e{r), for 2 <i < n. Using the index inequality,
Theorem 1.51, yields:

AYL), X)) = I(T) < 1(5‘“ 5 o r ))

The possibility that sin ar = 0 for some r > 0 does not occur, even if 2> > 0,
since r < §p < n/u (Myers’ Theorem, 1.43).
Adding these inequalities leads to:

iQ(YKr), Y(r) < (n — 1o J‘ (COS :xs)
i=2

sin ar

- Z le(s)(sm as)

Since
.ZZRUU(S) = Ry,(5) 2 (n = 1)a?,
S oY), Y0 < (n ~ D cot ar.
i=2

Therefore (9/dr)log \/1g(r, )| = Yi-, g(Yr), Y(r)) = (n = 1)/r<(n — 1)
x (0/dr)log[sin(ar)/r] and the properties of cot u give the second inequality
for 7). The third inequality follows by integrating the first, since |g| = 1 at P.
To prove d), we have only to add n — 1 inequalities ) in the n — 1 directions

e{r),i=2...,n |
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§9. Integration over Riemannian Manifolds

1.54 Definition. A differentiable manifold is said to be orientable if there exists
an atlas all of whose changes of coordinate charts have positive Jacobian.

Given two charts of the atlas, (Q, ¢) and (©, y), with Q N ® # 7, denote
by {x'} the coordinates corresponding to (2, ¢) and by {y*} those correspond-
ing to (@, ¥). In QN O, let A? = dy*/ox' and B} = dx’/dy*, the Jacobian
matrix 4 = ((4%) e GL(R")*, the subgroup of GL(R") consisting of those
matrices A for whichdet 4 = |A4| > 0.

1.55 Theorem. A differentiable manifold M, is orientable if and only if there
exists an exterior differential n-form, everywhere nonvanishing.

Proof. Suppose M, orientable. Let (Q;, ¢,);.; be an atlas, all of whose changes
of charts have positive Jacobian, and {«;} a partition of unity subordinated to
the covering {Q;}.

Consider the differential n-forms ; = o; dx! A dx* A --- A dx"(x', x?%,...,
x" being the coordinates on Q,). It is easy to verify that the differential n-form
w =Y ;.; w; is nowhere zero.

Conversely, let w be a nonvanishing differentiable n-form, and & =
(€4, ¢))ie; an atlas such that all Q; are connected. On Q; there exists f;, a
nonvanishing function, such that @ = f; dx' A dx* A --- A dx". Since Q; is
connected, f; has a fixed sign. If f; is positive, we keep the chart (Q;, ¢;). In
that case set ¢; = ¢;. Otherwise, whenever f; is negative, we consider @;, the
composition of ¢, with the transformation (x!, x2,...,x") - (—=x',x%,..., x")
of R". So from &/, we construct an atlas /.

The charts of &/, are (Q;, ¢;) or (Q;, @,), depending on whether f; > 0 or
f;<0.Set f; = —fjo@;op; . All changes of charts of &/, have positive
Jacobian. Indeed, at x € Q; N Q;, denoting by |A| the determinant of the
Jacobian of @;° ¢!, we have f;| 4| = f;. Since f; and f; are positive, | A| > 0.

1.56 Definition. Let M be a connected orientable manifold. On the set of
nonvanishing differentiable n-forms, consider the equivalence relation:
w; ~ w, if there exists f > 0 such that w, = fw,. There are two equivalence
classes. Choosing one of them defines an orientation of M; then M is called
oriented. There are two possible orientations of an orientable connected
manifold.

Some examples of nonorientable manifolds: Mébius’ band, Klein's bottle,
the real projective space P,,, of even dimension 2m.

Some examples of orientable manifolds: the sphere S,, the tangent space
of any manifold, the complex manifolds.
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1.57 Definition. Let M, be a differentiable oriented manifold. We define
the integral of w, a differentiable n-form with compact support, as follows:
Let (Q;, @)ie; be an atlas compatible with the orientation chosen, and
{et;};; @ partition of unity subordinate to the covering {Q};¢;. On Q;, w is
equal to f{(x) dx' A --- A dx". By definition

J.‘” =3 [oadx)fx)] e o7 P dx* A dx? A -~ A dX".
M

iel JouQi)

One may verify that the definition makes sense. The integral does not depend
on the partition of unity (see 1.73) and the sum is finite.

1.58 Theorem. If M, is nonorientable, there exists a covering manifold M of
M with two sheets, such that M is orientable.

For the proof see Narasimhan [212].

1.59 Definition. M is called a covering manifold of M, if there exists n: M — M,
a differentiable map, such that for every Pe M:

a) n~ (P) is a discrete space, F;

B) there exists a neighborhood Q of P, such that = ~*(Q) is diffeomorphic
to Q x F. Each point P’ ex~!(P) has a neighborhood Q < M, such that
the restriction 7’ of = to & is a diffeomorphism of Q' onto Q.

The map = is a 2-sheeted covering, if F consists of two points.

If (M, g) is a Riemannian manifold, on a covering manifold M of M, we
can consider the Riemannian metric § = n*g. We call (M, §) a Riemannian
covering of M.

1.60 Theorem. If M is simply connected, then M is orientable.
For the proof see Narasimhan [212].

1.61 Definition. Let E be the half-space of R (x' < 0), x! the first coordinate
of R*. Consider E = R" with the induced topology. We identify the hyper-
plane of R, x! = 0, with R*~ !,

Letting Qand 6 be two open sets of E, and ¢: Q — © a homeomorphism, it is
possible to prove that the restriction of ¢ to Q@ N R"~! is a homeomorphism
of Q N R""! onto © » R*~*. B will denote B,, the unit ball with center 0 in
R” and weset D = BN E.
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§10. Manifold with Boundary

1.62 Definition. M, is a manifold with boundary if each point of M, has a
neighborhood homeomorphic to an open set of E.

The points of M, which have a neighborhood homeomorphic to R" are
called interior points. They form the inside of M,. The other points are
called boundary points. We denote the set of boundary points by dM.

As in 1.4, we define a C*-differentiable manifold with boundary. By
definition, a function is C*-differentiable on E, if it is the restriction to E, of a
C*-differentiable function on R",

1.63 Theorem. Let M, be a (C*-differentiable) manifold with boundary. If oM
is not empty, then M is a (C*-differentiable) manifold of dimension (n — 1),
without boundary: é(0M) = (.

Proof. If Q € M, there exists a neighborhood Q of Q homeomorphic by ¢,
to an open set ® < E. The restriction ¢ of ¢ to } = Q N éM is a homeo-
morphism of a neighborhood & of Q € 3M onto an open set © = R"~!.

Thus M is a manifold (without boundary) of dimension (n — 1) (Definition
1.1). If M, is C*-differentiable. let (Q;, ¢,);; be a C*-atlas. Clearly, (C);, @.);c;
form a C*-atlas for M. [ |

1.64 Definition. By W, a compact Riemannian manifold with boundary of
class C*, we understand the following: W, is a C*-differentiable manifold with
boundary and_LW, is a compact subset of M,, a C* Riemannian manifold.
We set W = W. We always suppose that the boundary is C', or at least
Lipschitzian (Remark 2.35).

1.65 Theorem. If M, is a C*-differentiable oriented manifold with boundary,
0OM is orientable. An orientation of M, induces a natural orientation of M.

Proof. Let (Q;, ¢;);<; be an allowable atlas with the orientation of M,, and
(Qj, @j)je1 the corresponding atlas of oM, as above. Set i: dM — M, the
canonical imbedding of M into M. We identify Q with i(Q),and X € Ty(¢M)
with i,(X) € Ty(M). Given Q € M, pick e, € To(M), e, ¢ To(OM), e, being
oriented to the outside, namely, e, (f) > 0 for all functions differentiable on a
neighborhood of Q, which satisfy f < 0 in M,, f(Q) = 0. We choose a basis
of Ty(6M) = {e,, €3, ..., e}, such that the basis of To(M): {e,, e, ..., e,},
belongs to the positive orientation given on M,. |

This procedure defines a canonical orientation on dM, as one can see.
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10.1. Stokes’ Formula

1.66 Let M, be a C*-differentiable oriented compact manifold with boundary,
and o a differentiable (n — 1)-form on M,,; then

amn Judw = LM(»,

where OM is oriented according to the preceding theorem. For convenience
we have written {4, w instead of [ i*,(for the definition of * see (1.8)).

Proof Let (4, @);c; be a finite atlas compatible with the orientation of M, ;
such an atlas exists, because M, is compact. Set ©; = ¢(Q;). Consider {«;},
a C*-partition of unity subordinate to {Q;}. By deﬁmtlon [wdo =Y,
fo,d(; ). Thus we have only to prove that [o d(x;w) = [, %, Where we
recall that §, = QnaV and have set ©, = ¢(Q) = ©;, AR '. In (Q;, @),

o =Y flx)dx* A A A A dXY f{{x) are C*-differentiable
ftmctions with compact support 1ncluded in @(Q); dx means: this term is
missing. Now,

dyw) = Z( 1y-? af(x ] dx! A dx* A - A dX",
by Definition 1.10. According to Fubini’s theorem:

dw)y= | fi(x)d2 Adx3 A A dX" = | y0. ]
N &: 8,

§11. Harmonic Forms

11.1. Oriented Volume Element

1.67 Defimition. Let M, be an oriented Riemannian manifold, and o/ an
atlas compatible with the orientation. In the coordinate system {x} cor-
responding to (Q, ¢) € o, define the differential n-form 5 by:

(18) n=1/l1gldx! Adx*A--- A dx"

where |g| is the determinant of the metric matrix ((g; J)) n is a global dif-
ferentiable n-form, called oriented volume element, and is nowhere zero.

Indeed, in another chart (©, ¥) € &, such that ® N Q # &, consider the
differentiable n-form: n' = \/|g'| dy* A dy* A --- A dy". Butg,; = B.Bhg;;,
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hence \/|g'| = \/|B|*/|¢| (for the definition of the matrices 4 and B see
1.54). Thuson ® N Q:

n' = IBA/IgllAldx' A dx* A - A dx" =,
since |[A| > 0 and |A4||B| = 1. Moreover, n does not vanish.

1.68 Definition (Adjoint operator *). Let M,, be a Riemannian oriented mani-
fold and 7 its oriented volume element. We associate to a p-form «, a (n—p)-form
*q, called the adjoint of ¢, defined as follows:

In a chart (Q, ¢) € o, the components of *x are

1
(19) (*a)1,+1.).,+z ..... in = ;‘, Niy, iy an®

).l.lln....}.p.
We can verify that:
(20) sl=n, sxa=(=1Y""Px  an @)= (ahn,

where § is a p-form, and («, §) denotes the scalar product of « and j:

1
(a,p) = Ea,\,,\z,...,,\,,ﬁ’\"\”""’\”-
Note that the adjoint operator is an isomorphism between the spaces A?(M)
and A""?(M).

11.2. Laplacian

1.69 Definition. (Co-differential §, Laplacian A). Let xe A?(M). We define
da, by its components in a chart (Q, ¢) € &/, as follows:
(21) (50‘);11..4..1,-, = -V

VAL, dp-tt

The differentiable (p — 1)-form da is called the co-differential of « and has
the properties:

(22) 6= (—1+"'ds, 66 = —»"'dd=, hencedd =0.
The Laplacian operator A is defined by:
(23) A=ds+ éd.

If xe AP(M), Aa e AP(M).
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The Laplacian commutes with the adjoint operator:

(24) *A=Ax
For a function ¢, ¢ = 0, and
25) Ap =ddp = —V'V, 0.

« is said to be closed if da = 0, co-closed if da = 0, harmonic if Ax = 0.
« is said to be exact if there exists a differential form B, such that x = d8.
a is said to be co-exact if there exists a differential form 7y, such that a = §y.

Two p-forms are homologous if their difference is exact.

1.70 Definition (Global scalar product). On a compact oriented Riemannian
manifold, we define the global scalar product (z, ) of two p-forms x and 8,
as follows:

(o, By = L(a, .

Recall that (@, B) = 2,0, \y,.., 2, 8122
The name of the operator d comes from the formula:
(26) {da,y) = (a, &y) forallye AP*}(M) and aeA?(M).
Let us verify this. Using (1.10) we have:
@7 d(oe A #y) = da A (%) + (= 1)a A d(#y),

while by (22), *dy = (—1)**'d(sy). According to Stokes’ formula (17),
integrating (27) over M leads to:

0= J;da A (#y) + (—1)P J.Ma A d(*y).

That is the equality (26) (see (20)). By (26), obviously, « and B being any
p-forms:

(28) B2, B = (ba, 6p) + {da, dB) = (a, AB).

A is an elliptic selfadjoint differential operator (for the definition see 3.51).
If € C¥(M):

29) (Do, 9> = f VoV, dv.
M

1.71 Theorem. On a compact oriented Riemannian manifold, any harmonic
form is closed and co-closed. A harmonic function is necessarily a constant.
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Proof. By (28), if « is harmonic:
0 = {Aa, ) = {da, da) + {da, da).

Thus da = 0 and dx = 0. For a harmonic function ¢, this implies d¢ = 0,
¢ = const. [ ]

11.3. Hodge Decomposition Theorem

1.72 Let M, be a compact and orientable Riemannian manifold. A p-form
may be uniquely decomposed into the sum of three p-forms:

o =dA + éu + Ha,

where Ha is a harmonic p-form.
Uniqueness comes from the orthogonality of the three spaces for the global
scalar product

Caya0) = {dA, dAy + {bu, ou) + (Ha, Ha).

For the proof see De Rham [106].

The dimension of H,(M,), the space of harmonic p-forms, is called the
pth Betti number of M. It is finite. By (24), A* = A, * defines an isomorphism
between the spaces H ,(M,) and H,_ ,(M,). Hence b(M) = b,_ (M). Clearly,
bo(M,) = b,(M,) = 1 (Theorem 1.71). We set 7(M,) = Y 5o (= 1)%b,.

1.73 Definition (The Lebesgue Integral). Let M, be a Riemannian manifold
and (Q, @) a local chart, with {x‘} the associated coordinate system. We set:

(30) jde=f WS f)> 01 dx! de - dx
M @(Q)

for the continuous functions fon M, with compact support lying in Q.

Let (@, ¥) be another chart, {y*} the associated coordinate system. We check
that the definition (30) makes sense. Suppose supp f < Q N ©; set dy*/ox’
= A? and 0x//0y® = Bj (see [1.54]). Then,

f (191 f) o0~  dxt dx? .. dx”
0(QNO6)

= [ ey ay
w(QNe)

Indeed |g'| = | B|*|g| and dy' dy* - - dy" = || A|| dx' dx* - - dx".
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Consider {Q;, ¢;};;and {©;, ¥;} s, two atlases, and.{a,},-e, (respectively,
{B,};es)» @ partition of unity subordinate to the covering {Q:}ics, (respec-
tively, {©,},,). Since only a finite number of terms are nonzero, we have

S [asav=3 3 [@hrav=3 [ psav.
M jeJ vM

iel vM iel jeJ

Thus f > [y fdV = Y1 Ju % fdV defines a positive Radon measure and
the theory of the Lebesgue integral can be applied.

1.74 Definition. dV = \/@ dx' dx? --- dx" is called the Riemannian volume
element.

1.75 Proposition. Let M, be a compact Riemannian manifold, and w a 1-form.
Then [y 6w dV = 0. In particular if f€ C3(M), [)y AfdV = 0.

Proof. Consider M an orientable Riemannian covering manifold of M with
two sheets, Theorem (1.58) and Definition 1.59. Let n be the covering map:
M - Mandlet® = n*w.Since M is orientable, let 7j be one of its two oriented

volume elements.
According to (26):

f&bﬁ=J‘ (56),1)ﬁ=J(¢5,d1)r7=0.
M M M
Moreover, from Definition 1.59 it follows that

J;_’&bﬁ ' =2 fuaw dV’.

If fe CY(M), Af = édf and the preceding result applied to w = df gives
fu AfdV = 0. Or else, by using the Stokes’ formula (17), (20), and (24):

db(sf) = B(+f) = «AT = (&7 ),
and (i (Af) = 0, where f' = fon. [ |

1.76 Theorem. Let M be a compact Riemannian manifold with strictly positive
Ricci curvature. Then b,(M), the first Betti number of M, is zero.

Proof. Let a be a harmonic 1-form. Then, by Theorem 1.71, dx = O and
6 = 0. That is to say, in a local coordinate system with a = «, dx' we have
Vja, = V,ajand Via, = 0.
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Contracting (1), (i = I), with Z' = &', gives
(31) Rijli = Vl(Vja') - VJ(VIQI)

Multiplying (31) by o/ and integrating over M lead to:

(32) J Rya'ed dV = J V2(V;a)] dV — j (Vi) (V) dV.
M M M

According to Proposition 1.75,

f Vi[2(V,a)] dV = — f S[2/(V,2)] dV =0,
M M

Hence, if x does not vanish everywhere, the first member of (32) will be strictly
positive, while the second member is <0, since V;z;, = V,a;. ]

11.4. Spectrum

1.77 Definition. Let M be a compact Riemannian manifold. Sp(M) = {1eR,
such that there exists fe C3(M), f # 0, satisfying Af = Af} is called the
spectrum of M. A is called an eigenvalue of the Laplacian and f an eigen-
function.

If Ae Sp(M), A > 0, because
xf fde=ffAde= f VYV, fdV > 0.
M M M

The eigenvalues of the Laplacian form an infinite sequence 0 = 4, < 4,
< 4,,...goingto + x. And for each eigenvalue 4,, the set of the correspond-
ing eigenfunctions forms a vector space of finite dimension (Fredholm'’s
theorem (3.24). For A, the vector space has one dimension.

1.78 Lichnerowicz’s theorem. If the Ricci tensor of M, , a compact Riemannian
manifold, is such that the 2-tensor R;; — kg;; is non-negative for some k > 0,
then 7, > nk/(n — 1).

Proof. Let f be an eigenfunction: Af = Af with 1 > 0. Multiplying formula
(31), with « = df, by V’f, and integrating over M, lead to:

,lf ViV, fdV — f V.V, fVIVifdV = f R, VVifdV.
M M M

As (V,V, 1 + (1/mfg,)(V'Vif + (1/n)Afg¥) > 0, it follows that V,V, fV'Vif
> (1/n)(Af)?, hence A(1 — 1/n) > k. [}



Chapter 2

Sobolev Spaces

§1. First Definitions

2.1 We are going to define Sobolev spaces of integer order on a Riemannian
manifold. First we shall be concerned with density problems. Then we shall
prove the Sobolev imbedding theorem and the Kondrakov theorem. After
that we shall introduce the notion of best constant in the Sobolev imbedding
theorem. Finally, we shall study the exceptional case of this theorem (ie.,
H?% on n-dimensional manifolds).

For Sobolev spaces on the open sets in n-dimensional, real Euclidean
space R"”, we recommend the very complete book of Adams [1].

2.2 Definitions. Let (M,, g) be a smooth Riemannian manifold of dimension
n (smooth means C*). For a real function ¢ belonging to C(M,) (k > 0 an
integer), we define:

[V = ViV= ... V%V, V, ...V, ¢

In particular, |V | = |¢], |V'@|? = |Ve|? = V'@V, . V¢ will mean any
kth covariant derivative of ¢.

Let us consider the vector space €f of C* functions ¢, such that
[Vép| € L(M,), for all Z with 0 < / < k, where k and / are integers and
p = 1l is a real number.

2.3 Definitions. The Sobolev space HY(M,) is the completion of €f with
respect to the norm

k
lolug = 2 IV,
¢=0

H B(M,) is the closure of 2(M,) in H§(M,). Z(M,,) is the space of C* functions
with compact support in M, and Hj = L,.
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It is possible to consider some other norms which are equivalent; for

instance, we could use
k 1/p
[Z !!V‘wllz] .
¢

=0

When p = 2, HZ is a Hilbert space, and this norm comes from the inner
product. For simplicity we will write H, for the Hilbert space H?.

§2. Density Problems
2.4 Theorem. Z(R") is dense in HY(R").

Proof. Let f(t) be a C* decreasing function on R, such that f(t) = 1fort < 0
and f(t) =0fort > 1.
It is sufficient to prove that a function ¢ € C*(R") n H{(R") can be approxi-
mated in HY(R" by functions of 2(R"). We claim that the sequence of
functions @ (x) = @(x)f(lx]| = j), of Z(R"), converges to (x) in HY(R").
Let us verify this for the functions and the first derivatives, that is, in the
case of H;(R"). When j — x, ¢(x) = ¢(x) everywhere and [¢(x)| < [@(x)],
which belongs to L,. So by the Lebesgue dominated convergence theorem
le; — @ll, = 0. Moreover, when j — 00, | Vo (x)| — | Vop(x)| everywhere, and
Vo x)] < [V0(x)] + |@(x)] Sup;ego, 11| £(1)] Which belongs to L,. Thus

IV(e; — @), — 0.
This proves the density assertion for H5(R"). For k > 1, we have to use
Leibnitz’s formula. |

2.5 Remark. The preceding theorem is not true for a bounded open set  in
Euclidean space. Indeed, let us verify that H¥(Q) is strictly included in H}(Q).
For this purpose consider the inner product

v =[ovax+ ¥ (s ax
JQ i=14JQ
For y € C*(Q) n H¥(Q) and ¢ € 2(Q),
<‘P, l//> = J. ((ﬁ - z a,,w)(ﬂ dx.
Q i=1

If y # 0 satisfies Y = } 7=, 8;¥, then for all ¢ € D(Q), {p, ¥> =0, so that
v ¢ HY(Q).

Such a function ¥ exists on a bounded open set Q; for instance, Y = sinh x,
(x, the first coordinate of x), { , |sinh x, |? dx, and j' o lcosh x4 |P dx are finite.
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For this reason we only try to prove the following theorem for complete
Riemannian manifolds.

2.6 Theorem. For a complete Riemannian manifold H{(M,) = H{(M,).

Proof. It is not useful to consider a function f € C* on R, as in the proof of
the preceding theorem, because for a Riemannian manifold [d(P, Q)]* is
only a Lipschitz function in Q € M,,, P being a fixed point of M,. So let us
consider the function f(t) on R, defined by f(t) = 1 fort <0,f(t) =1 -t
forO0 <t < 1,and f(t) = Ofort > 1.

Let ¢(Q) be a C* function belonging to H(M,), and P a fixed point of M,
The sequence of functions ¢{Q) = @(Q) f[d(P, Q) — j] belongs to H}(M,),
because the gradient exists almost everywhere, is bounded, and equals
zero outside a compact set. One proves that the sequence ¢ (Q) converges to
@(Q) in H}(M,,), as in the proof of Theorem 2.4. Now we consider a regulariza-
tion of ¢ (Q).

Let K be the support of ¢;, and {©,} be a finite covering of K such that

©®; is homeomorphic to the open unit ball B of R", (©;, y;) being the cor-
responding chart. Let {a;} be a partition of unity of K subordinate to the
covering {®;}. We approximate each function 2;¢;.
A function like h = (2;¢;) : ;' has its support in B and is a uniformly
Lipschitz function. Thus there exists a sequence h, € Z2(B), such that h, —» h
in H{(B) (the usual regularization ; for instance, see Adams [1]). It is now easy
to show that h, o y; converges, when k — xc, to 2;¢; in H{(M,,).

2.7 Remark. It is possible to prove that if the manifold has an injectivity
radius 8, > 0, and if the curvature is bounded, then H§(M ) = H5(M,).
But for the proof of Hﬁ(M,,) = H{YM,), (k > 2), besides these assumptions
we need some hypothesis on the covariant derivatives of the components of
the curvature tensor. (See Aubin [17] p. 154).

If there exists an injectivity radius §, > 0, it is simpler to consider, instead
of the preceding functions ¢(Q), the following C*® functions @ (Q), that tend
to ¢(Q) in H¥ or in H{ the space considered, under some conditions. Let T be
a point of M,, Br(q) the set of the points Q € M, such that d(T, Q) < g with
g € N, and x,(Q) the characteristic function of B;(q). Let us consider (1),
a C* decreasing function, which is equal to 1 for t < 0 and to zero for t > 9,
(0 < & < &,) and Y(P, Q) = [d(P, Q)]. Now define the functions

hy(P) = L W(P, Q1(Q) dV(Q) / fM ¥(P, Q) dV(Q).

These functions are C®, equal to 1 when d(T, P) < q — J, and equal to zero
when d(T, P) > q + 6. The functions @{P) = ¢(P)h{P) have the desired
property.
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2.8 Theorem. C*(E) is dense in HY(E), where E is the half-space"

E ={xeR"x, <0}

By definition C*(E) is the set of functions that are restrictions to E of C*
functions on R™

Proof. Let fbelongto C*(E) n HY(E). Consider the sequence of functions f,,,
which are the restrictions to E of the functions f(x, — 1/m, x,,..., X,).
It is obvious that f,, € C*(E) and it is well known that, if f € LE), fu— f
in L ,(E). The same result holds for the derivatives of order <k.

For manifolds, we have the following theorem:

2.9 Theorem. Let W, be a compact Riemannian manifold with boundary of
class C". Then C"(W) is dense in HY(W) for k <'r.

Proof. Let (Q;, ;) be a finite C" atlas of W, each Q; being homeomorphic
either to a ball B of R, or to a halfball D < E(D = B n E).

C'(W) is the set of functions belonging to C"(W) n C°(W), whose deriva-
tives of order <r, in each ;, can be extended to continuous functions on
WnQ.

Consider a C™ partition of unity {2;} subordinate to the covering {Q;}
of W. Let f e HY(W) n C*(W). We have to prove that each function %, f
can be approximated in HZW) by functions of C"(W). There is only a
problem for the Q; homeomorphic to D. Let Q, be one of them.

The sequence of functions h,, defined, for m sufficiently large, as the restriction
to D of [(a;f) @7 '](x, = 1/m, x;,...,x,) converges to (z,f)- @' in
HE(D), where D has the Euclidean metric. Since the metric tensor, and all its
derivatives are bounded on (; (by a proper choice of the Q;, without loss of
generality), h,, o ¢; € C"(W) and converges to «; f in HY(W) for k < r, when
m — 00. |

§3. Sobolev Imbedding Theorem

2.10 First part of the theorem.

Let k and ¢ be two integers (k > ¢ > 0), p and q two real numbers (1 < g < p)
satisfying 1/p = 1/q — (k — #)/n. The Sobolev imbedding theorem asserts
that for R", Hi = H% and that the identity operator is continuous.

Second part.

If (k — r)/n > 1/q,H} = Clyand the identity operator is continuous. Herer > 0
is an integer and C'y is the space of C" functions which are bounded as well
as their derivatives of order <r,(||ul¢c- = max, <<, sup [Véul).

If (k—r—oa)n=1/q, HH < C™** where x is a real number satisfying
O<a< 1 and C"** the space of the C" functions, the rth derivatives of
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which satisfy a Holder condition of exponent a. Furthermore, the identity
operator H} = C* is continuous. The norm of C* is:

lufle= = sup|u| + :1:%{ |u(P) — w(Q)|[d(P, Q)]"*}.

We shall also denote the space C"** by C"*when 0 <a < 1. C"% = C".
We will mainly discuss the first part of the theorem, because the other part
concerns local properties (except the continuity of the imbedding) and so
there is no difference in the case of manifolds. One will find the complete
proof in Theorem 2.21.

But first of all, let us prove that the first part of the Sobolev imbedding
theorem holds for all k, assuming it is true for k = 1.

2.11 Proposition. Let M, be a C* Riemannian manifold. If H"(M,) is im-
bedded in L, (M,), with 1/po = 1/go — 1/n (1 < qo < n), then HYM,) is
imbedded in H"'(M) with 1/p, = 1/q — (k — ¢)/n > Q.

Proof. Let r be an integer and let y € C"**. Then
1 IVIVTY | < [V H ).
To establish this inequality, it is sufficient to develop

V., Vg, - V»wvﬂl Vg U =V V-V YV, -V Y)
X yvugznlxgzzlz ces g’-’r‘lr 1. g”"(V,,V,‘ Vv, - y,'l’
~ YV, Vo Vs,V §) 2 .

We find 4|V Iy 2| VY |2 — VIV < 0.
Since H{(M,) is imbedded in L, (M,), there exists a constant A4, such that
for all ¢ € H(M,):
ol < AUIVOllg + llolg)-
Let us apply this inequality with ¢ = |V |, assuming ¢ belongs to H{°:
IVl < AUIVIVY Ll + IV
@) < AV Wllgo + IV G-

Now let ¥ € H{M,) n C*(M,). Applying inequalities (1) and (2) with
gq=¢qoandr=k~1k—2,...,we find:

IVE" 1l -, < AUIVHYH, + IV 10,
IV =2, < AV Ml + 1VE291),
Wl p -, < A>VYIL + 1WH);
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thus
Il ane - < 2400 |y

Therefore a Cauchy sequence in Hf of C* functions is a Cauchy sequence in
H?<-¢, and the preceding inequality holds for all € H{.

Similarly, one proves the following imbeddings: Hf = H?*-! < H{*"3
<< H%.

§4. Sobolev’s Proof

2.12 Sobolev’s lemma. Let p' > 1 and q' > 1 two real numbers. Define A
by 1/p" + 1/q' + A/n = 2. If A satisfies 0 < A < n, there exists a constant
K(p', q', n), such that for all f € L (R") and g € L(R"):

3) L f(x)g(y)

oy S K@l f Ll
n R'I

|x|| being the Euclidean norm. »
The proof of this lemma is difficult (Sobolev [255]), we assume it.

Corollary. Let A be a real number, 0 < A <n, and q' > 1. If r, defined by
l)r = A/n + 1/q' — 1, satisfiesr > 1, then

h(y) = J.W W}% dx belongs to L,, when f € L (R").

Moreover, there exists a constant C(4, q', n) such that for all f € L (R")

IAll, < C(A, g, m)l fllq-
Proof. For all g € L ,(R"), with 1/r + 1/p' = 1:

[ w0 dy < K(g 4. mi £l gl
therefore
hels Ly and [hl, < K@\, mlfly- n

Now we will prove the existence of a constant C(n, g) such thatall ¢ € 2(R")
satisfy:

4) lel, < Cln, 9)IVel,,

withl/p=1/g — l/nand1 < g <n.
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Since 2(R") is dense in HY(R") Theorem 2.4 the first part of the Sobolev
imbedding theorem will be proved, according to Proposition 2.11.

Let x and y be points in R", and writer = |Ix — y|l. Let 8 € S,_ (1), the
sphere ofdimensionn — 1 and radius 1. Introduce spherical polar coordinates
(r, 6), with origin at x. Obviously, because ¢ € 2(R"):

© oo(r, 6
R

and
()] < f Ix = Y1 Vo(r, 6)|~" dr.
0

Integrating over S,_,(1), we obtain:

L[ %0,
o0l <5 - [

where w,_, is the volume of S, _,(1).
According to Corollary 2.12 with 4 = n — 1, inequality (4) holds. [ ]

§5. Proof by Gagliardo and Nirenberg (1958)

2.13 Gagliardo [118] and Nirenberg [220] proved that for all ¢ € 2(R"):

1/n

) Iolun-y 5 [T |55

It is easy to see that the Sobolev imbedding theorem follows from this
inequality. First |dp/0x’| < |Ve|; therefore | @lum-1) < 7lIVell;. Then
setting || = u?"~ " and applying Hélder’s inequality, we obtain:

-1Vn -1
llul!ﬂ"' = N@lnn—1) < 3P u? | Vul|,

-1 .
< po5— IVul I

where 1/g + 1/¢' =1 and p’ = p(n — 1)/n — 1. But p'q' = p since l/p =
1/q — 1/n; hence:

lhull, < P— Vull,.
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We now prove inequality (5). For simplicity we treat only the case n = 3;
but the proof for n # 3 is similar.
Let P be a point of R?, (x, y, z) the coordinates in R?, (xo, yo, 2o) those of P,
and D, (respectively, D, D,) the straight line through P parallel to the x-axis,
(respectively, y-, z-axis). Since ¢ € D(R"),

X0 a + 00 5(p
o(P) = f_m 5(;‘: (%, Yo, 2) dx = — J;Q 5;()(’ Yo Zo) dX.

Thus |¢(P)| < % [p, |0,¢|dx. Likewise for D, and D,:

1 3/2 12
lo(P)|*? < (5) [ |0, ¢|dx f 16_\4<p|dyf |0zlp|d2] -
D, D, D,

Integration of x, over R yields, by Holder’s inequality,

lo(x, Yo, 20)>'% dx
Dy

1 3/2
< (E) [ Iax(P(X, y°,30)|dx j |ay(p(x’ Y ZO)'dXdy
D D

xy

1/2
><f |52<P(X,yo,z)|dxdz] ,
Dy,

where D, , means the plane through P parallel to the x- and y-axes.
Integration of y, over R gives, by Holder's inequality,

13{2
f lo(x, y, 20) |2 dxdzs(i) [ f 16.0(%, y, 70)] dx dy
D D

xy xy

1/2
X J. [0,0(x, y, 25)|dx dyf |0, p|dx dy dz] .
D R

xy

Finally, integrating z, over R, we obtain inequality (5). |

§6. New Proof

2.14 Next we give a new proof of the Sobolev imbedding theorem (Aubin
(1974)), which yields the explicit value of the norm of the imbedding.

Theorem (Aubin [13] or [17], see also Talenti (257)).
If 1 < q < n,all o € H{(R") satisfy:

(©) lell, < Kn, 9)lIVel,,



40 2. Sobolev Spaces

with 1/p = 1/q — 1/n and

Cg—1[n—g ] I(n + 1) "
Kin, q) =~ — p [,,(q _ 1)] [r(n/q)r(n + 1 — n/g)w,- 1]

forl < q<n,and
1[ n i
K(n, l) = ; [Z):] .

K(n, q) is the norm of the imbedding H{ = L,,and it is attained by the functions

@(x) = (A + [Ix][ @@ D)t =",
where A is any positive real number.

When g = |, this gives the usual isoperimetric inequality, Federer [113];
the extremum functions are then the characteristic functions of the balls of
R".

The proof is carried out in three steps.

First step, Proposition 2.16: Since 2(R") is dense in H{(R"), we have only
to prove inequality (6) for the functions in question in Proposition (2.16).

Second step, Proposition 2.17: it is sufficient to establish inequality (6)
for functions of the kind ¢(x) = f(|x|), f being a positive Lipschitzian
function decreasing on [0, ] and equal to zero at infinity.

Third step, Proposition 2.18: the proof of inequality (6) for these functions.

2.15 Proposition (Milnor [200] p. 37. This is actually due to Morse).

Let M be a Riemannian manifold. Any bounded smooth function f:M — R
can be uniformly approximated by a smooth function g which has no degenerate
critical points. Furthermore, g can be chosen so that the ith derivatives of g on the
compact set K uniformly approximate the corresponding derivatives of f for
i<k

We recall that a point P € M is called a critical point of f if |Vf(P)| = 0,
the real number f(P) is a critical value of f. A critical point P is called non-
degenerate if and only if the matrix V,V; f(P) is nonsingular. Nondegenerate
critical points are isolated.

2.16 Proposition. Let f # 0bea C® function on M, with compact support K.
S can be approximated in H{(M,) by a sequence of continuous functions f,
with compact support K, c K (the boundary of K, being a sub-manifold of
dimension n — 1); moreover f,€ C*(K,) and has only nondegenerate critical
pointson K .
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Since they are isolated, the number of critical points of f, on K, is finite.

Proof. According to Proposition 2.15 there is a sequence of C* functions
g, which have no degenerate critical points and which satisfy | f — g,| < 1/p
on M, and |V(f —g,)| < 1/p on K. Choose a real number «, satisfying
1/p < @, < 2/p, such that neither a, nor —a, is a critical value of g,. Then
g, '(¢,) and g, '(—a,) are sub-manifolds of dimension n — 1, unless they
areempty.Let A, = {x e M,|g,(x) > «,}and4A_, = {xe M,|g,(x) < —a,}.
Define f, by:

fp(x) = [gp(x) - Cxp]x.l,(x) + [gp(x) + ’-lp]l.l.,,(x),

where y is the characteristic function of the set E.

The support K, = 4, U A_, of f, is included in K because for x € K,,,
lg,(x)| > 1/p; thus [ f(x)| > 0. f,€ C*(K,) and f, is Lipschitzian, hence
f,€ H{(M,).

Since | f(x) = f,(X)| < B/Px(x), | f = fpll, = O when p — x. Moreover,
at a point x where f(x)# 0, we have |V[f(x) — f,(x)]| = 0, because
x € (J®., K. But the set of the points where, simultaneously, f(x) = 0 and
|Vf(x)| # 0, has zero measure; consequently | V[ f(x) — f,(x)]| = 0 almost
everywhere. Therefore |V(f — f))ll, = 0, according to Lebesgue’s theorem,
since |[V(f — f,)| < (sup| VS| + 1/p)yx. n

2.17 Proposition. Let f > 0 be a continuous function on X (X denoting the
sphere S, the euclidean or hyperbolic space), which is C* on its compact
support K, whose boundary (if it is nonempty) is a submanifold of dimension
n — 1, and assume f has only nondegenerate critical points. Pick P a point of Z,
and define g(r), a decreasing function on [0, <[, by

#{QIgld(P, Q)] = a} = p{QIf(Q) = a} = Y(a).
Then

IVally < IVfll, for 1<q <.

Proof. Let d(#, Q) be the distance between P and Q on X,and leta > O bea
real number; x4 denote the measure defined by the metric, and write g(Q) =
gld(P, Q)).

Let Qi = 1,...,k) be the critical points of f in K. Consider the set £, =
f~Y(a) and note that, if Q € £, is not one of the points Q;, then | Vf(Q)| # 0.
Ifdo(Q) denotes the area element on X,, then we may write

L|Vf [4dV = f:( 2H|Vf|““ da) da
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Furthermore, when a is not a critical value of f, p(a) = j‘z, |Vf |~ do exists.
@(a) is continuous and locally admits —y/(a) as primitive.

We consider ¢(a) = —y'(a) as given. Therefore |5 |Vf|*"'do has a
minimum, in the case g > 1, when |Vf| is constant on X,, according to
Holder’s inequality :

J;da < (L;Vfrlda)(q_”“(LWfP* da)w.

But I, is the boundary of a set, whose measure y(a) is given. Hence j,_-ada
is greater than or equal to the area of the boundary of the ball of volume
¥(a) (by A. Dinghas [110]). This completes the proof. [ ]

Furthermore, one verifies that g(r) is absolutely continuous and even
Lipschitzian on [0, oof.

2.18 Proposition. Let g(r) be a decreasing function absolutely continuous on
[0, wo[, and equal to zero at infinity. Then:

® 1p @ l/q
@) (co,-l)‘”"(jo ig(r)l"f'"dr) sK(n,q)(f0 Ig’(r)l"r”"dr) ,

where K(n, q) is from Theorem 2.14.

Proof. Let us consider the following variational problem, when g > 1:
Maximize I(g) = [§ |g(r)|Pr"~" dr, when J(g) = (& |g'(r)|7r"~'dr is a
given positive constant.
The Euler equation is

@) (g1 'r=ly = kg?~ P71,

where k is a constant.

It is obvious that we have only to consider decreasing functions. One verifies
that the functions y = (4 + r#9~1)!~"4 are solutions of (8), A > 0 being a
real number:

rig=1.n—1 n"q a1 - -
I}' lq r = q_— l) ﬂ(1+rq/(q 1))—n(q 1)/4’

—g\i-1!
(y1=trly = nl(; ~ ?) r iy

According to Bliss, Lemma 2.19, the corresponding value of the integral
I(y) is an absolute maximum.
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The value of K(n, q), the best constant, is
K(n, q) = (w,- )" ""UIMIPLI(] Y

Letting g — 1, we establish the inequality (7) for ¢ = 1:

K(n, 1) = lim K(n, ).

q—1

Let us compute K(n, g).

only’lqr"_l dr = (: - (II)QJ"‘”[A + Al 1)]—nrn+l/(q—1)dr'
0 - 0

Setting A = 1 and r = t¥~ 14, we obtain:

@ — q —_ l a0 — q _— 1
f ly' [t dr = (Z ?) 1= f I+ ™dt = (n q) 1= 4
0 - 0

q qg-—1 q
@ —-1 r= —
f y"r"“dr=q—f A+t =1"1p
0 q 0 q

Furthermore, B/4 = (n — q)/n(qg — 1), because

A = J‘ (1 + t)—"t"‘nqd[ = n i;lj (1 + t)l-ntn-l—mq dt
0 n-1 ¢ o
n—-1 ¢
Hence:
—- 1/q—1/n -1 1/q
K(n,q)———(w,_l)“’"(‘—l——1 B) A= <_‘7 ) ,
9 n—q\g-1
- 1(B\"(q-1 o T(n/q)T(n — n/q)
K =1 (2 ’ _ ‘
(n, @) P (A) p Bw,_, with B T

2.19 Lemma. Let h(x) > O a measurable, real-valued function defined on R,
such that J = (@ h%x) dx is finite and given. Set g(x) = [§ h(t)dt. Then
I= _[3“ g°(x)x*"P dx attains its maximum value for the functions h(x) =
(Ax* 4+ 1)~@* V2 yith p and q two constants satisfying p>q> 1,0 =(p/q) — 1
and A > 0 a real number.
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This is proved in Bliss [55]. The change of variable x = r9™"/@~1) poy
yields the result used in the Proposition 2.18, above. Recall that here 1/p =
(1/q) — (1/n) and so we have & = p/n, (dx/or)! "¢ =r""'and x'**77 = 1,

§7. Sobolev Imbedding Theorem for Riemannian Manifolds

2.20 Theorem. For compact manifolds the Sobolev imbedding theorem holds.
Moreover H} does not depend on the Riemannian metric.

Proof. We are going to give the usual proof of the first part of the theorem,
because it is easy for compact manifolds. But for a more precise result and a
more complete proof see Theorem 2.21. Let {Q;} be a finite covering of M,
i=1,2,...,N), and (Q,, ¢;) the corresponding charts. Consider {«;} a
C® partition of unity subordinate to the covering {€;}. We have only to
prove there exist constants C; such that every C*® function f on M satisfies:

® i fll, < Cill2 fllgas-

Indeed, since |V(a, /)| < {Vf | + [ f [|Va],

17l < 3 e fl, < sup C;N[IIVf||q+ (1+ sup IVa,-l)ufn.,],

l<isgy 1<i< VN

and by density the theorem holds for k = 1.

In view of Proposition 2.11, this establishes the first part of the theorem.
¥On the compact set K; = supp x; < €,, the metric tensor and its deriva-

tives of all orders are bounded in the system of coordinates corresponding to

the chart (2;, ¢;). Hence:

f EHz(Min g)é [z'if € Hz(Mrn g)a for all l]
< [2; f o ;' € H(R"), for all {].
We define the functions «; f - ¢;"* to be zero outside p,(K,).

In particular, there exist two real numbers 4 > 4 > 0, such that for all vectors
¢ € R and every x € K;, g, being the metric tensor at x:

ANEI® < gL(e7 (8, (07 WO < ml&]I.
And now according to Theorem 2.14, for any fe C*:

1/q

1/p
(f iaffocprwz) sK(n,q)(f IV(a;f°¢i")I"dE)
Rn Rn
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Thus we obtain inequality (9):

lip
lloi fl, < #’”“( o f ot PP dE)
;4
< WPPK(n, qut A7 V(e )l ]

2.21 Theorem. The Sobolev imbedding theorem holds for M, a complete
manifold with bounded curvature and injectivity radius 6 > 0.

Moreover, for any € >0, there exists a constant A,((e) such that every
¢ € H{(M,) satisfies:

(10) llel, < [K(n, 9) + €][Vol, + Ae)lel,, with 1/p = 1/g — 1/n >0,

where K(n, q) is the smallest constant having this property.

According to Proposition 2.11 and Theorem 2.6, to prove the first part
of the Sobolev imbedding theorem, it is sufficient to establish inequality (10)
for the functions of 2(M,). The proof will be given at the end of 2.27 using
Lemmas 2.24 and 2.25. First we will establish the second part of the Sobolev
imbedding theorem.

2.22 Lemma. Let M, be a complete Riemannian manifold with injectivity
radius 8, > 0 and sectional curvature K, satisfying the bound K < b*. There
exists a constant C(q) such that for all ¢ € 2(M,):

n sup|o| < C(g)lollgy ifg>n

Proof. Let f(t) be a C* decreasing function on R, which is equal to 1 in a
neighbourhood of zero, and to zero for t > d (6 < 9, satisfying 2bé < m).
Let P be a given point of M,, then

@(P) = - J: eLo(r, 0)f(r)] dr,

where (r, 0) is a system of geodesic polar coordinates with center P. Thus we
have the estimate:

4
o)1 < [ 19C00 NI .

Integration with respect to 0 over S,_,(1) leads, by Holder’s inequality, to

l/q
|@(P)| < (@n-1)" ‘(L , IVLo(r, 6)f (11"~ dr dﬂ)
p(d)

liq’
x (@,_, r('l-l)(l"ll)dr) s
0
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with 1/¢' = 1 — 1/g. According to Theorem 1.53, for r < 6, " ! drdf <
(m/2y"~! dV. Thus:

(n—1)iq
le(P)| < <§) (w,-x)“”“(IIVCPHq + sup If'(r)I||<PHq)

0<r<é

1-1
x g—1 Sla=nia-1) . ]
q—n

2.23 Proof of the Sobolev imbedding theorem 2.21 (Second part). 2(M,) is
dense in H{(M,) by Theorem 2.6. So let f € H{ and {¢,} be a sequence of
functions of 2(M,) such that || f — ¢;[|y¢ = 0 when i — oo. Clearly {¢p;} isa
Cauchy sequence in HY. By (11), suplo, ~ ;| < C@)l0; = ;3. 50 ¢ is
a Cauchy sequence in C3. Therefore ¢; = fin C§ and f € C3.

Letting i — oo in sup|o;| < C(q)l|@;ll gy, We establish, for all f € H{ when
q > n, the inequality:

Ifllce < C@I S s

Let f e Hf n C*. Then (1) implies that |V’f|e Hi_,. If (k — r)/n > 1/g,
according to the first part of Theorem 2.21, that we are going to prove below,

k—1r—
H{__CH} with é—;ﬁ

n

Si=

1
-<
q
Therefore

IViflice < C(PIVf g3 < Const x || fligg and || fllc- < Const x || £l gg.

This inequality holds for all f € Hf since Hf n C® is dense in H{. Let us
now prove that if g = n/(1 — ), where a satisfies 0 < « < 1, then H{ = C*
and the identity operator is continuous. First of all, f € H{ implies f is
continuous.
Choose 6 as in Lemma 2.22 (6 < é, and 2bé < n). When d(P Q) > 4, we
may write:

|f(P) = f(Q)I[d(P, @)]7* < 267 *C(@ f | 2-

When d = d(P, Q) < d, consider a ball B of radius d/2 and center O, with P
and Q in B; note y = expg' P and = = expg ' Q; y and z belong to a ball
B < R" of radius d/2. Consider the function h(x) = f(expx) defined in B
and let (r, 6) be polar coordinates with center y.

ForBax = (r, 6),0 < r < p(8), (%(6), 6) belonging to 4B, the boundary of B:

1
h(x) — h(y) = J: 3,h(p, 6)dp = r L 3, h(rt, 6) dr.
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Integration with respect to x over B leads to

1 . _ p(8) . 1
Lh(x) dx — - w,-1(d/2)h(y) = L L r*dr df J.o d,h(rt, 6) dt.

m -1

Hence, putting u = rt and using the inequality r < p(6) < d, we obtain:

1 n
Jjreo =5

1 tp(6)
sdf t"'dtJ f 10, h(u, 0)|u"~* du df
0 Sn-1v0

1iq pl
sd(fweh(x)w dE) J(vol Bt~ Yarnar,
B 0

where we have applied Holder’s inequality. Let B, be the ball homothetic to B,
with ratio t. Then vol B, = (1/n)w,_ ,(d/2)"t". Thus, since g > n, the second

integral converges:
2 n
(E) Lh(x) dx

2m\'Y ¢ ( e
< —— ' j Veh(x "dE) .
(%-x) q—n §| gh(x)]

A similar inequality holds with z in place of y, and so:

2 n 1/q l/q
|h<y)—h(z)ts—q(3f—) d“( JiIVEh(x)I"dE) .
q - B

n\W,-y

()

‘ h(y) —

n
n-1

According to Theorem 1.53, sinced < 6:

"an 1/q o} N (n=1)q
18— f@tp, @) < 2 (2 ) (1T gy

Wy, ao 2
The other results are local and do not differ from the case of R". n
Proof of the Sobolev imbedding theorem 221 (First part). According to
Proposition 2.11, if we can prove that inequality (10) holds then Theorem 2.21

will be proved. First two lemmas.

2.24 Lemma. Let 6 € R satisfy 0 < 6 < &, and 2b8 < =. If Bp(9d) is a ball of
M, with center P and radius 6, where the sectional curvature ¢ satisfies
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—a? < g < b, there exists a constant Ky(n, q), such that for all functions
f € HY(M,) with compact support included in Bp(9):

(12) 1f1, < Ko, DIVS

For 6 sufficiently small we can make Ky(n, q) is as close as we like to K(n, g).
Ks(n, q) depends on a and b, but does not depend on P.

Proof. Let (r,0), (i=1,2,...,n — 1) be a system of geodesic polar co-
ordinates with center P. According to Theorem 1.53, the components g;; of
the metric tensor satisfy:

S“; b < Jon B < S‘n:f‘"), g, =1
-

Let € > 0 be given; one may choose J small enough so that, when r < §:
sinh(ar)/Jar <1 + ¢ and sin(r)/br > 1 — ¢

Setting f(x) = f(exp,x), when | x| < §, then according to Theorem 2.14

we have
1/p 1/q
(flfl” dE) < K(n, q)(_[IVEfI" dE) .

Since (1 — e 'dE <dV < (1 + &' ' dE and |Ve f| < (1 + ¢)|VSf|; this
establishes inequality (12) with

Kao(m, @) = (1 — &) "™9(1 + ¢)! """ V/PK(n, q). u

2.25 Lemma (Calabi). Let M, be a Riemannian manifold with injectivity
radius 8o > 0; then for all § > 0, there exist two real numbers y and f
(0 < y < B < &), a sequence of points P;€ M,, and {Q;} a partition of M,,, by
sets, satisfying B, (y) = Q; < B, (B) for all i, B,(p) being the ball with center P
and radius p.

According to this lemma, we are able to prove:

2.26 Lemma. Let M, be a Riemannian manifold with injectivity radius 6, > 0
and bounded curvature; then there exists, if § is small enough, a uniformly locally
finite covering of M, by a family of open balls B,(9).

Uniformlylocallyfinite means: there exists a constant k, which may depend
on J, such that each point P € M, has a neighborhood whose intersection
with each Bp (), at most except k, is empty.
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Let us prove that the balls B, () form a uniformly locally finite covering
of M,. Let Bp () be given, and suppose that k balls B, () have a nonempty
intersection with B,.}(ﬂ), i # j. Since the curvature is bounded, the set of the
points Q satisfying d(P;, Q) < 2B + y has a measure less than a constant w
independent of j. By theorem (1.53), if the Ricci curvature is greater than
—(n — 1)a?; therefore

28+y
w< W, f [sinh(cer)/a]*"! dr.
0
Also, if the sectional curvatures are less than b?, then the measure of
By (y) is greater than y, with y = w,_, [3 [sin(br)/b]"~ " dr.
Therefore (k + 1) y < w, since the balls B, (7) are disjoint. n

2.27 Proof of Theorem 2.21 (Continued). Consider a partition of unity
h; € C* subordinate to the covering {Bp (9)}, such that |V(h}'?)| is uniformly
bounded, (|V(h{'%)| < H, for all i, where H is a constant). Such functions h;
exist, because the covering is uniformly locally finite.

Let {h;} € C® be a partition of unity subordinate to the covering {Bp,(0)}
such that |Vh;| < Const. We may set h, = A"/(Zh?"), with m an integer
greater than g. Let I be a finite subset of N. By Lemma 2.24,

g{ lohill pq = E lohi "3 < Ki(n, @) ¥ IV(ohi')I§

iel

<Kin q) Y | (IVelhi" + ¢|Vhi"|)} dV

iel

< Ki(n, 9) Z, |:|V<P|"hl- + Vo '™ ATV p|| VA |
ie
+ VI(PI"IVhs”“I“],
(13) < Kin, 9)LIVoll§ + pkH|Voli el + vkH @I,
using Holder’s inequality. u and v are two constants such that for t > 0
A+ 08 < 1+ pt+ v
for instance, 1 = vq and v = sup(1,2972), if ¢ > 1. Recall that 3 < 6. If we

choose § small enough, then Kg(n,q) < Ks(n,q) < K(n, g) +¢€/2. Since the last
expression of (13) is independent of I, we establish the inequality

Z @h;

ieN

”(0”; = u(pq”p/q =

< Z "(pqhi”p/q
plg  ieN

< [K(n, g) + &/21°[(1 + £9)IVoll§ + Ael)lll7]
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by virtue of the inequality:
(14) qx""ly < A(q _ l)xq + il—qu’

valid with any x, y, and 4, three positive real numbers. To complete the proof
of inequality (10), we‘have only to set 1 = geo/ukH(q — 1), x = |Vol|,,and
y = llolly> where & is small enough so that [K(n, q) + ¢2][1 + soj'uq <
K(n, q) + & and Ay(e) = [K(n, ) + &/2][A(g,)]* ™

§8. Optimal Inequalities

2.28 Theorem. Let M, {)e a C* Riemannian manifold with injectivity radius
8o > 0. If the curvature is constant or if the dimension is two and the curvature
bounded, then A,(0) exists and every ¢ € H{(M,) satisfies

lel, < K, liVell, + A,0)[el,.
For R" and H, the hyperbolic space, the inequality holds with A(0) = 0.
For the proof, see Aubin [13] pp. 595 and 597.

2.29 Theorem. There exists a constant A(q) such that every ¢ € Hi(S,)
satisfies:

lol3 < K%n, IVel§ + A@lelE f 1<q<2,
lolge~" < K¥a=Dn, )| Vol g~V + A@lely e ¥ 2sg<n

Let M, (n > 3) be a Riemannian manifold, with constant curvature and injec-
tivity radius 8, > 0. There exists a constant A, such that every ¢ € H iM,)
satisfies:

101 Zmn-2 < K2(n, DIVl + Allol}.
For the sphere of volume 1, the inequality holds with A = 1.

See Aubin [13] pp. 588 and 598. For the proof of the last part of the
theorem see Aubin [14] p. 293.

§9. Sobolev’s Theorem for Compact Riemannian Manifolds
with Boundary

2.30 Theorem. For the compact manifolds W, with C"-boundary, (r = 1), the
Sobolev imbedding theorem holds. More precisely:

First part. The imbedding H{(W) < HP(W) is continuous with 1/p = 1/q —
(k = £)/n > 0. Moreover, for any & >0, there exists a constant A,(&) such
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that every @ € ﬁ‘{(W,,) satisfies inequality (10) and such that every ¢ € H{(W,)
satisfies:

(13) loll, < [2'"K(n, q) + €]lIVelly + Ae)ll@l,

Second part. The following imbeddings are continuous:

(a) H}W) < Cg(W),if k — n/qg > s > 0, s being an integer,
(b) HYW) < C((W),if in addition s < r;
(c) HYW) c CYW),if asatisfies0 < a« < 1 and x < k — n/q.

Proof of the first part. Let (Q;, ¢;) be a finite C’-atlas of W,, each Q; being
homeomorphic either to a ball of R" or to a half ball D = E. As in the proof
of Theorem 2.20, we have only to prove inequality (9) for all f € H{(W) n
C™(W), a; being a C" partition of unity subordinate to the covering Q;.
When Q; is homeomorphic to a ball, the proof is that of theorem (2.20).
When Q; is homeomorphic to a half ball, the proof is similar. But one applies
the following lemma:

2.31 Lemma. Let  be C'-function on E, whose support belongs to D, then y
satisfies:

I, < 2'"K(n, @)Vl with I/p = 1/g = 1/n > 0.

Proof. Recall that E is the half-space of R” and D = B n E, where B is the
open ball with center 0 and radius 1.

Consider  defined, for x e E, by y(x) = ¥(x) and (%) = y(x), when
% =(=Xy, X3,..45 X)» (X1» X2,...,X,) being the coordinates of x. ¥ is a
Lipschitzian function with compact support, thus € H{(R") and according
to Theorem 2.14:

Wi, < K, @IV,

The lemma follows, since
2f|¢]”dE=f |y |”dE and 2[[Vnﬂ["d£=j \VJI*dE. W
F n E Rn

2.32 The proof that every ¢ € H{(W,) satisfies inequality (10) is similar to
that in 2.27. But here it is easier because the covering is finite.

Using Lemma 2.31, we can prove that all ¢ € H{(W,) satisfy (15); for a
complete proof see Cherrier [97].

Proof of the second part of Theorem 2.30. a) There exist constants C(g) such
that for all f € H{(W) n C(W)

(16) suplo; 1 < CADI f w3 if § > n.



52

2. Sobolev Spaces
Set h(x) = 0 for x ¢ D, and h(x) = (; f) ° ¢; }(x) for x € D.

Consider a half straight line through x, defined by 8 € 'S,_,(1), entirely
included in E. We have

1
[h(x)| < f | Vh(r, 6)| dr.
0

Now we proceed as in the proof of Lemma 2.22, but integration with respect
to 0 is only over half of S,,_,(1):

1/q 1 1/q
|h(x)],$ (wn_ 1/2)— 1<‘[ |Vh|q dx) ((U,.Z-l J- rin-1-4) dr) ,
E 0

with 1/ =1 — 1/4.
Since the metric tensor is bounded on Q; (by proper choice of the (Q;, ¢)),
without loss of generality), for some constant C,(§) we obtain:

sup |o; f | < CUPIV( ).
Inequality (16) follows; thus, recalling that I is finite, we have

sup | f1 < C(@ISf a7, with C(g) = 3 C(J).

iel

Since k > n/q, there exists § > n, such that the imbedding H{(W) <
HY(W) is continuous; we have only to choose 1/§ > 1/q — (k — 1)/n. So
there exists a constant C, such that every f € H{(W) n C®(W) satisfies:

sup| f1 < Cllf luy-

Thus a Cauchy sequence of C® functions in H(W) is a Cauchy sequence in
C°(W) and the preceding inequality holds for all f € HY{(W).

Fors > 0, apply the preceding result to |V‘f|,0 < # < s, and the continuous
imbedding H}(W) = Cy{W) is established (the proof is similar to that of
2.23).

b) Instead of taking f € C®(W), we may establish an inequality of the type:
a17) Iflle- < Allfllgs,,, WhenO<s<r,

for the functions f € C"(W), with 4 a constant and § > n.

According to Theorem 2.9, C"(W) is dense in H%, ,(W). Thus Hi, (W)
C*(W) and inequality (17) holds for all f € H2, ,(W). When k — n/q > s, we
may choose § > n, such that 1/§ > 1/g — (k — s — 1)/n. In this case the
imbedding H{W) < HI, (W) is continuous and so H{(W) = C{(W).
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¢) And now for the last part of Theorem 2.30:
Let f € H(W); according to the preceding result f e CO(W) because
— n/q > 0. Consider the function on D, defined by h(x) = («; f) o ¢; '(x),
for a given i € I. By a proof similar to that in 2.23, we establish the existence
of a constant B such that every f € Hi(W) satisfies

o\
Ih(x) — h)llx — yI~* < B( lew dx) ,

where § = n/(1 — a). Instead of considering a ball of radius ||x — y|[/2, we
must integrate over a cube K with edge ||x — y||, included in E, with x and y
belonging to K (see Adams [1] p. 109).

Then, since the metric tensor is bounded on Q;, there exists a constant B;
such that, for every pair (P, Q) of points of W, any f € Hi satisfies:

la(P) S (P) — o(Q)f(Q)I[d(P, Q)17* < Byl f | 3.

Thus we establish the desired inequality:

[f(P) = f(Q)Ild(P,Q)|™* < <Z 13.-)Hfl|u;7 < Const x || flug.

iel

where the last inequality follows from the first part of the Sobolev imbedding
theorem, since § = n/(1 — a) satisfies 1/§ > 1/q — (k — 1)/n. ]

§10. The Kondrakov Theorem

2.33 Let k > 0 be an integer, p and q two real numbers satisfying 1 > 1/p >
1/qg — k/n > 0. The Kondrakov Theorem asserts that, if Q, a bounded open set
of R", has a sufficiently regular boundary 0Q (¢Q of class C', or only
Lipschitzian):

(@) the imbedding HY(Q) = L () is compact.

(b) With the same assumptions for ), the imbedding HY(Q) = C*(Q) is
compact, ifk — a > n/q,with0 < a < 1.

(c) For Q abounded open set of R", the following imbeddings are compact:

AYQ) = LQ), BYQ) = C*(D).

Proof. Roughly, the proof consists in proving that if the Sobolev imbedding
theorem holds for a bounded domain €, then the Kondrakov theorem is true
for Q.

a) According to the Sobolev imbedding theorem 2.30, the imbedding
Hj < H{ is continuous with 1/§ = 1/q — (k — 1)/n. Thus we have only to
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prove that theimbedding of H} c L,iscompactwhen1 >1/p>1/§ — 1/n >0,
since the composition of two continuous imbeddings is compact if one of

them is compact. . N
Let o be a bounded subset of H{(Q), so if f € &,

I fllm3 < C, a constant.

By hypothesis H{(Q) c L,, with 1/r = 1/§ — 1/n,and there exists a constant
A such that for f € H{(Q),

1l < Al f -

Set K; = {x & Q/dist(x, Q) > 2/j},j € N. For f € o, by Holder’s inequality:

L_‘ If1dx < (L_M[frdx)“'(fﬂ_xjdx)l_ms AC(L_Kde)I—“,

which goes to zero, when j — cc. Thus, given ¢ > 0, there exists j, € N, such
that [vokQ — K;))]' "' < ¢/AC. Now, by Fubini’s theorem:

dt

d
B?f(x+ty)

L U(X+y)—f(x)ldst.K/ del

< iyl [Vfldx < IylIVfI,

K2j,

for Jyl < 1/jo since x + y € K;;,, if x € K. Since C*(Q) is dense in H}(Q),
the preceding inequality holds for any f € Hi(Q). Moreover, by Holder’s
inequatlity, fVf, < [Vf}],(volQ)!~!" < B, a constant.

Theorem 3.44 with 6 = ¢/B then implies that o is precompact in L,(Q).
Hence o is precompact in L(Q), because if f,, € & is a Cauchy sequence in
L,, it is a Cauchy sequence in L,

Va = Jls S Ma = SN S = Sl 74 < QAC) | £ — L4,

by Holder’s inequality, with 4 = [(r/p) — 1]/( — 1).

b) Proof of the second part of Theorem 2.33. Let A satisfy « < 1 <
inf(l, k — n/q). Then by the Sobolev imbedding theorem 2.30, HYQ) is
included in CX((), and there exists a constant 4 such that || f ||+ < A ]| HE-

Let of be a bounded subset of HY(Q); if f € «, I fllag < C, a constant,
Thus we can apply Ascoli’s Theorem, 3.15. & is a bounded subset of equicon-
tinuous functions of C°(QQ), and Q is compact. So & is precompact in CO(Q).
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Then, since

1fO) = fDx = ylI7% = (1S (x) = fDIIx = yI=H* f(x) = f(p)* 2

if a sequence f,, € o converges to fin C°(Q), || flc+ < AC and

If = fulles < QACPA( f ~ fullco) ™ + 1S = fullco.

Thus &/ is precompact in C*(Q).

c) 2 (Q)is inclélded in 2 (R"), so we can apply the theorem of Sobolev,
2.10, to the space H{(Q). A proof similar to those of a) and b) gives the desired
result.

§11. Kondrakov’s Theorem for Riemannian Manifolds

2.34 Theorem. The Kondrakovtheorem,2.33,holds for the compact Riemannian
manifolds M,, and the compact Riemannian manifolds W, with C'-boundary.
Namely, the following imbeddings are compact :

(@) H{M,) < L,(M,) and HYW,) < L, (W,), with 1>1/p>1/q~
k/n > 0.

(b) HYM,) < C(M,) and HYW,) = CXW,), if k —a>n/q, with
0<a<l.

Proof. Let (Q;, ), (i = 1,2, ..., N) be a finite atlas of M, (respectively, C'-
atlas of W), each Q; being homeomorphic either to a ball of R" or to a half
ball D = E. We choose the atlas so that in each chart the metric tensor is
bounded. Consider a C*® partition of unity {e;} subordinate to the covering
{Q.}. It is sufficient to prove the theorem in the special case k = 1 for the same
reason as in the preceding proof, 2.33.

a) Let {f,,} be a bounded sequence in H9. Consider the functions defined
on B (or on D), i being given:

hm(x) = (ai fm) ° (pi-l(x)-

Since the metric tensor is bounded on Q;, the set «/; of these functions is
bounded in H{(Q) withQ = Bor D. (The boundary of D is only Lipschitzian,
but, since supp(; o ¢; ') is included in B, we may consider a bounded open
set Q with smooth boundary which satisfies D = Q < E).

According to Theorem 2.33, &, is precompact. Thus there exists a subse-
quence which is a Cauchy sequence in L,. Repeating this operation success-
ively fori = 1, 2, ..., N, we may select a subsequence {f,} of the sequence
{ f}, such that «; £, is a Cauchy sequence in L p for each i.
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Thus {f,} is a Cauchy sequence in L,, since

am Bl < S lafe = afil

i=1

b) Let A satisfy « < A < inf(1, k — n/q). According to Theorems 2.21 and
2.30, the imbeddings HiM,) = CXM,) and HYW,) = CX(W,) are con-
tinuous. Thus the same proof used to show 2.33, b) establishes the result.

2.35 Remark. We have given only the main results concerning the theorems
of Sobolev and Kondrakov. These theorems are proved for the compact
manifolds with Lipschitzian boundary in Aubin [17]. To obtain complete
results for domains of R" see Adams [1].

2.36 Remark. Instead of the spaces Hf(M,), it is possible to introduce the
spaces HP(M,), which are the completion of &) with respect to the norm

lolap = Y 1A%, + Y V&I,

0=/¢<k/2 0=¢<(k—-1)/2

with &} the vector space of the functions ¢ € C*(M,),such that A’p € L (M,)
for 0 < 7 < k/2 and such that |[VA‘p|e L (M,) for 0 < ¢ < (k — 1)/2.
For these spaces, the Kondrakov theorem holds, as well as the Sobolev
imbedding theorem when p > 1 (see Aubin [17]).

Fork < 1, Hf = H?.Butfor k > 1, the spaces H; may be more convenient
for the study of differential equations.

§12. Examples
2.37 The exceptional case of the Sobolev imbedding theorem (i.e., HY* on
n-dimensional manifolds).
Consider the function f on R? defined by:
R?3x - f(x) = log|log |x|ll, for0 < [x| < 1/e,and f(x) =0,

for the other points x of R2,

19713 = 2 o _dr

o rllogri® 4
and f? is integrable; thus f € H3(R?).

As 1/g — 1/n = O here, we could hope that the function fwould be bounded,
but it is not: HY* ¢ L. On the other hand, e” is integrable:

1/e
Ilef[|1=2nf r|log r|dr, see (2.46).
0
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2.38 The Sobolev imbedding theorem H} < L, holds when 1/p = 1/q —

k/n > 0, but the Kondrakov theorem does not.
Consider the sequence of functions f, defined on R" (n > 4) by:

1 (n—2)/4 1 1-n/2
) = (E) (E+ ||x112) .

Let us verify f, € H3(R"). Now

© 1 2-n
113 = w,- ik | (”+r’) Pt =22 [ et
o \k k 0

is finite and so is
® 1 ~n
A1 = 00t [ = 22 )
0
= w,-y(n - 2) f L+ ™ dt=4
(4]

Also, f, belongs to Ly, with N = 2n/(n — 2), because

J‘mfi?’r"-ldr= 1"/2 J‘w l+r2 —"r"_ldr
0 k o \k

= f (I+2) " tdt = C < .
0

Let h(x) = fi(x) = (/k + 1/3/k)" =" for |x|| < 1,

Then hkeH B), where B is the unit ball of R" with center 0 Clearly,
I Akl 28y = /A When k — oo, the sequence h, is bounded in HZ(B) and
1Akl sy = C UN 20,

Now h(x) — 0 when [|x| # 0. Thus a subsequence of {h,} cannot converge
in Ly, without the limit being zero in L. But this contradicts the above
result (C # 0). The imbedding H3(B) in Ly(B) is not compact.

§13. Improvement of the Best Constants

2.39 Let M, be a complete Riemannian manifold with bounded curvature
and injectivity radius 6 > 0. According to Theorem 2.21, if 1/p = 1/q —
1/n > 0 then every ¢ € H{(M,) satisfies:

(18) lell, < BliVel, + Allel,,
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where A and B are constants. It is proved in 3.78 and 3.79 that K = {inf B
such that all ¢ € H{(M,,) satisfy inequality (18) for a certain value, A(B)} is
strictly positive. By Theorem 2.21, K depends only on the dimension n and
q: K = K(n, g). For the value of K(n, g), see Theorem 2.14. We are going to
show that the best constants K(n, g) can be lowered if the functions ¢ satisfy
some additional natural orthogonality conditions.

2.40 Theorem. Let M, be a complete Riemannian manifold with bounded
curvature and injectivity radius & > 0, and f(i € I) functions of class C*, with
the following properties: they change sign, their gradients are uniformly
bounded, and the family {| f;|%} forms a partition of unity (subordinate to a
uniformly locally finite cover by bounded open sets).

Then the functions @ € H{(M,), which satisfy the conditions

19 J l@IPfi filP~1dV =0 forall iel,
M,

satisfy inequality (18) with pairs (B, A(B)), with B as close as one wants to
27 "K(n, q). Thus the best constant B of inequality (18) is 2!/" times smaller
for functions ¢ satisfying (19).

Proof. Set f = sup(f,0)and f = sup(—f,0); thus f = f — 7. Unless other-
wise stated, integration is over M,,. Since |V|¢|| = |V¢| almost everywhere,
Proposition 3.49, we can suppose, without loss of generality, ¢ > 0. On the
other hand, the functions f; may be chosen more generally, for instance,
uniformly Lipschitzian.

By hypothesis, [ ¢?f?dV = [ 9?f?dV, and ¢f;, as well as ¢, belong to
H{(M,).

Let K > K(n, q) and 4, = A(K), the corresponding constant in (18).

loilf < KUV(@ DI + Aollofill,
lofile < KV DI + Aollofille.
Suppose, for instance, that | V(ef)ll, = IV(¢f)ll,. Then write:

liofilly =277l filly < 292KV FIE + Aollo FlD)
<2V KAV R+ 1V FID + 2972 Aol il

If §V(e f;)ll, < V(@ f)H,, we obtain a similar inequality, using ¢ f; instead
of ¢f;. Thus in all cases:

lefily < 27*"K| V(o f)liF + 277 Aol 0 f3.
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Consider again the computation in (2.27). Set H = sup;., supy|V/;| and
pick k an integer such that, at every point of M, at most k of the functions f;
are nonzero. Let J be a finite subset of I. Then there exist constants y and v
such that

Y lefild < 27K Voli + ukH| Vel ol + vkH ) ¢|]]

ielJ

+ 2774, ol

The second member does not depend on J, hence the corresponding series is
convergent. There exist two constants § and y, such that

AL

iel

< Y 10 filflprq

piq iel

ol = e, =
< 27K Volld + BIIVelE  lell, + 7lel?.
Using inequality (14), for any &, > 0, there exists an M, such that
(20) IVoli™ el < & llVeld + Mool

Thus the stated result is proved:
ol < 279"K* + Be))IVellg + (7 + MoBllollg.

To establish that 27 "K(n, q) is the best constant, when the functions ¢
satisfy (19), we have only to use the functions which are defined in Theorem
2.14. Indeed, for convenience, suppose f, is equal to 1 over a ball B with
center P and radius p < 4, and f, is equal to 1 over a ball B with center P
and radius p.

Consider the sequence of functions ,(m e N), which vanish outside
B U B and which are defined by

lpm(Q) = (rq/(q—l) + I/m)l—n/q _ (pq/(q—l) + l/m)l—n/q

for Q € B with r = d(P, Q), and for Q € B with r = d(P, Q). This sequence
satisfies:

m [ I Vmllg = 2717K(n, q),

while

lim [ YmlglYml; ' = 0. u

m=-®©



60 2. Sobolev Spaces
2.41 For applications to differential equations, the useful result is that

concerning H,. Since the best constant K(n, 2) is attained for the manifolds
with constant curvature, Theorem 2.29, 2~ "K(n, 2) is attained in that case,

Corollary. Let M, (n > 3) be a Riemannian manifold with constant curvature
and injectivity radius & > 0, and f{(i € I) C*-functions, having the properties
required in Theorem (2.40), and satisfying Af? < Const., for all i€ I. Then
there exists a constant A,, such that all functions ¢ € H, satisfy:

@21 loli < 272"K*(n, 2)|Voll3 + A2ll0ll3,
when they satisfy the conditions (19) with p = N = 2n/(n — 2).

Proof. This is similar to the preceding one. Use (14) instead of (18) and write:
[1veoniav = [river av + 4 [vor, s1av + [or10sp av
= [st1v0r av + [vsr + 385D av

Since | Vf;|* + 3Af? < Const, (21) follows. m

2.42 The preceding theorem can be generalized. A similar proof establishes
the following

Theorem. Let M, (n > 3), be a Riemannian manifold with bounded curvature
and injectivity radius 6 > O,and letf; j(i€ I,j = 1,2,...,m,m > 2 aninteger)
be uniformly Lipschitzian and non-negative functions, with compact support
Qi.j,havingthefollowingproperties:ﬁi_j NQ, =@ (forl <j<{ <mand
all i € 1), at each point P € M, only k of all the functions f;; can be nonzero, and

T Sl

iel j=1

Then the functions ¢ € H,, which satisfy the conditions

flq)]"ff_,-dV= f|¢|’f£1dV (forallieIandeachj=2,...,m),

satisfy inequality (18), where B can be chosen equal to m~'"K(n, q) + &, with
¢ > 0, as small as one wants. (The best constant B of inequality (18) is now
m'/® times smaller than K(n, q).
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2.43 Remark. On a compact manifold, if we consider the Rayleigh quotient
inf |Veol,ll@l 5 !, when ¢ satisfies some well-known orthogonality conditions,
we obtain, successively, the eigenvalues of the Laplacian Ay = 0,4, 4, ....
Even if we know some properties of the sequence 4;, we cannot compute 4;
from A,. It is therefore somewhat surprising that in the nonlinear case, the
sequence is entirely known, the mth term being m'"K~(n, g).

§14. The Case of the Sphere

2.44 Definition. On the sphere S,,, A will denote the vector space of functions
¥, which satisfy Ay = Ay, where 4, is the first nonzero eigenvalue of the
Laplacian.
Recall that A is of dimension n + 1. One verifies that the eigenfunctions are
¥(Q) = y cos[ad(P, Q)], for any constant y and any point Pe€S,, with
a? = R/n(n — 1), R being the scalar curvature of the sphere.
There exists a family &; (i = 1,2,..., n + 1) of functions in A, orthogonal in
L, and satisfying Y7X! &% =1 (see Berger (37)). In fact, if x=
(X4, X3, ..., Xy 1) are the standard coordinates on R"" !, ¢, is the restriction
of x;to S,.

Thus, we can apply Theorem 2.40 with f; = ¢; when n > 2, ¢ = 2, and
p = N = 2n/(n — 2). But to solve the problem 5.11, we need the somewhat
different conditions:

Eilo|NdV =0, instead of | ¢&|&| el dV = 0.
§'l s'l

If we want to use Theorem 2.40, we must choose as functions f;, the functions
& &Y~ But this is impossible for two good reasons. On the one hand,
{|&*¥} does not form a partition of unity; on the other, the functions
|&;1*'N do not belong to H,(S,). Nevertheless, these difficulties can be over-
come. We are going to establish the following.

2.45 Theorem. The functions &; are a basis of A;then all ¢ € Hi(S,), 1 <q <n,
satisfying [ & |@|PdV =0 (fori=1,2,...,n+ 1) satisfy:

(22) loll§ < [27'"K(n, q) + e]IVol§ + Aol
where A(g) is a constant which depends on € > 0, € as small as one wants.
Proof. Let 0 < n < 1/2 be a real number, which we are going to choose very

small. There exists a finite family of functions é;e A (i = 1, 2, ..., k), such
that:

k
1+n< Y& <1 +2n with || <272

i=1
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Indeed, let Q € S, and {y(P) the eigenfunction of A, such that £, attains its
maximum | at P = Q; since {5(P) = £(Q), we have

f 1Eo(P)I¥? dV(Q) = f |EAQ)I¥? dV(Q) = Const.

From this property of the family {{,}qcs,, Clearly the above family {£}
exists.

Consider h;, C' functions, such that everywhere h;¢; > 0 and such that
Hhil* = |&1%P] < (n/k)". Then

k
(23) 1< Yl <143
i=1

13

and

‘lhilp_(¢i| ]hi|¢_|§ilq/p

plpla-1 P
st (T -l -

according to Theorem 3.6, and since |¢;|%? + (n/k)* < 1. As in the proof of
Theorem 2.40, we suppose that ¢ > 0:

k
lels = 19l < < .;lltphillﬁ-

k
2 o hlf
i=1

plq

If Ilflilvq)lﬂq > ||| Volll,, using (23) and the hypothesis, from Theorem 2.29
we obtain

. - a’p
lohill§ < U(é.— + ef)p? dV + fq»'hf dV]
= U(E.- +eB)o? dV + f s dV]m

- a/p .
< 2"”[ '[ @P(hf + SS)dV] < 297 (h; + &)ll}
< 297[Ki(n, QI VL@(h; + €0)]lE + A(Qloh; + &)[19].
Set H = sup, ¢ ;< Sups, | Vh;|. Then there exist constants x and v such that:

IVLo(h + e)]ls < f (i + 5o |Vol* dV + uHIVol3™ o,

+ vHo]l5.
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Since (h; + €)? < hf + q(h; + €0)? ‘ey < A¥ + geo, then

1

k
lolf < 2¢PK(n, q)[§ Zl Ihil8|Vol* dV + gkeol Vel]

+ kuH|Vol§™ ol + VH“kllprIZ] + 2%k A(g)llell5.

Using (20) and (23), this leads to:

lold < K¥n, )[279"(1 + 3n) + 29Pqke, + kuHe,]|| Vo2
+ 29°k[Kn, q)uHM, + vHY) + A(g)]llo|2.

Since ek = (p/q)'Pn, setting ¢, = n/Hk and taking 5 small enough we
obtain the stated result.

Thus B in (18) is as close as desired to 2~ V"K(n, q).
We applied Theorem 2.29 for ¢ < 2. In the case g > 2 the proof is not
different, because ¢ is nonzero in (22). ]

§15. The Exceptional Case of the Sobolev Imbedding Theorem

2.46 We will expound the topic chronologically. The exceptional case of the
Sobolev imbedding theorem concerns the Sobolev space H}(M), where n is
the dimension of the manifold M, or more generally, the spaces Hy*(M).
When ¢ € H'| we might hope that ¢ € L. Unfortunately, this is not the
case. Recall Example 2.37; the function x — log|log ||x|| | defined on the ball
B,, = R? is not bounded but belongs, however, to H%(B,,). But when
@ € H' it is possible to show that ¢®, and even exp[a|@|""" "], are locally
integrable, if« is small ehough (Triidinger [261], Aubin [10]). More precisely,

Theorem 2.46. Let M, be a compact Riemannian manifold with or without
boundary. If ¢ € H'|(M,), then e and exp[a(|@||@l|z; )" "~ '] are integrable
for a a sufficiently small real number which does not depend on @. Moreover,
there exist constants C, pu and v such that all ¢ € H'| satisfy:

24) fMe“ 4V < C exp[ul Vol + viel

and the mapping H', 3 ¢ — e € L, is compact.

Proof. ) Using a finite partition of unity we see that we have only to prove
Theorem 2.46 for functions belonging to H "(B), where B is the unit ball of
R". Indeed, if the ball carries a Riemannian metric we use the inequalities of
Theorem 1.53, and if the function obtained has its support included in the
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half ball we consider by reflection the x,-even function which belongs to
1%(B), as in 2.31.

B) Now ¢ ¢ H7(B). For almost all P € B

(2% lo(P)| < w;2, L IVo(Q)I[d(P, ©)1' ™" dV(Q),

(see the end of 2.12). Then by Proposition 3.64, we obtain for all real p > n

1/k
lel, < w211Vl sup [L[d(f’, Q' "d V(Q)] )

PeB

with 1/k = 1/p — 1/n + 1. This yields:
! 1/k
lell, < w,,'_‘{*”""v(p""[f k=101 =n) dr]
0

_ + 1 —p/n]i*
=w..‘:”*||vtpu,["———n——”—] .

Thus there is a constant K such that for any p > 1:

(26) lol, < KiVel,p"~ /"

and we obtain

[[erav < ¥ k219plzpy o1
B

p=0
But according to Stirling’s formula, when p —» o
(p/n) |(p !)— 1p( =lp/n (p/en)p/un - 1/2(e/p)pp(n— p/n e(n— 1)p/nn -p/n— 1/2’

so that

f e dV < C exp(u|Vol?),
B

where C and u are two constants.

Remark. When M is compact, using Equation (15) of 4.13 after integrating
by parts, and the properties of the Green’s function yield immediately
(without step a) an inequality of the kind (25). Thereby we can obtain a
similar result when A*o € L, ,, instead of ¢ € H}2* (see Aubin [10]). When
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¢ € H,, with ms = n, exp[a|@|"*~ "] is locally integrable for « > 0 small
enough (see Cherrier [96]). Brezis and Wainger [67] obtained fine results in
this field by using Lorentz spaces.

) Using (26) leads to

@

@ ICXPEVIW""""”J dv < ¥ v(p!) T [KIVel, 27" Vpn/in — 1))
B

p=0

According to Stirling’s formula (p!)~!(p/e)Pp'/? < Const, thus the series in
(27) converges for (K||Vg||n)™ ™ Yy en/(n 1) < 1.

0) To prove the last statement of Theorem 2.46 we will use the Kondrakov
theorem 2.34: the imbedding H{(M) < L,(M) is compact. Let & be a
bounded set in H'}(M). Rewriting (24) with g¢ instead of ¢ (¢ > 1) implies
that the set {e“}, . ,is bounded in L, for all . Then |Ve*||, < |Vol|,l€°] nm-1)
shows that the set {e“}, . 4 is bounded in H}. Thus the result follows. W

§16. Moser’s Results

2.47 For applications, the best values of a and y in Theorem (2.46) are
essential. On this question the following result of Moser [209] was the first.

Theorem 2.47. Let Q be a bounded open set in R" and set a, = nw}"\™ . Then
allp e ISI'{(Q) such that |Veoll, < 1 satisfy for 1 < 1,,:

(28) j exp[a|@""" 1] dV < CJ dv.
Q Q

Here the constant C depends only on n.
a, is the best constant: if « > a, the integral on the left in (28) is finite but it can
be made arbitrarily large by an appropriate choice of .

Proof. Making use of symmetrization as in 2.17 reduces the problem to a
one-dimensional one. We have only to consider radially symmetric functions
in B,, the ball in R" of radius p which has the same volume as Q. Setg(llx])) =
@(x). On the other hand, we can suppose ¢ € C*(B,). Indeed, if ¢ € I%’{(BP)
there exists {¥;};cn, a sequence of C*® functions on B, vanishing on the
boundary, such that ; = ¢ in H} when i - co and such that y; = ¢ almost
everywhere (Proposition 3.43). Thus if we prove (28) for smooth functions,
(28) holds for all ¢ € H'(B,) since

j exp(a|@ """ ) dV < lim inf exp(a|y; "™~ 1) av.
B i~ JBY)
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So the problem is now:
For which « € R, do all functions g € C*([0, p]) which vanish at p satisfy
the inequality [5exp(z|g|"™™ ") dV < Cp"/n when [81g'I'""" ' dr < w;},?
Applying Proposition 2.48 below with ¢ = n and k = w,,, C exists if and

onlyif a < a, = nw/4~ Y. ]

The following proposition discusses the existence of the integral for all «.

2.48 Proposition. Let g be a Lipschitzian function on [0, p] which vanishes at
p. If [8lglr~tdr<k for some q>1 and some k>0, then
{5 exp(Blg(¥@= V)"~ ! dr < Cp"/n, with C a constant which depends only on
qand n, if and only if B < B, = nk*'* 9. Moreover, the integral exists for any
B, although the inequality holds only for B < B,.

Proof. Moser stated the result only for g = n, but he gave the proof for
arbitrary g > 1. We will follow his proof.
Sete™' = (r/p)*andf(t) = g(pe”""). Then f(0) = Oand we have (1/g) d(r?) =
— (1/n)p%e*" dt and f'(t) = —(p/n)g'(r)e™ "™

Thus P~ [&| f'| dt < k and we want to have:

29 J.:exp(ﬂlfl‘”‘"‘” —pdt<C.

By Holder’s inequality:

rois [1r1as ( [ d:)”qr‘«-*w < K¥A(e/n)a= 108 = (1/B)4" 11
Hence for f < B, the result follows at once:

[Cexpigisman — ar < f " expl(/B, — Drldt = (1 — BIB)".

[0}

If B = B, it is not easy to establish the result (see Moser [209] for the proof).

When B > B, the integral we are studying exists, but it can be made
arbitrarily large. Consider for ¢ > 0 the function f, defined as follows:
£@) = (t/B)4™ P/t fort < tandf(1) = (1/B,)9 V4fort > . Clearly these
functions satisfy the hypotheses and

[ expegi et — ez [ expiperg, — 1) de = exelepsB, — 137

T

tends to infinity as t — co.
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It remains to prove the convergence of the integral. Applying Holder’s
inequality we find that fort > ¢

t © 1/q
|f(‘)—f(f)|Sflf'Idts<f If'I"dt) (t— i,

Since we can choose 7 so that || f’|9 dt is as small as one wants, t* 97 'f (t) — 0
as t — c0. Hence B| f(¢)|¥@™Vt~! - 0 as t - oo and the integral in (29)
exists. |

2.49 Proposition. Let g be as in Proposition 2.48. Then there are constants C
and A such that

» 0
(30) f er~tdr<C exp[}. J lg'|re! dr];
0 0

the inf of A such that C exists is equal to 4, = ((q — 1)/n)*"'q7%.
Proof. It is easy to verify that all real numbers u satisfy
u < ki, + B lul@b;

thus according to Proposition 2.48,

4 C 4
f er" ' dr < — p"e**, where we pick k = f lg'1r~ ! dr. (]
0 n 0

Corollary 2.49. Let Q be a bounded open set of R and set u, = (n - !
n'~2"g 1 . Then all ¢ € H}(Q) satisfy

31) f e*dV < C L‘W exp(n VoI,
9]

where C depends only on n.

Proof. After symmetrization we use Proposition 2.49 with ¢ = n and we get
tn = A,w; 1. This result may also be obtained from (28) by using the in-
equality: uv < o, |u[""" D + u, |v|" withv = |Vo|,andu = ¢|Ve|,!. W

§17. The Case of the Riemannian Manifolds

2.50 Return to Theorem 2.46. Set 4, the sup of «, such that
expla(|@|ll@]z#)" "~ "] is integrable and f,, the inf of u, such that C and v
exist in inequality (24). Two questions arise. Does /i, depend on the manifold ?
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Is 4, attained? (Le., is u = ji, allowed.) The answers were first found in
Cherrier [95]. In Cherrier [96] there are similar results when ¢ € Hy* or
A*g € L, ;. He proved the following:

Theorem 2.50. For Riemannian manifolds M, with bounded curvature and

global injectivity radius (in particular this is true if M is compact), the best

constants fi, and &, in Theorem (2.46) depend only on n. They are equal to
b= =172 Y and a, = nwlY,

For compact Riemannian manifolds with C' boundary the best constants are

equal, respectively, to 2y, and 2™ '/~ Vg, .

W, is attained for the sphere S, and u, is attained for compact Riemannian

manifolds of dimension 2.

2.51 The case of the sphere. We have seen that we have the best possible
inequality (31) for ¢ € H}(Q) when Q is a bounded open set of R": u = p,
and v = 0in (24).

This is also the case for the sphere S,. The following was proved by Moser
[209] when n = 2, and by Aubin [21], p. 156.

Theorem 2.51. All p € H}(S,) with integral equal zero ([s, @ dV = 0) satisfy

32) Levdv < C exp( Vo),

where C depends only on n and p, = (n — 1" 'n*~2"w7',; in particular
llz = 1/161[.

2.52 As in other inequalities concerning Sobolev_spaces, the best constants
can be lowered when the functions ¢ also satisfy some natural orthogonality
conditions. Theorems similar to those in 2.40 and 2.42 are proved in Aubin
[21], p. 157. The sequence of best constants is {u,/m}, - For the sphere S,
the following is proved.

Theorem 2.52. Let A be the eigenspace corresponding to the first nonzero
eigenvalue. The functions ¢ € H(S,) satisfving [s Ee®dV =0 for all €A
and (¢ @ dV = 0, satisfy the inequality

Gy [ e av < cw expuvaln,

where it is possible to choose y > p,/2 as close to pu,/2 as one wants. C(u) is a
constant which depends on u and n.
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2.53 The case of the real projective space P,.

Theorem. For any & > O there is a constant C(g) which depends only on n such
that all y € H}(P,) with integral zero ([, Y dV = 0) satisfy

(34) j e*dV < Ce) expl(uy + ) VY 7].

pll

Proof. p: S, — P,, the universal covering of P, has two sheets. We associate
to y € Hi(P,) the function ¢ on S, defined by ¢(Q) = Y(»(Q)) for Q € S,.
The function ¢ so obtained satisfies the hypotheses of Theorem 2.52.
fs.0dV =2[p Y dV = 0and e*is orthogonal to A. Indeed, if Q and { are
antipodally symmetric on S,, ¢(Q)e”? = —&(0)e*? for &eA. Thus
[s.82)e°@ dV(Q) = —[s,&0)e*? dV((), and so vanishes.
By Theorem 2.52, for any ¢ > O there is C(¢) which depends only on n, such
that all y € H}(P,) satisfy

2| e*dvV=| e dV < C(e) exp[(u,l/Z +¢) | |Vol dV]

Pn Sn Sn

= C(e) exp[gu, + 2) j |Vy |"de|.
P.

Thus we get (34) with C(e) = C(¢/2)/2. n

§18. Problems of Traces

2.54 Let M be a Riemannian manifold and let ¥V = M be a Riemannian
sub-manifold. If f is a C* function on M, we can consider f the restriction of
ftoV,feCky)

Now if f € Hf(M), it is often possible to define the trace f of fon V by a
density argument and there are imbedding theorems similar to those of
Sobolev. Adams [1] discusses the case of Euclidean space. In Cherrier [97]
the problem of traces is studied for Riemannian manifolds; he also considers
the exceptional case.

The same problems arise for a Riemannian manifold W with boundary
0W. We can try to define the trace on 0W of a function belonging to H{(W).
The results are useful for problems with prescribed boundary conditions.



Chapter 3

Background Material

§1. Differential Calculus

3.1 Definition. A normed space is a vector space F(over C or R), which is
provided with a norm. A norm, denoted by | ||, is a real-valued functional on
&, which satisfies:

(@) §ax- |x|| =0, with equality if and only if x = 0,
(b) |lAx]| = |A|||x] for every xe & and A C,
(© lIx +yl < lix|l + llyll for every x, ye §&.

A Banach space B is a complete normed space: every Cauchy sequence in B
converges to a limit in B.

A Hilbert space $ is a Banach space where the norm comes from an inner
product:

H73(x,y) > (x,y>€eC, so [x]|* = {x, x.

B is an inner product provided that P is linear in x, that it satisfies {x, y) =
{y, x), and that {x, x> = 0 if and only if x = 0.

3.2 Definition. Let § and ® be two normed spaces. We denote by £(&, 6)
the space of the continuous linear mappings u from § to 6. Z(&, ®) has the
natural structure of a normed space. Its norm is

|ul = supflu(x)]|] forallxe@ with x| < 1.

&*, the dual space of §, is Z(§, C) or (&, R), according to whether  isa
vector space on C or R. & is said to be reflexive if the natural imbedding
F23x — X € F** defined by x(u) = u(x) for u e F*, is surjective.

3.3 Proposition. A linear mapping u from & to ® (where & and ® are two
normed spaces) is continuous if and only if there exists a real number M such
that |u(x)|| < M||x| for all xe §.

If B is a Banach space, then ¥(§&, B) is a Banach space.
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3.4 Definition. If Q is an open subset of §, (¥ and ® being two normed spaces),
then f:Q — G is called differentiable at x € Qif there exists a u € £(§, ®)such
that:

) Sx+y) — f(x) =u@) + lIylwx, ),

where w(x, y) —» 0 when y — 0, for all y such that x + ye Q. u, called the
differential of f at x, is denoted by f'(x) or Df(x).

3.5 Definition. Let f be as above. f'is called differentiable on Q if f is differ-
entiable at each point x € Q.
f is continuously differentiable on Q, written fe C'(Q, ®), if the map
Y:Qax - f'(x)e Z(F, 6) is continuous. feC'(Q 6) is twice differ-
entiable at x if  is differentiable at x. We write D*f(x) = y/'(x)e
£(&, £(§, 6) = L(& x &, 6).

fis C%, written f € C}(Q, 6), if y € C}(Q, Z(§, ©)). In this case D? f(x)
is symmetric. Df(x) € &,(&, ®), the space of continuous bilinear maps
from § x § to ®. Continuing by induction, we can define the pth differential
of fat x (if it exists): D?f(x) = D[D?~'f(x)].
If x - D?f(x) is continuous on £, fis said to be C?, f € C*(Q, ®), D?f(x) €
2,3.6) = L(F, 6).

1.1. The Mean Value Theorem

3.6 Theorem. Let & and ® be two normed vector spaces and f € C'(Q, ®),
with Q < §. If a and b are two points of Q, set

[a,b] = {xeF suchthatx =a + t(b— a) forsomete[0, 1]}.
Ifla,b] =« Qand if | f'(x)|| < M for all x € [a, b], then
@ 1f(®) — f(a)l < M|b — a.

3.7 Definitions. When § and ® have finite dimension: § = R", & = R?, a
mapping f is defined on Q < § by p real-valued functions f*(x', x?, ..., x"),
(@=1,2,...,p). Then feCQ, ®) if and only if each function f* has
continuous partial derivatives.

The matrix (n x p), whose general entry is 3f*(x)/dx', is called the Jacobian
matrix of f at x e Q.

The rank of f at x € Q, is the rank of f'(x), that is to say the dimension of the
range of f'(x).
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3.8 Taylor’s formula. Let f € C'(Q, ®), Q = &, (F and & two normed vector
spaces), and [x, x + h] < Q. Then

fx+h) = fx) + f(Oh + D*f(x)h* + ---

1
3 + 3 DO + [|hl"w(x, k)

where w,(x, h) = 0, when h - 0.
D* (x)h* means D*f(x)(h, h, ..., h), the h repeated k times. If f € C"**(Q, ®)
and if ® is complete, then

1
"h“"wu(X, h) = n—ll-f (l - t)nDrH-lf(x + th)hn-v-l dt.
+vJ0

3.9 Definition. A homeomorphism of a topological space into another is a
continuous one to one map, such that the inverse function is also continuous.
A C*diffeomorphism of an open set Q < & onto an open set in & is a C*-
differentiable homeomorphism, whose inverse map is C*, where & and ® are
two normed spaces.

1.2. Inverse Function Theorem

3.10 Theorem. Let B and ® be two Banach spaces and f € C'(Q, ®), Q = 8.
Ifat xy € Q, f'(x,) is a homeomorphism of B onto ®, then there exists a neigh-
borhood © of x, such that @, the restriction of f to ©, is a homeomorphism
of © onto f(©).

If f is of class C*, ® is a C*-diffeomorphism.

Implicit function theorem. Let €, § and B be Banach spaces and let U be an
open set of € x §. Suppose f € CP(U, B) and let D, f(x,, yo) € L (T, B) be the
differential at y, of the mapping y — f (xo, y). If at (xo,y0) € U, D, f(xo, yo) is in-
vertible, then the map (x, y) = (x, f(x, y)) is a C? diffeomorphism of a neighbor-
hood Q < U of (x4, yo) onto an open set of € x B.

1.3. Cauchy’s Theorem
3.11 Let B be a Banach space and f(t, x) a continuous function on an open

subset U = R x B with range in B.
Consider the initial value problem, for functions: t — x(t) € B:

4 ‘;-—’: = f(t, x), x(to) = xo with (to, Xo) € U.
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If, on a neighborhood of (ty, Xo), f(t, x) is a uniformly Lipschitzian in x, then
there exists one and only one continuous solution of (4), which is defined on a
neighborhood of t,.

If f is CP, the solution is CP*'. Moreover the solution depends on the initial
conditions (tq, x,); set x(t, ty, Xo) the unique solution of (4). The map :
(t, tg, xo) = x(t, tg, Xo) € B is continuous on an open subset of R x R x 9B.
If fis CP, y is CP.

Recall that we say f(t, x) is uniformly Lipschitzianin x on ® < R x B if
there exists a k such that for any (¢, x,) € © and (¢, x,) € ©,

©) £t xy) = f(t 3l < kllx;y = X2l

It is possible to have a more precise result on the interval of existence of the
solution. By continuity of f, there exist M, a, and p, three positive numbers,
such that | f(¢, x)| < M, for any (t, x) eI x B, (p) = U, with I = [tq — «,
to + a] and B, (p) = {xe B||x — xoll < p}. If Ma < p, the solution of (4)
exists on L.

§2. Four Basic Theorems of Functional Analysis
2.1. Hahn-Banach Theorem

3.12 Let p(x) be a seminormdefined on a normed space ®,  a linear subspace of
®, and f(x) a linear functional defined on §&, with| f(x)| < p(x)for x€ §. Then
f can be extended to a continuous linear function f on ® with | f(x)| < p(x) for
allx < 6.

A seminorm is a positive real-valued functional on & which satisfies b) and
c)of 3.1.

2.2. Open Mapping Theorem

3.13 Under a continuous linear map u of one Banach space onto all of another,
the image of every open set is open. If u is one-to-one, u has a continuous linear
inverse.

2.3. The Banach-Steinhaus Theorem

3.14 Let B and § be Banach spaces and a family of u, € (B, §), (x € A agiven
set). If for each x € B, the set {u,(x)},c 4 is bounded, then there exists M, such
that ||u,| < M for all a € A. In particular, if u; € £(B, &) and if lim,_. ., u(x)
exists for each x € B, then there exists an M such that |u;| < M forallieN,
and there exists a u € £(B, ¥) such that u(x) — u(x) for all x € B.

But u; does not necessarily converge to u in (B, §).
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2.4. Ascoli’s Theorem

3.15 Let R be a compact Haussdorff space and C(8) the Banach space of the
continuous functions on K with the norm of uniform convergence.

A sybset A < C(R) is precompact (4 is compact), if and only if it is bounded and
equicontinuous.

(Recall 4 is said to be equicontinuous if, to every ¢ > 0 and every x € &, there
corresponds a neighborhood U of x such that | f(x) — f(y)| < ¢ for all
yeU and all f € A).

§3. Weak Convergence. Compact Operators

3.16 Definition. {x;}, a sequence in § a normed space, is said to converge
weakly to x € § if u(x;) — u(x) for every u € *, the dual space of § (see defini-
tion (3.2)). A subset A4 is said to be weakly sequentially compact, if every
sequence in A4 contains a subsequence which converges weakly to a point in A.

3.17 Theorem. A weakly convergent sequence {x;} in a normed space  has a
unique limit x, is bounded, and

(6) x|l < lim inf || x;||

=

3.1. Banach’s Theorem

3.18 Theorem. A Banach space B is reflexive, if and only if its closed unit ball
B,(0) is weakly sequentially compact.

Particular case. In a Hilbert space, a bounded subset is weakly sequentially
compact.

3.19 Definition. Let & and ® be normed spacesandQ <« . Amapf: Q- 6
(not necessarily linear) is said to be compact if f is continuous and maps
bounded subsets of U into precompact subsets of G.

3.20 Schauder fixed point theorem. 4 compact mapping, f, of a closed bounded
convex set Q in a Banach space B into itself has a fixed point.

3.2. The Leray-Schauder Theorem

3.21 Let T be a compact mapping of a Banach space B into itself, and suppose
there exists a constant M such that ||x| < M for all xeB and g€ [0, 1]
satisfying x = aTx. Then T has a fixed point.
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3.22 Definition. Let & be a normed space on C and T € (¥, §). A number
AeC is called an eigenvalue of T if there exists a non-zero element x in &
(called an eigenvector) satisfying Tx = Ax. The dimension of the null space of
the operator AI — T is called the multiplicity of A.

3.23 Theorem. The eigenvalues of a compact linear mapping T of a normed
space § into itself form either a finite set, or a countable sequence converging to
0. Each non-zero eigenvalue has finite multiplicity. If A # Qis not an eigenvalue,
then for each f € § the equation Ax — Tx = f has a uniquely determined solu-
tion x € & and the operator (AI — T)™! is continuous.

3.3. The Fredholm Theorem

3.24 Let T be a compact linear operator in a Hilbert space $ and consider the
equations:

(7) X—Tx=f$
(8) y—T*y =y,

where T* is the adjoint operator of T, ({Tx, y) = {x, T*y) for any x and y in
9). Then the following alternative holds:

(o) either there exists a unique solution of (7) and (8) for any f and g in 9, or

(B) the homogeneous equation x — Tx = O has non trivial solutions. In that
case the dimension of the null space of 1 — T is finite and equals the dimen-
sion of the null space /™* of I — T*. Furthermore (7) has a solution (not
unique of course) if and only if { f, y> = O for every ye #*.

§4. The Lebesgue Integral

3.25 Definition. Let 5# be a locally compact Haussdorff space and C,(#)
the space of real-valued continuous functions on s with compact support.
A positive Radon measure y is a linear functionnal on Co(#), u: f - u(f)eR,
such that u(f) > Ofor any f > 0.

3.26 Definition. Let u be a positive Radon measure as above. We define an

upper integral for the non-negative functions as follows. If g > 0 is lower
semicontinuous:

u*(g) = sup u(f) forall f e Co(#) satisfying f < g,

and for any functions h > 0: y*(h) = inf u*(g) for all lower semicontinuous
functions g satisfying h < g.
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3.27 Definition. Let u be a positive Radon measure as above. A function f is
said to be p-integrable, if there exists a sequence f, € Cy() such that
#*(1f = ful) = 0. Then {(f,)} converges,and we set | f dy = lim, ., u(f,)-

3.28 Definition. A set A = X is measurable and with finite measure u(A4), if its
characteristic function y, is integrable (by definition y(x) = 1 for x € 4,
x4(x) = O for x ¢ A). We set u(A4) = | x, du. We say that a property holds
almost everywhere on 2 if it holds for all x € # except on a set 4 of measure
zero. Almost all points means all points, except possibly those of a set with
measure zero.

3.29 Remark. By Definitions 3.26 and 3.27, a non-negative lower semi-
continuous function g, with u*(g) finite, is integrable and p*(g) = | g du.
One can prove that an integrable function f is equal almost everywhere to
g1 — 92, With g, and g, non-negative lower semicontinuous integrable
functions.

A compact subset & < J# is measurable and with finite measure. An open
subset (Q is measurable (xq is lower semicontinuous).

3.30 Definition. f is said u-measurable (or measurable, when there is no
ambiguity) if for all compact sets ] and all ¢ > 0, there exists a compact set
!, = K, such that u(& — &,) <& and such that the restriction f/R, is
continuous on K,.

If a sequence of u-measurable functions converges almost everywhere, then
the limit function is y-measurable.

3.31 Remark. For convenience, we develop the theory for real-valued
functions; however, the theory of the Lebesgue integral is similar for the
functions f on # with values in B, a Banach space.

Given y, first we define | f du for continuous functions f with compact
support. Let { f;} be a sequence of simple functions (f; = Yhoidy Xa,» With
dy; € B and 4;measurable sets), which converges uniformly to f. By definition
j'fdﬂ = lim, _, Z';ﬂ WA )8y;.

Then we define the integrable functions g, as in definition 3.27. §is u-integrable
if there exists a sequence of continuous functions f; with compact support,such
that p*(|g ~ ful) > 0.

4.1. Dominated Convergence Theorem

3.32 The first Lebesgue theorem. Given u a positive Radon measure on ¥ a
locally compact Haussdorff space, let {f,} be a sequence of y-integrable func-
tions, (f,: # - B a Banach space) which converges almost everywhere to f.
Then f is integrable, { f,du— | f duand [ ||/ — f,| du — O, if there exists h,
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a non-negative function, satisfying u*(h) < oo and || ]:(x)ll < h(x) for all n and
xeX.

Recall u*(h) is finite, in particular, if h is integrable.

4.2. Fatou’s Theorem

3.33 Given u as above. Let {h;} be an increasing sequence of non-negative
Sfunctionson #,0 < h, <---<h;<hy, <---.Then

lim p*(h,) = /,t"(lim hi).

i—= o i=w

3.34 Theorem. Fromnow on, we suppose that # ,the locally compact Haussdorff
space, is a denumerable union of compact sets, and that the Banach space B is
separable. A measurable function f: # — B is p-integrable if and only if
w*(1f1) is finite.

4.3. The Second Lebesgue Theorem

3.35 Let f be a real-valued function defined on [a, b] < R. If f is integrable on
[a, b] with the Lebesgue measure, then F(x) = % f(t)dt has a derivative
almost everywhere, and almost everywhere F'(x) = f(x), fora < x < b.

The Lebesgue measure on R" corresponds to the positive Radon measure,
defined by the Jordan integral of the continuous functions with compact

support.

3.36 Theorem. If a function F(x) is absolutely continuous on [a, b], then there
exists f(x), an integrable function on [a, b], such that F(x) — F(a) = [% f(t) dt,
and conversely. Also F(x) has a derivative almost ever ywhere, which is f(x).

Recall that F(x) is said to be absolutely continuous on an interval I if, for
eache > 0, thereexistsad > 0,suchthat Y f-, | f(y) — f(x;)| < & whenever
Ixi, yi[, i=1,2,...,k are nonoverlapping subintervals of I, satisfying
Ytilyi — x;| < 4. In particular, a Lipschitzian function is absolutely
continuous.

4.4. Rademacher’s Theorem

3.37 A Lipschitzian function froman open set of R" to R? is differentiable almost
everywhere.
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4.5. Fubini’s Theorem

3.38 Let # and F be locally compact separable metric spaces. Given two
positive Radon measures p on ¥ and v on F, if f(x,y): # x F >R is
U @ v-integrable, then for v-almost all y, f(x) = f(x, y) is p-integrable and for
p-almost all x, f(y) = f(x, y) is v-integrable. Moreover

f £(%, ) dulx) dv(y) = f [ j IR dv(y)] du(x)

-| [ [ 16 d#(x)] av(y).

Fubini's Theorem is very useful, but for most applications, we don't know
that f(x, y) is 4 ® v-integrable.
We overcome this difficulty as follows: More often than not, it is obvious that
f(x, y) is u ® v-measurable. (Is it not a recognized fact, that function is
measurable, when it is defined without using the axiom of the choice!)

Then by using Theorems (3.34) and (3.39), we shall know if f(x, y) is
u @ v-integrable or not. Recall that a locally compact metric space is separ-
able if and only if it is a denumerable union of compact sets.

©)

3.39 Theorem. Let (), u) and (¥, v) be as above, and f(x,y) a u ® v-
measurable function. Then

W@ v*(f1) = w*lv*(1 D] = v*[u*(1 /D]

§5. The L, Spaces

3.40 Defimition. Let ) be a locally compact separable metric space and y a
positive Radon measure. Given p > 1 a real number, we denote by L ()
the class of all measurable functions f on J for which u*(| f|?) < <. We
identify in L (o) functions that are equal almost everywhere. The elements of
L (5¢) are equivalence classes under the relation: f, ~ f, if f = f, almost
everywhere. L (o), (denoted by L, when no confusion is possible), is a
separable Banach space, the norm being defined by:

1/p
(10) 111, = ( f 1P dp) .

The Banach space L () consists of all u-essentially bounded functions.
The norm is:

(11) Iflle = peesssup|f(x)| =inf sup |f(x)I,

A xelX—A

where A ranges over the subsets of measure zero.
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3.41 Proposition. Co(¥) is densein L (#) for all 1 < p < .

For p = 1, this is true by definition 3.27. The result is not true for L_,
of course; otherwise every function belonging to L, would be continuous.
If s is an open set Q of R" and u the Lebesgue measure, we have a more
precise result, proved by regularization (see 3.46 below): 2() is dense in
L,(Q). Here 2(€Q) is the set of C*-functions with compact support lying in Q.
Likewise, if (V, g) is a C® Riemannian manifold and x the Riemannian
measure, Z(V) isdense in L (V). 2(V) consists of the C*-functions on V, with
compact support.

3.42 Proposition. For | < p < 0, L}(#) is isometric isomorphic to L ()
with 1/p + 1/q = 1. Hence L, is reflexive provided 1 < p < .

The isomorphism: L, 3g — u e L} is defined as follows:
LS —u(f) = [fadu

Indeed fg, which is u-measurable, is u-integrable according to Hoélder’s
inequality 3.60:

(12) Ifally < 1/ 15lgll,-

3.43 Proposition. Let {f,} be a sequence in L, (or in L) which converges in
L, to feL,. Then there exists a subsequence converging pointwise almost
everywhere to f.

3.44 Theorem. Let Q be an open set of R". A bounded subset of < L,Q) is

precompact in L (Q) if and only if for every number ¢ > 0, there exists a number
6 > 0and a compact set ] < Q, such that for every f € .

f fP dx < e
Q-1
and

fmx 1)) - f()Pdx <& when || <3,
!

where without loss of generality, we suppose that d is smaller than the distance
from & to 0, the boundary of Q.

3.45 Theorem. Let 1 < p < c and {f,} be a bounded sequence in L (),
converging pointwise almost everywhere to f. Then f belongs to L, and f,
converges to f weakly in L,. The result does not hold for p = 1, of course
(see below).



80 3. Background Material
5.1. Regularization
3.46 Let y e 2(R") be a non-negative function, whose integral equals 1. For
convenience, we suppose supp y < B.

For k € N, consider the function y,(x) = k"y(kx), [7ll, = 1, and y,(x) - 0
almost everywhere (except for x = 0) when k — co. In fact {y,} converges
vaguely to the Dirac measure concentrated at zero. Let f be a function locally

integrable on R” (this means that /4 is integrable for any compact & < R");
we define the regularization of f by:

(13) 70 = (s () = f w(x = NS0 dy.

Obviously f, is C®. Moreover, if f € L(R"), then { Jx} converges to f in
Ll <p < ),and

(14 LAl < 1S 1

When f € Co(R™), the result is obvious, since f, converges uniformly to f:

Ifx(X)—f(X)l=‘JYAX—Y)[fO)—f(X)]dy < sup |f() - S,

[ly==xll<1/k

so the assertion follows from the uniform continuity of f. Clearly | f, — fI|,
—Owhenk - 0. If f € L(R"), for each & > 0, there exists f € Co(R") such
that | f — f|l, < & (Proposition 3.41). But

1= Flosifi— A+ 0fi= fl,+0f = Fl, <2+ 14— Sl

where we used inequality (14), which we are going to prove now. According to
Holder’s inequality (21), g being defined by 1/p + 1/g = 1:

Ges )] < f [l — $)172* 4] £(3)| dy
1/ 1/
< [ [nx-» dy] [ j nx = NIFOIP dy] ’

1/p
- Uh(x - y)lf(y)l’dy] .

Hence by Fubini’s theorem, 3.38:

fm . fPdx < flfl" & [nx = dx = 1715,
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5.2. Radon’s Theorem

3.47 Theorem. Let B be a uniformly convex Banach space and { f} a sequence
in B which converges weakly to f € B.

If L fill > 1 f1l, then fy — f strongly (| f — fill = 0) as k - 0.

Recall that B is said to be uniformly convex, if ||gel = ||kl = 1 and
lgi + hll = 2 implies ||k, — gi|l = 0, when k — o, for sequences {g,} and
{h,} in B.

A uniformly convex Banach space is reflexive; the converse is not true. The
spaces L (1 < p < o) are uniformly convex. This result is due to Clarkson
as a consequence of his inequality 3.63 below.

[t is obvious that a Hilbert space is uniformly convex.

Proof . If f = 0, we have nothing to prove: || ;|| = 0.

If f # 0, we can suppose without loss of generality that || f{| = 1 and that
Il £l # O for all k. Set g, = || fil “*fx and h, = f for all k.

By the Hahn-Banach theorem 3.12, there exists uy € B* such that ug(f) = 1
and ||lug| = 1. Since f, — f weakly, we have as k — cc:

uo(@) = ILfell ™ 'uo(fi) = uo(f) = 1.
Using [lup|| = 1 we get:
11+ uo(g)l < g + Sl <2

Letting k — oo, we obtain ||g, + f| = 2. Thus |g, — fI| = 0and || f — f£ill
=0, since | f — fill < If — gl +11 = 1 £l [ |

3.48 Definition. Let u be a locally integrable function in Q, an open set of R".
A locally integrable function 1) is called the weak derivative of u with respect
to x! if it satisfies

J¢de = —J‘ua1 o dV forall g € 2(Q).
Q Q
By induction we define the weak derivative of u of any order if it exists.

Proposition 3.48. Let f be a Lipschitzian function on a bounded open set Q < R".
Then 0, f exists almost everywhere, belongs to L(Q), and coincides with the
weak derivative in the sense of the distributions.

Proof. According to Rademacher’s Theorem (3.37), d; f exists almost every-
where, since f is a Lipschitzian function. Moreover, d; f is bounded almost
everywhere, since | f(x) — f(y)| < k||x — y|| implies |9, f| < k, when J; f
exists.
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On any line segment in Q, f is absolutely continuous. Thus by Theorem (3.36),
d, f defines the weak derivative with respect to x". d; f is the limit function,
almost everywhere, of a sequence of u-measurable functions; hence it is
measurable (see definition 3.30).

Since |9, f [P < kP, p¥.q (18, f 1) < kPu(Q) < . Consequently &; f € L (Q),
according to theorem (3.34). ]

3.49 Proposition. Let M, be a C® Riemannian manifold and ¢ € H{(M); then
almost everywhere |V]p|| = |Vo|.

Proof. Since a Riemannian manifold is covered by a countable set of balls, it is
sufficient to establish the result for a ball B of R*, provided with a Riemannian
metric. Denote the coordinates by {x'}.

First of all we are going to prove the statement for C® functions. Let f € C®(B).
When f(x) >0, 3; f = ;| f|, and when f(x) <0, é; f = —3d;|f|. Thus the
result will follow, once we have shown that the set & of the points x € B,
where simultaneously f(x) = 0and | Vf(x)| # 0, has zero measure. Since, for
x e o,|Vf(x)| # 0,thereexists aneighborhood ®, of x,such that @, n f *(0)
is a submanifold of dimension n — 1 (see for instance Choquet-Bruhat [99]
p. 12). Consequently, u[®, N f~!(0)] = 0. As there exists a countable basis
of open sets for the topology of B, o is covered by a countable set of ¥;(x € ).
Let {#, }ren be this set. We have o < (J=, %, and p[¥, N ] =0
thus (&) = 0.

Now let ¢ € H2(B). By definition, C*(B) n H%(B) is dense in H(B). So
using Proposition 3.43, there exists { f;}, a sequence of C* functions on B, such
that || f; — @lzs — 0 and such that f;— ¢ ae. and J; f; - h; a.e. for all
i(1 <i < n)asj— oo, where h; denotes the weak derivatives of ¢.

Define for a function f, f* = sup(f,0) and f~ = sup(—f, 0). Obviously

fi»o*aeand f; 5o~ ae.

Moreover f is a Cauchy sequence in H%, which converges to an element of

H?%, which is ¢*, since §|ff — ¢*||, » 0. Thus ¢ * € H? likewise ¢~ € Hf.

According to Proposition 3.43, taking a subsequence { f;} of { f;}, if necessary,

we have forall {1 < i < n):

0;ff = hi ae.and 9, f; — h; ae. as k —» oo, where h;" (respectively, h;")

denote the weak derivatives of p* (respectively ¢ ™).

Since we have proved that almost everywhere |0, f,| = |3;] fil|, lettingk — o0

yields Ih;| = |h{ + hi | a.e. Likewise, d;, fy 0;, fx = 0:,1 fil 0:,1 fi| ae. gives
= (h; + h;Xh;; + h;)ae. Hence |Vo| = |V|p||a.e. [ ]

3.50 Proposition. Let W, be a compact Riemannian manifold with boundary
ofclassC". If eC""(W) A BE(W) (1 < k < 1), then f and its derivatives up
to order k — 1 vanish on the boundary oW .

Proof. Let {Q,, ¢;} be an atlas of class C* such that @/(Q,) is either the ball
B < R” or the half ball D = B E. Consider a C® partition of unity {a;}
subordinate to the covering {Q}.
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Choose any point P of 0W. At least one of the a; does not vanish at P. Let
%;,(P) > 0 and set f = (x;, ) @;'. feC*~ l(D) ~ Hp(D). For all u and v
belonging to C*(D)

(15) jn d,udx + Jualn dx = f uo(é,, V) do,
D D aD

where 7 is the outer normal and &, the first unit vector of the basis of R".

Ifu € 9(D), the right side vanishes. Hence, by density, the left side of (15) is
zeroforallue A ?(D). In particular, if ii is f or one of its derivatives up to order
k — 1, for all v e C(D):

I ﬁD(El, f’)do‘ = J‘Dalﬁdx + J.ﬁall)dx= 0.
oD D D

Consequently it vanishes on dD, and f, as well as its derivatives up to order
k — 1, vanishes at P.

Remark. It is easy to prove the converse when f € CX(W): If f and its deriva-
tives up to order k — 1 vanish on dW, then f € 21 L(W).

§6. Elliptic Differential Operators

3.51 Definition. Let M, be a Riemannian manifold. A linear differential
operator A(u) of order 2m on M,,, written in a local chart (2, @), is an expres-
sion of the form:

2m
(16) Aw) = ) A . 1§
¢=0

where a, are /-tensors and u € C>"(M). For simplicity, we can write A(u) =
a,V‘u. The terms of highest order, 2m, are called the leading part (a, is
presumed to be nonzero).

The operator is said to be elliptic at a point x € Q, if there exists A(x) > 1
such that, for all vectors ¢:

a7 112727 (x) < a3 ™ m(X)q, -~ £y < M) NENP™

We say that the operator is uniformly elliptic in Q, if there exist 4, and
A(x), 1 < A(x) < Aq, such that (17) holds for all x € Q.

3.52 Definition. A differential operator A of order 2m defined on M, is written
A() = f(x,u,Vy,...,V®™u), where f is assumed to be a differentiable
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function of its arguments. Then the first variation of f at ug€ C 2m(Q) is the
linear differential operator

2m 5 (x, ug, Vitg, . - -, V2™i1p)

A (v) = L2
(18) ! Igo avﬂnaz"'uu ' ‘
- T (x, ug, Vu V3my,)Vé
= av’u s Ug, VIRERE) 0 .

If A, is an elliptic operator, then A is called elliptic at ug.

6.1. Weak Solution

3.53 a) Let A be a linear differential operator of order 2m defined on a
Riemannian manifold M, with or without boundary. Until now, by a solution
of the equation A(u) = f we meant a function ue C*™(M) such that the
equation is satisfied pointwise. There are other quite natural ways that a
more general function, such as an element of H5, (M) or a distribution, can
be said to be a solution of A(x) = f.

b)If f € L, and if the coefficients of A are measurable and locally bounded,
we say that ue H5,(M) is a strong solution in the L, sense of A(u) = f if
there is a sequence {¢;} of C* functions on M such that ¢; — uin H5,(M)and
A(p)) = fin LP(M).Indeed, in this case the weak (distribution) derivatives up
to order 2m are functions in L?(M) and A(u) = f almost everywhere.

c) Let A(u) = a,Véu. If the tensors a, e C‘(M) for 0 < / < 2m, then we
define the formal adjoint of A by

AY9) = (=1YV(pa,).

We say that ue L,(M) satisfies A(u) = f, in the sense of distributions, if
for all ¢ € 2(M):

LuA*(fp) av = L fodV.

If the coefficients a, e C*(M), then a distribution u satisfies 4(u) = f if for all
@ € 2(M):

u, 4%()> = £, ¢).

Now a given distribution is some weak derivative of some order, say r, of a
locally integrable function. In this case {u, 4*(¢)) makes sense if the coef-
ficients satisfy a, € C**"(M).
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d) If the operator can be written in divergence form, i.e., if we can write
A(u) as

Aw) = . ;S Ve a@l BV ) + {Zob,V’u
< m =
0<slsm

where a, , are k + /-tensors and b, /-tensors, then u € H,(M) is said to be a
weak solution of A(u) = fwith f e L,(M) if for all p € D(M):

Y (-1t J a,, NuVo dV + Y | ob,ViudV = J- foav.
05¢5m M mo "

Here we need only suppose that a, , are measurable and are locally bounded
for all pairs (k, £). Note these definitions of weak or generalized solutions are
not equivalent; they depend on the properties of the coefficients. But the
terminology is standard and does not really cause confusion.

e) For a nonlinear differential operator of the type
A) = Y (= 1YV, . A% 7 (x,u, Vu, ..., V™) = (= 1)'V’4,,
¢=0

where A, are /-tensors on M, ue C™(M) is said to be a weak solution of
A(u) = 0, if for all ¢ € 2(M):

Z A7 (0, Vu, ., VMY, e dV = 0.
£=0

6.2. Regularity Theorems

3.54 And now some theorems concerning the regularity of (weak) solutions
in the interior, then on the boundary, of the manifold. Roughly speaking, we
can hope that if we can define in some sense, for some function u, A(u) = f,
then u will have the maximum of regularity allowed by the coefficients. This is
almost the case. Precisely, we have:

Theorem. Let Q be an open set of R" and A = a,V* a linear elliptic operator of
order 2m with C® coefficients (a,€ C*(Q) for 0 < £ < 2m). Suppose u is a
distribution solution of the equation A(u) = f and f € C**Q) (resp., C*(Q)).
Then ue C**2™%(Q), (resp., C*(Q)) with0 < a < 1.

If f belongs to HE(Q), 1 < p < o0, then u belongs locally to Hf . 5.

Proof. Although it is basic, I did not find exactly this theorem in the literature.
First of all, if f € C*(Q), u € C*(Q); this is the well-known result of Schwartz
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(250). On the other hand, if f € H¥(Q) (k = 0),thenue H 2, ,m locally accord-
ing to Bers, John and Schechter (50) p. 190. Now if f € C**(Q), obviously f
belongs locally to HZ. Therefore u € Hz., ,,, locally and according to Morrey
(204) p. 246, u € C*™**%(Q). Finally, let us establish the result when /' € H(Q)
p # 2. There exist continuous v and integer r > O such that u = A"v (Bers, John
and Schechter (50) p. 195). But AA" is elliptic of order 2(m + r) and v belongs
locally to L,. Thus if f €e HE(Q) (1 < p < ), then o belongs locally to
HE. 3(m+r and ue Hf, ,,, locally, according to Morrey (204) p. 246. [

3.55 Theorem (Ladyzenskaja and Uralceva [173] p. 195). Let Q be an open set
of R* and A a linear elliptic operator of order two, with C*-* coefficients (k > 0
an integer, 0 < a < 1). If a bounded function u€ H,(Q) satisfies A(u) = f
almost everywhere, where f € C**Q), then ue C***%Q). The same con-
clusion holds if u € H,(Q) is a weak solution of A(u) = f.

For this last statement, the operator must be written in divergence form. In
general this requires a”/ € C*(Q). Then, according to Ladyzenskaja (173), u is
locally bounded (p. 199), and belongs locally to H, (p. 188). Thus we can apply
the first part of theorem 3.55, on any bounded open set ® with ©® < Q.

Remark. If the coefficients and f belong locally to H,, with g > 2 + n/2,and
ifueH, ,.,then we can prove (see Aubin (20) p. 66) that u belongs locally to
Hq+ 2 .

3.56 Theorem (Giraud [127], Hopf [146], and Nirenberg [216] and [217]).
Let A(u) = F(x, u, Vu, V?u) be a differential operator of order two, defined on
Q an open set of R", F being a C™ differentiable function of its arguments. Sup-
pose that A is elliptic on Q at uy € C*(Q), and that A(uy) = f € C"#(Q) with
0<pB <1 ThenuyeC**¥Q).

Let © be a bounded subset of C*(Q), and suppose that A is uniformly elliptic
onQat any u € ©, uniformly in u (the same A, is valid for all u € ©, see definition
3.51). If A(©) is bounded in C™*(K), then © is bounded in C"**#(K), for any
compact set K < Q.

The result for n = 2 is due to Leray, and Nirenberg [217] established the
theorem in the case n > 2, when there exists a modulus of continuity for the
second derivatives of u . Previously Giraud [127] and Hopf [146] proved the
result assuming that u, € C>%(Q) for some a > 0.

Remark. When A is a differential operator of order two on a compact
Riemannian manifold M,, it is possible to prove similar results: If 4(®) is
bounded in H(M,) with ¢ > 2 + n/2, then © is bounded in H, ,(M,), (see
Aubin [20] p. 68).
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3.57 Theorem (Agmon [2] p. 444). Let Q be a bounded open set of R" with
boundary of class C*™ and A be an elliptic linear differential operator of order
2m with coefficients a, € C‘(Q). Let ue L(Q) for some g > 1, and f € L(Q),
p > 1. Suppose that for all functions ve C*™(Q) N fIﬁ,(Q),

qu(v)dV = ffv av.

Then ue H2,(Q) n H2(Q) and

lullag, < COLANp + llulp,

where C is a constant depending only on Q, A, n, and p.
Moreover, if p > n/(m + 1) then ue C™ *(Q) and u is a solution of the
Dirichlet problem

A*u=f inQVu=0 ond0</<m-1
in the strong L, sense.

3.58 Theorem (Gilbarg and Triidinger [125] p. 177). Let Q be a bounded open
set of R" with C**? boundary (k > 0) and A a linear elliptic operator of order
two, such that a, € C**'(Q) and a,, ag € CKQ).

Suppose ueH,(Q) is a weak solution of A(u) = f, with f e H(Q). Then
u€eH,,,(Q)and

(19) Nullpy,, < CUullz + 11 flln),

where the constant C is independent of u and f.
Thus, if the coefficients and f belong to C*(Q) and if the boundary is C®, then
ue C2(Q)).

3.59 Theorem (Gilbarg and Trudinger [125] p. 106). Let Q be a bounded open
set of R" with C** -* boundary and let A be a linear elliptic operator of order two,
with coefficients belonging to C**Q) (k > 0 an integer and 0 < a < 1).
Suppose ue C°(Q}) N C*(Q) is a solution of the Dirichlet problem A(u) = f in
Q, u = vondQ, with f € C**(Q) and ve C**** Q). Then ue C**2*Q)).

Now let us prove a result which will be used in Chapter 8.

Proposition 3.59. Let Q be a bounded open set of R" with C*® boundary and let
A(u) = F(x, u, Vu, V?u) be a differential operator of order two, defined on Q, F
being a C= differentiable function of its arguments on §. Suppose that A is
uniformly elliptic on Q at ug € C**(Q), with0 < a < 1. If ug,2q € C*(éQ) and if
A(ug) € C*(Q), then uy e C=(Q).
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Proof. By Theorem 3.56, uo € C*(Q). It remains to prove the regularity up to
0. Let X be a C™ vector field tangent to dQ. Differentiating A(u,) with
respect to L = X° §; yields A, (Lu,) € C¥(Q}) where A, is a linear elliptic
operator with coefficients belonging to C(Q). As Lu, € C°(©2) n C*(Q) and as
Luy/0Q € C®, by Theorem 3.59, Lug € C**(QQ). So the third derivatives of u,
are Holder continuous up to €, except maybe the derivatives three times
normal. Now let PedQ and 0, be the normal derivative. As 4 is elliptic
8a,,A(up) is strictly positive at P. By the inverse function theorem, d,,u,
expresses itself in a neighborhood © of P in function of u, its first derivatives
and its other second derivatives which belong to C!'*%Q n ©). Thus u,€
C34(©)). By induction uy e C2(5)).

3.60 The Neumann Problem. Until now we talked about the Dirichlet
problem. But we may wish to solve an elliptic equation with other boundary
conditions.

For the Neumann Problem the normal derivative of the solution at the
boundary is prescribed. For this problem, and those with mixed boundary
conditions, we give as references Ladyzenskaja and Uralceva [173] p. 135, Ito
[152], Friedman [116], and Cherrier [97].

6.3. The Schauder Interior Estimates!

3.61 Let Qbe an open set of R" and let u e C*%(Q)(0 < a < 1) be a bounded
solution in Q of the equation

a”@,-,-u+ bi 6,u +cu= fy

where f and the coefficients belong to CX(Q), a” satisfying a”¢;¢; > 1| ¢|* with
A > Ofor all xeQ and ¢ € R". Then on any compact set K < Q:

(20) . lullcz. «y < Cllullcoy + I f lcxan]s

where the constant C depends on K, «, A and A a bound for the C* norm of the
coefficients in Q.

§7. Inequalities

7.1. Holder’s Inequality

3.62 Let M be a Riemannian manifold. If f € L(M) and he L(M) with
p ' +4q ' =1then fhe L,(M)and :

(2D 1SRl < W fUplAl,-
! Gilbarg and Triidinger (125) p. 85.
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More generally, if fe L, (M), (1 < i < k), with Y 5., p; ' = L, then []., fie
Ly(M) and |[Tf=y fills < [To<1 1Al

Proposition 3.62. Let M be a Riemannian manifold. If f € L(M) n L (M),
l1<r<gq<oo,thenfelL,for pelr, q] and

1/p—1/q

(22) LA, < ISIFIfIg ™ witha = TUr=1/q

The proof is just an application of Hélder’s inequality.

7.2. Clarkson’s Inequalities
3.63 Ifu,ve L (M), when2 < p < 0,
lu + vllp + llu = o)y < 2P~ (lullf + lvlf)
lu + vl + Ju = olf = 20Jul + o5
withp~™' 4+ g~ ! = 1. When 1 < p <2, then
lu + ollg + llu — vll2 < 200ull2 + [o]2)~",

lu + ollp + llu = vl = 27 (|lull} + [lolp)-

7.3. Convolution Product

3.64 Let ue L(R"),0e L(R") and p, ge[1, o[ withp~' + ¢~ ' > 1. Then
the convolution product (u = 0)(x) = j & U(x — y)o(y) dy exists a.e., belongs
toL,withr™! = p~! 4+ g~! — 1, and satisfies

(23) hasofl, < fufl,lloll,

Proposition 3.64. Let M,, M, be two Riemannian manifolds and let M, x M,3
(P, Q) = f(P, Q) be a numerical measurable function such that, for all Pe M,
Q - f(Q) = f(P, Q) belongs to L,(M) with supp ¢y, || fp(@)llp < 2, and for
all QeM,, P — fo(P) = f(P,Q) belongs to L,(M) with supg. s, fo(P)Il,
< 0.

If ge L(M,) with p~' + q~' > 1, then h(P) = [y f(P,Q)3(Q) dV(Q)
exists for almost all P € M, and belongs to LM ,)withr ' =p~ ! +q~' — L
Moreover:

(24) k], < sug 1 /)11 ~""llgll, sup Il f(P)IIZ"
PeM,

QeMn
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Proof. 1t is sufficient to prove inequality (24) for nonnegative C° functions
with compact support. If p = g = 1, it is obvious:

IAly < sup Il fo(P)Il,ligll .
QeM

In the general case we write

£(P, Q)g(@) = LF*(P, Q@1 "TF7(P, )17~ M [g%(Q)] "+ "
Since 1/r + (1/p — 1/r) + (1/g — 1/r) = 1, applying Holder’s inequality, we
are led to

jr lip—1/r
IWP)| < [ fﬁf’(P, 0)5%(Q) dV(Q)] [ f IR0 dV(Q)]

lig=1/r
x [ [0 dV(Q)] ,
M

and the result follows. n

7.4. The Calderon-Zygmund Inequality

3.65 Let we L (R") with compact support satisfy w(tx) = w(x) for all
0 <t < 1and |x|| < p for some p > 0, and also satisfy [s,_,,@(x) do = 0.
Foralle > 0 let

(K, * f)x) = oIYI™"f(x — ¥)dy with f € L(R").

lixil >e

If 1 < p < o0, then lim,..o(K, * f Xx) exists almost everywhere and the limit
function denoted by K, * f belongsto L,.

Moreover, K, * f = Ko * f in L, and there exists a constant C, which
depends on w and p, such that

(25) Ko fll,<Clfl, (Calderon-Zygmund inequ’ality)

If we L, (R") satisfies a(tx) = o(x) for all t > 0 and s, _,;)@(x) do = 0,
then |K,* f — Ko * f||, = 0 when & — 0 and (25) holds.

In addition, if w e C}(R" — {0}), K,* f - K, * f ae. (see Dunford and
Schwartz [111]).

7.5. Korn-Lichtenstein Theorem

3.66 Theorem. If uxx) is a function with the properties described in 3.65 and
K, is defined as above, there exists, for any a(0 < « < 1), a constant A(«) such

that
1Ko * flica < AN flices
for all f e C*(R") with compact support.
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3.67 Theorem. Let M, be a compact Riemannian manifold and p, q, and r real
numbers satisfying 1/p=1/q—1/n, 1 <q<n and r > n. Define o =
{peL,/fodV =0},

Then there exists a constant k, such that, for all a > 1, any function ¢ € of
with |V|o|*| € L, satisfies

(26) Hell, < K1VieFl,.

If pe oA with |Vo|eL,, then sup|e| < Const x |Vol,. If peL, and
A € L, (in the distributional sense), then

4[V(p|e L, and |Vg|, < Const x |Ag|,.
Ifope L, and Ap € L,, then |Vo| is bounded and
sup|Vg| < Const x |Ae],.
The constants do not depend on @, of course.
Let M, be a compact Riemannian manifolds with boundary. Then the
theorem holds for functions ¢ € 2(M).
Proof. First of all, we are going to establish (26) for x = 1.

Let G(P, Q) be the Green’s function of the Laplacian. As | ¢ dV = 0, in the
distributional sense (Proposition 4.14):

@7 o(P) = f G(P, 0)A¢(Q) dV(Q),
whence:
28) lo(P)| < f IV,6(P, Q)lIVe(Q)| dV(Q)

and according to Proposition 3.64, we find

lol, < Vel sup f 1Vo6(P, Q)1 dV(Q)

for all ¢ € o, such that |Vop|e L,.
Using the Sobolev imbedding theorem 2.21, we obtain

(29) lell, < K|Veol, + Allol, < kol Vell,,

with ko = K + A suppen | [Vo6(P, Q)1 dV(Q).
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Let us now prove (26) for a > 1. Since the set of the C* functions which
have no degenerate critical points is dense in the spaces H (Proposition 2.16),
we need only establish (26) for these functions. Let ¢ # 0 be such a function,
with [ @ dV = 0.

Set ¢ = sup(p, 0) and ¢ = sup(—¢, 0).

If the measure of the support of ¢ is less than or equal to ¢ (the ¢ of Lemma 3.68
below) (34) applied to |@|* gives (26) with k = B. Otherwise, let a > 0 be
such that the measure of

Q, = {xeM,/|p(x)| = a} isequaltoe: uQ,) =e.
We have ae < o] ,.

Since |@[* < [@|* — @® + a® then by (34) below we have
(30

—— p | 1p
flell, < el —a*l, + a"(J.dV) < BlVlell, + a‘(de) :

Suppose that |¢}l, < {@|., (otherwise, replace ¢ by — ¢); then we write:

1-1z
31 az < flolly, =2l < 2|i¢l|=(jdV) ;

by using Hélder’s inequality. .
Now consider the function ¥ = (¢)* — ||@l13(¢)*/|@ll3. ¥ satisfies |y, =
2|@}iz and [ ¢ dV = 0. Thus applying (29), where we choose k, > 1, yields:

(32) IWlp < kol V¥l , < kollVIoll,

As ¥, < ¥l (] aV)'~ V7, using (30), (31), and (32) leads to (26), with
k = B + 2k, [ dV/e. Indeed k* > B + koe™*2°~ ([ dV')".

One easily obtains the other results, by applying the properties of the
Green’s function from 4.13 below to (28) or (27) after differentiation:

(33) IVo(P)| < flVr G(P, Q)11Ap(Q)| dV(Q). L

The proof for the compact manifold with boundary is similar.
Finally we must prove the following lemma which was used above.

3.68 Lemma. Let M, be a Riemannian manifold and p, q as above. T here exist
B, &, two positive constants, such that any function ¢ € HY satisfies:

(34 lell, < BiiVel,

when p(Supp @) = [yuppe dV < &
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Proof. Since |||, < ||| [u(supp )]'" < e”"llwll,, using (29) we obtain
(34) with any ¢ < 47" by setting B = K(1 — ¢'"4)" !, [ ]

7.6. Interpolation Inequalities

3.69 Theorem. Let M, be a Riemannian manifold and q, r satisfy 1 < q,r < .
Set 2/p = 1/q + 1/r. Then all functions f € (M) satisfy:

(335) IVfI; < (' +1p = 2DIf V211,

Let § denote the completion of 2(M) under the norm || f||, + |Vf|,.
Iff € &, then |Vf | € L,(M) and (35) holds.
In particular, when M is compact (with boundary or without), lf f € L{M) and
|[V2f|eL,, then f € L(M) and (35) holds for f € Jigs (M).
Moreover, if 1/q + 1/r = 1, then all f € D(M) satisfy

VA3 < IS lIIAS T,
Prodf. First of all, suppose p > 2. For f € 2(M):

(36) VIV P72V, ) = |Vf PP + fIVFPT2VY, f
+(p = DIVf PV, fVfVES.

Integrating (36) over M leads to |Vf|? = [fAfdVifp=2, and when
p > 2 it yields:

G VfIE = J-fAflVfl“'2 dV + (2 — p) JIVfI”_“va,.fV"fV“f dv.

But |Af 2 < n|V2f |2 and |V,, fV'fVEf | < |V2f||VS?; thus:

IVAIE < (n'? +1p - 2)) flfHszIIVfI”'2 v.

Applying the Holder inequality 3.62, since 1/ + 1/r + (p — 2)/p = 1, we
find:

IVAIE < (' 2 +1p = 2DIf IV S IAVS 1572,

and the desired result follows. When 1 < p < 2, the proof is similar, but a
little more delicate (see Aubin [22]). When M is compact, if f € L (M) and
|[V2f| e L,, then by the properties of the Green’s function f € L (M). ]

3.70 Theorem (See Nirenberg [220] p. 125). M, will be either R", or a compact
Riemannian manifold with or without boundary. Let q, r be real numbers
1 <q,r <coandj, mintegersO <j<m.
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Then there exists k, a constant depending only on n, m, j, q, r, and a, and on
the manifold, such that for all f € D(M) (with | f dV = 0, in the compact case
without boundary):

(38) IVif1, < KV IELT 1

where

(39) 1=i+a(1-T)+(1—a)l,
p n r n q

for all a in the interval j/m < a < 1, for which p is non-negative.
Ifr = nf(m — j) # 1, then (38) is not valid for a = 1.

Proof. a) The result holds also for j = m = 0, with k = 1. This is just
proposition (3.62).

Once the two casesj = 0,m = 1,and j = 1, m = 2 are proved, the general
case will follow by induction, by applying the inequality

(40) |VIVES|] < |V¢* 1 f|(see Proposition (2.11)).

For the proof, we are going to use Holder’s inequality, Theorem (3.69), and
the Sobolev imbedding theorem. It may be written (Corollary 2.12, and
Theorem 3.67):

(41) ||kl < Const x || Vh],, where% = % - % > 0, for all he 2(M,)

(with { h dV = 0, when the manifold is compact without boundary).

B) Thecasej = 0,m = 1,p < co0. By (41), witht = r < nand Proposition
(3.62):
(42) Ll < WAUSHS g™ < KIVAIZIS g ™5

with 1/p — 1/qg = a(l/s — 1/q) = a(l/r — 1/n — 1/q). Thus for j = 0 and
m =1, if r < n, then (38) holds for 0 < a <1 and p runs from q to s =
rnf(n — r).

If r > n, use (41), with 1/ap = 1/u — 1/n. Putting h = | f|*/%, we find the
desired result when p < cc. Indeed, | h|,, < C|Vh|, becomes

@) s S e, s S e

by using Hélder’s inequality, since 1/r + (1/a — 1)/q = 1/u = 1/ap + 1/n.
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y) Thecase j=0,m=1,p= +c0.If r > n, let se[(n + r)/2, r]. When
M, # R, all feP(M) (with [ fdV =0 in the compact case) satisfy
(Theorem 3.67):

I/, < Const x |Vf],

for all p, 1 < p < o0, and the constant does not depend on p and s. Thus C
does not depend on p in (43). Letting p — o in (43), we obtain the inequality
for p = +oo0.

If r>nand M, = R", a proof similar to that of the Sobolev imbedding
theorem, yields:

There exists a constant C(v), such that for all f € Z(R"):

(44) sup| f| < COXIVSI, + 1 f1.), whenv > n.

Consider the function ¢(x) = f(tx), with 0 <t < oc. Applying (44) to ¢
and setting y = tx lead to:

sup| f1 < COE)XE ™IV, + 7" f 1)

Choosing ¢ = (|l fIl,[Vf]7 )™ *'™""~", we find:

(45) sup| f | < 2CMIVSIFI I ™4

withd™' =1 + v(1/n = 1/r).
If g > n, we can choose v = g, and the result follows for p = + ¢, (d = a).
If g < n,since || ]|, < Hfll:’“(suplﬂ)"“’”, (45) gives:

(sup] f1)! 77909 < 2CW VSIS Sl 749
which is the result for p = + =, with
al=gqid+1—-gqg/v=1+q(l/n—1r).

0) The case j = 1, m = 2. We have established (Theorem 3.69) inequality
(38)fora = j/m = 1/2. If r < n, inequality (38) for a = 1 is just the Sobolev
imbedding theorem (Corollary 2.12, Theorem 3.67). By interpolation (22),
we find the inequality for $ < a < 1. If r > n, according to (38) with j = 0,
m = 1, applied to the function |Vf|:

(46) VS, < Const x [V2fI2IVfIls~°,

with 1/p = 1/s + b(1/r — 1/n ~ 1/s) >0and 0 < b < 1.

Using (35) in (46) yields the desired inequality. Indeed, |Vf||Z < Const x
|V2f I £l with 2/s = 1/r + 1/q. Thus we find inequality (38) where j = 1,
m = 2and a = (1 + b)/2.



9 3. Background Material

We can verify that a <a, =[1+ (1/n~ 1/r)/(1/n + 1/g)]"" implies
b < ag = (1 + s/n — s/r). Thus (38) holds. (]

§8. Maximum Principle
8.1. Hopf’s Maximum Principle?

3.71 Let Q be an open connected set of R" and L(u) a linear uniformly elliptic
differential operator in Q of order 2:

az n au
L(u) = ;jai](x) ngg; + l=Zlbl-(X) -a; + h(x)u

with bounded coefficients and h < 0.
Suppose u € C*(Q) satisfies L(u) > 0.

If u attains its maximum M > 0 in Q, then u is constant equal to M on Q.
Otherwise if at xq € 0Q, u is continuous and u(x,) = M > 0, then the outer
normal derivative at x,, if it exists, satisfies du/ov(x,) > 0, provided x belongs
to the boundary of a ball included in Q.

Moreover, if h = 0, the same conclusions hold for a maximum M < 0.

Remark 3.71. We can state a maximum principle for weak solution (see
Gilbarg and Triidinger [125] p. 168).

Let Lu = d{a" 0;u) + b’ d;u + hu be an elliptic operator in divergence
form defined on an open set Q of R", where the coefficients a”/, b* and h are
assumed to be measurable and locally bounded.

u € H,(Q) is said to satisfy Lu > 0 weakly if for all ¢ € 2(R), ¢ > 0:

fn[a‘j d;ud;ep — (b'du + huyp] dx < 0.

In this case, if h < 0 then supgu < supsgmax(u, 0).
The last term is defined in the t;ollowing way: we say that ve H,(Q)
satisfies 1/0Q < k if max(v — k, 0) € H,(Q).

8.2. Uniqueness Theorem

3.72 Let W be a compact Riemannian manifold with boundary and L(u) a linear
uniformly elliptic differential operator on W:

L(u) = a¥(x)V,V;u + bi(x)V,u + h(x)u
with bounded coefficients and h < 0.

2 Protter and Weinberger [239].



§8. Maximum Principle 97

Then, the Dirichlet problem L(u) = f, u|d0W = g (f and g given) has at
most one solution.

Proof. Suppose i1 and u are solutions of the Dirichlet problem. Theno = &t —u
satisfies Lo = 0 in W and v|dW = 0. According to the maximum principle
v < 0 on W. But the same result holds for —o. Thus o = 0 in W. |

3.73 Theorem. Let W and L(u) be as above. If we CX (W) CAW) is a
subsolution of the above Dirichlet problem, i.e. w satisfies:

Lw > f in W, w/dW <y,

then w < u everywhere, if u is the solution of the Dirichlet problem. Likewise,
if v is a supersolution, i.e. v satisfies Lo < f in W and v/0W > g thenu < o
everywhere.

8.3. Maximum Principle for Nonlinear Elliptic Operator of Order Two

3.74 Let W be a Riemannian compact manifold with boundary, and A(u) =
f(x, u, Vu, V2u) a differential operator of order two defined over W, where f
is supposed to be a differentiable function of its arguments. Suppose o,
w € C*(W) satisfy A(v) = 0 and A(w) > 0. Define o, by [0 + t(w — v)].

Theorem 3.74. Let A(u) be uniformly elliptic with respect tov,, for all t € 10, 1[.
Then ¢ = w — v cannot achieve a nonnegative maximum M > 0 in W, unless
it is a constant, if 0f(x, v,, Vv,, V?v,);éu < 0on W.

. Moreover suppose v, w e C°(W) and w < v on the boundary, then ® < o
everywhere provided the derivatives of f (x, v,, Vo,, V?0,) are bounded (in the
local charts of a finite atlas) for all t € ]0, 1[.

If in addition at x, € OW, @(x,) = 0 and 0¢/dv(x,) exists, then d/dv(x,) > 0,
unless ¢ is a constant, provided the boundary is C*.

Proof. Consider y(t) = f(x, v,). For some 6 € ]0, 1[ the mean value theorem
shows that 0 < A(w) — A(v) = y(1) — y(0) = y'(6) with

0f (x, vy) 0f (x, vy)
dV;;u Vijo + oVu i@

¢ = L(p)

’ af(-‘* DB)
Y (9) = + 2u

Thus ¢ = w — o satisfies L(¢) > 0. Applying the above theorems yields the
present statements. [ |

3.75 As an application of the maximum principle we are going to establish
the following lemma, which will be useful to solve Yamabe’s problem.
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Proposition 3.75. Let M, be a compact Riemannian manifold. If a function
¥ = 0, belonging to C*(M), satisfies an inequality of the type Ay > Y f (P, y),
where f(P, t) is a continuous numerical function on M x R, then either  is
strictly positive, or  is identically zero.

Proof. According to Kazdan. Since M is compact and since ¥ is a fixed non-
negative continuous function, there is a constant a > 0 such that Ay +
ay > 0. By the maximum principle 3.71, the result follows: u = — cannot
have a local maximum >O unlessu = 0. Here L = —A —a. n

8.4. Generalized Maximum Principle

3.76 There is a generalized maximum principle on complete noncompact
manifolds Cheng and Yau (90). Namely:

Theorem. Let (M, g) be a complete Riemannian manifold. Suppose that for any
x € M there is a C? non-negative function ¢ on M with support K* in a compact
neighborhood of x which satisfies ¢*(x) = 1, o* < k, |Vo*| < k, and ¢} 2
—kgy; for all directions i, where k is a constant independent of x.

Iffis a C? function on M which is bounded from above, then there exists a
sequence {x;} in M such that lim f(x;) = sup f,

im|Vf(x)l=0 and limsupV;f(x;) <0

for all directions i.

Proof. Denote by L the sup of f, which we suppose not attained; otherwise
the theorem is obvious by the usual maximum principle. Let {y;} be a
sequence in M such that lim f(y;) = L.On K consider the function (L — f)/
¢”!. This is strictly positive and goes to co when x — Ak,

Letx; e K’bea point where this function attains its minimum. We have

(’jp ,f)( x) < ( f)(y,) —L-f()

@
V{L - /)
(r=F)eo- (5
(V—“f‘E_——Tf—))(xj) > (V (p:p’ )(x,) for all direction i.
From these we get
0<L - f(x)=<k[L - f(y)]
IVf(xpl < k[L — f(y)]
Vi f(xp) < k[L — f(y)lgi-
Thus {x;} is a sequence having the required properties. |
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3.77 Theorem (Lions [188]). Let B,, B,, B; be three Banach spaces and u, o,

two linear operators: B, - B, = B,. Suppose u is compact and v continuous
and one to one. T hen given any ¢ > O, there is A(¢) > Osuchthat forallx € B,:

[u(x)lls, < ellxllg, + A(e)lD o u(x)]s,

Proof. Suppose the contrary. Then there exists ¢, > 0 and a sequence {x,} in
B, satisfying ||x,|lg, = 1 such that

47) T uCx)lle, > gollxills, + kllo° ulx)lls,

Since u is compact, a subsequence of {u(x,)} converges in B,, Say u(x, ) -
Yo € B,. Rewriting (47) for this subsequence gives:

luCx s, > €0 + killo o u(xy)ls,
Whether y, = 0 or not, letting k; — oc yields the desired contradiction. W

3.78 Theorem (Aubin [17]). Let B,, B,, B be three Banach spaces and u, w
two continuous linear operators: B, - B,, B, = B;.

Suppose u is not compact and w is compact. And consider all pairs of real
numbers C, A, such that all x € B, satisfy:

(48) u(x)lle, < Clixlla, + All(x)lls,-
Define K = inf C such that some A exists. Then K > 0.

Proof. Since u is not compact, there exists a sequence {x;} in B, with
[xille, = 1, such that no subsequence of {u(x;)} converges in B,. But w is
compact. Hence there exists {w(x,)}, a subsequence of {w(x;)}, which con-
verges in B;. Because {u(x,)} is not a Cauchy sequence in B,, there exist
n > 0and {k;} an increasing sequence in N such that

“u(yj)” >, wherey; = Xkajer — Xkgje
Write (48) for y;:
lu(y)ls, < Cllyjlls, + Alw(y)ls,-

Letting j — oo leads to 5 < 2C, since w(y;) = 0 in B;. Thus K > /2 > 0.
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9.1. Application to Sobolev Spaces

3.79 Let M, be a compact Riemannian manifold with boundary or without.
Consider the following Banach spaces B, = H{(M), B, = L, (M) and
B, = LM)withg <nand l/p=1/qg — 1/n.

Recall Sobolev’s and Kondrakov’s theorems, 2.21 and 2.34. The imbedding
B, = B, is not compact (example 2.38) and the imbedding B, <= B, is
compact. Thus there exist constants A, C such that

49) £, < CUVSlg + 1Sl + Al fllgs

for instance (C,, 0), and K = inf{C such that some A exists} > 0.

Of course K depends on n, ¢ and on the manifold. But we have proved
(Theorem 2.21) that K = K(n, g) is the same constant for all compact mani-
folds of dimension n and that K is the norm of the imbedding H{(R") =
L, (R".



Chapter 4

Complementary Material

The main aim of this book is to present some methods for solving nonlinear
elliptic (or parabolic) problems and to use them concretely in Riemannian Ge-
ometry. The present chapter 4 consists in six sections. In the first two, we prove
the existence of Green’s function for compact Riemannian manifolds. In §3
and 4, we present some material concerning Riemannian Geometry and Partial
Differential Equations, the two main fields of this book. This material, which
completes the previous one (in Chapter 3), is crucially used in the sequel of
this volume. Many theorems will be quoted without proof, except if they are
not available in other books. Then we describe the methods and we mention
the sections of the book where one finds concrete applications of them to some
problems concerning curvature and also harmonic maps. For instance, to illus-
trate the steepest descent method, the pioneering article of Eells-Sampson is the
best example. We end this chapter with a new result on the best constant in
the Sobolev inequality. Its proof shows the power of the method of points of
concentration.

§1. Linear Elliptic Equations

4.1 To prove the existence of Green’s function, first of all we have to solve
linear elliptic equations. We also need some results concerning the eigen-
values of the Laplacian. Let (M,, g) be a C* Riemannian manifold. We are
going to consider equations of the type

6] = Viai{x)Vieo] = f(x),
where a;(x) are the components, in a local chart, of a C® Riemannian

metric (see 1.15) and where f belongs to L,(M).

1.1. First Nonzero Eigenvalue A of A.

4.2 Theorem. Let (M,,g) be a compact C® Riemannian manifold. The
eigenvalues of the Laplacian A = — V"V, are nonnegative. The eigenfunctions,
corresponding to the eigenvalue A, = 0, are the constant functions. The
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first nonzero eigenvalue A, is equal to p, defined by: pu = inf|Ve|3 for all
o€ o, withod = {¢ €H, satisfying |o|, = 1 and [ @ dV = 0}.

Proof. The first statement is proved in 1.77; the second in 1.71.

Let {;};n be a sequence in &, such that |Ve;| —» u when i — . {¢;} is
called a minimizing sequence. Obviously {¢;} is bounded inH,.

According to Kondrakov’s theorem, 2.33, there exists a subsequence {¢;} of
{o;} and @y€L,, such that @; = @, strongly in L, (loj = @l = 0).
Hence ||@; — @,ll; =0 when j — oo, since the manifold is compact. Thus
@, satisfies [0l = 1 and [ @odV = 0.

By Theorem 3.18, there exist @, € H, and {¢,} a subsequence of {¢;} such
that ¢, — @, weakly in H,.

Furthermore, ¢, — ¢, weakly in L, (strong convergence implies weak
convergence). Thus, since the imbedding H, = L, is continuous, ¢, and
@, are functions in L, which define the same distribution on Z(M). Therefore
Po = ¢o,and (poEd.

According to Theorem 3.17, [|@olly, < lim infi_ o [[@kllu,. since @, — @
weakly in H,. This implies |Vl < lim,—, Vo, |3 = p, because | oy,
= |l@oll; = 1. But @,€ o, hence |V@,||3 =y, and the minimum u is
attained.

Writing Euler’s equation of our variational problem (see, for instance,
Berger [42], p. 123), leads to: There exist numbers « and $, such that for all
YyeH;:

fV'ondeV= o f%w dv + B flp av.

Picking y = 1, gives = 0. Choosing next y = ¢, leads to a = u. So
o € H, satisfies weakly

@) Ay = poy.

Thus, by the regularity theorem 3.54, ¢, € C*. In fact, here it would be
easy to prove this regularity result without using Theorem 3.54. Let us
begin by observing that by (2), Ag, € L,. Since

3) f VipV, o dV = f (Ap)?dV - f R, VioV gV,

©o € H,. Taking the Laplacian of Equation (2) gives A2p, = AAg, =
pAg,€ L,. By induction A*¢,eL, and |VA*g,|eL, for all keN. A
straightforward calculation gives equalities like (3) for derivatives of higher
order. So ¢, € H, for all k e N, and the Sobolev imbedding theorem implies
Po € C®.

Thus p is an eigenvalue of A, and ¢, an eigenfunction. On the other hand,
let y be an eigenfunction satisfying Ay = 4,y; then 4, = |Vy|2[yl3% =
according to the definition of y, because | y dV = 0. n
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4.3 Corollary. Let M be a compact C* Riemannian manifold. If @€ H,
satisfies [ ¢ dV = 0, then |o||, < A7'?|Voll,, where A, is the first nonzero
eigenvalue of A.

4.4 Theorem. Let W, be a compact Riemannian manifold with boundary of

class C®. The eigenvalues of the Laplacian A are strictly positive. The eigen-

functions, corresponding to the first eigenvalue A,, are proportional (the

eigenspace is of dimension one). They belong to C*(W) and they are either

strtctl y posztwe on W or strictly negative. Moreover A, is equal to y defined by:
= inf|Vo|2 for all p e oA, with oA = {p € Hl(W) satisfying | o], = 1}.

Proof. We recall that 4 is said to be an eigenvalue of the Laplacian A if the
Dirichlet problem

4) Au=Jlu in W,u=0 on JW

has a nontrivial solution (in a given space—here in C*(W)).

First of all, we are going to establish the existence of ¢, > 0, a nontrivial
weak solution of Au = uu in W, belonging to Hl(W) By Proposition 3.49,
if e 2(W), |V|p| = |Ve| almost everywhere. And |<p|eH1(W) by Pro-
position 3.48. Thus, since Q(W) is dense in Hl(W) by definition u =
inf|| Vo2 for all p € o, = {0 € H,(W) satisfying @], = 1 and ¢ > 0}. We
proceed now as in Theorem 4.2. Let {¢;};cn be a minimizing sequence in
o .. There exist a subsequence {o,}anda gy € H (W), such that |lo, — @,
- 0and ¢, = ¢, weakly in Hl, when k — oo.

According to Proposition 3.43, there exists a subsequence of {¢,} which
converges almost everywhere to ¢,. Since ¢, > 0 for all k, ¢, > 0 and
Qo€ . U is attamed by ¢,, and writing the Euler equation yields: ¢,
satisfies weakly in HI(W) Ay, = u@,. It remains to prove the regularity of
the solution. According to Theorem 3.54, we have at once ¢q,€ C2(W).
But the regularity at the boundary is more difficult to establish.

Let {Q;, ¥;}ien be a C™ atlas of W, such that () is either the ball
B = By(1) = R" or the half ball D = E n B. And let {&;} be a C* partition
of unity subordinate to the cover {Q;}. We have only to prove that the func-
tions f; = (a; @) o Y; ' belong either to 9¢B) or to C*(D). Theorem 3.54
implies the result for the former. For the latter we can prove (see Nirenberg
[218], p. 665) that f; e H, (W) for all k € N. Hence, according to the Sobolev
imbedding theorem, f; € e C=(D).

So g € H (W) n C=(W). Consequently ¢, is zero on dW, by Proposition
3.50. If p is zero, |Vegl; = 0and ¢, = 0 in W. This fact contradicts ||@,|l,
=1 Hence u >0 and u = 4,. Indeed, let ue C? be a solution of (4).
Multiplying the equation by u and integrating over W lead to ||Vu|} =
Ajufj2, by means of an integration by parts of the first integral. Hence 4 > u.
As ¢, # 0 satisfies @ > 0, 9o € C®(W), 0o/dW = 0,and Agy = pyin W,
according to the maximum principle 3.71, ¢, > Oin W.



104 4. Complementary Material

Let y, be an eigenfunction with Ay, = 4,¥,. We are going to prove that

Y, and @, are proportional. Define f = sup{v e R such that ¢, — v, > 0
in W},
Obviously @, — By = 0 in W. But we have more: there is a point Pe W
where the function ¢, — B, vanishes. Indeed, suppose 9o — By, > 0in W.
According to the maximum principle 3.71, (6/3v) (0o — BYo) < 0 on oW,
since

&) A(@y — Bo) = A1(wo — Bibo) 2 0.

But the first derivatives are continuous on W, so there exists an ¢ > 0 such
that ¢, — (B + e}y, > 0 in W. Hence our initial supposition is false and P
does exist. Applying the maximum principle yields @, — o = O every-
where, since (5) implies that ¢, — By, cannot achieve its minimum in W,
unless it is constant. [ ]

4.5 Remark. If W, is only of class C*, the preceding proof is valid, except
for the regularity on the boundary.

When k > n/2, we can prove that ¢, € C"(W) withr < k — n/2. The proof is
similar to the previous one, except that now the atlas {Q;, ¥;},.n is of class
C*. The functions f; satisfy elliptic equations on D with coefficients belonging
to C*~%(D); then by Theorem 3.58, f; € H,(D). Applying Theorem 2.30, we have
fie C(D).

4.6 Corollary. Let W be a compact Riemannian manifold with boundary of
class C*, k > 1, or at least Lipschitzian. There exists A, > O, such that
o2 < A7 Vo2 for all ¢ € If,(W). Thus |Vol|, is an equivalent norm
Jor Ié'1(VV)

Proof. Since the Sobolev imbedding theorem 2.30 and the Kondrakov
theorem 2.34 hold, the proof of Theorem (4.4) is valid, except for the regu-
larity at the boundary. Thus y is attained in &/ and consequently u = 4, is
strictly positive. , n

1.2. Existence Theorem for the Equation Ap = f

4.7 Theorem. Let (M,, g) be a compact C* Riemannian manifold. There exists
a weak solution p € H, of (1) if and only if | f(x) dV = 0. The solution ¢ is
uniqueup to aconstant. If f€ C"** (r > Oan integerorr = + 0,0 < 1 < 1),
then pe C"*2%2,

Proof.a) if ¢ is a weak solution of (1) in H,, by Definition 3.53, | a;;V'eV/y dV

= [ yf dV for all Y €H,. Choosing ¥ = 1, we find | f dV = 0. This con-
dition is necessary.
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B) Uniqueness up to a constant. Let ¢, and ¢, be weak solutions of (1) in
H,.Set $ = ¢, — ;. For all y e H,, | a;;VyV’p dV = 0. Choosing y =
leads to | a;;V'$V/® dV = 0. Thus ¢ = Constant.

y) Existence of ¢. If f = 0, the solutions of (1) are ¢ = Constant. Hence-
forth suppose f # 0. Let us consider the functional I(p) = | a,;V'eVip dV.
Define u = inf I(¢) for all ¢ € ®, with # = {p € H, satisfying [ @dV =0
and [of dV = 1}.
¢ is a nonnegative real number, 0 < u < I(f||f17%). Let {p:}ien be a
minimizing sequence in #: I(p;) - p. Since a;{x) are the components of a
Riemannian metric, there exists « > 0 such that I(¢;) > «||V¢;||3. Thus the
set {|Vo;|};cn is bounded in L,. Moreover, since | ¢, dV = 0, it follows by
Corollary (4.3), that ||¢;|l, < A] '/?||Ve,||,. Consequently {¢};.n is bounded
in H,. Applying Theorems 3.17, 3.18, and 2.34 gives: There exist a sub-
sequence {¢,} of {®;} and @, € H, such that |l¢, — ¢y, = 0 and such that
I(py) < p, (see the proof of Theorem 4.2).

Hence ¢, € # and I(¢,) = p. Since ¢, minimizes the variational problem,
there exist two constants f§ and y such that for all y e H,:

Iaijvionjw dv =28 ffw dvV + v _['Il dv.

Picking Y =1 yields y =0. Choosing ¥ = ¢, implies B = u. Since
[ @of dV = 1, @, is not constant and u = I(p,) > 0. Set $o = @o/u. Then
¢ satisfies Equation (1) weakly in H, and Theorem 3.54 implies the last
statement. |

4.8 Theorem. Let W, be a compact Riemannian manifold with boundary of
class C*®. There exists a unique weak solution of (1): ¢ € A (W) If fe C2(W),
then ¢ € C*(W) and ¢ vanishes on the boundary.

Proof. Uniqueness is obvious. Let ¢, and ¢, be weak solutions of (1) in
H{(W).Set @ = ¢, — ¢,. ForallyeH,:

J a;;VyVi$pdV = 0. Choosing y € @ leads to ¢ = 0.
w
For existence, let us consider the functional
J(o) = f a;VieVip dv — 2 j fodVv.
w w

Define u = inf J(¢) for allp € I?il(W). u is finite. Indeed, since a;; are the
components of a C* Riemannian metric on W which is compact, there exists
an a > 0 such that
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f a,VioVip dV = aVel3.
w
On the other hand, by Corollary 4.6, [ol|3 < A7 !|[Ve|3. Thus for alle > 0,
2 2 1 2 -1 2 l 2
6) J(o) = a||Vol; - elollz - " 12 2 (@ —eA; ) IIVel: - 3 Ifl3.

Choosing & = ad,/2 gives u > —2(x,) A3,

Let {¢;};cn be a minimizing sequence of J in H,(W). According to (6),
{®;};en is bounded in Hl Applying Theorems 3. 17, 3.18, and 2.34 yields:
There exist a subsequence {¢,} of {¢;} and ¢, € H such that ||@, — @gll, = 0
and such that J(¢,) < u. Hence J(p) = u, and @, satisfies Equation (1)
weakly in I:II. Theorem 3.58 and Proposition (3.50) imply the last statement.

§2. Green’s Function of the Laplacian

4.9 The Laplacian in a local chart can be written as follows:
Ap = ~V{g'V,0) = ~3{g"0;0) — g"i0,0T %,
~|g1™'"%0,(g"/1918;¢], because 'y = o, log \/Ig|.

If ¢ = f(r) in geodesic polar coordinates:

1 n—1
- - -1 =f" 4 ——f’ 0,1 .
Af(r) r,_l\/ma,[r" Vigle.fl1=r1"+ . f'+ f'd,log /gl

By Theorem 1.53, there exists a constant A such that

(M 19, log /g1l < Ar.

2.1. Parametrix

4.10 In R n > 3, Ay ginee (r* ™) = (n — 2)w,-,6p and in R, Ay giae,. log 7 =
—~2ndp, where 6, is the Dirac function at P, r = d(P, Q) and w,_, is the
volume of the unit sphere of dimension n — 1.

On a Riemannian manifold, r is only a Lipschitzian function. For this reason
we must consider f(r) a positive decreasing function, which is equal to 1 in a
neighborhood of zero, and to zero for r > 8(P) the injectivity radius at P
(see Theorem 1.36). We define:
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(8) H(P, Q) = [(n — 2)w,-,1"'r*""f(r), forn>2 and
H(P,Q) = —(2n) " 'f(r)logr, forn =2,

and compute when n > 2:

AQH(P, Q) = [(n — Dw,—, 17 ' ""[(n = ) f" = rf"
+((n=2)f —rf)0,log \/Igl]
According to (7), there exists a constant B such that
9) |AgH(P, Q)| < Br*™";
B depends on P. But on a compact Riemannian manifold, we can choose
f(r) zero for r > & the injectivity radius, and then B does not depend on P.
Henceforth in the compact case, f(r) will be chosen in this way.

2.2. Green’s Formula

4.10

10)  y(P) = fMH(P, Q)AV(Q) dV/(Q) ~ LAQH@, QW(Q)dV(Q),

for all Y € C2. Recall (8), the definition of H(P, Q).

For the proof, we compute [y _ .., H(P, Q)AY(Q) dV(Q), integrating by
parts twice. Letting ¢ — 0 yields Green’s formula.
If y € C®, by definition {(Ay;,,. H, ¥) = (H, Ay ) in the sense of distributions,

and (H, Ay) = [,y H(P, Q)Ay(Q) dV(Q). Thus:
(11) Ag gise. H(P, Q) = AgH(P, Q) + 65(Q).
Picking = 1in (10), gives [y AgH(P, Q)dV(Q) = —1.

From (10), after interchanging the order of integration, we establish that
all ¢ € C? satisfy:

(12) 0(Q) = A, LH(P, Q)o(P) dV(P) ~ j AQH(P, Q)o(P) dV(P).
M

4.11 Definition. Let W, be a compact Riemannian manifold with boundary
of class C®. The Green’s function G(P, Q) of the Laplacian is the function
which satisfies in W x W:

(13) AQdistr. G(P’ Q) = 6P(Q)1



108 4. Complementary Material

and which vanishes on the boundary (for P or Q belonging to dW).

Let M, be a compact C* Riemannian manifold having volume V. The
Green’s function G(P, Q) is a function which satisfies:

(14 Againe. 6(P, Q) = 65(Q) — V™.

The Green'’s function is defined up to a constant in this case. Recall that §,
is the Dirac function at P.

4.12 Proposition (Giraud [126] p. 150). Let Q be a bounded open set of R"
and let X(P, Q) and Y(P, Q) be continuous functions defined on Q x Q minus
the diagonal which satisfy

|X(P, Q)| < Const x [d(P,Q))*™" and |Y(P, Q)| < Const x [d(P, Q)}*"
for some real numbers a, B belonging to 10, n[. Then

2(P, Q) = LX(P’ R)Y(R, Q) dV(R)

is continuous for P # Q and satisfies:

|Z(P, Q)| < Const x [d(P, 9)]***"" ifa+ B <n,

|Z(P, Q)| < Const x [1 + [logd(P,Q)|] ifa+B=n,

}Z(P, Q)| < Const ifa + B> n;
in the last case Z(P, Q) is continuous on Q x Q.
Proof. The integral which defines Z(P, Q) is less than the sum of three
integrals, an upper bound of which is easily found. The integrals are over the

sets QN Bp(p), [Bo(3p) — Be(p)] nQ, and Q — Q n By(3p), with 2p =
d(P, Q) small enough. [ ]

2.3. Green’s Function for Compact Manifolds

4.13 Theorem. Let M, be a compact C* Riemannian manifold. There exists
G(P, Q), a Green’s function of the Laplacian which has the following properties:

(a) For all functions ¢ € C*:

(15) o(P)= V! J‘Mw(Q)dV(Q) + LG(P’ 0)A0(Q) dV(Q).
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(b) G(P,Q)is C* on M x M minus the diagonal (for P # Q).
(¢) There exists a constant k such that:
|G(P, Q)| < k(1 + |logr|) for n=2 and
(16) |G(P, Q)| < kr*™" for n>2,|Vy6(P, Q)| < kr'™",
IVEG(P, Q)| < kr™" with r =d(P, Q).
(d) There exists a constant A such that G(P, Q) > A. Because the Green

function is defined up to a constant, we can thus choose the Green’s
function everywhere positive.

(e) jG(P, Q) dV(P) = Const. We can choose the Green’s function so
that its integral equals zero.

®) 6(P,Q)=G(Q,P).

Proofofexistence. DefineI'(P, Q) = I'j(P, Q) = —AgH(P, Q)and T, (P, Q)
= [y (P, R)T(R, Q)dV(R) for i e N. Pick N 3k > n/2 and set

k
(17) G(P,Q)=H(P,Q) + Y. MFI(P, R)H(R, Q)dV(R) + F(P, Q).
i=1

By (11), (12), and (14), F(P, Q) satisfies
(18) AgF(P,Q) =T, (P,Q) - V™1

According to (9), |I'(P, Q)| < Br?~". Thus from Proposition 4.12, I',(P, Q)
is bounded and consequently I, ,(P, Q) is C*.

Now for P fixed, there exists a weak solution of (18), (Theorem 4.7), unique
up to a constant. Using the theorem of regularity 3.54, the solution is C2.
G(P, Q), defined by (17), satisfies (14). And Q — G(P, Q) is C*= for P # Q
(Theorem 3.54). For the present, we choose G(P, Q) such that:

LG(P, 0)dV(Q) = 0.

Proof of the properties. a) (14) applied to ¢ € C* leads to (15) and 2(M) is
dense in C2.

b) We are going to prove that P — G(P, Q) is continuous for P # Q.
Since we know that Q — G(P, Q)is C* for Q # P, the result is a consequence
of f): G(P, Q) = G(Q, P), using for the derivatives a proof similar to the
following. Iterating k-times (k > n/2) Green's formula (10) leads to:
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W(P) = f H(P. Q)AW(Q) dV/(Q)
M
k
+ Yy { j I'(P, RHR, Q)dV(R)JAw(Q)dV(Q)
i=1 JM M

+ f Ty (P, QW(Q) AV(Q).
M

Using (8), (9), and Proposition 4.12 gives:
(19a) [¥(P)| < Const x (sup |AY| + [[¥]2)-
According to Corollary 4.3, if [ y dV = 0:
(19b) W13 < ATHIVUIS < AT 1A 1W;

the last inequality arises after integrating by parts and using Hélder’s
inequality. Hence, there exists a constant C such that the solution of Ay = f
with [ ¢ dV = Oand | f dV = 0 (Theorem 4.7) satisfies:

sup|y| < Csup|f].

Applying this result to (18):

supg|[F(P,Q) — F(R, Q)] - V™! f{F(P, Q) - F(R, 9)14V(Q)

< Csup |l (P, Q) - i 1(R, Q)
Q

Since [, G(P, Q) dV(Q) = 0, it follows from (17) that [, F(P, Q) dV(Q) is a
continuous function of P.
Thus P - F(P, Q) is continuous, and for P # Q, P — G(P, Q) is also.

Using only this continuity of G(P, Q), we will shortly prove parts d)-f).
Assuming this has been done, we complete the proof of part b). By f)
G(P, Q) = 6(Q, P). Thus G(P, Q) is C* in P for P # Q and any r-derivative
at P dp6(P, Q) is a distribution in Q which satisfies A, 95 G(P, Q) = 0 on
M — {P}. 3pG(P, Q) is then C*® in Q for Q # P according to Theorem 3.54.

¢) The inequalities follow from (17). When Q — P, the leading part of
G(P, Q)is H(P, Q).
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d) From this fact, there exists an open neighborhood Q of the diagonal in
M x M, where G(P, Q) is positive. On M x M — Q, which is compact,
G(P, Q) is continuous. Thus G(P, Q) has a minimum on M x M.

e)Since P — G(P, Q)is continuousfor P # Qand |G(P, Q)| < Const 27",
we can consider [, G(P, Q) dV(P), and the transposition of (15):

(20) Q) =v-! f Y(P)dV(P) + Aq f G(P, Q)y(P) dV(P).
M M
Picking ¥ = 1 gives [, G(P, Q)dV(P) = Const.

f) Choosing = A in (20) leads to
20(0) = 4, [ G(P,QA0(P) 4V (P).
M

Thus @(Q) = [, G(P, Q)Ap(P) dV(P) + Const, by (15), and this equality
yields

@n L[G(P, Q) - 6(Q, PY]Ap(Q) dV(Q) = Const

for all ¢ € C2. Integrating (21) proves that the constant is zero, since
JG(Q, P)dV(P) =0 and fG(P, Q) dV(P) = Const.

Thus G(P, Q) — G(Q, P) = Const. Interchanging P and Q implies the second
member is zero. |

4.14 Proposition. Equality (15) holds when the integrals make sense.

Proof. Suppose that ApeL,. Since 2(M) is dense in L, there exists a
sequence {g,} in 2(M) such that |g, — A¢|, - 0. Thus [y g,dV —0
andg, — V™' {yygmdV—>ApinL,.

Therefore we can choose {g,} with [y g,dV =0 and, according to
Theorem 4.7, there exists { f,,} such that [ f,, dV = [y © dV and Af,, = gp-
S belongs to C® and satisfies

Py = V1 Lfm dv + LG‘P’ 0)9n(Q) dV(Q).
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According to Proposition 3.64,f,, = V™! [,y 0 dV + [y G(P, Q)Ap(Q) dV(Q)

in L,. On the other hand, f,, - ¢ in the distributional sense, since [ f,, dV

= _[M © dV and Af,, - Ap in L,. Thus ¢ satisfies (15) almost everywhere.
|

4.15 Remark. It is possible to define the Green's function as the sum of a
series (see Aubin [12]). This alternate definition allows one to obtain
estimates on the Green'’s function in terms of the diameter D, the injectivity
radius, d, the upper bound b, of the curvature and the lower bound a of the
Ricci curvature. As a consequence, Aubin ([12] p. 367) proved that 4, the
first nonzero eigenvalue is bounded away from zero:

There exist three positive constants C, k, and ¢ which depend only on n,
such that 4, > CD~2kP® § satisfying —aé® < ¢, 26, /sup(0, b) < =, and
0<dé<d

Other positive lower bounds were found by various authors. Let us mention
only Cheeger [82] and Yau [274].

4.16 Remark. The Green’s function was introduced by Hilbert [140] and
the Green’s form on a compact Riemannian manifold by G. De Rham [105]
and Bidal and De Rham [52].

2.4. Green'’s Function for Compact Manifolds with Boundary

4.17 Theorem. Let W, be an oriented compact Riemannian manifold with
boundary of class C*. There exists G(P, Q), the Green's function of the Lap-
lacian, which has the following properties:

(a) All functions ¢ € CA(W) satisfy
(22) oP) =J- G(P, Q)Ap(Q)dV(Q) — f VviVio G(P, Q)0(Q) ds(Q),
w ow

where v is the unit normal vector oriented to the outside and ds is the
volume element on W corresponding to the Riemannian metric j*g
(j: OW — W the canonical imbedding).

(b) G(P, Q)is C® on W x W minus the diagonal (for P # Q).

©) |G(P, Q)| < kr* ™ for n > 2, |G(P, Q)| < k(1 + |logr|) for n =2,
|V¥G(P, O < krt7m,

[Vo6(P, Q)| < kr™", withr = d(P, Q) and k a constant which depends
on the distance of P to the boundary.

(d) G(P, Q) > O for P and Q belonging to the interior of the manifold

(e) 6(P,Q) = G6(Q, P).

Proof of existence. Let P e W given. We define H(P, Q) as in (8), where f(r)
is a function equal to zero for r > 6(P)(k + 1)~ with N3k > n/2 and 4(P)
the injectivity radius at P.

F(P, Q) defined by (17) satisfies
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AgF(P, Q) = T4, (P, Q), F(P,Q) = 0 for Q €dW.

According to Theorem 4.8, there exists a solution in H L{(W).

G(P, Q) defined by (17) satisfies (13), is C* on W — P, and equals zero for
Q € 6W. (We can apply the theorems of regularity to W — Bp(e) with ¢ > 0
small enough.)

Proof of the properties. a) The result is obtained by using Stokes’ formula
(see 1.70).

b) The proof is similar to that of Theorem 4.13 b).

c) The leading part of G(P, Q) is H(P, Q)

d) Let P e W given. According to the previous result G(P, Q) > 0 for Q
belonging to a ball Bp(e) with ¢ > 0 small enough. Applying the maximum
principle 3.71, G(P, Q) achieves a minimum on the boundary of W — Bp(e),
since Ay G(P, Q) = 0. Thus G(P, Q) > 0 for Q e W.

e) Transposing (22) with ¢ and ¢ belonging to 2(W) yields:

W) = A, jweaz Q)(P) dV(P).

Choose ¢(Q) = Ap(Q). By Theorem 4.8,

0(Q) = f G(P, Q)A(P) dV(P).

Hence G(P, Q) satisfies
APdislr. G(P, Q) = 5Q(P)

and 6(P, Q) = G(Q, P).
Indeed Ay[G(P, Q) — G(Q, P)] =0 and G(P, Q) ~ G(Q, P) vanishes for
Q € 6W. Applying Theorem 4.8 yields the claimed result. . ]

4.18 Let us now prove a result similar to that of Theorem 4.7, a result which
we will use in Chapter 7.

On a compact Riemannian manifold M, let Q be a C"** section of T*(M)
® T*(M), which defines everywhere a positive definite bilinear symmetric
form (Qis a C"** Riemannian metric) where r > 1 is an integer and « a real
number 0 < a < 1. Consider the equation

(23) ~Via,(x)Ve] + b(x)e = f(x)

where a;(x) are the components in a local chart of Q and where b(x) and f(x)
are functions belonging to C"** Moreover, we suppose that —V'g,(x)
belongs to C"*2.
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Theorem 4.18. If b(x) > 0, Equation (23) has a unique solution belonging to
C'+2+’-

Proof. Suppose at first that a;{x), b(x) and f(x) belong to C*. In that case
we consider the functional I(9) = | a;;VieVip dV + [b@*dV and u =
inf I(p), for all ¢ € H, satisfying [ of dV = 1. A proof similar to that of 4.7
establishes the existence of a solution, which belongs to C* by the regularity
theorem 3.54 and which is unique by the maximum principle 3.71.

Now in the general case we approximate in C'*® the coefficients of
Equation (23) by coefficients belonging to C*. We obtain a sequence of
equations

E: = Vi[au{x)Vip] + b(x)e = fi(x)

with C* coefficients (k = 1, 2,...). And we can choose E, so that b,(x) > b,
and a, {x)¢'¢/ > A|€)? for some by > 0 and 4 > 0 independent of k.

By the first part of the proof, E, hasa C* solution ¢,. And these solutions
(k = 1,2,...) are uniformly bounded. Indeed, considering the maximum
and then the minimum of ¢,, we get

lodlco < bo 'l fellco-

Now by the Schauder interior estimates 3.61, the sequence {¢,} is bounded
in C%* To apply the estimates we consider a finite atlas {Q;, ¥} and compact
sets K; = Q; such that M = | ), K.

As {¢,} is bounded in C?'* by Ascoli’s theorem 3.15, there exist ¢ € C?
and a subsequence {¢;} of {¢,} such that ¢; > ¢ in C2. Thus ¢ € C**
and satisfies (23). Lastly, according to Theorem 3.55, the solution ¢ belongs
to'C"*2** and is unique (uniqueness does not use the smoothness of the
coefficients).

Remark. For the proof of Theorem 4.18, we can also minimize over H, the
functional

Jp) = Ja;;v‘wvfw dv + waz dv -2 .[fcp dv.

We considered a similar functional in the proof of Theorem 4.8.
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3.1. The First Eigenvalue

4.19 Let \; be the first non-zero eigenvalue of the Laplacian on a compact
Riemannian smooth manifold (M,, g) of dimension n > 2.

Lichnerowicz’s Theorem 4.19 [185]. If the Ricci curvature of the compact man-
ifold (My, g) satisfies Ricci > a > 0, then Ay > ;4.

Proof. We start with the equality
(24) VIViV,f - ViVIV,f=RyVIf
valid for any f € C3(M).

Multiplying (24) by Vif and integrating leads (after integrating by parts
twice) to

(25) / (Af)YdV - / VIV fVV;fdV = / RV fVIfav.

Choosing as f an eigenfunction of the Laplacian A = ~V*V; related to A;:
Af = A f, we obtain at once

/\%/fzdvza/|Vf|2dV=a,\,/f2dV.
Thus A, > a, but we have better, because for any f € C%
. 1
(26) / VIV VY5 fdV > — / (Af)*dV.
This inequality is obtained expanding
1 ivife LAseii) >
(VaVif + ~Afay) (VIVIf+ - Afg )20
When f satisfies Af = A; f, (25) and (26) imply the inequality A} > 4 of
Theorem 4.19. After this basic result, a lot of positive bounds from below and
from above for A; have been obtained.
4.20 For a Kihler manifold the Laplacian A is one half of the real Laplacian

A. In Chapter 7 we will write the complex Laplacian without the bar, but in
this section we must have another symbol than that for the real Laplacian.

Af = -V V,f = -V Vs f = —%V*V,f: %Af,

A=1,2,...,m, where m is the complex dimension (n = 2m).
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For a compact Kzhler manifold the first non-zero eigenvalue of the Laplacian

A1 is equal to \;/2 (in Chapter 7, we write the first non-zero eigenvalue of the
complex Laplacian without bar).

Theorem 4.20 (Aubin [20] p. 81). If the Ricci curvature of the compact Kahler
manifold (M, g) satisfies Ricci > a > 0, then A\; > a.

Proof. The complex version of (24) is
(27) VYV, f =V, V'V, f=R,;V"f

since V?V,V; f = V,V?V, f. Multiplying (27) by V* f and integrating yield
/(Af)de - /V”V“fV,,V,JdV = /R,,,—,V“fv"f dv.

Thus, for any f € C?, [(Af)*dV > [R,,V*fV?fdV.
The inequality of Theorem 4.20 follows. This inequality will be the key for
solving the problem of Einstein-Kahler metrics when C(M) > 0 (see 7.26).

Corollary 4.20. The first non-zero eigenvalue \1 of the Laplacian on a compact
Einstein-Kdahler manifold satisfies A, > R/m, where R is the scalar curvature
of (Mam, 9), that is one half the real scalar curvature R:

R=g¢"’R,; =¢"R;, = R/2.
We verify that \; = R/m for the complex projective space P,,(C). But there
are other Kahler manifolds having this property.
There is no complex version of Obata’ s theorem [*260] for the sphere.

S, x S, or more generally P,,(C) x P,(C) have this property: A; = R/m
(see Aubin [20]).

4.21 The preceding results concern the case of positive Ricci curvature. Without
this assumption we have the

Theorem 4.21 (Berard, Besson and Gallot [*36]). Let (M,,,g) be a compact
Riemannian manifold satisfying Ricci > (n—1)ea®? D=2, where D is the diameter
and € = —1,0 or 1. Then \; > nD™%a*(n,¢, a).

For the value of a(n, €, a), see Theorem 1.10.
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3.2. Locally Conformally Flat Manifolds

4.22 Definition. The Riemannian manifold (M,, g) is locally conformally flat if
any point P € M has a neighbourhood where there exists a conformal metric §
(§ = ef g for some function f) which is flat.

When (My, g) is locally conformally flat, there exists an atlas (2;, ©;):e;
where ; are conformal diffeomorphisms ({2;, g;) — (R", £), with g; = g/£2;.

In 1822 Gauss proved the existence of isothermal coordinates on any surface
(Chern [*94] gave an easy proof of this fact). Thus, any Riemannian manifold
of dimension 2 is locally conformally flat.

In dimension greater than 2, we introduce two tensor fields.

4.23 Definition. The Weyl tensor (or tensor of conformal curvature) is defined
by its components in a local chart as follows

1
(28) Wik = Rijr — n—(Rik gjt — Rii gjk + Rji1 9ik — Rjk 9i1)

-2
+—R_‘(9'lgik_g‘kgil)~
(n—1n -2’ ’
The Schouten tensor is defined by
I R
2 = —— 2Ry — ———gis .
29) S = g | (n—l)g’]

We verify that the tensor Wil is conformally invariant: for the metric
g=¢lg, Wi = W;? ;. We verify also that, in dimension 3, Wik = 0.

4.24 Theorem (Schouten). A necessary and sufficient condition for a Riemannian
manifold to be locally conformally flat is that Wiju = 0 when n > 3 and
VkSij = VjSikwhen n=3.

Proof. The Weyl tensor of the Euclidean metric vanishes (its curvature is zero).
Since W7, is conformally invariant, the necessary condition follows at once
when n > 3.

Set § = efg. A computation gives
(30 Sij = Si; + T,
with Ty, = V,V; f =3V, fV,; f+1V* £V fgi;; thus, we have V. Si; — V;Ski
0, in particular when n = 3. Indeed, if §=¢, f-?,i,-kl = 0 and

2RV f = Vi fViVif = VifViVif + VI f(guViV;f ~ 9 ViV, f).

Thus V,T;; = V;Ti. Since S;; = 0, we have Vi S;; — V;Si = 0, in
particular when n = 3.



118 4. Complementary Material

We verify that VW7 = 252(ViSi — ViSik). Thus Wijk = 0 implies
ViSu - V[S,'k =0 when n > 3.

The condition is also sufficient. Assume there exists a 1-form w with com-
ponents w; satisfying in a local chart {z*}:

31) Biw; = Aij(z,w)

with i )
A,-j = [‘i’;-wk + Ew,-wj - Zwkwkgij - S-,'J‘.

Since Sij = Sj,‘ and F:; = I‘Jkl, B,-wj = ajwi.

Thus, locally, there exists a function f such~ that w = df. According_ to
(30) and (31), for the con‘gsponding metric §, Si; = 0. This implies, R =
(n — 1)8;;5" =0 and then R;; = 0.

So § is flat since W;jx; = O (by assumption when n > 3, in any case when
n = 3).

The local integrability conditions of system (31) are

aA,'j _a ) 3Akj )
akA,‘j + -BTI-AH = a,AkJ + E Aj.

A computation shows that they are equivalent to the conditions
Wi qw; = VS — ViSik

which are satisfied by hypothesis (when n > 3, we saw that W5, = 0 implies
VkSu - V[Sik = 0).

4.25 Proposition (Hebey). Let (M, g) be a locally conformally flat manifold
(n 2> 3) and let P be a point of M. Then there exists in a neighbourhood of P a
metric § conformal to g, which is flat and invariant by any isometry o of (M., g)
such that o(P) = P.

Proof. Let us go back to the proof of Theorem 4.24. If we fix df(P) = 0 and
f(P) =0, the solution of (31) with w = df is unique. Now w o o satisfies (31)
and the conditions at P. Thus foo = f.

4.26 Examples. The Riemannian manifolds of constant sectional curvature are
locally conformally flat. The Riemannian product of two manifolds (M, g;)
and (M3, g,) is locally conformally flat if one of them is of constant sectional
curvature k and the other of dimension 1, or of constant sectional curvature - k.

We also have the

Theorem 4.26 (Gil-Medrano [*142]). The connected sum of two locally confor-
mally flat manifolds admits conformally flat structure.
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3.3. The Green Function of the Laplacian

4.27 Gromov [135] found a new kind of isoperimetric inequalities, which con-
cern the compact Riemannian manifolds (M, g) of positive Ricci curvature. By
an homothety, we can suppose that the Ricci curvature is greater than or equal
to n — 1 which is the Ricci curvature of the sphere (Sy, go) of radius 1 (endowed
with the standard metric).

Let f2 C M be an open set which has a boundary 912.

Gromov considers a ball B C S,, such that

(32) Vol B/ Vol S, = Vol 2/ Vol M.
The Gromov inequality is
(33) Vol(32)/ Vol M > Vol(dB)/ Vol Sy,.

With such inequality, we can for instance obtain an estimate of the constants
in the Sobolev imbedding theorem, or a positive bound from below for the first
non-zero eigenvalue A; of the Laplacian, see Bérard-Gallot [*37], Berard-Meyer
(*38] and Gallot [*133].

However these results concerned only compact manifolds with positive Ricci
curvature. This extra hypothesis has been removed.

4.28 Let (M, g) be a compact Riemannian manifold.
Berard, Besson and Gallot defined the isoperimetric function h(§) of M as
follows:

(34) h(B) = inf [ Vol(812)/ Vol M|
for all £2 C M such that Vol 2/ Vol M = 3 with 3 €]0, 1[ of course. Changing
£2in M \ 2 proves that h(1 — ) = h(J).

The properties of h(5) are studied in Gallot [*133] (regularity, under-
additivity).

We denote by Is(3) the isoperimetric function of (S, go) of radius 1. Let D

be an upper bound for the diameter of (M, g) and let r be the inf of the Ricci
curvature of (M, g).

Theorem 4.28 (Berard, Besson and Gallot [*36], see also Gallot [*133]). Assume
(35)  rD*>e(n-1)® with e€{-1,0,+1} and a€ R".

Then, for any B €]0, 1],
(36) Dh(B) 2 a(n, e, a)Is(B),

with a(n,0,a) = (1 +nwn/wn,|)1/n -1,
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1/n /2 ~ln
a(n, +1,@) = & [wn/wn_1] (2/ (cos t)""‘dt)
0

(in this case o < )

and a(n,—1,a) = ada) where c(a) is the unique positive solution T of the
equation T foa(cht +zsht)* 1dt =wn/wn_.
This solution c(a) satisfies c(c) > b(n, @) = inf(k, k'/™) with

Jo (sint)y»~! dt

- - - (n—-Na _
= Tchzon D fwn-1 (e 1.

In dimension 2, we can choose a(2,+1,0) = & / sin(e/2), a(2,0,) =2 and
a(2,-1,0) = afsh(a/2).

4.29 Let G(z,y) be the Green function of the Laplacian on (M, g) satisfying

/ Gz, y)dV(y) = 0.

In this section, we want to find a lower bound of G(z, y) in terms of n,r,V
and D, that is, resp., the dimension, the inf of the Ricci curvature, the volume
and the diameter of the compact manifold (M., g).

In [*31] Bando and Mabushi gave such a lower bound

(37) G(z,y) > —(n,a)D*V,

where y(n, @) is a positive constant depending only on n and a > 0 a constant
such that rD? > —(n — 1)a?.

With the result of Theorem 4.28, independently Gallot found an explicit
lower bound for G(z, y). His proof is unpublished, we give it below.

Proposition 4.29 (Gallot). For any z,y,

1
(38) Gaw 2 -v= [ o0 - pr-erds,
where V is the volume of (M, g), h is defined by (34).

Proof. Note that the integral at the right side converges since h(8) ~ Cg'~1/"
when 8 — 0 and h(1 — B) ~ C(1 — B)'~/™ when 3 — 1.
Fix £ € M and set f(y) = G(z,y). Let us define the function a: R — R by

a(w) =V~ Vol{y/f(y) > u}

and the function f of [0,1] in R by f(8) = inf{u/a(s) < B}. Since f is harmonic
on M — {z}, Vol{y/f(y) = p} = 0 and p — a(u) is continuous. As p — a()
decreases, f is the inverse function of a.
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According to Gallot [*133] (Lemma 5.7, p. 60),
(i) for any regular value p of f, foa(u)=p and

Va'(u)=V/f [aw)] = —/ V£~ do,

f=u}

where do is the (n — 1)-measure on the manifold {f = p}.
(i) For any continuous function u: R — R,

/uode:V/oluof(ﬁ)dﬂ.

We have

/ |V fldo = / AfdV
{f=n} {f>n}
=/ (62— V1) dV =1 - a(u).
{f>u}
Moreover, using (i) and the Cauchy-Schwarz inequality, we have
(39) (Vol(f =)’ < [ vfido [ |9fldo
{f=n} {f=p}

= V[t - a(w]a'w.
Thus, by the very definition of h,

VR [a(w)] < ~[1 - a(p)a'(w).

We can rewrite this inequality in the form

1- 82> -VRAB)F(B).
Integrating yields

1
(40) f@) < fay+v-! /ﬁ (1 ~ s)h™(s)ds.

Using (i) with u(z) = = gives

1 1 1
-1 = Fi flhy+v-1 1 - s)h~%(s)dsdp.
v /de /Of(ﬁ)dﬂSf(H /o/ﬁ( $)h=2(s)ds df

121

Since [ f dV = 0 and f(1) = inf f(y) = infy G(z,y), we get (38) after

integrating by parts the last integral.

4.30 Let H be a C" positive function on [0, 1/2]. We define the function A* by

h*(8) = B~V H(B)
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for 8 € [0,1/2] and
h*(B) = h*(1 = B)
for 8 € [1/2,1].
Let us consider the function S(8) = f Bl/ 2 h‘f(’s) and its inverse function
A:[0,L] — [0,1/2] where L = 5(0).

Definition 4.30. M* = [—L, L] x S,,_; is the manifold endowed with the one-
parameter family of metrics

}2/(1’1—1)

ou(s, )= @sP + (" [4(Is)]} s, (@),

where gs__, is the canonical metric of S,_;(1).

n-1

We identify all the points of {+L} x S,_; to a pole noted z, (resp. all
the points of {~L} x Sp_; to a pole noted z;) of the Riemannian manifeld

(M‘a gt )'
B(zo, ) being the geodesic ball of (M*, g;) centered at zq of radius r, by

construction,
(41) Vol [8B(zo, )]/ Vol M* = h*[Vol B(zo, 1)/ Vol M*],

where the volumes are related to the metric g;.
We denote by G; = G*(zo,-) the Green function of the Laplacian on

(M*, g;) with pole zg, and V* = Vol(M*, g;).

4.31 Proposition (Gallot). For any compact Riemannian manifold (M, g) whose
isoperimetric function h satisfies h > h* on [0, 1],

(42) G(z,y) = (V*/V)G*(x0, 71)
z, y being two points of M.
Proof. |V G}, | is constant on each hypersurface {G3, = u}, so that the Cauchy-

Schwarz inequality used in (39) is an equality for G7 . Thus, according to (41),
the same proof as that of Proposition 4.29 leads to (40) with equality.

43) G1,(B) = G* (o, 1) + (V*)™! /ﬁ 1(1 ~ )[h*(s)] "ds

where V* = Vol(M*, g,) and

4 infG*@o,y) = G*(zo,21) = ~(V")™' /0 s - $)[h*(2)] "ds.
(38) together with (44) imply (42).

If the manifold (M,, g) has its Ricci curvature bounded from below by
—(n — 1)K?, according to Theorem 4.28,
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h(B) = +(KD,n)[inf(B,1 - 8)]' /",

where D is the diameter of (M, g) and -« an universal function.

Set then A*(8) = (K D, n)[inf(8,1 — 8)]' /™.

For a suitable choice of ¢, (M*, g;) is B,(R}#B,(R) the union of two eu-
clidean balls of radius R = R(K D, n) glued on their boundaries by the identity.
We obtain the

Corollary 4.31. Assume Ricci(M,,,g) > —(n — 1)K?, then
G(Z,y) 2 [2wn-1/nV]R"GBppyBnr) (T, T1),

where R= R(K D,n) and where =o and x, are the centers of the two balls.

4.32 Theorem (Gallot). Assume Ricci(M,,g) > —(n — 1)K?, then
(45) G(z,y) > R"wV ™' Gs,(r)(Z0, 71),

with R = R(n,K,D) = K~'b~!(n, KD), Gs,(r) being the Green function of
the sphere S, (R) with x¢ and x, their two poles. b(n, K D) comes from Theorem
4.28.

Proof. If we choose h*(8) = Kb(n, KD)I,(3), for a suitable choice of t,
(M*,g;) is a canonical sphere with radius R = K~'b6~'(n, K D).
Moreover according to (13), h(3) > h*(5). Then (42) implies (45).

3.4. Some Theorems

4.33 The Sard Theorem [*279] (see also Sternberg [*294]). Let M,, and M be
two Ck dtﬁ‘erentzable manifolds of dimension n and p. If f is a map of class C’ k
of M into M, then the set of the critical values of f has measure zero provided
that k — 1 > max(n — p,0).

P € M is a critical point of f if the rank of f at P is not p. All others points
of M are called regular. Q € M is a critical value of f, if f~1(Q) contains at
least one critical point. All other points of M are called regular values. Since
our manifolds have countable bases, a subset A C M has measure zero if for
every local chart (8,) of M, ¥(A()6) C R? has measure zero.

4.34 The Nash imbedding Theorem [*252). Any Riemannian C* manifold of
dimension n, 3 < k < 00) has a C* isometric imbedding in (RP,E) when

= (n+1)(3n+11)n/2, in fact in any small portion of this space. If the manifold
is compact, the result holds with p = 3n+ 11)n/2.

Previously Nash [251] had solved the C' isometric imbedding problem. If
in the sequence of successive approximations, we keep under control only the
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first derivatives, Nash does not need more dimensions than Whitney (see 1.16).
So for k = 1, the theorem holds with p = 2n+1 and with p = 2n in the compact

case.

4.35 The Cheeger Theorem [*86). Let (Mp, 9) be a Riemannian manifold, and
let d,V and H be three given real numbers, d and 'V positive.

There exists a positive constant Cn(H, d, V) such that if the diameter d(M) <
d, the volume v(M) > V and the sectional curvature K of M is greater than H,
then every closed geodesic on M has length greater than C,(H,d, V). Thus we
have a positive lower bound for the injectivity radius.

Proof. Let P be a point of the simply connected space My of constant curvature
H, and v a non-zero vector of R™. We define the angle 6, 0 < 6 < m/2, by
Volexpp |aqe(v)| = V/2 where aq,g(v) denotes the set of vectors in R™ of
length < d making an angle of # or more with both v and - v. Then we define
r by

Vol expp [B,(O) - a,,o(v)] =V/)2.

Since § < /2, there exists a constant Cr(H,d,V) > 0 such that, if o,
T are geodesics in My, o(0) = 7(0), (¢’(0),7/(0)) < 6, then the distance
dmy (0(r),7(t)) < 1 for 0 < t < Cn(H,d, V). Suppose now there exists on
(M, g) a closed geodesic vy of length | < Cn(H,d, V), and let us prove then
that v(M) < V, which is a contradiction.

By the Rauch comparison Theorem (see 1.53), since K > H,

v [CXP»,(O) a4,6 (’Y/(O))] <V/2

v{exp,y(o) [Br(0) — ars (v’ (O))]} <Vv/2.

These inequalities imply v(M) < V since
M C expyq) {aas (V@) (B0 - aro (Y(@)] }-

Indeed, let o be a geodesic with o(0) = 4(0) and (0”(0),7(0)) < 6; then
dpm(o(r),¥()) < r since | < Cn(H,d,V). But v(l) = 7(0), thus o is not
minimal between o(0) = v(0) and o (7).

From this result, Cheeger proved his finiteness Theorem (see [*86]), which
asserts that there are only finitely many diffeomorphism classes of compact n-
dimensional manifolds admitting a metric for which an expression involving
d(M), v(M) and S(M) a bound for the sectional curvature | K| (or for the norm
of the covariant derivative of the curvature tensor) is bounded.
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4.36 The Gromov compactness Theorem [* 147] asserts that the space m(S, V, D)
of compact Riemannian n-manifolds of sectional curvature |K| < S,
v(M) >V >0 and d(M) < D, is precompact in the C1'* topology.

The following theorem has the same purpose.

Theorem 4.36 (Anderson [*3]). The space m(),ig, D) of compact Rieman-
nian n-manifolds such that |Ricci| < A d(M) < D and injectivity radius
> ig > 0, is compact in the C"* topology. More precisely, given any sequence
(M;,g;) € m(A, i, D), there are diffeomorphisms f; of M; such that a sub-
sequence of (M, fg:) converges,in the C1* topology, to a C'"* Riemannian
manifold (M, g).

§4. Partial Differential Equations
4.1 Elliptic Equations

4.37 Let E and F be two smooth vector bundles over a C* manifold M. We
consider the vector spaces of the C* sections of E and F: C*°(E) and C*°(F).

Let (12, ;) be an atlas for M, (x},x?,...,x}‘) the coordinates in £2;.
being the projection E — M, 7~!(£2;) is diffeomorphic to 2; x R if R is the
fibre of E. (&;,€2,...,&5) will be the fibre coordinates. Likewise if R is the

fibre of F, {n;?‘}(a =1,2,.. .q) will be the fibre coordinates of F' over §2;.
A C* section v of E is represented on each 2; by a vector-valued C*°

function ¥;(z) = {¢i(@)}(i=1,2,...,p).

Definition 4.37. A linear partial differential operator A of order k of C*°(E)
into C*°(F) is a linear map of C®°(E) into C°°(F') that can be written in the
coordinate systems defined above in the form

k

(46) A(w)_;’ = Z(agl)ilit..ilvilizmilw]@,

1=0

a=12,...,gand =1,2,...,p. a 5, are l-tensors and 1/)? € Ck(M).

The principal symbol o¢(A, z) is obtained by replacing 8/0z} by real vari-
ables &; in the leading part of A, that is the part corresponding to the highest
order derivatives appearing in A:

47) [oe(A,2)5 = [a5,@)] " €&, .. i

4.38 Definition. A linear differential operator A is elliptic at a point x € M if
the symbol o¢(A, ) is an isomorphism for every { #O0.
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A necessary condition for this is p = g, and we can identify F and F.
We say that A: C®°(E) — C*°(E) is strongly elliptic if there exists a constant

6 > 0 such that
a
48) [oea, ) nan” > il

Replacing & by - £ shows that k must be even: k=2m.
We have assumed here that (M,g) is a Riemannian manifold (]§|2 =
g7(z):€;), and that a Riemannian metric hop(z) is defined on the fibres

(770: = hagnﬁ). ]
When (M, g) is compact, we define on C°°(E) an inner product by

.9)= [ hiaa@5@Hf @)V

We note L,(E) the space C*®°(E) with the norm +/(¥, ).
The formal adjoint A* of A is defined as usual by

(Av, 0) = (¥, A"9)

for any 1 and ¢ belonging to C*°(E).

For the strongly elliptic operator A on C*°(E) with (M, g) compact, the
Fredholm alternative holds: Ker A and Ker A* are finite dimensional.

If f € Ly(E) there is a solution ¢ of A 1 = f if and only if f is orthogonal
in L,(E) to Ker A* (there is a unique solution orthogonal to Ker A).

The eigenvalues \; of A are discrete, having a limit point only at infinity.
Moreover the eigenspaces Ker(A — A;I) are finite dimensional.

For more details see Morrey [*243].

4.39 Definiton. A differential operator A of C*°(E) into C*°(E)
Ay = F(z,9,V9,..., V)

where F is assumed to be a differentiable map of its arguments will be elliptic
(resp. strongly elliptic) with respect to 9 at z if the linearized operator at v is
elliptic (resp. strongly elliptic).

4.40 For the equations Au = f, where A is a partial differential operator on
scalar functions, we will find in Chapter 3, some regularity theorems. Here we
mention one more.

Let 2 be an open set of R™ with coordinates {z'}, and let u(z) be a weak
solution in Hj(£2) of the equation

Z 6,' (ai,-(a:)a,-u + a,-(x)u) + Z b; (x)aiu +a(z)u

J=1 i=1

= f(z) + Z 0; fi(z).

i=1

(49)

n n
i=1
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We suppose that there exist 1 > v > 0 such that

n

(50) v () Sap@ee <ud (€’
=1

i=1

for z € £2 and ¢ > n such that

6D llaillg, s llbillgs llallq/2; 1 fllg/2  and || fillq
are bounded by u forall 1 <i<n.

Theorem 4.40 (Ladyzenskaja-Ural’ceva [*206]). On any open bounded subset
6 C 12 such that the distance d(8,012) > & for some 6 > 0, a weak solution
in H{(12) of (49) is bounded and belongs to C* on 6 for some o > O, if we
suppose conditions (50) and (51) satisfied. Moreover ||u||cog) < M a constant
which depends only on n, v, u,q,6 and ||u||L2(q). Furthermore o and k an upper
bound for ||u||c=() depend only on n,v, u,q,6 and M.

We have a uniform estimate of max |Vu| on 6 depending on the same quanti-
ties if in addition ||Oxaijl|q, ||Okbillg, llalle ||fllq and ||Okfillq are bounded by p
for all i, j, k. According to the first part of the theorem, we have then a uniform
estimate of ||u||ciegg for some B > O, this estimate and [ depending on the
same quantities.

Indeed, differentiating (49) with respect to =¥, v = O, u satisfies an equation
of the following form:

Z Z 8,' (aijajv) = F(.’L‘) + ZH,F,(.’B)
i=l j=1 =1

4.41 Let A be an elliptic linear differential operator of order two on {2 an open
set of R™:

(52) Au= Z ai;(z)0;u + Z b;(x)0u + c(z)u
i,j=I i=1
such that a;;(z) satisfy
(53) 0 <A <ay(@)Eed <A
for z € 2 and any € € R™ of norm 1(|¢| = 1). b;(z) and ¢(z) are supposed to
be bounded, ||b(x)||? + |c(z)| < k for z € £2.

Theorem 4.41 Harnack inequality (see Krylov [*204] and Safonov). Let u €
H2(£2) be a non-negative function (u > 0) which satisfies Au= f in B, C 2.
Then, for0 < o < 1,

C
<= ;
(54) a:é‘g:. , u(@) < 7 (I eutl?f,, ) w(z) + 7| f IIL,.<B,)>
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where C depends on n, A/\ and kr 2/\. B, is the ball of radius p with center
at a given point Ty € 2.

From (54) we can deduce uniform estimates on osc u in B,(p <) and on
the Holder continuity of u (see Moser [*244)). In [*244], Moser gave a proof
of (54) in case u > O satisfies

n
(55) Auz= " 8faij(@d;u] =0 on Q.
i,j=1
His conclusion is: in any compact set K C 12,

max u(z) < ¢ min u(z)
z€K @ < z€K !

where ¢ depends on K, 2, )\ and A only. The proof of (54), as that of (55), is
given in two parts corresponding to the following two propositions.

4.42 Proposition. Let u € HJ'(12) satisfy Au > f, with f € L,(§2). Then for
B, C R2andp >0,

1/p
6  sup u(m)SCKT_" /Bz (u*)ﬂdx) +r||f—||msz,)],

IEBT
where C depends on A\, A,n,k and p. u* = sup(u,0) and f~ = sup(—f,0).

For the proof we use the following Alexandrov-Bakelman-Pucci inequality.

Theorem 4.42. Let u € C%(2) (" H,(12) satisfy Au > f, where A is given
by (52) and (53) holds. Setting det((aij)) = 6™, we assume c(z) < 0 in 12, |b|/8

and f /6 belonging to L,,(02).
Then
(57) sup w(z) < sup u*(z)+C||f~ /0.,
zEN €00

where C depends on n, diam 2 and |||b|07"|| 1.2y only.

4.43 Proposition. Let u > 0 satisfy Au < f in Q,. Then there exists p > 0so0
that

lullzo@n < C(int wz)+ | flucan)
where C depends on A\, A,n and k only.

Qn denotes the cubes |z%| < h/2(i = 1,2,...,n).
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For Moser [*244], who studied equation (55), the two propositions are:
(i) If u is a positive subsolution of (55) in Q4, then for p > 1

mpx o) < 61 (25) ([ war)”.

(i) If u is a positive supersolution of (55) in Q4, then

1/p 02
u? dx) < min u(z)
<</Q: (po — P)2 TEQ)
for 0 < p < po = n/(n —2), where C and C, denote constants which
depend on n, A and A only.

4.2. Parabolic Equations

4.44 The heat operator L. On a compact Riemannian manifold (M,, g), we
consider the operator
L=A+9/0t

on C2-functions u: M x [0, 00[— R.

K(P,Q,t) = (2v/7) "t ™™ ?exp[—p*(P,Q)/4t]

is a parametrix for L with p smooth, p(P, Q) = d(P, Q) when d(P,Q) < §/2
and p(P, @) = 0 when d(P,Q) > 4 the injectivity radius.
We define N(P,Q,t)=—LpK(P,Q,t) and

t
Nk(P,Q,t)=/ d'r/ Ng-1(P,R,t — T)N1(R,Q, T)dV(R).
0 M

The fundamental solution of the heat operator L is
(58) H(P,Q,t)=K(P,Q,1)
t 00
+/ dr/ K(P,R,t~7)Y Ni(R,Q,7)dV(R)
0 M k=1

(see Milgram-Rosenbloom [*235], Pogorzelski [*265]).

H(P,Q,t) is C* except for P = Q, t = 0; it is positive and symmetric in
P, Q. In the sense of functions, it satisfies Lp H(P,Q,t) = 0.

Any function u(P, t) on M x [0, 0o[ which is C? in P and C! in t satisfies
fort > to

t
(59) w(P,t) = / dr / H(P,Q,t - D)Lu@, 7)dV(Q)
to M

s /M H(P,Q,t — to)u(Q, t0) dV(Q).
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The spectral decomposition of H(P, Q1) is

oo
(60) HP,Q,)=V"+> exp(—Aitypi( P)pi(Q),

i=1
where the \; are the non-zero eigenvalues of A, the ;(P) being the corre-
sponding orthonormal eigenfunctions.

4.45 Theorem. On a compact Riemannian manifold (M, g) let us consider the
parabolic equation

(61) Lu(P,t) = f(P,t),u(P,0) = up(P).

Equation (61) has a unique solution which is given, when the integrals make
sense, by

t
WP,t) = / dr / H(P,Q,t - (@, 7)dV(Q)
0 M

N /M H(P,Q, t)uo(Q) dV(Q).

Assume ug = 0. If f is Holder continuous, %‘ti and the second derivatives

of u with respect to P are Holder continuous.

If f belongs to Ly, %% and the second derivatives of u with respect to P
belong to L,; moreover
Ou

at + ||v2u|]P S Const. “f“P)

P

(62) l

where the norm .L,, is taken over M x [0, oo[.

The left hand side of (62) is the norm of H} (M x [0,00().

For the details on the regularity of u(P,t), see Ladyzenskaja-Solonnikov-
Ural’ceva [*207] and Pogorzelski [*265].

4.46. Maximum principle. Let u(P,t) be a continuous function on M x [0, to].
Assume u < 0 on M x {0} and on OM x [0, t,].
If whenever u > 0, u is C? in P, C! in t and satisfies

(63) Ou/Ot < —Au + b*(P,t)0;u + cu
with the b* bounded and c a constant, then we have always u < 0.
Proof. Let w= ety 1 and u have the same sign. Since
dw /8t = e~V [Bu/dt — (c+ Nul,
we have

(64) ow/dt < —Aw + b*(P, t)0;w — w.



§4. Partial Differential Equations 131

Assume w is positive somewhere and let (Q,t) be a point where w is max-
imum. Then Aw(Q,t) > 0, o,w(Q,t) = 0 and dw(Q,t)/8t > 0. Thus (64)
implies w(@,t) < 0, which yields a contradiction.

Remark. The usual maximum principle, when the maximum is positive, is simi-
lar to the maximum principle for elliptic equations. It holds when the coefficient
of u is non-positive.

4.47 On a compact Riemannian manifold (M,,g), let us consider a linear
parabolic equation of the type

(65) ou®/ot = —Au® + ag‘i&'ua + bg‘uﬂ + f
when written in a system of coordinates {z*}.

u*(a@ = 1,2,...,k) are k unknown functions on M x [0,00[, f*(a =
1,2,...,k) are k given functions on M X [O,oo[. The coefficients a gi and
b are supposed to be smooth. We write u for (u',u?,...,u*) and f for
(fY, f2,..., f*). We choose p > n +2.

Theorem 4.47. For every f € L, (M x [0, to]), there exists a unique
u€ Hj (M x [O,to])
satisfying (65) for 1 < o < k and u(P,0) = 0.

Proof. In [149] Hamilton gave a proof of Theorem 4.47 when the manifold has
a boundary. His proof, written in our easier case, is the following.

Let us prove uniqueness first. We have to prove that u = 0 is the unique
solution of (65) when f =0.

Since p > n+2, u® and 9;u® are continuous. Using the regularity properties
for a single equation (65), « fixed, by induction we show that u is smooth for

t > 0. Let n
Y= % Y @y
a=1
1) satisfies
n n
(66) Ly=-— Z YV, utViu® + Z u® (agia,-uf’ + bguﬁ).
a=1 a=1

Then, for an appropriate constant C, we have that the right side of (66) is
smaller than C: Ly < Ct. Since ¥(P,0) = 0, the maximum principle 4.46
shows that ¢ = 0. Thus u = 0.

Let us prove now the existence. Denote by A% (M x [0,t,]) the subspace
of the functions of HJ (M x [0, to]) which vanish for ¢t = 0.

According to Theorem 4.45, 4 — Lu defines an isomorphism of I?f (M X
[0, %0]) onto L, (M x [0,o])

Let Ku = {ag'd;u® + bgu®}. The map K: A} — Ly is compact, since the
inclusion AP C L, is compact.
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By the theory of Fredholm mappings, the map Hf — Ly, given by u —
(Lu — Ku) has finite dimensional kernel and cokernel. Moreover its index is
zero, since the index is invariant under compact perturbations. Since we saw

that its kernel is zero, this map is an isomorphism.

4.48 Definition. A strictly parabolic equation is an equation of the type
ov,
—=A ,

(67) 5 1t

where t — ¥, belongs to C' ([0, oo[ C*(E)) and [0, 00[.3t — A; is a smooth
family of strongly elliptic operator ofC *°(E) into C*°(E), see Definition 4.39.

4.49 We now prove local existence of solutions for the non linear parabolic

equation of Eells and Sampson (see 10.16).
Let u = {u®} be k unknown functions on M x [0, 7], and f* be k given
smooth functions on M(a=1,2,...,k).

Theorem 4.49. There exists € > 0 and u € H} (M x [0,€]) with p > n +2
solving the equation
{ Lu® - g.,(u(l', t))gij(x)aiuﬂa,-u*f =0

(68)
u*(z,0) = f%(z), a=1,2,...,k.

Moreover, u is unique and smooth on (M x [0,€]).
I'’g, are smooth functions on R%, u(z, t) being the point of R*¥ whose coor-
dinates are u®(z,t).

Proof (Hamilton [*149]). We will find u as a sum u®(z,t) = f*(z) + v¥(z,t)
and write (45) as P(f +v) = 0 with v(z,t) =0 when t = 0.

The linearized equation A,h of (45) at u € H; has the form
(69) (Auh)® = Lh® — a§*(w)8;h® - b3(w)h?, h(z,0) =0,

with ag*(u) and b3(u) continuous since p > n+2. So v — P(f + v) defines
a continuously differentiable map of A} (M x [0,7]) into L,(M x [0,7]). Its
derivative at v = 0 is Ag: HY (M x [0,7]) — Lp(M x [0, 7]) which is an
isomorphism according to Theorem 4.47.

Therefore by the inverse function theorem the set of all P(f +v) for v in a
neighbourhood £2 of 0 € A (M x [0,7]) covers a neighbourhood 6 of P(f) in

Ly(M x [0,7)).

If € > 0 is small enough, the function equal to 0 for t < ¢ and equal P(f) for
£ <t < 7 belongs to 6. Thus there exists w € A (M x [0,7]) which satisfies

P(f+w)=0
on M x [0,¢€].
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4.50 Corollary. Let (M, g) and (M, 9) be C™ compact Riemannian manifolds
and fo a smooth map M — M. Then there exists € > 0andamap f: M x[0, €] >
(z,t) = filzx) e M belonging to H;’ (M x [0,e], M ) satisfying the parabolic
equation

(70) dfMx) /8t = = AfNx) + g9 (@)L, (fu(2) 0: f1(2)B; £ (x)

with fq as initial value. Moreover f is unique and smooth on M x [0, €]. {xi} (1 <
1 < n} denote local coordinates of x in a neighbourhood of a point P € M and
y*(1 < X < m) local coordinates of y in a neighbourhood 8 of f(P) € M.
The parabolic equation is written in these systems of coordinates, I’ :‘V are the
Christoffel symbols in 6.

Proof (Hamilton [*149]). Hamilton embeds M in R¥, k large enough. He con-
siders a tubular neighbourhood T' of M in R* and extends the metric § on M
smoothly to a metric on 7. There is an involution i: 7" — T corresponding to
multiplication by -1 in the fibres, i(Q) = Q for Q € M. We can choose the
extension g of § to T so that ¢ is an isometry of (T, ). Finally we extend §
smoothly to all of R¥.

Now we apply Theorem 4.49 with I'g, the Christoffel symbols of (R*, )
and u(z, 0) = fo.

We have fo(M) C M. If u(z,t) does not always remain in M, we can
suppose € small enough so that u(z,t) € T forany x € M and t € [0, e}.

Since i is an isometry, i o u would be another solution of (68), which is in
contradiction with the uniqueness of the solution. For more details see [*149].

4.51 Theorem. Let E be a bundle of tensors over a smooth compact Riemannian
manifold (M, g). We seek a smooth family [0, T[— u: of smooth tensor fields on
M (uy € C(E)) which satisfies the equation -

an ot

{ Ou =a(t,z,u, Vu)V;Vu+ f(t,z,u, Vu)
uo(z) = p(z)

@(x) is given and belongs to C®(E), the components a*J of a doubly contravari-
ant symmetric tensor field on M are, in a local chart, smooth functions of their
arguments, and f, with values in E, is smooth in its arguments. If equation (71)
is strictly parabolic at  (the tensor field a* (0, z, ¢, V) is everywhere positive
definite), then there exists a unique smooth solution u on [0, s[ for some s < T.

We leave the proof to the reader. Friedman [*130] and Eidel’man [*125] deal
with the local solvability of the Cauchy problem for arbitrary nonlinear parabolic
systems. In [*231] Malliavin solves the Cauchy problem for linear parabolic
equations on a vector bundle E when M is compact. See also Dieudonné [*113]
when the coefficients of the linear equation on E do not depend on t.
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§5. The Methods

4.52 In these sections, we will mention the methods used in the book for solving
elliptic equations. Then we will deal with some other methods.

The variational method, the continuity method and the method of lower and
upper solutions are studied in detail throughout this book.

The method of successive approximations, probably the oldest method, was
used by Vaugon (see 5.15-5.17) to prove the basic theorem on the Yamabe Prob-
lem. For the Leray-Schauder fixed point theorem (3.20), see Gilbarg-Trudinger
[*143] p.228.

The steepest descent or the gradient-line technique was used by Eells-Samp-
son (see 10.10) to prove the existence of harmonic maps. Bahri-Coron (see
5.79) studied the gradient lines to see if they go through the critical level of the
functional or if they go to infinity. The steepest descent was used by Gaveau-
Mazet [*137] and by Inoué [*181] to prove the basic theorem on the Yamabe
Problem.

4.53 We continue with the method which consists, instead of solving the elliptic
equation directly, in studying the corresponding parabolic equation. Examples:
Eells-Sampson (see 10.10), Hamilton (see 9.15).

The method of points of concentration (see 6.53). It was used by Dong [*118]
to prove the basic theorem on the Yamabe Problem. The points of concentration
were introduced many years ago see for instance P. L Lions [*222]. Here we
use the approach developped by Vaugon [*309] ten years ago. But only recently
we discovered all the possibilities of this technique.

When a group of isometries acts, Hebey (see 6.36) developed the method of
isometry-concentration.

The method of B-B-C (Bahri-Brezis-Coron see 2.65-2.67): under a topolog-
ical assumption, they prove that the equation cannot have no solution. There is
a contradiction beetwen some algebraic-topological arguments and the study of
the problem by Analysis. Bahri solved with this method the Yamabe Problem
for the compact locally conformally flat manifolds.

4.54 The Mountain Pass Lemma (Ambrosetti and Rabinowitz [*2]). Let f be
a C! real function defined on a Banach space B and satisfying (PS). Assume
there is an open neighbourhood 2 of 0, and a point xo & 12, such that f(0) and
f(zg) are strictly less than Cy < infzca0 f(z). Then the following number C is
a critical value of f,

(72) c sup f(z) > C,

= inf
PGP IEP
where P is the set of all continuous path P from 0 to x,.
(PS) means Palais-Smale condition: Any sequence {z;} C B such that

|f(z;)] < M and f'(x;) — O strongly in B* (the dual space) has a strongly
convergent subsequence.
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In [*258] Nirenberg introduced the condition (PS)¢c any sequence{z;} C B
such that f(x;) — C and f'(z;) — 0 strongly in B* has a strongly convergent
subsequence. The mountain pass lemma holds under (PS) ¢ instead of (PS). For
details on theMinimax methods see Ni [*255], Nirenberg [*258] and Rabinowitz
[*271].

4.55 The Leray Schauder Degree D. Consider a real Banach space B, 6 an
open set of B and a map F:8 — B of a special form F = I — K with K
compact (see 3.19 ) and I the identity map. We consider the triplets (F, {2, y)
with (2 a bounded open set of B such that 2 C § and y € B, y & F(812),
(here 82 = 2 — O). To such a triplet (F, §2,y) there corresponds an integer
D(F, 12,y).

The Z-valued function D having these three basic following properties is
unique

(i) DU, ,y)=1forye N,

(i) D(F, 2,y) = D(F, 21,y) + D(F, £2,,y) whenever {2, and (2, are dis-
joint, 2 = £2; U {2, and y g F(Q — 21U 2).

(iii) Lett — F; be a continuous family of maps for ¢ € [0, 1] of the form
defined above and t — y; € B be continuous with y; & F;(042) on
[0,1]. Then D(F}, §2,y,) is independent of ¢t € [0, 1].

Moreover the Leray-Schauder degree has the following properties.

(73) (iv) If D(F, £2,y) #0, then F(z) = y has at least a solution.
(v) D(F,2,y)= D(Fz,_.Q, y) whenever Fj /50 = Fz_/ag.
(vi) D(F, £2,y) = D(F, (2,y) for every open subset 2 of 2 such that
y & F(2 - 0).
(vii) Suppose that a solution =z of F'(z) = y is a regular point of F
(F' is a homeomorphism). Then the local degree (index) of F at
z is defined as

ind(z) = D(F, By(€),y),
where B(¢) is the ball in B with radius € and center z.

It is independent of € for € small, and equals +1 or —1 according to whether
the sum of the algebraic multiplicities of the negative eigenvalues of F'(z) is
even or odd.

For the existence of D, see for instance Leray-Schauder [180], Nirenberg
[*257] and Rabinowitz [*270].

The Leray-Schauder degree was used by Chang, Gursky and Yang to prove
their result on the Nirenberg problem in dimension 3 (see 6.88).

4.56 Bifurcation Theory. We will mention only one theorem, when there is
bifurcation from a simple eigenvalue. For other results, see for instance Smoller
[*293].
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Let I C R be an open interval with A € I and B, B, be two Banach
spaces, {2 C B, being an open subset. We consider f € C%2(Ix 2, B,) satisfying
f(X,0) =0 when A € 1.

Hence, for any A € I, f(\,z) = 0 has a solution z = 0; the problem is to
exhibit non trivial solutions of f(\,z) = 0 if there are any.

A necessary condition for having non trivial solutions in a neighbourhood
of (A, 0) is that Lo = D, f(Xo,0), the differential at z = 0 of z — f(X, ),
is not invertible according to the implicit function theorem (see 3.10). But this
condition is not sufficient.

Theorem 4.56. If (i) Ker Ly is one-dimensional, spanned by uo,

(i) R(Lo) the range of Ly has codimension 1,

(i) [DrDzf(ro,0)](u0) & R(Lo), then (Xo, 0) is a simple bifurcation point
for f. More precisely, let Z be any closed complementary subspace of
ug in By, (B1 = Z @ Ker L), then thereis a6 > 0 and a C'— curve
] ~6,6[3s = (Ms),9()) € R x Z such that A0) = 0, ¢(0) = 0
and f[X(s),s(uo + @(s))] = 0 for |s| < & Furthermore, there is a
neighbourhood of (o,0) such that any zero of f either lies on this
curve or is of the form (X, 0).

This Theorem was used by Vazquez-Veron [*312] to solve the problem of
prescribing the scalar curvature in the negative case (see 6.12).

4.57 The method of Moving Planes. This method uses the maximum principle
in an essential way. To understand how the method works, let us give the original
proof of the

Theorem 5.57 (Gidas-Ni-Nirenberg [140]). Let £2 C R™ by a bounded open set
symmetric about ' = 0, convex in the z' direction and with smooth boundary
892 Suppose u € C*(2) is a positive solution of Au = f(z,u) in 12 satisfying
u=0o0ndf. :

Assume f and O, f are continuous on 2, and f is symmetric in ' with f
decreasing in ' for ' > 0. Then u is symmetric in ' and dyu < 0 for z' > 0.

Proof. Set Ao = max, ¢ z' and let zo € 812 with z{ = .

Since u > 0 in §2 and u(zg) = 0, A u(ze) < 0. First we prove that for
z € {2 close to zo, Ou(z) < 0. If 8yu(zy) < 0, this is obvious by continuity. If
d1u(zo) = 0, the proof is by contradiction. Assume there is a sequence {z;} C 2
converging to zo such that 8yu(z;) > 0. Consequently 8y,u(zo) = 0 and hence
Au(zo) = 0 (since u = 0 on 812). Thus we must have f(zo,0) = 0. In that
case u > 0 in {2 satisfies an equation of the type Au + h(z)u > 0 for some
function h(z). By the version 1.43 of the maximum principle 8,u(zo) < 0, thus
the contradiction.

Now we start with the method of moving planes.
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We denote by T the plane z! = . For A < Ao, A close to Ao, we consider
the cap £(A) = {z € 2/X < z' < Ao}, the set of the points in 2 between T,
and T,\o.

For any z in {2, we use z) to denote its reflexion in the plane T). When
A > 0, z is defined on X()) since {2 is convex in the z! direction and symmetric
about z' = 0.

At the beginning, when )\ decreases from ), since u(z) is strictly decreasing
for = close to zg, wa(x) = u(zxy) — u(z) > 0 in ().

For z € 8X()\) with z! > X, wy(z) > 0 and, for z € ThNAX(N), wy(z) = 0
and Oywy(z) > 0.

Decrease A until a critical value p is reached, beyond which this result no
longer holds: at a point y € T, N 2, yw(y) = O (we drop the subscript x in
wy). But w satisfies in X(u), when > 0

Aw = f(zy,u(zw) ~ f(z,u@) 2 f(z,u,) - f(z,u@)).
We can write this inequality in the form
(74) Aw > h(z)w.

Moreover w satisfies w > 0 in X(y). Thus, according to Proposition 4.61, w = 0
in X'(p) since w(y) = 0 and J,w(y) = 0. The result follows and p = 0.

We must have p > 0, since otherwise we start with the reflexions from
A=) =inf ¢ z' and we increase .

4.58 Corollary (Gidas-Ni-Nirenberg [140]). In the ball {2: |z| < R in R", let
u € C?%(f2) be a positive solution in 2 of

(75) Au= f(u) with u=0 on 012

fis supposed to be C". Then w is radially symmetric and %’;f— <0for0<r <R

If f'(u) < 0, the Maximum Principle (see 3.71) implies that the solution u
is unique. Thus u is radially symmetric, otherwise by rotations, we would get a
family of solutions. In any case the result is a consequence of Theorem 4.57. We
apply it for all directions. Since the paper [*140], the maximum principle was
improved; it holds in narrow domains (see Proposition 4.60), thus the hypotheses
of Theorem 4.57 and Corollary 4.58 may be weakned.

Theorem 4.58 (Berestycki-Nirenberg [*39]). Let {2 be an arbitrary bounded
domain in R™ which is convex in the ' direction and symmetric with respect to
the plane z' = 0. Let u be a positive solution of (75) belonging to C(2) N HY,,..
f is supposed to be Lipschitz continuous. Then u is symmetric with respect to T
and 81u < O for z' > 0 in 0.

Proof. We can start at once with the method of moving planes. Since f is
Lipschitz, w) satisfies (74) in a narrow band X()\) when A is close to Ag.
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Moreover wy > 0 on 8X(}), thus wy > 0 in X(A) (according to Proposition
4.60) and, on T N 2 where wy = 0, we must have O1wy > 0, otherwise the

function vanishes.

4.59 The method of moving planes may be used also for unbounded domains.
To start with the process, we need an assumption on the asymptotic expansion

of u near infinity.

Using this method in [*69], Caffarelli and Spruck proved uniform estimates
for solutions of some elliptic equations.

In [*39], Berestycki and Nirenberg use with the method of moving planes a
new one, the sliding method introduced by them. They compare translations of
the function.

4.60 The Maximum Principle (see 3.71). It concerns second order elliptic op-
erators A in a bounded domain 2 C R™. Let g;;(z) be a Riemannian metric on
2 and £(z) be a vector field on (2. Set

(76) Au = ¢¥0, u + €'(z);u + h(z)u.

A is supposed to be uniformly elliptic (a™'|n|* < g*n;n; < aln|?), and its
coefficients to be bounded by b in (2.
The maximum principle holds for A in 2, if

Au>0 in 2 and limsupu(z) <0
z—9N

imply u(z) < 0in f2.
" The usual condition for this to hold is h(z) < 0 (see 3.71).

Proposition 4.60. The maximum principle holds if there exists a positive function
f € HR()NCO(N) satisfying Af < 0, orif 12 lies in a narrow band o < z' <
o + € with € small, or (Bakelman-Varadhan) if the measure || is small enough
(IQI < 8)More precisely, assume diam 2 < d, there exists § > 0 depends only
onn,d,a and b.

Proof.
(i) Consider v = uf ~!, v satisifies

998iv+ (€ +2V'logf) 9w+ vf T A(f) > 0.
Since limsup, 5, v(x) < O, the usual maximum principle implies

v < 0 in {2,thus the same is true for u.
(ii) If £2 lies in a narrow band, we construct a function f as above.
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(iii) We use the following theorem of Alexandroff, Bakelman and Pucci
[*268] (see 4.42). If Mz) < O and if u satisfies Au > f and
limsup, 5, u(z) < O, then sup, ¢ p w(z) < C||f||n where C depends
only onn, d, a and b. u satisfies

[A - h*(:z:)]u > —h*(z)ut.

Thus
supu* < C(sup h*) (supu*)[£2]'/™.
e} kel e}

Choose § = (Cb) ™", then u < 0.

4.61 The Maximum Principle (Second part). Suppose there is a ball B in {2
with a point P € 0£2N0B and suppose u is continuous at P and w(P) = 0. If u #
0 in §2 and if u admits an outward normal derivative at P, then g—’;(P) > 0. More

generally, if Q approaches P in B along lines, then liminfg_, p L'L(T}B—:%(]@ >0

otherwise u = 0 in $2. This holds for u € C*(2) satisfying (76) if h(z) < 0. -

Proposition 4.61 (Gidas-Ni-Nirenberg [*140]). If u € C*(£2), u < 0 satisfies
Au > 0, the maximum principle holds. That is, if u vanishes at some point in {2,
or if u vanishes at some point P € 0f2 with g—‘:(P) =0, thenu=0in 0.

Proof Set A= A — h*. u < 0 satisfies Au > —h*u > 0. Since —h~ < 0, the
usual maximum principle holds.

§6. The Best Constant

4.62 Theorem (Aubin [13], [17]). Let (V},, g) be a complete Riemannian mani-
fold with positive injectivity radius and bounded sectional curvature, n > 2 the
dimension. Let q be a real number satisfying 1 < q¢ < n: then for all € > 0 there
exists a constant A.(q) such that any function  belonging to the Sobolev space
H{(V,)) satisfies

a7 lellp < [K(n,q)+€][|Vellq + A@)l¢llq

with 1/p = 1/q — 1/n. The best constant K(n, q) depends only on n and q, its
value is in 2.14.

Remark. Recently, tanks to sharp estimates on the harmonic radius obtained by
Anderson and Cheeger [5], Hebey [165A] was able to prove that Theorem 4.62
still holds if one replaces the bound on the sectional curvature by a lower bound
on the Ricci curvature.

We can ask the question: does A.(q) tend to oo when € — 07

In [13] we made the conjecture that the best constant K(n,q) is achieved
(Ao(q)) exists. The conjecture is proved when n = 2 and when n > 3 if the
manifold has constant sectional curvature.
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This result is obtained by choosing a nice partition of unity and by using
the isoperimetric inequality (which holds when the curvature is constant).

Later Hebey and Vaugon extended this result to the locally conformally flat
manifolds by a similar argument. But recently by new methods they proved

4.63 Theorem (Hebey and Vaugon [*171], [*172]). For any complete Rie-
mannian manifold with positive injectvity radius, bounded sectional curvature,
bounded covariant derivative of the curvature tensor and dimension n > 3, the
best constant K(n,2) is achieved.

The statement of Hebey and Vaugon is more precise. We still sketch the
proof when the manifold (M, g) is C* compact, because it is very interesting
and a good illustration of new technics; but before to read it, the reader must
see chapter 6 (Note that the assumption of Theorem 4.63 are obviously satisfied
by compact manifolds).

" Assume Proposition 4.64 below. Let (2;,%;) ( = 1,2,...,m) be a finite
atlas such that 1);(£2;) = B the unit closed ball of R™. We can choose the atlas
such that B is convex for (;')"g (1 < i < m), since any point has a convex
neighbourhood.

Let us consider {77,} a C* partition of unity subordinated to the covering
£2; such that \/7; and |V,/7;| belong to C°(£2;). Setting u; = \/7;u for some
u € C*®°(M), we have by using (79)

m m
luldy = lu?llne < Y ledllva =D llualy
i=1 =1
<SK2Y (Vwl3+C Y w3
P 1

Since 3.0, fqu,Ide [IVufdv + Y7, fu2|Vn,|2dV (indeed the
additional term 1 Y7, [ Vin?V,;u?dV = 0), there is a constant C' such that
any u € Hy(M) satlsﬁes

(78) luly < K2||[Vull} +C|lul3

K = K(n,2) is achieved.
When the manifold has constant curvature, we use the isoperimetric inequal-
ity to prove Proposition 4.64, but in the general case the proof is harder.

4.64 Proposition. Let B C R™ be the closed ball of radius 1, and g be a C®
Riemannian metric on a neighbourhood of B such that B is convex for g. Then
there exists a constant C such that any ¢ € H 1(B) satisfies (the norms are taken
with the metric g):

(79) el < K2(1Vell3 +Cllell.



§6. The Best Constant 141

The proof is by contradiction. For any o > 1, we suppose that there exists
ta € H1(B) satisfying [ua|l3 > K2([| Vil + afual)3).
Thus

2/n

- 2wy
A = f 2 2 _n(n-
a 611:] [HVu||2+al|u||2]||u|| <K D —

Since A\ < K~2, the minimum is achieved. The proof is that of the basic
theorem 5.11 on the Yamabe problem. As a consequence, there exists o €
H\i(B), with ||@q]||n = 1, which satisfies the equation

(80) Ape + Qg = A,ﬂpf ! and @, >0 in B.

Hence o € C®(B), ¥a/aB =0 and
@1 IV@al +allpall? = A < K2

Therefore lim, o0 ||@all2 = 0 and there exists a sequence g; — oo such that
pq; — 0 a.e.. By interpolation

(82) lim |lpallp — 0 for 2<p< N.
a—00

Lemma 4.64. There exists a sequence {q;} such that {¢,,} has a unique simple
point of concentration.

Moreover Ay, — K% and q;||pq, |3 — O when g; — oo.

According to Theorem 6.53, there is only one point of concentration. Indeed
here f(P) =1 and p/us = Ay, K? < 1. Moreover since the energy of a point
of concentration is at least K~ ) (see 6.52, formula 64) zg is a simple point of
concentration. Consequently A,, — K~2 and g¢;||¢o, ||2 — 0. Remark that

(83) lim / oY av =1
Bp(6)

q;—00

since P is the unique point of concentration.

4.65 Proof of Proposition 4.64 (continued).

)(n—2)/4

. p) .
For convenience set u; = (=~ .. u; satisfies
qi

n(n-2)
(84) Au; + gy = n(n — 2)ul’ 7!

Denote by z; a point where u; is maximum, u;(z;) = m; = supg u; — 00,
z; — z¢ and u; — 0 uniformly on any compact set K C B — {zo}.

Let p; = (my)~%/ 2,

Now we study the speed of convergence of z; to dB (if any).

@) lim inf; oo 4228 = 0.



142 4. Complementary Material

This implies zo € OB. After passing to a subsequence if necessary we can

suppose that the limit exists.
We do a blow-up at zo. Define the maps ¥; of R™ in R™ y — (y) =

ey + 70 B = 67 (B) = B_osp () and

ui(Uiy + Zo) _  (n-2)/2
=y
mi

vi(y) = u;(BiY + Zo)-
Let us consider the metrics h; = p; 2¢Fg. On B;, v; satisfies 0 < v; < 1
and

(85) Apivi + gipdv; = n(n — 2] 7.

On any compact set of R™, h; — & uniformly in C? (we are able to do so
that g(z0) = £(z0)).

A similar proof of that of Corollary 8.36 of Gilbarg-Trudinger [143] shows
that the v; are uniformly bounded in C' on a neighourhood of 0 € B;. ’

But hypothesis c) implies 1im; oo d(¥; '(z;),0B;) = 0 which is in contra-
diction with v;(y;'(z;)) = 1 and v; =0 on 8B;. So a) is impossible.

P) lim inf; o 4228 = > 0.

This implies also zo € B. As previously we suppose that the limit exists.
Since O(n) acts on B, we can suppose without loss of generality that all points
z; and zo are on the same ray (the n — 1 first components of z; and zo are
Zero).

We denote by g; the metric corresponding to g after the action of the element
of O(n).

Now we do the same blow-up as previously (in a).

Then U, B; is the half space

E= {(ylayZ)-"$yn) € Rn/yn < 0}’

Since the sequence {v;} is equicontinuous, a subsequence converges uni-
formly on any compact set K C E to a function v which satisfies

(86) Agv =n(n = 20™2/0-D iy B

v/OE =0 and v(z) = 1 where z=(0,0,...,~l) € E, (y; = i z).
Indeed g;u? — 0. Let K C E be a compact set. When i is large enough

qini: / v dVe < 2qip? / vi dVh, < 2quu} / v} dVh,
K K B;

=2qup* ™" / v} dVi, (D)™ = 2g; / u?dVy, — 0
i B
according to Lemma 4.64.

Now such a positive function v cannot exist by Pohozahev’s identity. First
by the inverse of a stereographic projection, we get a function on a half sphere
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of pole Q. Then a stereographic projection of pole Q (opposite to Q) yields a
function ¥ satisfying equation (86) on a ball B and also %(0) =1 and ¥/55 = 0.
So () is impossible.

¥)lim;_, oo %@ = +00. In this case o may be on B or inside B. We

do a blow-up at z;. We define the maps v¢; by §2; 3 y L exp,, (u;y) with
2 =4;1(B).
1; is well defined since f2; is star-shaped according to the convexity of B for
g.

We consider on (2; the metric h; = u] %9 g.

h;(0) = £(0) according to the properties of the exponential mapping. h; — &
uniformly in C? on every compact set K. The function v; on £2; defined by

u; (¥i(y) -
vily) = —(—m——) = u P (a(w))
satisfies
0<v; <1, v%0)=1, ©v;/00;=0
and
(87) Ap,v; + qiptv; = n(n — 2)v§"+2)/(n_2) on 2.

The sequence {v;} is uniformly bounded in C) on every compact set K.
A subsequence converges, uniformly on any K, to a function v satisfying 0 <
v < 1, v(0) = 1 and equation (86) on R™, since qipf — 0 (see ). We know

such function v, v = (1+ ||y||2)l—n/2. In order to exclude the third case ), and
to establish a contradiction to the existence for any o > 1 of a function ¢4
satisfying (80), we need to use the Pohozahev identity

(88) / VEriV v Asv; dV
2;

= —-1— / V*r2V,v;8,v; do — (n — 2)/ v;Agv; dV.
2 B.(),' nx‘

In (88) the metric is the euclidean metric, 9, is the outside normal derivative
and r = ||y||.
Since {2; is star-shaped,

X = vkrzkaiAg’Ui dVe +(n — 2)/ 'U,;Ag'v,; dVg
£2; 2,

= ——l-/ 8,70, v;|*do < 0.
2 Jaq,
Define
n
(89) Y = Z / OOk v; Ap,vi dVe + (n — 2) / v An,v; AV
k=1 2; 2;

=X+Y-X<Y-X.



a4 4. Complementary Materia]

Using (87), we get Y = 2qip? [, v} dVe.
Now some computations lead to

(90) Y - X <Cul [/ vidVe +/ rrolN dvg}
. 2;

i

for some constant C; independant of . Moreover there exists a constant C, such

that for any i, v; < Cyv.
This result is proved by different authors; it holds when the point of con-

centration is simple. According to the value of Y, (89) and (90) yield

2
o 2qve <oV [
91 (2g; Cl)./rz.- v; dVg < C1C) /n.- T+ dVe < Const. .

But v; — v uniformly on any K, hence for ¢ large enough

/ 'U,L-ZdVgZ-l-/‘Udeg>0.
2% 2J/k

So we get a contradiction: v; cannot exist for 7 large enough.



Chapter 5

The Yamabe Problem

Yamabe wanted to solve the Poincaré conjecture (see 9.14). For this he thought,
as a first step, to exhibit a metric with constant scalar curvature. He considered
conformal metrics (the simplest change of metric is a conformal one), and gave
a proof of the following statement “On a compact Riemannian manifold (M, g),
there exists a metric g’ conformal to g, such that the corresponding scalar cur-
vature R’ is constant”. The Yamabe problem was born, since there is a gap in
Yamabe's proof. Now there are many proofs of this statement. We will consider
some of them, but if the reader wants to see one proof, he has to read only
sections 5.11, 5.21, 5.29 and 5.30.

§1. The Yamabe Problem

5.1 Let us recall the question.

Let (M, g) be a compact C*° Riemannian manifold of dimension n > 3, R
its scalar curvature. The problem is:

Does there exist a metric g, conformal to g, such that the scalar curvature
R’ of the metric ¢’ is constant?

In fact Yamabe [269] said that such metric always exists, but there is a gap
in his proof which is impossible to overcome in general. He said that the set
{¢g}(2 < g < N) is uniformly bounded (see 5.14) without proof in the positive
case.

Among other things, in this chapter we give a positive answer to the problem
above (see Theorems 5.11, 5.21, 5.29 and 5.30).

5.2 The differential equation. Let us consider the conformal metric ¢’ = efg
with f € C*. By 1.19, if I‘il] and I‘ij denote the Christoffel symbols relating
to ¢’ and g respectively:
i — T = 1gk; Oif + ki 0;f — gij Ok f1g™
= 3165 0:f + 6,0;f ~ 955 V' f1.

According to 1.13,
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n—2
RI —Rsz-R’ij— 1Jf+ vaf

<V”f + —— V”fV,,f) Gij

SO
(n—1)(n~-2)
4

R =ef [R—(n——l)V‘,jf— V"fV,,fJ.

If we consider the conformal deformation in the form ¢’ = *™~2g (with
@ € C®, ¢ > 0), the scalar curvature R’ satisfies the equation:
(1) 4((n-1)/(n—-2)Ap+Rp = R’cp‘"*z)/(""z), where Ap = -V"V, .

So the Yamabe problem is equivalent to solving equation (1) with R’ = Const,
and the solution ¢ must be smooth and strictly positive.

5.3 On a C*™ compact Riemannian manifold M,, of dimension n > 3, let us
consider the differential equation

) Ap + h(z)p = Af(z)p™ !,

where h(z) and f(z) are C™ functions on M, with f(z) everywhere strictly
positive and N =2n/(n — 2).

The problem is to prove the existence of a real number A and of a C*°
function @, everywhere strictly positive, satisfying (1).

1.1. Yamabe's Method

5.4 Yamabe considered, for 2 < ¢ < N, the functional

~2/q
® L= |[ veviavs [ h(x)wde} [ / f(z)soqu] ,
M M M

where ¢ # O is a nonnegative function belonging to H,, the first Sobolev
space. The denominator of I,(¢) makes sense since, according to Theorem
2.21, H; C Ly C L,. Define

g =infI () forall p € Hy, ¢ >0, p =0.

It is impossible to prove directly that u is attained and thus to solve Equation
(2). (We shall soon see why.) This is the reason why Yamabe considered the
approximate equations for ¢ < N:

(4) Ap + h(z)p = A f(z)p?!
and proved (Theorem B of Yamabe [269]):
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5.5 Theorem. For 2 < g < N, there exists a C™ strictly positive function @,
satisfying Equation (4) with A = p, and Io(pq) = .

Proof.
a) For 2 < ¢ < N, u, is finite. Indeed
~2/a 2 2
> | -
® > [pome) s @] i
and
(6) lel3llell;? < V=29 < sup(1, V),

with V = [, dV. On the other hand,

-2/q
e < Ig(l) = [/ h(:c)dV} [/ f(z)dV] .
M M

(b) Let {i;} be a minimizing sequence such that f, f(z)p]dV = 1:
wi € Hi, i 20, lim Ip(p;) = .
1—00

First we prove that the set of the ¢; is bounded in H;,

lpsllfy, = 1Vesllz + llpillz = To(os) - /M h(z)} dV + i3

Since we can suppose that Jo(p;) < g + 1, then

uwm5wn+bnwmm$mﬁ
TE€EM

and y
=i/9q
e < VIl < V10 | f)

c) If 2 < ¢ < N, there exists a nonnegative function ¢, € Hy, satisfying

I (pq) = pg and /Mf(:c)go‘q’dV=l.

Indeed, for 2 < ¢ < N, the imbedding H; C L, is compact by Kondrakov's
theorem 2.34 and, since the bounded closed sets in H, are weakly compact
(Theorem 3.18), there exists {¢;} a subsequence of {y;}, and a function ¢, €
H; such that:

(@) @; = ¢qin Lg,
(B) ¢; — @q weakly in Hy.
(7)  @; — ¢q almost everywhere.
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The last assertion is true by Proposition 343. (@) => [, f(@)pidV = ;
v) => g 2> 0, and 3) implies
llogllk, < liminfl@;lln, (Theorem 3.17).
1—00
Hence I,(pg) < limj_o0 Io(p;5) = kg because v; — @q in Ly, according to (a)
since ¢ > 2. Therefore, by definition of yg, Io(pg) = Hg-

d) ¢, satisfies Equation (4) weakly in H;. We compute Euler’s equation. Set
© = g + v with ¢ € H; and v a small real number. An asymptotic expansion

gives:
—-2/q
Io(p) = I4(pq) [1 +uq /M f@yd™'y dV]
+2v [/ VY,V dV+/ h(z)pq ¢ dV] +0(v).
M M
Thus @, satisfies for all 1 € H;:

0) / VY,V dV + / hz)pg¥ dV = pq / f@)pl™ydv.
M M M

To check that the preceding computation is correct, we note that since 2 (M)
is dense in H; and ¢ # 0, then
. - - S > inf I.(0).
Juf l(p) = inf L(p)= inf Io(le) 2 wlg% To(p) > inf Io(e)
(2

I(p) = I(J|) when ¢ € C™ because the set of the point P where simultaneously
@(P) =0 and |Vy(P)| # 0 has zero measure (or we can use Proposition 3.49
directly).

e) pq € C*™ for 2 < q < N and the functions @, are uniformly bounded for
2<g<q@<N.

Let G(P,Q) be the Green’s function (see 4.13). ¢, satisfies the integral
equation (see 4.14)

@® 0o(P)= V! /M 0@ dV(Q)

+ /M G(P, Qg FQT™ — hQ)pg] dV/(Q).

We know that ¢, € Ly, with 7o = N. Since, by Theorem 4.13c there exists a
constant B such that |G(P, Q)| < B[d(P, @)]*>~", then according to Sobolev’s
lemma 2.12 and its corollary, ¢, € Ly, for 2 < ¢ < gy with

1 — -
I_n 2+q0 1_1
T1 n To ) n

_qo-—l 2

and there exists a constant A, such that [|g,|l,, < Ajlpgl|Z "
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By induction we see that ¢, € L,, with

T _qo-1_2 (@-D 2(@-D‘-1I

T  Tk-1 N To no go—2

and there exists a constant Ax such that [[p, I, < Ak|l@qll@™ "

If for k large enough, 1/74 is negative, then ¢, € Loo. Indeed, suppose
1/rk-r > 0 and 1/rx < 0. Then (go — 1)/rx—; — 2/n < 0, and Holder’s
inequality 3.62 applied to (8) yields [|¢q]loo < Const X [|¢g||3!

Tk-1"
There exists a k such that

1 | 1
—=m—nﬂ—— 2 ] 2 0
Tk

+ <
ro n(g—2)] nlgo—2)

because n(go — 2) < 2rg = 2N, since gy < N =2n/(n - 2).

Moreover, there exists a constant A, which does not depend on ¢ < gp, such
that: .
liealloo < Awllipgllf™".

But the set of the functions ¢, is bounded in H; (same proof as in b)).

Thus by the Sobolev imbedding theorem 2.21 the functions ¢, are uniformly
bounded. Since ¢, € Lo, differentiating (8) yields ¢, € C'. @, satisfies (4);
thus Ag, belongs to C' and ¢, € C? according to Theorem 3.54.

f) g is strictly positive. This is true because fM f(z)p§ dV = 1, Proposition
3.75 establishes this result since , cannot be identically zero. Lastly ¢, € C*°
by induction according to Theorem 3.54. |

5.6 Remark. The proof of Theorem 5.5 does not work for ¢ = N. The problem
is that if ¢ = N, we cannot apply Krondrakov’s theorem in c), and therefore
only have

/ f@yendv < 1.
M

Moreover, the method in €) yields nothing when gg = N. In thiscase 1, =79 = N
for all k. Indeed, we shall see below that if ¢ = N then Equation (4) may not
have a positive solution (see Theorem 6.67).

5.7 Remark. Using the same method, one can study equations of the type Ap+
h(z)p = Af(p,x), where f(t,z), a C* function on R x M, satisfies some
conditions. In particular, |f(t,z)| < Const x (1+|t|%) with go < N (see Berger
[39]) or with g < NN (see Aubin [16]). The idea is to consider the variational
problem:

inf of / VieVipdV + / h(z)p*dV when / F(p,z)dV = Const,
m M M

where F(t,z) = fot fu, z)du.
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1.2. Yamabe’s Functional

5.8 To solve Equation (1), Yamabe used the variational method. He considered
the functional, for 2 < ¢ < N =2n/(n - 2),

©  Je)= [41‘—1 / VipVipdV + / R(:r)qode] lell;?
n—2 M M

and defined p, = inf Jy(y) for all ¢ > 0, @ # 0, belonging to Hy. Set = uy
and J(p) = In(p).

Proposition. 4 is a conformal invariant.

Proof. Consider a change of conformal metric defined by g’ = ¢*®™~2g. We
have dV’ = o dV and

42—’—1[ / ©*VYV,pdV + / <p¢2AgodV] + / Rp*y*dv
n M M M .

-2
J(pyp) = N
[ / oNyN dV]
M
Using (1) yields J(pw) = J'(1) and consequently u = y'. J' is the functional
related to ¢/, and p’ the inf of J'. N

By a homothetic change of metric we can set the volume equal to one. So
henceforth, without loss of generality, we suppose the volume equal to one.

1.3. Yamabe’s Theorem

5.9 In his article [269], Yamabe proved Theorem 5.5 and then he claimed that
the C* strictly positive functions ,, ¢ €12, N[ satisfying

n—1
n—2
are uniformly bounded.

But this does not hold in general. The functions ¢(r) of Theorem 5.58 are not
uniformly bounded on the sphere. This counterexample shows that Yamabe's
proof is wrong. Indeed (p. 35 of Yamabe [269]), the inequality [|[v(@|,. <
Const x [[u@]|g, must be replaced by ||[v?||,. < Const x llv(")Hg‘{“)n—' and
this does not yield the result.

In the negative or zero case, (u < 0), it is easy to overcome the mistake. But
in the positive case (u > 0), it is impossible. Yamabe did not solve his problem
but he proved the following.

(10) 4 Apg + Rpg = pa@?™ and |lpgllg =1

Theorem (See Aubin [11] p. 386). Let M,, be a C* compact Riemannian man-
ifold; there exists a conformal metric whose scalar curvature is either a non-
positive constant or is everywhere positive.
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Proof. o) the positive case (u > 0). If pg, > 0, 4 is positive for ¢ €]2, N[.
Indeed
ﬂq = Jq(§04) = J40(<pq)”‘pq”30”<pq“;2 2 Nqo”‘pq”go-

Then consider the conformal metric ¢’ = <p3({ ("'z)g; applying (1) and (10) leads

to

an R'(z) = pgpo® (@),

the scalar curvature R’ is everywhere strictly positive. Moreover we can prove
that » > 0. Indeed the functional J’ corresponding to ¢’ satisfies

y . n—1 / Je. , ’
> jof [ R | [ divavsars [ pav]

X [/wN dV’J *Z/N.

According to the Sobolev imbedding theorem, J’(3) > Const > 0 for all ¢ €
H;. Thus i’ > 0 and we have u = ' (Proposition 5.8).

B) The null case (1 = 0). If pg, = 0, by (11) the scalar curvature R’ vanishes,
and p, = 0 for all ¢ €12, N], because for all 1 and q, J,(¢) > 0.

) The negative case (1 < 0). If pg < O there exists a 9 € C* such

that Jg, (1) < 0. Hence Jy(9) < 0 for all ¢ € [2, N] and g < 0. In particular,
u < 0. Moreover, He < Jq("l)) = J(lb)”wn%v”‘/}ll;z < J(3). Thus p,(q € (2, N])
is bounded away from zero.
Now we are able to prove very simply that the functions y,(q €]lqo, N[) are uni-
formly bounded with go € ]2, N[. At a point P where ¢, is maximum Ay, > 0,
hence a8~ (P) > R(P)py(P). We find at once that ©3~2 < |inf R| |J(3)| !
and @, < 1+ [|inf R| |J(3)|~"]"/@=2. By (10), ¢, satisfies:

(1) ouP)= /M 0o @ dV(@)

n—2

-1
¢ [ 6P Q=5 et (@ - RQp(@IV@),

Differentiating (12) yields ¢, € C' uniformly, and according to Ascoli’s theo-
rem 3.15, it is possible to exhibit a sequence g, with ¢; — N, such that ¢,
converges uniformly to a nonnegative function ¢y .

But 0 > p, > inf R(z)|@,l? > inf R(z). Therefore a subsequence pg, con-
verges to a real number v (in fact y, is a continuous function of g for ¢ € ]2, N]
by Proposition 5.10, so p =v).

Letting g; — N in (12), shows that @y is a weak solution of

n—1 -
2A90N +Ron =voN L.

(13) 4
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Since [logllg = 1, |lpon|ln = 1. Multiplying (13) by ¢ and integrating yield
J(pn) =v.

The second term in (13) is continuous; thus, by (12), ¢~ € C'. Now apply
the regularity theorem 3.54: the second member of (13) is C'; thus @y € C2.
Now according to Proposition 3.75 ¢y is strictly positive everywhere, since
len ||~ = 1 implies o # 0. We can use the regularity theorem again to prove
by induction that ¢y € C. Thus the C™ function ¢ > 0 satisfies (1) with
R’ = Const (in fact, R’ = ).

In the negative case it is therefore possible to make the scalar curvature constant
and negative. u

5.10 Propeosition. ., is a continuous function of q for q € 12, N1, which is either
everywhere positive, everywhere zero, or everywhere negative. Moreover, |ji4| is
decreasing in q if we suppose the volume equal to 1.

Proof. If the volume is equal to 1 for ¢ € C*, ||9||, is an increasing function
of g. Thus |J, ()| < |Jp(3)| when p < ¢ and this implies |up| > |1q| since C*®°
functions are dense in H;. .
Moreover, J,(%) is a continuous function of g. It follows that p, is an upper
semicontinuous function of g. Indeed, for all € > 0, there exists 1) € C®
such that Jy(¥) < pp + € and since p, < Jo(¥), limy—,, Jo(¥) = Jp(¥) yields
lim SUP,_,, Mg < Up +E.

Let g; be a sequence converging to p €]2, N].

In the negative case, we saw, 5.9+, that the functions (pq are uniformly bounded.
Therefore [|¢g, [, — 1 and as pp < J5(g,) = g {‘Pq.'”;z’ liminfg_.p pg > pp.
This establishes the continuity of ¢ — 4, in the negative case. Similarly we can
prove that this function is continuous on ]2, N[ in the positive case, because if
go < N, the functions ¢, are uniformly bounded for ¢ € ]2, go] by (5.5e). Finally
Mq — pN when ¢ — N because the function ¢ — 4 is upper semi-continuous
and decreasing in the positive case. If the volume is not one, we consider a
homothetic change of metric such that the volume in the new metric is equal to
one.

§2. The Positive Case

5.11. Definition. Recall x = inf J(p) for all ¢ € Hj, @ # 0, J(p) being the
Yamabe functional.

We have the basic theorem:

Theorem 5.11 (Aubin 1976 [14]). u < n(n — Dw¥/™. If p < n(n — /™,
there exists a strictly positive solution ¢ € C* of (1) with R = p and lolln = 1.

Here R is the scalar curvature of (My, §) with § = @*/"=2g and w,, is the
volume of the unit sphere of radius 1 and dimension n.
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We will give below (@) to €)) the proof of this Theorem. Then, to solve
the Yamabe problem, we have only to exhibit a test function v such that
J@) < n(n— l)w,zl/ ™. All subsequent work to date has centered on the discovery
of appropriate test functions, except for Bahri’s results obtained by algebraic-
topology methods. Bahri exhibits a solution, which is not in general a minimizer
of the Yamabe functional.

Conjecture (Aubin 1976 [14] p.294). u satisfies p < n(n — l)wrzl/ " if the com-
pact Riemannian manifold (of dimension n > 3) is not conformal to (Sp, go).

According to Theorems 5.21, 5.29 and 5.30, this conjecture is proved. The
consequence of this conjecture is that the Yamabe Problem is proved.

Proof. a) Recall that K(n,2) = 2(wp)~"/"[n(n — 2)]~'/2 is the best constant
in the Sobolev inequality (Theorem 2.14). By theorem (2.21), the best constant
is the same for all compact manifolds. Thus there exists a sequence of C*
functions ; such that

[billv =1, [l =0 and [[Veills » K~'(n,2),

when i — +00. Therefore J(1;) — n(n — Dw?™ and p < n(n — Hw?™.

B) Let us again consider the set of functions ¢, (¢ €]2, N[) which are
solutions of (10). This set is bounded in H, since we have [pg[2 < 1 and

42 - ;HV%II% < pg +sup|R| < /RdV+sup|R|.

Therefore there exists o € H; and a sequence g; — N such that ¢, — @
weakly in H; (the unit ball in H, is weakly compact), strongly in L, (Kon-
drakov’s theorem) and almost everywhere (Proposition 3.43). The weak limit in
H; is the same as that in L, because H; is continuously imbedded in L,, and
strong convergence implies weak convergence.

7) Since ¢, satisfies (10), then for all ¢ € Hy:

n—1

4 / VYV, 0, dV + / Reppg, dV = pig, / Y&l dV.

Letting g; — N gives us

[ 959V + [ Rignav=u [veh=tav

n —

1
(14) 4'n. —

1

i=1 converges weakly to ¢ ™! in

Indeed, according to Theorem 3.45, ¢l
Ln/v-1y since <qu"1 — cpév =1 almost everywhere and

- i—1 i—1
llegi ]“N/(N—l) = “qu“gq‘._l)N/(N_n < llq Iy~ < Const

.'_1
x lloq %" < Const.
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Therefore g satisfies (14) for all 9y € H; C Ly. According to Trudinger’s
theorem ([262] p.271) wo € C™ and satisfies (1) with R’ =

5) The problem is not solved yet because the maximum principle implies
that either g > 0 everywhere or g = 0, and for the moment we cannot exclude
the latter case. In order to prove that ¢y is not identically zero, we must use
Theorem 2.21. We write, using (10),

(15)  1=1l@gl? < ll@gllx < [K¥n, 2)+s] [ / Ry, dV]

+ A(€)“80q“2:

where ¢ > 0 is arbitrary and A(e) is a constant which depends on €.
When y < n(n — l)uﬁ/", if we choose € small enough, there exist £y > 0 and
1 > 0 such that for N — ¢ < n,

wp ¥ n-2 ]

(16) O<€0S1_[n(n—l)+64(n—l)

since py — p when ¢ — N.
In this case, (15) and (16) imply

liminf ||¢4|l2 > Const > 0.
q—N

Because g, converges strongly to o in Ly, |02 # 0. Thus wo # 0 and
o > 0. Picking ¢ = g in (14) gives J(po) = pl|wolly % thus [[wolly > 1
since J(yp) > p. But since the sequence <pq‘/ N oof 5.11 B converges weakly to
wo in Ly by Theorem 3.45, ||po||n < liminfy, _n [|@g: |9 /N by Theorem 3.17.
Hence |[pof|v = 1 and J(ypo) = p.

Moreover by Radon’s theorem, 3.47, ¢,, — o strongly in H; because
ll¢q: I, — llollm, since pq, — p. Therefore by the Sobolev imbedding theorem
©q; — o strongly in Ly.

€) In fact, when u < n(n — l)w,z,/ ™, it is possible to prove directly that the
functions ¢, ¢ €12, N[ are uniformly bounded and we can proceed as in the
negative case, without using Trudinger’s theorem. |
5.12 More generally, let us consider the equation

(17) 4;—1———:;A<p+h(z)<p= A @)t

with h € C®, f € C* given (f > 0),and A (=0, 1, or —1) to be determined

as in 5.3. Let
I . -2/N
I(p) = [4n_2/V'<pVi<pdV+/h<p2dV] / [/fgaNdV]
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and define v = inf I(¢) for all p € H,, ¢ # 0. Using the same method one can
prove:

Theorem. v < n(n — 1w ™[sup f]-%/N. Fv < nm~ D sup /1727,

Equation (10) has a C™ strictly positive solution.

5.13 Now we havc? to investigate when the inequalities of Theorems 5.11 and
5.12 are strictly satisfied. For this, consider the sequence of functions 9 (k € N):

1\ 1 )
wk(Q)=(E+r> ~<E+62> , for r <6,

and Y(Q) = 0 for r > 6, with § the injectivity radius, r = d(P,Q), P fixed. A
computation shows that limy_,o I(¥x) = n(n — 1w " [f(P)]"¥". Pick a point
P where f(P) has its maximum. In order to see if equality in Theorem 5.12
does not hold, we compute an asymptotic expansion.

If n > 4, the coefficient of the second term has the sign of

n—4Af(P) .
2 f(p)’

More precisely, the asymptotic expansion for n > 4 is

h(P) — R(P) +

I(g) = n(n — DY f(P)]"YN

1 _ -1 _ n—4Af(P) 1
x{ +[n(n — 4)k] {h(P) R(P)+ TP volz )

and forn =4

I(h) = 12lwa/ F(P? {1 +[A(P) - R(P)] L‘gi"} 4o (L°kg" ) |
Proposition (Aubin [14] p.286). If, at a point P where f is maximum, h(P) —
R(P)+((n—4)/2)(Af(P)/ f(P)) < 0, Equation (17) has a C strictly positive
solution when n > 4.

5.14. Let us return to Yamabe’s equation (1) with R’ = Const.. That is equation
(17) with f(P) = 1 and h(P) = R(P). We cannot apply Proposition 5.13.
Hence Yamabe’s equation is a limiting case in two ways: first with the exponent
(n+2)/(n —2) and second with the function R.

Since the original proof of Theorem 5.11 (in [14]) many new proofs of this
theorem appeared which don’t use the sequence p, of positive solutions of the
approximate equations

4((n-1)/(n-2)) Ap+Rp=pp? ! with 2<g<N.

Let us mention Inoué’s proof [*181] (discussed also in Berger [*42]) where the
steepest descent method is used and Vaugon’s proof [*311] which is certainly the
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simplest and the fastest. This proof is an illustration of the method of successive
approximations.

When 4 < 0 we can overcome the difficulty in Yamabe’s proof. In the zero
case, the functions 4 are proportional , @g solves the Yamabe equation (1). In
the negative case, the wrong term in Yamabe’s proof may be removed in the
inequalities (it has the good sign). So Yamabe’s argument works: the functions
g are uniformly bounded.

In the positive case, when p > 0, the operator L= A + (n — 2)R/4(n — 1)
has its first eigenvalue o > 0. Any ¢ € C* satisfies [ pLypdV > afe?dv.
L is invertible with a Green function GL(P,Q) > m > 0.

It is interesting to write up here Vaugon’s proof of the following theorem
which is more general than theorem 5.11.

5.15 Theorem. Let h and f be C™ functions, f > 0 and L= A + h such
that any ¢ € C* satisfies: [ @LodV > o [¢@*dV for some a > 0. Set
v=inf [ @LpdV for all ¢ € C™ such that [ flp|N dV = 1.

Kv < vy =n(n— 2w /asup fY¥VN there exists a C™ strictly positive
solution of the equation Ly = foN=1.

Proof. Pick ¥y € C®, ¥ > 0 which satisfies [ f¥) dV =1 and I(¥o) < .
We set
I(w) = / VLY dV = / VYOV, vdV + / h¥2dv.
Define the sequence {¥;} for j > 1 by
(18) IAZEDVIL 73 b

where the positive real numbers \; are fixed by the conditions [ f|¥;|N dV = 1.
If LW is a stricltly positive C* function, ¥ is a strictly positive C* function.
Thus, as it is the case for L¥,, by induction ¥; € C* and ¥; > 0 for all j.

5.16 Lemma. Set I(¥) = [ VLY dV = [ |VY|2dV + [ h¥? dV
(19) Ajnn KI(¥;) < A;  forall > 1.

Indeed multiply (18) by ¥; and integrate, we get

I(T) =) /f\pj."_;‘\p,- dv

1-1/N 1/N
<A (/f\Il;-V_ldV) (/f\p;"dv) =),

by the Holder inequality used with volume element f dV'.

Then multiply (18) by ¥;_,, integrating yields [ ¥;_;LY¥; dV = );. But as
I(; = 0;-1) 20, I(¥;) + I(¥-1y) 22 [ V1 LY;dV = 2);. Thus I(¥;_;)
> Aj.
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5.17 Proof of theorem 5.15 (continued). The set {¥,} is bounded in H,. Indeed
by hypothesis I(¥;) > a [¥2dV, thus {¥;} is bounded in L,, then in H,
since by (19)

0<I(¥;) <N forall j>1.

According to the usual theorems (Banach’s theorem, Kondrakov’s theorem o)
there exists a subsequence {¥;,} of {¥;} which converges weakly in H,
strongly in L; and almost everywhere to a function ¥ € H,.

But fOI'j >1,0< I(\I/J - ‘I»’j_l) < )\j - 2/\_7 +/\j_1 = )\jhl - /\j which
goes to zero when j — oo (the sequence A; is convergent, let X its limit).

Therefore the sequence ¥;, _ converges weakly in H), strongly in L, and
almost everywhere to V.

By (2) for all v € H,

/ VI, ViydV + / hjydV =\, / fUNyav.
Letting k — oo yields
/Viilvi'de+/h\f17dV=)\/f\ilN_1'de.

By the Trudinger theorem of regularity [262], ¥ € C*, ¥ satisfies L¥ =
A f\TJN_] and ¥ > 0. Now let us prove that ¥ > 0. By construction we have

VY2 + / RU2 4V = I(T;) < I(¥o) < v

On the other hand by the Sobolev inequality
2/N N X
= ([refav) ™ < (s )N (Km0 + IV + B
where £ > 0 is chosen small enough so that (sup £)*/N (K%(n,2)+€)I(¥o) < 1.
This is possible since I(¥o) < v, recall K~2(n,2) = n(n - 2)wﬁ/"/4.

We obtain lim; o inf||¥;l|2 > 0. As ¥;, — ¥ in Ly, ||¥]l, #0 and ¥ #0.
Then the maximum principal implies ¥ > 0.

§3. The First Results

5.18 In order to use theorem 5.11, the first idea is to choose ¥ = 1 as test
function in the Yamabe functional J.

J(1)=V-2/N/Rdv where V=/dV,

so we get the following
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Proposition. If [ R dV < n(n ~_1)w,2/ "W2N  there exists a conformal metric
g with constant scalar curvature R.

When equality holds, two cases can happen:

o) g <n(n—1)w?™ and Theorem 5.11 may be applied.

B) p=nn- l)w,zL "™ In that case the function ¢ = 1 minimize the func-
tional J (¢), we have R = Const.. In fact the manifold is the sphere.

5.19 To see if p < n(n — 1)w%™, we can consider test functions U in the
Yamabe functional J(¥) corresponding to a conformal metric § = e/ g, since
is a conformal invariant (Proposition 5.8).

The components of the Ricci tensor of § are

Rij=Riy - ”f+ V ifVif+z (Af - |Vf| %) gis-

At a point P € V, if f satisfies f(P) = |[Vf(P)| = 0 and
(20) 8,1(P) = [2Rij(P) — RP)gis /(n = 1] /(n - 2)
we have R(P) = R(P)+(n — 1)Af(P)=0 and
(1) R;j(P)=0

Moreover if we choose f such that

(22) 8k f(P)=2[VkRij(P)+ V;Rij(P)+ V;Rix(P)] /3(n — 2)
— [0k R(P)gij + B; R(P)g;x + 8; R(P)gix | /3(n — 2)(n — 1)

(we suppose that the coordinates are normal at P), we obtain after contraction
OAf)p = —_6kR(P)/(n — 1) according to the Bianchi identities.
Thus |VR(P)| = 0 and we obtain

(23) ViRij(P)+V;Rj(P) + V;iRei(P)=0  for all 4,5, k.

Recall the following well known result [14], the beginning of the limited
expansion of /|g| in normal coordinates {z*}:

\/|__<7|= 1- R.ij(P)xixj/G - Vk&j(P)ximjmk/12+ o).
If (21) and (23) are satisfied we obtain

(24) Vigl=1+0¢*  with 7 = d(P, z).

Remark. By a suitable choice of the successive derivatives of f at P, it is
possible to prove by induction (Lee and Parker Theorem 5.1 of [*208]) the
existence of conformal normal coordinates at P:
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5.20 Proposition (Lee and Parker [*208]). For each k > 2 there is a conformal
metric g such that

(25) |3(z)| = 1+0(¢*)  withr = d(P, z).

Recently this result was improved by J. Cao [*73], then by M. Giinther
[*148]. They proved that, in a neighbourhood Q2 of a given point P, there exists
a conformal normal coordinate system such that the determinant is equal to 1
identically.

Suppose that, on €2, § = 0g (o a positive function) is such that 4 = \/E =1
in a geodesic coordinate system {y*}. Then u the square of the geodesic distance
to P for g (u= 3 (y')?), satisfies §*/ £ 2u — =4y and Au = -2n, {z'} being
a normal coordinate system for g). Wrmen these two equations in the metric
g, we obtain a system of two equations in the unknowns u and 0. We seek u
and ¢ satisfying u = 72+ O(r3) and o = 1 + O(r) when r, the geodesic distance
to P for g, is small. J. Cao uses the Schauder fixed point theorem. As for M.
Giinther, he solves this system by the method of successive approximations; for
that he considers the linearized equations of the system at (2, 1,6%).

5.21 Theorem (Aubin [14] p.292). If (My, g)(n > 6) is a compact nonlocally
conformally flat Riemannian manifold, then p < n(n — l)w 2/™ Hence the min-
imum is achieved and there exists a conformal metric ¢' with R' = uV =" Vv
being the volume of the manifold (M., ¢').

Proof. By hypothesis the Weyl tensor W, (see Definition 4.23) is not zero
everywhere, there is a point P € M where |W;;xi(P)| # 0. We consider a metric
g = efg with f satisfying (4), and we choose, as test functions for J(¢), the
following sequence of lipschitzian functions ¥y:

Ui(r)=0 ifr=dP,Q)>6>0
(26) and
Ti(r)=(r?+3)'"% — 62+ 3)'"7 forr <6,

where we pick ¢ smaller than the injectivity radius at P.
A limited expansion in k yields for n > 6

J(Tx) =n(n ~ D™ [1 — k~2a?/(n — 4)(n - 6) + o(k™2)]

and
J(¥y) = 30wg” [1 - a%k~2(log k)/80 + O(k~2)

for n = 6 with a2 = |Wijki(P)|*/12n. Thus J(Up) < n(n - 1)w2/" for k large
enough.

5.22 Remarks. For any compact manifold M,(n > 3), J(¥) tends to

n(n — l)w,z1 ™ when k — oo. This implies the first part of Theorem 5.11.
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In dimension 3 to 5, there are integrals on the manifold in the limited expan-
sion of J(¥) instead of a coefficient like a?, and it is not possible to conclude
a priori, but see 5.50.

For locally conformally flat manifolds, it is obvious that local test functions
cannot work since for the sphere i =n(n — l)w,zl/ ™ (Theorem 5.58).

5.23 Theorem ([14] p.291). For a compact locally conformally flat manifold

M,,, (n > 3), which has a non trivial finite Poincaré’s group, p < n(n — l)w,zl/ "

For the proof, we consider M, the universal covering of M,,. Mn is compact,
locally conformally flat and simply connected. Kuiper’s theorem [172] then
implies that M,, is conformally equivalent to the sphere S,,. Hence Equation (1)
has a solution with R’ = p

5.24 Proposition. When the minimum u is achieved, let J(pp) = p. In the cor-
responding metric go whose scalar curvature Ry is constant, the first nonzero
eigenvalue of the Laplacian A\ > Rg/(n — 1).

For the proof one computes the second variation of J(y) (see Aubin [14]
p-292).

§4. The Remaining Cases
4.1. The Compact Locally Conformally Flat Manifolds

5.25 The effect of §4 is to prove the validity of conjecture 5.11. The results of
the preceding paragraph do not concern the locally conformally flat manifolds
with infinite fundamental group for which V™~! [ RdV > n(n — 1)w¥™.

The known manifolds of this type are

a) some products Sn-1 x C and 5‘, X I?n_,, where C is the circle and S’q
(resp. fIq) are compact manifolds of dimension ¢ with constant sectional
curvature p > 0 (resp. —p < 0).

B) some fibre bundles with basis one of the manifolds with constant sec-
tional curvature mentioned previously and for fibre S'q or I:Iq according
to the situation.

) the connected sums V; # V; of two locally conformally flat manifolds
W1,91), (V2, g2).

Most of these manifolds are endowed with a metric of constant scalar curva-
ture by definition. But for them, according to the conjecture 5.11, the problem
is to prove that the infimum of J(p) is achieved, and thus we shall prove
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5.26 Theorem (Gil-Medrano [*142]). The manifolds ), B), and v) satisfy

B < nn — Dw?/™.

Proof. It consists to exhibit a test function u such that J(u) < n(n — l)wi/ s

By an homothetic change of metric, we can suppose that p = 1. Let II be

the projection
Sn.—l x C — C.

On §,_, x C the function v will be u(P) = (chr)!=™/2 where r is the
distance on C from II(P) to a fixed point yo € C.

On 5‘,, X f{n_p, the same function u(P) works, but here I is the projection
S,x H,_, — H,_, and r is the distance on H,_, from II(P) to a fixed point
Yo € Hn_p. The proof is similar for the fibre bundles.

For the connected sums we have first to study the conformal class of the
locally conformally flat metric go constructed on the connected sum Vj = V; #
V5. Then Gil-Medrano proved that pg < inf(p, p2), where u;(i =0, 1,2) is the
© of (Vla .q‘t)

4.2. Schoen’s Article [*280]

5.27 As p is a conformal invariant, it is possible to do the computation of J(¥),
for some test function ¥, in a particular conformal metric (as in 5.20). When
the manifold is locally conformally flat, after a suitable change of conformal
metric, the metric is flat in a ball B;s of radius § and center 5. We saw above
that locally test functions yield nothing for these manifolds. The idea of Schoen
is to extend the test functions used in 5.21 by a multiple of the Green function
G, of the operator

L=A+(n—-2)R/4n - 1).

We are in the positive case (u > 0), L is invertible and G > 0. More
precisely let p < §/2 and r = d(zo,z). For € > 0 set

(e +1%/e)t—n/? for r < p,
27) U(z) = { €[G(z) — Mz)a(z)] for p<r < 2p,
eoG(x) for r > 2p.

G(z) is the multiple of G(xp,z) the expansion of which is the following in
Bg:

(28) G@) =1+ ax)

where a(zx) is an harmonic function in Bs.
h(z) is a C* function of r which satisfies h(x)=1 for r < p, h(z) = 0 for
r > 2p and |[Vh| < 2/p.
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g0 = (P2~ + A)~ (e +p? /€)' ~™/? with A = a(zp) in order the function ¥ is
continuous hence lipschitzian, p will be chosen small, ¢ infinitely small with
respect to p, then € is well defined and € ~ 6(2)/ =2 ywhen €0 — 0. Indeed the
function t — [t + pz/t]l_"/2
(zp)l—n/Z'

is increasing for t € ]0, p] and goes from O to

5.28 Proposition (Schoen [*280] 1984). If G(z) is of the form (28) for any n > 3
with o(zg) = A > 0 then p < n(n — I)w,z,/".

The proof is easily understood. By an integration by parts, all the computa-
tions can be carried out in Bj,. They yield

(29) J(¥) < n(n ~ NwZ™ — C Aek + O(ped)

where C > 0 is a constant which depends on n. The result follows.

5.29 Theorem (Schoen and Yau [*289] 1988). If (M, g) is a compact locally
conformally flat Riemannian manifold of dimension n > 3 which is not conformal
to (Sn,g0), then A > 0. Hence conjecture (5.11) is valid and there exists a
conformal metric § with R = uV=%/" V being the volume of the manifold

(Mn, ).

The result follows from Proposition 5.28 combined with 5.37 for n = 3 and
Theorem 5.48 for n > 4.

4.3, The Dimension 3, 4 and 5

5.30 Theorem (Schoen [*280]). If (M,,, g) is any compact Riemannian manifold
of dimension 3 to 5, which is not conformal to (Sn,go), then p < n(n — l)w%/ ",
Hence according to theorem 5.11, there exists a conformal metric § with R =

uV ="V being the volume of the manifold (M, §).

Proof. The result follows from Proposition 5.28 combined with the fact A > 0
to be established below §4. When n = 3, the Green function G, of L at P € M
has for limited expansion in a neighbourhood of P:

Gplz) = [1/r + A+0(r)] /4

where A is a real number and r = d(P, z).

This expression is the same as (28). So the method of 5.27 works. For the
dimensions 4 and 5, Schoen [*280] replaces in a small ball By(p) the metric g by
a flat metric. He considers a C* metric which is euclidean in B,(p) and equal
to g outside the ball B,(2p). Thus he can use his method, but the approximation
is too complicated. It is simpler to use the following fact which is one of the
hypotheses of Proposition 5.28.
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5.31 Proposition. Let (M, g') be a compact Riemannian manifold of dimension
4 or 5, belonging to the positive case (i > 0). Pick P € My, there exists a
metric g conformal to g’ such that the Green function Gy, of L at P has, in a
neighbourhood 6 of P, the following limited expansion

Gplz) = (" + A)/(n — 2wn-1 + ()

where A is a real number and r = d(P,z). o(P)=0, a € C' for n=4 and a is
lipschitzian for n = 5.

With this proposition, the method of 5.27 works and Proposition 5.28 implies
theorem 5.30.

Proof of 5.31. We consider a conformal metric g to g’ which has at P the
properties (21) and (23).

Thus (24) /|g(z)| = 1 + 0(r*) in normal coordinates. As in 4.10, consider
H(P,Q) = f(r)r*"/(n — 2)wn—1 with 7 = d(P,Q) and f a C* function equal
to 1 in a neighbourhood of zero and to zero for 7 > 6 > 0 (6 small enough).
Recall 4.10, the singularity of Ag H(P, Q) is given by r'~"8, Log \/E/wn-l
which is in 0(r*—™):

(30) AQH(P,Q) =0(r*™™).
According to the Green formula (4.10), any @ € C? satisfies

o(P) = / H(P,Q)Lp(Q)dV(Q) — /V LoH(P, Q@) dV(Q).
1%

Thus by induction
k
GLP,@=HPQ+Y [ TPRHRQVE+F(PQ)
=1 YV

with Fi(P, Q) continuous on M x M if k > (n — 1)/4. Here I'1(P,R) =
—LoH(P,Q) and

Lini(P,@) = [y, Ti(P, BT1(R, Q) dV(R).

Moreover
@3N LQoF(P,Q) =Tk (P, Q).

As R(P) =0 and |[VR(P)| =0 (see 2.8), R(Q)H(P,Q) = 0(r*~™) thus
(32) LQH(P,Q)=0(r""™)

According to Giraud (4.12) this implies for n < 5 that T'y(P, Q) is C !, hence
(31) yields Fi(P,Q) is C' on M x M.
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Moreover fv I'(P,R)H(R,Q)dV(R) is a continuous function on M x M.
Itis even C! when n = 4 and lipschitzian when n = 5, according to the following

5.32 Lemma. The convolution product == = L in a compact domain of

R™(n > 3) is lipschitzian.
Proof. Let @ be a point of Bp(l) and r = d(P, Q) small. We have to compute

h(r) = : [dP, R)* " [d(R, Q)] " AV (R).
p(l)

Set y = d(P, R) and 6 the angle at P of RPQ.

1 L
h(r) —h(0)=wn-z/ dy/ sin®~20[y(r? + 3% — 2rycos §) — 1] /2 do.
0 0

Pick k a large integer and k¥ < 1/2r. The absolute value of the integral on
Bp(kr) is smaller than Cr for some C' (same proof as that of Giraud’s theorem
4.12). With y = rt, the absolute value of the integral on By(1) — By(kr) is
smaller than

1/r /2
inea [ vt / Sin™2|(1 +2¢ ™! cos 9+ %)/
k 0

+(1-2t""cos@+t72)12 ~2|dh
which is smaller than Kr for some constant X. For instance we find when
n=>5: h(r)=4ws(1 - 3r/4+7%/5)/3.

5.33 Corollary. Let (M,,, g) be a compact Riemannian manifold of dimension 3,
4 or S, such that g has at P the properties (21) and (23). Then the Green function
G of the laplacian A satisfies: G(P, Q) = H(P, Q)+ B(Q) with 3 a C function
on M — { P} which, on M, is C* whenn =3, C' when n = 4 and lipschitzian
when n = 5.

Proof similar to that of the preceding proposition 5.31.

§5. The Positive Mass

5.34 We now prove A > 0, and hence conclude the validity of conjecture 5.11.

Definition. A C* Riemannian manifold (M, g) is called asymptotically flat of
order 7 > 0 if there exists a compact K C M, such that M,, — K is diffeomor-
phic to R™ — By (Bp being some ball in R™ with center 0), the components of
the metric g satisfying in {y'} the induced coordinates by the diffeomorphism:

(33)  gij=6;;+0(p77), Bkgij=0(0""""), Bgi; =0(p"72).
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Example. Let (Mn, §) be a compact Riemannian manifold and {:ci} be a system
of normal coordinates at zo € M, (zo has zero for coordinates). Set g = r—*§
near zo with r2 = Y7 2 and M = M, — {zo}.

Then (M, g) is asymptotically flat of order 2 with asymptotic coordinates
y* = r~2z". Indeed in polar coordinates (p or 7, 8y,...,0,_;) with p = 1/7 we
have

9pp = p—47'_4grr = Orr, 96,0 = Go;r = 0 and ngeioj = p4(T2§9i9j)‘

5.35 Definition. The mass m(g) of the asymptotically flat manifold (M,,, g) is
defined as the limit, if it exists, of

Wi, / 190, 019" (Bi9p5 — Bpg55)(p, BT (6)
Sn—l(p)
when p — 00, d7 being the area element on Sy, _;(p).

Remark. The preceding definition depends on the asymptotic coordinates, but
according to Bartnik [*32], m(g) depends only on g if 7 > (n — 2)/2.

5.36 Proposition. Let (M,,3) be as in example 534 with n > 2.
Assume (M, §) belongs to the positive case (i > 0). Set g = G* =25 where
G() = (n — 2wn-1G L(x0,T) and M = My — {zo}. Suppose

G4 |G(r, )] = 1+0(r%)  with k>n—2
and
(35) G@) =72+ A+0(r).

Then (M, g) is asymptotically flat of order 2 (only of order 1 if n =3 and of
order n—2 if (M, §) is flat near x,) and the mass of (M, g) is m(g) = 4(n—1)A.

The proof of the first part is as for example 5.34,
g=r*(1+Ar" 2+ O(r"‘l))4/(n_2)§.
For the computation of the mass, choose polar coordinates with p = 1/7.
8o/19(0,0)| = (1/2)V/19(0, )19/ 8,9:;-
Thus

m@)= Jim wity [ (V166085950 = 20,10 (O
n—1(p

But



166 5. The Yamabe Problem

9(p, 0)] = p~ G/ =D /|5(r,6)|

= [1+ 402 + 06 =)™ 72 Ig(r, 6]
If k is large enough m(g) = (4n —4)A = 4(n — 1)A.

Remark. If we choose a metric § which satisfies properties (21) and (23) of
5.19 near zy, § and G satisfy (34) and (35) with k =4 when n < 5. Moreover
when n =4 or 5, we have (n —2)/2 < 2 and when n =3, 1/2 < I, thus m(g)
makes sense (see remark 5.35). When (M, §) is locally conformally flat, m(g)
makes sense also, as the order 7 > (n — 2)/2.

There are the remaining cases. For them to prove A > 0 is equivalent to
prove m(g) > 0 (according to the preceding proposition).

5.1. Positive Mass Theorem, the Low Dimensions

§.37 Conjecture. If (My,g) is an asymptotically flat Riemannian manifold of
order T > (n — 2)/2 with non-negative scalar curvature belonging to L,(M,,),
then m(g) > 0 and m(g) = 0 if and only if (M, g) is isometric to the euclidean
space.

In his article [*280] Schoen announced that he and Yau proved this conjec-
ture.

Then he concluded that he proved the Yamabe problem for the remaining
cases by Proposition 5.28 and 5.36 and the study of the dimensions 4 and 5.
In fact at that time, the conjecture was solved without extra hypothesis only in
dimension n =3 (Schoen-Yau [*288], Witten [*318]).

Even now it is not known (to the Author) that a written proof of the con-
jecture exists.

Using the result in dimension 7 = 3, a proof by contradiction and induction
on the dimension (see Lee and Parker [*208] 1987 and Schoen [*281] 1989)
allows us to say that the conjecture is proved also for the dimensions 4 and 5.
This proof does not work when the dimension of the manifold is greater than 7
because then a minimal hypersurface may have singularities.

It remains to consider the compact locally conformally flat manifolds. For
these manifolds the proof of the positivness of the mass is quite different and
appeared later on.

5.2. Schoen and Yau’s Article [*289]

5.38 Let (M, g) be a compact locally conformally flat manifold which belongs
to the positive case (u > 0). We can choose g so that the scalar curvature
R > Ry > 0. Moreover we suppose the dimension n > 4.

Consider (M, §) the universal Riemannian covering manifold of (M, g). Set
w:M——>M,§=7r*g.
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(M, §) is complete, locally conformally flat and simply connected. A well
known theorem of Kuiper [*205] asserts that there exists ® a conformal immer-
sion of (M, §) in (S,, go) where gq is the standard metric of S,,.

5.39 Theorem (Schoen—Yau [*289] 1988). ® is injective and gives a conformal
diffeomorphism of M onto (M) C S,. Moreover S, — ®(M) has zero New-
tonian capacity and the minimal Green function of L at P € M is equal to a
multiple of |<I>'|"2_;2H o ®. Where H is the Green function of Ly at ®(P) on
(Sn, go) and |®'| is the (§, go)-norm of ®'. Thus M is the quotient of a simply
connected open subset Q0 of S,, by some Kleinian group, S, — Q having zero
Newtonian capacity.

This theorem allows to prove A > 0 for manifolds of this type not conformal
to (Sn, go)- The proof (starting at the end of p.59 of [*289]) must be completed
at least at one point.

First we will give the definitions of the new words used above and explain the
existence of the minimal Green function ép (lemma 5.44), so as the positiveness
of the energy of (M,, g), A > 0, if the manifold is not conformal to the sphere
(Sn, go). For this we follow Vaugon (private communication) who first clearly
explained the proof of 5.39.

5.40 Definition. Let (M,g) be a Riemannian manifold with scalar curvature
R > 0 and dimension n > 3.

A Green function G, of L at P is a function on M — P which satisfies
LGP = 6p. Recall

(36) L=A+(n—2)R/4(n—1).
Gp is the minimal Green function if any Green function G’ satisfies Gp < G'p.

If some Green function G exists, the minimal Green function Gp exists
and is obviously unique.

Let {Q;} be a sequence of open sets of M with C* boundary and A
compact, such that foralli P € Q; C Q; C Q4 and Uz =M.

Let G; be the Green function of L at P with zero Dirichlet condition on
99;. We have G; > 0on Q; — P. At Q € Q;, (Q # P), Gi(Q) is an increasing
sequence for i > i, according to the maximum principle since L(Giy;1 —G;) =0
and Giy1 — G; > 0 on 09Q;. Likewise G; < G'p for all i, if we extend G; by
zero outside ;. So when i — oo, G; tends to some positive function G p which
satisfies in the distributional sense LGp = ép on M.

5.41 Proposition (Vaugon). If Gp is a Green function for L at P and if
G =" ™Dg is a conformal metric then

37N Gp(z) = Gp(z)/(P)p(z)
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is a Green function for the operator L related to §. In particular if G p is the min-
imal Green function for L at P, Gp(z)/o(P)p(z) is the minimal Green function
for L at P.

Proof. For any function f € D(V),
| crLarorav = e
v

We have dV = ¢?*/?=2 dV and a computation gives

n-2 _ (n+2)/(n—2)< n—-2 - )
B8 AlhH+ SRef=¢ Af+4(n— RS

SO
| Ga@re @LI@ V@ = fPyP)
Thus Gp(z)/¢(z)e(P) is a Green function for L at P.

5.42 Definition. If g is an euclidean metric in a neighbourhood 6 of P a Green
function Gp at P is equal in 6 to

(39) Gp(z) = [d(P, )P /(n — Dwn-1 + a(z)
where a(z) is an harmonic function in 6.

When Gp is the minimal Green function of L at P, we call energy at P
related to g the real number a(P).

5.43 Proposition. If g and § = ¢*/ =g are euclidean metrics in a neighbour-
hood 8 of P, &(P) = a(P)p~%(P). In particular the sign of the energy is a
conformal invariant in the set of the euclidean metrics near P.

By 5.42 and Proposition 5.41 for z € 6:

& (P, z)/(n — Qwp—1 + ()
= [d*™(P,z)/(n — 2wn—1 + a(z)] /@(P)p(2).

Moreover we can prove that d2~"(P, z) = p(P)p(z)d?~"™(P, z), the result fol-
lows.

5.44 Lemma. (M, §) being the covering manifold of (M, g) considered in 5.38,
at each point P € M, there exists a minimal Green function for L.

g = ®*(go) is conformal to §, so there exists a C* function u > O such that
g - u4/(n"2)g-
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Set W = &~ 1(®(P)). As E(Ha@) = ZQew 6@, according to Proposition
5.41, there is H a multiple of u~'Ho® such that

LA = Z agbg with ag >0 and ap = 1.
Qew

Let us return to the definition and to the construction of the minimal Green
function (5.40). Set G; be the Green function of L at P with zero Dirichlet
condition on 99;. Pick 6; C M an open set such that (W — P)NQ; C 6; with
6; small enough so that H — G; > 0 on 86;. We extend by zero G; on M — ;.
On € —-Q:n6;, L(A-G;)=0and H —G; > 0o0n 8(Q% — Q;n6;). Thus
by the maximum principle G; < H and Gp the minimal Green function for L
at P exists. Moreover Gp < H. We have H — Gp > 0 if W # {P}.

5.3. The Positive Energy

5.45 Definition. A compact set F C S,, (n > 3) has zero newtonian capacity
if the constant function 1 on S, is the limit in H; of functions belonging to
D(S, — F).

We verify that the measure of F' is zero. And we can prove that the minimal
Green function for Ly at P € S,, — F on (S, — F, gy) is the restriction to S,, — F
of the Green function H for Ly at P on (Sy, go).

5.46 Remark on the proof of Theorem 5.39. Return to the proof of lemma 5.44.
We have H — Gp > 0 if W # {P}. So if we prove that H = Gp, the injectivity
of ® follows. For this, define v=GpH ™.

We have 0 < v < 1. After some hard computations which must be detailed,
Schoen and Yau infer v = 1.

Set F = S, — ®M,,), since H = Gp, the restriction of H to S, — F is
a minimal Green function for Ly on (S, — F, g¢). This implies F' has zero
Newtonian capacity.

Before the main proof, one step consists in showing that |’ N GpdV < o
when n > 4 and [,; G5 °dV < oo for some € < 0 when n = 3.

The last inequality holds because the Ricci curvature of (M, §) is bounded.
Let us prove the other inequality. Return to the construction of the minimal
Green function G p (5.40).

Let u; the unique solution of Lu; = 1, u;ilan, = 0. We extend u; by zero
outside ;.

/ G, dV = u(P).
M
At Q a point where u; is maximum, Au;(Q) > 0 so

supu; < 4(n — 1)(inf R)™'/(n — 2) < 4(n — 1)/(n — 2)Ry.
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Thus {G;} is an increasing sequence of non-negative functions which goes
to Gp. According to Fatou’s theorem, Gp is integrable and

/ GpdV = lim / G;dV < 4(n —1)/(n — 2)R,.
M

100 [ a1

5.47 Proposition. If (M, §) is flat near a point P, the energy of § at P is zero.

Assuming R > Ry > 0, we have proven the existence of the minimal Green
function Gp for L corresponding to the metric §. But the manifold (M, §) is
locally conformally flat, so there exists a C* function v > 0 such that § =
u#/®=Dg is flat near P (we can choose u = 1 ouside a compact neighbourhood
of P). According to Proposition 5.41, Gpx)=G p(z)/u(z)u(P) is the minimal
Green function of L.

Now the energy of the sphere is zero since H*/™~2g, is the euclidean metric
on R™ with zero mass. So by Theorem 5.39 the energy of § is zero.

5.48 Theorem (Schoen—Yau [*289]). Let (My, g) be a compact locally confor-
mally flat manifold which belongs to the positive case (u > 0) but which is not
conformal to (Sp, go). If g is flat in a neighbourhood of some point P then the
energy of g at P is positive.

Proof. As the Riemannian manifold is not conformal to (S, go), it is not simply
connected and (Mn,g) is a non trivial Riemannian covermg of (Mp,g). Set
I1: M, — M,, §=1II"g is flat near each point of II7!(P), let P one of them.
We know (lemma 5.44) that the minimal Green function Gp of L at P exists.
In a neighbourhood 6 of P.

Gp(x) = 7" /(n — 2wn_1 + &(z) with # = d(P,z). & is an harmonic
function and &(P) = 0 (Proposition 5 A7).

On the other hand Gp oI satisfies L(Gp o II) = EQGH 1py 0@, Gp being
the Green function of L at P.

Thus G, oI — G5 > 0 on M (see the proof of lemma 5.44) because

-'(P) # {P}.

Butin § Gpoll(z) = 7™ /(n ~ 2)wn_ +aoIl(z). So a(P) > 0, the energy
of g at P (see Definition 5.42) is positive.
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§6. New Proofs for the Positive Case (u > 0)
6.1. Lee and Parker’s Article [*208]

5.49 In this article Lee and Parker present, among other things, an argument
which unifies Aubin and Schoen’s works. They transfer the Yamabe problem
from (M, g) to (M, — P, §) an asymptotically flat manifold, P € M. If neces-
sary, we change g by a conformal metric which has the property of Proposition
520 and § = G‘;,/ ("_z)g, Gp being the Green function of L at P. Then they use
as test functions the well known functions ¢y.

Yk = (k+p2)l—n/2 for o> RO; Ok = (k+R%)l-n/2 on K

Ry the radius of the ball By (see Definition 5.34) is fixed large and we let
k — o0.
In fact, after picking a good conformal metric g on My, Lee and Parker use
in the Yamabe functional J on (M,, g) the test functions:
ue(z) = " 2Gp(z)(e + rH)! /2 if r <6, (6 > 0 small),
u(z) = 6" 2Gp(z)(er + 62)!~™2  ifr > 6, r = d(P,x)

see [*208] and they let € — O.

6.2. Hebey and Vaugon'’s Article [*166]

5.50 Theorem (Hebey-Vaugon [*166]). If the compact Riemannian manifold
(M, 9) is not conformal to (Sp, go), the test functions:

ue(z) = (€€ +72)!"M2  if r <6, (6 > 0 small)
ue(z) = (e + 62! ifr >,

in the Yamabe functional, yield the strict inequality of the fundamental theorem
5.11.

These test functions are the simplest one. In fact the following proof is in
my opinion the clearest.

Proof. First we choose a good conformal metric. When n > 6, if the Weyl tensor
Wi;jki is not zero at P, we choose the conformal metric § so that R,-J-(P) = 0 (as
in 5.19). J(uc) has the same limited expansion than in (5.21) with r = d(P, )
and € = 1/k. Then J(ue) < n(n — l)wrzl ™ for € small enough.

When the manifold is locally conformally flat, we choose a conformal metric
g which is euclidean near a point P. We get

(40) J(u,) = n(n— ™ +Ce™/*! [ / RdV —4(n — 1)6" 2w,_, + O(¢)
v

which C' > 0 a constant which does not depend on ¢.
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When the dimension n equals 3 to 5, we choose a conformal metric g’ so that
(21) and (23) hold. Then we have (24) and R'(z) = 0(r?). A limited expansion
yields (40).

In the remaining cases, we will have J(ue) < n(n— l)w,zl/ ™ if in a conformal
metric as above, we have [, RdV < 4(n—1)6"~%wn_, for some &. This comes
from the following caracterisation of the mass together with (5.37) and Theorem
(5.48).

5.51 Theorem (Hebey—Vaugon [*166]). When the compact manifold is locally
conformally flat at P

(41) A= 3irr(1)sup[4(n - 1)(/RdV)“‘ — 7" w1 ](n - 2)7!

#/n=Dg which are flat

where the sup is taken over the conformal metrics § = ¢
in Bp(t) with o(P) = 1.
When n =3 to 5, (41) holds the sup being taken over the conformal metrics

which are equal to g in Bp(t).

Recall m(g) = 4(n— 1)A and m(g) = m(g) by Proposition 5.43. The theorem
holds in the low dimensions thanks to Proposition 5.31 and 5.36.

6.3. Topological Methods

5.52 In Bahri [*20] for the locally conformally flat manifolds, and in Bahri-
Brezis [*23] for the dimensions 3 to 5, the authors, by using the original method
of Bahri-Brezis—Coron (see 5.78 for a more complete discussion of this method)
solved the Yamabe problem in the remaining cases without the positive mass
theorem. They analyse the critical points at infinity of the Yamabe functional
J and prove by contradiction the existence of a critical point which yields a
solution of the Yamabe problem, but in general it is not a minimizer of J.

5.53 In Schoen [*282] a different approach is used. As we are in the positive
case, the operator L= A + (n — 2)R/4(n — 1) is invertible, let L~! its inverse.
For any A > 1 and any p € [1,(n +2)/(n — 2)], we define F}, by

(42) Qa3 u— Fy(u)=u - E@L'u?P € C**

where

QA = {u € che

E(u):/uLudV:/|Vu|2dV (n=2) /R av.

lu]lcrna < A, mNi!nu > A7 },

and
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The(?rem (Schoen [*282]). Let (M,,, g) be a compact locally conformally flat
manifold which is not conformal to (S,,, 90)- There exists a large number Ag > 0
depending only on g such that F7Y0) C Qp, forallp e [1,(n+2)/(n - 2)].

Actually Schoen wrote this theorem for any Riemannian manifold not con-

formal to (S,, go), but he gave a complete proof only for locally conformally
flat manifolds. It is not known (to the Author at this time) that a general proof
is written up.

5.54 When p = 1 it is well known that the equation Fj(u) = 0 has only one
positive solution.

Let Ao be the first eigenvalue of L. Since we are in the positive case Ay > 0.
By minimizing E(u) = fuLudV on the set A = {u € Hy/||ullz = 1,u > 0}
we find (as in 5.4) a positive eigenfunction ¢ : Ly = Agp.

Proposition. ¢ is the unique positive solution of Fy(u) = 0.

First a solution of Fy(u) = O satisfies ||u||ps1 = 1, indeed compute
JuLFp(u)dV. So Fy(¢) =0

Then, it is a general result for the normal-compact operators, that the
eigenspace corresponding to the first eigenvalue ) is one dimensional.

To see this, let ¥ # 0 be such that LY = A\, . Pick k € Rsothat U+kp < 0
and equals zero in some point P € M. We apply the maximum principle to

(=AY + ko) — M + kp)=[(n — 2)R/4(n — 1) — Ao — hJ(¥ + k)

which is > 0 when h € R is chosen large enough. If the maximum of ¥ + k¢
is > 0 then ¥ + k¢ = Const. As ¥ + ke is zero at P, it is zero everywhere and
V¥ is proportional to .

Finally if ¥ # 0 is an eigenfunction of L corresponding to an eigenvalue
A # Ao, ¥ changes of sign. Indeed multiplying L¥ = A¥ by ¢ and integrating
on M yield

A/go\IldV=/(pL\IldV=/\IIL<pdV=Ao/<plDdV
since L is self-adjoint. We get [ ¥ dV =0.

5.55 When | < p < (n+2)/(n — 2) we can prove Theorem 5.53, for any
manifold, by using the following theorem:

Theorem (Gidas and Spruck [*141]). In R", n > 2, the equation Av = v with
1 < p < (n+2)/(n - 2) has no non-negative C? solution except v(z) = 0.

Following Spruck the proof is by contradiction. On the compact manifold
(M., 9), let us suppose there exists a sequence of positive C** functions u;
which satisfy:

(43) Lu;=uf,  supuy; — oo
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This is equivalent to Fp(vu;) = 0 for some v since p > 1. Pick z; a point
where u; is maximum: u;(z;) = m; without loss of generality, since the manifold
is compact, we can suppose that z; — P. We blow-up at P. In a ball Bp(é),
consider {z7} a system of normal coordinates at P with z7(P) = 0. We suppose
z; € Bp(6/2). Define for y € R™ with ||ly|| < dmg¥/2 = k;.

v;(y) = ;nl—_ui(z,' +m; %y) with a=(p — 1)/2

z; + m; %y is suppose to be the point of Bp(d) of coordinates the sum of
the coordinate of z; in Bp(6) and the coordinates of m; ®y in R™. We set
=(z? — z])ymg.
The function v; satisfies on the ball By(k;,) for i > 14 the elliptic equation

J(y) b J(y) +a1(y)v1—v"(y)

wmwﬁ@=¢wm*—mJMF—mﬂﬁwmwmﬂ-mmd
ai(y) = (n — 2)m2*Rym;* — z))/4(n — 1).

. k3 .

When i — oo, gf’ — Eki, %‘;}; — 0, a/ — 0 and a; — O uniformly on
B-o(kio). Moreover the functions v; are uniformly bounded 0 < v; < 1. The
conditions of Theorem 4.40 are satisfied. So ||v;||c= is uniformly bounded on
By(ks,) for some o > 0. By the Ascoli Theorem, there exists a subsequence of
{v;} which converges uniformly to a continuous function v. v satisfies in the
distributional sense on R™ the equation Av = v?, so v € C?and v(0) = | since
v;(0) = 1. This is in contradiction with Theorem 5.55. Thus the assumption
supu; — oo is impossible and there exists a real number such that |u;| < k.

GL(P,Q) being the Green function of L (see 5.14) we have
(44) wm=/mm®mmww>

|ui] < k implies ||u;}|cra < Const. and then ||u,||cza < Ao some constant.
Moreover (44) implies u;(P) > m [ uf dV. As ||u,||p+1 >n-2)u/dn-1) >
0, JufdV is bounded away from zero since [u?*'dV < k [P dV. Hence
there exists a constant v such that u; > v, > 0.

Remark. For p = (n+2)/(n — 2) the preceding arguing yields no contradiction.

The equation Av = v™*?/("=2) on R™ has positive solutions. The solution, with
1-n/2
v(0) = 1 as maximum, is w = [1 + ||yl /n(n - 2)] _

New proof by Schoen [*282].
Let us return to 5.53. The map u — E(u)L~'uP is compact from (24 into
C?%@, So F, = I+ compact and the Leray—Schauder degree makes sense. By
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Theorem 5.53, 0 € F,(082y,) for any p € [1 , (n+2)/(n—2)] thus deg(Fy, Qa,,0)
is constant for p € [l, n+2)/(n - 2)]. Moreover ¢ the unique positive solution
of Fi(u) = 0 (Proposition 5.54) is nondegenerate.

Thus deg(F1,Q4,,0) = +1 and deg(Fn42)/(n-2), o, 0) is odd. So the Yamabe
problem has at least one solution on the compact locally conformally flat man-
ifolds.

6.4. Other Methods

5.56 In [*181] Inoué uses the steepest descent method to solve the basic theorem
of the Yamabe problem. R. Ye in [*320] studies the Yamabe flow introduces by
Hamilton

0g/0t=(s — R)g with s=/RdV//dV.

Ye proves that the long-time existence of the solution holds on any compact Rie-
mannian manifold. In the positive case for the scalar curvature, if the manifold
is locally conformally flat, Ye shows that the solution converges smoothly to a
unique limit metric of constant scalar curvature as t tends to co. The estimates
are obtained by using the Alexandrov reflection method.

§7. On the Number of Solutions

7.1. Some Cases of Uniqueness

5.57 In the negative and null cases (1 < 0) two solutions of (1) with R = Const.
are proportional. Let ¢o be a solution of (1) with R’ = . In the corresponding
metric go the Yamabe equation is always of the type of Equation (1), since
Yamabe’s problem is conformally invariant. So let ¢; be a solution of Equation
(1) with R= R’ = p.

If u =0, Ap; =0, thus ¢, = Const.. If 4 < 0, at a point P where ¢,
is maximum, Ay, < 0, thus [¢;(P)]V=2 < 1, and at a point Q where ¢, is
minimum, Ayp; < 0 thus [p1(Q)]Y =2 > 1. Consequently o = 1 is the unique
solution of (1) when R=R' = < 0.

In the positive case, we do not have uniqueness generally, neversless we
have below Obata’s result.

Examples. The sphere S,, (Theorem 5.58).
M, =T, x Sp—, with T the torus when R( [ dV)z/" > n(n — Dw¥™ and
n > 6. Indeed in this case there exists on M, at least two solutions of Equation
(1) with R’ = R = Const. First, ¢; = 1 and second, , for which (Theorem
5.21)
J(po) = pu < n(n — Dw?/™ < J(1).
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On the other hand, according to Obata [225], we have uniqueness for Einstein
manifolds other than the sphere.

Proposition (Obata [225]). Let (M,,, §) be a compact Einstein manifold not iso-
metric to (S, go). Then the conformal metrics g to § with constant scalar cur-
vature are proportional to §.

Proof. Let us consider the conformal metric g on the form g = u?§.
Set T;; = Rij — (R/n)gi;. We have (see 5.2):

(5) T, = Tij +(n - 2™ [ViViu + (Au/n)gs;].
As T;;9 =0
/ ug*g/' i T dV > / uT;TY dV +2(n - 2) / TYVijudV.

But V;T} = (3 — &) V;R by the second Bianchi identity (see 1.23). If g
has constant scalar curvature, we get [ uTy;T% dV = 0 since T;; = 0.

Thus if R = Const., g is Einstein. According to (45), if u # Const. there
exists a non-trivial solution of

V,-Vju + (Au/n)g,-j =0.
In that case Obata proves that (M, §) is isometric to (Sn, go).

Remark. When g is Einstein, p the inf. of the Yamabe functional J is attained
by the constant function. J(1) = u. So Ay > R/(n — 1) (see [14] p. 292), which
is the inequality of Theorem 1.78.
But we have more for Einstein manifolds:
2

nu:R(/dv)"=y5nm~1w%ﬂ

with equality only for the sphere.

7.2. Particular Cases

5.58 The case of the Sphere.

Theorem 5.58 (Aubin [13] p.588 and Aubin [14] p. 293). For the sphere Sy,

(n > 3), u=n(n — 1)w™ and Equation (1) with R’ = R has infinitely many

solutions. In fact, the functions (r) = (8 — cosar)!~™/2, with 1 < (3 a real

number and o* = R/n(n — 1), are solutions of (1) with R’ = R(3* — 1).
Moreover on the sphere S, with [ dV =1, all € H, satisfy:

(46) lell3 < K2(n, 2)||Vl|2 + ||| 3.
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Proof. Recall r is the distance to a fixed point P. According to Theorem 6.67,
Equation (1) has no solution on the spere when R' = 1 +ecos ar, € # 0.
Indeed, F' = cosar are the spherical harmonics of degree 1: AF = A\ F, with
A1 = R/(n — 1) the first nonzero eigenvalue.

If p < n(n— l)wi/ ", we can choose € small enought to apply Theorem 5.12
with h= Rand f = 1 +ecosar since v < u(l — €)~%™ . This contradicts the
nonsolvability of Theorem 6.67.

Writing o = n(n— l)wfl ™ yields (46) when f dV = 1. (46) is an improvement
of the inequality of Theorem 2.28. Both constants are optimal, the second,
A,(0) > 1, since the inequality must be satisfied by the function ¢ = 1.

For the unit Sphere (S, go) the solutions of (1) with R = R =n(n — 1) are

47) wp,P(Q) = [(ﬁ2 —1)/(8 - cos T)z](n—z)/4

with g E] l,oo], P e S, and r = d(P,Q), (see [14] p.293). All solutions are

minimizing for J : J(gg p) = n(n — 1)/ ™.

There is no other solution. To see this, let 7 be the stereographic projection
at P, m is a conformal map from S, \ {P} onto R™. Consider (p,6;) i =
1,2,...,(n—1) polar coordinates in R™ and set g = (m~')*go. As p = cotg(r/2),
g =4sin*(r/2) = 4(1 + p*)~2€.

By virtue of (38), L(pg,p) = 1‘3’—;;9902{;1 yields

(48) U= [+ 2/2) T [nm - 2)/4) " s p
with cos T = (p? — 1)/(p* + 1) is a solution of
(49) > 8;¥+¥V"'=0  on R™

7=1

According to Gidas-Ni-Nirenberg [*140], the positive solutions of (49) are
radial symmetric. The solutions ¥(r) satisfy a second order equation, moreover
T’(0) = 0. So there is only one positive radial solution such that ¥(0) = k a
given real positive number. This solution is

W(p) = k[1+ k™22 In(n — 2)] 1-n/2.

It is a solution found in (48) with 8 € ]—o0, ~1[U]1, cc].
It is of the kind (47) ; indeed 9 _p p = g p With P the opposite point to P
on the sphere.

5.59 Schoen [*281] found all solutions of the Yamabe problem for C x S, _; the
product of the circle of radius 7 with the sphere of radius 1. Set 79 = (n—2)~ 172,
The result is:

If 7 < 7, the unique solution of (1) with R=Ris ¢ = 1. If 7 € ]79,27]
there are two inequivalent solutions, the constant solution and the minimizers of
J which are a C-parameter family of solutions with fundamental period 277.
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For 7 € ](k—1)70, k7o) there are k inequivalent solutions, (k— 1) C-parameter
families of solutions and the constant solution for which J has the greatest
critical value.

7.3. About Uniqueness

5.60 In the positive case there is no uniqueness in general. It is very easy to con-
struct manifolds for which equation (1) with R = R has more than one solution.
Let us consider two compact manifolds (Mi,g;), (Ma,g,) with dimension n,
(resp. n;) volume V; (resp. V3) and constant scalar curvature R; (resp. R, > 0).

Pick k large enough so that (R;+kRy)(V; V)™ > n(n— l)w,zl/". In that case the

functional J for the manifold (M1, kg1) x (Ma, g2) satisfies J(1) > n(n— Dw™,
The constant function is not a minimizer for J. Hence there are at least two

solutions.
Now we will discuss another method to exhibit examples with several solu-

tions.

7.4. Hebey—Vaugon’s Approach

5.61 Let us consider (M,,, g) be a compact Riemannian manifold of dimension
n > 3 and G be a compact subgroup of C(M, g) the group of conformal
diffeomorphisms.

Theorem (Hebey-Vaugon [*168]). The inf, on the set of G-invariant metrics g’
conformal to g, of J(¢') = [[ dV’] =2/ J R'dV"’ is achieved.

The case G = {Id} is the Yamabe problem. For most cases the proof consists
in two steps. First they prove that the inf. is attained if it is strictly less than
B = n(n — Dw¥/™(infyer Card Og ()™ (when G = {Id} this is Theorem
5.11). Then they prove that the inf is smaller than § (we have always 3 < 0).

Now if, under some conditions,

u>0,u lC?-fi‘nvariant J(u) ZH= me(u) >0
the theorem above yields two solutions to the Yamabe problem. The correspond-
ing critical values of the Yamabe functional J are not the same.

A more general case is that of the Riemannian covering manifolds 7 :
(M, 3) — (M, g) with § = 7*g. The question is: find conditions so that

inquHl(M)’uio j(u o 7r) > inquH\(M).uio j(u),

J being the Yamabe functional of (M, §).

5.62 Theorem (Hebey—Vaugon [*167]). Let (My, go) be a compact Riemannian
manifold not conformally equivalent to the standard sphere. We suppose there
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exist m Riemannian manifolds (M;, g;) (i = 1,2,...,m) such that (My, go) is
a Riemannian covering manifold of (M, g;) with b; sheets (m; : (Mo, go) —
(M;,g:), 1 =by < by <...<bp) If for each i there exists k; € [0, 1] such that

2/n
Ck,.(M,-,gi)( / dVo) Sn(n—Z)wf/"[(l — ko™ — 02| /4
M,

then on (Mo, go) there exist at least m + 1 metrics conformal to gy with same
constant scalar curvature (and different critical values of J).

Ck(M, g) is the smallest positive real number C such that any v € H,(M)
satisfies

(1 — kyn(n — 2w/n22 / w2/ gy

/|Vu|2dV i /deV+C’/u dv

Cr(M, g) always exists when 0 < k < 1 (see the value of the best constant
K(n,2)). It is proven that Co(M, g) exists when the manifold has constant
curvature (Aubin [14]), more generally when the manifold is locally conformally
flat (Hebey—Vaugon [*166]), and recently by the same authors for any compact
manifolds (see 4.63).

For applications of the Theorem above see Hebey—Vaugon [*167].

7.5. The Structure of the Set of Minimizers of J

5.63 Theorem (Y.Li [*Thesis, Univ. of Paris VI)). In a conformal class the set
of the metrics with volume 1 and constant scalar curvature L is analytic compact
of finite dimension bounded by a constant which depends only on n.

Moreover for a generic conformal class, the minimal solution is unique.

§8. Other Problems

8.1. Topological Meaning of the Scalar Curvature

5.64 We have seen that p is a conformal invariant (Proposition 5.8), but does
its sign have a topological meaning? Considering a change of metric (a non-
conformal one, obviously) it is possible to prove:

Theorem (Aubin [11] p.388). A compact Riemannian manifold M, (n > 3)
carries a metric whose scalar curvature is a negative constant.

Proof. According to Theorem 5.9 if we are not in the negative case, there exists
a metric g with R > 0. Then we consider a change of metric of the kind:
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Gij = ¥gij + 9i 8;9 with 1 > 0 a C* function. It is possible to determine ¢
such that the corresponding functional J(u) is negative for some u. Hence the
result follows by Theorem 5.9. ]

Since on every compact manifold M, (n > 3) there is some metric with
1 < 0, there is no topological significance to having negative scalar curvature.
In contrast to this, Lichnerowicz [186] has proved that there are topological
obstructions to admitting a metric with p > 0, that is, to positive scalar cur-
vature. He showed that if there is a metric with nonnegative scalar curvature
(not identically zero), then the Hirzebruch A—gcnus of M must be zero. This
work was extended by Hitchin [145], who proved that certain exotic spheres do
not admit metrics with positive scalar curvature—and hence certainly have no
metrics with positive sectional curvature.

In a related work, Kazdan and Warner [161] proved that there are also topo-
logical obstructions to admitting metrics with identically zero scalar curvature,
that is, to u = 0. Thus there are obstructions to 4 > 0 and x = 0, but not to
p<O0.

More recently, Gromov and Lawson [136] and [137] proved that every com-
pact simply-connected manifold M,, (n > 5), which is not spin, carries a metric
of positive scalar curvature. For the spin manifolds they generalize Hirzebruch’s
A-genus in order to obtain almost necessary and sufficient conditions for a com-
pact manifold to carry a metric of positive scalar curvature. In particular, the
tori T,,, n > 3, do not admit metrics of positive scalar curvature. For the details
see the article in references [136] and [137] or Bourbaki [34].

8.2. The Cherrier Problem

5.65 It concerns the C*® compact orientable Riemannian manifolds (M, g) with
boundary and dimension n > 2. Denote by £ the unit vector field defined on the
boundary M, normal to M and oriented to the outside.
When n > 3, let h be the mean curvature of M. h is the trace of the
following endomorphism of the vector fields X on OM : X — Vx&/(n - 1).
If we consider as previously the change of conformal metric § = (pﬁ‘j g,
@ € C™, ¢ > 0, the new scalar curvature R is given by

M 4((n — 1)/(n — 2))Ap + Rp = Rp™d/(n=2,
and the new mean curvature h by

(50) 2/(n ~ 2)9¢¢p + hep = hp™ =2,

5.66 The problem is [97]: given R’ € C®°(M) and h € C®(OM) does there
exist a Riemannian metric g’ conformal to g such that R' and b/ are respectively
the scalar curvature of (M, g') and the mean curvature of OM in (M, g").

The problem is equivalent to solve the Neumann problem constituted by (1)
and (50) with R= R’ and h = A’
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First, Cherrier [*97] proves the existence of best constants in the Sobolev
inequalities including norms of the trace and he proves inequalities with norms
of the trace in the exceptional case of the Sobolev theorem. Then he shows that
a variational problem I with constraint I" has a minimizer. Writting the Euler
equation yields a weak solution for (1) and (50).

Finally, and it is not the simplest, he proves that the solution is regular. For
the geometrical problem the functional

Gl I= /( Vel + —— 21)R<p2> avar"—z—’2 he? do,

oM

and the constraint

(52) r=/ Rl|p|#2 dV + — / K |25 do.
M n—1Jom

5.67 Theorem (Cherrier [*97]). If the inf jo of the functional I under the con-
straint I" = 1 is smaller than an explicit positive constant, then the problem has
a solution. The constant depends on the data and the best constants.

For instance, if we want to find a conformal metric with constant scalar
curvature (R’ = 1), such that the boundary is minimal (h' = 0), the condition is
po < K=2(n, 2).

This last part is the equivalent of Theorem 5.11 for the Yamabe problem.
Kn,2)=2"K (n,2) is the best constant for manifolds with boundary.

The same problem occurs in dimension 2. In this case h is the geodesic
curvature of M and the equation to solve is

(53) Ap+ R=R'e? on M

(54) dep+2h=2h"e*2  on M.

5.68 Hamza [*155] studied the particular cases of a hemisphere and of an eu-
clidean ball. For these manifolds, there are obstructions similar to those of
Kazdan and Warner for the Nirenberg problem (see 6.66 and 6.67).

5.69 Theorem (Escobar [*126]). Define
E={(t)eR*/z e R""\,t >0}
when n > 3. Any ¢ € D(FE) satisfies

(n—2)/(n-1)
(55) [/ =D/ dg
oE

where k(n,2) = (n/2 — l)w,lll_('l'-l). The equality holds in (55) only if  is pro-
portional to a function of the form:

< k(n,2)/ |Vol|? dz dt
E

(56) Gela,t)= [(e+ 1+ |z — zof?] T2
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Finding these functions is the key point. They act the part of the functions
(€ +r2)'~™/2 for the Yamabe problem.

5.70 Theorem (Escobar [*127] and [*128]). Let (M, g) be a compact Rieman-
nian manifold with C*™ boundary and n 2> 3, there exists a conformal metric
of constant scalar curvature such that OM is minimal, except if the manifold
satisfies these four properties all together: n > 6, non-locally conformally flar
but with a Weyl tensor vanishing on O M which is umbilic.

The case of these manifolds is still open. For the proof Escobar considers
test functions, constructed from the functions (56), in the functional JT'?~"/»
[see (51) and (52) for the definitions of I and I'] after a change of conformal
metric as for the Yamabe problem. A limited expansion yields in most cases the
inequality po < K~%(n,2) which allows to use theorem 5.67.

8.3. The Yamabe Problem on CR Manifolds

5.71 Let M be an orientable manifold of odd dimension 2n+ 1. A CR structure
on M is given by a complex n—dimensional subbundle E of the complexified
tangent bundle CTM satisfying E N E = {0}.

A CR manifold is such manifold with an integrable CR structure (the Frobe-
nius condition [E, E] C E is satisfied). G = Re(E+E) is areal 2n— dimensional
subbundle of TM which carries the complex structure J : G — G defined by
J(X+X)=i(X-X) for X € E. As M is orientable there is a 1-form § which
is zero on G . Now we define the Levi form Lg of 6 by

(57) Le(X,Y)=2d0(X,JY) for X,Y € G,

and we suppose Lg positive definite. Then 8 defines a contact structure and we
say that M is strictly pseudoconvex.

Example. A strictly pseudoconvex hypersurface in C™! is a strictly pseudo-
convex CR manifold.

Associated to the Levi form, Webster [*315] has defined a curvature, thus a
scalar curvature S.

The CR Yamabe problem is: given a compact, strictly pseudoconvex CR man-
ifold, find a contact form 8 for which the Webster scalar curvature S is constant.

5.72 Theorem (Jerison & Lee [*187]). Let M be a compact, orientable, strictly
pseudoconvex CR manifold of dimension 2n + 1. Define the functional on the
contact forms 6:

n/(n+1)
F@) = [/ S6)6 A de"] {/0/\ dG"] .

AMM) = infg F(6) depends only on the CR structure, \(M) < A(San+1)-
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If \(M) < M(San41) then the infimum is attained by a contact form 6 which
has constant Webster scalar curvature S(6) = A(M).

Given 6 a contact form, any contact form & is of the form § = u2/" with u
a C positive function. The transformation law for the Webster scalar curvature
S is
(58) S = u=M2/™(1 + 1/n)Apu + Su).

So there is a C* function v > 0 (given by the theorem) which satisfies the
equation

(59) 2(1 +1/n)Apu + Su = A(M)u*¥/".

Here A, is the sublaplacian operator defined on the C* function by
/(Abu)w9 A de™ = /L,‘,(du, dw)d A df™

forall w € C°°(M) where Lj is the dual form on G* of Lg. Lj extends naturally
toT*M.ForweT*M

Lyw,w) = ZZ lw(Z;)?

J=1

whenever Z;,..., Z, form an orthonomal basis for E.

5.73 Theorem (Jerison & Lee [*188]). Let z € C™' and § = id - d)|z|~
The restriction to TSy Of 6 is a contact form for Sy, which minimizes the
functional F(0) on the sphere. The corresponding Webster scalar curvature S =
n(n + 1) and A(Syn+1) = 27n(n + 1). Any contact form with constant scalar
curvature is obtained from a constant multiple of the standard form 6 by a CR
automorphism of the sphere.

Now with the extremal contact forms of F(6) on the sphere, Jerison and Lee
[*188] can prove that most CR manifolds M satisfy A(M) < A(San+1).

8.4. The Yamabe Problem for Noncompact Manifolds

5.74 In [11] Aubin proved that we can decrease (until negative values) the local
average of the scalar curvature only by local changes of metrics.

Then we can exhibit a sequence of metrics g; each having negative scalar
curvature on §; with Q; C Qg and Y oo Qi = M.

As the manifold M is denumberable at infinity there is no problem of con-
verging, since each point has a neighbourhood where the sequence g; is constant
from some rank. For such Riemannian manifold (M, g) with negative scalar
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curvature, we can ask if there exists a conformal metric ¢’ such that the scalar
curvature R’ = Const., and if (M, g’) may be complete.

Contrary to the compact case, the Yamabe problem on complete Riemannian
manifolds has not always a solution. In [*190] Jin Z. gives some counterexam-
ples. Let us consider a Riemannian compact manifold (M, g) with scalar curva-
ture R = —1 and dimension n > 3. Let P be a point of M. On M — {P} there
does not exist a complete Riemannian metric g’ € [g]

Indeed equation (1) has no positive solution if R’ equals O or 1. If u > 0 is
a solution of (1) with R’ = —1, according to a result of Aviles [16] u can be
extended to a C' function on M. Thus u = 1.

5.75 Theorem (Aviles-Mc Owen [*18]). Let (M, g) be a complete Riemannian
manifold. Assume the Yamabe functional (see 5.8) is negative for some function
belonging to D(M), then there is a conformal metric with scalar curvature equal
to —1.

There is a complete conformal metric § with R = —1 if the scalar curvature
R of (M, g) is non-positive and bounded away from zero on M \ M, for some
compact set My or if on M \ My R(z) < ~c1[r(z)]™" and the Ricci curvature
at T greater than —cy[r(x)]7>* on M where0< a<land2a <l < 1+a(q
and c, are two constants and r(z) is the distance of T to a given point x in the
interior of My).

For the proof Aviles and Mc Owen use the method of upper and lower
solutions.

5.76 In [*105] Delanog studies the following problem:

Given a compact Riemannian manifold (M, g) with dimension n, a closed
d-submanifold ¥ and a real function f, is there a complete metric on M \ =
conformal to g with scalar curvature f?

Among other results he gives the proof of

Theorem. There exists on M \ ¥ a complete conformal metric § with scalar
curvature

R=-1 ifandonlyifd>n/2 -1,

R=0 ifd <n/2~1 and u(g) > 0.
There is no complete conformal metric on M \ £ with R > 0 if u(g) < 0.

For instance if M = S, and d > n/2 — 1, we have the standard metric
on Sy, restricted to S, \ ¥ with R = +1, a conformal metric g’ with R’ = 0
(obtair_led by some stereographic projection) and a conformal complete metric §
with R = —1.
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8.5. The Yamabe Problem on Domains in R

5.77 We will consider this problem on smooth bounded domain ) with Dirichlet
data. If the Dirichlet data are zero we have to solve the following equation for
n>2

(60) Au=u™/®0=D 4 50  on Qts with uls =0.

We know by the Pohozaev identity (see 6.58) that (60) has no solution if
is star-shaped.
On the other hand if  is an annulus, i.e.

Q={zeR"/0<a<|z|<b}

Kazdan and Warner pointed out that (60) has a solution. Seeking a solution
depending only on r, we have to minimize the functional f:(u’)zr"‘l dr on
the set

b
A={ue H(a,b))/u>0 and /uNr""drzl}.

As A C C'?([a, b)), it is easy to prove the existence of minimizer.

5.78 Theorem (Bahri—Coron [*25] see also Brezis [*57]). If there exists a pos-
itive integer d such that Hy(QY,Z/2Z) # 0, then (60) has a solution.

The proof is difficult and of a new type. Analysis and algebraic topology
arguments are used. The best is to read the article. Nevertheless we give below
some steps of the proof to have an idea on it.

Define ¥ = {u € H\(Q)/u>0and |Vul|; = 1} and J(u) = l/fuN dV for
u € X. According to the Sobolev imbedding theorem, for u € D(Q2) C D(R™),
lullx € K(n,2)||Vull, thus J(u) > [K(n,2)]"N.

If u is a critical point of J in X, then u[J(u)]l/(N—z) is a solution of (60).
The proof of the existence of a solution proceed by contradiction.

We assume henceforth that (60) has no solution. First this implies the fol-

lowing

Lemma. Let u; € ¥ be a sequence such that J(u;) converges to a real number v
and such that J'(u;) — O, then v = by = k¥/®=D[K (n,2)]~ " for some k € N*.

We can suppose without loss of generality that u; € D(Q2). The sequence
{u;} is bounded in H,, thus there is a subsequence which converges weakly in
H, strongly in L, and a.e.. As the differential of J on ¥ : J'(u;) — 0,

(61) Au; —uN 7V J(u) =w;  with w; — 0in H_y,

H_, is the dual of H;. The assumption that (60) has no solution implies that
any converging subsequence converges to zero. Thus u; — 0 a.e..
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In §5 of Chapter 6 we will study a similar situation. There is a subsequence
{u;} which has only points of concentration, in the sense of definition 6.38
when at z u;(z) does not converge to 0. Let €= {P;, P;,..., P} C Q be the
set of the points of concentration. € is finite and nonempty.

Pick § > 0 small enough so that the balls B(FP;,6) C Q are disjoint
(=1,2,...,m). We have 7 = limjoo [5p 5 uy dV > 0and Y77 m = 1/v.

Moreover if we blow-up at a point of concentration (see Chapter 6, §5.5),
we find that the sequence v; — w > 0 which satisfies on R® Aw = vw™ !,
Hence fR,,wN dV = [K(n,2)]"™v~™/2. Thus n; = q[K(n,2)]""v~"™/? where
q is the order of multiplicity of P, as a point of concentration.

So m=D/2 = k[K(n,2)]”™ with k = 3", q: a positive integer.

5.79 The proof of Theorem 5.78 proceeds as follows.

Define J. = {u € £/J(u) < c} and set Wy = Jp,,,. When ¢; and ¢, belong
to bk, bx+1] for some k, the topologies of J., and J,, are the same. The change
in topology across the level by is described in the article. For this we consider
the lines of the flow associated to - J' starting from ug € Wy — Wi_;. Let
f :10,00[ x £ — X be the solution of

2 ftw=-T0ew, 10w =

The solution of (62) is in £ according to the maximum principle.

Recall J'(ug) # O for any ug € ¥ since we suppose that (60) has no solution.
When k is large enough (k > ko for some integer kg),Bahri-Coron prove that
the solution of (62) with by < J(up) < bi4; laies in Wy, for large t. Thus
there is no change in topology across the level by for k > k.

However Bahri-Coron prove the following.

(62)

Lemma. If Hy(Q,Z/2Z) # 0 for some d > 0, then for each k > 1 the pair
(Wi, Wi_)1) is nontrivial, assuming that J'(ug) # 0 for any up € Z.

X being a topological space and A C X, the pair (X, A) is trivial if there
is a continuous map [0,1] x X > (t,z) — fi(z) € X such that f,(z) = z for
z € Aand allt, fi(z) C A and fo(z) = z for all z € X. The proof of the
Lemma is by induction and uses algebraic topology arguments. The Lemma is
in contradiction with the analysis of the lines of the flow solutions of (62) for
large k, thus J(u) has a critical point in X.

5.80 When n =3, if Hx(R?,Z/2Z) =0 for k =1,2 then Q is contractible.

Moreover if € is star-shaped (60) has no solution. Thus we could think that
(60) has a solution only when ) is not contractible. This is not true (see Ding
(*114]), there are examples of contractible bounded regular open sets £ with
solutions of (60).
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5.81 Let us consider now the same equation, but with non zero Dirichlet data

(p # 0):
(63) Ay = ™/ =2y 5 0 on Q with ul|gg=¢ >0

for some constant A > 0. This problem is quite different to the former one.
Let h be the harmonic function on € such that h|sq = ¢ and consider the
following variational problem.

(64) inf / |Vu|?dz
'LLEA 0
with
A:{ueH1(9)|u—h€fI1(Q),u20 and /uNd:czfy}.
Q

If u is a solution of (63), u is a supersolution of the equation
(65) Av = 0, 'UIBQ = .

Thus u > h on Q (see 3.73), h being the solution of (65). Moreover
h > infp > 0.

So when v > [, h™ dz, a minimizer of (64), if it exists, satisfies (63) with
A > 0. For v = [, A" dz the minimizer is h, A = 0. A solution of (63) with
A < O is a subsolution of (65) and so it is smaller than h.

5.82 Theorem (Caffarelli-Spruck [*69]). Suppose 0Q € C? and p € C'*B(5Q)
> 0 positive somewhere. If v > fn hN dz, there exists a minimizer u € C*®(Q)N
C™B(2) of (64) which satisfies (63) with some positive constant \.

8.6. The Equivariant Yamabe Problem

5.83 Let (M, g) be a compact Riemannian manifold of dimension n > 3 and
I(M, g) be its group of isometries. The problem is:

Given G C I(M, g) a subgroup of isometries, does there exist a G-invariant
metric § conformal to g which realizes the infimum v(G) of

—-(n-2)/n
(66) J(g) = (/ dV’) /R’ dv’

on the set of the G-invariant metrics g’ conformal to g. J on the set of conformal
metrics to g, is the Yamabe functional when we write g’ on the form g’ =
©*/"=Dg When the infimum v(G) is attained at §, the scalar curvature R of §
is constant.

5.84 Theorem (Hebey—Vaugon [*168]).
_ 2/nl 2/n
(67) v(G) < n(n — 1w} [1161’1{4 Card Og(z)] "

If the inequality is strict v(G) is achieved.
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Ocg(x) is the orbit of £ under G. When all orbits are infinite this Theorem
implies immediately the existence of a minimizer for J. There is equality on
(S»,90) when G has a fixed point. But for the other manifolds, Hebey and
Vaugon prove that the inequality (67) is strict in most cases

In particular

5.85 Theorem (Hebey—Vaugon [*168]). The inequaliry (67) is strict in each of
these cases

1) All the orbits of G are infinite.

2) 3<n<l1l

3) The manifold is locally conformally flat.

4) There exists a point P of some minimal orbit of G such that W, (P) # 0
or [VWijki(P)| # 0 or |V2Wy5(P)| # 0.

5) There exists a point P of some minimal orbit of G such that
V™ W;jki(P)| = 0 for all m satisfying 0 < m < (n — 6)/2.

When 3 < n <5 or when the manifold is locally conformally flat the proof
is “classic” if we consider as well known the proof of the Yamabe problem.
But before it is necessary to prove, for a point P of some minimal orbit of G ,
the existence of a G-invariant metric g’ conformal to g which is euclidean on a
neighbourhood of P.

In the general case the computations are done in a special conformal metric g,
the analogue of Proposition 5.20 is proved but with § a G-invariant metric. The
proof of 5) assumes the strong form of the positive mass conjecture. Hebey—
Vaugon conjecture that the inequality (67) is strict except if the manifold is
(Sn,90) and G has a fixed point. But they solve the problem (5.83) in all cases.

5.86 Theorem (Hebey—Vaugon [*168]). Let (M, g) be a compact Riemannian
manifold of dimension n > 3 and let G be a compact subgroup of C(M, g) the
set of conformal transformations. There exists a conformal metric to g which
realizes the infimum of J(g’) on the set of G-invariant metrics conformal to g.

Corollary (Hebey—Vaugon [*168]). Let (M,,, g) be a compact Riemannian man-
ifold of dimension n > 3, wh_ich is not conformal to (S,,go). There exists a
conformal metric § for which R = Const. and I(M, §) = C(M, g).

8.7. An Hard Open Problem

5.87 Let (M, g) be a compact Riemannian manifold of dimension n > 2. Con-

n—2
sider the functional (66) J(g') = (fdV')” ™ [ R'dV’ on the set of the C*
Riemannian metrics g’ on M.
Let us prove the well known result: The critical points of J are Einstein-
metrics.
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Let h be a symmetric twice-covariant smooth tensor field, h;; its components
in a local chart. We consider for ¢ small the family of metrics g; =g +th. In a
local chart set

ka = F Flk = “9: (Vihb\ +Vihiy — V,\hik)
where g;"‘ is the inverse matrix of (g;);x and I‘;i the Christoffel symbols of g;.
A computation gives (see [*7] p.396):
Ruj = Rij+ VaC5 — ViC3; + C5Cl - CE.C3,.
The first derivatives with respect to t, at t = 0, of Ry;; the components of
the Ricci tensor of g; are
d
2<Ezaﬁj> = V*(Vihjk + Vihik — Vihij) — Vi(V5RE).
t=0

Thus we have (R, the scalar curvature of g;):

( d R,) = V'Vih;; — VIV;hi — RV h;.
dt ")

Moreover (&+/10:]) o = 4v/[8l6 s

These two results give

(ﬂgﬁ> = U dV] = [/(Rg*'f/z — R¥) hy dV/ dv
dt ),
-(1/2 - l/n)/RdV/hijgij dV].
If g is a critical point of J
(68) [Rij — (R/2)g;;] /dV +(1/2 - 1/n) (/ RdV) gij =0.
Multiply by gij yields R = Const.. Thus (68) implies R;; = (R/n)g:;.

5.88 In a conformal class [g) the functional J is the Yamabe functional. We

know that yg) the inf of J on [g] is attained (Theorems 5.11, 5.21, 5.29 and
5.30). For the sphere (Sp, go) pig = (N — l)wz/" (see 5.58). It is the unique
manifold having this property.

Define fi = sup uq; on the set of the conformal classes.

We can ask the questions

1) If i is achieved by a metric §, is § an Einstein metric?
2) When i < n(n — Dw?/™, is i achieved?

There are partial answers to the first question.
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5.89 Proposition. Assume [i is achieved by a metric §. If X, the first nonzero
eigenvalue of A satisfies Xy > R/(n — 1) then § is an Einstein metric.

Remark the functional J (66) is invariant by homotheties, for @ > 0 J(ag’') =
J(g"). So we can suppose that the volume is constant, equal to 1: V = 1. Consider
again the family of metrics g; = § + th. The scalar curvature R; of g, is not
constant in general, so we have to solve the equation

n-1 N-1
4=— A, 0, + R0, =
) tPt tPt = UtPy

where y; is the inf of J on [g;], the set of the metrics conformal to g;. We have

po=p=R=Rpand go = 1.
Let Q be a neighbourhood of g in C™* (0 < & < 1, 7 > 2) such that any
function in Q is positive. Now consider the following map:

n—1
J= 6, elxQ3 (1,1 54— Ay + Ry = porV T € O,

T is continuously differentiable and the differential of I" with respect to +y at
©, o) is

-1/
D,T(0, po)(¥) = 4~ Ay- o g).
n—2 n—1
As X, > Ry/(n — 1), D,T(0, @) is invertible.
By the implicite function theorem, for ¢ small (|t| < &), there is a unique
function J; in € which satisfies

n

-1
Ay + Ry = pod V!
——5 Db+ Repe = oy

4

and ] — ,é[> t — J; is smooth.
Moreover pu; = ,u.o(f@N dV)*™ is a smooth function of t and ¢; =

@ellel| - Then the family of metrics § = w:/ (n=2)4. is smooth as a function of
t.

pt = J () is the scalar curvature of g,. Writting ($54.),, = O implies § is
an Einstein metric.

Application. Remind there are three types of compact manifolds according to
they carry a Riemanian metric whose scalar curvature has a given sign. Consider
those which has a metric with zero scalar curvature and which carry no metric
with positive scalar curvature (examples: T;, the torus, K3 surfaces). Those
manifolds with zero scalar curvature are Ricci flat (% = 0 is achieved).

5.90 Remarks. We know that \; > R/(n — 1), but in the case A, = R/(n — 1)
we cannot conclude. For instance we can find a family ¢; of ¢ which has a
derivative with respect to ¢t from the left at £ = 0 and a different one from the
right (at ¢t = 0). In this situation we cannot conclude.
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When [ = n(n— l)w,zl/ ", there are two cases. Either the manifold is conformal
to the sphere with its canonical metric and z is attained, or it is not conformal
to the sphere and in this case £ is not achieved. As an example, for the manifold
C x Sp_1(n > 2), Gil-Medrano [*142] proved that i = n(n — 1)w?/™.

An other result. Aviles and Escobar [*17] proved that there exists £(n) > 0
such that pg) < n(n— l)wﬁ/ " —g(n) if (My,, g) is any compact Einstein manifold
which is not conformal to (Sy, go).

In fact we known very few on . For instance it would be interesting to
prove that i = n(n — 1)(wy, /2)2/ ™ for the real projective space P,(R), in other
words that the metric with constant curvature has the greatest p.

8.8 Berger’s Problem

5.91 The problems concerning scalar curvature turn out to be very special when
the dimension is two, the scalar curvature is then twice the Gaussian curvature.
Let (M, g) be a compact Riemannian manifold of dimension two.
It is well known that there exists a metric on M whose curvature is constant.
Considering conformal metrics g’ of g, Melvyn Berger ([40]) wanted to prove
this result by using the variational method.
Set ¢’ = e¥g. Then the problem is equivalent to solving the equation

(69) Ap+R=R'e*

with R’ some constant (see 5.2). Here R denotes the scalar curvature of (M, g)
(in dimension two R is twice the sectional curvature) and R’ is the scalar
curvature of (M, g’).

By Theorem 4.7 we can write R = R+ A~ with R = Const and y € C®(M)
satisfying [ ydV = 0. Setting 9 = ¢ + 7, Equation (69) becomes

(70) Ay +R=Reev.

Note that we know the sign of R’; it is that of x, the Euler~Poincaré character-
istic. Indeed, by the Gauss—Bonnet theorem 47y = | RdV, so integrating (69)
over M gives R’ [e¥dV = [ RdV, which is equal to R [dV.

5.92 Solution for x < 0.1f x =0, R’ = R =0, % = 0 is a solution of (70), so
the metric g’ = e~7g solves the problem.

If x <0, R < 0and R’ will be negative. We are going to use the variational
method to solve Equation (70).
Consider the functional

(M) I(¢)=%/V”1/1Vu1/)dV+R/de

and set v = inf I(y) for all 1 € H, satisfying [e¥~7dV = L.
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a) v is finite. Since the exponential function is convex
/(w —-mdV < log/e""'""dV =0.

Thus 4 dV <0 and v > 0.

b) v is attained. Let {3);} be a minimizing sequence. We can choose it such
that I(v;) is smaller than v + 1. Then

/v"w,-v.,wi dV <2(1+v) and fz/widv <l+v.

Thus the set {1;};en is bounded in Hy, since ||V4;]|; < Const and (1 + v)/R
< [¥:dV < 0. Indeed, by Corollary 4.3 ||4;ll, < | [ dV|[[dV]~/% +
)\1“'/2||V1p,-||2 where A, is the first nonzero eigenvalue. Using Theorems 3.18,
2.34, and 2.46 we see that there exist ¢ € H; and a subsequence {¥;} such
that ¢; — 1 weakly in Hy, strongly in Ly, and such that ¥/ — e¥ strongly in
L,. Therefore [e¥~7dV =1 and according to Theorem 3.17, I(4) < v. But ¢

satisfies the constraint. Thus by definition of v we have I(3) = v. Hence v is
attained.

c) Writing Euler’s equation yields
/vmﬂv,,h dV+R/th = K/he‘z’“" dv

for any h € H;. Picking h=1 gives the value of K, the Lagrange multiplier
K = R [dV =4rx. Thus 9 is a weak solution of

(72) Ap+ R = dnye?

By Theorem 2.46 the right-hand side belongs to L, for all p. Therefore Ay € L,
for all p. Differentiating Equation (15) in 4.13 and using the properties of the
Green’s function show that ) € C'*® for 0 < a < 1. Thus Ay € C'* and
according to Theorem 3.54, ¢ € C**, By induction ¢ € C*°.

5.93 The Positive Case x > 0.
There are only two compact manifolds which are involved S, if x = 2 and
the real projective space P, if x = 1. We suppose M is one of these manifolds.
From now on R is a positive real number. More generally than previously,
we will consider the equation

(73) Ap+ R = fe®,

where f € C* is a function positive at least at one point.
This property of f is necessary in order that Equation (73) have a solution, since
R[dV = [ ferdV.
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Henceforth, without loss of generality, we suppose the volume equals 1. Set
v =infI(¢p) for all p € H; satisfying f fe¥ dV = R, where I() is the functional
(71).

Theorem 5.93. Equation (73) has a C* solution if R < 8.

Proof

a) v is finite. First of all there are functions satisfying [ fe® dV = R since
f is positive somewhere.
On the other hand, according to Theorem 2.51 or 2.53

(74) R:/fe"’dVSsupf/e“’dV
< C(e)sup fexp [(ﬂz+e)||V<p||§+/cpdV]-

Thus
(75) I(p) > [ = (w2 +©)R] | Vel[3 + Rlog(R/Ce) sup f).

U = 1~/161r, if R < 87 we can choose € = g > 0 small enough so that
2(up +&9)R < 1. Therefore v is finite, v > Rlog(R/C(go) sup f).

b) v is attained. Let {p};cn be a minimizing sequence; (75) implies
[3 — (2 + €0)R]||Veps || < Const, thus ||Veps||2 < Const.

Moreover, I(p;) < Const implies [ ¢; dV < Const, and by (74) [¢;dV >
Const. Therefore {¢;}ien is bounded in H; (Corollary 4.3).

As in 5.92b it follows that v is attained. There exists ¢ € H, such that {(¢) = v
and [ fe®dV = R.

c¢) Writing Euler’s equation yields

/V"@V,,th+R/th=K/hfe“’dV

for any h € H,. Picking h = 1 gives K = 1. @ satisfies Equation (73) weakly
and by the proof in 5.92¢, ¢ € C*°. [ |



Chapter 6

Prescribed Scalar Curvature

§1. The Problem
1.1. The General Problem

6.1 Let (M,, g) be a C*° Riemannian manifold of dimension n > 2. Given f a
smooth function on M,, the Problem is:

Does there exist a metric g' on M such that the scalar curvature R' of ¢’ is
equalto f?

This problem was solved entirely by Kazdan and Warner [*195] [*198]
[*200]. Since the equations are different for n = 2 and n > 3, the proofs
are different as are the results. When n = 2 the scalar curvature R has strong
topological meaning because the sectional curvature is fully determined by R
(At a point where the coordinates are chosen orthonormal R = 2R;y;3).

So more often than not, we will present the proofs when n > 3.

6.2 Theorem (Kazdan and Warner [*198]). Let M be a C* compact manifold
of dimensionn > 3. If f € C*®°(M) is negative somewhere, then there is a C*®
Riemannian metric on M with f as its scalar curvature.

Proof. Using Aubin [11], on any M we can choose a smooth metric g whose
scalar curvature R = —1. This shows that negative scalar curvature has no
topological meaning.

In a pointwise conformal metric ¢’ = u*™~2g with u > 0, we use formula
(1)in 5.2 for R'. If u € Hj(M) with p > n, then u € C'(M) according to the
Sobolev imbedding theorem. Set 2 = {u € HY(M)/u > 0}. Now we consider
the map

OxL,d>wK) S4n-1)n-2"Au-u—-KuN"'e L,

where N = 2% T is continuously differentiable and its partial differential with
respect to u is

D,T(w)=4(n - 1)(n-2)"'Av —v— (N - DKu" 2.

At(1,-1), D, I'(v) = 4(n—1)(n—2)"! Av+(IN—2)v is invertible as an operator
acting on [,(Hf , Lp). Hence, by the implicit function theorem, there exists € > 0
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such that if K satisfies || K + 1||, < € the equation ['(u, K) = I'(1,~1) = 0 has
a solution in a neighbourhood in HY of the constant function u = 1. We can
choose € small enough so that the functions u in this neighbourhood are positive
everywhere (this follows from the Sobolev theorem).

Since f is negative somewhere there exist & > 0 and ¢ a C* diffeomor-
phism of M such that K = afoyp satisfies |K + 1|, < €. So af is the scalar
curvature of the metric § = (¢~ !)*(u*/™=?g), where u is the solution founded
above of the equation ['(u,K) = 0. u € C* by the bootstrap method, since
u € C! is a solution of Au = (n — 2)(u + KuN~")/4(n — 1) with K € C™.
Therefore a C*° metric (homothetic to §) has f as scalar curvature.

6.3 Theorem (Kazdan and Warner [*198]). Let M be a C*° compact manifold
of dimension n > 3 which admits a metric whose scalar curvature is positive.
Then any f € C*°(M) is the scalar curvature of some C* Riemannian metric

on M.

Proof. We know that there are compact manifolds, such as the torus 7™ which
have metrics with zero scalar curvature but no metric with positive scalar curva-
ture. Here by hypothesis there is a metric with positive scalar curvature, hence
the manifold admits a metric with zero scalar curvature. Indeed we can pass
continuously from a metric with positive scalar curvature to a metric with neg-
ative scalar curvature. So we get a metric which is in the zero case: p =0 (u is
defined in 5.8).

Thus we have to consider only the case f positive somewhere. By the the-
orems which solve the Yamabe problem, there exists a metric g with scalar
curvature equal to +1 which minimizes the Yamabe functional in the conformal
class [g]. Then we procede as for Theorem 6.2. We consider on 2 x Ly,

C(u,K)=4(n-1)(n—2)"'Au+u— KuN~!

At (1,1), D,I'(v) = 4(n — D[Av — v/(n — 1)]/(n — 2) is invertible only if
A1(g) > 1/(n — 1) which is not always true (we can have A\j(g) = 1/(n — 1),
for instance on the sphere with the standard metric satisfying R = 1). If A;(g) =
1/(n — 1), we choose a metric § close to g (so that R(g) > 0) not belonging to
[g].

For § well chosen, a minimizing metric in [§] for the Yamabe functional,
with scalar curvature equal to 1, will have its A; > 1/(n — 1). With this metric
the proof of Theorem 6.2 will work, K = a.foyp satisfying | K — 1|, < €.

Using this result, the problem of describing the set of scalar curvature func-
tions on M, is completely solved if n > 3. To see this, note that the topological
obstructions mentioned above show that there are tree cases.

The first case: M does not admit any metrics with > 0. Then g < O for
every metric, so the scalar curvature functions are precisely those which are
negative somewhere.
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The second case: M does not admit a metric with x4 > 0, but does admit
metrics with 1 =0 and p < 0. This is identical with the first case except that
the zero function is also a scalar curvature.

The third case: M has some metric g with x> 0. Any function is scalar
curvature.

6.4 Theorem (Kazdan and Warner [*198]). Let M be a non compact manifold
of dimensionn > 3 diffeomorphic to an open submanifold of some compact man-
ifold M. Then, every f € C™(M) is the scalar curvature of some Riemannian
metric on M.

Proof. Without loss of generality, we can suppose that M — M contains an open
set. On M we pick a metric g with scalar curvature equal to —1. Consider a
diffeomorphism ¢ of M such that fop € L,(M), and an extension f of fop
on M by defining it to be identically equal to —~1 on M — M. Therefore given
€ > 0 there exists a diffeomorphism ¥ of M such that || fo¥ + 1|, < &. Now
we can apply the proof of Theorem 6.2.

1.2. The Problem with Conformal Change of Metric

6.5 Henceforth on this chapter we will deal with the following problem:

Let (M, g) be a C* Riemannian manifold of dimension n > 2. Given f €
C° (M) does there exist a metric § conformal to g (§ € [g]), such that the scalar
curvature of § equals f?

We suppose f # Const., otherwise we would be in the special case of the
Yamabe problem. The problem turns out to be very special when the Riemannian
manifold is (Sp, go) the sphere endowed with its canonical metric. This comes
from the fact that (S, go) is the unique Riemannian manifold for which the set
of conformal transformations is not compact. This result was a conjecture of
Lichnerowicz solved by Lelong-Ferrand [175].

Thus the problem on (S, go) is especially hard. It was raised by Nirenberg
on S, in the sixties. Chapter 4 will deal with the Nirenberg Problem. In this
chapter we suppose that (Mp, g) is not conformal to (S, go)-

6.6 Recall the equations to solve.
When n = 2, we write the conformal change of metric on the form § = e¥g.
The problem is equivalent to finding a C* solution of

1 Ap+R= fe¥

where R is the scalar curvature of (M, g).
When n > 3, we consider the change of conformal metric § = ¢*/(*~?g,
The problem is equivalent to finding a positive C* solution of

) 4(n - 1)n—-2)"'Ap+Rp = foN 7!,
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where N = 2n/(n — 2). For simplicity set R=(n- 2)R/4(n — 1). Then (2)
becomes

3) Ap+Ro=foN~' 0 >0,

where we have written f for (n — 2)f/4(n — 1) without loss of generality.

As the problem concerns a given conformal class of metrics, in writing
equations (1) and (2) we may use in any metric in this conformal class. So
when M is compact, we choose ¢ the (or one of the) metric minimizing the
Yamabe functional, accordingly R = Const..

§2. The Negative Case when M is Compact

6.7 In this section we consider (1)=(3) when R (or R) are negative. The first
result is in Aubin [11].

Theorem 6.7 Let (M, g) be a compact C* Riemannian manifold with p < 0
andn > 2. Given a C™ function f < 0, there is a unique conformal metric with
scalar curvature f. p is defined in 2.1.

When n > 3 we consider the functional
I(p)= / |Vl dV + / Ryp?av.
Set v, = inf I(yp) for all
pedy={peHlp> O,/fw"dV= -1}

with 2 < ¢ < N. Consider a minimizing sequence {;}.

Since [@fdV < o= [ fe?dV = i, [l@ills < Const; and [loilln, <
Const. because I(p;) — v,. The proof proceeds now as for the Yamabe problem.
In the negative case, a uniform bound in C° for the minimizers ¢, satisfying
Apg+Rp, = —v, f@@~!is very easy to find. At a point P where ¢, is maximum
Apy(P) > 0, thus pi~%(P) < ~R /v, f(P) < Const.. Uniqueness is proved by
Proposition 6.8 and the solution ¥ = limg_, x .

When n = 2 we consider the functional

I(¢)=}2—/IV¢|2dV+/RgadV.

Set v = inf I(y) for all

<,oEA={<p€H1//fe‘pdV=/RdV}.
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v < I(0) = 0 since ¢ = 0 is not a solution of (1) when R = Const. and

f # Const..
Consider a minimizing sequence {¢;}, 0 > I(p;) — v.

First step. | [ p; dV| < Const.. Obviously [ ¢;dV > 0. Furthermore the result

follows from
/(pidV < Vlog (/e“”'dV/V)

/ e? dV < [inf(- f)]~" / (~flef dV = / RdV/sup f

where V = [dV.

and

Second step. ||p;||H, < Const..
I(ps) < 0 implies ||V;||3 < —=2R [ ¢; dV < Const. and

lpell3 < llpi = @ill3 + VEE < IVill3AT + Vgt
where @, = [ ¢;dV|V.

Third step. v is attained by a C* function.

The map H; > ¢ — e¥ € Ly is compact for any p (Theorem 2.46), so
a subsequence {y;} of {y;} tends to a weak solution of (1) in H,. By the
bootstrap method together with the regularity theorem, the solution is smooth.

Remark 6.7. Kazdan pointed out that one does not need any assumption on the
exponent ¢ > 2 in the negative case when f is negative. He proved that the
equation

(3b) Au = g(z,u)

has a solution when the continuous function g(z, t): M X R — R has the property
that there exists numbers a < b so that if ¢ > b then g(z,t) < 0, and if t < a
then g(z,t) > 0.

When g(z,u) = f(z)u|u|9~2 — Ru, we get a positive solution. Indeed we
can use the method of lower and upper solutions with b > a > 0. We verify
that a > 0 is a lower solution of (3b) if a is small enough:

9(z,a) > a(—R+ inf f(z)a?"?)>0=Aa
zEM

when a < [R/infyepn f(.'c)]v—l-f. Moreover b > [R/ SUP ¢ ur f(x)]ﬁ is an
upper solution of (3b).

6.8 Proposition (Aubin [14], Kazdan and Warner [*198]). If f < 0 on M,
equation (1) (resp. equation (2)) has at most one solution (resp. one positive
solution).
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We suppose f # 0 otherwise the problem has no solution. Set Q = {z €
M/ f(x) =0} and let ¥ be a solution of (1) when n = 2 (resp. a positive solution
of (2) when n > 3). Consider § = e¥g when n=2 (resp. § = ¥*/"~?g when
n > 3).

When n > 3, if there is another solution, equation (2) (written in the metric
9)

@ 4n—n -7 Aut fu=fu"7N (w=p/y)

would have a solution not equal to the constant function u = 1. First suppose
Q =0 then u = 1 is the unique solution of (4) indeed at a point P where w is
maximum Au(P) > 0 thus u(P) < 1; and at a point () where » is minimum
Au(Q) < 0 thus w(Q) > 1. .

IfQ#0, Au=0on Q and u cannot reach a maximum or a minimum on Q.
Therefore, if u > 1 somewhere on M, u attains its maximum at a point P ¢ Q.
Accordingly there is a sequence {P;} C M —  which tends to P. Au(P)=0
and for P; near enough to P, Au(P;) > 0. Thus w(P;) < 1 and u(P) < 1.
Likewise if @Q is a point where u is minimum, w(@) > 1.

Similarly when n = 2, we prove that u = 0 is the unique solution of equation
(1) written in the metric §

Au+ f = fe* (u=¢—¥).

6.9 Proposition (Kazdan and Warner [*198]). A necessary condition for a solu-
tion of (3) to exist is that the unique solution of

®) Au—(N-=2)Ru- f)=0
is positive.
A necessary condition for a solution of (1) to exist is that the unique solution
of
6) Au—Ru+ f=0

is positive. In both cases this implies the weaker necessary condition [ f dV < 0.
Proof. If ¢ > 0 satisfies (3), multiplying both members by '~V and integrating
yields [ fdV < 0. Since u > 0, integrating (5) gives [ fdV = R [udV < 0.

As R < 0, the operator ' = A — (N — 2)R is invertible (in the space of C*°
functions for instance). We have to prove that if (3) has a solution ¢ > 0 then
the unique solution u of (5) is positive. For this we compute I'(¢?~") and find

T N)y=—(N =2)f = (N =2)(N — Dp~NVipV,p < —(N - 2)f.

Thus —~I'(?~N —u) > 0. According to the maximum principle >~V ~u < 0
and u > 0 (we have ©?~~ — u # Const.).

Similarly, when n = 2, we prove (—=A + R)(e™® — u) > 0. This yields
u > e~ ¥ which is positive.
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Remark. With Proposition 6.9 it is easy to find functions f satisfying
J fdV < 0 such that equations (1) and (3) have no solution.

For instance f = —Au/(N — 2)+ Ru when n > 3, and f = Ru — Au when
n = 2, where u is a function changing sign and satisfying [udV > 0.

6.10 Proposition (Kazdan and Warner [*198]). If f € C* is the scalar cur-
vature of a conformal metric, any h € C*, satisfying h < af for some real
number o > 0, is the scalar curvature of a conformal metric. More generally, if
(3) has a positive solution for some f € C?, the equation

) Au+au=hulN! with R<a <0

will have a positive solution for any h € C° satisfying h < af with o > 0. If
(1) has a solution for some f € C°, equation

(8) Au+a=he* withR<a<0

will have a solution for any h € C? satisfying h < af with o > 0.

Proof. As equation (3) has a solution for af, we have to prove Proposition 6.10
when o = 1. Let p be a solution of (3), u* = ¢ is an upper solution of (7).
Indeed

Ap+ap—heN "' =(a-Ryp+(f-h)p" ' 20

Pick a positive real number 3 small enough 8 < [ sup?‘_’h)]"’l:’ and 8 <
inf ¢, the constant function u_. = f is a lower solution of (8) which satisfies
0<u_ <u*=¢. Indeed AB+afB —hBN~"' =Ba - hBN"2)<0.

We are in position to use the method of upper and lower solutions, and
conclude that (7) has a solution. Similarly (8) has a solution.

Here 8 =u_ < u* = ¢ with 8 < log[(—a)/ sup(—h)].

If h is only C°, the solution of (7) (resp. (8)) is in C"# for any 3 €10, 1[.
In this case, for the proof we use the Maximum Principle for weak solution
(Remark 3.71). Kazdan and Warner state Proposition 6.10 for h € L,(M) with
p > n, the solution is then in C? for some 8 > 0 and also in HY.

6.11 Theorem. Assume f is the scalar curvature of a conformal metric. If f <0,
there exists a neighbourhood V of f in C* (any a €]0, 1[) such that each h € V
is the scalar curvature of a conformal metric.

A necessary condition for (3) to have a solution is ~R < )\, where

A= inf[|Vul3llul;?]  forall u € DE).
¥ =0, \=+o0. Here
Q2= {z € M/f(z) 2 0},

f may have positive values.
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Proof. Writting equation (2) in the conformal metric § which has f as scalar
curvature, the equation to solve is

9) 4n-Dn-2)7'Au+ fu-hu¥"r=0, u>o0.
Consider the map (u, h) Lam-1n-2""8u+ fu —huN-"! from
{ueC*® u>0}xC* in C°
D,T(v) =4(n - 1)(n - 2)7'Av + fv — (N = DhuV 2.
At (1, f), D,L'=4(n - 1)(n - )7 'A - (N - 2)f is invertible. Indeed,

v = inf [(n-— 1)/|vu|2d‘7—/fu2d‘7} [/UdeJn

is achieved by a smooth positive function, thus » > 0. Recall N — 2 = ;—2
As T is continuously differentiable, we can apply the implicit function theorem.
This proves the existence of V. Similarly when n =2, we write (1) in the metric
g and we consider the map

(u,h) 5 Au+ f — hev.
At (0, f), D,I' = A — f is invertible, the spaces being well chosen.

Remark. According to Proposition 6.10, the neighbourhood V of f may be in
C’.

Proof of the second part. Let W C () be a submanifold with smooth boundary
W # ), and let X be the first eigenvalue for the Laplacian A on W with zero
Dirichlet data. On W' consider ¥ the eigenfunction such that ¥ < ¢ on W with
¥ = ¢ somewhere in W (recall ¢ is supposed to be a solution of (3)). On W,
AV =3, ¥ € C® and

(10) Alp~T)=Xp—0) = (R+Np+ felV L.

If X< —R,as f > 0on W, (10) implies A(¢ — ¥) > 0. Thus ¢ > %
everywhere on W since ¢ > ¥ on 0W. This contradicts ¥ = ¢ somewhere.

So —R < ), but X is as close as one wants to A and we obtain ~R < ).

To get the strict inequality, consider f~ = inf(0, f) which is Lipschitz con-
tinuous. According to Proposition 6.10, equation (3) with f~¢™ =" in the right
hand side has a positive solution in C°©. Then using the first part of the The-
orem proved above, there exists a neighbourhood of f~ in C'®, where we can
choose h € C™ having zero as regular value and satisfying h(z) > O when
z € (.

Now, if (3) has a solution, A = —R yields a contradiction. Indeed equation (3)
with ho™~! has a positive solution @o € C®. Let \q be the first eigenvalue of
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A (with zero Dirichlet data) on Qo = {z € M/h(z) > 0}. Qp is a submanifold,
thus —R < )o. As Mg < A, we get the desired inequality.

6.12 Theorem (Ouyang [*262], Rauzy [*273], Tang [*298], Vazquez-Veron
[*312]). On (M,,g) a C™® compact Riemannian manifold of dimension n > 3,
let f < 0 be a C* function (o €]0, 1)), Define K = {z € M/f(z) > 0} and
A= inf[|[Vu||%]|u]|2’2] for all u € D(K). Then Equation (3) has a solution if
and only if

(1) -R<

When f € C™, f is the scalar curvature of a conformal metric, if (11) holds.

This theorem is a particular case of Theorem 6.13 below. For the proof
Ouyang, Vazquez and Veron use the method of bifurcation. They study equation

(12) Au — du= fuP, u>0
with A > 0 and p > 1. For this they consider
(13) C** xR 3 (u,\) = f(u,\)=Au—u— flulP~lu e C°.

(0,0) is a point of bifurcation and there exists a C' bifurcated branch issuing
from (0,0).

Recently Tang gave a simple proof of Theorem 6.12, using the method of
upper and lower solutions, advocated by Kazdan and Wamer. If we exhibit a
positive upper solution u* of (3), a positive constant 3, small enough, is a lower
solution of (3) and we can take u~ < u*. Indeed AB + R3 < fBN~! as soon
as < [R/inf fn-2/4,

So we can choose u~ = § < u* and we are in position to use the method
(see §12 of Chapter 7).

We saw in 6.11 that condition (11) is necessary. Let us prove it is sufficient.
Assume —R < ), there exists a neighbourhood of K : W which is a manifold
with boundary whose first eigenvalue X satisfies —R < XA < A (for A with
zero Dirichlet data). Since K is compact, W has a finite number of connected
components W; (1 < 7 < k). On each W, pick ¢; > 0 an eigenfunction
satisfying ¢;/0W; = 0 and on W; Ap; = A\ip;, with A; > X the first eigenvalue
for A on W,.

Now consider ¢ a positive C* function on M which is equal to ¢; on
a neighbourhood 8; of KnW; C W;. For « large enough, let us verify that
u* = ay is an upper solution of (3). On any 6;

Aut + Ru* =(\; + Ry > 0> fuh)N-1.
And on M — UL 6;, as f < —¢ for some & > 0, we will have
Ap+ Rp > —eaV 2N =1 > oV =2 fN -1

if o is large enough.
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6.13 Theorem (Rauzy [*273]). On (M,, g) a C* compact Riemannian manifold
of dimension n > 3, let f be a C* function satisfying (11) where X is the first
eigenvalue for A on Q with zero Dirichlet data (as defined in Theorem 6.12).

There exists a positive constant C which depends only on f~ = sup(—f,0)
such that if f satisfies

(14) supf < C

then equation (3) has a solution (f is the scalar curvature of a conformal metric).
Assume sup f > 0. Equation (3) has more than one positive solution when 6 <
n < 10 if at a point P where f is maximum Af(P) =0, and when n > 10 if in
addition ||W;;ri(P)|| # 0 and AAf(P) = 0.

The first part of the theorem is proved by using the mini-max method.
Condition (14) means that, when f~ is given, equation (3) has a solution for
any f* on §2 satisfying (14). For the proof of the second part of Theorem 6.13,
Rauzy uses the method of points of concentration.

Remark 6.13. We can ask how C depends on f~. The answer is given by
Aubin-Bismuth in [*13]. ;
Set K = {z € M,/ f(z) > 0}, K must satisfy A(K) > —R. Condition (14)
is
< i - .
sup f < C(K) , A}“_fm[ f(@)]

where ) is a neigbourhood of K such that A(2) > —R, MQ) being the first
eigenvalue of A on Q with zero Dirichlet data.

6.14 Theorem. When n =2, if f a C*™ function on (M, g) satisfies f < 0 and
f #0, there is a conformal metric with scalar curvature f.

If we consider f~ = sup(— f,0) £ 0 as given, there exists a positive constant
C such that the same conclusion holds whenever sup f < C.

Proof. Assume f <0 and set Q = {z € M/f(z)=0}.

Let W be a manifold with boundary which is a neighbourhood of . W
exists since 2 ¥ M. On W let w be a solution of Aw+ R =0, for instance with
zero Dirichlet data. If k is large enough let us verify that w* = v+ k is an upper
solution of (1) when v = w on a neighbourhood 6 of Q, with § C W.

Oné, A(y+k)+R=0> fe"** And on M — 0, as f < —¢ for some € > 0,
we will have A(y + k) + R > —ee”*k > fe* . On the other hand when k is
large enough w™ = —k is a lower solution of (1) satisfying w~ < w*.

Indeed Aw™ + R= R < fe~* = fe*™ for large k. The method of lower
and upper solutions yields a solution of (1).

For the proof of the second part of Theorem 6.14, we use Theorem 6.11.
According to the proof above, — f ~ is the scalar curvature of a conformal metric,
so there exists a neighbourhood V of — f~ in C* such that each function in V
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is the scalar curvature of a conformal metric. In V there are functions h > — f-
which are equal on €2 to a positive constant C' if C is small enough.

Now if supf < C, f < h on M and by Proposition 6.10, f is the scalar
curvature of some metric conformal to g.

Remark. The necessary condition of Proposition 6.9 is satisfied under the hy-
pothesis f < 0, f # 0. Indeed, G beeing the Green function of A — R, the
solution of (6) is u(P) = ~ [ Gr(P,Q)f(Q)dV(Q).

We know that G satisfies Gg > ¢ for some € > 0. Thus u > —-efde >
0.

Similarly when n > 3, if f < 0 and f # 0, the solution of (5) is positive.
In case f changes sign, if Theorem 6.12 can be apply to the function —f~ (i.e.
(11) is satisfied), there is a positive constant C(f~) such that f is the scalar
curvature of a conformal metric whenever sup f < C(f 7).

The proof is similar to that of the second part of Theorem 6.14. It is an
alternative proof to the first part of Rauzy’s Theorem.

§3. The Zero Case when M is Compact
6.15 In this case, the manifold carries a metric with zero scalar curvature. In
this metric equations (1) and (3) are
(15) Ap = fe?, when n = 2.
(16) Ap= folV—1, ¢ >0 when n >3.
Obviously there are two necessary conditions:

(17) f changes sign

(18) / fdV <O.

JApdV =0 implies (17). Multiplying (15) by e~%, (16) by '~V and
integrating yield (18).

The zero case is not different than the positive case, we can use the varia-

tional method. Whereas the negative case, when f changes sign, is very peculiar.

6.16 Theorem. When n = 2, f € C* is the scalar curvature of a conformal
metric (equation (15) has a solution) if and only if (17) and (18) hold.

Proof. Define v = inf||Vul|, for all

ueA={<peH.//fe“’dV=0}.
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To see that A # @, let ¢ € C* a function which is positive in a ball {2 where
f > 0 and which is zero outside Q, [ fe**dV = 0 for some a > 0 since
J fdv <O.

Consider a minimizing sequence u; € A. Set u; = v; + 4; where U =
V! fuidV, v=1imie Vo2 and [ fe¥ dV = 0. As 5; = O the set {v;} is
bounded in H;.

So there exist ¥ € H; and a subsequence {v;} such that v; — ¥ weakly
in Hy, strongly in L; and such that ¥y — €¥ in L, since the map H, 5> ¢ —
e? € L, is compact (Theorem 2.46).

This implies [ fe¥ dV =lim; .o, [ fe dV =0, thus ¢ € A and ||, = v
since || V|2 < lim ||Vv;|[2 = v. We cannot have v = 0, otherwise 1 = 0 which
contradicts [ f dV < 0. Hence ¢ satisfies

(19) AY=kfe¥  with keR.

Multiplying both members by e~¥ and integrating implies k[fdv <o.
Thus k > 0 and ¢ = ¢ +logk is a solution of (15). Regularity follows by a
standard bootstrap argument.

6.17 Proposition. When n > 3, if (17) and (18) hold, there is a positive C*
solution @, of the equation Ay = fp?~! for2 < q < N.

Proof. Define v, = inf | Vu|3 for all

uEA(,:{uEH,/uZO, /fuqu=1}.

Aq # 0 (see the proof of 6.16). Consider a minimizing sequence {u;}. If no
subsequence of the sequence {||u;||2} is bounded, set v; = u;/||u;.
The functions v; satisfy |lv;[l2 =1, [Vuv;|l, — O and [ fv!dV — 0. Thus {v;}
is bounded in H; and v; — V=2 in H; (V is the volume). This implies a
contradiction with (18) since we would have [ fdV = V%2lim [ fv?dV =0.

Similarly v, # 0, otherwise as we know now that {u;} is bounded in Hj,
the constant function is a minimizer and this implies a contradiction.

Consequently v, > 0 and there exists a subsequence {u;} which is bounded
in H,. As H, C L, is compact, we prove (as we did many times) the existence
of a positive solution ¢, € C™ satisfying

(20) Apg=vofpd™" and /fcpg dv =1,
where v, > 0 is the inf of the variational problem considered above.
6.18 Lemma. The set of the functions @, satisfying (20) is bounded in H.

First of all let us prove that the set of the v, is bounded. Thus we will have

[ Vepgll2 < Const..
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For this we may pick any function u > 0, u # 0, with support in the subset
of M where f > 0. But in order to have a proof useful in a more general context
-1
we choose u = f* = sup(f,0). v = f*[[(fH)™! dav] /1 ¢ A, (see the proof of
6.17 for the definition of Ay).
Thus,

-2/q
vy < IVYEIV AR [ [ dV]

<IVFR ( [r dV) o [ Jay dV] h
< sup ( [rav. 1) IV £2 [ [y dv] o

Now the proof is by contradiction. Suppose |/¢g/|2 is not uniformly bounded.
There exists a sequence g; such that ||¢g|l2 — oo when i — oo. Then,
vi = @, |l@q:ll; " is a sequence of C* functions which satisfies [|V;lla — 0,
lvill2 = 1 and [ fo} dV — 0. Thus v; — V-2 in H, when i — oo and by

the Sobolev Theorem |jv; — V~1/2||y — 0 . This implies

[ =vatiav < g [ o= voipegt s v-eoosay
< Const. ||v; — V=12 y > 0.

So [ fv¥dV — 0 yields [ fdV = 0 which contradicts with (18) the
necessary assumption [ fdV < 0.

6.19 Now we need to use a Theorem which will also be useful later on, which
is why we consider a more general situation.
Let (M, g) be a C*™ compact riemannian manifold. Consider the operator

21 Lu=Au+hu

where h € C®,

Theorem 6.19 (Aubin [14] p.280). Assume there exists a sequence, bounded
in H\, of positive C* functions @q,(2 < g; < N, limg; = N) satisfying
[ fo%idV =1and

(22) Lo, = mif ol ™"
where f is a C* function with sup f > 0 and y; positive real numbers. If
(23) 0<p=lim p; <nn—2)w?™/4sup f]'~2/"

1—00

then a subsequence {y,,} converges weakly in H, to a positive C* function v
which satisfies

(24) Ly = pfypN-1.
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Proof. Since ||¢g||r, < Const., we can proceed as for the Yamabe problem.
There exists a subsequence {pg,;} and ¥ € H; such that @g, — ¥ weakly in
Hj, strongly in L, and almost everywhere. Then cpgjﬁ" — ! weakly in
Lyjv-1) and 9 satisfies (24) weakly in H,.

According to Trudinger [262], 1) € C®. Then the maximum principle im-
plies either 1) > 0 or ¢ = 0. In order to show that the last case cannot occur,
we must prove that [1[, # 0.

For this we will use K(n,2) = 2wy /" [n(n ~ 2)]=1/2 the best constant in
the Sobolev inequality (Proposition 2.18). Given £ > 0 there exists A(¢) such
that all ¢ € H, satisfy:

5) el < [K*(n,2)+€l|[ Vel + Ae)|lo|2

We now write
(26) 1=/f<Pqi dV < (sup f)lpg, 12 < (sup HV'~ oy 1%

From (21) and (22) we get

@7 Vg3 + / hg? dV = p;
(25) and (26) together with (27) yield
1 — (sup f)¥ % VAN=9)/Nai K25 2) 4 £]p; < Const. llq: 13-
Taking the lim inf of both sides when i — oo we find

1 — (sup /)¥N[K*(n,2) +€lu < Const. liminf ||p, 3.
1—00
Since ¢ is as small as one wants, if y satisfies (23) then ||| > 0.

6.20 Remark. When f > O there is an alternative proof of Theorem 6.19 which
doesn’t use Trudinger’s Theorem. For this see (6.39) below. We do the same
computations without the function n(n = 1). In the left hand side of (45), the
limit when 7 — oo of the term in brackets is

I=1—-KkX2k — 1)"" Cpes™(sup //V.

The assumption (23) u(sup )%V K*(n,2) < 1 allows us to pick C enough
near K?(n,2) and k > 1 enough near 1 so that [ > 0, since £ = | according to
the hypothesis.

So we get for some k > 1, |@g|lkn < Const.. This is sufficient to prove
that {¢g,} is bounded in C” for any » > 0. The proof begins by using the
Green function of the Laplacian as in 5.5: we prove that the functions ¢, are
uniformly bounded in C° then in C".

The bound in C7 is obtained by induction thanks to the regularity theorems
(86.2 of Chapter 3).

Hence a subsequence of {¢,,} converges in C™~' to a smooth positive
solution of (24).
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6.21 Let’s return to our problem, the existence of a positive C* solution of (16).
Of course we assume (17) and (18). According to Proposition 6.17, Lemma 6.18
and Theorem (6.19), the problem is reduced to find sufficient conditions so that

(28) v= lim vy <n(n - 2)w™ [4sup 11",
q—-)

Moreover, v is equal to 7 = inf of | V|2 for all
peA={peH/p>0,[feNdV=1}.

Let us prove by contradiction that v, has a limit when ¢ — N and that
v = . Consider a sequence v, with g; — N such that lim; o Vg, = v # 1.

We will prove.in 6.39 (see Corollary 6.40) that there exists a subsequence
{q;} of {gi} such that the sequence {ig,} converges uniformly on the set
K={z e M/f(x)<0}.

Moreover

a;/N 1-g;/N
/ fe¥dv < ( / fol dV) ( / de) .
M\Kk " M\K M\K

Thus, given € > 0, if g; is enough close to N

/ fgoév_dV>/ feZdV —¢ and '/ (cpf;j —gogj)dV‘<e.
Mk M\K K
This implies a}Y = [ fol dV > 1 — 2e. Hence

7 < Vg ll3a;2 = vga52 < (1 - )™ Ny,

We find 7 < (1 —&)"%Ny for any € > 0. So ¥ < v according to our
assumption.

In that case there exists a positive C° function u such that [ ful¥ dV =1
and || Vull? < v, for all g; > N —n (7 > 0 some real number). Now this is
impossible since

/fu‘“ av — 1 when g; — N.

Remark. We have always v < n(n — 2)w2/ ™ /4[sup f]'~%/™.

The proof is similar to that for the Yamabe problem. We take the standard
test-functions centered at a point where f is maximum. As results of existence
we have

6.22 Theorem (Escobar and Schoen [*129]). Suppose (M, g) of dimensionn > 3
is locally conformally flat with zero scalar curvature. Assume f(P) > O at a point
P, where the C™ function f attains its maximum. If all its derivatives of order
less than or equal to n — 3 vanish at P and if [ fdV < O, then f is the scalar
curvature of a conformal metric.
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When n = 3,4 the locally conformally flat assumption on M can be removed.
So, in these cases,the result is optimal.

We have the same result for the dimension n = 5, according to Bismuth
[*54B].

6.23 Theorem (Aubin-Hebey [*15]). Let f be a C™ function satisfying
JfdV < 0and supf > 0. If at a point P where f is maximum the Weyl
tensor is not zero, then f is the scalar curvature of a conformal metric in the
following cases:

whenn=6if Af(P)=0

when n > 6 if Af(P) =0 and |AAf(P)|/f(P) is small enough.

§4. The Positive Case when M is Compact

6.24 We write the equation in the metric which minimizes the Yamabe func-
tional: R = Const. > 0. When n > 3 we set R = (n — 2)R/4(n — 1). We have
to solve

(29) Ap+R= fe?, when n =2
30) Ap+Rp=foV"' v>0 when n > 3.

Since we deal with the sphere in §7 to 10 below, when n = 2 the manifold
is the projective space. If it comes from the unit sphere, R = 2 and its volume
V = 2n. If p € C™ satisfies (29) or (30), at a point P where f is maximum,
Ap(P) > 0 and we get f(P) > 0. The only necessary condition for f to be the
scalar curvature of a conformal metric is f is positive somewhere.

6.25 Theorem (M.S Berger [40] and J. Moser [*245]). On the projective space
Py(R), any f € C® withsup f > 0 is the scalar curvature of a conformal metric.

Proof. Define I(p) = §||Vol|[3+2 [ ¢dV and set A = inf I(p) for all

gaEA:{ueHl//fe“dV:l}, A#0.

Recall the following inequality:
For any € > 0 there exists C(¢) such that all ¢ € H, satisfy

@31) / &2V < oe)erp (e +1/16m)| Yl +(1/2) | «pdv].

Forue A, 1= [ fe*dV <supf [e*dV. Thus

(32) /udV > —(2me +1/8)|| V|3 — Const.
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This implies
(33) I(u) > (1/4 — 47€)||Vu|)3 — Const.

As ¢ is as small as one wants, A is finite. Let {u;} be a minimizing sequence.
From (33) we get || Vu;||2 < Const. since I(u;) — A when i — oo.

I(u;) < Const. and (32) imply | [ u;dV| < Const..

So |luil|g, < Const.. The method used many times yields a minimizer
¥ € H; for our variational problem. For this we use the compactness of the
map H; > p — e¥ € L;. Thus V¥ satisfies (29) weakly in H;. By a bootstrap
argument ¥ € C°,

Berger’s Problem is described in Chapter 5 (§8.8).

6.26 Proposition. When n > 3, if sup f > O there is a positive C* solution
©0q(2 < g < N) of the equation Ay + Rp = f?=1, 0 > 0.

Proof. By the variational method as for the Yamabe problem (see 5.5). Define
I(u) = | Vu|)3 + R||ul|2 and A, = inf I(u) for all

uGAq={<P€H1/<p20, /fw"dV=1}-

Ag # 0 since we have supposed sup f > 0. Consider {u;} a minimizing se-
quence. As I(u;) — Ag, {u;} is bounded in H;. A subsequence {u;} converges
to g weakly in Hj, strongly in L, (since ¢; < N) and a.e.. Hence, ¢4 > 0
satisfies weakly in H,

(34) Apg + Rog = Agfpl™t.
Moreover [ fp?dV =1 implies @, # 0 and A > 0.

According to the maximum principle, ¢4 > 0, and by the regularity theorems
pq € C.

6.27 Proposition. The variational problem, considered above, has a minimizer
g € C™. @, > 0 satisfies (34) and [ fo3dV = 1. The set of the functions @,
(q € [2,N]) is bounded in H,.

If X\ = infl(u) for all u € A = {¢ € Hi/p > 0,[foNdV = 1},
limg,y Aq = A Since Ay < Const. (see v, < Const. in Lemma 6.18),
llogllH, < Aq/inf(1, R) < Const.. The proof of the last assertion is in (6.21).

Then Theorem 6.19 implies:

6.28 Theorem (Aubin [14] p. 280). If
(35) A < n(n = 2)w2/™ J4sup f1 7" = A,

equation (30) has a C° solution which minimizes I(u) over A. Therefore f is
the scalar curvature of a conformal metric.
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With this theorem, the problem is reduced to finding a test-function ug sat-
isfying I(up) < A. As A < A, an asymptotic expansion can produce the desired
inequality.

6.29 Corollary (Aubin [14] p. 286). When f fdv >0 if

1-2/n
(36) / RdV < n(n — Dw¥™ [ / f(@)dV/ sup f] ,
f is the scalar curvature of a conformal metric.

Taking [[ fdV] N as test-function yields

A< I<[/deJ—]/N> = [/de} —Z/N(n—-Z)/RdV/d,(n -1).

Then applying (36) gives
A < n(n ~ 2w}/ [4fsup £ 7"

If A = A, the constant function is a minimizer, f is proportional to R.
Otherwise A < A and we can apply Theorem 6.28.

6.30 Theorem (Aubin [14] p.289). If (M,g’) is not conformal to the sphere
with the standard metric, there exists a constant k > 1 (which depends on the
manifold) such that any f € C* satisfying

(37 0 <sup f < kinff

is the scalar curvature of a conformal metric.

Proof. The hypothesis on (M, g') implies (see Aubin’s conjecture 5.11) that u
the inf of the Yamabe functional, achieved by the metric g € [¢'], satisfies:

u= RV¥™ < n(n — l)wf[‘.
Pick k = [n(n — 1)/RI™"=D(w, V)@=, (37) implies
[sup £/ inf f]' ™" < K'=¥" = n(n — D(wa/V)¥"/R

and

1-2/n 1-2/n
R[Vsupf//de] SR[‘:E?J{] < n(n - WV -E

which is inequality (36). The result follows from Corollary (6.29).

6.31 Theorem (Escobar-Schoen [*129)). Let f be a C* function with sup f > 0
on a compact riemannian manifold (M, g) not conformal to the sphere with the
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standard metric. Then f is the scalar curvature of a conformal metric whenn = 3.
The same conclusion holds for the locally conformally flat manifolds whenn > 4
if, at a point P where f is maximal, all its derivatives up to order n — 2 vanish.

When the manifold is locally conformally flat there exists a metric g’ which
is flat in a neighbourhood of P. Escobar—Schoen use the test-functions centered
at P that Schoen constructed for the Yamabe Problem. In the limited expansion
in 7 = d(P, Q), the first term after the constant A = n(n — 2)w?™ /4[sup f]'~¥/"
will be that with —a(P)( see 5.28, A = a(P)) if the function f is enough flat
at P. It is the reason of the hypothesis on the derivatives of f at P. This result
is improved by Hebey—Vaugon.

6.32 Theorem (Aubin—-Hebey [*15]). Define

W ={Q € M/|W;;xu(Q)| # 0}.

Let f be a C*™ function with sup f > 0. If at a point P where f attains its
maximum P € W and Af(P) = 0 and |Wxi(P)| # 0, then f is the scalar
curvature of a conformal metric when n = 6. When n > 7, the same conclusion

holds if in addition LAT%%,QL is small enough.

We use the test-functions (¢ + r2)'~™/2 of the original proof of the Yamabe
problem. When nn > 6 the first term after the constant A, in the limited expansion
in r = d(P, Q), will be that with —|W;;x;|? if Af(P) =0. When n > 7 a term
with |A2f(P)|/|f(P)| is of the same order of that with —|W;;x 2. We set
A'f=Af and A¥f = AAF1f for k > 1 entire.

6.33 Theorem (Hebey-Vaugon [*168]). Let f be a C*® function satisfying
supf > 0 and Af(P) = 0 at a point P where f is maximum.Then f is the
scalar curvature of a conformal metric when n = 4 or 5. When n > 6 we sup-
pose |Wijxi(P)| = 0. The same conclusion holds ifIAzf(P)l =0, whenn==6or
7, and when n = 8 if in addition |VWi;xi(P)| # 0 or A’ f(P) = 0.

When n > 8 the same conclusion holds if |VWi;x(P)| # 0, A% f(P) =0
and A} f(P) = 0, or when |VWijxi(P)| = 0 if |V*Wixi(P)| # 0, A2f(P) = 0,
A3 f(P) = 0 and A*f(P) = 0, or when all derivatives of Wijki vanish at P if
A*f(P) = 0 for all k satisfying 1 <k<n/2 - 1.

For other results when |V2W;;5;| = 0 and VW, ki (P)| # 0 for some k > 2
see [*168]. For the proof they use their test-functions (see 5.50) and the positive
mass theorem. From Theorems 6.32 and 6.33 we get

6.34 Corollary. When n > 4, the set of the functions which are the scalar curva-
ture of some conformal metric is C' dense in the set of the C™® functions which
are positive somewhere.



§4. The Positive Case when M is Compact 213

Given f € C* with sup f > 0, for any € > 0 there exists f satisfying
If = fllcr <&, supf=supfand f=supf in a neighbourhood V of P a point
where f(P) = sup f. At a point Q € V we can apply Theorem 6.32 if (M, g) is
not locally conformally flat at P. Otherwise we can apply theorem 6.33.

6.35 Remark. All the results obtained are proved by using Theorem 6.28: Find
sufficient conditions which imply that A, the inf of the functional, is smaller
than A. When the function f is neither close to the constant function nor flat
enough at a point where f attains its maximum, we suspect that A = A and
that there is no minimizer. In this case we must use other methods (those used
for the Nirenberg problem), for instance the method of isometry-concentration
(Hebey's method) studied in the next paragraph or algebraic-topology methods
(Bahri—Coron’s method) studied in Chapter 5 (see 5.78). With this method, we
can prove many results of the following type:

Theorem 6.35 (Aubin—Bahri [*11]). On a compact manifold (M,,, g), of dimen-
sionn > 4, let f be a C* function with only non-degenerate critical point

Yoo Y1, - Yk -
We suppose Af(y;) >0for0<i <!, Af(y;) <0forl<j<kand

fo) = ... 2 fly) > flyer) = ... > flyk).

Let Z be a pseudo-gradient for f which has the Morse—Smale property. For
this pseudo-gradient we define X = U;<iW,(y;), where W,(y;) is the stable
manifold of y;. Assume X is non-contractible, but contractible in K¢ for some
positive real number ¢ < f(y;). There exists a constant ¢y independent of f such
that if f(yo)/c < 1+ cq then f is the scalar curvature of some metric conformal
to g.

Here K¢ = {z € M/f(z) > ¢} . The constant ¢, is of the order of 1. Let
us remark that we do not assume that f is positive everywhere. On the sphere
(Sn;90), this theorem can be seen as a generalization of Chang and Yang’s
theorem (see 6.81). In [*7] Aubin—-Bahri generalized this result.

For compact manifolds of dimension four, (the sphere (Ss, go) included), Ben
Ayed-Chtioui-Hammami (E.N.L.T. of Tunis) and Y. Chen (Rutgers University)
obtained a nice result in [*34]. It is not a generalisation of the Bahri—-Coron
Theorem 6.87. The result is of a new type and the proof technically still more
difficult. The hypothesis is different, although it is of the same kind.
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§5. The Method of Isometry-Concentration

5.1. The Problem

6.36 Let (M,,, g) be any compact C°° riemannian manifold of dimension n > 3
and scalar curvature R > 0. The manifold may have a smooth boundary OM.
We consider a group of isometries G, which can be reduced to the identity.
Given f a G-invariant C*° function on M, the problem is: Find a G-invariant
metric ¢’ conformal to g such that the scalar curvature R’ = f.
More precisely we want to find a G-invariant C* solution of the equation

(38) . Dp+Rep=foN7l p>o0.

When OM # 0, p must vanish on the boundary. Here R = ‘f(’;"_zl))R and
N = nz—fi Of course we suppose that f satisfies the necessary condition: f
positive somewhere (see 6.24) and when R = 0 with OM = ( the second
necessary condition [ fdV < 0 (see 6.15).

6.37 We rewrite the proofs of (6.17) and (6.26) with G-invariant functions. So
there exists for any ¢ € [2, N[ a G-invariant function ¢, > 0 satisfying for any
¥ G-invariant:

/ ©(AY + RY)dV = p, / fed~'way,

where p, = infI(yp) for all
peE A= {u € Icil/u >0, u G-invariant, /fu"dV = 1}.

Recall I(p) = [ |Vp|*dV + [ Rp?dV.
When R # 0, A+ R is invertible. Let ¥, be the solution of the equation
AW, + R, = pofi™".

As the right hand side is G-invariant, the equation has a G-invariant solution.
So we have for all G-invariant functions ¥

/ (pq — YA + RU)dV = 0.

Pick ¥ = ¢, — ¥, we find ¢, = ¥,. Thus ¢, is a positive C*° function
satisfying

(39) Apg+ Rog = pofpd™" and / feoldV =1.

When R = 0, the proof is similar and ¢, satisfies (39). The set {¢,} ¢ €
[2, N[ is bounded in H, this is already proved in (6.18) when R = 0. Indeed as f
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is G-invariant, f* = sup(f, 0) is G-invariant. Soy = f*[[(f*)""'av] " € A4,
thus

Ha I(y)/inf(1, R) < Const. .

lpallm < Tpa)/infll, By = o P <

Rewritting the proof of Theorem (6.19), there exists a sequence ¢; — N
such that either ¢4, converges in L, to a G-invariant positive C'* solution of
(38) or ¢4, — 0 in L, and almost everywhere.

In this case ¢,, — 0 in all L, with ¢ < N. Indeed as {gaq,.} is bounded
in Hj, it is bounded in Ly and the result follows from the inequality (when
2<qg< N).

. (N-q)/(N=2) (g-2)/(N -2)
/gp; dv < (/Lpg‘ dV) (/cpgf dV) .

We will study such a sequence.

6.38 Definition. P is a point of concentration for the sequence {¢,, } which is
supposed tending to zero a.e. and in L, for all ¢ < N, if forany 6 >0

(40) lim / fe¥dvV > 0.
—N s P

We take a subsequence for which (40) holds in case we only have that the
limsup of the integral in (40) is positive. As there is only a finite number of
points of concentration (see below), without loss of generality we suppose that
either the limit of the integral is zero or (40) holds.

Remark. Let us consider a sequence of C* functions u; > 0 which satisfy
[ fulldv =1 and

(39b) Au; + Ru; — uifufv_l =w;

with w; = 0in H_; and v; — v > 0 when 1 — oo.

Assume the sequence {u;} tends to zero a.e. and in L,. Thus u, — 0 in L,
forany ¢ < N.

For such a sequence, P is a point of concentration if for any 6 > 0

(40b) lim / ful dv > 0.
B(P,6)

1—00
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5.2. Study of the Sequence {ig; }

6.39 Theorem. Suppose the C™ positive functions ¢,;(q; — N) satisfy (39)
and are uniformly bounded in H,. There exist €g > 0 and &y > 0 such that if
fB(P,&) fz,og; dV < g for all q; and all § < 6, then we can exhibit a subse-
quence {pq,} of {pq,} so that {g, } converges to zero in C™(r > 0 given) on
a neighbourhood of P.

Proof. Multiply (39), with ¢, = ¢, by 1 and integrate. k > 1 is a real
number, and n > 0 a C'* function with support in B(P,6), is equal to | on
B(P,6/2).

For simplicity we drop the subscript g;. The first term is

2, ,2k—1
SOQ.'

(41) /n2<p2k"lAgo dV =2k - 1)/n2<p2’=-21w|2dv
+2/17<p2k"V"nV¢cpdV.

When we compute [ |V(n¢*)|2dV we find the first term in the right hand
side of (41):
k2
2k -1

(42) /lv(n(pk)|2 dV = [”/fn2w2k+q—2 dVv — /Rn2w2k dv
1 - )
* / VimVin)p* dV] + / |V av —2 / VinVin)e™ dv.

At first suppose f(P) > 0. We pick 6 so that f is positive on B(P,$).
Applying the Holder inequality gives

1-2/q 2
43) /fcpqnch“'z dV < (/ f? dV) (/ f(pqnq(p(k—l)q dV>
B(P,5)
- 2
< ey sup £)me)2.
B(P,6)

Recall that for any C > K?(n,2) = 4w;2/n/n(n — 2), there exists A(C)
such that

(44) Ine*i3 < ClIV@nI3 + AC)Ine*|3.
Using (43) and (44) in C times (42) yields
k2 -2 2 11
(45) lInek, “%/(1 ~ 55 —1CFaco "(supf)u v T’))

< Const. / @2k dV

since [|7* 2 < k|| V241N,
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We suppose g; close to N, for instance 2 +2/(n — 2) < ¢; < N. Then, it is
possible to choose €y small enough so that the left hand side in (45) is positive
for some ko > 1 +n/2. g is independent of P and g; since

0 < g, < sup(l, B)|jp, ﬁ,l < Const. .

For k < ko (45) gives |[nefk |3 < Const. [ 2% dV.
As |l@q; |1, < Const., by the Sobolev Theorem ||, | < Const.. Choose

2k =N, we find ||17cpf;f/2|lN < Const..
Then pick k = (N/2)! with | = 2,3,... until (N/2)l >1+n/2. lfp<éb/2
is small enough, we obtain

n-2

(46) / @b dV < Const. for some p > M2
B(P,2p)

Using the properties of the Green function of A + R:
Voo @)l < i, [ 19,6020 /@leg ' @ V)

(qu:—l(m) |
< Const. / % AVi(z) + x_n/ q‘.—ldV]
[ B(y.p) [d(y, )]~} @) +p %

< Const.

since the integral on B(y, p) is smaller than Const. fB(P,Zp) ©p, dV which is
bounded by virtue of (46).

Then we obtain a uniform estimate of the functions ¢,, in C™' near P
(Theorem 4.40). Thus a subsequence of {¢g, } converges uniformly in C™ on a
neighbourhood of P.

Now if f(P) < 0 we pick § so that f is negative on B(P,§). From (42) and
(44) we get immediately:

Ingh I < Const. [ 2 av
where the constant does not depend on k > 1. The proof continues as above.

If f(P) =0, for any £ > O there exists a ball B(P,§) such that f < & on
B(P,6). In (42) we write f < £. The Holder inequality (43) without f yields

/nzsof,f*"‘_2 dV < Blingk |1k

where B is a constant since ||¢g; |lq, < Const. ||@q,||#, which is bounded. Thus
instead of (45) we obtain:

“U‘PZ.. In(1 = K22k — 1) Cpuq,6B) < Const. /cpgk dv.

As we can choose € as small as one wants the proof is completed just as
above.
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Corollary 6.39. Let {u;} be as in Remark 6.38. There exist €y > 0 and 8, > 0
such that if fB(P,&) fuf" dV < g for all u; and all § < 8y, then there is a
subsequence {u;} of {w;}, so that u; — 0 in Ly on a neighbourhood of P.

The proof is similar. ||nu¥| g, < Const. implies by the Kondrakov Theorem
that a subsequence {u¥} converges in L/« on a neighbourhood of P. The limit
may be only zero since u; — 0 a.e.

6.40 Corollary. Let h, f be C*™ functions and 0 < p; < Const.. Assume the
C® positive functions ¢; satisfy Ap; + hep; = ;Ljfgogj—l, 2 < g; < N. Define
K = {z € M/f(zx) < 0}

If the set {p;} is bounded in H,, then there is a subsequence of {,;} which
converges in C™ (r > 0 given) on a neighbourhood of K.

5.3. The Points of Concentration

6.41 Proposition. Assume P is a point of concentration for the sequence of
functions @, satisfying (39), ||, ||, < Const. and the conditions of Definition
6.38, then forany 6 > 0

47) lim fegidV > &.
=N JB(p, &)

Assume there exists some §g > O for which

lim fe%dV < &
%N JB(P,6y)

Therefore there exists §o < N such that [ BPooy [P AV <o if i > Qo

Since g, — 0 almost everywhere when ¢; — N, ¢,, — 0 uniformly on a
neighbourhood of K = {z € M/f(z) < 0}, according to the end of the proof of
(6.39). Thus there exists §; < N such that [ Bp.sy fP4 AV < o forall 6 < &
ifgi > q.

Then we can apply Theorem 6.39,

lim fpdidV =0
a—N Jpps "

and P is not a point of concentration.

6.42 Proposition. The set & of the points of concentration is finite and non-
empty: 8 = {P\,P,,..., Pn}. A subsequence of {ig,} tends to zero in Cy,
(r>0onM-8.

Moreover f(Pj) > 0 for all j.
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Proof. Let P be a point of concentration. If f(P) = 0, pick § > 0 so that
f(Q) < mon B(P,6). n > 0 will be chosen small enough in order to get a
contradiction. We can write

[ sepavsa [  ogav<alens
B(P,6) B(P,6)

< nConst. [|pg,|3, < nC

with C a constant. Choose 7 < €y/C, by (47) P cannot be a point of concen-
tration.

If f(P) < 0O the proof is simpler, in this case we have only to choose 6 so
that f is negative on B(P, §).

According to Theorem 6.39 if P € M — &, a subsequence of {¢,, } tends
to zero in C” on a neighbourhood of P.

Since M has a denumberable basis of neighbourhoods, after taking subse-
quences, we can find a subsequence of {¢,,} which tends to zero in C}. o
M — &. Hence we find again

(48) fegidV =0 when ¢; — N.
<0
For simplicity we write all subsequence {(q, }.
Consider m points of concentration P;(j = 1,2,...,m) and choose § small
enough so that the balls B(P;, §) are disjoint. Applying (48) together with Propo-
sition 6.41 gives

1=/f¢q- av > Jim }:/B fe% dV > me.

(Pj,6)

Thus, there are at most 1/¢y points of concentration, & is finite and £ # (
since

(49) lim }:/BP ) fohidV =1.
(Pj,6)

Remark. The sequence {u;}, introduced in Remark 6.38, satisfies Proposition
6.42 except there is a subsequence {u;} which tends to zero in Lyjoc on M — &
(see Corollary 6.39). Indeed we know only that w; — O in H_;.

6.43 Proposition. Assume P is a point of concentration (see definition 6.38) for
the sequence of functions g, such that ., — 0 in Cl.on M — @.

Then, in the sense of measures on a neighbourhood Q) of P such that Q C
M- &+ {P}

@l — [I/f(P))6p and [Vig|* — lubp

where ju = limg, N g, and | = limg; . n [, fod dv.
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Proof. Let h be a continuous function with supp h C 2 and B = B(P, é) C Q.

. h(P) . |
ho® dV — 2L % qV
’./n Yo f(p) chqu

< [ Ihlgg v +sup sl — KPS/ F(P) [ oV
-B
llpq, ||, < Const. thus [ g3 dV < Co some constant. Given ¢ > 0, we

choose § small enough so that supg |h — h(P)f/f(P)| < 3&;.
Then, there exists § < N such that

|h(P)] / a ‘ € / £
{4 idV -1l < - and hlo¥ dV < =
FP) | /g% 3 n~B| i 3

for g; > §. So | [, hwg; dV — Ih(P)/f(P)| <e.
For the proof of the second assertion we suppose h € C2.

/hV”(,aquucqu dV:/ hoq, By, dV—/cpﬁjAth/Z
Q Q Q
= Uy, / hfpd dV — / (hR+Ah/2)0% dV.
Q Q

So
limN/ hVY9q;Viipg; AV = ulh(P).
j Q

9~

Because the C? functions are dense in C°, the proof is complete.

Corollary. Assume P is a point of concentration for the sequence of functions
u; introduced in Remark 6.38. Consider a subsequence {u;} such that u; — 0
in Lo (see Remark 6.42).

Then in the sense of measures on a neighbourhood Q of P with Q C M —
& + { P} we have: u;.V — [/ f(P))6p and |Vu;|* — lwép where

l= lim [ fu}dV.

170 Ja

6.44 Proposition. If P is a point of concentration for the sequence of functions
g, satisfying (39), P is a critical point of f(i.e. |V f(P)| = 0) when P ¢ OM.
When P € OM the result holds if 8, f(P) > 0.

This result was proved by Bahri-Coron [*26] and very easily by Hebey
[*162] on the sphere by using the conditions of Kazdan and Warner (see 6.67).

In fact this is a general result, that we prove below, assuming P ¢ OM
when OM # . But in most cases, it appears that a point of &M cannot be a
point of concentration (for instance when 8, f(P) > 0).
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Let ¥ be a C*° function, with support in a neighbourhood  of P, such that

0;¥(P) = 0, f(P) and 0,;¥(P) =0 for all i, j in a system of normal coordinates
at P. From (39) and an integration by parts we obtain

(50) / PV FV, U dV
=/f<pg;A\p dV—qj/fgogj'"V,,\IlV”cqu av
- / FoU AT AV — (g;/ig,) / Ape, VUV, dV
+(/20,) [ 049" (RV, ) aV
Integrating again by parts gives
(51) / Ao, V, UV 0, dV
- / V00, Y, UV, dV + / Vg, ¥, UV g, dV

1
-1 / Vo, PAT 4V + / Vg, V0V g, dV.

According to Proposition 6.43 and taking in account the properties of ¥ at
P we get

UVFP)/f(P)= 1imN/gog;jV"fV,\pdV=0
q;—

indeed the limit of each term in the right hand side of (51), then of (50), is zero.

Integrating by parts (50) is valid if P € M # @ since g [apr = 0. But
the right hand side of (51) contains an additional term -3 [,, |Vi|*6,¥do.
Thus this computation yields only 0, f(P) > 0, where 0, means the normal
derivative oriented to the outside.

Corollary 6.44. If P is a point of concentration for the sequence of functions u;
introduced in Remark 6.38, P is a critical point of f.

5.4. Consequences

6.45 From Proposition 6.42 we get immediatly some consequences.

Examples. Consider the unit ball B C R™(n > 3) endowed with the euclidean
metric. If f is a C* radial function positive somewhere with f(0) < 0, equation
(38) with zero Dirichlet condition (¢|sp = 0) has a C* solution.

Indeed a sequence { g, } of radial functions cannot have point of concentra-
tion. 0 is not possible since f(0) < 0. The same is true for other points P of B,
otherwise all the points of the sphere centered at 0 with radius r = d(0, P) would
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be points of concentration which is impossible since the points of concentration
are isolated.

Likewise equation (38) on the sphere S,, with the standard metric has a C™
positive solution if the C™ function f, positive at some point, depends only on
the distance to a point P € S, and if f(P) < 0 and f(P) < 0 where P is the
antipodal point to P.

These results will be improved below.

6.46 Lemma. Assume P is a point of concentration for the sequence of functions
\pq; satisfying (39) with p =lim y,, when q; — N. Then

2N ' ‘ 2/n
(52) (fP)]" p| lim / feldv| > p,
—N JB(Ps)

q; —

where iy = K~(n,2) = n(n — 2)wa/ " /4.

For simplicity write B for B(P,é). Pick § > 0 so that B C M — &.

For § < &y we saw that lim [ fogi dV when ¢; — N does not depend on
6. Set this limit equals to [.

Return to the proof of Theorem 6.39. If

(53) (u/p)FPNYN < 1,

it is possible to use inequality (45) for some k(! is defined in 6.43).
Indeed we can choose C near 1/p4, 6§ small enough and j large enough so

that
a ]1—2/qj

Clig, [/ fodv (supf)z/qj <ac<l.
B B

Thus for some a > 0 and some p < §

(54) / <pf;’.+°‘ dV < Const. for all g; large enough.
B(Pp)

Using the Holder inequality, for any open set 8 with § C M — & + {P}

q;/N
(55) Const. (/ <p;’;: dV) > /gog;ﬁ avV - 1/ f(P)>0
6 9

according to Proposition (6.43) and

2
oo (fa) <(faa)([erw)
0 0 [/

Pick 8 = B(P, p), (54) and (55) together with (56) imply
s N-a
l;:rl}]rbffo Py, AV > 0.

This contradicts a property of {¢g,} (see the end of (6.37)), {pg,} or a
subsequence converges to zero in Ln_o.
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6.47 Proposition. Assume P is a point of concentration. Then
57 plFPN' 7Y™ > pg[Card O(P)Y™
where O(P) is the orbit of P under G and p = liminfy, N ..

Proof. Set k = Card O(P). There are at least k points of concentration P; which
are the points of O(P). Choose § small enough so that the balls B(P;, ) are
disjoint and without other point of concentration. We have

k
lim / fo%dV < lim /fcp‘ﬁdV:l
“QN;; BRI a—NJ T

since gy, — O uniformly on a neighbourhood of the set K of the points where
f £0 (Corollary 6.40). Put in (52) the inequality

lim / fo%dV < 1/k
=N JBpj,6)

we get (57).
So we have proved the
6.48 Theorem. The equation (38) has a G-invariant C™ positive solution if

(38) f(P) < [Card O(P))/ ™= D[y [/ =2

at any critical point P of f satisfying the necessary condition: f is positive
somewhere, and in the case R = 0, M without boundary, the second necessary
condition [ fdV <O0.

Recall p = inf I(¢p) for all
peEA= {u € Iffl/u >0,u G-invariant,/fuNde 1}

where I() = ||Vel||3 + [ Rp?*dV. Moreover p = lim juy; when ¢; — N. The
proof is written up in (6.21). O(P) is the orbit of P under G. u, = K ~%(n,2).
We will see, in §6 through 10, some applications of this theorem of Hebey.

5.5. Blow-up at a Point of Concentration

6.49 Assume P is a point of concentration for the sequence y,, which is sup-
posed tending to zero a.e. and in L, for all ¢ < N. ¢, satisfies (39), pq, — p
when ¢g; — N. So we suppose for all § > 0,

lim / @I dV > € > 0.
a—N Jpp,s)

Let 6; > 0 with §; < §/2 be a sequence tending to zero.



224 6. Prescribed Scalar Curvature

After passing to a subsequence, if necessary, we can suppose that ¢g, < n
on B(P,8) — Bp(é;) for some small constant 1) > 0 and all 4, since {(,, } tends
to zero in C{(r > 0) on M — & (Proposition 6.42). Our hypothesis implies
that m; = sup p,, on B(P,6;) tends to + oo when i — oo. Pick z; € B(P, ;) a
point where m; = g, (2;). Consider {z’} a system of normal coordinates at P
with z7(P) = 0. Set

1 ) .
(59) vi(y) = ;kpq,(zi +m; y) with o; =¢;/2 - 1.

y € By, the ball in R™ of radius k; = ém* /2.

Fix k large in N. For k; > k let us prove that the functions v; are bounded
in H,(By), Bi being endowed with the euclidean metric.

On B(P, 6) there exists A > 1 such that

A~ Z(ﬁj)z < gik€€F <A Z(Ej)z, for any vector &.
j=1 =1

We have 0 < v; < 1 thus ka v?dV < Const.. Moreover

Ov; dv; Do — 2 Oy, O¢
aﬁ____l___l_ dg (n 2o 2,\“’1’ / aff g T¥qi A% < C
/Bk € dy= oyP 9 Bz Bzh

some constant, since (n — 2)a; — 2= (n — 2)g;/2 —n < 0. Here gob = 6% and
d€ is the euclidean measure.

6.50 After passing to a subsequence if necessary, using the Banach Theorem,
we can suppose without loss of generality that:

(60) v S w weakly in H;(By) for any large k € N.

Let us seek the equation satisfied by w on R™.
Let ¥ € D(By) and set ¥;(z) =¥ [mf‘"(m - zi)] whose support is included
in B(z;,km; *') C B(P,6) since i is large enough. Since

8., 0F; _
/g"‘ﬁ af;:: ZdV+ /R% B, dv = uq,/ﬂp% g, 4V

in coordinates y* we get

ov; 0¥
2a; aﬁ i
(61) m; By aya\/’g dy+/sz\I'\/|g dy
= mf g, [ ol dy.
Now there exists a constant Cy such that

|(9°7V/1g] = €%)¢ats| < CollyllPmy** €| < Cok?my ¢
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for all vectors (|| || is the euclidean norm) and
|£V/lgl = 1P| < Collyllm =,
These two inequalities suggest writting (61) in the form:
[ g o= [t vy
= /(8"" “ﬁf—)gv‘ 38; y — m; /Rv,qf\/ﬁdy
it [ (VG- SR 0y,

Where the right hand side tends to zero when ¢ — oo. Since v; — w weakly
in Hy(By) and pg, — u, we get

Ow 0¥
[ s du = ut®) [y =0

That is, w satisfies weakly in H; on R™:
(62) Z ]w+,uf(P)wN =0,

The functions {v;} for i large satisfies an equation E; on By. The equations
E; are uniformly elliptic, the coefficients in the left hand side and in the right
hand side are bounded. Thus according to Theorem 4.40, there exist 8 and k,
such that ||v||cs(p,) < ko. By Ascoli’s theorem, {v;} or some subsequence

tends uniformly on any compact set. This implies that w is non trivial since
w(0) = 1. Moreover w € C* by the regularity theorems.

6.51 When w is maximum in y=0, which is the case here, we claim that all
positive solutions of (62) are of the form C2(1+ ||y||*/e)' =™/ with € > 0 a real
number. As w(0) = 1 the solution of (62) is

(63) wp=14+|yl*/e)!"™*  with € =n(n-2)/uf(P).

Indeed as equation (62) is radial symmetric, according to Gidas, Ni and
Nirenberg [*140], the positive solution is radial symmetric: w = h(r). Thus
h(r) satisfies a second order equation, so by the Cauchy Theorem the solutions
depend on two constants h(0) and h’(0). Now in our problem A(0) = 1 and
h'(0) = 0. Hence (62) has only one radial solution which achieves its maximum
1 at y = 0. We can verify that this solution is wp given in (63).
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6.52 According to Bliss (Lemma 2.19), w is a minimizer for the Yamabe func-
tional. Thus

-2/N
(64) /le|2 dy (/dey) = K™(n,2) = p,.
Using (62) yields
2/n
(65) (/ wh dy> = ps/pf(P).
Furthermore
lim / fod dV = lim m® e / o2 /Tgldy.
1= J B(P,é) 1o By,

As g;i—na; = ¢;(1 —%)+n > 0 and since v; — wp uniformly on all compact
set

(66) f(P) / wh dy < lim / folidv.
1— 00 B(P,é)
Now (g4, — 0 uniformly on any compact set included in V' — & thus
(67) lim / folidv =1.
i }é B(Ps

if 6 is chosen small enough so that the balls B(P;, §) are disjoint.
From (66) and (67) we get zpeaf(P)fw}’;’ dy < 1.
Applying (65) yields

6.53 Theorem. Let & be the set of the points of concentration. Then

(68) S @) T < w/pm

Pe®

See (6.48) to recall the definitions.
Inequality (68) is valid for the sequence {ui} introduced in 6.38 with = v.
For p = Inf yea [(|Vp|? + Re?) dV with

A={tp€l§'1/cp G~invariant,/f|<p|NdV=1},

we can prove that actually & is the orbit of some point P (& = O(P)). In that
case (68) is not other than (57).

On the one hand, considering in the functional the test functions ux =
> ocop) Yk(rQ), where 7q is the distance to Q and Wy is defined in 521
with 26 smaller than the distance of two points in O(P), we get

1-2/N [f(P)]

i < s [Card O(P)] e
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On the other (52) implies

2
n

[f(P)]’%’u<q}iLn Q%:P /B o fol dV>" > ps[Card O(P)] ™.
cop) ' BQ:

If & # O(P), limg,—.n S geor) Jpg.s f94 4V < 1= [ fof, dV and the
inequalities above yield a contradiction.

Example. In the Yamabe Problem f(P) = 1. If u < p,, & = () according to (68).
There is no point of concentration, @,, cannot tend to zero almost everywhere,
thus the Yamabe Problem has a solution.

When p = p; we are on the sphere, where there exist sequences {uj} of
solutions of (38) with f = 1 such that u; — 0 a.e. and there is one point of
concentration. See the proof of the Yamabe Problem in [*118] where R. Dong
uses the idea above.

§6. The Problem on Other Manifolds

6.1. On Complete Non-compact Manifolds

6.54 On R™(n > 3) endowed with the euclidean metric £, the equation to solve
reduces to

(69) Au=fu¥7l w>0  with A=-37 i

There are many results on this equation and also on the more general equation
in (R™, &):

(70) Au = fuP, u>0 with p > 1.

Theorem 6.54 (Ni [*256])). Let z = (z1, 1) € R* x R*™3. If [f(z)| < C|z:| for
some | < =2, uniformly in x, when £, — oo, then equation (70) has infinitely
many bounded positive solutions which are bounded below by positive constants.

If f(z) < 0and |f(z)| > Clz|' at oo for some | > —2, equation (69) does
not have positive solution.

If we seek solutions of (70) in Hj, of course f must be positive somewhere
since f ful dz > 0. There is another nonexistence result proved by using the
Pohozaev identity in Li and Ni [*212]. In [*256] the asymptotic behavior of
radial solutions of (70) is studied in case f is radially symmetrical and decaies
at infinity.

Bianchi and Egnell (in {*52]) seek radial solutions of (69) satisfying u(x) =
0(|z|>~™) as z — oo. They have results of existence and nonexistence, that
we can compare with those of 4.32. Indeed when u satisfies the preceding
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assumption at infinity, the problem is similar to the Nirenberg problem on the
sphere.

When u is bounded from below by some positive constant (as in the Theorem
above), we are guaranted that the conformal metric is complete. In [*77] A,
Chajub-Simon proves some existence results of solutions of (69) such that u — |
belong to some weighted Sobolev spaces.

In [*213] Yan-Yan Li studies equation (69) on R3, especially when fis
periodic in one of its variables. For more results see the articles in references
an their bibliographies.

On a manifold which is not (R™, £), let us mention the two following results.

6.55 Ratto, Rigoli and Veron [*272] studied the problem of prescribed scalar
curvature on the hyperbolic space (Hy, g) of sectional curvature —1. Let B be
the unit ball in R™ endowed with the Poincaré metric gy = 4(1 — |z]?)72€.
Given K € C®(B), they seek a complete metric conformal to gy whose scalar
curvature is K. Among results of existence and non-existence they prove the
following

Theorem 6.55. Let a(r) ba a nondecreasing positive function on [0, 1[ satisfying
Jy a(r) dr < oo. If for some § €)0,1], —a?(|z|) < K(z) < O when 1 —§ <
|z| < 1, then there exists o > 0 such that if K(z) < o in B, K(z) is the scalar
curvature of a metric conformal to gy. The metric is complete if in addition

-1

1 1
/ (/ a(s) ds) dr = +00.
0 T

6.56 Theorem (Le Gluher [*209]). Let (M, g) be a complete Riemannian man-
ifold (n > 3) with injectivity radius § > 0, bounded curvature and I(p) coer-
cice on H,. Given f a C* function on M, positive somewhere and satisfying
lim sup f(z) < 0 at infinity, then equation (2) has a C*® positive solution in H,

if
. . 2/n ~2/N
an Jnf, I(p) < ps inf {[Card 0@)"(f(@)1™" }

f is supposed to be invariant under G a group of isometries of (M, g) which
can be reduced to the identity.

A= {cp € Hy, ¢ G-invariant, ¢ > 0//fcpN aVv = ]}‘
K={zeM/f(z)>0 and |Vf(z) =0}.
Ls is defined in 6.46 and 1(p) = [(|Vp[? + Ry?) dV.

The proof uses the method of Bahri—Coron.
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6.2. On Compact Manifolds with Boundary

6.57 Let 2 be a bounded domain of R™ (n > 3) with C* boundary. We consider
the following equation:

(72) Au+a(u= fz)u¥™', ©w>0o0n Q, u(z)=0 on 0.

a(z) > 0, f(z) are given functions in C*°() and A= -y 7, ——;(g;f‘) :

If f <0 on §, equation (72) has no solution. Indeed multiplying (72) by «
and integrating yield [, f(z)u" dz > 0.

According to Kazdan and Warner, equation (72) has also no solution, when
Q is star-shaped with respect to O, if

da af

73 _> > — < .
(73) 6r‘0’ f>0 and BT”OOHQ

This result is an improvement of Pohozahev’s identity below. If a = Const.
and f = 1, conditions (73) are satisfied and we get Corollary 6.58.

6.58 Pohozahev identity [*267]. Let §2 be a star-shaped open set of R™ with
990 differentiable. f being a continuous function on R, we set Fi(v) = fov f@)at.
If u € C(Q) satisfies Au = f(u) on £, u/0Q =0, then
(74) (1-n/2) / uf(u)dz+n / F(u)dz = ! 8,h(8,u)do
Q 0 2 Joa

where h(z) = ||z||*/2, A= ~3,., i and 8, denotes the outer normal deriva-
tive on 0N.

For the proof we compute A= [, V{(V?hV uV;u)dz in two different ways.
At first A= [, VAV ud,udo = [,, 8,h(d,u)’do since u/dQ = 0. Then, as
Vih=6/, A= [VuViudz+ L [VIAV;|Vu2dz - [ VIhV;uf(u)do, and
(74) follows after integrating by parts.

Corollary 6.58. On ) a star-shaped open set of R™ with O differentiable, the
equation Au=uN"', u>00nQ, u/0 = 0 has no solution.

As Q is star-shaped 9,h > 0. So the right hand side of (74) is strictly positive
since 8,u > 0 on O according to the Maximum Principle (see Chapter 3, §8).
But this is impossible, since the left hand side of (74) is zero when f(u) = w1t

6.59 Let G be a group of isometries of (€2,£). We suppose a(z) and f(z) are
G-invariant. Let’s denote the orbit of x € §2 by O(x) = {o(z),o € G} and
consider the functional

I(v)=/|Vv|2d$+/a(x)v2dx.
] Q
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We define u(G) = infI(v) for v € AG) = {v € Hi(®), v > 0, v G-invariant
and [, f(zy" dz =1}.

Theorem 6.59 (Hebey [*163]). Let & = {:c € Q/f(a:) > 0and |Vf(z)| = ()}.
Equation (72) has a smooth solution if

WG [f@)' ™ < ps[Card O@)]'™ forall z € ®.

The proof uses the method of isometry-concentration.

Corollary 6.59 (Hebey [*163]). When Q is a ball in R™(n > 4), a(z) and f(x)
are radial functions, equation (72) has a smooth solution if f(0) < 0. The same
conclusion holds when f(0) > O, if

(n—2)(n —4)Af(0)+8(n — 1)a(0)f(0) < 0.

6.60 On a smooth compact orientable Riemannian manifold (M,,, g) with bound-
ary, the Cherrier Problem consists in finding g’ conformal to g such that the
scalar curvature of (M,,g’) and the mean curvature of M in (M,,g’') are
given functions. The equation to solve is equation (2) (resp.(1) when n = 2)
with non-linear Neumann boundary condition.

We studied this problem in Chapter 5.

§7. The Nirenberg Problem

6.61 In 1969-70 Nirenberg posed the following problem: Given a (positive)
smooth function f on (S, go) (“close” to the constant function, if we want), is
it the scalar curvature of a metric g conformal to gy (go is the standard metric
whose sectional curvature is 1).

Recall that if we write ¢ in the form g = e¥go, the problem is equivalent to
solving the equation '

(75) Ap+2 = fe®.

Since the radius (1/c) of the sphere is chosen equal to 1, the scalar curvature
R=2a%=2.

Consider the operator I' : ¢ — ™% (A +2). It is well known that the dif-
ferential of " at o = 0, D'y, (¥) = A¥ — 2V is not invertible. The kernel of
DU, is the three dimensional eigenspace corresponding to the first non zero
eigenvalue of A. Indeed the functions cosr, where r is the distance to a given
point of .S,, satisfy

Acost = —(cost)"’ — cotgr(cosr) =2cosT.

Or if we consider S; C R3, the traces of the coordinates z* (i = I,2,3)
satisfy Az = 2zt
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6.62 The same problem can be posed on (Sy, go) with n > 2. Given f a smooth
function on (S, go), is it the scalar curvature function of a conformal metric g

to go.
If we write g on the form g = ¢*™~2g, the problem is equivalent to
exhibiting a positive solution of the equation

-1
(76) 47—1——2A(p +n(n ~ 1) = fn*D/ (=2
As before the differential of the operator

[:p— /-2 4-———2 ~ ;Ago +n(n - 1)y

is not invertible at ¢, = 1, and the kernel of
- n-—1
dl"w (\I’) = 4-11——-——2‘[A\I/ - TL\I’]

is the n+1 dimensional eigenspace corresponding to the first non zero eigenvalue
of A.

§8. First Results

6.63 Let us try to solve the Nirenberg problem by a variational method. We
consider the functional

(7 I(p) = / [Vol2dV +4 / edV

and the constraint [ fe¥ dV = 8w, where 47 is the volume of (S, go). Set
v=inflI(p) for p € A={p € Hy/ [ fe¥* dV =8r}.

First we have to prove that if ¢ € H;, e¥ is integrable, and for the sequel,
that the mapping H, 3 ¢ — e¥ € L; is compact (see Theorem 2.46).

So if f is positive somewhere .A is non empty.

Then we must see if v is finite. For this we need an inequality of the type
(see 2.46 and Theorem 2.51):

(78) / e? dV < C(u)exp [ﬂ / [Vo2dV + V! / godV]
which holds, on a compact manifold of dimension 2, for all ¢ € H; when

p > pp =1/167. Here V is the volume and C(u) a constant. On (S, go), (78)
is valid with g = 1/167 (C(u;) exists) and V = 4x. Thus

87 < supf/e“’ dV < C'sup fexp[I(p)/16m].



232 6. Prescribed Scalar Curvature

So v is finite. Unfortunately, the value of p; does not enable us to prove
that a minimizing sequence {(;} is bounded in H;. Indeed, I(y;) — v but we
can have

IVpill2 — +00  and /cpi dV — —o0.

6.64 In higher dimensions the variational method breaks down immediately.
Consider the functional

J(p) = [4—2—:—;/|ch|2dV+n(n— 1)/¢2dv] [/ f dv}

for ¢ € Hy. By using Aubin’s test function (see 5.10) centered at P, a point
where f is maximum, it is easy to show that

inf J(¢9) = n(n — D/ ™[sup 17V,

-2/N

On the other hand if f = 1, we know the functions ¥ for which
JO¥) = n(n — 1w?™ (see 5.58). For these functions if f # Const.,
[ feN dV <sup f [N dV. Thus if f is not constant, for any ¢ € Hy, p #0,
J(p) > inf J(p). So the inf cannot be achieved.

Nevertheless, J. Moser succeeded in solving the Nirenberg problem in the
particular case when the function f is invariant under the antipodal map z — —z
(S, is considered imbedded in R3).

8.1. Moser’s Result

6.65 Theorem (Moser [*245]). On (S,, go) let f € C* be a function invariant
under the antipodal map x — —z. If sup f > O, f is the scalar curvature of a
metric conformal to go.

If ¢ satisfies (1), f fe?dV = 8m. So the condition sup f > 0 is both
necessary and sufficient.

As f is antipodally symmetric, we can pass to the quotient on P;(R). Now
on P, (R) the problem of prescribed scalar curvature is entirely solved. The proof
is written up in 6.25. The variational method works on P,(R). The reason is
that the volume of P,(R) is half of that of the sphere. With V' = 27 in (78), it
is possible to prove that a minimizing sequence is bounded in H;.

Remark. For n > 3, we can consider the same problem as Moser. We will deal
with this subject in a more general situation when f is invariant under a group
of isometries (see §9), not only under the antipodal map.
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8.2. Kazdan and Warner Obstructions

6.66 Theorem (Kazdan and Warner [*195]). Let F be the eigenspace corre-
sponding to the first non zero eigenv A\, = 2 of the laplacian of the unit sphere

(‘521 gO)
If ¢ satisfies (75) then for all £ € F

(79) VYEV, fe? dV =0.
S,

Proof. Differentiating f = e~%[Ap + 2] gives
Vof=e PV, Ap - [Ap+2le V.0
Multiplying by e¥V¥£ and integrating yields
/ e?VVYEV, fdV
= /V"&V,,AcpdV—2/V”£V,,<pdV - /A(pV"EVUcpdV.

Any € € F satisfies V;;€ = —€gi; and A€ = 2€. Thus integrating by parts
twice gives [ VY€V, ApdV =2 [ VY€V, dV. Moreover

/ AGVYEY o dV = / VHoV,, oV EdV + / VHOY, £V pdV

- % /VV]VLpIZV"{ dv - /glVgolde -0,

6.67 Theorem (Kazdan and Warner [*198] p.130). Let F be the eigenspace
corresponding to the first non zero eigenvalue \\ = n of the laplacian on the unit

sphere (Sn,90) n > 3. If @ satisfies (76), then for all £ € F

(80) / VYV, feNdV =0  with N =2n/(n -2).
S

The proof is similar to those of 6.66. We differentiate
f=(n—-1[40p/(n - 2) +np]p'~".

Then, after multiplying by o™ V¥¢, integration over S, yields
4(n—1
@1 / VeV, foN dV = %—T) [ / OV EV, ApdV

+(-N) / APV, oV EdV —n / OV, pVYE dV] ,
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As € satisfies V,,€ = —£g,, and A = né, integrating by parts many times
yields

/ch"éV,,AtpdV: —/Ach”fV.,cpdV +n/§<pAcpdV
/A(pV"&V.,(pdV:/V"{V,,MpV“LpdV+/V“<pVW§V”(pdV
=/2-1) [ Vel av,

[eonear = [evebavs [ovrov.cav
Thus the right hand side in (81) is zero.

Consequences. Many smooth functions on (Sp, go) are not scalar curvature of
any metric conformal to go. If V¢V, f > 0 for instance, for some £ € F
(€ £ 0), equation 75, if n = 2 or equation 76 if n > 3 has no solution. But we
have more. The set of functions f, which are scalar curvature of some metric
conformal to gy, is stable under C(S,,) the conformal group of (Sy, go).

So if there exist u € C(Sp)and £ € F (€ # 0) such that V¥(€ou)V, f > 0,
then f is not scalar curvature of any metric conformal to go. In this way we
have the following

6.68 Theorem (Bourguignon-Ezin [*56]). Let X be a conformal vector field on
a compact Riemannian manifold (M, g). Then

(82) /X(R) dV =0  where R is the scalar curvature of g.

For n > 3 the identity is obtained by integrating the formula of Lichnerowicz
[185] p. 134.

AV X" =RV, X'/(n - 1) +nX'V;R/2(n = 1).

For n = 2 the proof is in [*56], where the authors exhibit a function f such
that V€V, f does not keep a fixed sign for any £ € F, but such that X(f)
keeps a fixed sign for some conformal vector field X on S,.

Note that the integral condition (82) provides examples of functions f which
are not scalar curvature of any conformal metric only on (Sy, go). Indeed by
the Lelong-Ferrand theorem [175], the connected component of the identity of
Co(M, [g]), the conformal group, is compact, except if the manifold is (S, go).
If Co(M, [g]) is compact, there exists § € [g] such that Co(M, [g]) is the group
of isometries of (M, §): V, X" =0.

Thus on (M, §) (11) is trivial:

/ X(f)dV = / XV, fdV = / Y, Xvdv =0.
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Examples. In [*56] the authors exhibit a function R which cannot be excluded
by (79), but for which there exists a conformal vector field X such that X (R) >
0.

Let us mention also the example of Xu and Yang in [*319], of a rotationally
symmetric function R on S, for which the obstruction (79) is satisfied but
equation (1) has no rotationally symmetric solution.

Chen and Li [*89] generalized this result: if R is rotationally symmetric
and monotone in the region where R > 0, then equations (1) and (2) have no
rotationally symmetric solution.

6.69 We saw in 6.67 that the necessary conditions for equations (75) and (76)
to have a solution are

a) f is positive somewhere

B) f satisfies the Kazdan—Warner conditions (i.e. there does not exist u €
C(S,) and € € F (€ # 0) such that V¥({ o u)V, f > 0).

Are these conditions sufficient? The answer is no. Chen and Li [*90} pro-
duced functions f which satisfy a) and 3), but are not the scalar curvature of
any metric g € [go].

Theorem 6.69 (Chen and Li [*90)). If f is rotationally symmetric and monotone
in the region where f > 0, then equations (75) and (76) have no solution.

Under these hypotheses, in order to satisfy £, it is essential that f changes
sign. When n = 2 we have more. According to Xu and Yang’s result [319] (see
6.85), for the class of positive nondegenerate rotationally symmetric functions,
B) is a necessary and sufficient condition.

To go further, Han and Li [*158] produced, when 2 < n < 4, a family
of positive functions f satisfying 5) which are not the scalar curvature of any
metric g € [go].

8.3. A Nonlinear Fredholm Theorem

6.70 On the unit sphere (S5, go), any ¢ € H\, satisfies (78) with g = pp = 1/16m
and V = 4r. The constant C(u;) can be taken equal to 1 according to Onofri
[*261]. But we can improve the best constant ji;:

Theorem 6.70 (Aubin [21]). Let F be the eigenspace corresponding to the first
non zero eigenvalue for A. The functions ¢ € H, satisfying [ ¢dV = 0 and
[€e? dV =0 for all € € F satisfy

(83) / e?dV < Cuyexp(u|Vpl2) withany p> & = L

C(u) being some constant.
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Chang and Yang pointed out that (83) is valid with u = 1/32r for any
functions ¢ which, in addition of the hypothesis of Theorem 6.70, satisfies
equation (1) with f > 0. In fact if we look at the proof of Theorem 6.70 when
we are on the sphere S; , we can write y, instead of u; +£ (p. 158 of [21]) and
we have to bound a term in ||||2.Thus

Corollary 6.70. If in addition to the hypothesis of Theorem 6.70, ||¢||, < k,

there exists a constant C(k) such that ¢ satisfies:

(84) /e“’ dV < C(k)exp([|Vell3/327).

When ¢ satisfies (75) with f > 0, ||A¢l|; < 167. Moreover, as [ o dV =0,
llella < Cy, ||Ag|l; < C, and (84) holds (C, and C; two constants).

6.71 On the unit sphere (S,,g90) n > 3 we know that any function ¢ € H,
satisfies

(85) el < K2, IVell; + i lell3,
where K (n,2) is the best constant in the Sobolev imbedding theorem
Kn,2)=2w"n(n-2)]""2,  N=2n/(n-2).

But we can improve the best constants (see Theorem 2.40).

Theorem 6.71 (Aubin [21]). Let (i = 1,2,...,n+1) be a basis of F on (S,,, go).
Then all ¢ € H satisfying [ &|¢|N dV = 0 for all i satisfy

(86) lelly < 27" K% (n,2) +€]|Vel3 + AE©)llel3

where A(g) is a constant which depends on € > 0, € as small as one wants.

Recall F is the space of the eigenfunctions corresponding to A\; = n (the
space of the spherical harmonics of degree 1). .
We saw in 6.64 that the variational method breaks down. But if we consider

v=infJ(p) forall p € A= {gp € Hl//ﬁilnpw dV =0 for all 1},
then v may be achieved (for the definition of J(y) see (6.64)).

6.72 Theorem (Aubin [21]). Given a smooth function f on S, satisfying
f fdV > 0, there exists h(f) € F such that Equation (15) with f = f — h(f)
has a solution ¥ € C™, e¥ being orthogonal to F in the L, sense. Moreover ¥
minimizes I(p) on A.

Proof. As in 6.63, consider the functional (77):

I(¢)=/|V<p|2dV+4/cpdV.



§8. First Results 237

Here we will consider 7, the inf of I () for ¢ € A with
A= {goEHl//fe‘”dV=87r and /ﬁe“’dV=0 forall €€ F}.

Similarly we prove that ¥ is finite. Let {cpi} be a minimizing sequence. Pick
u satisfying 1/ 2 < 16mu < 1, by (83) any ¢ € A satisfies:

8m < sup fC(u)exp [ulleH% + /de/4W}-

Thus, for some constants C},
(1 = 16mu)||Vesll3 + Cr < I(0s) < Co.

Hence ||[V;||2 < Csand | [¢;dV| < Cy4. Asthe map H, 3 ¢ — €% € L,
is compact, there is a subsequence {¢;} of {¢;} and ¥ € A such that p; — ¥
weakly in H;. So ¥ minimizes /() on .A. Consequently U satisfies weakly in
H,

AV +2=[f-h(f)le*  where h(f) € F.

Bootstrap method then implies ¥ € C°.

Corollary 6.72. On (S,,90) a necessary condition for solving the Nirenberg
problem is that the candidate function is positive somewhere. This condition is
also sufficient modulo a vector space of dimension at least three.

Proof. Suppose f is positive at P, and consider a conformal transformation
of the sphere with pole at P. The new metric is of the form §(Q) = (G —
cos ar)~2g(Q) for some 8 > 1, 1/a being the radius of the sphere (R = 2a?).
The new scalar curvature is constant R = R(8% — 1). Then on the sphere we have
to solve an equation like (75) in the metric § with R instead of 2 (Ap+R = fe®).
Since we can choose £ so that [ f dV > 0, we can apply Theorem 6.72 in
the metric §.
6.73 Theorem (Aubin [21]). Given a smooth function f on (Sn,go) (n > 3),
satisfying sup f < 41/~ inf f, there exists h(f) € F such that Equation (76)
with f = f — h(f) has a solution p € C®. So f is the scalar curvature of some
metric in [go].

Since H) C Ly is not compact the proof is harder than that of Theorem
6.72. We must consider the approximation equation.

(87) 47—7:;;-A<p+n(n—l)go=f<pq", for 2<g<N.

First of all we prove the existence of functions ¥, € C*, ¥, > 0 satisfying

/wgw:o
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for all £ € F which solves (87) with f = f — h,(f), he(f) belonging to F.
Moreover, ¥, is a minimizer of the functional

-1 - -2/q
Jolp) = {42—_—_——2-/[V<p|2dV+n(n— 1)/<p2dV] [/f|<P]q dV]

over the set of the functions ¢ of H, satisfying [ £|p|?dV = 0 for all EEF.
Then we consider a sequence g; — N. As V¥ is orthogonal to F in the L,

sense, we can apply Theorem 6.71 to the functlons \I/g/" the inequality (86)
instead of (85)). This allows us to complete the proof of Theorem 6.76.
This result was improved recently by Hebey.

6.74 Theorem (Hebey [*164A]). Given a smooth function f satisfying sup f > 0
on (Sn,go) n > 3, there exists h(f) € F and a conformal diffeomorphism
u € C(Sp) such that f — h(f) o w is the scalar curvature of some metric in
[go] the conformal class of go. On (S3, go) if there exists a point x € .5.‘3 such that
flx)= f(-z)= sup f > O, then there exists h(f) € F such that f=Ff—-hf)is
the scalar curvature of some metric in [go].

§9. G-invariant Functions f

6.75 In this section, we suppose that f is invariant under a non trivial group G
of isometries and we seek a solution of (76) invariant by G. If the group acts
freely, M, = S, /G is a manifold.

Let f’ be the quotient of f on M,. The problem then becomes the problem
of prescribed scalar curvature on M, studied above. The advantage of this
approach is that the inf of the functional may be attained on M, and there is
no longer any obstruction on M, like those of Kazdan and Warner. As M, is
locally conformally flat, Theorem 6.31 can be applied.

On (S,,9) n > 3, any C* function, positive somewhere and invariant
under a nontrivial group of isometries acting freely, is the scalar curvature of a
metric conformal to go when n =3, and when n > 3  if, at a point where f is
maximal, all its derivatives up to order n — 2 vanish.

Actually, the hypothesis G acts freely is quite restrictive. When n is even,
there is only one such group, the group with two isometries, the identity and
the antipodal map. Thus when n is even, only antipodally symmetric functions
are covered by the result of Escobar-Schoen (see Theorem 6.31).

More general groups of isometries were deal with by Hebey. For n = 3
Hebey established the best result possible in this context.

6.76 Theorem (Hebey [*162]). On (S3, go), any C® function, positive some-
where and invariant under a group G of isometries acting without fixed point, is
the scalar curvature of some metric in [go).
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We saw that the hypothesis “positive somewhere” is necessary by integrating
(76). Moreover, if there is a point of S3 fixed by G, functions like £ + Const.
with £ € F' are not excluded. So the second hypothesis cannot be weakened too
much. For the proof Hebey used the method of isometry-concentration studied
in §5.

First, for any ¢ satisfying 2 < ¢ < N = 2n/(n — 2), there exists a G-
invariant C* function u, > O solution of the equation obtained from (76) by
substituting ¢ — 1 for the exponent (n + 2)/(n — 2) in the right hand side of
(2). The existence of such sub-critical sequence {uq,} with ¢; — N is proved
without difficulty since the Kondrakov Theorem (H; C L, is compact ) holds
for ¢ < N. If any subsequence of {ug, } does not converge (the bad case), there
exists a subsequence which converges to zero except at a finite number of points,
the points of concentration.

Then the main idea is to estimate from above the number of points of con-
centration and to obtained a contradiction. Using this method Hebey established
many results; let us mention some of them.

6.77 Set u(G) equal the inf of J(p) (see 6.64 for the definition) for all G-
invariant functions ¢ € Hj such that [ f|p|¥ dV = 1. Define C(f) = {z €
Sn/|Vf()| =0 and f(z) > 0 for f € C*®(Sy)},0(z) = {u(z)/u € G} for
z € S, and pg = n(n — l)wz,/", which is the inf of J(¢) for all ¢ € H; when

f=1

Theorem 6.77 (Hebey [*162], [*163]). Let f € C* be a G-invariant function
on (Sp, go) which is positive somewhere. If

@) < [po/ (@)™ [Card O(z)]

holds for all x € C(f), then f is the scalar curvature of a metric in [go].

2/(n~2)

Corollary (Hebey [*162]). Let f € C™ be a G-invariant function on (Sp, go)
such that [ fdV > 0. If for all z € C(f)

(88) @ < [Card 0@ [ £V,
f is the scalar curvature of a metric in [go).

From the theorem above, corollary follows directly by writing

-2/N
p(G)SJ(l):n(n—l)wn</de) .
For details on the proof see also Aubin [10].

6.78 Theorem (Hebey [*162]). Let f be a G-invariant C* function on (S, go).
At P a point with f(P) = sup f > 0, we suppose that all derivatives of f of order
less than or equal to n — 3 vanish. Moreover we suppose Card O(P) > 2.
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If for all x € C(f)

2/(n-2)
/ S

(89) f(z) < [Card O(z)/ Card O(P)) up f,

then f is the scalar curvature of some metric in [go], when n > 5 is odd, or when
n = 4 if in addition A f(P)/ sup f is smaller than an explicit positive constant.
The same result holds when n > 6 is even, if [V 2f|/sup f at P is smaller
than an explicit positive constant.

We dealt with the case n =3 in 6.76. When n > 4 we need some condition
of flatness of f at P for the conclusion.

Remark. There is no obstruction (seen in §1.2) for a G-invariant function f to
be the scalar curvature of some metric in [go], when G acts without fixed point.
Indeed for all z € S, Card O(z) > 2. So there exists a constant k enough large
such that f + k satisfies (88). Corollary 6.77 then implies that f + k is the scalar
curvature of some metric in [go].

6.79 Theorem (Hebey [*162]). Let f be a G-invariant function which is positive
somewhere on (Sp, go). Define

Co CC(f)={z € Sa/|Vf(2)|=0 and f(z) > 0},

the set of the points where the function [Card O(x)]%[ f(:z)]?l—_l Is minimum on

ci).

Assume all derivatives up to order n — 3 vanish at a point xo € Cy where
Card O(zg) > 2. Then f is the scalar curvature of some metric in [go] when n is
odd or when n = 4 if

A f(zo) < 6[Card O(zo) — 1] f(zo)-
The same result holds when n > 6 is even if

|V™=2 f(z0)| < 2°"™(n ~ 1)}(Card O(zo) — 1)f(z0)/(n — 2).

With this result, when G acts without fixed point, we can prove, on (S4, go)
for instance, the following: There exists € > 0 such that any G-invariant function
f, positive somewhere and satisfying || f — 1||c2 < €, is the scalar curvature of
some metric in [go].
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§

§10. The General Case

10.1. Functions f Close to a Constant

6.80 We begin with a result of Chang and Yang. For any n > 2 they solve
the Nirenberg Problem (or its extension for n > 3) in a neighbourhood of the
constant under the two following weak hypotheses

1) f has only critical points non degenerate of order at most n, when n is
even and at most n — 1 when n is odd.

This has the following meaning. Let P be the south pole of S, C R™*!
with coordinates z1,2,...,Zns. P(0,0,...,—1). We let y;,12,...yn be the
stereographic coordinates, with respect to the north pole Q, of y € S, — Q.

z; =2y;/(1+ |y for 1<i<m, zna=1-2/(1+][y]?).

The limited expansion of f at P of order o can be written

fe) = f(PY+ Y Rew)

k=1

where Ry is a homogenous polynomial in y; of degree k.

Definition. f is nondegenerate at P of order a if Ry vanish for K < o and
G(P,t) defined by (90) satisfies |G(P,t)] > ct™® if a < nand ,if a=n
|G(P,t)| > ct~™logt for some ¢ > 0 when t is large.

We verify that a critical point P is nondegenerate of order 2 if Af(P) # 0.
With this definition the critical points need be not isolated.

2) The map G defined below has deg(G, B, 0) # 0.

Let pg,; be the conformal map of S, defined by pg(y) = ty. G is the map
from the unit ball B ¢ R™! given by:

(90) B3g=(- l/t)Qi’»G@,t):/(foch,t)f.

g = 0 (t = 1) being identified with the identity map, the set of conformal
transformations is homeomorphic to B = {q € R™'/|q| < 1}. For ¢ # 0,
lgf=1-1/t and Q = q/lq|.

6.81 Theorem (Chang and Yang [*85]). Let f be a C* function on (Sy, go)
whose critical points are nondegenerate of order at most n when n is even
and at most n — 1 when n is odd. Assume that the map G defined by (90) has
deg(G, B,0) # 0. Then there exists some constant e(n) such that if f satisfies
sup |f — 1| < &(n), f is the scalar curvature of some metric conformal to g.
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For the proof, Chang and Yang start by applying Aubin’s result (Theorem
6.72 when n = 2 and Theorem 6.73 when n > 3), to the family of functions
fp=Ffoppy withp=(1-1/t)P € B.

There exists A, € R™! and w, € C®(S,) (resp. up > 0 smooth on S,
(n > 3)) satisfying

91) Aw, +2= (fp— .K,, - I)evr when n=2 and

©2) 4=

1 N _
2Au,,+n(n—l)up=(fp—Ap-a:)u;,V ' when n > 3.

Indeed we can choose £(n) such that sup f < 4'/*=2inf f when n > 3.
Moreover w, minimizes I(w) = || Vw||} +4 [wdV on

Azz{weHl//fpe‘”dV=87r and /e”’i’dV:O},

and if e(n) is small enough, u, minimizes

n—1 “YN
I = [42319ul o~ D] | [ 0]

on Ap = {ue€ Hy/ [[u/NTdV =0,u+0}.

Given p € B, it is proven by contradiction in [*85] that wy (resp. up) is
uniquely determined if €(n) is small enough. Join two distinct minima u, and
ip by a 1-parameter family uf\v = /\ﬁf,v +(1 - )\)ui,v and show that A — J(u))
is convex. Similarly in the case n = 2. By the implicit function theorem it is
proved that wp, up and A, are continuous in p. In particular A : B — R™! is
a continuous map.

If A, = 0 at some ¢ € B with |g| < 1, equation (75) (resp. (76)) has
a solution, and f is the scalar curvature of some metric in [go]. Indeed wy
satisfies (91) with A, =0:

(93) Awg +2 = fee*d.

Thus @ = (w, — log|det Dy, ) o ;! is a solution of Equation (75), where
g = pq,t With ¢ = (1 — 1/t)Q. Similarly when n > 3, u, satisfies (92) with
Ag=0:

94 n-lp N-1
(94) 4;-1—_—2 ug +n(n — Nug = feug =

Thus v = (ug| det Dipg|~'/N) 0 7! is a solution of Equation (76).

To finish the proof, suppose A does not vanish. Under the non-degeneracy
condition 1 in 6.80, it is shown in [*85] that G(P, t) does not vanish for ¢t large
enough and that

deg(A, B,0) = deg(G, B, 0).
Thus the condition deg(G, B,0) # 0 implies the contradiction and A vanishes
somewhere in B.
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10.2. Dimension Two

6.82 Theorem (A. Chang and Yang [*81]). Let f > 0 be a C*™ function on
(82, go) with only nondegenerate critical points, where A f does not vanish. Sup-
pose f has p+1 local maxima and q # p saddle points where Af > O; then f is
the scalar curvature of a metric in [go).

Recently Xu and Yang [*319] pointed out that we can remove the hypothesis
f>0.

Set Q) = {:r: € Sy/f(z) > 0} # 0. Suppose f has only nondegenerate critical
points where Af(z) # 0 when x € Q. If, on Q, f has p + | local maxima and
q # p saddle points where Af > 0, then f is the scalar curvature of a metric in
(90]-

The critical points where f < 0 do not matter. This is not surprising, since
concentration phenomena can happen only at points where f > 0 (see 6.42).

Before these theorems, there were partial results in Chang and Yang [*81]
and Chen and Ding [*88]. The proofs are quite different than that of Theorem
4.21 which was recently improved by removing the condition “close to constant”.

6.83 Theorem (A. Chang, Gursky and Yang [*78]). Let f > 0 be a C* function
on (Sz, go), such that Af(Q) # 0 whenever Q is a critical point of f.
If deg(G, B, O) # 0, then f is the scalar curvature of a metric in [go).

This result generalizes Theorem 6.82: f may have degenerate critical points.
Moreover the assumption is weaker. Indeed, when f has only nondegenerate
critical points, the hypothesis ¢ # p (or p+ 1 — g # 1) is equivalent to the index
counting condition:

95) DR Gt VAE X C Vi

Q critical, A(Q)>0

where k(Q) denotes the Morse index of f at @, and it is shown in [*78] that
(95) implies the hypothesis deg(G, B, 0) # 0 in any dimension.
For the proof of Theorem 6.83, consider the family of functions:

(96) fs=sf+2(1—s).

If so > 0 is small enough, we can apply Theorem 6.81.

So there exists a C™ function w,, solution of (75) with f = fg,. Moreover
it is shown in [*85] that this solution is unique if sq is small enough. Now we
will solve for s € [sg, 1] the following continuous family of equations

o7 Aw+2 = f.e¥

by using the method of topological degree.
The critical points @ of f, are those of f and when s € [sg, 1], |Afs(Q)| =
S|IAf(Q)| > so|Af(Q)| > € for some € > 0. Indeed suppose there is a sequence



244 6. Prescribed Scalar Curvature

Q; of critical points of f such that Af(Q;) — 0. By passing to a subsequence,
Q; — Q which is a critical point of f where Af(Q) = 0. This is in contradiction
with the hypothesis.

Moreover f > 0 implies 0 < m < f; < M for some m and M independent
of s € [sg, 1]. Thus we can apply Proposition 6.84 below to the solution of (97).
These solutions satisfy |wl|2,« < C for some constant C'. Set

Q= {w € C’2’°(Sz)//de =0 and |lw|ra < C},

and consider the map:
(98) w— () =w~ A7 (fe" ™)

where p, = log| [ f,e¥ dV/8x].

We verify that Uo(w) = 0 implies w, = w — ps is a solution of (97).
Conversely if w; is a solution of (97), w = ws — [ w, dV/4 satisties ¥ (w) = 0.

Now as w — A~™'(f,e¥~#*) +w is a Fredholm map Q — C*%, continuous
in s and 0 € ¥, (0Q) for s > so , deg(¥s, 2, 0) is well defined and independent
of s for s > sg. Equation (97) has a unique solution for s = so; thus (97) has a
solution for s = 1. For more details and the proof of the following proposition,
see [*78] and [*85].

6.84 Proposition (A. Chang, Gursky and Yang [*78]). Let f be a C™ function
on S, and let ® be the set of its critical points. Assume Af(Q) # 0 when Q € ®
and 0 < m < f < M for some m and M, then there exists a constant C which
depends only on m, M and infgee |Af(Q)|, such that any solution w of (75)
satisfies |w| < C.

First if f < M, by (4) I(p) = ||Vp|3+4 [@dV > Const., and under the
hypothesis m < f < M, Chang and Yang proved that I(yp) is bounded from
above. Then the proof is by contradiction. A limited expansion in a neighbour-
hood of a point of concentration yields the contradiction by using the Kazdan
and Warner condition (79).

For this, the hypothesis |Af(Q)] > € > 0 for Q € ® is crucial.

6.85 When f is rotationally symmetric, we could hope that the problem would
be easier. Indeed, if we seek for rotationally symmetric solutions, solving Equa-
tion (1) is equivalent in this case to solve an ordinary differential equation.
Actually the difficulties are almost the same. Let us mention the following

Theorem 6.85 (Xu and Yang [*319)). Let f be a rotationally symmetric C™
Sunction on (52, go) : f(z) = K(r) where r is the distance of x to a given point.
Assume K''(r) # 0 when K'(r) = 0. If K’ has both positive and negative values
in the set where K > 0O, then f is the scalar curvature of some metric in [go).
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We complete this set of results on the Nirenberg Problem with the following

6.86 Theorem (K.C. Chang and Lin [*79]). On (S3, go) let f be a C™ function
which is positive somewhere. Set Q@ = {x € S,/f(z) > 0 and Af(z) > 0}.
Assume |V f| # 0 when Af = 0 or when f = 0. If deg(Q, Vf,0) # 1, then f is
the scalar curvature of some metric in [go).

10.3. Dimension nn > 3

6.87 Theorem (Bahri and Coron [*26]). On (S3, g), let [ be a positive C*®
function which has only non degenerate critical points where Af # 0. If (95)
holds, then f is the scalar curvature of some metric in [go)].

We talked about the method used for the proof in Chapter 5. Bahri and Coron
consider the functional H(u) = ([ f(z)u® dV)*% on the set

E":{ueHl/uZO and 8/|Vu|2dV+6/u2dv=1}.

They study the flow solution in ¥ of du/ds = ~H'(u), u(0) € *. When the
integral lines go to infinity, there is a lack of compactness. They introduce a
pseudo-gradient near infinity and concentration phenomena occur. It appears that
a point of concentration is a critical point where Af > 0.

6.88 Theorem (S-Y. Chang, Gursky and Yang [*78]). On (S3, go), let f be a
positive C™ function such that Af # 0 at its critical points. If deg(G, B, 0) £ 0,
then f is the scalar curvature of a metric in [go).

This result is proved by removing the condition “close to constant” of The-
orem 6.81 as for Theorem 6.86. G is defined by (90). The authors showed that,
if the critical points are nondegenerate, the hypothesis (95) of Theorem 6.87
implies deg(G, B,0) # 0.

The proof is similar to that of Theorem 6.86. We consider a family of
equations

(99) 8AU +6u = fou’, u>0,

where f, = sf +6(1 — s).

By Theorem 6.81, for s = so > 0 small enough, (99) has a unique positive
solution. On © = {u € C**($3)/||ullz.a < C and C~' < u < C}, where
C > 1is large and 0 < o < 1, define the map

Q3 u— Yy =u~ L7 (fu’) € C**(S3), where L = 8Au+6u.

Equation (99) is rewritten in the form ,(u) = 0. According to Proposition
6.89 below, for C large enough 0 ¢ 1,(952). Thus deg(s, §2,0) is well defined
and independent of s for s > so, since u — L™!(f,u’) is a Fredholm map
continuous in s. In Z/2Z, deg(ys,2,0) = 1.
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The hard part of the proof is to establish the a priori estimates of the fol-
lowing Proposition.

6.89 Proposition (S-Y Chang, Gursky and Yang [*78], see also Y-Y Li
[*214]). Suppose u is some positive solution on (S3, go) of

8Au +6u = fu’
where f € C*°(S3) satisfies 0 < m < f and

min |AK(z)| > d
{z€53,|VK(z)|<d}
for some d > 0. Then there exists a constant k, which depends only on m, d,
| Kl crs,), o and the modulo of continuity of V2K on S3 such that

lulleracsy,  llu llcrasy) < k.

6.90 We can say that Bahri~Coron’s result (6.87) and then Theorem 6.88 solve
the problem of the existence of a positive solution of Equation (76) when n = 3
and f > 0.

Of course, we can hope to find some improvements as for dimension 2,
in the case where f is not always positive. But in some sense, the hypothe-
sis deg(G, B,0) # 0 or (95) is optimal, except if we find some more general
topological assumption. Such hypothesis cannot be removed, since there are the
Kazdan—~Warner obstructions.

When n > 3, there is Theorem 6.81, and until recently, only partial results
such as that of Bahri—Coron [*24].

In [*214] and [*215] Yan-Yan Li states existence results of positive solutions
of Equation (76) when f is some positive function on (Sy, go). When n = 3 Li’s
result is similar to that of Bahri—-Coron. But when n > 3, we have a new answer
to the problem. As in 6.80, Li considers the leading part of f(y) — f(q) in a
neighbourhood of some critical point q of f. He supposes that for any ¢ € & (the
set of the critical points of f), there exists some real number 3 = 8(q) € In—2, n|
such that the leading part Rg(y) of f(y) — f(q) expresses, in some geodesic
normal coordinate system centered at g, in the form

(100) Rg(y) = Zaj|yj|ﬁ, where a; #0 and A(q) = Zaj #0.

j=1 j=1

6.91 Theorem (Yan-Yan Li [*215]). On (S,,g0), n > 3, let f be a positive C'
function which satisfies (100) at any q € ®. Then Equation (76) has a positive

solution if
> D@ EED,

gE® with A(g)<0
where i(q) is the number of negative a;(q), 1 < j < n.
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The main ingredients in the proof are some blow up analysis and some a
priori estimates of positive solutions of (76).

Let J be the functional of the problem (see 5.78) and

[6(z, V)] () = [/\2/2] (n—2)/4[1 + A% = M cosd(z, v)] l—n/Z,

where d(z,y) is the distance on the sphere of the two points z and y. When
we compute a limited expansion in A of J[E’f=1 a,-é(a:i,)\i)], we find that the
interaction of two masses is in A>~™, whereas the self-interaction is in general
in A2, When the self-intersection is smaller than the interaction of two masses,
the critical points at infinity are points where there is only one mass. Hence the
Bahri~Coron Theorem 6.87 in dimension n = 3.

The assumptions of Li’s Theorem 6.91 imply that we are in the same situa-
tion, the interaction of two masses predominates. Thus the points of concentra-
tion are simple.

10.4. Rotationally Symmetric Functions

6.92 Theorem (Hebey [*162]). On (S, go), n > 3, let f bea rotatio_nally sym-
metric C™ function which is positive somewhere. Denote by P and P the poles
of f. Then f is the scalar curvature of a metric in [go), if

(101) max(f(P), FP)] < [ £V fon.
The same conclusion holds when n =3 if

max [f(P), f(P)] < sup f/4
or forn > 4, if Af(P) < 0 when f(P) > f(P).

The results are proved by the method of Isometry-Concentration. Only P
and P may be points of concentration. An hypothesis like (101) does not allow
that P or P be point of concentration.

§11. Related Problems
11.1. Multiplicity

6.93 Theorem (Hebey and Vaugon [*167]). On (S3,go), let f be a positive
C® function invariant under two distinct finite groups of isometries Gy and G».
Assume G5 acts freely, its cardinality b > a the cardinality of G,, and G acts
without fixed point. If

1/6
(102) (b/a)/? > 1+ ( / fdV/wssup f> ,

then f is the scalar curvature of at least two distinct metrics in [go] which are
respectively G\-invariant and G,-invariant. Their energies are different.



248 6. Prescribed Scalar Curvature

Set g; = (p‘l‘/‘"'z)go, J(py) is the energy of g; (J(p) is defined in 6.64).
We present here this theorem on (53, go), but Hebey and Vaugon proved similar
results on (Sp, go) for n > 3.

We can obtain as many metrics in [go] with scalar curvature f as one wants.
Suppose a finite group of isometries G3, with cardinality ¢ > b, acts freely. If
(/b > 1+ (f fdV/wysup f) /8 then there exists g3 in [go] with scalar
curvature f. As the energy of g; is different than those of g; and g;, the three
metrics are distinct. And so on. It is very easy to find functions f satisfying
(102), sup f/ [ f dV must be large enough.

The main ingredient in the proof of Theorem 6.93 is the value of the second
best constant in the Sobolev inbedding theorem for the quotient of the sphere.

Let (M,,g) be a compact Riemannian manifold, n > 3. If the manifold
has constant sectionnal curvature (Aubin [14]) or if the manifold is only locally
conformally flat (Hebey and Vaugon [*166]), there exists a constant C' such that
any ¢ € H, satisfies
~2/n

4w
el < —2— Vel + Cllel:

Recently Hebey—Vaugon [*171] and [*172] proved that such constant C
exists on any compact manifold. The proof is very different, it proceeds by
contradiction. Blow-up technics are used (see 4.63).

6.94 Yan-Yan Li [*215] proved that any given somewhere positive continuous
function may be perturbed in any CP-neighbourhood of any given point on
S, (n > 3) such that there exist many solutions for the perturbed function.

11.2. Density

6.95 The result of Li, just above, shows that the functions which are scalar
curvature of some metric in [go] on (S,,go)n > 3, are dense in the set  C
C%(S,,) of the functions positive somewhere. Before this new result, we had the
following L, density theorem:

Theorem 6.95 (Bourguignon and Ezin [*56]). Any smooth function on (S, go)
which is positive somewhere belongs to the Ly-closure of the set of the functions
which are scalar curvature of some metric in [go).

With Hebey’s results, the same proof works on (S,, go)n > 3. In fact the
condition f positive somewhere is unnecessary since in any L,-neighbourhood
there are functions positive somewhere.

Actually with the results of §10 we have the following C'-density theorem:

6.96 Theorem. Let f be a smooth function positive somewhere on (S,, go), or a
smooth positive function on (Sp, go) when n > 3. In any C'*-neighbourhood of
f(0 < a < 1), there are smooth functions which are scalar curvature of some
metrics in [go).
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We can suppose without loss of generality that f has only nondegenerate
critical points. For the proof, when n = 2, use for instance the improvement of
Xu and Yang of Theorem 6.82. In case g = p # 0, it is easy to see that we can
approximate in C'* the function f by a function f for which Af < 0 at some
saddle point where Af > 0. ThusG=¢—1#p=5. Incase ¢=p=0, it is easy
to see that we can approximate in C' the function f by a function f which has
a second maximum near the maximum of f. Thus p=1.

When n = 3, use for instance Bahri-Coron’s Theorem 6.87 and argue as
above. When n > 3, use Li’s Theorem 6.91 when n is odd, and when n is even,
use Li’s Theorem 0.13 in [*215).

11.3. The Problem on the Half Sphere

6.97 H. Hamza studied the Cherrier Problem (see §8.2 of Chapter 5) in the
particular case of the hemisphere W, endowed with go the canonical metric on
the sphere.

When n = 2, the equation to solve is (see 5.67)

(103) Ap+R=Re? on W2,85<p+2h=2h'e“’/2 on oW, = S,.
When n > 3, the equation to solve is (see 5.65)

(104) 42——21—Acp + Ry = R’cpﬁlf,cp >0on W,,

2 n
—n——zagcp +hp=h¢3-7 on W, =S,_;.

Let us consider
An={F € C®(W,)/AF =nF on W,,8:F =0 on dWn,}.

If Wo={z € R™!/|z| = 1, z™' > 0}, A, is the set of the traces on Wy,
of the coordinate functions z*(1 < i < n), dimA, = n. Any F € A, satisfies
VijF = —Fgoij on Wy, and of course AF = (n - 1)F on W, = S,_; where
A is the laplacian on (Sp_y,go), V will denote the covariant derivative on
(Sn-1, 90)-

6.98 Theorem (Hamza [*155]). A solution of (103) satisfies for any F € A;:

/ e?V'R'V,FdV +4 / e?/**h'VFdo = 0.
W, S
A solution of (104) satisfies for any F' € Ay:

/ @ TIVIR'V,FdV +2n / PRI Fdo = 0.
Wn Sn—l
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These conditions are similar to the integrability conditions of Kazdan—Warner
(see 6.66 and 6.67). On S,, there is one more independent condition, correspond-
ing to the trace of the coordinate z™*!.

A consequence of these conditions is that equations (103) and (104) have
no solution if for some F € A,, VIR'V;F > 0 on W, and V*h'V,F > 0 on
OW,,.

For the euclidean ball, H. Hamza established also some integrability conditions
(see [*155)).



Chapter 7

Einstein—Kiahler Metrics

7.1 Introduction. In this chapter we shall use the continuity method and the

method of upper and lower solutions to solve complex Monge-Ampére equations.
But they can also be solved by the variational method. The difficulty is to

obtain the a priori estimates; either method can be used indiscriminately.

These equations arise in some geometric problems which will be explained.
The results and proofs appeared in Aubin [11], (18] and [20], and Yau [277].
An exposition can also be found in Bourguignon [59] and [60].

We introduce some notation. Let g,w, ¥ (respectively, ¢’,w’, ¥’) denote the
metric, the first fundamental form 7.2, and the Ricci form 7.4. For a compact
manifold, V = [dV. In complex coordinates, d’ and d are defined by d'p =
Ovpdz* and d"¢ = OppdzP. Also, let d°p = (d' ~ d")p. Then dd°p =
2050 d2* A dzP.

First definitions. Let M,,, be a manifold of real even dimension 2m. We con-
sider only local charts (2, ), where Q is considered to be homeomorphic by a
map ¢ to an open set of C™: (). o
The complex coordinates are {z*}, (A = 1,2,...,m). We write z* = 22
A complex manifold is a manifold which admits an atlas whose changes of
coordinate charts are holomorphic. A complex manifold is analytic. A Hermitian
metric g is a Riemannian metric whose components in a local chart satisfy for
all v, u:

Quu =90 = 0, Qup = 9pv = fhm

The first fundamental form of the Hermitian manifold is w = (i/2m)gx; d2*
A dzP, where g is a Hermitian metric.

§1. Kihler Manifolds

7.2 A Hermitian metric g is said to be Kghler: if the first fundamental form is
closed: dw = 0. A necessary and sufficient condition for g to be Kiahler is that
its components in a local chart satisfy, for all A, p, v,

6Agu;1 = 3:/9)\;%
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On a Kihler manifold we consider the Riemannian connection (Lichnerowicz

[184] and Kobayashi-Nomizu [167]).

It is easy to verify that Christoffel’s symbols of mixed type vanish. Only
N = Fiﬂ may be nonzero. Thus, if f € C?, then Vs f = d5;f. On a Kahler

manifold we will write Af = —g’\"-‘ BAﬁf, which is half of the real Laplacian

(warning!).

Only the components of mixed type R,z,; of the curvature tensor may be

nonzero. It is easy to verify that the components of the Ricci tensor satisfy

R,\# = Rj‘ﬁ =0 and

(%) Ryp = —0Oaploglgl,
where |g| is the determinant of the metric,
g1 0 Gim
g=|" .
Imi 7 Gmm

In the real case we used the square of this determinant.
n=(/2)™gldz' Adz'A---Ad2* Adz* A--- Adz™ Ad2™ defines a global
2m-form. A complex manifold is orientable.

1.1. First Chern Class

7.3 U = (i/2m)Ryz dz* A dz* is called the Ricci form. According to (x), ¥
is closed: d¥ = 0. Hence V¥ defines a cohomology class called the first Chern
class: Cy(M). Recall that the cohomology class of W is the set of the forms
homologous to ¥. Chern [91] defined the classes C.(M) in an intrinsic way.
For our purpose we only need to verify that C;(M), so defined, does not depend
on the metric. Indeed, let g’ be another metric and ¥’ the corresponding Ricci
form, let us prove that ¥’ — ¥ is homologous to zero.

Since 71 and 7’ are positve 2m-forms, there exists f, a strictly positive func-
tion, such that n’ = fn. Hence, according to (),

v —¥= —-—'L—B,\g log fdz* Ad2?,
2T
and the result follows from the following:

Lemma. A 1-1 form v = ay, dz* A dz* is homologous to zero if and only if
there exists a function h such that ay; = Oxph. For the necessity we suppose the
manifold is compact.

Proof. The sufficiency is established at once:
v=0yzhdz* AdzP =dd"h,  where d"h = 0;hdz".

Now let us consider <y, a 1-1 form homologous to zero.
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Pick a function A such that Ah = — g’\"‘a,\ﬁ+Const (in fact the constant is zero),
and define 4 = @5 d2* A dz” with @)z = Oz h.

g (@xz — aap) = Const, 50 V, [¢**(@xz — arp)] = g™V, (arz ~ arg) =0
and §"(y—~) = g*f‘V,\(&,,,-, —ayp)dz” =0, since d¥ = dy = 0 implies Vya,; =
V.oayz and Vaa,z = V,ay;. Likewise, §'(7—7) = —g*ﬁvﬁ(d,\,-,—a,\g)dz"’ =0.

4 — 7 is homologous to zero and coclosed, so it vanishes (de Rham’s
theorem 1.72). On p-forms, the operators &' and 8" are defined by §' =
(=P~ %71 d’'x and 6" = (—1)P~1 x7! d"«, (see 1.69); they are, respectively,
of type (—1,0) and (0, —1). |

1.2. Change of Kdhler Metrics. Admissible Functions

7.4 Let us consider the change of Kihler metric:

(1 95s = 9ra + Orap,

where ¢ € C® is said to be admissible (so that ¢’ is positive definite). Obviously
¢’ is a Kihler metric, since (1) is satisfied.
Let M(p) = |g'||g]|™". Then dV' = M(¢)dV. Since

1+Vie Vo - Vi
Vi 1+Vip
M) =lgog™' =] " : ,
Ty 1+V2yp

by expanding the determinant we find

(la) v v v
Vie Vie - Vie

~ v 1| Vie Ve 1 |Vie Vie
Vi Vip

where the last determinant has m rows and m columns.

Remark. The first fundamental forms w’ corresponding to the metrics g’ defined
by (1) belong to the same cohomology class (Lemma 7.3). Conversely, if two
first fundamental forms belong to the same cohomology class, there exists a
function ¢ such that the corresponding metrics satisfy (1).

A cohomology class <y is said to be positive definite if there exists in v a
Hermitian form (i/27)C»zdz* A dz* € «y such that everywhere Cyz£*¢# > 0
for all vectors £ # 0. A Kahler manifold M has at least one positive defi-
nite cohomology class defined by w. Thus the second Betti number, b,(M), is
nonzero.
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If a Kahler manifold has only one positive definite cohomology class up to a
proportionality constant, in particular if b,(M) = 1, the all Kahler metrics are

proportional to one of the form (1).

7.5 Lemma. The Kdhler manifolds (M, g') with M compact and g' defined by
(1) have the same volume.

Proof. The determinants in (1a) are divergences

Vap Ve - Vi Ve Vhe - Vo
o | Ve Vie | Vie Vi
Ve Vi Vi Ve Vi

Indeed the differentiation of the other columns gives zero, because on a Kahler
manifold V*V4y = VAV
So integrating (la) yields: V' = [ dV’'= [, M(p)dV =[,dV=V. &

We can prove Lemma 7.5 by another method. Denote by w™ (respectively,
w'™) the m-fold tensor product of w (respectively, w'). w' = w — (i/47)dd°yp
and

w™ = (%) ml(=24)™|g|dz’ Ady' Adz? Ady* A--- Adz™ A dy™.

Since dw = 0, then by Stokes’ formula, [ w™ = [w™. Hence
v=Z [um=T [omev.
m! m!

§2. The Problems

2.1. Einstein—K#hler Metric

7.6 Given a (compact) Kidhler manifold M, does there exist an Einstein—Kdhler
metric on M ?

If g is an Einstein—-Kdhler metric, there is a real number k such that
Rz = kgaz. The Ricci form ¥ = 5 Ry;dz* A d2P is equal to k times the
first fundamental form @, so k& € C(M), the first Chern class and we have
the following:

Proposition 7.6. A necessary condition for a compact Kahler manifold to carry
an Einstein—Kdhler metric is that the first Chern class is positive, negative or
zero.
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We say that Cj(M) is positive (resp. zero or negative) if there is a positive
(1-1) form w in Cy(M) (resp. 0 € C (M) or a negative (1-1) form v € C,(M)).
It is easy to see that the three cases mutually exclude themselves.

2.2 Calabi’s Conjecture

7.7 The Calabi conjecture ([73] and [74]), which is proved in 7.19, asserts that
every form representing the first Chern class C;(M) is the Ricci form ¥’ of
some Kahler metric on a compact Kéhler manifold (M, g).

Let (i/2m)C)g dz* A dz” belong to C;(M). According to Lemma 7.3, there
exists an f € C* such that Cy; = Ryz — Og f-

Consider a change of metric of type (3), the components of the corresponding
Ricci tensor in a local chart are:

Ry, = —0xploglg'| = —0xp log M() + Rz

So we shall have R); = C)p, if there is an admissible function ¢ € C* that
satisfies

2) logM(p) = f +k, with k a constant.

By Lemma 7.5, we can compute k, k =logV — logfef dv.

§3. The Method

3.1. Reducing the Problem to Equations

7.8 If C;(M) > 0, we consider as initial Kzhler metric g some metric whose
components gz (in a complex chart) come from w = f;gxﬁdzA Adz* withw €
C\(M) as above . If C1(M) < 0, we choose g such that y = —ii;gx,]dzx NdzP
belongs to C,(M).

If C) (M) is zero, we start with any Kéhler metric. This case is a special case
of the Calabi conjecture. We want to find a Kahler metric whose Ricci tensor
vanishes, the zero-form belongs to Cy(M).

Next we consider the new Kihler metric ¢’ whose components are:

91\,,1 =gaa + o,

where ¢ is a C* admissible function (see definition below).
If \w € C{(M), since the Ricci form ¥ = ﬁR,\ﬁdz’\/\dz"‘ € Cy(M), there
exists, by Lemma 7.5, a C™ function f such that

(3) R)\g = )\g)\p + 3)‘ﬁf.
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If g’ is an Einstein-Kahler metric, \w € C{(M) and we can choose «/'
homologous to w. So according to Lemma 7.5, ¢’ is of the form (1) and R’Aﬂ =
Agl; is equivalent to

4) Aoapp = Ry; — Rap — O f = -0 log(lg'llgl™") = Oaaf,
since on a Kéhler manifold, the components of the Ricci tensor are given by
&) A\ = —Oxaloglg'l.

Definition. @ admissible means that g’ is positive definite. A will be the set of
the C? admissible functions.

If § is an Einstein—Ké#hler metric, it is proportional to a metric of the form (1),
except in the null case when there are more than one positive (1-1) cohomology
class. Then we proved that the problem is equivalent to solve the equation

(6) logM(p)=¢+f if Ci(M) <0,
logM(p)=f+k if C{(M)=0,
(N logM(p)=—-p+f if Ci(M) >0,

where M(p) =g’ 0 g~ ! =1|g'||g|~! and f is some C* function.
The proof is not difficult. Multiplying (4) by g** and integrating yield

AMp +log M(p) + f] = 0.
Thus
8) Ap +log M () + f = Const.,
which is nothing else than equation (2) when A = 0, or equations (6) and (7),

where the unknown function is ¢ — Const., when A = —1 or +l.

3.2. The First Results

7.9 Equation (2) is the equation of the Calabi conjecture [*70]. T". Aubin [18],
[20] and S.T'. Yau [277] solved the two first equations (2) and (6), when A < 0.

Theorem 7.9. If C,(M) < O, there exists an Einstein—Kahler metric unique up
to an homothety. If C\(M) = 0, there exists a unique Einstein—-Kahler metric (up
to an homothety) in each positive (1-1) cohomology class.

For the proof, it is possible to use the variational method as in the original
proof (Aubin [20] and [18]), but here the continuity method is easier.
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7.10 The continuity method. Let E(p) = 0 be the equation to solve. We proceed
in three steps:

a) We find a continuous family of equations E., with 7 € [0, 1], such that
E) = E and Ey(p) = 0 is a known equation which has one solution .

b) We prove that the set & = {7 € [0,1]/E,(¢) = 0 has a solution} is
open. For this, in general, we apply the inverse function theorem to the map
[': ¢ — E,(p) in well chosen Banach spaces.

c) We prove that the set & is closed. For this we have to establish a priori
estimates.

§4. Complex Monge-Ampere Equation

7.11 More generally, we can consider an equation of the type

)] M(yp) = exp[F(p, 1)1,

where I x M > (t,z) — F(t,z)is a C*™ function on I x M (or only C?), with
I an interval of R.
(9) is called a Monge-Ampere Equation of complex type.

4.1. About Regularity

7.12 Proposition. If F is in C*, then a C? solution of (9) is C* admissible. If
Fisonly C™*r > 1,0 < a < 1, the solution is C**7+*,

Proof. At Q a point of M, where ¢, a C? solution of (9), has a minimum,

9359(Q) > 0 for all directions A. So at Q, ¢’ is positive definite. By continuity,

no eigenvalue of g’ can be zero since M(¢) > 0. Hence ¢ is admissible.
Consider the following mapping of the C? admissible functions to C°:

(10) [':p — F(p, ) — logM(p).
[ is continuously differentiable. Let dl', denote its differential at ¢:
(11 dT,(¥) = F(, 20 + Ay

A, is the Laplacian in the metric ¢; A, = —g"*# 8,5, where g"*# denotes the
components of the inverse matrix of g, ;. Fy means 0F/0t.

Since ¢ is admissible, Equation (9) is elliptic at . Hence, by Theorem 3.56,
@ € C? implies ¢ € C™. If F'is only C™(r > 1), belongs to C*™+*. N
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4.2. About Uniqueness

7.13 Proposition. Equation (9) has at most one C? solution, possibly up to a
constant, if F{(t,x) > 0 forall (t,x) € I x M.

In particular, Equation (8) has at most one C? solution when \ < 0, while the
solution is unique up to a constant if A = 0.

Proof. This follows from the maximum principle (Theorem 3.74). Let ¢y and
¢, be two solutions of (9). According to the mean value Theorem 3.6, there
exists a function 4 (0 < 8 < 1) such that ¢ = ¢, — ) satisfies

(12) ALY+ F(v,2)Y =0 with y=p1+0(2 - 1)

Since F/ > 0, Equation (12) has at most the constant solutian.
If F/ > 0, (12) has no solution except zero. u

§5. Theorem of Existence (the Negative Case)

7.14 On a compact Kahler manifold, Equation (8) has a unique admissible C¥+
solution if \ < 0 and f € C***. The solution is C*® if f € C*°.

Proof. We shall use the continuity method. For t > 0 a parameter, let us consider
the equation:

(13) logM(p) = —Ap +tf,

with f € C**o_If for some t, Equation (13) has a C? solution ¢, then o is
unique, admissible, and belongs to C3**, by Proposition 7.12 and 7.13.

a) The set of functions f, for which Equation (8) has a C™** solution is
open in C3*,
To prove this, let us consider T, the mapping of the set © of the C*** admissible
functions in C** defined by:

C** 5039 5 -p — logM(p) € CH*e.

logM(¢) € C** since ¢ is admissible and M(y) involves only the second
derivatives of .
" is continuously differentiable; its differential at ¢ is

dlp(¥) = =M + Ayt

Indeed for ¢ given, ||dT,(¥)|3+a < Const X ||[¢||sie and C** D 6 3 ¢ —
dl', € £L(C%**,C*®) is continuous since C>** D © 3 ¢ — g € CM*°
is continuous. By Theorem 4.18 the operator dI',, is invertible since —A > 0.

Indeed, we can write the equation dl',(¥) = f in the form:
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=V, [M(p)g"™*V z0] + AM(p)p = FM().

Since C*** and C3* are Banach spaces, we can use the inverse function The-
orem 3.10. Thus if ¢ € C*** satisfies

logM(@) = A¢ + f,

there exists ¥", a C*** neighborhood of £, such that Equation (8) has a C*©
solution when f € ¥,

Return to Equation (13), where f is given. Because o = O is the solution
of (13) for ¢t = 0, (13) has a solution for some interval t € [0, 7[, where 7 > 0.
Let T be the largest real number such that Equation (13) has a solution for all
t € [0,7[. If 7 > 1, then ¢, is the solution of (8) and Theorem 7.14 is proved.
So suppose 7 < 1, and come to a contradiction.

b) We claim that the set & of functions ;, t € [0, 7[, is bounded in C%*,
O<a<l).
If ¢; has a maximum at P, then M(p;) < 1. Indeed in a local chart for which
ga(P) = 8% (5f\‘ the Kronecker tensor), and 8, = 0 for A # , at P, we have
M(ypt) = H:\"zl(l + 0,5¢) < 1, since all the terms are less than or equal to 1.
Thus A (P) +tf(P) < 0.
Similarly, we prove that if ¢; has a minimum at @, then M(¢;) > 1 and

Ap(Q) +tf(Q) 2 0.

Hence sup |p;| < (1/A)sup|f|. The set # is bounded in C° According to
Proposition 7.23 below, # is bounded in C**2.

c) We now show that (13) has a solution for ¢t = 7 and hence for some ¢ > 7
by a). This will give the desired contradiction.
According to Ascoli’s theorem 3.15, the imbedding C*** C C? is compact.
Thus there exists ¢, € C? and t; — 7 an increasing sequence such that @.,
converges to @, in C2.
Letting i — oo in logM(ypy,) = Agy, +t;f we prove that @, is the solution
of (13) for t = 7. According to the regularity theorem ¢, € C>*®, and the
contradiction follows from a), since (13) has a solution for ¢ in a neighborhood
of 7. |

§6. Existence of Einstein—Kihler Metric

7.15 Theorem (Aubin [18]). A compact Kdhler manifold with negative first
Chern class has an Einstein—-Kdahler metric (all the Einstein—-Kihler metrics are
proportional).

Proof. According to 7.8, finding an Einstein—K&hler metric when C,(M) < 0 is
equivalent to solving Equation (8) with A > 0. By Theorem 7.14, Equation (8)
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has a unique solution. Thus there exists a unique Einstein—Kéhler metric whose
Ricci curvature is equal to A (we must choose g such that Aw € C,(Al)).

7.16 An application of the preceding theorem is the proof of the following,
which is equivalent to the Poincaré conjecture in the case of a compact Kihler
manifold of dimension 4:

Theorem. A compact Kihler manifold homeomorphic to Py(C), the complex pro-
Jectif space of dimension 2, is biholomorphic to P,(C).

In their proof, Hirzebruch-Kodaira [143] supposed that the first Chern class
is nonnegative. This extra hypothesis can be removed, as Yau [276] pointed
out.

If C;(M) < 0, by Theorem 7.15 there exists an Einstein—Kéahler metric. Some
computations done with this metric (see Yau [276]) lead to a contradiction: the
manifold would be covered by the ball and could not be simply connected.

§7. Theorem of Existence (the Null Case)

7.17 On a compact Kéhler manifold, Equation (2) has, up to a constant, a unique
admissible CT™*** solution (respectively, C®) if f € C™*, r > 3 (respectively,
[ e C™).

Proof. We shall use the continuity method. For ¢t > 0 a parameter, let us consider
the equation:

(14) M(p) — 1 =tef — 1)

with f € C3** satisfying [e/ dV = [dV.

If for some t (0 < t < 1), Equation (14) has a C? solution ¢, then it
is unique up to a constant, admissible, and belongs to C5**. Indeed M(y;) =
(1 -t)+tef,sofortina neighborhood of [0, 1], M(y;) is strictly positive and
we can apply Propositions 7.12 and 7.13.

Set C™ = {f e C™*/ [ fdV =0}.

a) The set of the functions h € C3* for which the equation
M(p) —1=h

has a C%** admissible solution is open in C3*+2.
Let us consider the mapping I" of the set © of the admissible functions belonging
to C3** in C** defined by

C** 503505 Myp)—1e >

T is continuously differentiable; its differential at ¢
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dT () = M)Ay,

is invertible. Indeed, [M(p)A % dV = [ AL ¥ dV’ =0.
Since C5*® and C** are Banach spaces, we can use the inverse function The-
orem 3.10. Thus if ¢ € © satisfies M(@) ~ 1 = h there exists ¥, a C3*
neighborhood of & in C3**, such that equation M(¢) — 1 = h has a solution in
© when h € ¥

Return to Equation (14). Because o = 0 is the solution in © of (14) for
t =0, (14) has an admissible solution for t € [0, 7[, 7 > 0. Let 7 be the largest
real number such that Equation (14) has an admissible solution ¢; € © for all
t €[0,7[. If 7 > 1, then ¢, is the desired solution of (6) in ©.
So we suppose 7 < 1 and come to a contradiction.

b) We claim that the set Z C C2*< of the functions s, t € [0, 7[, is bounded
in C%*,
Let us prove that & is bounded in C°. Then by Proposition 7.23 below, £ is
bounded in C***. Repeating the proof in 7.14c then establishes Theorem 7.17.
The idea is to find a bound, uniform in t and p > 2, of |||, for0 <t < 7 < 1.
Then ||¢:|l, < v and letting p — oo will imply sup |¢;| < . For simplicity we
drop the subscript t.

Setting h(y) = ¢|@|P~2 in Proposition 7.18 below yields:

-1
(15) 4%}; / VY |0l ?V, [P dV < / [1 — M)lplelP~2 dV.

According to the Sobolev imbedding theorem, there is a constant, independent
of p, such that

1l lm/om—1) = | kP |3 g1y < Comstx (V1?23 + [io[13)

This inequality together with (15) leads to
16 NePlmsins <€ (o [loP™av+ [P av),  @>D

where C is a constant, since M(y) is uniformly bounded; we pick C > 1. The
desired result, |||, < «v for all p and ¢ € &, will follow from:

Lemma. There exists a constant v such that for all real numbers p > 1 and all
pE B:

(17) llell, < @™~ 'Cp)~™/7

witha=m/(m — 1) and C = C(1 + VV/P), C the constant of (16).

Proof. Because ¢ is admissible, then Ay < m. Thus ||Ag|l; < 2m [dV,
since [ AgpdV = 0. According to Theorem 4.13, as [ dV =0, there exists a
constant Cp such that |[¢||; < Col|A¢p|1 < 2mCyV. Picking p = 2 in (15) gives
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[Vell2 < Const, since M(e) is uniformly bounded. Hence |j¢[l, < Const, by
Corollary 4.3 because [ pdV =0.

Choosing p = 2 in (16) yields |[¢]l2m/m-1) < Const. By the interpolation
inequality 3.69 there exists a constant k such that [¢|, < k for 1 < ¢ <
2m/(m — 1).

Set v = ka™™~DC™mem/¢ Then we can verify that inequality (17) is satisfied
for 1 < p < 2m/(m — 1). Either ||¢p||, is always smaller than 1, and there is
nothing to prove (we pick & > 1 and (17) is satisfied); or else, for some D,
loll, > 1 and then by Hélder’s inequality [ |p|P~'dV < [|@||B~!([ dV)!/P <
VP [lolPdV.

Inequality (16) becomes

1/a
(1ot dv) <cp [loPav

and inequality (17) follows by induction:
/ |pP* dV < (CP)* P (@™ Cp) ™™ = yP*(@™ ' Cpa) ™™
since alm — 1)=m, (- 1)m —-1)=1. [

7.18 Proposition. Let h(t) be a C' increasing function on R. Then all C?* ad-
missible functions ¢ satisfy:

1
(18) / [1 - MA@ dV > — / K@V oV, dV.

Proof. In the notation of 7.8,
ﬂ,m
/ (1 - M)AV = = / h)W™ - w'™).

But w™ — w'™ = (i/4m)dd°p A (W™ + W™ AW 4 -+ w™ ). Applying
Stokes’ formula leads to

/ )™ - w'™)
i

= E/h'(go)&p/\dccp/\(wm"l +Wwm AW+ -+ W™

. m-1
> m- D! ( : ) (=20 / R (@)Y 9V 0 dV,

T \2r

which gives (18). [ |
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§8. Proof of Calabi’s Conjecture

7.19 Theorem. On a compact Kdhler manifold, every form representing C, (M)
is the Ricci form of some Kdhler metric.

To each positive cohomology class there corresponds one and only one metric.
In particular, if by(M) = 1, the solution is unique up to a homothetic change of
metric.

Proof. Let g be the Kéhler metric, w its first fundamental form, and v € C,(M).
According to 7.7, to find ¢’, with ' — w homologous to zero and ¥’ = v, is
equivalent to solving equation (2).

By Theorem 7.17, Equation (2) has a unique solution up to a constant. Thus in
each positive cohomology class we find a unique w’ whose ¥’ equals . |

§9. The Positive Case

7.20 According to (7.8), in the case Cy(M) > O there exists a Einstein-Kdhler
metric, if and only if Equation (8) with A > 0 has a C* admissible solution.

This problem is not yet solved. It is more difficult than the two preceding
cases. First, since the linear map dI', of 7.14 is not necessarily invertible, it
is not obvious how to use the continuity method. Then we must find a C°
estimate in order to use Proposition 7.23. On the other hand, Equation (8) with
A > 0 may have many solutions (see Aubin [20] pp. 85 and 86). For instance,
on the complex projective space, logM(y¢) = —A1p has many solutions; these
solutions come from the infinitesimal holomorphic transformations which are
not isometries. Worse, we know that some Equations (8) have no solution, since
if we blow up one or two points of projective space, the manifold obtained
cannot carry an Einstein—Kahler metric according to a theorem of Lichnerowicz
[185] p. 156 (see Yau [275]). '

We will see below that there has been great progress in the positive case
(§13 and the ones following).

§10. A Priori Estimate for Ay

7.21 Notations. On a compact Kahler manifold, let £ be a set of C3** admis-
sible functions and A real numbers satisfying |A\| < X\g. We suppose that €, the
set of the corresponding functions f = logM(p) — A, is bounded in C***.

Fy and F are real numbers such that everywhere for all ¢ € %,

Af<F and f<F.
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Proposition (Aubin [18]). There exist two constants k and K depending only on
Ao, Fo. Fi, and the curvature, such that all ¢ € B satisfy:

0O<m-— AQO < Keksa—(k-—z\/m)inf‘p.

Moreover, if # is bounded in C°, all corresponding metrics g' are equivalent.

Proof. The first inequality is obvious. Since ¢ is admissible, for all directions
Ky 9up + Ouap > 0; thus by summing over 2 we obtain m — Ay > 0.
To prove the second inequality set

A =log(m — Ap) — ke,

where k is a real number that we will choose later. Let us compute A:,A =
—g{p"ﬁ OxzA (we will omit the index ¢ below).

(19) A'A=—(m—-Ap) 'A'Ap — kA'p+(m — Ap) g MV AV A

Recall g”\f‘ are the components of the inverse matrix of ((gaz + 9xz¢)). Ditter-
entiating (8) yields:

AV,0+V,f=V,logM(p) = g"""V.,Vagso
(20) Mg - Af =g V"V, V 50 — ¢°Rg VIV, 10V, Y se.
But from 1.13,
(21) AIAQO _ glaﬁvvvuvaﬁso = Raﬁ)\ﬂ,vaﬁ(pg“\p _ R)\ﬁvi\wgluﬁ =E
and there exists a constant C such that E satisfies
(22) |E| < C(m — Ap)g™F gxp.
Write A'p = —g"\"‘(gf\‘1 — gxa) = 9"*#gxz — m and observe that
(23) g""/}g”“"V"V(,ﬁch,,V,\ﬁw > (m~ Ap) "' gV AV, Agp.
To verify this inequality, we have only to expand
[(m ~ APV, V50 + ValApg, 4]
x [(m — AP)V5Vapp + Valpghs] g2 g Pg¥™ > 0.
(19)—(23) lead to
(24)  A'A<k(m—~g™gy) —(m - Bp) (E - Mg - Af).
At a point P where A has a maximum, A’A > 0. We find, using (22),
(25) (k= C)g"Pgun < (m— Ap) ' (A + Af) +mk.

Since the arithmetic mean is greater than or equal to the geometric mean,
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1— Ap/m > [M(p))/™ = XetDim,

Thus at P inequality (25) yields

(26) (k= C)g"Pg,n < mk — A+ (A + Af [m)e=AetD/m,

However, g"“#g,; > m[M(¢)]""/™, so that

(27) m(k — C) = A= Af/m < (mk - NePe)/m,

Pick k such that m(k — C) > 1 +sup(A,0) + sup(A f)/m, expressions (26) and
(27) lead to: There exists a constant K such that at P

(28) (9""9us) p < Ko

K depends on Ag, F}, and the curvature through C.
In an orthonormal chart at P for which 8,,0 =0 if v # p

B 1 3 m—1
1 50 < wi < —_ hh .
+8.00 <M [ 9 _M(w)[ —1§ g J
piv uy

Taking the sum and using (28) yields at P

(m — Ap)p € m[Ko/(m — 1)]™ 1A PHIP),
Hence everywhere
(29) (m — Ap)e ™ < (m — Ap)pe P < Ke~k=A/melP)

where K is a constant depending on Ky and Fp.
The inequality of Proposition 7.21 now follows since k > A/m.

If 4 is bounded in C° that is |¢| < ko, using (29) for all ¢ € B we have
Ay uniformly bounded: |Ay| < k;. Therefore, in an orthonormal chart adapted

to @ (O, =0 if v # ),
as O > -1, Oupp <m-—1+k,

and (1+9,,9)~" < (m+ k)™ ' [M@]™! < (m + k)™ eS| Thus the
metrics g,,, ¥ € %, are equivalent to g; for all directions x

ek =sR S (4 k) "M g < gln S (Mt kg =
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§11. A Priori Estimate for the Third Derivatives of
Mixed Type

7.22 Once we have uniform bounds for || and |A¢|, to obtain estimates for
the third derivatives of mixed type, consider

(30) 2 = ¢'*P g P g1V 0V, 10V 3V Az

The choice of this norm instead of a simpler equivalent norm (in the metric g,
for instance) imposes itself on those who make the computation. We now give
the result; the reader can find the details of the calculation in Aubin (11) pp.410
and 411.

Lemma.
— A |2 =g g% g2 g (V50— V59 Vase g ™) (conjugate expression)
+ (Vabe®? = Va2 Varc£g” = VascpV j5009""")
X (conjugate expression)] — g'c‘i(Zg’“Sg"’ﬁ g’aB
+g" P g8 YT 5oV 5aa0lV 500 + £) — Rogl
+ 929 gV 510V abeO\p + ) + VooV oghp + )]
+ g:,\;zg/aé g/as g:ci[vﬁaw( R\ Vamp + Rgﬁa
+ R0
+ P9V 5oa0(g Vs Ry — ¢ VaR )

+ conjugate expression].

vAﬁc‘P

V,5,) + conjugate expression

Hence there exists a constant k, which depends on Xy, || %8| co, |||, and the
curvature such that

(31) A1) < ky([9)? + 9.

Proposition. There exists a constant ks, depending only on Ao, | 8| co, |€]|cs,
and the curvature, such that V,\ﬁ,,ch’V“’cp < k3, forall p € A.

Proof. Equations (20) and (21) give
(32) A Ap =g P gV oV, Vosp — Mg — Af +E.

As all metrics ¢’ are equivalent (Proposition 7.21), there exists a constant B > 0
such that )
g% g PV 0V, Y 50 2 Blylt.

Let h > 0 be a real number. According to (31),
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A'([Y* = hAY) < k(Y[ + |[¥]) — hBJY? + hAAg + Af — E).
Picking h = 2k, B~}, we get
(33) AP - hAp) < ~(ka/2)|Y|* + k2/2+ 2k, B~ AAp + Af - E).

At a point P where |1|?> — hAp has a maximum, the first member of (33) is
nonnegative. Thus

[Y(P)? < 1+4B7'(MAp(P) + Af(P) - E(P)).
So by Proposition 7.21, |4(P)|* < Const. Hence everywhere, |1/[> < Const.

7.23 Proposition. On a compact Kihler manifold, let 8 be a set of C* admissible
functions, B bounded in C°. Let (i, \) € B x [—Xo, Ao] with )¢ a constant, and
let
f =logM(p) — Ap.
If the set € of corresponding functions f is bounded in C3, then & is bounded
in C*** for all a €)0, 1[.

Proof. According to Proposition 7.22, the third derivatives of mixed type of
the functions ¢ € % are uniformly bounded. Hence there exists a constant k&
such that for all ¢ € # |VAyp| < k since the gradient of Ay involves only
third derivatives of mixed type. By the properties of Green’s function (Theorem
4.13), for any « €]0, 1[, & is bounded in C?*. |

§12. The Method of Lower and Upper Solutions

7.24 Suppose we have to solve an elliptic differential equation &. If there exist
a lower solution u and an upper solution v satisfying u < v we can hope to use
the method of lower and upper solutions. But for this we also need to be able to
solve an equation “close” to equation &. Thus the method of lower and upper
solutions requires an additional basic step. It is simpler to give an example.

7.25 Return to Equation (9),
(34) logM(¢) = F(p, 2),

and set S(t) = sup,¢,, F'(¢, ) and P(t) = infzep F(2, z). Recall that F(t, ) is
a C function on I x M where I =], B[ is an interval of R. We will prove:

Theorem 7.25. Equation (9) has a C* solution if there exist two real numbers
a and b belonging to I, (a < b) such that S(a) = P(b) = 0.

In this problem a is a lower solution of Equation (9). Indeed, log M(a) >
F(a, ), since F(a,z) < S(a) = 0; and b is an upper solution, log M(b) < F(b, z),
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since F'(b,z) > P(b) = 0. Moreover, a < b. Before giving the proof of this
theorem, let us establish the following:

Corollary 7.25. The equation log M(¢) — F(p, x) = 1(x) has a C*™ solution for
any function ¢ € C* if P(t) — +ooast — 3, and S(t) —» -0 ast — a.

Proof. Corollary 7.25 follows from Theorem 7.25. Indeed set Py(t) =
infzepm [F(t,z) + ¥(x)] and So(t) = sup,cp[F(t, T) + 1(x)]. These functions
are continuous and obviously P(t)+infy < Py(t) < So(t) < S(t)+supp. Thus,
when t — «, Sp(t) and Py(t) go to —oo and when t — [, So(t) and Py(t)
go to +0o. So there exists a € I such that Sp(a) = 0. But as Py(a) < 0 there
exists also b € [a, B[ such that Py(b) = 0. The hypotheses of Theorem 7.25 are
satisfied. |

If one solves the equation under the assumptions of Corollary 7.25, note that
only the behavior of F'(t,x) as t goes to « and (3 is important.

Now we give the proof of Theorem 7.25.

a) By Theorem 7.14, the equation log M(¢) — A¢ = f has a unique solution
when A > 0. With this result we will consider an increasing sequence of func-
tions converging to a solution of Equation (9). Pick A > sup[0, F}(t, z)] for all
(t,z) € [a,b] X M. According to Theorem 7.14 we can define the sequence of
functions ¢; by v =a and

35) logM(p;) — Apj = F(pj-1,Z) — Apj—1  for j > 1.

This sequence of C* functions is increasing and satisfies a < ¢; < b. The
proof proceeds by induction by using the maximum principle. We suppose that
for all i < 7, a < ;-1 < ; < b and we write:

log M(ij+1) — log M(;) — A(@js1 — 95)
= [F(pj,2) — Ap;] = [F(pj-1,7) — Ap;j-1] < 0.

The last inequality is obtained by applying the mean value theorem. The max-
imum principle implies @;41 — ¢; > 0. Moreover we can start the induction
because log M(i1) — A(¢;1 — a) = F(a,z) < S(a) = 0. Similarly

10g M(i2;41) — Mje1 — b) = [F(95,2) — Ap;] + Ab > F(b,z) > P(b) =0

shows that ¢;;; — b < 0. Therefore the sequence {‘pj}, which is increasing
and bounded, converges pointwise to a function 1 which satisfies a < 1 < b.
It remains to establish the regularity of . For this we need estimates on the
functions ¢;.

) We will prove that the set of the functions ¢; is bounded in C*** (0 <
a < 1), because then, by Ascoli’s theorem, there exists a subsequence {(p;}
of the sequence {;} which converges in C? to a function which cannot be
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different from 1. Then 1 € C?** and by the regularity theorem 3.56 ¢ € C°.
We already have the C%-estimate a < w; < b. To prove that |Agp;| is smaller
than a constant independent of j, we compute A;B where

B =log(m — Ag;) — kgj + 01 + 1],

k, o, and v being real numbers which we will choose later. Recall that A;- =
_g;*ﬁvm and ((g;'\ﬁ)) is the inverse matrix of ((gxz + Oxz;))- At a point P
where B has a maximum, we note that A;B > 0. First of all we choose v
so that the terms in A} B which involve the first derivatives of p;_; are less
than some constant. Then we pick o large enough to control the terms with the
Laplacian of ¢;_,. Finally k is chosen sufficiently large (in particular & > o) so
that the inequality A;B > 0 at P becomes gf’ﬁ 9ap < Const. (For the details of

this computation see Aubin [20] p. 89). In 7.21 we saw that g;"BgaB < Const
at a point where B is maximum implies that the functions |Ay;| are uniformly
bounded, and consequently that the metrics g; are uniformly equivalent to g.

7) Finally we prove that the set {Ag,} is bounded in H{ for all ¢ > 1 (see
Aubin [20] p.90) by using the following inequality instead of inequality (31):

(36) | A5 2+ T3 < k(9517 + |51 151l + [51),

where |1;| is defined by (30) with ¢ = ;, and I‘? is a positive term which
involves the fourth derivatives of ;.
Hence the set of the functions {¢;} is bounded in C?** for all a (0 < a < 1).

§13. A Method for the Positive Case

7.26 A priori it seemed that it was impossible to use the continuity method in
this case, until Aubin [*7] showed how to proceed; indeed, the differential of:
@ — log M(p) + Ap is not necessarily invertible when A > 0. Still, instead of
(13), let us consider the following family of equations:

37 E; :logM(p)=—-tp+f for 7 € [g, 1], withe > 0.

By this equation we control the Ricci curvature. If it exists, let ; be a
solution of E; for some ¢. According to (1) and (3), a computation gives:

(38) = (1= Dgxz + 190z,

where Ry, ; are the components of the Ricci tensor corresponding to the metric
g¢ of components gz, ; = gxa + Oxa¢pe. According to (8), the Ricci curvature of
(M, g;) is greater than t for t < 1, and by Theorem 4.20 we know that the ﬁrs_t
eigenvalue A of the Laplacian A, = -g;*f*vAv,-, satisfies A\ > t; here gf“‘

are the components of the inverse matrix of ((g; N ﬂ)).
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7.27 Now we are in position to prove part b) of the continuity method. Define
the map I :

R x O3 (t,p) 5 to +log M(p) € C3*.

Recall that © = AN C**. T is continuously differentiable and its partial
differential with respect to  is given by

(39 [DeT(t, )| (¥) = tT — ALY ;

T is invertible for ¢ < ¢t < 1 according to Theorem 4.20, since A} > ¢. Indeed
(38) implies Rj,; — tg;,, is positive definite.

By the implicit function theorem, the map (t,) — [¢,I'(,¢)] is a diffeo-
morphism of a neighbourhood of (7, ¢,) in R x © onto an open set of R x C3te,
So, if we can solve the equation I'(t,) = f at t = 7, we can solve it when ¢ is
in a neighbourhood of 7.

7.28 Now, let us complete part a) of the continuity method. There is a difficulty:
we cannot consider equation (37) at t = 0, even if f is chosen so that [ el dV =
J dV, because Eo will have an infinity of solutions o (the solution is unique
up to a constant) and, according to (39), the map I' is not invertible with respect
to w at (0, o).

This is the reason why we consider E; for t € [g,1] with € > 0, but we
have to prove the existence of ¢, for some small €. For this we consider the
map

T:Rx0©3(y) —te+tlogM(p)+ 8 [pdV € C**, where 3> 0 is a
given real number.

[ is continuously differentiable and its partial differential with respect to ¢
is

[Dv,f‘(t,tp)] (T)=t¥ - AT + ﬁ/\Il av.

[ is invertible even at ¢t = 0. Since equation (2) has a unique solution up to a

constant, the equation log M(p) + 8 [ ¢ dV = f has a unique solution Po.
Now we apply the implicit function theorem to I' at (0, @,), and deduce

that, for some small € > 0, the equation ['(¢, ) = f has a solution ¢, € ©.
Thus . = @ + g J @< dV is a solution of E..

7.29 The estimates (part c of the continuity method).
Set & = {t € [, 1]/ E; has a solution}.

Proposition. If the set of {p,}(t € ®) is bounded in C°, equation (1) has a C*
admissible solution.

Since & is open and non empty, if we prove that it is closed, & = [0, 1]
and equation (7) has a solution. If the set {¢;} (¢t € &) is bounded in CY, it is
bounded in C*** by Proposition 7.23. Then ® is closed. Indeed let {t;} C ®
be a sequence which goes to 7(t; — 7).
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By Ascoli’ s theorem, there exists a subsequence {t;} such that ¢;, con-
verges to a function ¥ € C?** in C? when j — oo. Letting j — oo in E;;,
we prove that ¥ = ¢, thus 7 € &.

About the regularity, recall from proposition 7.12, that a C? solution of (5)
is C™ admissible.

§14. The Obstructions when C; (M) >0
14.1. The First Obstruction

7.30 Let G(M) be the group of automorphisms of M. By the Lichnerowicz—
Matsushima theorem, we obtain the first known obstruction. This theorem ([185]
p. 156) asserts that, if a compact Kéhler manifold M has constant scalar curva-
ture, then the group G(M) is reductive. Thus we obtain

Proposition. Any compact Kédhler manifold, whose automorphism group is not
reductive, does not admit a Kdhler metric with constant scalar curvature.

7.31 Application to the projective space P,,(C) blown up at one point.

Let (29, 21,...,2m) be homogeneous coordinates of P, (C).

Blowing up P,,(C) at the point @ = (1,0,...0,0), we obtain a manifold
M whose group G(M) is not reductive (see below). So M cannot carry an
Einstein—Kahler metric, although its first Chern class is positive.

We can visualize M as the set of the points of P,,(C) X P,,-1(C) such that
21/6=2/€ = ... = 2 [€m Where (€1, &2, . .. &) are homogeneous coordinates
of Ppn_1(C). We get a holomorphic mapping 7 from M onto P,,(C) such
that 7=1(Q) = D is isomorphic to P,,_;(C) and M — D is biholomorphic to
Pm(C) - Q by .

The (1-1) form (i/2m)dd" [mlog(|zo[* +r2) + logr?], with 2 = Y70 |2:]%,
belongs to C (M) which is positive definite. D = 7~1(Q) in M is an exceptional
divisor which has a unique representative cycle.

Thus G(M) consists of all automorphisms in G(P,,(C)) preserving Q. GL
(m+1,C) acts on P, (C), its kernel is K = {A\]/X € C}.

Let {€;}(j =0,1,...,m) be a natural basis of C™*'. G(M) is isomorphic
to S/K where S ={f € GL(m+ 1)/ f(eg) = Aeg with 0F A € C}.

Now a group is reductive if and only if any linear representation is com-
pletely reductible. This is not the case for S. In its natural representation Cey is
an invariant subspace which has no invariant supplementary subspace. Indeed
S is represented by the matrices ((a; ;))(j for the column) with a;, = 0 for
1 €1 < m, and the group of the transposed matrices has no invariant subspace
of dimension one.

The same argument proves that the manifolds, obtained by blowing up
P,,(C) at less than m + 1 points in general position, have non-reductive auto-
morphism groups. Conversely, the maximal connected group of automorphisms
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of P,,(C) blown up at m+1 points in general position is reduced to the maximal
connected group of automorphisms of Py, (C) preserving each of the m+1 points.
These automorphisms are represented by the diagonal matrices with |a;;| = |
for all 1.

14.2. Futaki’s Obstruction

7.32 If C,(M) > 0, we can choose the Kihler metric such that the first funda-
mental form w € C;(M). Then the Ricci form ¥ is homologous to w, so that
there exists a function F,, such that ¥ — w = (¢/2m)dd" F,, .

Denote by h(M) the Lie algebra of holomorphic vector fields. Futaki con-
siders the application of k(M) in C defined by

M) > X — f(X)=(/2n) / X(E,)w™.

Theorem (Futaki [*131]). The linear function f does not depend on the choice
of w € C\(M). Therefore, if ho(M) is the kernel of f, the number 6, =
dim [h(M )/ ho(M )] depends only on the complex structure of M. If M admits
an Einstein—Kdhler metric, then ) = 0.

In his article [*131] and his book [*132], we find examples of compact
complex manifolds with C;(M) > 0 and dimension m > 2 which are reductive
but with number 6ps = 1.

Futaki explains that his theorem is a complex version of the obstruction of
Kazdan and Warner 6.66.

Remark. We can generalize Futaki's obstruction when w & Ci(M).

Let [w] be the cohomology class of w and let F,, be a function such that
AF,=R-V-! fRdV. If there is a metric § with & € [w] and R = Const,,
then 6p7 = 0.

14.3. A Further Obstruction

7.33 If M is a compact Einstein—Kihler manifold, the tangent bundle TM satis-
fies the Einstein condition (trivial). So, by a theorem of Kobayashi [*201] (see
also Liibke [*228]), TM is semi-stable. Thus we obtain the

Proposition. Let M be a compact Kdahler manifold. If TM is not semi-stable,
M cannot carry an Einstein—Kdhler metric.
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§15. The CC-estimate
15.1. Definition of the Functionals I (i) and J(p)

7.34 We set
Io)= [olt - M) av = [eav - [pav
and 1
J(so)=(1/8)/0 I(sp)ds.

Thus, if t — ¢, is a smooth map of an interval of R in the set of C”
admissible functions (r > 2), we have

d
(40) EJ(%) = /‘/’t (1 — M(py)] dV, where ¢, = £,

This comes from the fact that 1 — M(yp) is a divergence. Here, this is easy to
verify since M () is the sum of m determinants but the result is true in general:
see M.S. Berger [*41].

I(p) and J(yp) satisfy the following inequalities (see Aubin [*7]):

(41) J(p) < I(p) £ (m+ 1)J(p);
in [*31] we find (1 + 1/m)J () < I(p).

For more details on these functionals see Bando~Mabuchi [*31]; these will
be useful for the C%-estimate. When m = 1,

1) = [ 96 av =27(0)
It is possible to prove the following

Proposition (Aubin [20]). Let h(t) be an increasing C" function on R. Any C?
admissible function  satisfies

(42) /[1 - M(p)]h(p)dV > (1/"1)/’1'(50)|V<Pl2 av.

Choosing h(t) = t, we find I(p) > (1/m)flV<,ol2 dV. Thus if ¢ # Const.,
I(p) > 0.
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15.2. Some Inequalities

7.35 Proposition. If we have an estimate of I(p) (or J(p) according to (41)),
we have the C°-estimate.

Proof. Recall that for t € &, ¢, is a solution of E; (37.
Since [ M(y;)dV =V the volume of the manifold, we have: V! J(~tp+
£dV <log [e~*f dV — log V = 0. Thus

(43) /cpt av > inf[O,s'1 /de] = kq.
Likewise, V! [(tp, — f) dV’ < log [e!¥:=f dV’ —logV = 0. Hence
(44) /cpt dV' < sup[0,e™'V sup f] = k.

Multiplying g5, = gas + Oxapr by its inverse matrix g'?*, then by g2,
we get:
i -
m= g’tugkﬁ - Ajpr and 0< g*“gim =m — Ayp;.
Thus,
(45) Apy <m  andAjp; > —m.

Using the first inequality in the following equality (Theorem 4.13)

(46) ou(P)= V! / ordV + / G(P,Q)0p(Q)dV(Q)

where the Green function G(P, Q) of the Laplacian A is chosen > 0, we obtain:
@ P v [eavem [cR@v@=v [eav ek,

with k a constant.

Since t € [¢, 1], the Ricci curvature of (M, g;) is greater than € according to
(38). By Myers’ theorem 1.43, the diameter D, of (M, g;) satisfies the inequality
D, < nl@m - 1)/e]'/*.

Consequently, Theorem 4.32 (or inequality 37 of 4.29) gives a uniform bound
from below for the Green functions G4(P, Q) of the laplacian A, with integral
zero ([ G¢(P,Q)dV;(Q) = 0):

G(P, Q) > —Const. D}V, > —k, for t € &,

since V; = [ dv;, = [ M@p)dV = [dV =V, k; is a positive real number
which depends only on m and €. Now, using the second inequality (45) in
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eu(P)=V"! / e dV; + / [Gu(P, Q) + ko] Al (Q)dV/ (Q),
we get:
(48) o(P)> V™! / w0 dV, — mk,V.
Thus, since I(p) < K yields [, dV < K +k; by (44) and [, dV' >
ko — K by (43), using (47) and (48), we obtain:

V- lky — K) —mkyV < 0(P) < V™YK + ky) + k.

From (47) and (48) we deduce the following

7.36 Proposition. On (M, g) a compact Kahler manifold, let us denote by
A:(e > 0) the set of the functions ¢ € A such that R’Aﬁ - eg:\ﬁ >0 is
defined in (1)). There exists a constant k, depending on e, such that any ¢ € A,
satisfies

(49) —V"I((p)-kS(p—-V‘]/«pdVSk.

Remark. In [*291], Siu proves that the quantities sup(—y), supy, [ dV,
—[dV’, log [€%*dV and log [~ dV’ (¢ > 0) are comparable in the
sense that any two such quantities Q, Q' satisfy Q < AQ’ + B for some a priori
constants A and B.

Siu [*291] proves the following Harnack inequality: for each € > O, there
exists C(¢) > 0 such that

sup(—¢¢) < (m + €)sup p; + C(e),

where ¢, satisfies (37) for t € [¢, to[. The proof is by contradiction. This result
was improved by the following:

Theorem 7.36 (Tian [*301]). There exists a constant C(t) such that, for any C?
admissible function  satisfying [ e/~ dV =V, the solution @, of (37) satisfies

sup( — ;) < msup(yp; — ) + C(2).

Therefore, if the initial metric is Einstein-Kéhler, any C* admissible function
Y with [e~¥dV =V satisfies

supy < —minfy + C.

Indeed, in this case, ¢; = 0.
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7.37 To proceed further, we need an inequality concerning the exponential func-
tion for admissible functions with integral zero.

For the dimension m = 1 (see Aubin [*9], p.155), any function ¢ with
[ ¢ dV =0 satisfies

/e“"dV SConst.exp(%/V“g&V,de).

Recall that we are on a Kahler manifold, so fV"(pVUgo dV is one half of
J Vi¢V;pdV on a Riemannian manifold (here the best constant is not /16
but 7/8).

By analogy we will suppose that any C*° admissible function with zero
integral satisfies:

(50) /e“” dV < Cexp[€I(y)], with C and € two constants.

With this inequality, we obtain the CP-estimate (Aubin [*7]), see below.

Since we will apply (50) to the functions y; (solutions of (37)), it is necessary
to prove (50) only for the functions ¢; — V™! fQOg dV, or more generally for
the functions in A, with zero integral (A, is defined in 7.36).

In our case C; > 0, w € C}, we can conjecture that the best constant ¢
(€ = inf € such that a constant C exists) is the one we found for the ball (see
8.30): £ = m™mlnr ™ (m + 1)72m 1

15.3. The C%-estimate (Aubin [*7])
7.38 Set z(t) = fcp, dV, y(t) = J(p;) and z(t) = I(ps) for € < t € &. Recall

that ¢, is a solution of E; (37).
Differentiating with respect to ¢ the equality [ e~ *¢«*f dV =V gives

/(-cpt —tp)M(py)dV =0, where ¢; = dy;/dt;

hence, according to (40),
(51 2(t) —z(t) +t@y — ') =0.
We have then:

V= /e—t¢t+f av < es“Pf-th"’ /e_t((Pt—ZV_])dV.
Using Holder's inequality and (50), we deduce:
t
Ve¥ s/ < (/e_(‘ﬂt—%)dV) V=t < GVt exp[teI ()]

thus
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(52) z < k3 +V&z, with k3 a constant.
From (51) and (52), we also have
(53) Y -z’ =@ -2/t <ks(eVE ' +z[1 - (VO

If V€ < 1, since z > ko by (43), we have that y' — 2’ < Const. and
y(t) — z(t) < k4. This inequality, together with (41) and (52), gives

y(@®[1 = (m+1)EV] < ks + ka.

Hence if (m + 1)V < 1, we have y(t) < Const. and an estimate of z(t) =
I(y¢) since z < (m+1)y by (41). Then, according to Proposition 7.35, we obtain
the C?-estimate and, by Proposition 7.29, the

7.39 Theorem. If for some C and some £ < 1/(m + 1)V, the functions
wt — V7! [0, dV satisfy inequality (50) when w € Ci(M), then there exists
an Einstein—Kdhler metric. Recall that @, is a solution of E4(37).

15.4. Inequalities for the Dimension m = 1

7.40 Theorem (Aubin [*9]). Let M be a C* compact Riemannian manifold of
real dimension n = 2. Define

5u={<p602//<pdV=0 and /|A<p|dV§2u}.

Given o < 4w [y, there exists a constant C, depending on'V, a and p, such that
any @ € £, satisfies

(54) /e“"“’ av < C.

Proof. We can suppose that [ |A@|dV = 2pu, from which the general case
follows. Let G(P,Q) be the Green function of the Laplacian A such that
G(P,Q) > 0. Write G(P,Q) = —(1/2m)log f(r) + F(P,Q) with f(r) =
r = d(P,Q) in a neighbourhood of » = 0, f(r) increasing and f(r) = 6/2
for r > & the injectivity radius. ¢(P) = [G(P,Q)Ap(Q)dV(Q) implies
—p(P) < — fA¢<0 G(P,Q)Ap(Q)dV(Q) and we have — fA¢<0 ApdV < pu
since — fA¢<oA‘PdV = fA<p>0 ApdV.

(P,Q) — F(P,Q) is a continuous function on M x M, thus |F(P, Q)| < a,
for some constant a. Hence, for any real number o > 0, we have

e¢ <emoxp [ (—au/2m[iog f)](~Dp/i)dV.
Ap<0

This yields
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e < eaau/ [f(T‘)] —O‘IJI/27F(__A(P/“) dv.
Ap<0
For o < 4w /p, e~*¥ is integrable and

/e“"‘“‘ dV < e*** sup [f(r)ra”/h dV(Q) < Const..
PeM

7.41 Corollary. Let M and £, be as in Theorem 7.40. Suppose there exists a
group G of isometries such that each orbit admits at least k > 1 distinct points.
Then, for B < 47k/p, the G-invariant functions ¢ € £, satisfy

/e'ﬁ“’ dV < Const..

7.42 The case of the sphere S,. Let (S, go) be the sphere endowed with the
canonical metric gq. Its sectional curvature equals 1 and V' = 47. ¢ is admissible
if its real Laplacian satisfies Ay < 2.

Set @ = —(1/4r) [ pdVp. @ satisfies (54) if a < 1/2 (here p = 87). More
generally:

Proposition. Let g’ be a Riemannian metric on S,, and V' be its volume. When
B < 2n/V', any function @, admissible for ¢', satisfies

/e'ﬂ“" dV < Const. .

15.5. Inequalities for the Exponential Function

7.43 We could think that inequality (54) is special for the dimension m = | and
comes from the particularity of the Green function. In fact inequality (54) holds
for the admissible functions when m > 1. This was shown by Hormander [148]
and Skoda [*292] for the plurisubharmonic functions.

7.44 Theorem (Hoérmander [148]). There is a constant C such that any plurisub-
harmonic function v in the unit ball in C™ with {(z) < 1 when |z| < | and
¥(0) = 0, satisfies

(55) / e gV < C.
|z|<1/2
Proof. When m = 1, the Green function for zero Dirichlet data, on the unit ball

in C™ endowed with the euclidean metric, is —5; log( lz= 5' ) According to
(22) in 4.17 we have
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|z - ¢ > (1 - 2%
2mp(z) = ! = )lay|d 2y dl.
TP(2) /|5l<l 0g<|1_Z£I 1A S+/|s|=| P Y

Choosing z =0, we obtain
(56) o<~ [ (ogle)iavids= [ wedr<an
lgl<1 [€l=1

Thus
/ l[W(&)ldl < 4n and, when |2| < 1/2,
[€]=1

(57) ,/ (1 = |2)*)|z - €|~y dl | < 127
[€]=1

Choosing p so that 1/2 < p < e™!/2, we have according to (56):
(58) a=/ |Ap|ds/2m < —~1/logp < 2.
l€l<p
Then, for some C, when |z| < 1/2

<cC.

(59) \(1/270/ log(|z — &|[1 = 2€|7")|Ay| ds
1€1>p

Using the inequality exp| [, fdV/ [, dV] < [,e/ dV/ [, dV, we obtain
for |z| < 1/2, according to (57) and (59):

e V@ < exp [6 +C +/
13

o€ [ Jagme1 - s || ds/am.
[€l<p

—alog(lz — €1 - z§|"1)|Aw|ds/27ra]

I<p

Summing up, we have proved Theorem 7.44 for m = 1 since o < 2.
When m > 1, we can apply the preceding result to any complex line through 0.
Introducing polar coordinates (r, () we have

/ e~V gV (2) = do(0) rm=2=%w() ds(w)/2m
lz|<3 Som-1 lwl<}

where w € C and do({) denotes the surface area on the unit sphere S, ;.

7.45 Corollary. Let Br = {z € C™/|z| < R} and X > 0 be a real number.
There exists a constant C which depends on m, X and R such that any plurisub-
harmonic function v in Bpg, with ¥(0) > —1 and ¥(z) < 0 in Bp, satisfies
flz!<r,, e~ M) dV < C, where ry < Re™ 2.
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Proof. By an homothety, we have to prove the inequality for R = 1 and
1 = 1o/R. In the proof of Theorem 7.44, if we want an estimate of the
integral of e~*¥, we must have Aa < 2.

The inequality (58) is valid: a < —1/logp, and we must choose 71 < p.
Thus we have \a < 2 if 7 < e 2,

7.46 Proposition (Tian [*300]). Let (M, g) be a compact Kiihler manifold. There
exist two positive constants o, C depending only on (M, g) such that

(60) / e~*dv < C
M

for each C? admissible function @ with sup ¢ = 0 (or with [ dV = 0).

Proof. Choose 5r smaller than the injectivity radius of (M, g) and z; points of
M (i=1,2,...N) such that M = U¥, B, (z;).
Since sup ¢ = 0, we have, according to (47):

/wdvz —kV.

Thus supg_(,,) ¥(z) 2 —kV [Vol Br(:c,-)}_l; let y; € Br(x;) be such that

P() > —kV[Vol B(zy)] ™ = —v.

Choose the Kihler potential 1; of (M,g) in Bs,.(x;) such that ¥;(y;) = 0
and set C = sup; supp, (., [%:i(z)|-

We will apply Corollary 7.45 with 7y =2r, R =4r and A =1 to the function
Y = a(p+1¥; — C) with a = (v + C)~! . We verify that p +1; — C < 0 in
Bar(y:) C Bsr(z;) and (y;) + ¥i(y:) — C > —(v + C). So

/ e~ “@+¥i~C) gy < Const. .
B (y:)

Summing up, since By(z;) C Bar(y;), we obtain (60), when sup ¢ = 0 and,
in fact, for any C? admissible function positive somewhere. This is the case
when [ dV =0.

The converse is true; since — [ @ dV < k by (17), setting g = p—3; [ ¢dV,
we have [e"*?dV < [e™*¥dV < ek [e~ ¢ dV.

Remark. a(M,g) = a(M,g’) if g and ¢’ belong to the same Kihler class. In
the case C1(M) > 0, we will write a(M) for a(M, g) with w(g) € C|(M).

7.47 Theorem (Tian [*300], see also Ding [*116] and Aubin [*8]). A compact
Kdhler manifold (M, g) of dimension m with Ci(M) > 0 admits an Einstein—
Kahler metric if (M) > m/(m + 1), when w € C,(M).

Proof. Adding —V~! [ ¢, dV to both members of inequality (18) yields
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61) - [‘Pt -y /<pt dV} < V7 () + mk,V.

If a(M) > 1, (60) implies (50) with £ = 0. Indeed

/exp{—cpt+‘—1/-/<pth} % SCexp{%/wth~supcpt] <C.

If a(M) < 1, we apply to ¢ =, — V! [, dV the inequality
/e—w 4V < e(l—a)SUP(—¢)/e—a¢ 4V

By virtue of (60) and (61), we obtain (50) with £ = [1 - a(M)]V". More-
over the hypothesis on (M) implies £ < 1/(m + 1)V. The conditions of The-
orems 7.39 are satisfied, hence there exists an Einstein—K#hler metric.

§16. Some Results

7.48 Let (M, g) be a compact Kihler manifold with C, (M) > 0. How to know if
(M, g) carries an Einstein-Kahler metric? At first, there may exist an obstruction,
see §14. If there is none, we can compute (M) to see if a(M) satisfies a(M) >
m/(m + 1) in order to apply Theorem 7.47. However, this procedure may not
be viable: in fact, for the simplest Kahler manifold P,,,(C), which does carry
Einstein-Kahler metrics, a(Pn(C)) = 1/(m+1) (see Aubin [*9] and Real [*275]
for the proof). In dimension m = 1, on the sphere S;, Moser (see 6.65) found
the same difficulty. Here, if the Kahler manifold has some symmetries, we can
hope to solve the problem, considering in (60) only functions ¢ having these
symmetries.

7.49 Definition. Let G be a group of automorphisms of the compact Kahler
manifold (M, g) with w € C;(M) > 0, wG-invariant. We define ag(M) =
sup o, for o such that any G-invariant admissible function ¢ with fnpdV =0
satisfies ['e~2¥ dV < C for some constant C' which depends on o, G and M.

Suppose (M, g) has a non trivial group of automorphisms G. We can ap-
ply the continuity method in 7.10, considering instead of ©, the set © of the
G-invariant functions in © = AN C***, and instead of T, I from R x & into
C¥™ the set of G-invariant C>** functions.

D,T(t, @) € L(CE*,C¥*) and it is inversible for ¢ < t < 1. Thus the
functions ¢, belong to AN C&. For more details see Real [*274].

Thus, to obtain the C?-estimate, we only have to verify that G-invariant
admissible functions with [ ¢ dV = 0 satisfy (60). Proposition 7.29 then implies

7.50 Theorem. If ag(M) > m/(m + 1), the compact Kihler manifold (M, g),
with g G-invariant and w € C1(M) > 0, carries an Einstein—Kdhler metric.
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7.51 Proposition (Real [*275]). ag(Pm(C)) = 1 where G is the compact sub-
group of Aut P, (C) generated by the permutations ;. of the homogeneous
coordinates together with the transformations v;6, j = 1,2,...mand § € [0, 2]

Y6 [zo,...zj,...zm] — [zo,...,zjeio,...zm]

Ok,j [zo,...zj,...,zk,...zm] — [zo,...,zk,...,zj,...,zm].
Proof. The Kihler potential is K = (m + 1)log(1 + Y, x;), where x, = |z,]%,

in Uy defined by zp # 0, the usual metric is gaz = Oz0p K, (Ox = 9/0zy).
Since idd” (K + ) is positive definite,

0 (K + )
< - ok ulalilllh 4 0;
(62) 0x5(K + ) Bz, (z,\ 52, >
¢ is admissible and supposed to be a function of z;,z,...,z,,, moreover

J@dV =0. From (62) we obtain

oK +
(63) OS _(—“ﬁ)'( l;-’EZ»---,xm)Sm"'l
oz;
for (z1,Z2,...,Zm) € (R})™. Indeed the expression of K gives

(xia—K> =0 and <I18K) =m+1.
azi z;=0 31:1 Z;=+00

)

Moreover (Ii%)xw = (zi%)2,=+oo =0 and x,—ﬁxiz— is increasing in ;.

Now, for (z,z2,...,Zm) € E =]0,1]™

64)  (K+@)1,. ., Tm) — (M + l)log(H:m) > (K +¢)1,...,1)

i=1

since, according to (63), the partial derivatives of the left hand side of (64) are
<0.

Since ¢ < k (47), — [, o0 dV = [ opdV < kV. Consider L =
(1/2,1]™ C Pn(C), —kV < [, 9dV <V sup,c; w(z) = V(y) for some
point y € L.

Hence (K +¢)(y) > —k and, since K +¢ is increasing in each of its variables
(according to (63)), (K +¢)(1,...,1) > —k.

Thus, for all (zy,...,zm) € E:

(65) —(K+cp)(x1,...,xm)Sk—(m+l)log(Hxi).

i=1

Henceforth, we suppose ¢ € Ay, the set of admissible G-invariant functions
with zero integral. For (zy,...,z,) € E, Real proves that
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~(K + Q@1 Tm) < ~(K + 9)E,...6) where € = <Hz)

1=

and
—(K+9)§,...) +mlogé < ~(K +p)(1,...,1).

Thus, and this is the analogous of (65), for (z),...,zm) € E,

(66) (K +)z1,...,Tm) <k — IOg(Hxi)

i=1

It is now possible to complete the proof. For ¢ € A,

/ e~ dV = (m+ 1)/ e~ Y™ (with w= —de”K)
Pr.(C) E 2

Choose « €]0, 1[. According to (66) and since K > 0,
1 m
/ e~ dV §(m+l)e°‘k</ t—e dt) =(m+ e (1 —a)™™.
P (C) 0

Thus ag(Pr(C)) > 1. For the details and the proof of ag(Pn,(C)) < 1,
see Real [*274].

7.52 Proposition (Real [*275)). ag@p)(Pn(C)) > inf{l, 25} where G(p) is

the compact subgroup of Aut Pp,(C) generated by the permutations o . and ;g
with 8 =27 /p, p € N*,

For the definition of o, and -y; ¢ see Proposition 7.51. Picking p=m + I,
we do not have an alternative proof of Proposition 7.51. Indeed, for the proof,
Real uses the result of Proposition 7.51.

7.53 The dimension m = 2. The compact complex surfaces with C;(M) > 0
are: P,(C), S; x 53 and P,(C) blown up at k generic points (1 < k < 8).

We saw (7.31) that if £k = 1 or 2 the corresponding manifolds have no
Einstein—K#hler metric. Tian and Yau [*303] proved that for any k (3 < k < 8)
there is a compact complex surface of this type (with k exceptional divisors)
which has an Einstein—Kahler metric.

Siu [*291] solved also the case k = 3. The following theorem solves entirely
the case m = 2.

Theorem (Tian [*302]). Any compact complex surface M with Cy(M) > 0
admits an Einstein—Kdéhler metric if its group of automorphisms is reductive.
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7.54 Conjecture (Calabi). Any compact Kdhler manifold with C1(M) > 0 and
without holomorphic vector field has an Einstein—Kahler metric.

In [*71] and [*72] Calabi studied the functional [ R?dV when g belongs to
a given cohomology class. Note that [ RdV = Const. since [ RdV =™ [¥A
w™~! where ¥ is the Ricci form and w the first fundamental form (sece 7.1).

Let [w] be a fixed class of Kahler metrics. The Euler-Lagrange equation of
S(g) = [ R*dV when g € [w] is VoVgR =0 (or equivalently V4 V3R = 0),
That is to say, the real vector field on M

; 8 9
= g%* —_— -R——
X=g (VARazﬁJrv“RazA)

generates a holomorphic flow (possibility trivial, if R is constant).

After this, Calabi proved that, if § is a critical point of S(g), then the second
variation of S(g) with respect to any infinitesimal deformation with 6g,5 = 9, 5u
is effectively positive definite (it is zero if and only if 8g,s is induced by a
holomorphic flow).

The problem of minimizing [ R?dV for all Kéhler metrics in a given class
is very hard. Solving it when Cy(M) > 0 and [w] = C(M) would prove the
conjecture. Indeed, if R = Const. and Ryz = iz + Oxpf, we have f = Const.
and § is an Einstein—Kéhler metric.

To illustrate his study on S(g), Calabi [*71] minimized S(g) on P, (C) blown
up at one point. This Calabi conjecture is proved for m =2 (Theorem 7.53). In
[*302] Tian discusses the problem when m > 2.

7.55 Fermat hypersurfaces Xm p.
Xmp= {(zo, e Zma1) € P (©)/28 +...+ 25, = 0}

where p is an integer satisfying 0 < p < m+1. Ci(Xpm p) > 0, the restriction of
K = (m+2-p)log(|20)|*+...+|zm41|*) t0 Xpm p is the potential of a Kahlerian
metric whose first fundamental form belongs to C1(Xm p).

Tian [*300] and Siu [*291] prove that X, m+1 and X, » have an Einstein-
Kihler metric. Tian proves that ag(Xmp) > m/(m+ 1) if p=mor m + 1.
Here G is generated by o, and v;¢ with § € [0,27] (see 7.51). Siu applies
his method. ¢ being an admissible function, Siu [*291] considers restricting ¢
to algebraic curves in M. When m = | we saw (§15.4) that we can obtain the
C?-estimate by using the Green function. If the curves , considered by Siu, are
invariant under a large group of automorphisms of M, the C°-estimate obtained
is sharp enough to infer the existence of an Einstein—Kihler metric (compare
with 7.41 and 7.42, (3 is larger when the volume V' is smaller or when k is
larger).

7.56 Theorem (Nadel [*248], Real [*274]). The Fermat hypersurfaces X, p
with 1 + m/2 < p < m+ 1| have an Einstein—Kahler metric.
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Real proves that ag(Xm,p) > 1 when p > 1+ m/2, by using Proposition
7.52; he then applies Theorem 7.50. For the proof of Theorem 7.56, Nadel uses
the following:

7.57 Theorem (Nadel [*248]). Let (M, g) be a compact Kihler manifold with
Ci(M) > 0 and let G be a compact group of automorphisms of M. If M does
not admit a G-invariant multiplier ideal sheaf, M admits an Einstein—Kdhler
metric.

The proof proceed by contradiction. If M does not admit an Einstein—
Kihler metric the C%-estimate fails to hold. We saw that inequality (60) with
a > m/(m+ 1) implies the C%-estimate for the functions ;. ; solution of E,
(37) is G-invariant.

Hence for each @ € Jm/(m+1), 1[, there exists an increasing sequence {tx }
(tx < 1) such that g = ¢;, — sup g, satisfies:

/e_‘"‘"‘ dV — oo when k — oo.

After S = {px} is replaced by a suitable subsequence, we may find a
nonempty open subset U C M such that fU e~ ¥k dV < Const..

Then, Nadel introduces the coherent sheaf of ideals I, on M, called the
multiplier ideal sheaf (in particular I, is not equal to the zero sheaf of ideals
and is not equal to all of fas). It is defined as follows: for each open sub-
set U C M, I;(U) consists of the local holomorphic functions f such that
Jy |fI?e=¢x dV < Const. for all k.

Various global algebro-geometric considerations lead to a contradiction.

7.58 Other results. Nadel [*248] uses his theorem to prove that the intersection
of three quadrics in Pg(C) or two quadrics in Ps(C) or a cubic and a quadric in
P5(C) admit an Einstein—-Kahler metric.

Ben Abdesselem and Cherrier [*33] proved that some manifolds carry
Einstein—K#hler metrics. Among other things, they study manifolds obtained by
blowing up P,,(C) along ! independent subprojective spaces Py(C)(ld = m + 1).
When [ = 2 the manifold has an Einstein—Kzhler metric.

§17. On Uniqueness

7.59 By the maximum principle, we prove that equations (2) and (6) have only
one solution. Hence when C(M) < 0, there is a unique Einstein-Kéhler metric
if we fix the volume of the manifold, and when C;(M) = 0O, there is a unique
Einstein—Ké#hler metric in each positive (1-1) cohomology class of the manifold
with a given volume (Theorem 7.9).
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When C)(M) > 0, the identity component G of the group of holomorphic
automorphisms of M is not necessarily a group of isometries. Suppose g is
Einstein—Kihler; if u € G, u * g is Einstein-Kéhler so the following result is
the best possible.

7.60 Theorem (Bando, Mabuchi [*31]). If (M, g) is a compact Einstein—Kdhler
manifold with C\(M) > 0, g is unique up to G-action.

The proof involves many steps. We will give some of them and a sketch
of their proof. Let wp be the first fundamental form of the initial Kéhler metric
go. Denote by wo(yp) the first fundamental form of the metric go(w), whose
components are goxz + Oapy (¢ is supposed to be admissible for go). First we
introduce the functionals

Ig,3) = V™! / & ~ ) [wol@™ — wo@)™], and

J(p, @)= —Lip, @)+ V™! /(95 = wo(p)™,

with ¢ and ¢ admissible functions for go, V' the volume and

b
Lp,p)=V~! / [ / ¢two((pt)m] dt

where ¢; = 9 /0t, (t,z) — @i(z) being a smooth function satisfying @, = ¢
and @, = @.

We verify that L(p, ¢) does not depend on the choice of the family ¢, as
M(p, @) defined by

b

(67) M, p) =V~ / [ / (m - Rt)‘ptwo(‘Pt)m} dt,
where R; is the scalar curvature of the metric go(¢:).

When ¢ = 0, we recognize Aubin’s functionals I(y) and J(yp) (see 7.34) in
I(p,0) and J(p,0) respectively.

Bando and Mabuchi prove many properties of these functionals such as (41)
and

d
(68) T [100,¢:) — J(0, )] = V™! /Sbt [Au. et |wolwd)™.

7.61 The family of generalized Aubin’ s equations on (M, go) is defined by
(69) log M(ipe) = =ty — L(O, 1) + f

where f is the function satisfying (3) and [e/wf* = [wI* = V (we suppose the
manifold is positively oriented). (37) is the original family of equations.

For t = 0, equation (69) has a unique solution g. g satisfies L(0, o) =0,
and the Ricci form of wo(yop) is wy.
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Lemma 7.61 (Bando—Mabuchi [*31]). Let {¢:} be a C™ family of solutions of
(69) on [a,b] (0 <a < b<\), then

d
1(0,01) — J(0,00)] > 0.

(70) 7 [

Proof. A computation leads to

d 1 ; , ;
7 [10,00) — J(0, )] = v /[Awa(‘pg)ﬂat — t¢e] [Awpipotewoleo)™.
According to Theorem 4.20, the right hand side is > 0.

Theorem 7.61 (Bando-Mabuchi [*31]). Let {¢,} be a C™ family of solutions
of (69) on [a,b] (0< a < b< 1), then

du(t) d
T = —(1 - t)E[I(O’Wt) - J(O: (Pt)] <0

where pu(t) = M(0, ;).

(71)

Proof. Multiplying (38) by the inverse of the metric go(y;), we have
Ry =m+(1 —t)Au (opt. (71) follows from (68), since

dutt)

pra /(m — Re)prwolpy)™.

7.62 Theorem (Bando—Mabuchi [*31]). Any solution ¢, of (69), 0 < 7 < 1,
uniquely extends to a smooth family {¢.} of solutions of (69), 0 < t < 7+ ¢ for
some € > 0. In particular (69) admits at most one solution at t = 7. Moreover if
u(t) is bounded from below T + € = 1.

Proof. According to Aubin (see 7.27), the solution uniquely extends locally. We
prove, by contradiction, that it extends until ¢ = 0 (see [*31]). Moreover if we
suppose that there are two smooth families {¢;} and {@;} of solutions of (69)
satisfying ¢, = @,, the set & of the ¢, for which ¢; = @, is open. But it is also
closed since the families are smooth. Thus & = [0, 7 + €[.

For the last part of the theorem, the hypothesis u(t) > K implies that
I1(0, ¢¢) — J(0,p:) is bounded from above. The rest of the proof is similar to
that of the first part.

7.63 Sketch of the proof of Theorem 7.60. Suppose (M, go) admits an Einstein—
Kihler metric g. Then any @ in O, the orbit of w under Aut(M), is Einstein—
Kahler.

Now any @ € O is of the form & = wo(®) for some C*™ function 1, since
wo and @ belong to C,(M).
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If the first positive eigenvalue A; of the Laplacian A on (M, go(1))) is equal
to 1, there is a necessary condition to extend ¥ = 1, to a smooth family W
of solutions of (69). Indeed v = (&), must satisfy (A — 1)v = 9. Thus
[ @™ =0 for all ¢ in the first eigenspace.

Nevertheless, using a bifurcation technique, Bando and Mabuchi prove the
existence of some § € O, such that, for every sufficiently general w € C;(M)
with positive definite Ricci tensor, there exists a smooth 1-parameter family of
solutions ¥, of (69), 0 <t < 1, satisfying

wolo)=w  and  wo(¥h)=4.

Now suppose there exists two distinct orbits 6 and 6’. Consider the families
of solutions ¢, and ¥; of (69), ¥, as before, and 1; satisfying wo() = @ and

wo(?y) € €.
According to Theorem 7.62, v, = 9;. Thus 8 = §¢'.

§18. On Noncompact Kédhler Manifolds

7.64 Since problem 7.6 is now well studied when the Kéhler manifold is com-
pact, it is natural to seek complete Einstein—Kahler metrics on noncompact
manifolds. Let us mention some references where the reader may find results
on this topic.

In [*201] R. Kobayashi generalized Aubin’s theorem 7.9 in the negative
case, to the noncompact complex manifolds. The noncompact version of Calabi’
s conjecture is studied on open manifold by Tian and Yau [*304], [*305] and
solved on C™ by Jeune [*189]. Cheng and Yau [*93] constructed complete
Einstein—Kidhler metrics with negative Ricci curvature on some noncompact
complex manifolds. Compactification of Kdhler manifolds is studied by Nadel
[*249], and Yeung [*321].



Chapter 8

Monge-Ampere Equations

§1. Monge-Ampere Equations on Bounded Domains of R”

8.1 In this chapter we study the Dirichlet Problem for real Monge-Ampere
equations.

Let B be the ball of radius 1 in R and let I be a closed interval of R. f (x. t)
will denote a C*® function on B x I and g a C® Riemannian metric on B.
Consider u(x) a C* function on § = 9B with values in I, defined as the restric-
tion to S of a C*® function y on B.

The problem is to prove the existence of a function ¢ € C*(B) satisfying:

0)) log det((Vy;0 + a;) = f(x, ), @/S = u,

where a;(x) = a;(x)(1 < i,j < n) are n(n + 1)/2 C* functions on B.

This problem is not yet solved, except for dimension two under some addi-
tional hypotheses. The reason for the difficulty is the following: for the present
it is possible to obtain a priori estimates up to the second derivatives but not
for the third derivatives in the general case. We need such estimates to exhibit
a subsequence which converges in C*(B) to a C? function which will be a
solution of (1). Then according to Nirenberg [217] the solution is C*. In the
special case when n = 2, Nirenberg [216] found an estimate for the third
derivatives in terms of a bound on the second derivatives. When n > 3 this
estimate depends in addition on the modulus of continuity of the second
derivatives.

1.1. The Fundamental Hypothesis

8.2 The hypothesis that B is convex in the metric g is fundamental: there
exists he C*(B), h/S = 0 satisfying V;;h(x)¢'¢/ > 0 for all vectors ¢ # 0 and
all points x in B.

Proposition. Under the hypothesis of convexity, there exists a lower solution of
(1): 9, € C=(B) if the right-hand side satisfies lim,._ ,[|t] " exp f(x,1)] = 0.
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Proof. Consider the functions ¢, = y + oh for 2 > 0.

They are equal to u on § and when z — 0, det((V;;9, + a;;)) converges to
o det((V;;h)). Thus, for « large enough x™"det((V;;¢, + a;;)) = Const > 0
and exp f(x, ¢,) < det((Vi;, + ay))-

Hence there exists y; € C®(B) satisfying

() log det((Vi;7, + aip)) = f(x, 71) 74/S =u [

Remark. An open question: can one remove the hypothesis of convexity for
some problems ?

8.3 The problem. For simplicity we are going to consider the more usual
Dirichlet problem for Monge-Ampére equations.

Let Q be a bounded strictly convex domain in R" (n > 2) defined by a C*
strictly convex function h on Q satisfying h/6Q = 0. Given u(x) a C* function
on 8Q which is the restriction to 5Q of a C® function 7 on Q, we consider the
equation:

3) log det((0;;0)) = f(x, @),  @/0Q =y,
where f(x, t)e C*(Q x R).

This equation was studied by Alexandrov [5], Pogorelov [235], and
Cheng and Yau [89]. These authors all use the same method, that of
Alexandrov, while the ideas for the estimates are due to Pogorelov. Under
some hypotheses they prove the existence of a “generalized” solution of (3)
(see 8.13 below) and then they try to establish its regulanty The result
obtained is the following:

If fi(x,t) >0 for xeQ and r < sup,qu, then there exists ¢ € C*(Q), a
strictly convex solution of (3), which is Lipschitz continuous on Q (Q is strictly
convex).

Here we will use the continuity method advocated by Nirenberg [222].
The continuity method is simpler and allows us to prove the existence of a
solution of (3) which belongs to C*(Q) if there exists a strictly convex upper
solution of (3) (Theorem 8.5). Unfortunately the proof is complete only in
dimension two. When n > 3, estimates for the third derivatives is still an
open question.

We are going to show, among other things, how to obtain the estimates by
using the continuity method. Pogorelov’s estimates are different.

Notation. Henceforth we set M(¢) = det((3;¢)).

1.2. Extra Hypothesis

8.4 For the continuity method we suppose that f(x,t) > 0 on @ x R. We
will remove this hypothesis later by using the method of lower and upper
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solution. But we must suppose (the obviously necessary condition) that there
exists a strictly convex upper solution of (3), 7, € C¥€), which satisfies:

4) M(yo) = det((9;;70) < €xp f(x,70),  7o/0Q = u.

This hypothesis will be used to estimate the second derivatives on the
boundary.
If there exists a convex function Y € C*(Q)) satisfying:

MWy)=0  ¢y/0Q=u

(¥ exists, in particular, if u is constant), then y satisfies (4) strictly for any
function f and we can choose for 7, a function of the form 7, = ¥ + Bh with
B>0.

1.3. Theorem of Existence

8.5 The Dirichlet problem (3) has a unique strictly convex solution belonging to
C®(Q), when n = 2, if there exists a strictly convex upper solution 7 € C*(Q)
satisfying (4) and if f(x,t) > 0 for all xe Q and t < supyq u (we assume Q is
strictly convex).

Proof Ifn > 2only inequality (23) is missing; otherwise the whole proof works

for any dimension. This is why we give the proof for arbitrary n.
Let us consider the equations:

(5) logM(@) = f(x,0) + (1 —a)[log M(y,) = f(x. 7)), @/0Q =y,

where ¢ > Oisareal number and 7, is a lower solution, the existence of which
was proved in Proposition 8.2. Thus 7, satisfies:

(6) log M(y) 2 f(x,7,),  71/0Q = u.

Let o/ be the set of strictly convex functions belonging to C***Q) with
a e ]0, 1[ which are equal to u on dQ. The operator

30— f(x, p) — log M(p)eC*
is continuously differentiable,
L)) = fUx. oW — g3 d;¢,

A 3¢ —dl, e L(C3**Q), C*Q)) is continuous, and dT,, is invertible
because f; > 0 (Theorem 6.14, p. 101 of Gilbarg and Triidinger [125]). C5(2)
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denotes the functions of C"(Q) which vanish on the boundary 6Q, and g/ are
the components of the inverse matrix of ((d;;¢)).

Thus we can apply the inverse function theorem. If ¢ € & satisfies log M($)
= f(x, @) + fo(x), there exists ¥", a neighborhood of f, in C*{), such that
the equation ['(¢) = —f,(x) has a solution € o/ when f, € ¥". If f, € C*(Q),
¥ € C*(Q), according to the regularity theorem 3.55. Moreover, ¥ is strictly
convex, because it is so at a minimum of ¢ and remains so by continuity since
M(@}) > 0. Lastly, the solution is unique since f; > 0 (Theorem 3.74).

Ato = 0Equation (5) has a solution ¢, = 7, ; therefore there exists g, > 0
such that (5) has a strictly convex solution ¢, € C®(Q) when ¢ € [0, o,[.
Let o, be the largest real number having this property.

If 6, > 1, Equation (3) has a solution and Theorem 8.5 is proved. If

g9 < 1, let us suppose for a moment the following, which we will prove
shortly: the set of the functions ¢, for g € [0, o[ is bounded in C3(Q). Then
there exist ¢,, € C2**Q) for some a € ]0, 1[ and a sequence o; — o, such that
P, = @op 0 C2*3(CY).
Since ¢, satisfies (5), letting i — oo, we see that ¢, satisfies (5) with ¢ = g,.
But now we can apply the inverse function theorem at ¢, and find a neighbor-
hood J of oy such that Equation (5) has a solution when o € 3. This contradicts
the definition of .

Now we have to establish the estimates, the hardest part of the proof.

§2. The Estimates

2.1. The First Estimates

8.6 C°and C! estimates. Henceforth, when no confusion is possible, we
drop the subscript 0. Then ¢ = ¢, € C*(Q))is the solution of (5) with g € [0, 1].
We have

log M(p) — f(x,9) < log M(y,) — f(x,7,),

since the second term is positive. Thus by the maximum principle (Theorem

3.74), ¢ — y, > 0 on Q because f; > 0 and ¢ — y, = 0 on dQ. This implies

that on 0Q: d,¢ < d,7,, where d, denotes the exterior normal derivative.
We have thus proved the C° estimate:

7 infy, < ¢ <supu
Q on

Since ¢ is convex, the gradient of ¢ attaines its maximum on the boundary.
Let P be a point of dQ. The tangential derivatives of ¢ at P are bounded since
u € C(6Q). On the other hand we previously saw that d,¢ < d,7,. It remains
to establish an inequality in the other direction. The normal at P intersects dQ
at one other point, which we call Q.
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On the straight line D, through P and Q, let w be the linear function equal to u
at P and Q. Let u(P) be the gradient of w. Since ¢ is convex on D, ¢ < won
QN Dand (0,0)p = u(P). u(P) is a continuous function on Q; let u be its
minimum on the compact set 0Q. Hence d,¢ > u.

2.2. C*-Estimate

8.7 CZ-estimate on the boundary. Let P € 0Q and Y be a vector field on R"
which is tangent to dQ. Suppose || Y(P)|| = | and choose on R" orthonormal
coordinates such that v = (1, 0,0, ..., 0) is the unit exterior normal at P and
Y(P)=(0,1,0,...,0). We will estimate 0% ,, ¢, 0% ., and 02 , ¢ at P.

a) Let R, be the radius of curvature of éQ at P in the direction Y. Since dQ
is strictly convex, R, > Ry > 0 (R, a real number independent of P and Y).
At P:

1 1 1 1
2 o= gl — 0.0 = — &2 — 3,0.
(8) axzxz(p R% a)’)’(p + R2 av(p R% a)’}’u + R2 vP

Therefore 62,,, ¢ is estimated

b) Let usconsider a family gof vector fields on R” tangent to dQand bounded
in C%(Q)); thus the components X'(x) of the vector field X € g are uniformly
bounded in C? on Q.

Setyy = ¢ —yand L = Xi(x) ¢, for Xeg.
Differentiating the equation

9) log M(¢) = F(x, ¢)
yields
(10) LF = gix* aijk(p,

where F(x, ¢) is the right-hand side of (5) (recall that ((¢") is the inverse
matrix of ((g;;)) with g,; = ;0. We willcompute B = g" 6, {Lys + ah + By),
where « and § are two real numbers which we will choose later.

B = g¥X* Oiu¥ + 2970, X" 0,9 + g’ 0, X* oW

Since g/ ,, ¢ = 5], using (10) we obtain:
B=LF+fn+238X +gim,+od;h),
with

my = —B0yy— X 0y — 20, X* 0y + 0,X 0y
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At first we pick B = B, = —(1/n) inf(LF + 2 4, X'), where the inf is taken for
all x e Qand all functions ¢,. Note that this inf is finite since the functions ¢,
are already estimated in C'.

Then we choose a = 1z, large enough so that

(ml-j + % 5ijh)gij >0

The real numbers ¢, and f, can be chosen independent of X €g. This is
possible by our hypothesis. Thus

g7 0, {LY + 20k + Boy) 2 0.

Likewise, let B = B, < —(1/n) sup(LF + 2 6,X"), where the sup is taken for
all xeQand all ¢,, and let a, be such that g"(m;; + «, 9;;h) < 0. B, and «,
are chosen independent of X € g. Thus

g" oLy + 2h + B1y) < 0.
Since Ly, h, and y vanish on 09, by the maximum principle:

—(o;h + Bi¥) < Ly < —(xoh + BoV)
and
—av(aoh + ﬂol//) < alep < —6\,(11’1 + ﬁlw)

These inequalities yield the estimate of &, yy.

In order for the family g to be large enough so that, for all pairs (P, Y) with

PedQ, and Y e Tp(0Q) a unit vector, there exists X € g such that X(P) = Y,
we define g as follows.
Let B be the unit ball of R" and ® be a C3-diffeomorphism from B to Q. Then
o; = x; 0; — x; 0; are vector fields tangent to dB. Consider the family
& = {B =) a;;v;;, where a;; are real numbers with |a;;| < [(® '), [}. Then
g = @, & has the desired property.

c) To estimate 2, ¢, we need to know a strictly convex upper solution
satisfying (4).
Since ¢, satisfies (5), log M(¢,) > f(x, ¢,). According to the maximum
principle, since f; > 0, then as in 8.6, ¢, < 7, and &, o, > 8,7, on Q.
Since y, is strictly convex, there exists an ¢ > 0 such that for all x € Q and all
i=1,2,...,n02%.7 = & From (8) it follows for i > 2:

1
aézn'x:'(p = ef,x,?o + 'E (av(P - 6v70) 2 e
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Suppose we choose the orthonormal frame in Tp(0Q) such that forj > i > 2,
0%, 0 = 0ifi # j. Then (9) implies

(11) 02,5, ﬂ 0l ., o =exp F(x,0) + Y (=1Y 0%, ou,
p=2

where 4, ,, the minor of 6,2“, ¢ in the determinant M(¢), does not contain
% ., @. Therefore Hy, can be estimated by the inequalities in the preceding
paragraphs.

Thus by (11) 2 ,,¢ is estimated on 9 since 6,( 5P 2 &

8.8 CZ-estimate on 2.Since ¢ is convex. ¢,,¢ = Oforalldirections y. Thus an
upperbound for } i, d,, @ isenough to yield the C-estimate. Computing the
Laplacian of (9) leads to:

(12) Z gij aijkk(p = Z gimgﬂ aijk@ Omix®@ + Z OuF(x, @).
k=1 k=1 k=1

Let B, < I/ninf Y 5., 04 F(x, ¢,), where the inf is taken over Q and for all
functions ¢,. It is finite since all of the terms have been estimated except the
term which involves A, and that term is positive: Fi(x, ¢) Z;‘:l 00 = 0.
B, can be chosen negative and independent of ¢. Hence

g' 5[;( Y 0w — 52‘!’) > —nf, + Y 0uF(x. 0) 2 0.
k=1 k=1

By the maximum principle Y., d,, @ — B, attains its maximum on JQ.
But by (8.8) A¢ is bounded on Q. Hence the C-estimate follows:

0<0d,0< 2Iﬁzlsum¢| + sup Z O @

Q k=1

Consequently the metrics (g,);; = 0;;¢, are equivalent for o € [0, 1]. Indeed,
according to the preceding inequality (g,),, < C, where C is a constant, and
(5) implies

C" '(go)xx =2 B> 0,
where B is a constant. Thus for all vectors ¢ and o € [0, 1]

13) C'7"BI¢|I? < (g,);;¢'¢ < ClIEI%
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2.3. C*-Estimate
8.9 Proposition. R = 39*’9™ g’ 0,;;0p., ¢ satisfies

i 2 2 1/2
(14) 9"VyR 2 —— R* + CR'?,

where V is the covariant derivative with respect to g and C is a constant which
depends on the function F(x,t) and on an upper bound of ||¢|c: (as do the
constants introduced in the proof).

Proof. Calabi [75] p. 113 establishes the following inequality in the special
case F(x, ) =

2(n + 1)

2
n(n——l)R'

g’Vi;R >

He introduced A;; = I';; = 3 0, ¢. Ay, is symmetric with respect to its
subscripts and we can verify the following equalities:

(15) giinjk =30, F and VoA = Vidyj

where F is written in place of F(x, ¢) for simplicity.
A computation similar to that of Calabi (see Pogorelov [235] p. 39) leads
to

n+1

R > ARV,Y,
gVuR 2 AMVLVF +2 0

R? + C,R*? 4 C,R + 2VA'*V, 4.

C, and C, are two constants and the indices are raised using g*/, for instance
i, = ¢g*T',,, are Christoffel’s symbols of the Riemannian connection.
Moreover:

AL F = A% 53, F — T% 8,F)
"“r’(a,kF - rﬂ amF)
ukr“‘[ajt}? - I";'} 0 F1.
Thus

AV, F + VEFV,A,,) < Const x (1 + R)/R.
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According to (15) for some constant C; we get:

n+1
n(n — 1)

+ 2AVIAU* — %AijkV{F)(V:A.'jk — 343V F),

gV R > 2 R* + C5(1 + R)/R

and inequality (14) follows. [ |

8.10 Interior C3-estimate. In this paragraph we assume that the derivatives of
¢ upto order two are estimated. A term which involves only derivatives of ¢ of
order at most two is called a bounded term. First of all note that 3,[g""M(¢)]
= 0.Indeed,

ai[gijM((P)] = M(p) [ngu Oxei @ — g“(gj{ Orei®]-

Interchanging ¢ and i in the last term, we obtain the result. Multiply (12) by
h*M(p) and integrate over Q. Since 3;,[g" ’M(¢p)] = 0, integrating by parts
twice leads to:

J h2 Y g9 6, @ Omex @M (@) dx < Const.
Q k=1

Set R = 4g**g™*g% 6,:;¢ Cpiep. Since the metrics g, are equivalent, the pre-
ceding inequality implies

(16) ‘fth dx < Const.
Q

Itis possible to show that [ R dx < Const, but that yields nothing more here.
Let us prove by induction that for all integer p:

(17) J.hz"R" dx < Const.
Q

Assume (17) holds for a given p. Multiplying (14) by h***2R?~ ' /M(p) and
integrating by parts over Q lead to:

(1-p f h??*2giiRP~2 5, R 3;R\/M(p) dx
Q
- fng” 0;h*P"*RP™' 8, R/ M(p) dx

2
1 fh“”R"”,/M((p) dx + C J h2P*2RP-112 /M(q) dx.
- Q Q

>
n
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Integrating the second integral by parts again gives, by (15),

2
n-—1

1 .
J hie IR /M) dx < j RPg"V ;#2772 /M(@) dx + Const
Q Q
< Const x [1 + ! j h??RP dx].
PJa

Thus,since(17)holdsfor p = 1(inequality 16),(17)holdsforall p. Accordingly,
for any compact set K <= Q and any integer p, | @,/ upk) < Const for all
ge[0. 1] ‘

By the regularity theorem (3.56), for all r > 0:

lo,llcrky < Const.
In particular the third derivatives of ¢, are uniformly bounded on K.

8.11 C’-estimate on the boundary.

a) Recall (8.7), where we defined L = X* g, with X € g. Differentiating (9)
twice with respect to L gives: L*F(x, @)= —g“g*L(Cnp)L(0;;0) +
g"L*(8;;¢). Next we compute g 8;; L*¢. Since
(18) L%¢ = L(X* 3, 0) = X'X* 0,0 + X' ¢,X* 0, 00,
then

gij(aijLz(p) = gijLz(aij(P) + 4gij(5iX()Xk Cin® + gij aij(X[Xk) O
+ g9 0, (X 0, X*) 0,0 + 20(X* 6, X7).

Thus

(19) g” aijqu) = (X* aj(k(pgij +2 5in)(X/1 a;‘.ﬂi(pg‘” +2 aiX{)
+ bounded terms.

Consequently, there exists a constant z such that
g ¢ {L* + ah) > 0.

Since L%y and h vanish on the boundary dQ, by the maximum principle
L*y + ah < 0 on Q and on the boundary

(20) o, L% > —ad,h.
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b) If we get an inequality in the opposite direction, the third derivatives will
be estimated on the boundary. Indeed, then we have on the boundary:

(21) |6,L%¢@| < Const.

Consider P e0Q and use the coordinates in (8.7). Differentiating (18) with
respect to L yields L*¢ = X'X/X* 3, ¢ + bounded terms.

On 0Q, L3¢ = LY + y) = L3y, so (835, @), is estimated. Likewise the
third derivatives with respect to coordinates x; with | > 2 are estimated. By
(21), (0,9)p is estimated for i and j > 2.

To get an estimate for (3,,;¢)p, j > 1, we differentiate (9) with respect to
x;. This yields:

g'! 8,1;0 = bounded terms.

Because the metrics g,; are equivalent, there exists a constant 1 > 0 such that
g'!' > n > 0and the estimate of (3, , ;) follows.

Finally, differentiating (9) with respect to x, yields g'' 43, ,0 = bounded
terms. Hence all the third derivatives are estimated on the boundary.

¢) It remains to find an upper bound for 8, L?y on the boundary. For the
present such a bound is established only in the case n = 2.

From now on, n = 2; consequently the dimension of dQ is equal to one.
Consider a vector field X tangent to ¢Q and of norm one on 0Q. Since the
second derivatives of ¢ are estimated, there exists M such that |[L*}/| < M on
0Q. Recall that y = ¢ — 7.

Let p be an integer that we will choose later and set

€= (1+M+L¥)"

Let K = Q be a compact set such that | X} > 1/2 on Q — K. Compute
g% 8,5€ on Q — K to obtain

9% 0,,€ = —p(1 + M + L3y) 7" 1g* C Ly
+p(p+ (1 + M + L) 7" 2g* 5, L2y 0, LY.

Using (19) gives

Qn g* 05€ =p(1 + M + L2Yy)" " [(p + 1)g** 8,L% @nglp
x (X*3;509* + 2 6;X")] + bounded terms.

At Q€Q ~ K suppose that X is in the direction of x,. According to (10),
there exists a constant k, such that

102110 < ko(1 + [Cap10] + [C2220])
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Thus there is a constant k, such that

(X* ajlk(pgij + 20, X)(X* 0,509" + 20, X"
< ky(1 + (83210 1% + |0252012).

Moreover,
g 0,L%y G L2 > ky(1022,01* + 1022201 — 1),

where k, is a constant which depends on K and on the preceding estimates,
much as did k, and k.

Pick p such that (p + 1)k, > (1 + 2M)k,. Since the third derivatives are
bounded on K (by 8.9), (21) shows that € satisfies the following inequality on
Q:

g* 0,5 € > Const.
Hence there exists a constant f such that
22) g** 0.5(C€ +th) >0

since the metrics g, are equivalent. Because € and b are constant on 9Q,
according to the maximum principle.

C+th<s (1 +M)?
while on 0Q: 6,€ + £ 0,h > 0. This gives
—p(1 + M + L*)"P" 15, L2y > —4,h.

Hence we obtain the desired inequality

t
(23) o, L2 < -(1 + 2M)P* ! sup 4, h.
p e
C3-estimate on Q.
By inequality (14) there exist two positive constants a and a such that:

g"V;R > n—z-—l (R — a)* — a?].

Two cases can occur: R attains its maximum on dQ or in Q. In the first case
we saw that R is bounded, while if R attains its maximum at P € Q, according
to the preceding inequality:

R<supR<a+a
Q

since g¥V;;R < 0at P.
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8.12 Using the method of lower and upper solutions (as in 7.25), and using
Aubin [23] p. 374 for the estimates, we can prove the following.

Theorem. Let Q = R" be strictly convex. If there exist a strictly convex upper
solution y, € C*(Q) satisfying (4) and a strictly convex lower solutiony, € C*(Q)
satisfying (6) with y, < yo, the Dirichlet problem (3) has a strictly convex
solution ¢ belonging to C*(Q) when n = 2, and ¢ satisfies 7, < ¢ < y,.

Corollary. If there exists yo as above and if lim,_, _ _[|t|”"exp f(x,t)] = 0,
then the Dirichlet problem (3) has a strictly convex solution ¢ € C*(Q) when
n=2.

Proof. By Proposition (8.2), for x large enough y, = y + xh is a strictly
convex lower solution satisfying (6). Thus we can choose % so that y; < v,.
Moreover y, € C*(Q).

The preceding theorem now implies the stated result.

§3. The Radon Measure .#(¢)

8.13 Definition. For a C? convex function on Q, we set
M(Q) = M(@)dx' A dx* A --- A dX"

and we define the Radon measure:

Co@3v = [ vt(o)
Q
where Cy(Q) denote the set of continuous functions with compact support.

This definition extends to convex functions in general, according to
Alexandrov. Here we will follow the analytic approach of Rauch and Taylor
[242].

First let us remark that for a C? convex function

M(p) = d(0,0) A d(0,0) A -+ A d0ro)

We are going to show by induction that d(0;,@) A d(d;,@) A --- A d(C;,.®)
defines a current when ¢ is a convex functionand 1 < i, <i, <--- <i, < n
Let us begin with m = 1. Let w be a continuous (n — 1)-form with compact
support K = Q and w = Y, fx) dx* A --- A dx' A --- A dx" For such
wweset |0y = Sup; <1<n SUPxex| fi(X)|. When ¢ is a convex function we will
define

Ld(éi(p) A .
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Choose a C® positive function y with compact support K = Q which is equal
to one on K.

Now consider a sequence of convex C* functions ¢; which converges to ¢
uniformly on K. We have

Jfl d(0;¢)) Adx* A -+ Adx"| <sup| fy] J‘lau(pjldx1 Adx® A AdX"
Q K

But since ¢; is convex,
(24) 210,i0;] < 0110 + 0i0;
and
2 [ 10u0)lds < [ 10u0,+ duo) dx = [ o017 + 0 dx.
K Q Q

Thus there exists a constant C, such that

(25) Hﬂd(a.-%) Aol < Clwlosuple;l

The constants C, (2 € N) introduced depend on K and y only. In particular,
they are independent of ¢; and w.

Let w, be a sequence of C* (n — 1)-forms which converges uniformly to w.
We choose w, such that supp w, = K.

We define jn d(0;¢) A w, as a distribution and let j — =,

jd(al¢1) N Wy = fd(al(p) AN Wy.
Q Q
Then by (25)

< Cyllaxllo suplol,

fmmAw
Q

so that jn d(0;¢) A w, is a Cauchy sequence which converges to a limit
independent of the sequence w,. We call this limit [ d(6;¢) A w. It satisfies:

‘fd(aiﬁp) Aol < Cilw]osuplel.
Q

Now suppose we have defined [q d(;,¢) A d(3;,0) A -~ A d(d;, @) A @ for
all families of integers 1 < i; < i, < --- < i, < n,(m < n)and all continuous
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(n — m)-forms @ with support contained in K. Suppose we have proved that
there exists a constant C, such that:

(26) ljd(ai,¢) A d(0i,@) A - A d(0;,0) A @) < Chll@lo[suplel]™
Q

As before, |||, is equal to the sup of the components of @.

Let @ be a continuous (n — m — 1)-form with support contained in K, and
let o, be a sequence of C® (n — m — 1)-forms which converge uniformly to &:
o, — @)l = 0 when k - . We pick u’),‘ such that supp @&, < K.
Consider (m + 1) integers | < i, <i, <:-- < I,,; < n We want to define
I'(@) = [qd(3;,0) A -+ A d(G;,. @) A O Flrst we define [od(3;,0) A -

A d(0;,. @) A @ =T(ay) by mtegratmg by parts. For instance, 1fj e.ﬁ(Q)
then by definition:

(m+ l)jj'(x)d@h(p) A AdE,, @) AAXTTE A XTI A A dYT
Q

m+1

=Y | @d@,0) A - A d(@, @) A, f) Ad@, @) A A
q=1 Q

X d(d,,, @) Adx"TE A A dX"

This equality holds if ¢ € C®. When ¢ is only convex the integrals of the
second term make sense by our assumption, with the continuous (n — m)-
forms

Dy = (=1 799 d(G;, f) A dx"T2 A oo A dX.

Then letting j — o,

@7 T{@) = fd(as,«’j) A d0i, @) A - A d(Cy,, @) A @~ T(D))
Q

On the other hand,

ff A0, ) A -+ A d(B;,. @) Adx"TE A A dYXT
Q
< supl | [ 1G] dx.
K

where D(x) = det((d,, ¢;)) is the (m + 1)-determinant with1 < Lk <m + 1.
But because ¢; is convex, 2|D(x)| < D,(x) + D,(x) where D,(x) =
det((dx ;) and D, = det((d;;, ;).
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Indeed this inequality is the same as (24) on A™* }(R"). The extension to A™* !

of the quadratic form defined by ((d,,¢ ;) 1s a positive quadratic form whose

components are the (m + 1)-determinants extracted from ((Oin))) with
1<ih<n

Thus there exists a constant C, such that

2 f ID(x)| dx < j JIDy(x) + Dy(x)] dx < Csfsuple,| 1™ .
K Q

For instance, according to (26):
[ 020
Q
= fyd(@l(pj) Ad@@y0) A AdOpiry@) AdX™TE A A dX"
Q

< [ 010i0) 1 d@r0) A+ 1 donp)
A d(Opmsry) A dX"TE A -0 A dx™ < Ca[suple; 1™t
Consequently, there exists a constant C, such that
IT{@)] < Calldpllolsupl ;1™ 1.
Letting j — oo, by (27):

IT(@)| < Call @illo[suple]]™"".

Therefore I'(@,) is a Cauchy sequence which converges to I'(®) and this limit
is independent of the sequence ®,.

By induction we have thus defined the Radon measure .#(¢) when ¢ is a
convex function. Moreover, for any compact set K < Qthere exists a constant
Cs such that

(28) < Cssup|y|[sup|o|]”

jnww)

for all Y € C(Q) with supp ¥ < K.

8.14 Proposition. Let {¢,} be a sequence of convex functions on Q which
converges uniformly to ¢ on Q. Then A(p,) = #(p) vaguely (i.e. for all
¥ € Co(Q), fa YM(0,) = [a ¥-H#(9)).
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Proof. As in the preceding paragraph, the proof proceeds by induction. We
use the same notation.

Let w be a continuous (n — 1)-form and let {w,} be a sequence of C*

(n — 1)-forms with support contained in K, and which converges uniformly
to w. Obviously

jd(al«pp) A W — Jd(@,xp) A Wy,
Q Q

By definition

fd(@i(pp) Aw=lim |d0dp,) A w.
Q Q

k-

But according to (25) this convergence is uniform in p:

I‘Ld(aiﬁ”p) AN =)l <Cillo— wdlo SUP|<Pp| < C1||wk — wlly

Thus we can interchange the limits in p and in k:

<

Ld(é@) AW— J.Qd(a“p,) AW

f d6:0) A (@ — )
Q

+ +

fd(a.m) Ay - f d(6:0,) A @y
Q Q

J‘d(éi(pp) AW — wy)
Q

These three terms are smaller than ¢ > 0 if we choose & such that |, — w|,
< ¢/C,, and then p large enough.

This proves the result for m = 1. We suppose now that it is true for some
m < n, SO We assume:

for all continuous (n — m)-form @ with support included in K,

[ o r d0s0) n -~ 09 7
Q
- J‘d(a‘-x(p) A d(0i, @) A - Ad(O; @) AD
Q

We then prove the result for m + 1 in a similar way tothem = lcase. W
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§4. The Functional #(¢)

8.15 Definition. For a C2 convex function which is zero on the boundary 4Q
we set:

29) F#(9) = —n f oM(p) dx.
Q

This definition makes sense if the convex function is not C2. Indeed, fora < 0
set Q, = {xeQ/ep(x) < a}. According to the preceding paragraph

- f o M) = «(a)

a

makes sense. Since .#(¢) 1s a non-negative Radon measure and ¢ < 0, 7(a) is
an increasing function. We define

F(@) = —nlim | o.#(p).

a=0 JQ,
Of course #(¢) may be infinite. The set of the convex functions for which .4 (¢)

is finite will play surely an important role.

4.1. Properties of #(¢)

8.16 Letus suppose that ¢ € C*(Q)is a strictly convex function. As before. set
gi; = 0;;¢0 and let g be the components of the inverse matrix of ((g;;)). We will
prove that

(30) #0)= [ ¢/0:00,0M(e) dx.
a
0 B0 - 0§
0119 01,0 -+ 01,0 1 Z“Z 6‘{-2 i
— . — ¥ J
M(p) = ; = FZ . !
a n nn :
n® ¢ O - O p

where the sum Z is extended to all n x n determinants obtained when the n
subscripts i, j, ..., k run from 1 to n. If two subscripts are equal the deter-
minant is zero, otherwise it is equal to M(¢). Thus we see that M(¢p) is a
divergence:

0o iy -+ Ouo

1 0.0 0,0 )
M) =— T 8|0 % s
e 0o O ®

nM(@) = 6(g"M(e) 0;¢).
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When we differentiate a column other than the first, we get a determinant
which is zero. Thus integrating (29) by parts leads to (30).

For the preceding proof we supposed that ¢ € C3, but the result is true if ¢ is
only C2. In this case we approximate ¢ in C? by strictly convex C*® functions
@. We have

—nfwawa=J}”awm¢Mwnu
Q Q

By passing to the limit we get the result.

We will now show that the functional #(¢) is convex on the set of the
strictly convex functions ¢ € C%(Q)). Lety e C*(Q) be afunction which vanishes
on the boundary. ¢ + ty is strictly convex for |t| small enough and the
second derivative of #(¢ + tyf) with respect to ¢ at t = 0 is equal to

nin + 1) fg‘j 8.y 0,yM(p) dx > 0.
Q

Indeed, we have n terms of the form

5u¢’ au(p aik(p

a"w 9% : = o.Ta M) o.u] d
(n-l)'sz o |dx L‘l’ i[g"M(o) 0;4] dx

.k‘l’ O @

and n(n — 1)/2 terms of the form

i Oy¥ Oye .- duo
e 3 K] B A L
w 0u¥ Oqe - Ou?
which are equal to
o 0¥ due - Ouo
(n_Ll_T)_!ZJ‘Qai(p 0,-2',0 5];"1/ O 5,':;(9 dx.
Oy 0¥ Oue O
This may be rewritten as
0o 0¥ Oue - Oue
(n_l), fat// %9 6,-,;1// one dx,

5k¢ 5,1&1/ 0@ - 0o
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which is equal to g ¥ 0,[g”M(¢) 3;¢] dx. Altogether we have n(n + 1)2
terms. Integrating by parts gives the result.

8.17 Remark. If Qs a ball of radius 7 and ¢ a C? radially symmetric function
vanishing on the boundary: ¢(x) = g(||x|) with g(z) = 0.
The integrand in (30) is equal to |g'|"* ' p! ™" with p = ||x|.. Thus in this case

F(0) = W,y flg’l"“ dp.
(0]

Let f be a function belonging to H7* ([0, 7]). f is Hélder continuous. Indeed:

1(n+1)
lb _ alm(u+ 1)

BDIf®) - fla)] = <

J;bf’(s) ds

b
f |f () ds

Thus, f(r) = 0 makes sense, and if @¢(x) = f(||x]|) we can define #(®) to be
equal to w,_, (5| f'I"* ! dp.

8.18 Proposition. Let {,} .+, be a sequence of convex functions on Q, vanishing
on 0, which converges uniformly to ¢ on Q. Then

F(¢) < lim inf £(p,).

p—x

Thus, #(@) is lower semi-continuous.

Proof. We use the notation of 8.14. For a < 0, according to (28):

Q(a)

< C(a) suplo — ¢,|[suple,|]"

< Const x | — @,llo:

thus [ (¢ — @,)#(¢,) - 0 when p — . But we can write

—n | (¢, — @)H(p,) —n f
Q(a) Q(a)

0 ll(@,) = —n f 0, M(®,) < 5(0,)

Q(a)

Taking the lim inf when p — = leads to

n f 0.#(p) < lim inf #(p,),
Q(a)

p—®

by Proposition 8.14. Then letting a — 0 we get the desired result. [ |
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8.19 In this paragraph we will recall some properties of convex bodies which
will be useful in 8.20.

As previously, Q is a strictly convex bounded set of R". If Q € 6Q, w(Q) will
denote the direction of the vector PH where P is the origin of the coordinates
of R" (which we assume is inside Q) and H(Q) the projection of P on the
tangent plane of 9Q at Q.

We identify w with a point on the sphere S, _ ;(1). We let /(Q) be the length of
PH.

For the proof of the next theorem, we are going to define a symmetrization
procedure which is not the usual one of 2.1/. It will be a consequence of the
general inequality of Minkowski (see Buseman [71] p. 48) which applies to
the convex bodies Q and B and asserts that

1 n
(32) (; 4(Q) dw) > w81,
oQ

where u denote the Euclidean measure and dw the element of measure on the
unit sphere. Since equality holds for the ball, a consequence of (32) is:

Proposition 8.19. Among the convex bodies with | ¢ dw given, the ball has the
greatest volume.

8.20 Let d and D be the inradius and circumradius of Q.

Theorem. Let ¢ € C*(Q) be a convex function which vanishes on 0. There exists
a radially symmetric function $ € C*(B,) (d < t < D), vanishing for | x| = t,
with the following properties:

a) ( has the same extrema as @,
(33) B H(@) < Ao);
Y w(€,) < u(Q,)foralla <0,

where Q, = {x € B,|$(x) < a}.
Proof. Let m be the minimum of ¢. On [m, 0] we define the function p by

p(0) = (1/w,_ ) [aq ¢ dw and p(a) = (1/w,-,) [e, ¢ dw form < a <0.pis
strictly increasing and C' on ]m, O[. Indeed,

oy 1 dw
(34) p(a)—wn—xj:m,l—v_(ﬂ for ae Jm, O[.

p'(a) is a continuous strictly positive function which goes to infinity as
a — m because | Vo(x)| - 0 as d(x, Q,,) = 0. Moreover, when a — 0,

1 J‘ dw
W, m]V<P|'

Thus a — p(a) is invertible. Let g be its inverse function: a = g(p).

p'(a) -
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On 0Q / satisfies d </ < D; hence d < 1 = p(0) < D. If u(R,,) # 0, p(m) > 0.

In this case we set g(p) = mfor 0 < p < p(m). Thus g € C*([0, ]), g'(0) = O,
and g’ > 0.

Consider now the radially symmetric function @(x) = g(||x|)). Obviously
a) is true and y) holds by Proposition 8.19 since

(35) ldw = p(@)w,-, = | /do.

2, o0,

It remains to prove B). By (30)

s = [ 4o [ 1961] () 0

where R;(Q) are the principal radii of curvature of ¢Q, at Q € dQ,. Thus

0
f(<p)=fda jmlvwaw

because do = [} R, dw and
0 0

G0 S@ = [da[ 1Vrdo =0, [lglo@Ir da
m Qg m

0
i f [0(a)]"" da.

Applying Hoélder’s inequality yields

1/(n+1) d(l) n/(n+ 1)
o, = fndws(fﬂlvwdw) (fm —~IV¢I) .
Jo, 0Qq a

Consequently by (34):
[ 1verdo > 0, @1
Qg

Integrating with respect to « over [m, 0] gives f).

8.21 Theorem. All convex functions @, which are zero on 0K, satisfy:

n+ 1

(37) < D"w; 1 S (9),

inf ¢
a

where D is the circumradius of S
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Proof. If ¢ € C*(Q0), Theorem 8.20 shows that it is enough to prove the result
for radially symmetric function .

Set@(x) = f(llx|)). We have f(0) = inf ¢ and f(z) = Owitht < D. Using(31)
gives

FOF* < f 1F ) ds = 07, 5(F).
0

And we get the result from Theorem 8.20.

If ¢ is a convex function but not necessarily C2, we consider a sequence of
convex C* functions y; which converges uniformly to ¢ on Q,, wherea < 01is
close to zero. We can suppose that on 6Q,, ¥; > 2a. By Proposition 8.14,
Ina YAl - jn,, oM ().

Applying (37) to the function inf(0, ; — 2a) leads to

linf(y; = 20)""" < D"wn'-‘l[~n lﬁ;ufl(lﬂ,—)jl;
Qa

letting i - ¢ and then a — 0 yields (37). |

§5. Variational Problem

8.22 Letf(t) e C¥(]— =, 0]) (k > 0) be a strictly positive function when t # 0
and greater than some ¢ > 0 for t < t,, t, some real number. Set F(t) =
{2 f(u) du and consider the functional I' defined on the set of continuous
functions on the unit ball B by:

) = fmv(x» dx.
B

We are interested in the following problem:
Minimize £ () over the set .« of convex functions which are zero on 0B and
which satisfy I['() = £, for £ > 0 some given real number.

Theorem 8.22. The inf of #(Y) for all Y € s/, which we call m, is attained by a
radially symmetric convex function Y, € C***(B) which vanishes on 0B and
which satisfies £(Yo) = m, ['(Y,) = £, and for some v > 0

(38) M(o) = v (o).
Proof. o) First of all &/ is not empty. More precisely if y <0 (Y £0)is a

continuous function on B there exists a unique real number x, > 0 for which
[uoy) = £. Indeed for u > 0

(39) 0T = = [ Wup dx > 0
B
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because the integrand is strictly negative somewhere. It is easy to verify that
the hypotheses imply I'(uy) > © as u— o and I'(uy) -0 as u — 0.
Hence y, exists and is unique.

B) One can show that the inf of #(¢) for € o and that for Yy € &/ N C¥B)
are equal. The reader will find the details in Aubin [23] p. 370.

) Now let € & N C?*(B) and  be the corresponding radially symmetric
functions introduced in 8.20. Then () > I'(¥). Indeed consider l,[/ the
radially symmetric function such that u(Q,) = u(Q,) for all a < 0, where
Q, = {xeB|j(x) < aj.

By Theorem 8.19, u(Q,,) < u(Q,). Thusy < wonBand therefore I"(lﬁ) > F(t//)
since [ is decreasing in . See (39). Moreover obv1ously, W) = ().

Hence there exists o, < 1 such that I'(uy) = I'(Y) = £. See x). But
according to Theorem 8.20, #() < S(Y). Thus F(uo¥) = ui* 'S W) <
F(Y). Therefore m is equal to the inf of #(y) for all radially symmetric func-
tions Y € & N C*(B).

é) It remains for us to solve a variational problem in one dimension. That is
the aim of the following.

8.23 Theorem. The inf of #(g) = w,—, [§ |g'(r)I"* ' dr for all nonpositive
functions g € H}" '([0, 1]) which vanish at r = | and which satisfy T(g) =
w,-1 |6 F(g)"~" dr = £ is attained by a convex function gy € C***([0, 1])
which is a solution of Equation (38) with v > 0, g, satisfying go(0) = 0 and
go(1) =0

Proof. Since this is similar to several proofs done previously, we only sketch it.
We already saw that this problem makes sense: g is Holder continuous on
[0, 1] (see 8.17), and there exist functions g satisfying I'(g) = £ (see 8.22, x)).

Let {g;} be a minimizing sequence. These functions are equicontinuous by
(31). Applying Ascoli’s theorem 3.15 there exists a subsequence of the {g;}
which converges uniformly to a continuous function g,. Thus I'(go) = £.
go < 0, and go(1) = 0. Moreover a subsequence converges weakly to g, in
H% ([0, 1]). Thus by 3.17 the inf of I(g) is attained by g,. Writing the Euler
equation yields

1 1
(40) fo W1gol" gy dr = —v f Ui gor " dr
0

for some real v and all function € H}*!([0, 1]) vanishing at r = 1. Picking
Y = go we see that v > 0 (v = 0 is impossible because this would imply
#(go) = Oand consequently g, = 0).
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We now prove that go(r) is equal to g(r) = [ [v f¢ f(go(t))" ' de]*" du.
g(1) = 0, Ge C'([0, 1]), and (§"(r))" = vf(go(r))r" . Thus for all integrable
functions y on [0, 1]:

1
[ #1gorgs = gmar =0
0

This implies |go|"™ 'gy = ™, so go = §' since §’ > 0. Hence g, = §. Con-
sidering the expression

ro 1/n
go(r) = [v fo flgo®))"™t dtj' ,

we see that go(1) > 0 since go # 0 and therefore go(r) < 0 for r < 1. Thus
go(r) # O0for r > 0 and g, is C? on ]0, 1] where g3 > 0. Moreover as r — 0,
go(r) ~ [(v/n) f(go(0))]* "r. Thus g, C*([0, 1]) and it is convex. If f e C¥,
go € CZ +k. .

8.24 Corollary. Let f(x,t) be a C* function on B x ]—oc, 0]. There exists a
real number vy > 0 such that the equation

(41) M(p) = vexp f(x, @), /3B =0
has a strictly convex solution @ € C*(B) whenn =2 and 0 < v < v,.

Proof.For some & > O define f(t) = ¢ + sup,. 3 exp f(x, t). Consider F(t) =
f° f(u) du and the functional [(y) = [z F(¥(x)) dx as in 8.22.

By Theorem 8.22, there exist v, > 0 and a convex function ¢, € C*(B)
satisfying

M(Yo) = vo f(Yo),  ¥o/0B =0.
Obviously ¥, is a strictly convex lower solution of (41) for v < vg:

M(q) = vo exp f(x, Yox))

and y, is strictly convex since M(i/o) > 0.

Then we choose § > 0 small enough so that y, = B(||x||*> — 1) is an upper
solution of (41) greater than ,, where v < v, is given. Using Theorem 8.12
we obtain the stated result.
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§6. The Complex Monge-Ampéere Equation

8.25 The problem. We cannot end this paragraph without discussing the
complex Monge-Ampere Equation.

Definition. A function ¢ with value in [— 20, + o[, (¢ # — ) is plurisub-
harmonic if it is lower semi-continuous and if the restriction of ¢ to any
complex line is either a subharmonic function or else equal to — <. In case
@ is C?, ¢ is plurisubharmonic if the Hermitian form 4,;¢ dz* dz* is non-
negative.

Henceforth Q will be a strictly pseudoconvex bounded open set in C™
defined by a strictly plurisubharmonic function he C®(Q): h/6Q = 0 and let
ue CHoQ) (k = 0).

We consider the Dirichlet Problem

(42) det((Crz0)) = f(x,0),  @/0Q=1u

where f(x, @) is a non-negative function such that f!™(x, @) e C"(Q x R),
r > 0. é,;¢ denotes the second derivative of ¢ with respect to z* and z*
(1 <Ap<sm).

This problem was studied by Bedford and Taylor [29] and [30], who use
a very special method. They consider the upper envelope of the set of plurisub-
harmonic functions which are lower solutions of (42). They first prove that
this upper envelope is a solution of (42) in a generalized sense and then try to
prove that this solution is regular.

Remark 8.25. As boundary condition we can use ¢(x) — + 3 when x — Q.
Cheng and Yau [90] solve a problem of this kind:

They set ¢ = u — log(—h) and write the problem using the Kéhler metric
g defined by g;; = —0,; log(—h).
They now solve a Monge-Ampére equation on a complete Kihler manifold,
using the continuity method. The estimates are obtained by using the methods
for compact Kihler manifolds (Chapter 7) thanks to their generalized
maximum principle (Theorem 3.76).

6.1. Bedford and Taylor’s Results

8.26 Bedford and Taylor [29] consider the case where the function f does
not depend on ¢ and in Bedford and Taylor [30] the following is proved:

Theorem. If f''™(x, @) is convex and nondecreasing in @, then there exists a
unique plurisubharmonic function ¢ € C(Q) which solves the Dirichlet problem
(42) in a generalized sense. If k > 2 and f'™(x, @) is Lipschitz on Q x R,
then the solution ¢ is Lipschitz on Q.

In case Q is the unit ball B, if in addition r = k = 2, then the function ¢ has
second partial derivatives almost everywhere which are locally bounded.
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6.2. The Measure ()

8.27 Recall that Q is a strictly pseudoconvex bounded open set in C™. For a
continuous plurisubharmonic function ¢ on Q, it is possible to define a
measure () which is equal to

ym

# A" dd"p = det((6,;0)) dz, A dz, A -+ A dz,, A d5,,

in case ¢ is C2. Recall A™ is m-times the exterior product and d"¢ = d;¢ dz*.
The method used in an earlier article by Chern, Levine, and Nirenberg [93]

is similar to that of 8.13.

The main point is: for all compact K < Q there is a constant C(K) such that

fxA™dd"¢ < C(K)supg|e|™ for all plurisubharmonic function ¢ € C3(Q).

6.3. The Functional 3(¢p)

8.28 For a plurisubharmonic function ¢ € C(Q) n C*(Q) which s zero on the
boundary Q2 we set:

ym

1 m "
43) 30) = - L(p/\ dd"o.

If the plurisubharmonic function belongs only to C(Q0) we can extend this
definition by the same procedure as in 8.15. For a < 0 set Q, = {x € Q/¢(x)
< a}. Since M(¢) is a non-negative Radon measure “jn.. oM(p) = t(a)
makes sense and is an increasing function of a. We define

@) = —mlim | @WM(e).
a—0 JQ,

The set of the continuous plurisubharmonic functions on Q vanishing on 6Q
for which 3(¢) is finite will play an important role.

6.4. Some Properties of 3(¢p)

8.29 Suppose ¢ € C3(Q) is a strictly plurisubharmonic function vanishing on
0Q. Set g;; = 3,9 and let g** be the components of the inverse matrix of
((912))- Integrating (43) by parts leads to:

44) SJ(p)=1i" jg“ 010 0,0 det((3;,9)) dz* A dzt A - A dZ™
Q
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Thus 3(¢) is the integral on Q of the square of the gradient of ¢ in the Kéhler
MELtric g;,-

To carry out the integration by parts we need, in fact, ¢ € C*; however we
obtain the result for ¢ € C? by a density argument.

Proposition. 3(¢) is convex on the set of the strictly plurisubharmonic functions
@ € CXQ2) vanishing on 3.

Proof. Let e C*(Q) be a function which is zero on the boundary. ¢ + t is
strictly plurisubharmonic for |¢| small enough. Thus we have to verify that
the second derivative with respect to t att = 0 of 3(¢ + ty) is non-negative.
Integrating by parts enough times yields the following expression for this
second derivative:

al
=3 Je + tl//)]
[6[2 =0
= m(m — 1)i" fg’“i 0 8,0 det((é,,0)) dz! A dz' Adz2 A - A dP
Q

This is obviously non-negative. |

Theorem. 3(¢) is lower semi-continuous: if {@,},.~ is a sequence of pluri-
subharmonic functions continuous on Q and vanishing on dQ which converges
uniformly to ¢ on (), then

3(p) < liminf J(gp,).

p—®

Proof. It is similar to that in 8.18. ¢, being the uniform limit of the ¢,, is
continuous on {, vanishes on 4, and also is plurisubharmonic according to
the definition. Thus 3(¢) makes sense. [ |

§7. The Case of Radially Symmetric Functions

8.30 If Qs a ball of radius 7in C™ and ¢ a C? radially symmetric function
plurisubharmonic on Q vanishing on the boundary, we can write ¢(z) =
g(llz|l) with g(7) = 0.In this paragraph we suppose that ¢ has these properties.
In this case, by (44)

and we can apply Proposition 2.48 with g = m + 1.
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Similarly we can associate to g the function y defined on the ball B, of
R™* by y(x) = g(lx]). Then 3(¢) = Jwy,,- w0, |VY[Im: 1 and we canapply
all the results of 2.46-2.50 by noting that r*™~! < ™~ !y™ In particular, from
Theorem 2.47 we get

Theorem 8.30. If ¢ satisfies 3(¢) < 1, then

fexp[vmuprm““"'] v < C fdv
Q Q

where the constant C depends only on m and where
V= (m + 127 V"l
From Corollary 2.49 we get

Corollary 8.30. Set &,, = 2m™(m + 1)™ 2"~ 'w3,!_,. Then all ¢ satisfy

/ e™% dV < Cexplém3(©)] / dv
) Q

where C depends only on n.

Proposition 8.30. Let o be a set of functions ¢ for which 3(p) < Const.
Then the set {€®},,c . is precompact in L,.

The proof is similar to that of (2.465).
Using these results, under certain assumptions we can solve the Dirichlet
Problem (42) on a ball of C™ with u = 0 on the boundary, assuming the
dependence of f(x, ¢) on x only involves | x||.

By seeking radially symmetric solutions we actually obtain all solutions,
provided f is decreasing in r = | x|, by a result of Gidas, Ni, and Nirenberg
[124].

7.1. Variational Problem

8.31 Let Qbeaball of radius tin C™. We can consider the following problem:
Find the Inf of 3(¢) for all plurisubharmonic function ¢ € C(Q) vanishing on
the boundary suchthat |¢], = 1 forsomeg > 1 (or[qe™® dV =1 + [qdV,
for instance). We know that J3(¢) is convex. So for g = 1 we can consider only
radially symmetric functions and it is possible to solve the problem in one
dimension. The same result holds for ¢ < m. For g > m (or if the constraint
is j}, e ?dV =1+ [qdV)itis conjectured that the inf of 3(¢) is unchanged
if we consider only radially symmetric functions.
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7.2. An Open Problem

8.32 The regularity of the solution of (42) obtained by Bedford and Taylor is
an open problem.

If fis allowed to vanish, there is a counterexample of Bedford and Fornaess
[27] showing that the solution may not be C2.

Therefore, let us simply assume that k = r = ¢, Q = B, and f < 0 every-
where on B. The problem of regularity is nevertheless open, not only on B, of
course (this case is not even solved for the real analog), but also on B.

One of the reasons we can get the interior regularity for the real Monge-
Ampére equation, is that for each compact & = Q it is possible to obtain a
sequence of C*® convex functions ¢; converging uniformly to the generalized
solution ¢ on ! while M(¢;) —» M(p) on K in C" for large r. This result is
obtained by geometrical considerations. At the present time a similar result
has not been established in the complex case.?

§8. A New Method

8.33 In [190b] P. L. Lions presents a very interesting method for solving the
Dirichlet problem for the real Monge-Ampére equation on a bounded
strictly convex set Q of R":

(45) log M(p) = f(x),  ¢/0Q=0

where f belongs to C*(Q). 0Q is supposed to be C*.

The method consists to exhibit a sequence of functions ¢, € C *(Q) which
are solutions of equation (45): log M(¢,) = f(x), but with approximated
boundary data: ¢,/0Q = u,, u, being an increasing sequence of functions
converging uniformly to zero when k —» x.

Let f € 2(R") be such that f/Q = f and let p(x) e C*(R") be a function
which are equal to zero on Q and to 1 outside a compact set. Moreover p
satisfies: forally > Othereexistsy > Osuchthat p(x) > 7y whendist(x, Q) > 7.

The idea is to consider instead of (45) the following equation on R":

(46) log det((@ijq; - g(pd’l.j)) =1

with ¢ > 0 and &; the euclidean tensor.

8.34 We can prove that equation (46) has a unique solution belonging to
CZ(R") for which the tensor g;; = d;;¢ — (p/e)pé&;; defines a Riemannian
metric.

3 See 8.35 and 8.36 for new results.
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The sketch of P. L. Lions’ proof is the following. First he solves in Cg(R")
an approximated equation of equation (46):

log det((a,.,.qa - (2 + A)MU)) =7

with 4 > 0. For that he proves the existence of a solution in HP(R") of an
associated stochastic control problem; and for the regularity he uses the
results of Evans (112b). These results yield uniform bounds with respect to A
for the second derivatives. So he obtains a solution ¢, € C3(R") of equation
(46), the regularity being given by Evans’ results.

Instead of using the diffusion processes, it is possible by using the con-
tinuity method to solve directly equation (46).
In any case we must construct a subsolution ¢, € C5(R") of (46) such that
(9o)ij = 0ij@0 — (p/e)p, & defines a Riemannian metric. Then the maximum
principle implies that any solution of (46) satisfies ¢, < ¢ < 0.

For ¢t > 0 a parameter we consider the equation:

@47) log det«aw - % (pg,.,)) =i +(1 —1)log det((aij(po - S%gu))

and for x € ]0, 1[ the operator I':
CyH* (R > ®3¢ — log det((@,-j-(p - % goé’,-,)) e C3(R"

where © is the subset of functions ¢ for which ((g;;)) is a positive definite
bilinear form. I' is continuously differentiable and its differential dI', at ¢
is invertible. Indeed the equation

(48) ¢ 3y0 — Lugis, = F e Cy®)

has a unique solution belonging to C2 *R").

To establish this result we consider for instance the solution \, € C**B,) of
(48) on B, for Dirichlet’s data equal to zero on the boundary. It is easy to
prove that the set of functions {{/, }, . is uniformly bounded, then we use the
Schauder Interior Estimates 3.61. At x e R” we have for k > ||x| + 2:

IWllcza k) < ClIYKlIcown + [ Fllcxgn] < Constant

with K = B, (1) and the constant C independant on x.

It follows that a subsequence of ¥, converges to a solution of (48) which
belongs to C3*R"). The generalized maximum principle 3.76 implies the
uniqueness assertion. By Theorem 3.56 the solution belongs to C(R").
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The inverse function theorem 3.10 establishes that the set € of the t € [0, 1],
for which (47) has a solution, is open in [0, 1]. To prove that ¥ is closed we
need uniform estimates of the solutions of (47) in C*(R"). To get them we do
similar computations to those done at the beginning of this chapter, but here
we use the generalized maximum principle 3.76.

8.35 Pogorelov, Cheng and Yau get C*® approximated solutions of (45) by
geometrical considerations. Here we get the functions ¢, = {/,/Q by analysis.
It is the distinction between both proofs, because we proceed as Pogorelov
[235] to have uniform estimates in C>(K) with the compact K < Q. That is
why Lions’ result is not an improvement for equation (45).

But we can apply the method to the Dirichlet problem for the complex

Monge-Ampere equation 8.25. By a similar approach, we get C* ap-
proximated solutions of the complex equation.
Then we need estimates. The C° and C! estimates are not difficult to obtain.
But if there exists Aubin’s estimate 7.22 for the third derivatives of mixed type
(and so for the gradient of the laplacian) when we assume the estimate for the
laplacian, there is no complex equivalent of Pogorelov’s C2-estimate [235
pp. 73-75]. This is still an open problem.

8.36 Note added in proofs. In June 1982, Cafarelli L., Nirenberg L. and Spruck
J. proved [*66] that in the general case they have obtained the estimate of the
third derivatives of the functions ¢, on the boundary (see 8.11). They claim
that there exists a modulus of continuity for the second derivatives of the
function ¢, :

|6ij@4(x) — Cij0,(1)| < C[1 + [log lx — ylI]™"

with C a constant. It is also possible to obtain this modulus of continuity for
the complex equation 8.25 (see [*67] and [*68]).



Chapter 9

The Ricci Curvature

§1. About the Different Types of Curvature

9.1 In this chapter we deal with problems concerning Ricci Curvature mainly:

— Prescribing the Ricci curvature
- Ricci curvature with a given sign
- Existence of Einstein metrics.

This latter problem: to decide if a Riemannian manifold carries an Einstein
metric, will be one of the important questions in Riemannian geometry for the
next decades. Indeed, in spite of recent results that we will talk about, Ricci
curvature is not yet well understood. Ricci curvature lies between sectional
and scalar curvatures. We saw that scalar curvature is now well-known and we
recall below some results concerning sectional curvature. In this chapter (except
in §1.4) we suppose that the dimension of the manifold is greater than 2.

1.1 The Sectional Curvature

9.2 We will mention some well-known results which prove that it is a strong
property for a manifold to have its sectional curvature of a given sign. We see
that it is impossible for a manifold to carry two metrics, the sectional curvatures
of which are of opposite sign.

Theorem 9.2. A complete connected Riemaniann manifold (M, g) has constant
sectional curvature if and only if it is isometric to S,, R™ or Hy, the hyperbolic
space, or one of their quotients by a group T of isometries which acts freely and
properly. S,,, R™ and H,, are endowed with their canonical metrics.

9.3 Theorem (Synge). A compact connected orientable Riemannian manifold of
even dimension with strictly positive sectional curvature is simply connected.

The proof is by contradiction. If the manifold is not simply connected there is
a shortest closed geodesic I' in any nontrivial homotopy class. As the manifold
is orientable and of even dimension, there exists a unit parallel vector field
along T' orthogonal to I'. Then we can consider the second variation of the
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length integral in the direction of this vector field (related to a family I"y of
closed curves near Iy = T"), as we do for the proof of Myers’ Theorem 1.43.
The hypothesis on the sign of the sectional curvature implies that this second
variation is negative, which is a contradiction, since I' would not be the shortest
curve in its homotopy class.

9.4 Theorem. A complete simply-connected Riemannian manifold (M, g) with
nonpositive sectional curvature is diffeomorphic to R™.

Proof. Let P be any point of M. P has no conjugate point (Theorem 1.48), so
expp is a diffcomorphism from R™ to M (Theorem 1.46).

Corollary 9.4. A compact Riemannian manifold (M, g) with non-positive sec-
tional curvature cannot carry a metric § with positive Ricci curvature.

Indeed by Myers’ Theorem~9.6, if § exists, (M, §) has a compact universal
covering space (M, 7*g), # : M — M. This is in contradiction with Theorem
9.4 which asserts that the universal covering space of (M, g) is diffeomorphic
to R™.

1.2. The Scalar Curvature

9.5 In this section we suppose nn > 3. We saw that there are obstructions for a
manifold to carry a metric with positive scalar curvature. But in Aubin [21] it is
proven that we can locally decrease the average of the scalar curvature by some
local change of metrics. Thus we get a metric with negative scalar curvature on
any manifold. So there are three types of compact manifolds. Those which carry
a metric with positive constant scalar curvature, those which carry a metric
with zero scalar curvature and no metric with positive scalar curvature, and
those which carry no metric with non-negative scalar curvature. For complete
non-compact manifolds Aviles—-Mc Owen [*18] proved that there always exists
a complete metric the scalar curvature of which is constant and negative.

1.3. The Ricci Curvature

9.6 Between the scalar curvature which has little significance, and the sectional
curvature which has strong meaning, there is the Ricci curvature. Recently
Lohkamp [*226] (see 9.44) proved that any Riemannian manifold of dimen-
sion n > 3 carries a complete metric with negative Ricci curvature. On the
other hand to carry a metric with positive Ricci curvature implies strong result
such as

Theorem 9.6 (Myers [*247]). A connected complete Riemannian manifold M,
with Ricci curvature > (n — 1)k* > 0 is compact and its diameter is < 7 /k. Its
Sfundamental group is finite.

For the proof see [*247] or 1.43.
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1.4. Two Dimension

9.7 The two-dimension case is very particular. If the local chart is chosen so
that at P, g;;(P) = 6, we have at P : Ry} = Ry = Riyiz = R/2. Moreover, if
(M, g) is compact, the Gauss—Bonnet theorem asserts that fM RdV =4nx(M),
where x is the Euler—Poincaré characteristic. For complete manifolds Cohn—
Vossen proved the following inequality [,, RdV < 4myx(M). So it is obvious
that a compact manifold cannot carry two metrics whose curvatures are of dif-
ferent sign. It is well known that there exists on a compact manifold a metric
with constant sectional curvature R/2. The problem of prescribing the scalar
curvature R is discussed in chapter 3, and the problem of prescribing the Ricci
curvature is considered in this chapter . For details on the Gaussian curvature
see Kazdan [*194].

§2. Prescribing the Ricci Curvature

2.1. DeTurck’s Result

9.8 Theorem (DeTurck [*109]). If T = {T;} is a C™ (resp. C*°, analytic)
symmetric tensor field (m > 2) in a neighbourhood of a point P on a manifold
of dimension n > 3, and if the matrix (Ti;)) is invertible at P, then there is a
C™* (C®°, analytic) Riemaniann metric g such that R;; = T;; in a neighbour-
hood of P.

Recall the expression for the curvature tensor in local coordinates (see 1.13),
in terms of the Christoffel symbols of the metric:
¢ ¢ e £ ¢
(1) Rkljzalr‘:'k —5_,Flk+1-',m ;r‘lc'—].-‘]m :Tkl:
Because the Ricci tensor is Rfdj, we calculate that

(2) E(g) = 19" (Bixgji + 0519ik — Bugjk — Oksgut) + Qjx(9) = Ty

where Q;x(g) is quadratic in the first derivatives 0;g;k.
(2) is a non linear second-order differential equation, its linearization gives
at P:

3) [DE(9)](h) = Lg% (Buchijt + Bjihax — Buhjk ~ Bkjha)
— Ritij(P)gi 98 hab

if we suppose that the coordinate system is normal at P. Let £ = {£;} be a unit
vector of Tp (M), the symbol ¢ of DE (g) at P is

n

@) [0@©R],, = hiy = Y (&bkhjk +E€khik — E€5hek)

k=1
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To see how acts o(£) on the symmetric tensor h, we can suppose without
loss of generality that §; = 1 and & = 0 for 2 > 1. We find [0(©)h);; = hyj if
i#land j#1, [0(€hh: =0ifi# 1 and [0(§hli1 = 3}, hkx. Since there
are zero eigenvalues, the symbol ¢(£) is not an isomorphism. Thus equation (2)
is not strictly elliptic. The presence of zero eigenvalues is not surprising since
under a diffeomorphism ¢

™ Ricci(g) = Ricci(p*g).

We can verify that for any £ the kernel of ¢(£) consists of all tensors h of the
form h;; = vin; + n;v; where v; and 7; are the components of two 1-forms. For
different points of view of this fact, see DeTurck [*109] p. 181, Hamilton [*151]
p-261 and Besse [*44] p.139. To overcome this difficulty DeTurck considers
the “gravitation operator” G.

2.2. Some Computations

9.9 Definition. We define (Gh); = hi; — 5(9"hw)gi; and (Sh); = —V7h,;
on a symmetric tensor h and on a 1-form v = {v;},(6*v);; = %(Vivj + Vjvi).
Moreover set B(g,T) = —6GT and for any tensor field S, AS = —¢"/V,;S.
The second Bianchi identity (see 1.20) gives
(5)  B(g,Ricci) = g7 (ViRi; — §ViRst) =0
B(g,T); = g (8kTy; — 10;Tuc) + (36kgi — 519ik)ng”.

As we suppose that T" is invertible, differentiating T~ B(g, T') with respect
to g yields

(6) Dy [T~'B(g,T)](h) = 6Gh + terms in h.
Thus the leading part of Dy [§*T ' B(g,T)](h) is
(7 5 (Bjkha = Bjthix — Bixhji) g™,
Comparing (3) and (7) we find
(8) Dy [Ricci(g) +6*T ' B(y, T)](h) = }Ah +lower order terms.

2.3. DeTurck’s Equations

9.10 We saw that (2) E(g) = T is not elliptic. But we know that if g is solution
of (2): Ricci(g) = T, when T will satisfy B(g,T) = 0. Moreover we saw that
(8) is elliptic. This is the reason for which DeTurck considered the new system:

) Ri; +[6*T~'B(9,1))i; = T;;-

(10) B(9,T)=0
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He proved that this system is elliptic and it is equivalent to the original one
(2). As there exists a metric go which satisfies (2) at P, gy satisfies (9) and (10) at
P and the local theory of elliptic systems can be used. For the proof of Theorem
9.8 DeTurck considered an iteration scheme and showed that it converges. In
[*111] DeTurck gives an alternative proof of Theorem 9.8 which is not so hard
as the original one. The new idea is to find a metric g and a diffeomorphism ¢
such that Ricci (g9) = @*T

9.11 Remark. We cannot drop the hypothesis ((T};)) invertible at P. Consider,
as DeTurck did, the tensor field T;; = *+27+267 3"}, z*, which vanishes at P.
We verify that it cannot satisfy the Bianchi identity (5) at P for any Riemaniann
metric. Indeed it gives at P 37 g¥ =0 fori=1,...,n.

24. Global Results

9.12 On a compact kéhlerian manifold (M, §), we completely solved the problem
of prescribed Ricci curvature (see 7.19). This problem was known as the Calabi
conjecture. Recall the answer : Let Ry; be a 1-1 covariant tensor field. The
necessary and sufficient condition for which there exists a kihlerian metric with
Ricci tensor Ryj is that the Ricci form =+ Ryzdz* A dz# belongs to Ci(M)
the first Chern class. Moreover, in each positive cohomology class there is a
solution g, which is unique up to a homothetic change of metric.

9.13 Myers’ theorem 9.6 gives obstructions for a compact manifold to carry a
metric with positive Ricci curvature. On the other hand, there is no obstruction
for a manifold to carry a metric with negative Ricci curvature (see Lohkamp’ s
result in 9.44). In Kazdan [*194] we find other cases of non existence, such as:

Theorem 9.13 (DeTurck—Koiso [*112]). On a compact manifold (M, g), if the
Ricci curvature is positive, the tensor cR;; is not the Ricci tensor of any metric
for c large enough. We may take ¢ > 1 if R;; is the Ricci tensor of an Einstein
metric, or if the sectional curvature of Ri; considered as a metric on M, is
<1/ -1).

When 0 < ¢ < 1, we can conjecture that there is no metric with Ricci
(9) = cR;j, and Cao-DeTurck [*75] proved that there is no conformally flat
metric with this property. DeTurck~Koiso [*112] also established some results
of uniqueness for Ricci curvature.
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§3. The Hamilton Evolution Equation
3.1. The Equation

9.14 One of the most famous problems in geometry is:
The Poincaré conjecture.

A compact simply-connected Riemannian manifold (M, g) of dimension n =3 is
diffeomorphic to Ss.

To attack this problem we can think of trying to deform the initial metric to
an Einstein metric. If we succeeded we would get a metric of constant curvature
since the Weyl tensor vanishes identically when n = 3. And we know (9.2) that
a compact simply connected Riemannian manifold with constant curvature is
isometric to the sphere. In his theorem (9.37) Hamilton supposes that the Ricci
curvature of the initial metric is positive. Of course a hypothesis of this type
is necessary since S; x C has non-negative Ricci curvature. (C is the circle).
Actually we don’t know how to express the hypothesis “simply connected” of
the Poincaré conjecture, by means of Riemannian invariants.

9.15 To carry out this idea, R. Hamilton [*151] introduced the following evo-
lution equation:

0
(11 5794 = (2r/m)gi; — 2Ry;

where g;; and R;; are the components of the metric g, and the Ricci tensor
of g; in a local chart.(To simplify we drop the subscript ¢ when there is no
ambiguity). The solution g; of this equation will be a smooth family of met-
rics on the compact manifold M, and r is the average of the scalar curvature
R:r=[RdV/ [ dV.Because 2/|g|=} |g|gij—a§i = (7~ R)/g| the vol-
ume of (M, g;) is constant. In order to make the computations easier, R. Hamilton
[*151] considered the evolution equation

0
(12) 5794 = —2R;;

Proposition 9.15. Suppose g, is a solution of (12). We define the function m(t)

so that (M, §;) has volume 1 with §, = m(t)g;. Sett = fo m(s)ds, then § satisfies
equation (11) with { instead of t.

Proof. First of all, in a homothetic change of metric, the Ricci curvature remains

unchanged: Rl:j = Ry;.
So 7= [ RdV = [m()]*/*~! [ RdV. But by hypothesis

l=/dV= [m(t)]"”/ av,
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hence

nm(t) 1 nf2 [ 09 o n/2
T - 2[ m(t)] / 50 4V = [m(t)] /RdV

using (12). Thus 7 = 2m/(t)/m?*(t). Now we verify that §; satisfies equation

(11).
8. 1 0. _m.
5599 = i 8199 T a9 ~ 2R

9.16 Let {2} be a normal coordinate system at P € M (see 1.25). We will
write equation (12) at P in this local chart. According to the expression of the
components of the curvature tensor (1):

(13) Ri;(P) = 395 (Bikgjt + 0519ik — Bijgki — Okagis) p

If the coordinate system would not normal at P, there would be, in the
expression of R;;, additional terms involving only g;;, g k! and quadratic in the
first derivatives a,g ik- So from (13) we get the linearization DE(g) of the right
hand side of (12): E(g) = —2Ricci(g). We have DE(g) = —2DE(g) where E(g)
was defined in (2). Equation (12) is not strictly parabolic, as (2) is not strictly
elliptic (See 9.8).

3.2. Solution for a Short Time

9.17 Theorem (Hamilton [*151], DeTurck [*111]). On any compact Riemaniann
manifold (M, gy), the evolution equation (12) has a unique solution for a short
time with initial metric gy att = 0.

For the proof Hamilton used the Nash-Moser inverse function theorem
[*150], some special technique is required because equation (12) is not strictly
parabolic. When this proof appeared, DeTurck [*109] had already solved the
local existence of metrics with prescribed Ricci curvature (that we saw above
§2), and then he gave a proof of Theorem 9.17 which uses Theorem 4.51 for
parabolic equations.

DeTurck’s idea is to show that (12) is equivalent to a strictly parabolic
equation (15) when n =3 or (16) for n > 3.

Let ¢ be any constant such that L;; = R;; + cg;; is positive definite at any
point of (M, go). So L~ exists. Recall Definition 9.9: For a symmetric tensor
h={his},

(Gh)ij = hij — 39" hrigi;

and for a 1-form v = {v;}, (6*v);; = Viv; + Vv,
The second Bianchi identity implies (see 1.20):

(14) (6GL); = —=V*GL)ij = —=V'Rij + }V;R =0.
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9.18 When n =3, DeTurck [*111] considers the following parabolic equation:

2 0= 2[Ry - (5-[17'561])

ij
15 0
(1) asz = —AL;; —2¢(Lij — cgi;) — [Q(L - cg)]

9(z, 0) = go(z), L(z, 0) = Ricci(go)(z) + cgo(x)

)

where the unknown is the pair [g;;(z,t), Lij(z,t)]. Q(S) is some quadratic
expression in S using the metric. This system is strictly parabolic. Indeed by (8)
we have that the symbol of the right hand side of the first equation with respect
to g is the symbol of minus the laplacian.

Hence from Theorem 4.51 (15) has a unique solution for a short time. We
have to show that this solution solves (12).

For this DeTurck considers the quantities

ui=[L7'6G(L)], and Pij=Lij — (Ryj+cgij).

A computation gives the evolution equations for u and P. It is a parabolic
system which admits the solution u = 0 and P = 0. As the initial conditions
are P(z,0) =0 and 6GL(z,0) =0, we have indeed P = 0 since the solution is
unique. Since any solution of (12) is a solution of (16), the resulting solution of
(12) is unique.

When n > 4, the Weyl tensor does not vanish identically, and equation (15)
involves the curvature tensor. We must introduce a new unknown Tj;x;. The
parabolic equation to consider is of the form.

( 0
5794 = ~2[Rij = 6*[L7'6GL));j]
ad
a6y { zplis = ~ALij = 20(Lij = cgij) + 297 9* Tipg; Lrs — 297 Ly L
0
aTijkl = —ATijx + quadratic expression in T;i; using the metric

\ 9(z,0) = go(z), L(x,0) = Ricci(go)(z) + cgo(x), T'(z, 0) = Riem(go)

where Riem(go) is the curvature tensor of go.

Thanks to (8) it is obvious that this system is strictly parabolic. Hence (16)
has a unique solution for a short time. We prove that this solution satisfies (12)
by the same way as above for the dimension 3. The evolution equation for u, P
and S = T — Riem(g) is strictly parabolic and admits the solution w = 0, P = 0
and S =0.

So (12) has a solution. This solution is unique since any solution of (12) is
a solution of (16).
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9.19 DeTurck found a simpler proof of the existence, for a short time, of solu-
tions for the evolution equation (12).

Since his proof is unpublished, we reproduce it now. As before, DeTurck
replace (12) with a strictly parabolic equation. Let T;; be any symmetric tensor
field on M which has the property that T; is invertible ( as a map from Tp(M)
to T}:.(M)) at every point P of M. One could, for instance, take T" equal to go.
Then the equation

an = —2R; ~ 2[6*T"'B(g, 1)), ,,9(0) = go

a_tgij
has a unique solution for small time by the parabolique existence Theorem 4.51
For the notations 6*, B, see Definition 9.9. The proof that the right side of
(17) is elliptic appears in [*109], see also (8) in 9.9.
The introduction of T breaks the diffeomorphism-invariance of (12) and
renders (17) parabolic. To show how to get solutions of (12) from those of (17),
we need the following two results,

Proposition 9.19. Let v(y,t)y € M, t € R*) be a time-varying vector field
on M. Then for small t, there exists a unique family of diffeomorphisms p; :
M — M such that Q%t(i) =v(p(z,), t) for all € M, and with @ = identity.

Proof. The standard proof when v does not depend on ¢ still applies, via the
existence and uniqueness theorem for ordinary differential equations (see for
instance Warner [*313]).

Lemma 9.19. Let g;;(y,t) (y € M, t € R*) be a time-varying Riemannian
metric on M, and , the family of diffeomorphisms from Lemma 9.19. Then

3‘/’: (9)

(z)=¢; {—“Z(cpt(x))] + 20} [6*w(pu())]

where w is the one-form w; = gikv".

Proof. Compute

a

. 8° BB
©*(9)ij = %%gap(w(z),t)

SO
0" (9) ‘9L3_¢”3 L0 00 - 9p% 0pF &
Bt 5z 627 9%° T Bt 5239%F ¥ Bzt Bz o7
B
+ %%—agaﬁvk
ozt Oz dy*

B dg 3<p P [ ovk vk 09ap &

=¥ <8t> Bz a7 |aya IkP T B ke T kY

— * @ * *
= <6t>ij+2<p (6 w)i],.
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Proof of Theorem 9.17. Let w be the one-form w =7 ~!B(g, T) obtained using
T and the solution g of (17) above, and let ¢, be the family of diffeomorphisms
obtained by integrating v using Proposition 9.19 (* = gk‘wi). Then according

to Lemma 9.19
d¢;(9) _ .99
ot ot
= —2¢; [Ricci(g) +6*T ' B(g, T)] + 2¢; [6*T ' B(g,T)]

= —2Ricci(y; 9).

+ 207 (8% w)

Thus ¢ (g) satisfies (12).
3.3. Some Useful Results

9.20 Generalized maximum principle. Let F' be a vector bundle over a com-
pact manifold M. To a doubly covariant symmetric tensor field 7 on F we
associate an other two covariant symmetric tensor field on F', N = p(T, g)
which is a polynomial in T' formed by contracting products of 7" with itself
using the metric g. We say T > 0 if (T'(v), v) > 0 for any v € F.

Theorem 9.20 (Hamilton [*151] p. 279, Margerin [*233] p.311). Let T, and ¢,
be smooth families on 0 < t < T which satisfy

(18) %Tt = —AT, +u*ViT; + N,

where Ny, = p(T3,g:). We suppose N = p(T,g) has the following property:
T'(v) =0 implies (N(v), v) > 0. Then T; > 0 for any t € [0,7] if Tp > 0.

Proof. Set T} =T, + (6 +t)Id, where € > 0 and § > 0 are small and Id = g if
F = T(M) and where (Id);; = 1(gikg51 — gugjx) if F = A*(M). These are the
bundle F for which we will use Theorem 9.20.

We assert that, for some § > 0, Tz’ > 0 on [0, 4] and for every € > 0. Then
letting € — 0 yields 73 > 0 on [0, 6], hence on [0, 7]. If not there is a first time
6 (0 < 6 < 6) and a unit vector v € F, for some (zo € M) such that T(v) = 0.
Thus (p(Ty, go)(v), v) > 0.

As N is a polynomial, |p(T”, g) — p(T, g9)|| < C1||T' —T|| for some constant
C) which depends only on max(||T”’||, |T||).

Then

(19) (No(v),v) > —Cheb

We extend v in a neighbourhood of zo to a vector field denoted 9, in such
a way that ¥ is independent of t and such that Vi(zq) = 0.
Set f(t,z) = (T8, ¥). Then f > 0 on [0,6] x M and at (6,z¢), f = O,

9l <0,df=0and Af <0.
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This implies among other things (VTy(?), ¥),, = 0 and (ATy(9),¥),, < 0. But
(18) gives

% = —(AT(©),8) + (u*VT(9), 0) + (N(@),7) +£(6 +t)-(%(ﬁ,f)) +¢(0,0).
At (0, zo) we get
(20) (N@),3) < €[l - 2C8]

where C > C, is chosen so that 3%-(1),’0) <C.
If we choose 6 < 1/3C, (20) is in contradiction with (19).

9.21 Theorem (Hamilton [*151]). Interpolation inequality for tensors.

Let (M,,, g) a compact Riemannian manifold and let p, q,r be real numbers
> 1 If1/r=1/p+1/q, any tensor field T on M satisfies

1/r
1) [/ VT dv}
1/p 1/q
< [Vn+2r - 1) U|V2T|PdVJ [/ |T["dV} :
Ifp=r2>1and q= oo, then T satisfies
(22) { / VTP dV] " < [Va+2p - )] sup|T| [ / VTP dv] '
M
Proof. Set T = (T,,), @ multi-index. Integrating by parts yields:
/|VT|2T dV:/V,-T(,viT“WTF(*")dV
(23) =— / TV, T, |VT X~V qy

- 2r - l)/T“ViVjTﬁviTaV]Tﬁ$VT|2"'”2’ dv.

Now
(24) IT*VV,Ta* < n|T]?|V?T
(25) T*V'VITPY, T,V T < |T||V*T||VT|%.

In fact, expanding |T5V;V; T, — AV, T, V;T5[* > 0 yields a polynomial in
X of order 2. The nonpositivity of the discriminant is of this polynomial gives
(25). To verify (24), we write

TV, V; T — T*VEVTagij/n? >0
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and
|TpViV;Ta — TaViV;T52 > 0.
The first inequality is [T2V*¥VTa|? < n|T*V;V;T4|* and the second

]T"‘V,-VJ-TC,II2 < IT|2|ViVjTa|2.
Putting (24) and (25) in (23) implies

(26) /|VT|2’dV < [2tr = D)+ v/n] / |T||V2T|| VT %D qV.

As 1/p+1/q+(r — 1)/r =1 the Holder inequality then implies

1/p
/NTW dv < [2(r - 1)+ v/n] U{vmpdv}

x [/lTl"ldV} v UWTPTWJI—VT

which is (21). Similarly (26) implies (22) when g = oco.

9.22 Corollary (Hamilton [*151]). Let (M, g) be a compact Riemannian man-
ifold and let m € N. There exists a constant C(n, m) independent of g such that
any tensor field T satisfies

27) / |VET2™m/% gV < C(n, m) sup |T|2m/k=D / |V T2 4V
M

for all integers k with 1 <k <m — 1.

Proof. Set f(0)=sup,, |T| and f(k) = U |WkT|2m/ dV]k/Zm,
2m

Applying (21) to the tensor field (V;;, i, _,To) With p = %, g= % and
r =m/k yields

(28) fAk) < C2f(k+ 1)f(k ~ 1)

where we can choose C' depending only on n and m. But (28) implies, as we
will see below,

(29) fky < cmm=R )] ™ fmy) ™

which is (27). Let us now prove (29). Set g(k) = log f(k) and a = log C. By
(28) we have 2g(k) — g(k+ 1) — g(k — 1) < 2a.

k

Y i[29G) - 9G + 1) = gG = D] < k(k+ 1)a.

s=1

] As (k+1g(k) = kg(k+1) - g(0) = Y5, i129(5) — 9(G + 1) — g(G — 1)] we
nd

(30) (1+1/k)g(k) — gk +1) < (k+ 1)a+ g(0)/k.
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And since (m—k)g(k+1)~(m—k—1)g9(k)—g(m) = Eﬂ;:l(m—j)[290)~
g+ 1) = g3 = D] < (m = k)m — k — 1)a, we can sum this inequality with
(m — k) times (30) to get

m

-k
X 9(0)

Tg(k) < g(m)+ m(m ~ K)o +

which implies (29).

3.4. Hamilton’s Evolution Equations

9.23 Theorem (Hamilton [*151] p. 274). If g(t) satisfies the evolution equation
(12) on [0, [, then the curvature tensor Rijy(t), the Ricci tensor R;;(t) and the
scalar curvature R(t) satisfy the following equations:

o}
(31 aszkz = ~ARijki +2(Byjki — Bijik — Bujk + Bikjt)
- gpq(Rpjkqui + Riplcquj + Rijleqk + Rijkqul)
o}
(32) o Rik = ~ARuk + 267 9% Rpigk Rab — 297 Rpi Rk

ot
0

(33) 5 k= ~AR+2g9g" R Ry

where Bijkl = gpagqup,;quakbl. Recall ARijk[ = -—VUV,,R,']'H.

Proof As %Rik = gﬂa%Rin ~ Rijlig’Pg" 5329170’ contracting (31) by g7* gives
(32). Similarly contracting (32) yields (33). In normal coordinates for g(t) at P:

W= gmk(akle — 0jRii — O Rjk).

at It
As %I‘;’l‘ is a tensor field in the local chart
0
(34) o T = 9™ (ViRj — VR — ViRj).

According to (1) we have

O p om 8 rm 0 rm
5 i z=Vi('3‘t jz> ‘W(E u)-

0
(35) aRijkl =VikRji — VuRjk — VxRu+ Vi Ry
~ Ry Rijmi — RI" Rijmk

since VjiRk; — VijRii = 2RkmRi;™1 = Rij™ kRt — Rem Ri™1-
Differentiating the second Bianchi identity we obtain

ARijk = V™V iRjmkt + V"V Rk

Thus we get
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Permuting the covariant derivatives and using the contracted second Bianchi
identity we obtain (31) from (35).

9.24 Theorem (Hamilton [*151]). If R(0) > C > Othen R(t) > C for0 <t <
7. In dimension n =3, if R;;(0) > 0 then R;;(t) > 0 for 0 < t < 7. Moreover,
when n = 3, if R;;(0) — aR(0)g;;(0) > O with R(0) > O then for 0 <t < T,
R;;(t) — aR(t)gi;(t) > 0.

Proof. The maximum principle for the heat equation implies the first result since
according to (33)

o)
— > 0.
atR+AR_O

When n = 3 the curvarture tensor expresses itself in terms of the Ricci
curvature and R since the Weyl tensor Wi, vanishes. Thus (32) becomes
o]
(36) -éERij + ARU = Nij
with Ni; = —6g" Ry Rk + 3RRi; — (R? — 2R R¥)g;. )
We remark now that if Rjju* =0 with |u| # 0, Nju'v/ = 2R;;RY — R?)|uf?
> 0.
Indeed if the eigenvalues of ((R;;)) are A, p and zero 2R;; RV — R* = (A~ p)?,
zero is an eigenvalue since we suppose R;;u’ = 0.
Theorem 9.20 then implies the second assertion.
For the third we apply the same theorem to the tensor field T;; = R;;/
R — ag,;. Indeed we verify that
ETU + AT,;]' = -ﬁg VkRV[T,‘J' + Nij
with Nij = 2(1R,ij + Nij - ZR_ZR—HR“dR,;j.
As before R;;u’ =0 implies Nj;ju'u? > 0.

9.25 The curvature tensor defines a linear operator on the space A%(M) of two
differential forms (w;;):

Riem(g)(w) = Rijklwkl dz* A dz?.

Theorem 9.25 (Margerin [*233]). If Riem(go) is positive, Riem(g;) remains pos-
itive for all 0 <t < 7. The smallest eigenvalue \; of Riem(g) satisfies Ay > Ao.

Proof. One more time we apply Theorem 9.20.
This time F = A2(M), T, = Riem(g;), u = 0 and N, is given by (31). We
verify that Riem(g)(w) = 0 implies (Ny(w),w) > 0.
We prove the second part of the theorem by using Theorem 9.20 with T;
defined by
T;(w) = Riem(g;)(w) — Aow.
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9.26 The solution g; of (12) exists on [0, 7[ for some 7 > 0 according to
Proposition 9.17.

Theorem 9.26 (Hamilton [*151]). If Ry > ¢ > 0, then 7 < n/2c.

Proof. Set f(x,t) = nc/(n ~ 2¢t). 3 = 2% /n thus
bl 2
-a—t(R -f)z2-AR-f)+ H(R+ R - f)

since [Ry; — Zg,;1> > 0 implies Ry RY > R*/n.
AsR—f>0att=0, R— fremains > 0 on [0, 7[. But f(z,t) — co when
t - n/2¢ s0o1<n/fe

9.27 Let us return to the normalized equation (11). In 9.15 we have written §(f)
for the solution of (11).

The key point is to prove that the solution §(f) exists for all £ > 0 and
converges to a smooth metric when £ — oo.

E. Hebey pointed out to me that, altough the following theorem is not ex-
plicitly stated in Hamilton, all the ingredients needed for its proof were proved
in Hamilton.

This theorem is basic in the works of Hamilton [*151], [*179], Huisken
[*179], Margerin [*233], [*234] and Nishikawa [*259].

Let Z be the concircular curvature tensor

R
(37 Zijk = Rijkr — y (9ik95t — girgsx)-

(M, g) has a constant sectional curvature if and only if Z(g) = 0.
Theorem 9.27. Let (M, go) be a compact Riemannian manifold of dimension

n > 3 and scalar curvature Ry > 0. If there exist positive constants «, 3,7,
independent of t such that on M and for all t € [0, 7[

(38) Ri;(t) — aR.g45(t) 2 0

(39) |Z(g0)| < BRy™
then the solution §(t) of equation (11) exists for all t > 0, and §(£) converges to

a metric with constant positive sectional curvature when f — .

The proof is given in 9.36 and uses many results that we give now, following
Hebey (private communication).

9.28 Proposition (Analogous to theorem 11.1 of Hamilton [*151]). Under the
hypothesis of Theorem 9.27, for any n €10, 1/n[, there exists a constant ¢(n)
independent of t such that

(40) IVRt|2 < nRg +e(m)  for0O<t<T.
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Proof. Ry > 0 implies there exists € > 0 such that R, > ¢ according to Theorem
9.24. Thus |Z(g;)| < C1R; with Cy = Be™".
Set A (t) = |VR[?R™! — nR?. Using (33) a computation gives:

0
SA=-0A+ RvaRVﬂRUP +K
where ) 5
K= _EHRVZVJR - ViRv]‘R|2 - EZ-|R”|2|VR|2

+2n|VR|* - 4nR|R;;|*.

We verify that K < 2R?(n — |R;;|*R™%) — 4nR|R;;|* and since |R;;[? >
R?/n we obtain K < —-41]R3/n if0<n<li/n

Now |Z|* = |Rijkl|2 = 1)R2 2 El‘Rijlz nln— I)R2
So by (40) there exists a constant C, such that |R1]|2 < C,R2.

Since |V;R;k|> > |[VR|?/n (obtained by developing |V;E;x|*> > 0 with
Ejk = Rjk — jok/n) we get

4 8
—VaoRV*|Ry;|* < §|Rij”VR||ViRjk| < G| ViR

R
where C3 = 8v/nC,. Hence
(41) %‘? < —AA+ G3|ViR|* — 4nR3/n.

Moreover using (31) a computation leads to

8, _ 2 2 2
5;|Z| =—-A|Z)"=-2|VZ|" + l)RlE”|

— 8(Zi 2?92, | + Zij 2P0 2,7 ).

As |Z)?P =W+ 2|E”|2 Eqj|? (see 37)

—~n2|

4 2
(42) 56t~|Z|2 =-A|Z|* -2IVZP+ (” )R|Z|2 16/Z)°.
According to Lemma 9.29 and using 37 leads to
2
2_1v.p.., [2_ 2
IVZ|* = |V Rjkiml| — 1)|VR|

2 [ _ 2(n—1)(n+2)

n(3n —2) ] IViRjel’

n—1
2(n —2)?
n(n — 1)3n - 2)

Now set F = A + a|Z|* where @ > 0. For 0 < n < 1/n (41), (42) and
(43) give £F < —~AF + C4R|Z)* + Cs5|Z)* — 4nR3/n if o is chosen so that

4a(n-2)
Cs < sm-1Gn--

(43) VZ|* > |ViR;x|.
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_ The hypothesis [Z| < BR'~" then implies the existence of some constant
C(n) such that

C4R|Z|* + Cs|Z)° - 4—717}23 < C(n.

Hence (%F < -AF+C(n).
By virtue of the maximum principle 4.46, F < C(n) for 0 <t < 7.
The result follows.

9.29 Lemma. On any Riemannian manifold

3n -2
Rk > —
VRl 2 S D )

VR
Proof. We set Fyx = ViRjx — aVRgjx ~ B(V;Rgix + VikRg;;), and seek a
and ( such that ngFijk = g9 Fyj = g““Fi]-k =0.
By virtue of the second Bianchi identity « and [ are the solutions of
a+f(l+n)=1/2and na+26=1.
These are o = —_-(n—l?(n+2) and 8 = ————2(71_"]‘)(7;“2).
So we find |V, Rjx|? = | Fik[* + A|V;R|? with
In-2
A =na?+26%(1 +4aff = —m——.
na” +20°(1 ) +4aff = ZoTET)

9.30 Proposition (Hamilton [*151] p.296). For any m € N there exists a con-
stant C(n, m) independent of the metric and t such that

(44) % / |V™Riem |*dV +2 / |V™*! Riem |> dV
< C(n, m)sup |Riem | / |[V™Riem|? dV.
Here we set |[V™ Riem | = |V, 0.0 Rizki]-
Proof. For any tensor A and B, we write A x B to denote any bilinear combi-

nation of these tensors formed by contraction using the metric.
Differentiating (31) gives

0 mun S . .
-a—t(v Riem) = —A(V™ Riem) + Z (VP Riem) * (V9 Riem).

ptg=m

Then
0 mp; 2 mup: 2 m+l R; 2
—atIV Riem | = —A|V™ Riem [* — 2|V™" Riem |

+ Y (VPRiem) x (V9 Riem) x (V"™ Riem).
p+g=m
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For any C' function f(z,t)

d 0 0
a;/f(m,t)dV:/gt-f(x,t)dV+/f(x,t)b-t-dV

this last term being smaller than sup,, |Riem| [ |f(z,t)|dV. Therefore for
ptg=m

(45) / |VP Riem | |V? Riem | [V™ Riem | dV
< Const. (suleiem ]) /IV’" Riem |* dV.
M

Now we verify this inequality. According to the Holder inequality the left
hand side is smaller than

VP Riem ||2m /p|| VI Riem |2/, [ V™ Riem [|5.

and by (27)
V¥ Riem ||3m/x < Const. sup Riem |'~*/™| V™ Riem |5/
M
Thus (45) follows.

9.30 Lemma. If the maximal interval [0, T[ where the solution g, exists is finite,
Ro > 0 implies limsup,_, . (sup,, | Riem |) = co.

The proof is by contradiction. Suppose |Riem| < C for any z € M and
t € [0, r[. Then g; converges, when t — 7, to a smooth metric g, and [0, 7[
would not be the maximal interval. Indeed any derivative of g is bounded. We
have P

594 = ~2Ry

and we can prove that |Riem | < C implies |V™ Riem| < C(m).
For the complete proof see Hamilton [*151] p. 298.

9.31 Lemma. Under the hypothesis of theorem 9.27
lim inf R; = +oo and tll_xg [Sklep R,/i}r\)/!fR,] =1.

t—T M

Proof. According to Lemma 9.30, there exists a sequence t; — 7 such that

im sup | Riem(gy;)| = oo.
Y

|2 = |Riem * — — R® and |Z|<BR'™

2
(n—1)

we have lim;_ o supy, R, = o0.
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Now consider z; € M a point where R;; is maximum. Integrating |V R; |
on any geodesic -y emanating from z; yields a bound from below of R, as we
will see.

We rewrite (40) in the form |VR,| < H;Rf/z + C(n). For any > 0 there
exists C(n) independent of t. Fix n small. For j large enough (j > j(n)),

Cn) < 3721 ('supy, Rt7)3/2 and [VR;| < 7* (sup mRe,)*2 So aty € v with
1 ~-1/2
d(z;,y) < S==(supRe,)” ", Ry, () >(1-n)supRy,.
n M M

But in fact, for n small enough, we get infp Ry, > (1 - 77) supys Ry,
when j > j(n), since the diameter of M is smaller than s. Indeed by the
proof of Myers’ theorem 1.43, the hypothesis (38) implies that the Cut-locus
of x; is reached along v at a point z satisfying d(z;,2) < mvn - l{a(l -
n)sup,s Re,171/2. The assertion is valid if 7 satisfies (n — )r’n? < (1 - n).
Hence lim;_,oo[supy, Re;/infar Ry ] = 1.

Now, by the maximum principle, for ¢ > t;, inf psR; > infpr Ry, Thus
lim¢_, infps Ry = 00.

By the same reasoning as above, this implies lim;_,,[sup,, R./ infys R;]
=1.

9.32 Lemma. Under the hypothesis of Theorem 9.27

T T
/ sup R;dt = o0, / rydt =0
0o M 0

where ry = [ Ry dVi/ [ dV; and limy_,, |Z,|/R; = 0.

Proof. Let f(t) be the solution of f'(t) = 2C sup,, R;f(t) such that f(0) =
sup,s Ro where C' is some constant for which |Rij|*> < CR? (C exists according
to (42)).

(33) then implies

9R-f)< -AR- )+ 20(R - HsipR
ot Ul

By virtue of the maximum principle R, < f(t) for t € [0, 7[ and Lemma
9.31 yields lim;—,, f(t) = +o0.
As

t
logf(t):logf(0)+20/ sup R, dt,
0o M

we have fOT supys R; dt = +00. Hence [) 7 dt = 0o according to Lemma 9.31.
(39) and Lemma 9.31 then give lim;_,, |Z;|/R; = 0.
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9.33 Let us return to the normalized equation (11).

3(f) denotes the solution of (11) obtained from g(t) as shown in Proposition
9.15

§(£) exists on the maximal interval [0, 7[.

Lemma 9.33. Under the hypothesis of Theorem 9.27
(48) lim [sup R()/inf R(D)| =1, Ry > aRyj,
t—T M M
lim |Z()|/R(E) =0 and
t—7

(49) sup R(f) < C < oo forany t € [0,7 and 7 = +o0.
M

Proof. Under dilations inequality (38) and |Z|/R are unchanged. Hence (48)
comes from (38), Lemma 9.31 and 9.32.

As Rij > aRﬁij > 0, we have V < an_lcin/n where V and d denote the
volume and the diameter of (M, ). Now by definition V' =1 and according to
Myers’ theorem ?<(n- 1)7r2/a infar R, thus infar R < constant. (48) then
implies sup,, R < C < 00 and consequently 7 < C.

Moreover df = m(¥)dt and m(t)7(f) = r; (see the proof of Proposition
9.15) yield [ 7()d() = fOT rydt which is equal to +co, according to Lemma
9.32.Thus 7 = +00.

9.34 Lemma. Under the hypothesis of Theorem 9.27, there exists a constant
C > 0 such that infy; R(f) > C for all &.

Proof. According to Lemma 9.33, | Z(f)| < eR(f) for some ¢ < m when
is large enough (f > T1). The sectional curvature K of (M, §) then satisfies

( : —e)Ra')sf{(t“)s(

nn - 1)

1 Lo .
n(n_1)+5)R(t) for t > T;.

By (48) there exists T3 such that for £ > T,
1

2 . o

) i}r\}fR(t).

n(n — 1

Now let us consider the Riemannian universal cover (M,gz of (M, 3).
According to the Klingenberg Theorem, the injectivity radius ¢ of (M, g)

. 2 L = ~1/2 .
satisfies 6 > (7l infar R) /. So there exists a constant C such that

Vol(M) > C(infy R) ~™2 Since the sectional curvature is bounded, and we

get infy, R > [C / v/ where: v is the number of elements in the fundamental
group of (M, §). Indeed Vol(M, §) = v Vol(M, §) = v.
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Moreover, by Myers’ Theorem v is finite since Ri, > 0 (48), and of course
v does not depend on the metric.

9.35 Lemma. Under the assumptions of Theorem 9.27, there exist two positive
real numbers C and § such that for all t:

|Z@)| < Ce % and sup R(f) — il{l/!fﬁ(f) < Ce 9.
M

Proof. From (33) and (44), we get 2R > —AR+ _21:12 and

4(n

)
(51) a|Z|25-AgZ]2 2IVZ)? + R|Z|2+16|Z|‘ MNVRJ?

for some constant A > 0. Set A_ =|Z|>?R™2. As A is homogeneous (unchanged
under dilations), A = A |Z]*R™2.
We compute B = 24 + AA - £V,RV'A.

0 ;0R
— R-? 2 ) - 2p-
B=R7=|Z - 2|ZPR7 2 -2 VZPR™

+R72A|Z|* +2R™*Z|*([VR|* - RAR),

4n-2) 4
n(n — 1)
(52) + R72|VR|*(2A - \) = 2R™YVZ|%.

B < AR +164'/?

Since  § =m(t)g and df = m(t) dt, we get

(53) B=

) +RORRA - ).

By (48), there exists s > 0 such that for £ > s
AV H = |ZD)|/RE) < inf(v/)/2,1/8n(n - 1)).

Set 6§ = %, (53) yields B < —264 and by the maximum principle

et A(F) < €285 sup A, for > s. Hence for all 7, | Z;|e?! < C some constant
since R is bounded by (49).

The proof of the second part of Lemma 9.35 is similar. By virtue of (43)
we have
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9 (|VR]? VR -2 )
() s-ra(BF) remmn

—2R7*|VR|*(-AR +2|R,,|%)
2 2
R™|VR]) < - ('VR@ >+ v <|er:"; )v R
|VR[*
RS

Set f = R VR[> +kR2|Z|? for some constant k > 0. (52) and (5-) vield

(54) 3 (

+C3R™V, Ry -2 ~ 4R YMTRITIR,

o

5 i 7 |
éf+ Af - EV’fVJ?. < [Co ViR - 2KV Z PR ?

|Z)? I ;Z*)
[ — 4
R \nn n R
— R} VR]? ()\ - 2'2‘2'>.
Pick k large enough, k > %ﬂa.

As R73|VRJ? is homogeneous f = f and for f > s (s defined above) we
have by (45):

4
—}—ﬁwmz -4

2 . - .
g IN
nmn - l)Rf S A

Q,

f+Af - =V fVR< -~

Thus fe?? < C2 some constant. Hence
IAR] < 01}?3/2(%‘65 < Cz("“

a~nd Sup s R(f) — infpy R(f) < Cch(f)eZ“. But we saw in 9.33 that the diameter
d(f) of (M, §(f)) is uniformly bounded, thus the result follows.

9.36 Proof of Theorem 9.27. We have

U U
R, - ;r(t)_(';,)(i)‘ el

t2 (,) ty
/ sup| = gi;biggr|df = / sup
M M

() t

t; 2 t .

< 2/ sup | Ey; (D) df + —= sup |[R(f)  r(O)]df
ty, M H \/7‘l M

< Const(e™? — e7012)

according to Lemma 9.35.

The metrics §(f) are all uniformly equivalent and converge to some metric
Joo as £ — oo in CP. Using (21), (22) and (27), we see that all the derivatives of
§(f) are uniformly bounded and §(£) converge 10 joo in the '™ topology when
t — oo. (48) together with lemma 9.34 then implies Z(gm) = (0. Thus g has
constant positive sectional curvature.
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§4. The Consequences of Hamilton’s Work
4.1. Hamilton’s Theorems

9.37 Theorem (Hamilton [*151]). A compact Riemannian manifold of dimension
3, which has strictly positive Ricci curvature, carries a metric of constant positive
sectional curvature. It is thus diffeomorphic to a quotient of Ss.

Proof. As Ricci (go) > 0, we have Ry > 0 and there exists « such that Ricci
(90) = aRygo. By Theorem 9.24, R;;(t) > aR(t)g;;(t) for 0 <t < 7. In order
to apply the main Theorem 9.27, which implies the announced result, we have
only to show that (39) | Z(g:)| < ﬂR; =7 for some positive constants {3, v, this for
all t € [0, 7[. In dimension 3, inequality (39) is equivalent to |E;;(¢)| < ﬂR,"A’
for some positive constants 3,7, since [Z|* = [Wijx|* + =25 |E,;|* with the
Weyl tensor Wi, = 0.

Set A = R ®*|Ri;(t)]> — R2™%/3 = R;“|E;(t)|*> with | < a < 2.

A computation, using (32), (33) and the expression of the Weyl tensor, leads
to (see Hamilton [*152] p.285):

(55) ;%A+AA <2(a-1)R'V;RV'A+2R7'7%[2 - )| R;j|*|Ei;* - 2Q]

where Q = |R;j|* + R[R(R? - 5|Ry;|?) /2 + 2R;;R¥R]].
According to Lemma 9.38 below @ > o?|R;;[*|E;;|*. Pick a such that 2 —a <
202, we get 5
EEA +AA<2a-1)R'V,RV'A.
By the maximum principle A; < A for all ¢ € [0, 7[. This is the inequality
we need.

9.38 Lemma. Q > o?|R;;[*|E;;|%

Pick normal coordinates at z € M such that R;;(z) is diagonal. Let A >
u > v > 0 be the eigenvalues of R;j(x). We have

R@ =A+p+v, |Ry@|=A 442+
and

Q@)= N+ 2+ )’ + N+ p+v)
X [+ p+ ) Ap+Av+vp =207 = 207 = 2% + 200 + 207 + 207

Qz)=(\ — ,u)z [/\2 + A+ p)(p — u)} + 2\ = v)(u = v).

Since both sides of the inequality that we wish to prove, are homogeneous
of degree 4 in A, 1, v, we can suppose A2+ p? +v% = 1.

This implies R? = (A + p+v)* > 1, and since Ri; > aRg;;, v 2> a.

Now Q(z) > N\ = p? + v¥(p — v)* 2 o?[(A — W’ + (u - v)*] and
Byl?= 3 [A = w2+ A =)+ (u =] S A= p)’+(u—v).

Thus the inequality is proved.
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9.39 Theorem. A compact manifold of dimension 3, for which the Ricci curvarure
is non-negative and strictly positive at some point, is diffeomorphic to a quotient

()ng.

The proof comes at once from Theorem 9.37 together with the following
result (Aubin [21]): If the Ricci curvature of a compact Riemannian mantfold s
non-negative and positive somewhere, then the manifold carries a metric with
positive Ricci curvature.

9.40 Theorem (Hamilton [*152]). A compact Riemannian manifold of dimen-
sion 4, whose curvature tensor is strictly positive, carries a metric of constant
positive sectional curvature. It is therefore diffeomorphic to Sy or P*(R).

Curvature tensor strictly positive means that the bilinear form on the
two-forms, defined by (p,¥) — Riem(p, V) = R”klc,:“}‘l/“ 18 positive:
Riem(p, ) > 0if ¢ #0.

The proof uses Theorem 9.27 after proving (39) holds.

4.2. Pinched Theorems on the Concircular Curvature

9.41 In order to use Theorem 9.27, the condition (39) suggests that a good
hypothesis on the initial metric go would be

(56) |Z(g0))* < C(n)R3.

But |Z|?> =4R?/n(n — 1)(n = 2) for S| x S, endowed with the canonical
product metric. Consequently if the condition (56) is sufficient to apply Theorem
9.27 when Ry > 0, it must be therefore that C(n) < 4/n(n — 1) n - 2).

Lemma 9.41. If C(n) < 4/n(n - 1)(n — 2), Ro > 0 rogether with (56) imply
Ricci(go) > 0. More precisely

-2
|Eij(90)|* < P4—C(71)R§-

Proof. A; (i = 1,2,...,n) the eigenvalues of E;; satisfy Y I, \, = 0. This
implies sup,¢; <, (Ai? < 2L E | and if ggjute) = 1,

Eyv'v’ > ~(1 = 1/n)2Ey| > —[(n = D(n - 2)c/4n]'*R.

- (3”—'—”5"—"—%)1/2]1?, >0if C <4/n(n - Ixn 2.

C D i
Thus R, jvte? > [ ye

1
Remark. R > 0and (56) with C = 4/n(n—1)(n—2) do not imply Ricm(go) > 0.
We get Riem(gg) > 0 when C < 4/n(n — 1)(n = 2)(n + 1).

9.42 With a hypothesis of the type 56, Huisken [*179], Margerin [233],
[*234] and Nishikawa [*259] succeeded in using Theorem 9.27. For Nishikawa,
C(n)=1/16n*(n — 1)%.
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For Huisken, C(n) =4/n(n — 1)(n - 2)(n+ 1) if n > 6, C(5) = 1/100 and
C(4) = 1/30. In these cases Riem(go) is positive.

For Margerin, C(n) = 1/2n(n — 1)(n — 2) if n > 6, C(5) = 4/625 and
C(4) = 1/6. The constant C(4) of Margerin is optimal. When n =4 and n > 6,
the best value for C(n) is those announced by Margerin. In particular Riem(go)
is not necessarily positive.

Theorem 9.42. A compact Riemannian manifold (M, go) of dimension n > 4,
with positive scalar curvature (Ry > 0), satisfying
1Z(g0)* < C(n)R;

where C(4) = 1/6, C(5) = 1/100, C(6) = 1/210and C(n) = 1 /2n(n - 1)(n - 2)
when n > 6, carries a metric with constant sectional curvature. The manifold is
diffeomorphic to a quotient of Sp,.

Proof. First we prove that, if (56) holds at time ¢ = 0, it remains soon 0 < ¢ < 7.
This gives (38), (see Lemma 9.41). Then we prove the existence of some 3 and
~ such that (39) holds. According to Lemma 9.41 the hypotheses of Theorem
9.27 are then satisfied, it implies Theorem 9.42. The evolution equations of
Theorem 9.23 yield

%(IZIZR"‘) =-A(|1Z*PR™®) +2(a - DR'V'(|Z*R™*)V,R + A,
where (see for instance Huisken [*179] p. 52):
Ag = =2R" %\ RV, Rjtim — Rjkim VR[>
— (2 - a&)(a ~ DR™C*D|Z]?|VRP +4R™“*V[(1 - 0/2)|Z|*|Ry;|*
+ 2RRije R™ " Ryt + (1/2) Rty RE™ Ry — |Rijia*| Rig?).
The problem is to find a constant K such that |Z| < KR implies 4, <0
and the existence of some o < 2 such that A , < 0. Then we can apply

the maximum principle and the result will follow. The constant K is found by
algebraic computations.

Remark. Recently Margerin [*234] proved that we can take for n large, C(n) =
4/n(n — 1)(n — 2) in Theorem 9.42.

§5. Recent Results
5.1. On the Ricci Curvature

9.43 We could hope that Hamilton’s equation (11) or (12) would yield results
on the Ricci curvature, especially after his first article [*151] in dimension 3.
But in dimension 3, the curvature tensor expresses itself in terms of the Ricci
tensor, and Hamilton’s theorem (9.37) was a result on the sectional curvature.
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In higher dimension, the method yields, under some hypotheses, a metric
with constant sectional curvature.
The most general result on Ricci curvature is the following:

9.44 Theorem (Lohkamp [*226]). Every Riemannian manifold M,, of dimension
n > 3 carries a complete metric g whose Ricci curvature satisfies

57 —a(n) < Ricci(g) < —b(n)

where a(n) > b(n) > 0 are two constants depending only on n.

So, as for the scalar curvature, when n > 3, the negative sign for the
Ricci curvature has no topological meaning. Previously Gao and Yau [*136]
proved that any compact Riemannian manifold of dimension 3 has a metric
with negative Ricci curvature.

But the proof of Lohkamp is quite different and begins with the existence
on R3, then on R", of a metric g, which satisfies Ricci (g,) < 0 on a ball B,
and g, = & the euclidean metric outside B. Surgical techniques are used.

Then, using some deformation techniques, Lohkamp exhibits from g,, a met-
ric g which satisfies (57).

Lohkamp ([*226], [*227]) studied the space of all metrics with negative
Ricci curvature. He also proved the following results.

9.45 Theorem (Lohkamp [*226]). A Riemannian manifold M, of dimensionn >
3 carries a complete metric g with negative Ricci curvature and finite volume.

9.46 Theorem (Lohkamp [*226]). A subgroup G of the group of diffeomorphisms
of a compact manifold M,(n > 3) is the isometry group of (M, g) for some
metric g with negative Ricci curvature, if and only if G is finite.

Bochner’s result asserts that the isometry group of a compact manifold with
negative Ricci curvature is finite, Lohkamp proved the converse.

5.2. On the Concircular Curvature

9.47 The concircular curvature tensor Z is defined in 9.27. We saw (see Theorem
9.42) that under an hypothesis of the type (56): |Z|?> < C(n)R with R > 0, we
can prove the existence of a metric with positive constant sectional curvature
on a compact manifold.

Instead of to have (56) satisfied at each point of M,,, we can ask the following
question:

Can we get similar results with only integral assumptions on |Z|?

The components Z;;x; of the tensor Z express itself in terms of Wijx (W
the Weyl tensor) and of F;; = R;; — Rg;;/n. If one of the two orthogonal
components of Z vanishes, Theorem 9.48 gives a first answer to this question.
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On a compact Riemannian manifold (M,,g) n > 3, a Yamabe metric is
a metric g such that [ dV(g) = 1 and such that [ R(g)dV(g) < [ R(§)dV (g)
for all metric § € [g] (the conformal class of g) with fdf/(g) = 1. We know
that there always exists at least one Yamabe metric in each conformal class and
that the scalar curvature R(g) is constant. If g is Einstein, g is unique in [g].

9.48 Theorem (Hebey-Vaugon [*170]). Let (My, go) be a compact Riemannian
manifold with n > 3 and conformal invariant p([go]) > O (see 5.8). We suppose
either [go] has an Einstein metric or go is locally conformally flat. Then there
exists a positive constant C(n), with depends only on m, so that if for some
Yamabe metric g € [go], ||Z(g)||:},n/2 < C(n)R%(g), then (M, g) is isometric to
a quotient of S,, endowed with the standard metric.

Here || Z(9)llgin/2 = [[ 12(g)I"/? dV(g)]z/n. If [go] has an Einstein metric,
we can pick C(n) = [(n —2)/20(n — 1)]* when 3 < n < 9 and C(n) = (2/5n)?
when n > 10. If gq is locally conformally flat C(3) = 25/63, C(4) = 6/64 and
C(n) =4/n(n — 1)(n — 2) when n > 5 suffices.

The last constant is optimal. Indeed on (S, x C, g), ¢ the product metric
with volume 1, | Z(g)|? = 4R?/n(n — 1)(n — 2), and g is a Yamabe metric when
the radius of C' is small enough.

Corollary 9.48 (Hebey—Vaugon [*170]). Ps(R) and Sa, with their standard met-
rics, are the only locally conformally flat manifold of dimension 4, which have
positive scalar curvature and positive Euler-Poincaré caracteristic. In particu-
lar if (My, g) is not diffeomorphic to Py(R) or Sy, My does not carry an Einstein
metric if g is locally conformally flat with R(g) > 0.



Chapter 10

Harmonic Maps

§1. Definitions and First Results

10.1 Let (M, g) and (M,g) be two C*° riemannian manifolds, A of dimension
n and M of dimension m. M will be compact with boundary or without and
{z*}(1 < i < n) will denote local coordinates of z in a neighbourhood of a
point P € M and y* (1 < a < m) local coordinates of y in a neighbourhood
of f(P)e M.

We consider f € C%(M, M) the set of the maps of class C'? of Af into M.

Definition 10.1. The first fundamenta}_ form of fis h = f*§. lts components are
hij = 0;f*8; fP§ap Where 0, f = %. The energy density of f at r s e(f), =
3(hijg*7)_ and the energy of the map f is defined by E(f) = [, c(/)d1".

As § is positive definite, the eigenvalues of h are non negative and E(f) = ()
if and only if f is a constant map.

10.2~ Definition. The tension field 7(f) of_ the map f is a mapping of Al into
T (M) defined as follows. T(f); € Ty (M) and its components are:

) T(f)z = —Af1@) + g9 (@) 05 (f(2))0: f(2)0, f2 ().

Proposition 10.2 (Eells:Sampson [*124)). The Euler equation for I is r(f) = 0
For any v € C(M, T(M)) satisfying v(z) € Tz (M) and v(x) = 0 for x « iIM
in case OM # :

@) E(f) v= - /M G (/@) T (PevP(2) dV.
Proof.
1 .
E'(f)-v=7 /M Oydap (f(2))V"(2)g" (x)8; f*8, f* AV

+ / Gap (f(2)) 9% (2)0,0*(x)8; fA(x) dV.
M

Integrating by parts the second integral in the right hand side, we get
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E(f) v= /M Gas (F@)0* @A (@) dV

L U y
*t3 /M(Fvﬁgm +10a8r8) ;)0 @)97 (@)0,f%(2)0;f° () AV

- / v (2)g" (2)0; f°(2)BaFs (f(2))0; f*(x) dV.

. - <X A .
Since 0agvyp = I'5pdry + I',4drs, the symmetry beetwen o and £ induced
by g/ gives the result (2).

10.3 Definition. A harmonic map f € C*(M, M) is a critical point of E
(Definition 10.1). That is to say, f satisfies 7(f) = 0.

We can introduce the harmonic maps in another way. Suppose f is an im-
mersion; f is injective on  a neighbourhood of P. Let Y be a vector field
on Q; ¥ = f.Y can be extended to a neighbourhood of f(P). For X belong-
ing to T (), we set X = f.X. We verify that \7)3}7 is well defined and that
VY ~ fu(VxY) = ay(X,Y) is bilinear in X and Y. Indeed

) (X, Y) = [03f7(2) ~ T§;0 7 (2)
) oy
+ 0 5(f(2)) 8: f*(2)0; fA(2)) X*Y? 5

We call o, the second fundamental form of f at z. It is a bilinear form on
T (M) with values in T’z (M). The tension field T(f) is the trace of oy for g.
f is totally geodesic if o, =0 for all z € M and f is harmonic if 7(f) = 0.

10.4 Proposition (Ishiara [*183]). (i) f is totally g_eodesic if and only if for any
C? convex function  defined on an open set § C M, po f is convex on f ~}(6).
(ii) f is harmonic if and only if for any ¢ as above, wof is subharmonic.

Proof. We suppose that the coordinates {z*} are normal at z and that the coor-
dinates {y*} are normal at f(z).

“) 85( © flz = (Bap®) 12)0i f*(@)8; f2(2) + (Batp) 12y 0ij f *(2)-

If 0;; f*(x) = 0, (Hess ¢)f(zy > 0 implies Hess (p o f); > 0.

Conversly if 0;; f*(z) # 0, we can exhibit a convex function ¢ such that
o f is not convex.

From (4), we get if f is harmonic

—A(po flg = §9(2)(BapP) s(xy0i f*(@)D; fP(x)

o convex implies A(p o f), < 0. Conversly if 7(f); # 0, we can exhibit a
convex function ¢ such that A(p o f), > 0.

10.5 Proposition. A C? harmonic map f is C*°.
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f satisfies 7(f) = 0 which is in local coordinates an elliptic cquation. By the
standard theorems of regularity f € C°.

Examples 10.5. If (M, §) is (R™, £), we can choose the coordinates {y"} such
that I‘aﬂ = 0. Thus f is harmonic if and only if Af* =0 for 1+ a - m In
case M =0, f is a constant map.

Suppose g = f*§ for f € C*(M, M), then e(f) = n/2.

10.6 Examples. The case n = 1. Suppose M is the unit circle ' and f
C*(C, M) harmonic, then f(C) is a closed geodesic on M.
Choose t, the central angle of C, as coordinate.

1. dfe f"
e(f) = 7908 ({t Ty
and the tension field is
EfT o A
TN =g e

This is the equation of the geodesics. Conversly if f(C) is a closed geodesic
on M, f is harmonic.

When n = 2, there are some relations between the Plareau problem and the
problem of harmonic maps (see Eells-Sampson [*124]).

The case m = 1. In every homotopy class of maps A -+ C, there is an
harmonic map.

For other examples see Eells—Sampson [*124].

10.7 Proposition. Consider a third C* Riemannian manifold ( Mg and f
C*M,M". If f andf are totally geodesic maps, then fo fis totally geodesic
If f is harmonic and f totally geodesic, then f o f is harmonic.

The composition of harmonic maps is not harmonic in general (see Fells
Sampson [*124]).

10.8 By definition, E is defined if f € H (M, M), i.e. for cach a, f* belongs
locally to Hy(M).

Definition 10.8. A map f € H\(M,M) is weakly harmonic if it 18 a critical
point of E.

Thanks to the Nash Theorem, if M is compact without boundary. there s
an isometric imbedding of M in R¥ for k large enough. We can view M as
a submanifold of R¥, M C R* and i*£ = §, i being the incluston map. The
second fundamental form A of M is given by the I.”;7 in a suitable coordinates
system {2°}(1 < a < k) of R¥. For f € CYAML AL, set > = io f Then f s
harmonic if and only if
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Op 0
14 <p) for all a.

8z’ dz7

When f € H\(M, M), ¢ € H/(M,RF) and f is weakly harmonic if and
only if for any ¥ € C®(M, RF):

) v dp o\,
©6) Z/ (x )(axl 5 HAie)e 6])\11()dv 0.

To see this, we introduce for instance ¢,(z) = 7o [p(z) + t¥(z)], where 7
is the orthogonal projection of R* on M which is well defined for t small (see
Eells-Lemaire [*121] p.397).

5) Ag™(@) = —g7 (@) A% (

10.9 Theorer[l. If f € COM, M) N H\(M,M) is weakly harmonic, then
f € C®(M, M). Thus f is harmonic.

For the proof see Ladyzenskaya~Ural’ceva [*206].
When n > 3, there exist weakly harmonic maps which are not C° and so
not harmonic.

Example 10.9. Consider the case M = S,, C R™!. We can view the maps
f € H(M,S,,) as maps f € H;(M,R™") such that Zm” (fo?* =1, {€9}
1 <a < m+1 being coordinates on R™*!,

Set |Vf2 =1 199, f20; fo.

Then f is weakly harmonic, if it satisfies in the distributional sense
Afe = foV I

Indeed the second fundamental form of S,, is given at £ € S,, C R™"! (see
Kobayashi-Nomizu [*202]) by A‘g(X, Y)=£2E(X,Y).

§2. Existence Problems
2.1. The Problem

10.10 Let (M,,,g) and (M,,, §) be two C*® compact Riemannian manifolds.
Given fo € C'(M, M) does there exist a deformation of fo to a harmonic map?
This question was asked by Eells—Sampson who gave the first results in
[*124]. They approach the problem through the gradient-line technique. Instead
of solving the equation 7(f) = 0 (see (1) for the definition), they consider the
parabolic equation
of

— =7(f) with fy as initial value.

ot
If f; satisfies (7), from (2) we have

M
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(iE(ft) -

of ( r)
dt Jd

(8) —/!;I gaﬁ(ft(m) T (f)e———

_ ~ 3ft (-T)()f( (-1')
= /M gnﬁ(ft(z)) ot pm

10. Harmonmie Maps

So E(f,) is a strictly decreasing function, except for the t for which r(f;) = 0,

i.e. when f; is harmonic.

The basic result is Theorem 10.16; its proof is of independent interest. We

will give a sketch of it, but first we need some computations.

2.2. Some Basic Results

10.11 Lemma. [f f is harmonic
9) —Ae(f) = |al? +Q(f)

with |o](z) = §pq (£(@)) 9™(@)g7 (2)(0 ) (02 )Y, and

QUf) = =~ Rapys (f(@)) 9% (2)g7 (2)8: f*(2)0; fP ()0 £ () f4 (1)

+ B (@)as (£(2)) 8.1 (@)0; ().

Recall o is the second fundamental form of f at z (see 10.3).

Proof. We suppose the coordinates {z*} normal at z and the coordinates {y*}

normal at f(z).

m n

(10) —Ae(f)= Zzaug*«m)a f(2)8; f(2)
a—l k=1

£ ST e@] Y S a0

a=1 1,j=1 n=l 3,k=l

+ E Z 63,/357)\;;(f(x))aif“(-”ﬁ)atfﬁ(?)ajf)‘(-r)aj f“(-r)-

i,5=1

In normal coordinates, according to (3) (o:x)7 = d2 f(x), thus

(1) Z Z f"(n:) = |a|(x).

y=1 i,5=1
Since f is harmonic 7(f) = 0. Differentiating (1), we get

(12) Y Ouf @)=Y [8:TL ()8, ()

k=1

~ A%, (f(2))0: fA(2)8k f2(2)0k fA(2))].
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Now at z, since the coordinates {xl} are normal

n

]

(13) Ry = 5 Z(ajmk + aiF'lilc - aikgij)
k=1
| & . . y
) Z(ajr;ck + 0l — al%kgu)
k=1

and at f(z), since the coordinates {y*} are normal
~ - ~ )\ ~ ~
(14) Roaupr + Rapar = 0,055+ 03T0 5 — Oapins.
Putting (11) and (12) in (10), then using (13) and (14), we obtain (9).

10.12 Proposition (Eells-Sampson [*124]). If f is a harmonic map, then
fM Q(f)dV < 0 and equality holds if and only if f is totally geodesic. Fur-
thermore if Q(f) > 0 on M, then f is totally geodesic and has constant energy
density e(f).

Integrating (9) yields the result.

Corollary 10.12 (Eells—Sampson [*124]). Suppose that the Ricci curvature of
M is non-negative and that the sectional curvature of M is non-positive. Then
a map f is harmonic if and only if it is totally geodesic. If in addition there is at
least one point of M at which the Ricci curvature is positive, then every harmonic
map is constant.

If the Ricci curvature of M is nonnegative and the sectional curvature of M
everywhere negative, then every harmonic map is either constant or maps M
onto a closed geodesic of M.

Proof. The assumption implies Q(f) > 0 and e(f) is constant. Thus
RY(2)gap (f(2))0; f*(x)0;fP(x) =0  forany z€ M.

If at o the Ricci curvature is negative, 0; f*(xg) = 0 for all 7 and «, thus
e(f)z = e(f)z, =0 and f is a constant map.
Q(f) > 0 implies also

(15)  Ragys(f(2) g ()97 (@)0: f*(2)0; f (2)0k f ()0, f () = 0.

If the sectional curvature of M is negative, (15) holds when and only
when dim f, (T,(M)) < 1. The result follows, since e(f) constant implies
dim f, (T:(M)) constant in that case.

10.13 Corollary. Assume there exist two positive constants k and C such that
Rij — kgij is non negative on M and

[Raﬁ‘yls - C(@awgﬂé—gaégﬂ—y)] XQX1Y6Y6 <0
foranyy € M and all X, Y in TyM. Then e(f) is sub-harmonic if f is an
harmonic map which satisfies e(f) < k/2C.
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If in addition Ae(f) =0, f is a constant map.

Thus in example 10.9, if f is harmonic and satisfies 2e(f) < \j, where A is
the first positive eigenvalue of Sy, then f is a constant map.

10.14 If f € C*(M, M), we define the stress-energy tensor of f:
S(f)=-e(f)g — f*G. We can prove that

divS(f) - X = =GapT(H)*(fu X)%;
see Baird-Eells [*29] and Pluzhnikov [*264] or Eells-Lemaire [*121].

In particular if f is harmonic, then div.S(f) = 0 and conversly, if f is a
submersion which satisfies div S(f) = 0, then f is harmonic.

Application. If (M, g) has strictly positive Ricci curvature, then 1d: (M, g) —
(M, Ricci(g)) is harmonic.

In fact the condition div S(f) = O is only the contracted second Bianchi’s
identity. It is not difficult to show that

[divS(Id)], = ViR — V' R;;.

10.15 Theorem. On the unique continuation (see Eells-Lemaire [*120] p. 13).
Let f and @ be two C™ harmonic maps M — M. If at a point xyp € M, f
and  are equal and have all their derivatives of any order equal, then f = .

According to Hartman [*61], given two homotopic harmonic maps fy and
f1, there is a C*° family f;, t € [0, 1] of harmonic maps.

2.3. Existence Results

10.16 Theorem (Eells—Sampson [*124]). Let (M, g) and (M, §) be two compact
Riemannian manifolds. If (M, §) has nonpositive sectional curvature, then any
f € CY(M, M) is homotopic to a harmonic map  for which the energy E(y) is
minimum in the homotopy class of f.

Eells—Sampson consider the nonlinear parabolic equation

o o, fo=F

There exists a family of maps f;, t € [0,7[ for some 7 > 0, which is
continuous at t = O along with their first-order space derivatives and which
satisfies (16) on 10, 7[ with fo = f.

Such f; is unique and C™ on ]0,7[. By (8) 2B < 0 except for those
values of t for which 7(f;) = 0.

As M has nonpositive sectional curvature, e(f:) is bounded on M x [0, 7[.
Moreover Eells—Sampson proved that there is € > 0 independent of ¢ such that
any f, can be continued as a solution of (16) on the interval ]¢,t + [. Thus

T = +00Q.

(16)
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Then as f;, along with their first order space derivatives, form equicontin-
uous families, there is a sequence o = {tx}, k € N, such that the maps f,,
converge uniformly to a harmonic map f,. A subsequence of these f, converges
uniformly to a harmonic map ¢ which has the desired property.

K. Uhlenbeck [*307] gave a proof of Theorem 10.16 by using the cal-
culus of variation. See the definition of Sobolev spaces in 10.20. For any
a € [0, %],H,Z"(M,M) C C*(M, M) and the inclusion is compact. We de-
fine for e >0 a map E, of H3"(M, M) into R by

Eu(f) = E(f) +e /M [e(/)]" av.

E, is C* and satisfies the Palais—~Smale condition. It follows that there
exists a minimum of E, in each connected component H of H>"(M, M).

If € is small enough, these minima are C°°. When M has nonpositive sec-
tional curvature, it is possible to show that for all a > 0, 3§ > 0 such that the
set {f € H/f is a critical point of E, for some ¢ < & with E,(f) < a} has a
compact closure in H. Then there is in H a harmonic map.

The homotopy comes from the fact, that H is connected by arcs.

Remark 10.16. According to the Nash theorem, there is a Riemannian imbed-
ding of M in R* for k large enough. In Theorem 10.16, we can drop the hy-
pothesis M compact if M is complete and if the imbedding M — R* satisfies
some boundedness conditions (see Eells—Sampson [*124]).

If M is complete and M compact with nonpositive sectional curvature, a
map f € C'(M, M) with finite energy is homotopic to a harmonic map on
every compact set of M (Schoen—Yau [*287]).

There are other particular results in Eells [*119], White [*316], Lemaire
[177] and Sacks—Uhlenbeck [244].

10.17 Remarks. The uniqueness of the Eells-Sampson flow was studied by
Coron [*101] when M has a boundary.

The existence of a global flow was studied by Struwe [*295] and Chen—
Struwe [*91] (with a flow in the weak sense), as well as Naito [*250] under
some conditions on the initial data. Blow-up phenomenon at finite time was
studied by Coron and Ghidaglia [*102].

10.18 Corollary. On a compact Riemannian manifold with nonpositive sectional
curvature, there is no metric whose Ricci curvature is non negative and not iden-
tically zero.

Proof. Without loss of generality, we can suppose M orientable. The proof is by
contradiction. Let us suppose that M is endowed with the metrics ¢ and h, the
sectional curvature of h being non-positive and the Ricci curvature of g being
nonnegative and not identically zero.
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Then the identity of (M, g) into (M, h), which is of degree 1, would be
homotopic to a harmonic map of degree one. But this is impossible since a
harmonic map of (M, g) into (M, h) is a constant map (see Corollary 10.12).

10.19 Theorem (Eells—Lemaire [*122]). Let f be a C*™ harmonic map of (M, g)
into (M, §) such that V*E(f) is nondegenerate. For any integer k > 1 and all
r € N, there exists a neighbourhood V of (g, ) in M™% x M™k+a gnd ¢
unique C* map S of V into CT*'**(M, M) satisfying S(g,§) = f and S(h, h)
harmonic for (h,h) € V.

Here S(h,h)is a map of (M, h) into (M, k) and M™% denotes the set of the
C™ Riemannian metrics on M whose derivatives of order r are C*, 0 < o« < I.

§3. Problems of Regularity

3.1. Sobolev Spaces

10.20 According to the Nash theorem, there is a Riemannian imbedding i of M
in R* for some k € N. H}(M, R¥) is the completion of D(M, R¥) with respect
to the norm

a7 171 = /M (VA2 + |£2) aV.

Remember that M is compact. We consider M as a submanifold of R*(M ¢
R*) and we identify f and p =i o f.

Definition 10.20. H2(M, M) is the set of f € H}(M,RF), such that f(z) € M
for all z € M.

H,z(M, M), which does not depend on k and on the Riemannian imbedding,
has a structure of a C° manifold. The tangent space at f is defined by

(18)  Ty[H}M,M)] = [y € H}(M,R*)/1(z) € Tyry Mforall ze M]|.

10.21 Theorem. C*°(M, M) is dense in CO(M, M)HHIZ(M, M). If dim M =2,
C*(M, M) is dense in HX(M, M) for all k > 1. When n >3, C*¥(M, M) is not
dense in general in HX(M, M).

C>®(M, M) is dense in HX(M, M) if and only if the homotopy group m,(M)
is trivial.

These different results where proved by Bethuel [*45], Bethuel-Zang [*51]
and Schoen—Uhlenbeck [*285].
For more details see Eells-Lemaire [*121] and Coron [*100].
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3.2. The Results

10.22 The first important result is Theorem 10.9: A continuous weakly harmonic
map is harmonic.

Theorem 10.22 (Helein [*174]). When n = 2, the weakly harmonic maps are
harmonic.

The other results deal with the maps which minimize the energy F and the
subset of M where they are singular.

When n =1, H¥(M, M) C C°(M, M), and when n = 2 we knew for a long
time by Morrey [*242] that the minimizers of £ were regular. When n > 3 we
define Sy.

10.23 Definition. Let f be a map M — M. The singular set Sy of f is defined
by:

(19) S5 = M — the open set where f is continuous.

We recall the definition of Hausdorff dimension.

Let X be a metric space and let p > O be a real number. We set
mp(X) = lime_omp(X), € > 0, where m, (X) = infy o, (diam 4;)” for
all denumerable partitions {4;};en of X such that diam A; < ¢, i € N.

The Hausdorff dimension of X,dimyg X is defined by

(20) dimy X = sup{p/my(X) > 0}.
Note that m,(X) < oo implies mg(X) = 0 for any k£ > p.

10.24 Theorem (Schoen-Uhlenbeck [*284]). Let f € HIZ(M, M) be a weakly
harmonic map which minimizes E. Then dimpy Sy <n — 3. Whenn =3, Sy is
finite. If x € Sy, there exists a sequence €; of positive real numbers, satisfying
lim; o €; = O, such that the sequence of maps h; € HIZ(B,M), defined by
hi(z) = f exp z(g;2), converges to a map u € H*(B, M) which is a “minimizing
tangent map”.

Here B = B, is the unit ball in R",

Definition 10.24. A homogeneous map u € HZ(B, M) (i.e. satisfying du/0r
=0)is c~alled a minimizing tangent map (MTM) if E(u) < E(v), for all v €
H%(B,M) such that v =u on 0B.

The maps MTM characterize the behaviour, near their singularities, of the
weak harmonic maps which minimize E. One proves that a MTM is of the form
u(z) = w(z/|z|), where w: S*~! — M is a (weak) harmonic map.

If x € Sy is isolated, 0 € R™ is then an isolated singularity of u. In this
case, if M is real analytic, Simon [*290] proved that u is unique (see also
Gulliver-White). Recently White [*317] gave the first examples for which u is
not unique.
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10.25 Theorem (Schoen-Uhlenbeck [*284]). Assume there exists an integer
P 2 2, such that u is trivial as soon as u € H}By, M) is a MTM of iso-
lated singularity at O, for any q < p. Then dimy Sy < n — p — 1 for all weak
harmonic maps f € HX(M, M) of minimizing energy. If n = p + 1, Sy is finite.
Ifn<p+1, Sy is empty.

This theorem is a generalisation of Theorem 10.24 and we have

Corollary 10.25. If M has non positive sectional curvature, any weak harmonic
map M — M of minimizing energy is harmonic.

Proof. If u € le(Bq,M), g > 3, is a MTM with an isolated singularity at O,
then there exists w : Sq_; — M a harmonic map (smooth) such that u(z) =
w(z/|z|). According to Corollary 10.12, w is a constant map and the hypothesis
of Theorem 10.25 is satisfied with p > n — 1.

10.26 Proposition (Schoen—Uhlenbeck [*284]). AMTM u € H,z(Bn, Sm) whose
singularity at 0 is isolated, is trivial if n < d(m) where d(2) = 2, d(3) = 3 and
d(m) = 1 +inf([m/2],5) for m > 4.

This result together with Theorem 10.24 implies

Theorem 10.26. If n < d(m), any weak harmonic map f of minimizing energy
of M into S, is harmonic (i.e. smooth). If n = 1 +d(m), Sy is finite and if
n > 1+d(m), dimyS; <n —d(m) - 1L

There are very few examples of MTM. Let us mention some of them.

10.27 Proposition (see Lin [*222)). The map of B, into S, (n > 3) defined
by z — x/|z| is a MTM.

Proof. First we establish the following inequality for any u € C'(R™, R™) with
lul = 1:

@1 [Vul? +

— [tr(Vu)? — (divu)?] > 0.
Then we verify that u € H3(Bp, Sp—1) with u(z) = z on 3B, satisfies
(22) / [(divw)? - u(Vw?)* dz = (n = Dwn_1.
B

Set ug(z) = z/|z|. (21) and (22) imply that any u € HX(B,,, Sn—1) such that
u = ug on OB, satisfies

n—1
(23) /B [Vul? > Wl

We have only to remark now that [ |[Vug|* = 2=3wn_;.



§4. The Case of OM # 0 359

10.28 Proposition. a) (Jager—Kaul [*186]) The map of B, into S, C R™!
defined by x — (z/|z|,0) is a MTM if and only if n > 7.

b) (Brezis—Coron-Lieb [*59]) v € Hi(Bs3,S,) is a MTM if and only if
u(z) = £ A(z/|z|) with A € SO(3).

¢) (Coron-Gulliver [*103]) For2 < n < m — 1, the map of Bpsm C R™! x
R2m="=1 into S, defined by (z,y) — z/|x| is a MTM.

§4. The Case of OM # ()

4.1. General Results

10.29 From now on M is a compact C* manifold with boundary (OM # 0)
and M is a compact C* manifold without boundary. We deal with the Dirichlet
problem (see Eells—Lemaire [*120] and [*121] for other boundary conditions,
such as Neumann conditions).

For the existence problem, the equivalent of Theorem 10.16 for manifolds
with boundary was proved by Hamilton [*149].

If ¢ is a C° map of M into M, we consider My (M, M) the set of the
map f of M into M such that f/ap = 1.

Theorem 10.29 (Hamilton [*149)). If M has non-positive sectional curvature,
there exists, in each connected component of My (M, M), a unique harmonic
map which is a minimizer of E on the component.

10.30 The results on the regularity of weak harmonic maps which minimizes E,
obtained by Schoen and Uhlenbeck (Theorem 10.24), are valid when M # 0.

Recall u € H}(M, M)N My(M, M) is a minimizer of E if E(u) < E(v)
for all v € HA(M, M) N My (M, M).

Theorem 10.30 (Schoen—Uhlenbeck [*285]). If f € le(M, M) is a weak har-
monic extension, with minimizing energy, of ¥ € C»*(OM, M), then

a) Sy, the singular set of f, is compact and Sy N OM = 0.

b) f is C** in a neighbourhood of oM

c) The results on dimy Sy mentioned in Theorems 10.24 and 10.25 are valid.
In particular dimy Sy <n - 3.

The same goes for Theorem 10.26. Let f be a weak harmonic map of
minimizing energy of M into S,,. If n < d(m), then f is regular.

10.31 When f is no longer minimizing, Sy may be strange.

Theorem 10.31 (Riviere [*278]). Let v € C°°(0Bs, S;) be a non constant map.
Then there exists a weak harmonic map f of Bj into Sy, satisfying f/ap, = ¥,
such that Sy = Bs.
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4.2. Relaxed Energies

10.32 The relaxed energies were introduced by Brezis, Coron and lL.icbh [*59)].
see also Bethuel-Brezis—-Coron [*48].
The problem comes from a fact discoverd by Hardt and Lin [*160B}:
There exist maps { € C°°(0B3, S,) of degree zero, such that

(24) inf{ E(u)/u € H{(Q, S),u= v on 00}
< inf{E(u)/u e C'(Q,S),u=yon (')Q}.

where ) = Bx.

It is not difficult to prove the left hand side of (24) is attained. More generally,
if H,Z(M, M)ﬂMw(M, M) is not empty, the inf of E'(f) on this sct s attamed
by a weak harmonic map . Moreover if ¥ € C>, then the nipmuzer , s
C*“ on a neighbourhood of M and dimg S, < 7~ 3 (Theorem 10.30).

To prove the existence of ¢, let us consider { f;} C HI(M, M)A (M. A
a minimizing sequence. Since E(f;) < Const., there exists a subscquence
which converges weakly in HZ(M, M) to some minimizer ¢ ¢ HI(AM. M)
My (M, M).

10.33 We are interested now in the Hardt-Lin problem:

Is inf{ E(f)/f € C'(Q, Sy), f = on 80} attained?

Let  be a bounded open set of R* such that Q is a manifold with (™™
boundary, and ¥ € C*® (8, S?) a given map of degree zero.

We set

le.w(Q’ S ={f € HXQ $)/f = ¢ on 02},
CY(,$:) = {f € C'(2, )/ f = on 92},

Ry(Q, $2) = {f € H} ,(Q, Sy) which are C' on Q
except at a finite number of points of Q}.

Let f be a map of Ry(Q2,S;) and let {a;,a,,...,ax} be the points of
where f is not C'. We define d; = deg(f,a;) as equal to the degree of the
restriction of f to a sphere centered at a; of small radius 7(Ba, (1) {a,} =¥ if
i#7). Asdeg 9 =0,% % di = 0.

Now we denote by {P;}(1 <7 < p) the family of the a, for which d, *- 0,
each a; being repeated d; times, and by {Q,}(I < j < ¢) the tamily of the «,
for which d; < 0, each a; being repeated |d,| times. Of course p = ¢.

Definition 10.33. L(f) = inf of 3.1, d(P;, Qo)) on all permutations a of
{1,2,...,p}. Here d is the geodesic distance on Q.

10.34 Lemma (Brezis—Coron-Lieb [*59]). If D(f) is the vector field whose com-
ponents are D'(f) = det(f,8f /8y, 8f/8z), D*f = dew(df/dx, f,Of/Dz) and
D*f = dedf/dz,8f/dy, f),
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25) L= sl [ DHve- [ enipw
4r 0 a0

forall € € C'(Q) with || V€|l < 1. Here v is the outside normal.

Thus we can extend the definition of L(f) when f € Hﬁw(Q, Sh).

10.35 Proposition (Bethuel-Brezis—Coron [*48]).
Define for f € H? (R, $2), Ex(f) = E(f) + 87 L(f).

a) E|isls.con le,w(Q’ S,) for the weak topology of H?. In particular,
inf Ey(f) for f € Hf}w(Q, S,) is attained.
b) inf{E\(f)/f € H} ,(Q,S)} =inf{E(f)/f € C(Q, 5)}.

With this last equality, the Hardt-Lin problem is reduced to proving the
regularity of the minimizers of Ej. In this direction there are some results.

Giaquinta, Modica and Soucek [139] proved that if ¢ is a minimizer of E,
dimH S‘p S 1.

Bethuel and Brezis [46] proved that the minimizers of the functionals
Ey, X € [0, 1[, are in Ry (2, 52) (i.e. regular except at a finite number of points).
E) is defined by Ex(f) = E(f) + 8w AL(S).

Let us mention to finish this section the following

10.36 Theorem (Bethuel, Brezis and Coron [*48]). If, for some i, inequality
(24) is strict, then there exists an infinity of weak harmonic maps of QX into S,
which are equal to ¢ on 0Q.

4.3. The Ginzburg-Landau Functional

10.37 The functional. Let Q C R? be a smooth bounded domain in R?. For
maps u: 2 — C and € > 0, we consider the functional

(26) EE(u)=%/Q|vu|1dx+4Lé/Q(|u|2— 1)2da:

where dz is the Euclidean measure on R2.

Bethuel, Brezis and Helein [*50] considered the minimization problem of
E.(u) for u € Hy = {u € Hi(Q,C)/u = g on 0N} where g : 90 — Cis a
fixed boundary condition. Here g is assumed to be smooth with values in C the
unit circle (|g| = 1 on 99Q).

The problem consists in studying the behavior of minimizers u, of (26)
when ¢ — 0. It depends on the degree d of g d = deg(g, 09?). Obviously such
minimizers exist.
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10.38 The case d = 0. There exists a unique harmonic map uy « ">,
such that ug = g on 0. vy satisfies in © (see Example 10.9) the equation

27 Aug = up|Vup|* and  |ug| = 1

Indeed set ug = e*¥*; then (27) is equivalent to Ag, = 0 in 2. Now we
know that the equation

(28) Apg=0 in Q, =1y on I

has a unique solution.

When d = 0 there exists 1y € C™(IS2, R), defined up to a muluple of 27,
such that g = e*¥e.

This gives the existence and uniqueness of a solution of (27) satstying
up = ¢ on O

Theorem 10.38 (Bethuel, Brezis and Helein [*50]). As ¢ — 0, u, + ugin
Ch(Q) for every a < 1. The u, satisfies the equation

(29) Au = 2u (1 - |u)?).
Thus
(30) LAJue = e 2 ueP(1 - Juel?) - [V

Hence |u¢| cannot achieve a maximum greater than onc. At such point the
right side of (30) would be negative and he left side nonncgative.

So u, satisfies |u.| < 1 on Q.

Moreover, E,(u,) < E,(ug) = 3 [, |Vuo|* dx; thus u, — uq in H, since ug
is unique.

Using a uniform bound for Au, in L, Bethuel, Brezis and Helein deduce
Theorem 10.38.

10.39 The case d # 0. This case is very different since E (ue) -+ +xas - » (.
Without loss of generality we may assume that d > 0.

Theorem 10.39 (Bethuel, Brezis and Helein [*SO)). Suppose §) is star-shaped
There is a sequence €, — 0 and there exist exactly d points a, in §) (1 =
1,2,...,d) and a smooth harmonic map wy from Q — K into C with uy = g

) . d . :
on 9Q (K =L {a:}), such that u,, — g uniformly on compact subsets of
Q- K.

The energy of uo, | |Vuo|? dz, is infinite and each singularity a, has degree
+1.

More precisely ug(2) ~ a;(z — a;)/|z — a,| in a neighourhood of a,. with
LHERE
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Let (r,6) be radial coordinates centered at a; € 2. Consider the map v,
defined by v, = —g—eimfe for 7 < « and v, = €™ for r > a.

Here o is a positive real number and m a positive integer. If we compute
E,(v,), we see that the leading part in € will be smaller if we choose « = ¢,
and E.(v;) ~ —7rm§ loge when € — 0.

Furthermore the degree of v, /02 is m;. Let u be the sum of some functions
of this type centered at different points a; € §2. In order to have the degree of
u/0Q equal to d, the m; must satisfy 3 m; = d. But E;(u) ~ —m()_m?) loge.

So to make E.(u) as small as possible, we must choose each m; equal to
+1. This prove the first part of the

10.40 Lemma. There exists a constant C such that

3D E.(u;) < —mdloge + C.

Moreover

(32) 6_2/(|u5|2 -1)’dz < C.
Q

We drope the subscript € for simplicity. Integrating the scalar product of
(29) with z78;u, we get after integrating by parts

, R . . .
(33) / [Vjuivju’ + 5:1:38]- (Vkuivku')} dz — / 7’ 9ju;0,u* ds
[¥] on

1

=53 X (1 - |u|2)3j|u|2da:.

d, is the outside normal derivative, ds the measure on 9 and {z’} a
coordinate system centered at a point of . We set 72 = Y (z')%. Integrating by
parts the second and the last terms of (33) gives

! o i | 2
/89 [Za,/rz(vkuzvku ) - zJajuia,,u] ds = 57 /Q<l _ Iulz) do.

This can be rewritten as (9, is the derivative on 9)
1 2
(34) -/ 1 — |ul?) dz
5 [0-wp)

1 ) ) .
= / Z{—a,,rz [(Gﬁu’)2 - (&,u')z] - Gsrzasuza.,u’} ds
a0 2
Bsul is given and smooth on A%, so it is bounded. If 18,7* > a > 0, and this
is the case when Q is star-shaped, (34) yields

1/ 22 ; 2
22 Q“—Wl) da:S—a/;n(Zlauul—b> ds+C <c

for some constants b and c.
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10.41 Proof of Theorem 10.39 (continuation). Blowing up u,. at a point y € (Q,
we find that v.(€) = u.(y + &€) satisfies in some ball in R?

Ave =ve (1= |ve[?) and Jo | < L
A subsequence, noted always v,, converges to v which satisfies

(35) Av=v(1-|v*]) and [v|<1 on R%

Proposition 10.41. If a function v satisfies (35), then

/(]v|2 - l)zdx=27rn2,
n=0,1,2,...00.

For the proof see Brezis, Merle and Riviere [*62]. As v depends on y, we

denote this limit by uy. So if vy is not a constant of modulus 1, [ (Ju,|* - 1)*
dx > 2.

According to (32), only for a finite subset K of €, vy is not constant. Now
we can write with K = {b;,b,,..., b4},

/(|Vu€|2) dz = nd|loge| + W(K) + O(e).

W (K) can be expressed in terms of the Green function of the Laplacian on
Q with some Neumann condition depending on g.

There is K which minimizes W (K). uq satisfies (27) in Q — K with ug =g
on 0N and for each 1 (1 < i < d), there exists o; € C with |a;| = 1 such that

luo(2z) — iz — a;)|z — ai| ™' < Const. |z — a;]?.

Remark. This problem in dimension 2 is very different than in the other di-
mensions. If B, is the unit ball in R™, the map: B; 3 z — z/|z| € C does not
belong to H,(B,,C). For n > 2 the map z — z/|z| belongs to H)(By, Sn-)).
See for instance Bethuel, Brezis [*46] and Brezis [*58].
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critical point 40
CR structure 182

335, 346
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definition 3
Ricci 7, 252, 346

scalar 7, 145, 179, 194, 196
sectional 7, 321
tensor 4, 6, 252

cut locus 14, 18

degenerate 40
degree (Leray-Schauder) 135
density problem 33 — 35
diffeomorphism 72
differentiable 71
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Dirichlet problem 289, 290, 314
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eigenfunction 101, 102
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definition 75, 102
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eigenvector 75
Einstein—Kihler metric 254, 256, 259
Einstein metric 7
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energy at P 168
of a functional 247
of a map 348
equicontinuous 74
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exceptional case 63, 68
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formal adjoint 84
Fredholm
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mapping 132
nonlinear theorem 236, 237
theorem 75
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functional 105, 146, 150, 191, 306, 315
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coordinates 9
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Green’s formula 107
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definition 107
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Gromov’s compactness theorem 125
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Hahn-Banach theorem 73
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harmonic map 349

weakly harmonic map 350
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heat operator 129

solution 130
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Hodge decomposition theorem 29
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Hopf-Rinow theorem 13
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Clarkson’s 89
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optimal 50
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isoperimetric inequality 40, 119
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Jacobian matrix 71

Kihler
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254, 256, 259

manifold 251, 252

metric 251, 253
Kondrakov theorem 53, 55
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Leray-Schauder theorem 74
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linear
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method of 198, 200, 202, 267
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391
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Riemannian 4
with boundary 25
mapping
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rank 1
mass 165
maximum principle 96, 97, 138
for parabolic equations 130
generalized 98, 330
in narrow domains 138
second part 139
when u <0 139
mean value theorem 71
measurable 76
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methods 134 — 138
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Einstein 7
hermitian 251
Kéhler 251
Riemannian 4
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314
Moser’s theorem 65, 209, 232
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257, 269,
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solution 84, 85
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problem 145
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functional J(p) 150
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Notation

Basic Notation

We use the Einstein summation convention.

Compact manifold means compact manifold without boundary unless we say otherwise.

N is the set of positive integers, n € N.

R™: Euclidean n-space n > 2 with points z = (z',z%,...,z2") = € R real numbers.

C™: Complex space with real dimension 2m. 2

coordinates 2 = z*.

We often write 8; for 8/8z", 8y for 8/82>.

Hx: hyperbolic space.

Notation Index

bp(M) 29

B, ball of radius r in R™ generally with
center at the origin

B= B,

By (p) Riemannian ball with center P and
radius p

B(P,6) ball of center P with radius §

C the circle (or a constant)

C(M, g) Set of conformal transforma-
tions 188

C(Sn) = C(Sn, g0)

Cck, C>, C¥ differentiable manifold 1

cr(W),Cg 35

C™* or C™* 35,36
Cos#) 75
cP,G) Tl
C(K)or C'(K) 74

C,(M) First Chern Class
DPf 71
dz; 26

dv 30

d/’ d//y dc
d 3

252

251

(A = 1,2,...,m) are the complex

D(M) space of C* functions with com-
pact support in M

2 (M) 32

D=BnE 35

d(P, Q) distance from P to Q

E={zeR*/z' <0} 35

£ euclidean metric

E;; = Rij — %gij 336, 346

e(f) 348

E(f) 348

expp(X ) 9

fi- Suppose f is a function of two vari-
ables (z, t), then f; is the first partial
derivative of f with respect to ¢

g: Riemannian metric 4

gi;j the components of g, g7 5

|g| in real coordinates 26

|g| in complex coordinates

[g] conformal class of g

G(z,y) Green function of the Laplacian

G Green function of L 156, 161

G(P, Q) Green’s function 108

GLER™* 23

252
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HE(Mn) or HY when there is no ambi-

, guity 32

HY(Mn) 32

He 33

H(P, Q) 106

F(p) 306

J(p) 315

I(M, g) group of isometries 187

J(yp) the Yamabe functional (often) 150

K(n,q) 40

K (n,2) the best constant in the Sobolev
inequality H2 ¢ Ly 140, 153, 236

Kn,2) 181

L conformal Laplacian (often) 156, 161

L,(3#) or L, when there is no ambigu-
ity 78

Z(F,G) 70

M, (or M) manifold of dimension n 1

M(p) 315

M (p) 301

M(p) 253

M(p) 290

(M,, g) Riemannian manifold 4

MTM 357

N is generally equal to 2n/(n — 2)

0(P) orbit of P

0¢ (P) orbit of P under the group G
188

P.(R) real projective space

P~(C) complex projective space

ngl 4
Ri] kil 6
Rij, R 7

(Sn, 90) the sphere of dimension n of
radius 1 endowed with the standard
metric gy

Sy 357

Sn(p) sphere of dimension n and radius
p

supp ¢ means support of ¢

Te(M), T(M), T*(M), T{ (M) 2

V generally denotes the volume of the
manifold when it is compact

Wijke components of the Wey! tensor
117

Z;jke components of the concircular cur-
vature tensor 335

lZlZ = ZijktZUkl

a(M) 280

Notation

ac(M) 281

F(P: Q)s rk(P: Q) 109

(M) 3

I, Christoffel symbols 3

A Laplacian Operator 27, 28

A laplacian (in chapter 9: A = —=V'V, is
the rought Laplacian)

AP(M) 3

o., " 2

v 252

(Q, ) a local chart 1

6 codifferential 27

6, 8" 253

61'-‘ Kronecker’s symbol 4

On, 6, normal derivative oriented to the
outside (often)

po 239

w inf J(¢) (often) 150
(or in chapter 6: p=limpug;) 222

189

u(A) 176

us 222

n 26

A first nonzero eigenvalue A; 31

x(M) (or x if there is no ambiguity)
Euler-Poincaré characteristic 29

X E characteristic function of £ 41

wn volume of S, (1)

w 251

w™ 254

T(f) 348

Other symbols

Il llo norm in C or C°

|l llp withp > 1 norm in L, 78
Iy 32

v.Y 3

Valozmozé 4

V5l V¥ 32

OQ the boundary of Q

@ empty set

(—a—) tangent vector at P 2
ozt ),

[X,Y] bracket 2
* adjoint operator 27

ou
5;(%) 96
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Convention

positive

negative
non-positive
non-negative
Compact manifold

aszO

395

means Strictly positive

means strictly negative

means negative or zero

means positive or zero

means compact manifold without boundary unless

we say otherwise _

(resp. a;; > 0) for a bilinear form means a;;£'¢? > 0
for any vector £ (resp. a;;€'€? > 0 for any vector £ # 0).
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