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Preface

This book is the union of two books: the new edition of the former one "Non-
linear Analysis on Manifolds. Monge-Ampere Equations" (Grundlehren 252
Springer 1982) mixed with a new one where one finds, among other things,
up-to-date results on the problems studied in the earlier one, and new methods
for solving nonlinear elliptic problems. We will give below successively the
prefaces of the two books, and at the end of the volume, the two bibliographies
(the references * are new).

A very interesting area of nonlinear partial differential equations lies in the
study of special equations arising in Geometry and Physics. This book deals with
some important geometric problems that are of interest to many mathematicians
and scientists but have only recently been partially solved.

Each problem is explained, up-to-date results are given and proofs are pre-
sented. Thus the reader is given access, for each specific problem, to its present
status of solution as well as to most up-to-date methods for approaching it.

The book deals with such important subjects as variational methods, the
continuity method, parabolic equations on fiber bundles, ideas concerning points
of concentration, blowing up technique, geometric and topological methods.

My book "Nonlinear Analysis on Manifolds. Monge-Ampere Equations"
(Grundlehren 252) is self-contained, and is an introduction to research in non-
linear analysis on manifolds, a field that was almost unexplored when the book
appeared. Ever since then, the field has undergone great development. This new
book deals with concrete applications of the knowledge contained in the earlier
one.

This book is adressed to researchers and advanced graduate students special-
izing in the field of partial differential equations, nonlinear analysis, Riemannian
geometry, functional analysis and analytic geometry. Its objectives are to deal
with some basic problems in Geometry and to provide a valuable tool for the
researchers. It will allow readers to apprehend not only the latest results on most
topics, but also the related questions, the open problems and the new techniques
that have appeared recently. Some may find the pace of presentation rather fast,
but ultimately, it represents an economy of time and effort for the reader. In
the space of a few pages, for instance, the ideas and methods of proof of an
important result may be sketched out completely here, whereas the full details
are only to be found dispersed in several very long original articles.
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Some problems studied here are not treated in any other book. For instance:

- Very few people know if the remaining cases of the Yamabe problem
are really solved. The results were announced ten years ago, but parts
of the proofs appeared only recently and in different articles, some not
easily available.

- On prescribed scalar curvature. Between the author's first article on the
topics in 1976, and the second one in 1991 which poses the problem
again, only a few results appeared. Ever since, a lot of results have been
proved. The same thing applies to the Nirenberg problem, the Kahler
manifolds with Cl (M) > 0 and the problem of Einstein metrics. The last
chapter of the book deals with a very broad topic, on which there are
many books: it is discussed here so that the reader may obtain an idea
of the subject.

- About the methods. There are books on the variational method or on
topological methods, but is there any book where we can find so many
methods together ? Of course it is of advantage, when we attack a prob-
lem, to have many methods at one's disposal, and in this book there are
also new techniques.

The reader can find most of the backgroung knowledge needed in [* I ]. Some
additional material is given in Chapter 1.

Chapter 2 is devoted to the Yamabe Problem. Thirty years were necessary
to solve it entirely. After a proof with all the details, we will find new proofs
which do not use the method advocated by Yamabe (minimizing his functional).
The study of the Yamabe functional is not completed. We know very little about
µ = sup µ1y1, where µry1 is the inf of the Yamabe functional in the conformal
class [g]. This problem is related to Einstein metrics.

Chapter 3 is concerned with the problem of prescribing the scalar curvature
by a conformal change of metrics. When the manifolds is the sphere (Sn, go)
endowed with its canonical metric, the problem is very special: we study it in
Chapter 4.

Chapter 5 deals with Einstein-Kahler metrics. Although there has been a
great progress when C1 (M) > 0, not everything is clear yet.

Chapter 6 deals with Ricci curvature. A problem that remains open for the
next few years is the existence (or the non-existence) of Einstein metrics on a
given manifold.

Lastly, Chapter 7 studies harmonics maps. We present the pioneer article of
Fells-Sampson on this topics, then we mention some new results. The subject
is very large and is continually developing ; several books would be necessary
to cover it!

There are many other interesting subjects, but it is not the ambition of this
book to treat all the field of research ! To explain some methods and to apply
them is our main aim.

It is my pleasure and privilege to express my deep thanks to my friends
Melvyn Berger, Dennis DeTurck, Jerry Kazdan, Albert Milani and Joel Spruck
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who agreed to read one or two chapters. They suggested some mathematical
improvements, and corrected many of my errors in English.

I am also extremely grateful, to Pascal Cherrier, Emmanuel Hebey and
Michel Vaugon, who helped me in the preparation of the book.

February 1997 Thierry Aubin



Preface to "Grundlehren 252"

This volume is intended to allow mathematicians and physicists, especially
analysts, to learn about nonlinear problems which arise in Riemannian
Geometry.

Analysis on Riemannian manifolds is a field currently undergoing great
development. More and more, analysis proves to be a very powerful means
for solving geometrical problems. Conversely, geometry may help us to solve
certain problems in analysis.

There are several reasons why the topic is difficult and interesting. It is very
large and almost unexplored. On the other hand, geometric problems often lead
to limiting cases of known problems in analysis, sometimes there is even more
than one approach, and the already existing theoretical studies are inadequate to
solve them. Each problem has its own particular difficulties.

Nevertheless there exist some standard methods which are useful and which
we must know to apply them. One should not forget that our problems are
motivated by geometry, and that a geometrical argument may simplify the
problem under investigation. Examples of this kind are still too rare.

This work is neither a systematic study of a mathematical field nor the
presentation of a lot of theoretical knowledge. On the contrary, I do my best to
limit the text to the essential knowledge. I define as few concepts as possible
and give only basic theorems which are useful for our topic. But I hope that the
reader will find this sufficient to solve other geometrical problems by analysis.

The book is intended to be used as a reference and as an introduction to
research. It can be divided into two parts, with each part containing four chap-
ters. Part I is concerned with essential background knowledge. Part II develops
methods which are applied in a concrete way to resolve specific problems.

Chapter 1 is devoted to Riemannian geometry. The specialists in analysis
who do not know differential geometry will find, in the beginning of the chapter,
the definitions and the results which are indispensable. Since it is useful to
know how to compute both globally and in local coordinate charts, the proofs
which we will present will be a good initiation. In particular, it is important to
know Theorem 1.53, estimates on the components of the metric tensor in polar
geodesic coordinates in terms of the curvature.

Chapter 2 studies Sobolev spaces on Riemannian manifolds. Successively,
we will treat density problems, the Sobolev imbedding theorem, the Kondrakov
theorem, and the study of the limiting case of the Sobolev imbedding theorem.
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These theorems will be used constantly. Considering the importance of Sobolev's
theorem and also the interest of the proofs, three proofs of the theorem are
given, the original proof of Sobolev, that of Gagliardo and Nirenberg, and my
own proof, which enables us to know the value of the norm of the imbedding,
an introduction to the notion of best constants in Sobolev's inequalities. This
new concept is crucial for solving limiting cases.

In Chapter 3 we will find, usually without proof, a substantial amount of
analysis. The reader is assumed to know this background material. It is stated
here as a reference and summary of the versions of results we will be using.
There are as few results as possible. I choose only the most useful and applicable
ones so that the reader does not drown in a host of results and lose the main
point. For instance, it is possible to write a whole book on the regularity of weak
solution for elliptic equations without discussing the existence of solutions. Here
there are six theorems on this topic. Of course, sometimes other will be needed;
in those cases there are precise references.

It is obvious that most of the more elementary topics in this Chapter 3
have already been needed in the earlier chapters. Although we do assume prior
knowledge of these basic topics, we have included precise statements of the most
important concepts and facts for reference. Of course, the elementary material in
this chapter could have been collected as a separate "Chapter 0" but this would
have been artificial, and probably less useful to the reader. And since we do
not assume that the reader knows the material on elliptic equations in Sobolev
spaces, the corresponding sections should follow the two first chapters.

Chapter 4 is concerned with the Green's function of the Laplacian on com-
pact manifolds. This will be used to obtain both some regularity results and
some inequalities that are not immediate consequences of the facts in Chapter 3.

Chapter 5 is devoted to the Yamabe problem concerning the scalar curvature.
Here the concept of best constants in Sobolev's inequalities plays an essential
role. We close the chapter with a summary of the status of related problems
concerning scalar curvature such as Berger's problem, for which we also use
the results from Chapter 2 concerning the limiting case of the Sobolev imbedding
theorem.

In Chapter 6 we will study a problem posed by Nirenberg.
Chapter 7 is concerned with the complex Monge-Ampere equation on com-

pact Kahlerian manifolds. The existence of Einstein-Kahler metrics and the
Calabi conjecture are problems which are equivalent to solving such equations.

Lastly, Chapter 8 studies the real Monge-Ampere equation on a bounded
convex set of R. There is also a short discussion of the complex Monge-
Ampere equation on a bounded pseudoconvex set of C'.

Throughout the book I have restricted my attention to those problems whose
solution involves typical application of the methods. Of course, there are many
other very interesting problems. For example, we should at least mention that,
curiously, the Yamabe equation appears in the study of Yang-Mills fields, while
a corresponding complex version is very close to the existence of complex
Einstein-Kahler metrics discussed in Chapter 7.
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It is my pleasure and privilege to express my deep thanks to my friend Jerry
Kazdan who agreed to read the manuscript from the beginning to end. He sug-
gested many mathematical improvements, and, needless to say, corrected many
blunders of mine in this English version. I also have to state in this place my
appreciation for the efficient and friendly help of Jurgen Moser and Melvyn
Berger for the publication of the manuscript. Pascal Cherrier and Philippe
Delanoe deserve special mention for helping in the completion of the text.

May 1982 Thierry Aubin
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Chapter 1

Riemannian Geometry

§1. Introduction to Differential Geometry

1.1 A manifold M, of dimension n, is a Haussdorff topological space such
that each point of M" has a neighborhood homeomorphic to J". Thus a
manifold is locally compact and locally connected. Hence a connected
manifold is pathwise connected.

1.2 A local chart on M. is a pair ((2, cp), where Q is an open set of M" and cp a
homeomorphism of S2 onto an open set of k".

A collection (0j, cpi)j, I of local charts such that Ui S2; = M. is called an
atlas. The coordinates of P e R related to q., are the coordinates of the point
p(P) of a8".

1.3 An atlas of class C' (respectively, C'°, C') on M" is an atlas for which all
changes of coordinates are Ck (respectively, C", C"). That is to say, if (S2 (p,)
and (f1p, 9,) are two local charts with fl, n S2u 0, then the map 9, = 4
of q (S2, n S2.) onto cp,(Q, nS2,) is a diffeomorphism of class Ck (respectively,
C'°, CIO).

1.4 Two atlases of class Ck on M" (U;, (pi)j,,I and (W,, O,)aEA are said to be
equivalent if their union is an atlas of class Ck.
By definition, a differentiable manifold of class Ck (respectively, C°°, C") is a
manifold together with an equivalence class of Ck atlases, (respectively,
C°°, C°').

1.5 A mapping f of a differentiable manifold Ck : Wo into another M", is
called differentiable C' (r < k) at P e U c Wp if ,Ii -f- lp-' is differentiable
C' at cp(P), and we define the rank off at P to be the rank of ' -f o w - ' at
cp(P). Here (U, (p) is a local chart of WP and (i2. 0) a local chart of M" with
f(P)eS2.

A C' differentiable mapping f is an immersion if the rank off is equal to p
for every point P of W. It is an imbedding if f is an injective immersion such
that f is a homeomorphism of Wp onto f(WW) with the topology induced
from M.
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1.1. Tangent Space

1.6 Let (S2, (p) be a local chart and f a differentiable real-valued function
defined on a neighborhood of P e 1 We say that f is flat at P if d(f a cp-') is
zero at 9(p).

A tangent vector at P e M. is a map X : f -+ X(f) a E8 defined on the set of
functions differentiable in a neighborhood of P, where X satisfies:

(a) If %, p e ER, X(_lf + pg) = ).X (f) + pX(g).
(b) X (f) = 0, if f is flat.
(c) X (jg) =f(P)X(g) + g(P)X (f ); this follows from (a) and (b).

1.7 The tangent space Tp(M) at P e M. is the set of tangent vectors at P.
It has a natural vector space structure. In a coordinate system {x'} at P, the
vectors (0/8x')P defined by (8/cx')p (f) _ [o(f o (p -')/ax']Q(P), form a basis.

The tangent space T(M) is UPev T,(M). It has a natural vector fiber
bundle structure. If TP(M) denotes the dual space of TP(M), the cotangent
space is T*(M) = UPE: TP(M). Likewise, the fiber bundle Tr(M) of the
tensor of type (r, s) is UPE 6 T,(M) ® TP(M).

1.8 Let P E M and 0 be a differentiable map of M into W.. Set Q = (D(P).
The map D induces a linear map D. of the tangent space TP(M) into TQ(W)
defined by ((D* XX f) = X(f o I), where X e 7,(M) and f is a differentiable
function in a neighborhood of Q. We call * the linear tangent mapping of (D.

By duality, we define the linear cotangent mapping <D* of T*(W) into
T*(M) as follows: T*(W) -3 co - *(co) e T*(M), which satisfies

<4V*(w), X> = <w, D*(X)>, for all X e TP(M).

One verifies easily that D*(df) = d(f o (D).

1.9 A differentiable vector field is a section of T(M). A section of vector
fiber bundle (E, n, M) is a differentiable map of M into E, such that it
identity. If E = T(M), it is the mapping of E onto M: Tp(M) -3 X -+ P.

The bracket [X, Y] of two vector fields X and Y is the vector field defined
by

[X, Y](f) = X[Y(f)] - Y[X(f)]-

A differentiable tensor field of type (r, s) is a section of Ts(M).

1.10 An exterior differential p -form n is a section of APT*(M). In a local chart

n = I n J, ... J , dX ' A dxJ2 A A dxia,
it <J: <... <Ja
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and the exterior differentiation dr7 of rl is

dq = Y daji...;D A dx'' A .. A dx'P.
Jl <j2 <... < ip

Clearly ddr7 = 0.
Denote by rt(M) the space of differentiable vector fields and by A°(M)

the space of exterior differential p-forms. For x e A°(M) and /3 e AQ(M),
d(a A /i) = da A /3 + (-1)°x A dfl, as it is easy to verify.

1.2. Connection

1.11 A connection is a map D (called the covariant derivative) of T(M) x
rl(M) into T(M) such that:

(a) D(Xp, Y) = Dxp(Y) E Tp(M) when Xp E Tp(M).
(b) For any P E M, the restriction of D to Tp(M) x rt(M) is bilinear.
(c) If f is a differentiable function

Dxp(fY) = Xp(f)Y +f(P)Dxp(Y)

(d) If X and Y belong to rt(M), X of class C' and Y of class C''+', then
DXY is of class C.

In a local chart (0, cp), denote °; Y = D6,es; Y. Conversely, if we are given,
for all pairs (i, j),

then a unique connection D is defined.
The functions r are called the Christoffel symbols of the connection D

with respect to the local coordinate system x', ..., x".

1.12 The torsion of the connection is the map of rl x Ft into rl defined by

T(X,Y)=DXY-D,.X- [X, Y].

Tk(a/ax', a/ax') = rk - rk; are the components of a tensor.

1.3. Curvature

1.13 The curvature of the connection is the 2-form with values in Hom(rl, rl)
defined by:

R(X, Y) = DXDy - DyDX - Dtx. rl.
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One verifies that R(X, Y)Z at P depends only upon the values of X, Y, and
Z at P.
In a local chart, denote by Rk;j the lth component of R(a/ax', a/axj)alaxk.
R' 1 are the components of a tensor, called the curvature tensor, and

(1) RkijZk = v;v,Z1 - vjvizl.

It follows that

Rkij = ai F,k - l3 j T , + r;,,, r;k - r' r-im ik

1.14 The definition of covariant derivative extends to differentiable tensor
fields as follows:

(a) For functions, Dx f = X(f ).
(b) Dx preserves the type of the tensor.
(c) Dx commutes with the contraction.
(d) Dx(u ® v) = (DX u) ® v + u ® (Dx v), where u and v are tensor fields.

For simplicity, we set u = V21VZ2 vQ,tl.

§2. Riemannian Manifold

1.15 A C°° Riernannian manifold is a pair (M", g), where M" is a C°° differenti-
able manifold and g a C°° Riemannian metric. A Riemannian metric is a
twice-covariant tensor field g (that is to say, a section of T*(M) (9 T*(M)),
such that at each point P e M, gp is a positive definite bilinear symmetric
form :

gp(X, Y) = gp(Y, X) and gp(X, X) > 0 if X 96 0.

Hereafter, unless otherwise stated, a Riemannian manifold M. is a connected
C°° Riemannian manifold of dimension n.

1.16 Theorem. On a paracompact C°° differentiable manifold, there exists a
C°° Riemannian metric g.

Proof. Let (52;, (pi);e1 be an atlas and {a;} a C°° partition of unity subordinate
to the covering {S2;}. Such {a;} exists since the manifold M. is paracompact.
Set 49 = (efx) be the Euclidean metric on R" (in an orthonormal basis
8,k = b; , Kronecker's symbol). Then g = L f a; cp*(e) is a Riemannian
metric on M, as one can easily verify.

For an alternate proof of Theorem (1.16) one can also use Whitney's
theorem and give M. the imbedded metric. Whitney's theorem asserts that
every differentiable manifold M. has an immersion in lvn and an imbedding
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j 2n+ '. So let <D be an imbedding of M. in R2"+'. On M. define the Rieman-
nian metric g by g(X, Y) = d°(q)* X, (D* Y). This is the metric induced by the
imbedding.
Let {xi}, (i = 1, 2, ... , n), be a local coordinate system at a point P E M" and
{y'} (a = 1, 2, ... , 2n + 1) the coordinates of O(P) E R""'. The components
of g can be expressed as follows:

2n+1 ayI

gi; = L1 exi ax;.
I

By definition, gi' are the components of the inverse matrix of the metric matrix
((gi;)):gi;g'k = Sj.

2.1. Metric Space

1.17 Definition. Let C be a differentiable curve in a Riemannian manifold
(M", y): R z) [a, b] a t -+ C(t) E Mn with C differentiable (namely the restric-
tion of a differentiable mapping of a neighborhood of [a, b] into Mn).

Define the arc length of C by:

(2)
dC dC = fb dCi dC'

bL(C) = f jgccn dt dt
dt - gi;[C(t)]

dt dt
dt,

a J
where Cz(t) are the coordinates of C(t) in a local chart, and dCi/dt the com-
ponents of the tangent vector at C: dC;dt = C*(c%ct), c/ct being the unit
vector of R.

One verifies easily that the definition of L(C) makes sense; the integral
depends neither on the local chart, nor on a change of parametrization
s = s(t) with ds/dt 0. Henceforth we suppose that the manifold is connected.
This implies that it is pathwise connected. Two points P and Q of M" are the
endpoints of a differentiable curve. Indeed, a continuous curve from P to Q
is covered by a finite number of open sets S2i homeomorphic to R", and in
each K2i one replaces the continuous curve by a differentiable one.

Set d(P, Q) = inf L(C) for all differentiable curves from P to Q.

1.18 Theorem. d(P, Q) defines a distance on Mn, and the topology determined
by d is equivalent to the topology of M" as a manifold.

Proof. Clearly d(P, Q) = d(Q, P) and d(P, Q) < d(P, R) + d(R, Q). Since
d(P, P) = 0, the only point remaining to be proved is that d(P, Q) = 0 -
P = Q. Assume that P # Q and let (S2, cp) be a local chart with cp(P) = 0,
P e fl. There exists a ball of radius r, B, c a", with center 0, such that B, c
p(Q) and Q $ cp-'(B,). At a point M define .l(M) = inf11 11=1 gm(i;, !) and
µ(M) = sup 11 a 11 =1 g"(!, ), where 11 S 11 is the Euclidean norm of E R" and
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= cp*'c. h.(M) and µ(M) are strictly positive real numbers, because the
sphere is compact. Clearly 2 = inf 1(M) and p = sup p(M) for
m e cp- satisfy 0 < A < p < xc, because 1(M) and p(M) are strictly
positive continuous functions on the compact set rp-'(B,).
Let I- the connected component in cp-'(B,) of P on the curve C from P to
Q. F has P and R as extremities, C(a) = P, C(b) = R. We have

> . fb

L(C)>_L(r)= 9';
dC'dC'

dt
dt dt ja

d((p ; C)

dt
dt_>Ar,

since the arc length of (p(r) is at least r.
Therefore d(P, Q) > 0 if P # Q. Setting Sp(r) _ {Q e M, d(P, Q) < r}, we

have Sp(Ar) c c' `(B,), according to the above inequality. Likewise, it is
possible to prove: g9`(B,) c S,(pr). Hence the topology defined by the
distance d is the same as the manifold topology of M. 0

2.2. Riemannian Connection

1.19 Definition. The Riemannian connection is the unique connection with
vanishing torsion tensor, for which the covariant derivative of the metric
tensor is zero.

Let us compute the expression of the Christoffel symbols in a local coordi-
nate system. The computation gives a proof of the existence and uniqueness
of the Riemannian connection.
The connection having no torsion, r = r;,. Moreover.

Vkgij = akgij - rki9j1 - rkjgii = 0,
A,gjk=aigjk-r+k9j,-r;jgk,=0.

-rji9ki=0.

Taking the sum of the last two equalities minus the first one, we obtain:

(3) rij = 11019ki + ajgki -
akgtj]9ki

2.3. Sectional Curvature. Ricci Tensor. Scalar Curvature

1.20 Consider the 4-covariant tensor R(X, Y, Z, T) = g[X, R(Z, T)Y] with
components R,k,j = g,.Rk, j. For the definition of the curvature tensor see
1.13. It has the following properties: R,J1, = -Rij,k (by definition), R,jk, _

and the Bianchi identities: R;ktj + 0,

(4) D.R,,k, + VkR,j,,,, + V,R;j,,,k = 0.
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1.21 Definition. a(X, Y) = R(X, Y, X, Y) is the sectional curvature of the
2-dimensional subspace of T(M) defined by the vectors X and Y, which are
chosen orthonormal (i.e., g(X, X) = 1, g(Y, Y) = 1, g(X, Y) = 0).

1.22 Definition. From the curvature tensor, only one nonzero tensor (or its
negative) is obtained by contraction. It is called the Ricci tensor. Its com-
ponents are R;; = R' j. The Ricci tensor is symmetric and its contraction
R = Rijg`3 is called the scalar curvature.
The Ricci curvature in the direction of the unit tangent vector X = {s'} is

1.23 Definition. An Einstein metric is a metric for which the Ricci tensor and
the metric tensor are proportional:

(5) R,;(P) =

Contracting this equality, we obtain j'(P) = R(P)/n, which is a constant when
n >: 3. Indeed, if we multiply the second Bianchi identity (4) by g'm, we
obtain:

D'R,jk, + Vk R,i - o; R,k = 0,

which multiplied by g" results in Vk R = 2V R;k. But contracting the covariant
derivative of (5) gives Vk R = nV R;k. Hence when n 0 2, the scalar curvature
R must be constant.

1.24 Definition. A normal coordinate system at P e M" is a local coordinate
system {x`}, for which the components of the metric tensor at P satisfy:
g;;(P) = 6 and akg;,{P) = 0, for all i, j, k (according to 1.19, akg;;(P) = 0
is equivalent to Fig) = 0).

1.25 Proposition. At each point P, there exists a normal coordinate system.

Proof. Let (f), c') be a local chart with (p(P) = 0, and {x`} the corresponding
coordinate system. At first we may choose in 68" an orthogonal frame, so
that g;,(P) = S. Then consider the change of coordinates defined by:

xk - yk = -11k.(P)y'y'.

In the coordinate system {yk}, the components of the metric tensor are:

gi,{Q) = gk1(Q)[01 - rm,(P)ym][b; - rjm(P)ymi,

since axk/ay` = ak - r (P)y . Q is a point in the local charts corresponding
to {x'} and {yk} ; {yk} is a coordinate system, according to the inverse function
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theorem 3.10, the Jacobian matrix ((axk/ay)) being equal to the unit matrix
at P.
The first order in y` of g;,(Q) - gj,{Q) is:

Cr,k(P)Y + r,k(P)Y"] (axk)P
(ai)

PY1.

Hence (ag;;/ayk)p = 0 and all l7ij(P) are zero.

2.4. Parallel Displacement. Geodesic

1.26 Definition. Let C(t) be a differentiable curve. A vector field X is said to
be parallel along C if its covariant derivative in the direction of the tangent
vector to C is zero. Letting X(t) = X(C(t)):

Dac(t)I X (t)
dC`(t)

= dt
V, X(t)

=
dC`(`)

CaiX'(t) + rik(C(t))xk(t)]
a,

= 0.
dt ax,

Thus X(t) is a parallel vector field along C if, in a local chart:

(6)
ddt + r&x, ddt = 0.

1.27 Definition. Let P and Q be two points of M,,, C(t) a differentiable curve
from P to Q, (C(a) = P, C(b) = Q), and X0 a vector of TP(M).
According to Cauchy's theorem, 3.11, the initial value problem X(a) = Xo,
of Equation (6), has a unique solution X(t) defined for all t e [a, b] since (6)
is linear. The vector X (b) of this parallel vector field along C (with X (a) = X o)
is called the parallel translate vector of X0 from P to Q along C(t).

1.28 Definition. A differentiable curve C(t) of class C2 is a geodesic if its field
of tangent vectors is parallel along C(t). Thus C(t) is a geodesic if and only if

(7)
d2C'(t)

+ rik(C(t))
dCk(t)

= 0,
dt2 dt dt

according to (6) with X = dC/dt.

Applying Cauchy's theorem, 3.11, to Equation (7) yields :
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1.29 Proposition. Given P e M. and X e Tp(M), X 0, there exists a unique
geodesic, starting at P, such that X is its tangent vector at P. This geodesic
depends differentiably on the initial conditions P and X.

§3. Exponential Mapping

1.30 Let (S2, cp) be a local chart related to a normal coordinate system {x'} at
P e a X a tangent vector of Tp(M), X = (c t , 2, ... , c") 0 0, and O(t) the
coordinates of the point C(t), belonging to the geodesic defined by the initial
conditions C(0) = P, (dC/dt),_o = X. C(t) is defined for the values of t
satisfying 0 < t < /3 (/3 given by the Cauchy theorem). Since

dC'(t) dC'(t)
9`;(C(t))

dt dt

is constant along C (the covariant derivative along C of each of the three
terms is zero), s, the parameter of arc length, is proportional to t: s = IXIIt
C'(t) are C°° functions not only of r, but also of the initial conditions. We may
consider C'(t, x', x2, ... , x", S', 52, ... , . ). According to the Cauchy theorem
3.11, $ may be chosen valid for initial conditions in an entire open set, for
instance for P e cp-'(Br) and IIXII < x, (B, c cp(S) being a ball of radius
r>0,anda>0).
It is easy to verify that C(t, AX) = C(at, X) for all A, when one of the two
numbers exists. Thus in all cases, if x is small enough, we may assume 0 > 1,
without loss of generality. By Taylor's formula:

").C(t, S1, S2, .. , b") = x` + tS' + t2Oi(t, 1, S2, . . . ,

1.31 Theorem. The exponential mapping: expp(X), defined by: R" 0 a X -
C(1, P, X) e M. is a diffeomorphism of O (a neighborhood of zero, where the
mapping is defined) onto a neighborhood of P. By definition expp(0) = P, and
the identification of QB" with Tp(M) is made by means of 9*: ((p*')pX,
(cp is introduced in 1.30).

Proof. expp(X) is a C°° map of a neighborhood of 0 e ll into M. This follows
from 1.30 (/3 may be chosen greater than 1). At P the Jacobian matrix of this
map is the unit matrix; then, according to the inverse function theorem 3.10,
the exponential mapping is locally a diffeomorphism:',2, ... ," can be
expressed as functions of Ct, C2, ... , C".

1.32 Corollary. There exists a neighborhood S2 of P, such that every point
Q E S2 can be joined to P by a unique geodesic entirely included in Q. (S), expp')
is a local chart and the corresponding coordinate system is called a normal
geodesic coordinate system.
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Proof. Let be the coordinates of a point Q Ea and C(t) _ {C'(t)} the
geodesic from P to Q lying in a C'(t) = t e [0, 1]. Since the arc length

S = IHXI!t,

"

(8) (s)z = 11X112.

The length of the geodesic from P to Q is IIXII
Since C(t) is a geodesic, by (1.28) we conclude that

rk[C(t)]b'Sk = 0.

Letting t 0, we have r;k(P)Slck = 0 for all {s'}. Thus F k(P) = 0; all
Christoffel symbols are zero at P.

1.33 Proposition. Every geodesic through P is perpendicular to Yp (r), the
subset of the points Q e S2 satisfying °= (E')2 = r2, with r small enough
are geodesic coordinates of Q).

Proof. Let Q E Ep (r) c a Choose an orthonormal frame of ff8" such that the
geodesic coordinates of Q are S' = r and S2 = S3 = = " = 0.
We are going to prove that g,,(Q) = 8, for all i; thus the desired result will
be established, because a vector in Q tangent to Lp (r) has a zero first
component; (if y(u) is a differentiable curve in Ip (r) through Q, Y;=1 ;'(u)
x (&/'(u)/du) = 0, and that implies 0 at Q).

Clearly, by (8), g11(Q) = 1. Differentiation of (8) with respect to Sk yields:

OkgiJ(Q)ctc' + 2gik(Q)S' = 2Sk.

Hence, at Q, if k 0 1:

rakgii(r) + 2g,k(r) = 0,

where g the point with coordinates r.

' = 0 for i > 1. Moreover, F (r)S'si = 0 for all It leads to

2a,91k(r) = akg11(r).

Thus glk(r) + ra,glk(r) = 0, (a/ar)[rg1k(r)] = 0, and is constant along
the geodesic from P to Q, so

91k(Q) = 0, for k o 1.
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1.34 Definition. C is called a minimizing curve from P to Q if L(C) = d(P, Q).
See 1.17 for the definition of L(C) and d(P, Q).

1.35 Proposition. A minimizing differentiable curve C from P to Q is a geodesic.

Proof. Consider C parametrized by arc length s ([0, r] as C(s) e C), and
suppose that C(s) is of class C2 and lies in a chart (S2, 9).
Let F;,(s) be a C2 differentiable curve from P to Q close to C, defined by
y' (s) = C'(s) + 1s'(s), with '(0) = s`(r) = 0 for all i, and small enough.
The first variation of arc length L(IF;,) at A. = 0, (dLA(I)/dA);.=o must be zero.
Now

dL;(li\ = ('
[-10,gij(C(S)gk

dC` dC' dS' dC'

C dA ) =o Jo ds ds + ds ds ] ds.

Integration by parts of the second term, using (3), leads to Euler's equation:

(9)
d2C' dC' dCk

C1SZ
+ F k(C(s))

dS dS = 0.

Hence C is a geodesic. Moreover, let Sp(r) _ {Q EM., d(P, Q) < r}.
According to Corollary 1.32, there exists an ro such that every point of Sp(ro)
can be joined to P by a unique geodesic lying in Sp(ro). If we suppose Q E
Sp(ro), this unique geodesic is the minimizing curve C, and its length is
d(P, Q). Indeed, any other curve from P to Q does not satisfy Euler's equation
(9) if it is included in Sp(ro); if it is not its length is greater than ro, and then
it cannot be minimizing. Thus we have proved that a minimizing curve C is a
geodesic, because, if at a point P the Euler equation (9) were not satisfied,
the above result would imply C is not minimizing. Finally, a C' differentiable
minimizing curve must satisfy (9) as a distribution and will be C" (Theorem
3.54) by induction.

1.36 Theorem. There exists 6(P), a strictl} positive continuous jinnction on 'V1,
such that every point Q satisfying d(P, Q) < d(P) can be joined to P by a unique
geodesic of length d(P, Q). Moreover 6(P) can be chosen so that Sp(d(P)) is a
convex neighborhood: every pair (Q, T) of points of Sp(S(P)) can be joined by a
unique minimizing geodesic lying in Sp(d(P)).

Proof. a) According to 1.30 and Corollary 1.32, for every P C- Mn there exists
a(P) > 0, such that each Q = expp X with IIXII < x(P) can be joined to P by
a unique geodesic C included in Q, where (i), expp') is the chart related to the
normal geodesic coordinate system. We have to prove that the length of this
geodesic is d(P, Q).

Let be the geodesic coordinates of Q. We suppose that S' = r and
= 0 for i > 1. The equation of C is [0, 1] a t -+ C'(t) = ts', its length is r.
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Consider y(t), t e [0, 1] a differentiable curve from P to Q lying in Q. Its
length is

Jgi, i(t))
d,' d'

dt.
J'

According to Proposition 1.33, if (p, 0) are geodesic polar coordinates,
ds2 = (dp)2 + p2gO,s, d9' d0'; therefore

dy' dy' dp 2
__ dlly(t)1

2

9i;Cy(t)] dt dt - (dt) dt

Hence

dlly(t)I1

dt dt > Jo '
dlly(t)II dt = IIy(1)II

dt

Consequently r = d(P, Q).
Thus there exists an a such that expp X is a diffeomorphism of a ball with

center 0 and radius a: Ba c R" onto Sp(a). Also, every geodesic through P
is minimizing in Sp(a).

b) By 1.31, consider the following differentiable map defined on a
neighborhood of (P, 0) e T(M):

T(M) a (Q, 9) -+ (Q, expQ 2) e M x M.

The Jacobian matrix of at (PO) is invertible; thus, by the inverse function
Theorem 3.10. The restriction of to a neighborhood e of (PO) in T(M)
is a diffeomorphism onto (e). This result allows us to choose b(P) to be
continuous. Moreover, we choose e as Sp(,3) x Be, with ,8 small enough (in
particular ,Q < a/2).
Pick A small enough so that Sp(y) x Sp(A) c Or(®). Then SP(A) is a neighbor-
hood of P such that every pair (Q, T) of points belonging to SP(A) can be
joined by a geodesic.
Since ) s f a/2, the length of this geodesic is not greater than P. Thus it
is included in Sp(a), and is minimizing and unique.

c) Let us prove that this geodesic y is included in Sp(A) for A small enough.
Denote by R, the (or a) point of y, whose distance to P is maximum. If R is not
Q or T, Il;(t)112 = 1".=1 1. i(1)]2 has a maximum at R for t = to. Thus its
second derivative at to is less than or equal to zero:

d2y1 " 2

y'(to) dt2 (to) + Y
(dy'
d(to),, S 0.t



§4. The Hopf-Rinow Theorem 13

Since y is a geodesic,

d
2; `(to)

r`k(R)
dy (to) dyk(to)

+ = 0.
dt2 ' dt dt

Multiplying by y`(to) and summing over i leads to:

1 dyi d yk
[gik(P) - y`(to)rik(R)J dt dt

< 0,

since Y =, (dy'/dt)2 = g;k(d y'/dt)(d yk/dt).
But this inequality is impossible, if A is small enough, because when A --+ 0,
R -+ P, y`(to) -+ 0, and ri (R) -+ 0. Hence, for A small enough, R is Q or T,k

and y c SP(A).

§4. The Hopf-Rinow Theorem

1.37. The following four propositions are equivalent:

(a) The Riemannian manifold M is complete as a metric space.
(b) For some point P e M, all geodesics from P are infinitely extendable.
(c) All geodesics are infinitely extendable.
(d) All bounded closed subsets of M are compact.

Moreover, we also have the following:

1.38 Theorem. If M is connected and complete, then any pair (P, Q) of points
of M can be joined by a geodesic arc whose length is equal to d(P, Q).

Proof. a) b) and c).
Let P e M and a geodesic C(s) through P be defined for 0 < s < L, where s
is the canonical parameter of arc length. Consider s,, an increasing sequence
converging to L, and set x, = C(sp). We have d(xp, Xq) < ASP - SqI. Hence
{xp} is a Cauchy sequence in M, and it converges to a point, say Q, which does
not depend on the sequence {sP}.
Applying Theorem 1.31 at Q, we prove that the geodesic can be extended for
all values of s such that L < s < L + e for some e > 0.

Proof. b) d) and Theorem 1.38.
Denote by EP(r) the subset of the points Q e SP(r), such that there exists a
minimizing geodesic from P to Q. Recall SP(r) = {Q e M, d(P, Q) < r}.
We are going to prove that E(r) = EP(r) is compact and is the same as
S(r) = Sp(r).
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Let {Q,} be a sequence of points in E(r), X, (with II X; II = 1(recall X . = (p,, X;))
the corresponding tangent vectors at P to the minimizing geodesic (or one of
them) from P to Q1, and s; = d(P, Qi). Since the sphere 1(1) is compact
and the sequence {s;} bounded, there exists a subsequence {Qj} of {Q;} such
that {X1} converges to a unit vector Xo e Sn_ 1(1) and s; -- so.
Assuming b), Qo = expp so Xo exists. It follows that Q; -+ Q0 and d(P, Qo)
so < r. Hence E(r) is compact. Indeed, expP is continuous: We have only to
consider a finite covering of the geodesic, from P to Qo by open balls, where
we can apply Proposition 1.29.
According to Theorem 1.36, E(r) = S(r) for 0 < r < 8(P). Suppose E(r) _
S(r) for 0 < r < ro and let us prove first, that equality occurs for r = ro, then
for r > ro. Let Q e S(ro) and {Q;} be a sequence, which converges to Q, such
that d(P, Q.) < ro. Such a sequence exists because P and Q can be joined by
a differentiable curve whose length is as close as one wants to ro. Q, E E(ro),
which is compact; hence E(ro) = S(ro). By Theorem 1.36, b(Q) is continuous.
It follows that there exists a 60 > 0 such that 6(Q) >_ b0 when Q e E(ro),
since E(ro) is compact.

Let us prove that E(ro + oo) = S(ro + 60).
Pick Q E S(ro + 60), Q 0 S(ro). For every k e N, there exists Ck, a differentiable
curve from P to Q, whose length is smaller than d(P, Q) + 1/k. Denote by Tk
the last point on Ck, which belongs to E(r0). After possibly passing to a
subsequence, since E(r0) is compact, Tk converges to a point T. Clearly,
d(P, T) = r0i d(T, Q) < S0 < 6(T), and

d(P, T) + d(T, Q) = d(P, Q), since d(P, Tk) + d(Tk, Q) < d(P, Q) + 1/k.

There exists a minimizing geodesic from P to T and another from T to Q.
The union of these two geodesics is a piecewise differentiable curve from P
to Q, whose length is d(P, Q). Hence it is a minimizing geodesic from P to Q.

This proves d) and Theorem 1.38, any bounded subset of M being in-
cluded in S(r) for r large enough, and S(r) = E(r) being compact.

Finally, d) a), obviously.

1.39 Definition. Cut-locus of a point P on a complete Riemannian manifold.
According to Theorem 1.37, expp(rX) with II X II = 1 is defined for all r e i8
and X e (1). Moreover the exponential mapping is differentiable.

Consider the following map Sn_ 1(1) 9 X - µ(X) e ]0, + oo], u(X) being
the upper bound of the set of the r, such that the geodesic [0, r] a s -+ C(s) =
expp sX is minimizing. It is obvious that, for 0 < r < µ(X), the geodesic
C(s) is minimizing.

The set of the points expp[jt(X) X], when X varies over is called
the cut-locus of P.

It is possible to show that u(X) is a continuous function on 1(1) with
value in ]0, oo] (Bishop and Crittenden [53]). Thus the cut-locus is a closed
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subset of M. So when M is complete, expp, which is defined and differentiable
on the whole k", is a diffeomorphism of

O = {rX e IR" I0 < r < u(X)} onto S = expp O.

M is the union of the two disjoint sets: S2 and the cut-locus of P.

1.40 Definition. Let u(X) be as above and tjp = inf µ(X), X E S"_ i(1). by is
called the injectivity radius at P. Clearly by > 0. The injectivity radius b of a
manifold M is the greatest real number such that 6 < 6p for all P E M.
Clearly b may be zero. But according to Theorem 1.36, 6 is strictly positive if
the manifold is compact.

§5. Second Variation of the Length Integral

5.1. Existence of Tubular Neighborhoods

1.41 Let C(s) be an imbedded geodesic [a, b] 3 s - C(s) E M. At P = C(a),
fix an orthonormal frame of Tp(M), lei), (i = 1, 2, ... , n) with ei = (dC, ds)5
s being the parameter of arc length. Consider ei(s), the parallel translate
vector of ei from P to C(s) (see Definition 1.27).
{ei(s)} forms an orthonormal frame of Tc(S)(M) with et(s) = dC(s)lds, since
gc(5)(ei(s), e;(s)) is constant along C.
Consider the following map 17 defined on an open subset of R':R x I)8"- t a
(s, 5) -+ expci5, . To define F, associate to e R"-' the vector S e ", whose
first component St is zero. According to Cauchy's theorem (see Proposition
1.29),1- is differentiable. Moreover, by 1.30, the differential of I at each point
C(s) is the identity map of Ii" if we identify the tangent space with f"; thus r is
locally invertible in a neighborhood of C, by the inverse function theorem,
3.10.

For y > 0, define T = {the set of the F(s,1) with s e [a, b] and Ilsll < Jul.
Tµ is called a tubular neighborhood of C. The restriction r,, of r to [a, b] x
B c li" is a diffeomorphism onto T,,, provided p is small enough. Indeed, it is
sufficient to show that for µ small enough f' is one-to-one. Suppose the
contrary: there exists a sequence {Qi} of points belonging to T1,i, such that
Qi = F(si, Xi) = F(Q,, with (si, Xi) 0 (oi, Y) and I1Xill <_ I1Yill < 1/i.
After possibly passing to a subsequence Q;, when j -+ x, Q; converges to a
point of C, say C(so). Accordingly, s; -, so and o, so. This yields the desired
contradiction, since r is locally invertible at C(so), as proved above.

5.2. Second Variation of the Length Integral

1.42 Let C be a geodesic from P to Q, [0, r] 3 s - C(s) E M being injective.
Choose p small enough so that 17A is injective (for the definition of rµ see 1.41).
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On T,,, the tubular neighborhood of C, (s, ) forms a coordinate system
(called Fermi coordinates), which is normal at each point of C, as it is possible
to show. We are going to compute the second variation of arc length in this
chart (T,, r. 1).Setx1 = sand x` fori > 1.
Let {Cx} be a family of curves close to C, defined by the C2 differentiable
mappings: [0, r] x ] - a, +a[ n (s, A) - x'(s, A), the coordinates of the point
Q(s, A) e CA. In addition, suppose that Q(s, 0) = C(s), x'(s, A) = s, and that
a > 0 is chosen small enough so that CA is included in T,, for all A e ] - s, + a[.
The first variation of the length integral

axj
L(A) _ 9ij[Q(s, A)] as as

ds
a

is zero at A = 0, since Co = C is a geodesic. A straightforward calculation
leads to

(10) 1 = a L 1))A_o = fo [ )2 - R111,(C(s))Y`(s)Y'(s)] ds,

where y`(s) =\[ax1(s, A)/aA] 1 _ 0 . Indeed, by 1.13, R1 j 1 j = - 4a; j 911 on C.
Recall that on C, g; j = S and ak g; j = 0.

5.3. Myers' Theorem

1A3 A connected complete Riemannian manifold M. with Ricci curvature
(n - 1)k2 > 0 is compact and its diameter is < it/k.

Proof. Let P and Q be two points of M. and let C be the (or a) minimizing
geodesic from P to Q, r its length.
Consider the second variation f (j >- 2) related to the family C,t defined by
xj(s, A) = A sin(xs/r) and x'(s, A) = 0 for all i > 1, i 96 j. According to (10):

_ 2 s xsIj- f[!-cos' ]-R11(s)sm2

Adding these equations and using the hypothesis R 11 z (n - 1)k2, it follows
that

(n- ) 2--R11(s)sin2-1ds:(n-1)r(x2 -k2

If r > n/k, this expression will be negative and at least one of the Ij must be
negative. It follows that C is not minimizing, since there exists a curve from
P to Q with length smaller than r. Hence d(P, Q) < x/k for all pair of points
P and Q. By Theorem 137, M is compact.
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§6. Jacobi Field

1.44 Definition. A vector field Z(s), along a geodesic C, is a Jacobi field if its
components '(s) satisfy the equations:

(11)

in a Fermi coordinate system (see 1.42).
The set of the Jacobi fields along C forms a vector space of dimension 2n,

because by Cauchy's Theorem, 3.11, there is a unique Jacobi field which
satisfies Z(so) = Zo and Z'(so) = Yo, so E [0, r], when Zo and Yo belong to
Tc;sol(M). The subset of the Jacobi fields which vanish at a fixed so forms a
vector subspace of dimension n. Those, which are in addition, orthogonal to
C, form a vector subspace of dimension (n - 1). Indeed, if 1(so) = 0 and

0, '(s) = 0 for all s E [0, r], since (S')"(s) = 0, for all s (by
definition 1.44).

1.45 Definition. If there exists a non-identically-zero Jacobi field which
vanishes at P and Q, two points of C, then Q is called a conjugate point to P.

1.46 Theorem. expp X is singular at Xo if and only if Q = expp Xo is a con-
jugate point to P.

Proof. expP X is singular at Xo if and only if there exists a vector Y 0
orthogonal to Xo such that

(12) a expp(X0 + AY)
= 0.

aA )x=o

Consider the family {CA} of geodesics through P, defined by [0, r] 9 s -
QA(s) = expp[(s/r)(Xo + AY)] e CA, with r = IIXoll
In a Fermi coordinate system (see 1.41) on a tubular neighborhood of Co,
the coordinates x'(s, A) of QA(s) satisfy:

(13)
a2x`(s, A) axJ ax"

as2 - - rlr(QA(S)) as as '

for A small enough, A E ] -E, +E[, by (7), since CA is a geodesic.
The first order term in A of (13) leads to

d2y`(s) _
ds2

_ -ajr11(Qo(s))y'(s) = -R1,1,{Qo(s))y'(s),

where y'(s) = (ax`(s, .I)/R)A=o (recall that Christoffel's symbols are zero
on Co).
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Hence (yi(s)) are the components of a Jacobi field Z(s) along CO, orthogonal
to Co.
If (12) holds, the preceding Jacobi field Z(s) vanishes at P and Q, and it is
not identically zero, since Z'(0) = Y/r. Conversely, if there exists a Jacobi
field Z(s) # 0, which vanishes at P and Q, then (12) holds with Y = rZ'(0)
# 0. W and T,,(M) are identified by (rd, (for the definition of (r,,), see 1.8
and 1.41).

1.47 Theorem. If Q belongs to the cut-locus of P, then one at least of the
following two situations occurs:

(a) Q is a conjugate point to P;
(b) There exist at least two minimizing geodesics from P to Q.

For the proof see Kobayashi and Nomizu [167].

1.48 Theorem. On a complete Riemannian manifold with nonpositive curvature,
two points are never conjugate.

Proof. Let (yi(s)} be the components of Z(s) # 0, a Jacobi field which vanishes
at P, as above. Then

l nw`` n n e /2
Lr (y')2 = [(yi)']2 +
f=2 i2

n

[(7 )]2 - R1 1
fs) '(s)y'(s) ? [(y`),]2.

i=2 i=2

Now f (s) = I Z(s)l2 = Zn= 2 [yi(s)] 2 cannot be zero for s > 0, since f (0) _
f'(0) = 0 and f"(0) > 0, with f"(s) >- 0 for all s > 0.

§7. The Index inequality

1.49 Proposition. Let Y and Z be two Jacobi fields along (C), as in 1.44. Then
g(Y, Z') - g(Y', Z) is constant along (C). In particular, if Y and Z vanish at P,
then g(Y, Z') = g(Y', Z).

Indeed, [E7= 1 (?z" - y'4-)]' = 0.

1.50 Definition (The Index Form). Let Z be a differentiable (or piecewise
differentiable) vector field along a geodesic (C): [0, r] -3 t -+ C(t) e M. For Z
orthogonal to dC/dt, the index form is

dC `dC l1
(14) I(Z) = {g(z'(t), Z 'W) + [R(

dt '
Z 1

dt ,
ZJ } dt.
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1.51 Theorem (The Index Inequality). Let P and Q be two points of M,, and
let (C) be a geodesic from P to Q: [0, r] 9 s -i C(s) e M such that P admits no
conjugate point along (C). Given a differentiable (or piecewise differentiable)
vector field Z along (C), orthogonal to dC/dt and vanishing at P, consider the
Jacobifield Y along (C) such that Y(0) = 0 and Y(r) = Z(r). Then 1(Y) < 1(Z).
Equality occurs if and only f Z = Y.

Proof. First of all, such a Jacobi field exists. Indeed, by 1.44, the Jacobi fields
V, vanishing at P and orthogonal to dC/dt, form a vector space 'f'' of di-
mension n - 1.
Since P has no conjugate point on (C), the map V'(0) - V(r) is one-to-one,
from the orthogonal complement of dC/dt in Tp(M) to that of dC/dt in
TQ(M). Thus this map is onto. And given Z(r), Y exists.
Let {V} (i = 2, 3, ... , n) be a basis of 1''. For the same reason as above,
{ l;(s)} (2 < i < n) and dC/ds form a basis of Tc($)(M). Hence there exist
differentiable (or piecewise differentiable) functions f (s), such that Z(s) _
_'=2Ji(S)V(s)
Furthermore, set W(s) _ D=2 f;(s)V,(s) and e, = dC/ds. Then by (11),
9[R(ei, Z)ei, Z] = L+=2 fi9[R(ei, V)er, Z] = Ei=2 j,g(Vl. Z). Thus:

1(Z) = fo 9(W' W) + E 9(f Vi,fiVi) + 9(f V;,f;Vi)

By virtue of Proposition 1.49, g(i;, Vi) = g(V;, ]). Thus, integrating the
last term of 1(Z) by parts gives

1(Z) = Jg(w, W) ds + g[Y'(r), Y(r)],
0

because Y(s) 2 f(r) V (s) and Y'(s) _ E°= 2 f(r) V;(s).
If f are constant for all i, we find :

(15) 1(Y) = g[Y'(r), Y(r)].

Hence I(Z) >_ I(Y) and equality occurs if and only if W = 0, which is equiva-
lent to f 0 for all i, that is to say, if Y = Z.

1.52 Proposition. Let b2 be an upper bound for the sectional curvature of M
and S its injectivity radius. Then the ball Sp(r) is convex, if r satisfies r < 612
and r < n/4b.
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Proof. Let Q e S,(r) with d(P, Q) = r, and (C) the minimizing geodesic from

P to Q. In a tubular neighborhood of (C), we consider a Fermi coordinate

system, (see 1.42).
Given a tic y through Q orthogonal to (C) at Q, so that ] - e, + E[ a 2
y(A)EM, with y(0) = Q, set Yo = (dy/dA)x=o. The first coordinate of y(.1) is
equal to r, for all A.
By (10), the second variation of d(P, )(2)) at A = 0 is 1(Y), where Y is the
Jacobi field along (C) satisfying Y(P) = 0, Y(Q) = Yo. But

1(Y) ? [g(Y', Y') - b2g(Y, Y)] ds = Ib(Y);
0

4,(Y) is the index form (14) on a manifold with constant sectional curvature
b2.
On such a manifold, the solutions of (11) vanishing at s = 0 are of the type
4V = f sin bs, for i >: 2, where ff are some constants. If br < n, a solution
does not vanish for some s e 10, r], without being identically zero. In that
case, according to Theorem 1.51, and by (15) :

I"(Y) > Ib

bs
Yo/ I= b cot br 9(Y YO).b sin br o,

If r < R/2b, then 1(Y) > 0 and for s small enough, the points of y, except Q,
lie outside Sp(r). Henceforth suppose r < 6/2 and r < 7i/4b.

Consider Q, and Q2i two points of Sp(r), and y a minimizing geodesic
from Q, to Q2 (see Theorem 1.38). Since d(Q,, Q2) < 2r < S, y is unique and
included in Sp(2r). Let T be the (or a) point of y, whose distance to P is
maximum. Since d(P, T) < 2r < n/2b, T is one end point of y. Indeed, if T is
not Q1 or Q2, y is orthogonal at T to the geodesic from P to T and by virtue
of the above result, y is not included in SP(d(P, T)) and that contradicts the
definition of T.

§8. Estimates on the Components of the Metric Tensor

1.53 Theorem. Let M. be a Riemannian manifold whose sectional curvature K
satisfies the bounds -a2 < K S b2, the Ricci curvature being greater than
a' = (n - 1)a2. Let SP(ro) be a ball of M with center P and radius ro < 5p the
injectivity radius at P. Consider (Sp(ro), expr 1), a normal geodesic coordinate
system. Denote the coordinates of a point Q = (r, 0) e [0, ro] x 1(1),
locally by 9 = {9t}, (i = 1, 2,. . ., n - 1). The metric tensor g can be expressed
by

ds2 = (dr)2 + r2ge, ,(r, 0) d9' d9'.
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For convenience let gBe be one of the components geie+ and I g det((ge+ej))
Then gBe and I g I satisfy the following inequalities:

(a) a/ar log gm(r, 0) a/ar log[sin(br)/r], ge9(r, 0) >- [sin(br)/br]2
when br < it;

a/ar log ggo(r, 0) < a/ar log[sinh(ar)/r], g9e(r, 0) < [sinh(ar)/ar]2;

(y) a/ar log I -g(r0) I < (n - 1)(a/ar)log[sin(ar)/r] < - a'r/3,

(16)

rsin(ar) "- t
g(r, 0) I

L ar

(S) a/ar log I g(r, 0) I > (n - 1)(a/ar)log[sin(br)/r],

I g(r, 0) >
[sin(br)1"-

L br .11II

when br < it.

As usual, if a' = a = 0, we set sin(ar)/a = r, while if (n - 1)a2 = a' < 0,
sinh iar = i sin ar and cosh iar = cos ar.

Proof Let Y be a Jacobi field along (C), the minimizing geodesic from P to Q,
[0, r] a s C(s) E M, Y satisfying Y(0) = 0 and Y # 0. When br < n,
according to the proof of Proposition 1.52, and using (15):

g[Y'(r), Y(r)] = 1(Y) 2t !b(Y) >- b cot br g[Y(r), Y(r)],

where Ib(Y) is the index form (14) on a manifold with constant sectional
curvature b2.
Moreover, according to the proof of Theorem 1.46,

Y(r) = (a exp,(Xo + .IY'(O))1

l OA Ja=o

where Xo = expp t Q and we identify Tp(M) with 68".
Thus g[Y(r), Y(r)] = r2gee(r, 0)11 Y'(0)112, 0 being in the direction defined by
Y(r). Differentiating this equality, we obtain:

(a/ar)log g89(r, 0) >t g[Y'(r), Y(r)]/g[Y(r), Y(r)] - 1/r >- b cot br - 11r.
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The inequality a) follows, since g" is equal to 1 at P and lim,.o [sin(br)/br]
= 1. To establish fi), let us use the index inequality, Theorem 1.51:

as Y(r)]g(Y'(r), Y(r)) = 1(Y) <
I sinhIsinh

ar

< [a2 f' (cosh as1Z
ds + aZ r

(sinh

sinh aslZ ds]LY(r),
Y(r)]

l\sinh ar, Jo arl
= a coth ar g[Y(r), Y(r)].

Thus (a/ar)log ge8(r, 9) <- a coth ar - 1/r.
Let us now prove y). Consider (e;(s)}, an orthonormal frame on Tc(S)(M),

as in 1.41. Denote by Y2, Y3, ..., Y, the Jacobi fields along (C), such that
Y(0) = 0 and Y(r) = e,,{r), for 2 < i < n. Using the index inequality,
Theorem 1.51, yields:

g(Y,{r), Y1(r)) = I(YJ < I/sin xs e,(r)).
`sin ow

The possibility that sin ar = 0 for some r > 0 does not occur, even if a2 > 0,
since r < bP < n/a (Myers' Theorem, 1.43).
Adding these inequalities leads to :

i g(YXr), Y(r)) < (n - 1)oc2 J
r

sin

cos aarS)2
dsj

2

" sin as 2- I RIil,{s) ds.
f=2 o sin ar

Since

"

i Rjrt(s) = R11(s) t (n - 1)a2,
i=2

"
j g(YXr), Y,{r)) S (n - 1)a cot ar.
i-2

Therefore (a/ar)log 1119(r, 9)1 = Z7-2 g(Y,-(r), Y(r)) - (n - 1)/r < (n - 1)
x (a/dr)log[sin(ar)/r] and the properties of cot u give the second inequality
for y). The third inequality follows by integrating the first, since I g I = 1 at P.
To prove S), we have only to add n - 1 inequalities a) in the n - I directions
ei(r), i = 2, ... , n. 0
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§9. Integration over Riemannian Manifolds

1.54 Definition. A differentiable manifold is said to be orientable if there exists
an atlas all of whose changes of coordinate charts have positive Jacobian.

Given two charts of the atlas, (Q, q) and (O, 0), with 0 n 0 $ 0, denote
by {x'} the coordinates corresponding to (i2, q) and by {y} those correspond-
ing to (O, 0). In S n 0, let A; = ay'/ax' and Bs = ax'/ayfl, the Jacobian
matrix A = ((A;)) e GL(l")+, the subgroup of GL(ll") consisting of those
matrices A for which det A = I A I > 0.

1.55 Theorem. A differentiable manifold M. is orientable if and only if there
exists an exterior differential n -form, everywhere nonvanishing.

Proof. Suppose M. orientable. Let (52;, cp;);E I be an atlas, all of whose changes
of charts have positive Jacobian, and {a;} a partition of unity subordinated to
the covering {O;}.
Consider the differential n-forms w; = a; dx' A dxZ A A dx' (x', x2,. ..
x" being the coordinates on S2;). It is easy to verify that the differential n-form
co = l;el w; is nowhere zero.

Conversely, let co be a nonvanishing differentiable n-form, and sad _
(Q,, 9);E1 an atlas such that all D; are connected. On S2; there exists f , a
nonvanishing function, such that co = f, dx' A dxZ A A dx". Since if; is
connected, f has a fixed sign. If f is positive, we keep the chart (a;, 9). In
that case set ip; = cp,. Otherwise, whenever fj is negative, we consider ipj, the
composition of cpj with the transformation (x', x2'...,X,) (- x', x2, ... , x")
of R". So from .sad, we construct an atlas sago.
The charts of sago are (f2;, cp;) or (Qj, Cp), depending on whether f > 0 or
fj < 0. Set fj = -fj o q j o ip; '. All changes of charts of solo have positive
Jacobian. Indeed, at x e Sl; n Qj, denoting by I A I the determinant of the
Jacobian of ipj o oj ', we have f j I A I = ];. Since1j and]; are positive, I A I > 0.

1.56 Definition. Let M be a connected orientable manifold. On the set of
nonvanishing differentiable n-forms, consider the equivalence relation:
w, - w, if there exists f > 0 such that co, = fWZ. There are two equivalence
classes. Choosing one of them defines an orientation of M; then M is called
oriented. There are two possible orientations of an orientable connected
manifold.

Some examples of nonorientable manifolds: Mobius' band, Klein's bottle,
the real projective space PZm of even dimension 2m.

Some examples of orientable manifolds: the sphere S", the tangent space
of any manifold, the complex manifolds.
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1.57 Definition. Let M be a differentiable oriented manifold. We define
the integral of w, a differentiable n-form with compact support, as follows:
Let (S2i, ip j. ,, r be an atlas compatible with the orientation chosen, and
{ai}iE, a partition of unity subordinate to the covering {S2i}iel. On S2i, co is
equal to f1(x) dx' A A dx". By definition

fco= £ f [a,{x) f{x)] o cpt ' dx' A dx2 A . A dx".
M iel d!t)

One may verify that the definition makes sense. The integral does not depend
on the partition of unity (see 1.73) and the sum is finite.

1.58 Theorem. If M. is nonorientable, there exists a covering manifold ft of
M with two sheets, such that M is orientable.

For the proof see Narasimhan [212].

1.59 Definition. 1 i is called a covering manifold of M, if there exists x: M - M,
a differentiable map, such that for every P e M :

a) x- '(P) is a discrete space, F;
f) there exists a neighborhood fl of P, such that x-'(S2) is diffeomorphic

to S2 x F. Each point P E 7z- '(P) has a neighborhood fi' c M, such that
the restriction x' of it to S2' is a diffeomorphism of 0' onto 11
The map it is a 2-sheeted covering, if F consists of two points.

If (M, g) is a Riemannian manifold, on a covering manifold M of M, we
can consider the Riemannian metric x*g. We call (M, J) a Riemannian
covering of M.

1.64 Theorem. If M is simply connected, then M is orientable.

For the proof see Narasimhan [212].

1.61 Definition. Let E be the half-space of R" (x' < 0), x' the first coordinate
of R. Consider f e R" with the induced topology. We identify the hyper-
plane of R, x' = 0, with R"-'.
Letting t2 and 0 be two open sets of E, and q : 0 -. ® a homeomorphism, it is
possible to prove that the restriction of cp to D n R"-' is a homeomorphism
of 0 n R-' onto ® n Re-'. B will denote B1, the unit ball with center 0 in
R", and we set D=BnE.
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§10. Manifold with Boundary

1.62 Definition. M" is a manifold with boundary if each point of M. has a
neighborhood homeomorphic to an open set of E.

The points of M" which have a neighborhood homeomorphic to 68" are
called interior points. They form the inside of M. The other points are
called boundary points. We denote the set of boundary points by 3M.

As in 1.4, we define a Ck-differentiable manifold with boundary. By
definition, a function is Ck-differentiable on E, if it is the restriction to E, of a
0-differentiable function on R".

1.63 Theorem. Let M. be a (Ck-differentiable) manifold with boundary. If OM
is not empty, then OM is a (Ck-differentiable) manifold of dimension (n - 1),
without boundary: 3(0M) = 0.

Proof. If Q e 3M, there exists a neighborhood S2 of Q homeomorphic by cp,
to an open set 0 c E. The restriction ip of cp to = D n aM is a homeo-
morphism of a neighborhood 15 of Q e aM onto an open set O c 68"-'
Thus OM is a manifold (without boundary) of dimension (n - 1) (Definition
1.1). If M. is Ck-differentiable. let (i2;, cp;);EI be a Ck-atlas. Clearly, (4, (pi);EI
form a Ck-atlas for 3M.

1.64 Definition. By W. a compact Riemannian manifold with boundary of
class Ck, we understand the following: W. is a Ck-differentiable manifold with
boundary and W" is a compact subset of M", a C°° Riemannian manifold.
We set W = W. We always suppose that the boundary is C1, or at least
Lipschitzian (Remark 2.35).

1.65 Theorem. If M" is a 0-differentiable oriented manifold with boundary,
aM is orientable. An orientation of M" induces a natural orientation of 3M.

Proof. Let (52j, cp;);Er be an allowable atlas with the orientation of M", and
(ft;, O;);., the corresponding atlas of 3M, as above. Set is aM --> M, the
canonical imbedding of oM into M. We identify Q with 1(Q), and X e TQ(aM)
with i,w(X) e TQ(M). Given Q E 3M, pick el e TQ(M), el 0 TQ(3M), el being
oriented to the outside, namely, el(f) >_ 0 for all functions differentiable on a
neighborhood of Q, which satisfy f < 0 in M", f (Q) = 0. We choose a basis
of TQ(aM) = {e2, e3, ..., e"}, such that the basis of TQ(M): {e1, e2, .... e"},
belongs to the positive orientation given on M.

This procedure defines a canonical orientation on 3M, as one can see.
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10.1. Stokes' Formula

1.66 Let M^ be a Ck-differentiable oriented compact manifold with boundary,
and co a differentiable (n - 1)-form on MA; then

(17) Jdw
= Jam

w,
m

where aM is oriented according to the preceding theorem. For convenience
we have written jam w instead of Sam i*w,(for the definition of i* see (1.8)).

Proof Let (Sl;, (p,), be a finite atlas compatible with the orientation of M
such an atlas exists, because MA is compact. Set O; = cpi(fl;). Consider {ai},
a C-partition of unity subordinate to {Sli}. By definition jM dw = [,tel
5,, d(ai co). Thus we have only to prove that J. d(a, co) = S g, x, co, where we
recall that i ; = fl; o aV and have set O, = qp,,( ) = Oi n R^-1. In (Q., cp;),
(xiw = E;= L f/x) dx' A . A dx; A - - A dx", f,{x) are Ck-differentiable
functions with compact support included in (p,#l,); dx; means: this term is
missing. Now,

x
d(aiw) [L(_1)' all )1 dx' dxZ dxJ

by Definition 1.10. According to Fubini's theorem:

fd(aiw) _ fl(x) dxZ n dx3 n n dx" = f ai w.
ea g: g

§ 11. Harmonic Forms

11.1. Oriented Volume Element

1.67 Da®. Let M be an oriented Riemannian manifold, and d an
atlas compatible with the orientation. In the coordinate system {xi} cor-
responding to (fl, <p) ed, define the differential n-form q by:

(18) n= 191dx'Adx2n...Adx",

where JgI is the determinant of the metric matrix ((gi,)). I is a global dif-
ferentiable n-form, called oriented volume element, and is nowhere zero.

Indeed, in another chart (®, 0) e d, such that ®n 0 0 0, consider the
differentiable n-form: q' = 171 dy' A dye A A dy". But g',,p = B' Bpgtj,
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hence 1T = I B I
i 19 I (for the definition of the matrices A and B see

1.54). Thus on 0 n S2:

n'= IBIz 1911AIdx'ndx2n."ndx"=q,

since I A I> 0 and I A I I B I= 1. Moreover, r does not vanish.

1.68 Definition (Adjoint operator *). Let M11 be a Riemannian oriented mani-
fold and r) its oriented volume element. We associate to a p-form a, a (n-p)-form
*a, called the adjoint of a, defined as follows:
In a chart (Q, gyp) E s.4, the components of *a are

(19) (*(X) = y,
Zp+1, .p +2..... An d 1. A2, .... Z,'I

p
1

We can verify that:

(20) *1 = h, **a = (- 1)n(n-nix, a n (*f3) _ (a, Ji)n,

where /3 is a p-form, and (a, fl) denotes the scalar product of a and /1:

(a, N) = 1aa1A2,..., Afi
P!

Note that the adjoint operator is an isomorphism between the spaces AP(M)
and A' P(M).

11.2. Laplacian

1.69 Definition. (Co-differential 6, Laplacian A). Let o (E AP(M). We define
6a, by its components in a chart (0, 9) E . , as follows :

(21) (5 )z,,....zp_, = -V

The differentiable (p - 1)-form 6a is called the co-differential of a and has
the properties:

(22) 6 = (-1)P * -' d *, 66 = - * -' dd *,

The Laplacian operator A is defined by:

(23) A=d6+dd.

If a e AP(M), Act E AP(M).

hence 85 = 0.
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The Laplacian commutes with the adjoint operator:

(24)

For a function (p, b(p = 0, and

*A=A*.

(25) dcp = bdcp = - V"V" cp.

a is said to be closed if da = 0, co-closed if ba = 0, harmonic if Aa = 0.
a is said to be exact if there exists a differential form f, such that x = tip.
at is said to be co-exact if there exists a differential form y, such that a = by.

Two p-forms are homologous if their difference is exact.

1.70 DefiEnitioo (Global scalar product). On a compact oriented Riemannian
manifold, we define the global scalar product <x, fi) of two p-forms x and
as follows:

<a, fi) = L(2, &-

Recall that (a = iaP!

The name of the operator b comes from the formula:

(26) <da, y) = <a, by) for all y E A°+ 1(M) and a e A°(M).

Let us verify this. Using (1.10) we have:

(27) d(a A sy) = da A (*y) + (-1)°a A d(*y),

while by (22), *by = (-1)+'d(*y). According to Stokes' formula (17),
integrating (27) over M leads to:

0=jdz A (*y) + (-1)°f aAd(*y).
nr r

That is the equality (26) (see (20)). By (26), obviously, a and fi being any
p-forms:

(28) <Da, fi) = <ba, bfl) + (da, dfl> = <x, A#>.

A is an elliptic selfadjoint differential operator (for the definition see 3.51).
If cp e CZ(M):

(29) <L4, rV) = Lv'*dV.

1.71 Theorem. On a compact oriented Riemannian manifold, any harmonic
form is closed and co-closed. A harmonic function is necessarily a constant.
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Proof. By (28), if a is harmonic:

0 = ('a, a> = <Sa, ba) + <da, da).

Thus 6a = 0 and da = 0. For a harmonic function ip, this implies dip = 0,
ip = const. N

11.3. Hodge Decomposition Theorem

1.72 Let M. be a compact and orientable Riemannian manifold. A p -form x
may be uniquely decomposed into the sum of three p-forms:

a=dA +bµ+Ha,

where Ha is a harmonic p -form.
Uniqueness comes from the orthogonality of the three spaces for the global
scalar product

<a, a) = <d), d.1) + <by, by> + <Hx, Hoc).

For the proof see De Rham [106].

The dimension of H,(M"), the space of harmonic p-forms, is called the
pth Betti number of M. It is finite. By (24), A* = *A, * defines an isomorphism
between the spaces H,(M") and H" _,,(M"). Hence b,(M) = b" _ P(M). Clearly,
bo(M") = b"(M") = 1 (Theorem 1.71). We set z(M") = Z"=o (- 1)°b,.

1.73 Definition (The Lebesgue Integral). Let M. be a Riemannian manifold
and (S), ip) a local chart, with {x'} the associated coordinate system. We set:

(30)
fm
fdVf ( glf)=(p-'dx'dx2dx"

win)

for the continuous functions f on M" with compact support lying in fl.

Let (0, 0) be another chart, {y°} the associated coordinate system. We check
that the definition (30) makes sense. Suppose supp f c 0 r O; set ay'/ax'
= AT and ax'/ay' = Bp (see [1.54]). Then,

(,,/I glf) ° iP - ' dx' dx2 ... dx"

(,/171 f0-'dy'dy2...dy".'M
no)

Indeed lg'I=IBIZIglanddy'dy'-..dy"=IIAII dx'dx2dx".
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Consider {I, (pj};I and {Oj, ij} jE J, two atlases, and {ai}iE J (respectively,
{fj}JEJ), a partition of unity subordinate to the covering {S2;}iEl, (respec-
tively, {®j} jE J). Since only a finite number of terms are nonzero, we have

f aifdV = f (a;f;)fdV =
J

PjfdV.
M M jEJ M

Thus f fm fdV = FiEI JM a; f dV defines a positive Radon measure and
the theory of the Lebesgue integral can be applied.

1.74 Definition. dV = vig dx' dx2 dx" is called the Riemannian volume
element.

1.75 Proposition. Let M. be a compact Riemannian manifold, and w a 1 -form.
Then JM &.o dV = 0. In particular if f e C2(M), JM Af dV = 0.

Proof. Consider Si an orientable Riemannian covering manifold of M with
two sheets, Theorem (1.58) and Definition 1.59. Let it be the covering map:
M M and let w = rt*w. Since M is orientable, let ii be one of its two oriented
volume elements.
According to (26):

f cio =j'(& = f(&. d1)i = 0.
M M M

Moreover, from Definition 1.59 it follows that

fasair, fm 8w dV=2

If f e C2(M), if = bdf and the preceding result applied to to = df gives
fm efdV = 0. Or else, by using the Stokes' formula (17), (20), and (24):

dc(*I) = A(*f) =

and JQ (VA =0,where I=fe7r.

1.76 Theorem. Let M be a compact Riemannian manifold with strictly positive
Ricci curvature. Then bl(M), the first Betti number of M, is zero.

Proof. Let a be a harmonic 1-form. Then, by Theorem 1.71, da = 0 and
ba = 0. That is to say, in a local coordinate system with a = a, dx' we have
Vj ai = Vi aj and V'ai = 0.
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Contracting (1), (i = 1), with Z' = a', gives

(31) R;1x' = D;(O1a') - O1(0;a').

Multiplying (31) by ai and integrating over M lead to:

(32) JMRhj&dV =
J

0;[1(D')]dV - fW (Vjai)(VJ)dV.
N

According to Proposition 1.75,

SM
dV = - dV = 0.

N

31

Hence, if a does not vanish everywhere, the first member of (32) will be strictly
positive, while the second member is :50, since O1 x; = Vi a1.

11.4. Spectrum

1.77 Definition. Let M be a compact Riemannian manifold. Sp(M) = {.l e R,
such that there exists f e C2(M), f 0- 0, satisfying Af = )f } is called the
spectrum of M. A. is called an eigencalue of the Laplacian and f an eigen-
function.

If A e Sp(M), A >- 0, because

SM
dV=ju fAfdV=JM fdV>0.

he eigenvalues of the Laplacian form an infinite sequence 0 = .lo < AlT
< A2, ... going to + x. And for each eigenvalue ti;, the set of the correspond-
ing eigenfunctions forms a vector space of finite dimension (Fredholm's
theorem (3.24). For AO the vector space has one dimension.

1.78 Lichnerowicz's theorem. If the Ricci tensor of a compact Riemannian
manifold, is such that the 2-tensor R11 - kg,,- is non-negative for some k > 0,
then i., > nk/(n - 1).

Proof. Let f be an eigenfunction: Af = Af with A > 0. Multiplying formula
(31), with a = df, by VJf and integrating over M. lead to:

ASM'ifLuh1-J
VLV1fVVfdV=.5!

M

As (V1V1 f + (l/n)Afg;1)(V1V f + (l/n)Afg'1) >- 0, it follows that V,V1 fV'Vif
>- (1/n)(Af )2, hence 2(1 - 1/n) >- k.
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Sobolev Spaces

§1. First Definitions

2.1 We are going to define Sobolev spaces of integer order on a Riemannian
manifold. First we shall be concerned with density problems. Then we shall
prove the Sobolev imbedding theorem and the Kondrakov theorem. After
that we shall introduce the notion of best constant in the Sobolev imbedding
theorem. Finally, we shall study the exceptional case of this theorem (i.e.,
Hi on n-dimensional manifolds).

For Sobolev spaces on the open sets in n-dimensional, real Euclidean
space W", we recommend the very complete book of Adams [1].

2.2 Definitions. Let (M., g) be a smooth Riemannian manifold of dimension
n (smooth means C°°). For a real function (p belonging to (k >_ 0 an
integer), we define :

IVk`f' I2 ='V='V=' ... V"-(PV.' Vs:... V1k(p

In particular, I V°(p j = I (p 1, J V'rp 12 = (V(p l2 = V °(pV,, (p. Vk(p will mean any
kth covariant derivative of (p.

Let us consider the vector space Elf of C°° functions (p, such that
QL(pI e Lp(M"), for all 8 with 0 < t s k, where k and t are integers and

p _> 1 is a real number.

2.3 Definitions. The Sobolev space Hk(M") is the completion of (Ek with
respect to the norm

k
pp

J1wIIH = Y- N0'(pllp
l=0

Hk(M") is the closure of .9(M") in Hk(M"). 1(M") is the space of CO' functions
with compact support in M. and Ho = Lp.
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It is possible to consider some other norms which are equivalent; for
instance, we could use

k LIP

[veI]lp
[C=O

When p = 2, Hk is a Hilbert space, and this norm comes from the inner
product. For simplicity we will write Hk for the Hilbert space H.

§2. Density Problems

2.4 Theorem. 3(f8") is dense in Hk(P").

Proof. Let f (t) be a C°° decreasing function on R, such that f (t) = 1 for t < 0
andf(t)=0fort>_ 1.
It is sufficient to prove that a function cp e C'°(R") n Hk(R") can be approxi-
mated in Hk(R") by functions of -9(R n). We claim that the sequence of
functions cp,{x) = rp(x),j(11x11 - j), of -9(R"), converges to (p(x) in Hk(l ').

Let us verify this for the functions and the first derivatives, that is, in the
case of H; (P."). When j -+ x, cp,{x) --+ cp(x) everywhere and Igyp,{x)I I(P(x)I,
which belongs to L. So by the Lebesgue dominated convergence theorem
II cP; - cG II P - 0. Moreover, when j oo, I Ocp,(x) I - I Vcp(x) I everywhere, and
I o(p,{x) I < I V9(x) I + I 9(x) I sup, c to, t ] I f '(t) I which belongs to L. Thus
IIo((P; - l;O)IIP 0.
This proves the density assertion for H;(R"). For k > 1, we have to use
Leibnitz's formula.

2.5 Remark. The preceding theorem is not true for a bounded open set Q in
Euclidean space. Indeed, let us verify that H;(Sl) is strictly included in Hi(ll).
For this purpose consider the inner product

<cp, dx + f aicpaiO dx.
n . n

For 0 e C°°(fl) n Hi()) and cp a.9(Sl),

<P,0=n-
If 0 satisfies 0 = , a;,0, then for all cp e O(S2), <(p, 0) = 0, so that

0 0 fti(c)
Such a function i(i exists on a bounded open set i2; for instance, ' = sinh x,
(x, the first coordinate of x), f,, I sinh x, IP dx, and f. I cosh x, I P dx are finite.
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For this reason we only try to prove the following theorem for complete
Riemannian manifolds.

2.6 Theorem. For a complete Riemannian manifold Hi(M") = Hi(M").

Proof. It is not useful to consider a function f e C°° on ER, as in the proof of
the preceding theorem, because for a Riemannian manifold [d(P, Q)] 2 is
only a Lipschitz function in Q e M", P being a fixed point of M,,. So let us
consider the function f (t) on E8, defined by f (t) = 1 for t < 0, f (t) = 1 - t
for0 < t < 1,andf(t) =0fort> 1.

Let p(Q) be a C°° function belonging to Hi(M"), and P a fixed point of M.
The sequence of functions cpj{Q) = cp(Q) f [d(P, Q) - j] belongs to H;(Mj,
because the gradient exists almost everywhere, is bounded, and equals
zero outside a compact set. One proves that the sequence cp,{Q) converges to
cp(Q) in H;(M"), as in the proof of Theorem 2.4. Now we consider a regulariza-
tion of (p,{Q).

Let K be the support of (p;, and {O;} be a finite covering of K such that
Oi is homeomorphic to the open unit ball B of R", (O;, 0) being the cor-
responding chart. Let {ai} be a partition of unity of K subordinate to the
covering {Oi}. We approximate each function ;co.;A

function like h = (cci cps) _ lii 1 has its support in B and is a uniformly
Lipschitz function. Thus there exists a sequence hk e 9(B), such that hk - h
in Hi(B) (the usual regularization; for instance, see Adams [1]). It is now easy
to show that hk o Oi converges, when k - oc, to xi tpt in Hi(M").

2.7 Remark. It is possible to prove that if the manifold has an injectivity
radius So > 0, and if the curvature is bounded, then HZ(M").

But for the proof of Ho f(M") = (k > 2), besides these assumptions
we need some hypothesis on the covariant derivatives of the components of
the curvature tensor. (See Aubin [17] p. 154).

If there exists an injectivity radius So > 0, it is simpler to consider, instead
of the preceding functions cp,{Q), the following C°° functions * (Q), that tend
to cp(Q) in H; or in H the space considered, under some conditions. Let T be
a point of M", BT(q) the set of the points Q e M. such that d(T, Q) < q with
q e Ill, and Xq(Q) the characteristic function of B,.(q). Let us consider ;(t),
a C°° decreasing function, which is equal to 1 for t < 0 and to zero for t >- d,
(0 < 6 < 60) and i(P, Q) = 7[d(P, Q)]. Now define the functions

hq(P) = 5b(P , Q)XQ(Q) dV(Q)' f O(P, Q) dV(Q).
1!" M

These functions are C°°, equal to 1 when d(T, P) < q - S, and equal to zero
when d(T, P) > q + S. The functions gyp,{P) = cp(P)h,{P) have the desired
property.
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2.8 Theorem. C'O(E) is dense in HO(E), where E is the half-space:

E = {x E V8"/xl < 0}.

By definition C'A'(E) is the set of functions that are restrictions to E of C
functions on l".

Proof. Let f belong to C°'(E) n Hk(E). Consider the sequence of functions fm,
which are the restrictions to E of the functions f(x1 - 1/m, x2,..., x").
It is obvious that f, e C°`(E) and it is well known that, if f c- L,(E), fm -+ f
in L,(E). The same result holds for the derivatives of order <k.

For manifolds, we have the following theorem:

2.9 Theorem. Let W" be a compact Riemannian manifold with boundary of
class C'. Then C'(W) is dense in Hk(W) for k < r.

Proof. Let (52;, q) be a finite C' atlas of W each Q; being horneomorphic
either to a ball B of R", or to a half ball D c E(D = B n E).
C'(W) is the set of functions belonging to C'(W) n C°(W), whose deriva-
tives of order <r, in each i2;, can be extended to continuous functions on
Wnf2;.

Consider a C' partition of unity {ai} subordinate to the covering Q,}
of W. Let f e H (W) n C"(W). We have to prove that each function x; J'
can be approximated in HA(W) by functions of C'(W). There is only a
problem for the S2; homeomorphic to D. Let fl, be one of them.
The sequence of functions hm defined, for m sufficiently large, as the restriction
to D of [(ai f) o rpi_'](x1 - 1/m, x2, ... , x") converges to (xi f) . (pi-' in

HA(D), where D has the Euclidean metric. Since the metric tensor, and all its
derivatives are bounded on Q; (by a proper choice of the i2;, without loss of
generality), hm pi E C'(W) and converges to ai f in Hk(W) for k < r, when
m-+00.

§3. Sobolev Imbedding Theorem

2.10 First part of the theorem.
Let k and t be two integers (k > l >- 0), p and q two real numbers (1 < q < p)
satisfying 1/p = 1/q - (k - t)/n. The Sobolev imbedding theorem asserts
that for R", H H' and that the identity operator is continuous.

Second part.
If (k - r)/n > 1/q, H1 c C' and the identity operator is continuous. Here r >- 0
is an integer and Cg is the space of C' Junctions which are bounded as well
as their derivatives of order < r, (11 u llc- = max° < (<, sup I V'u 1).

If (k - r - a)/n >- 1/q, H c C'+', where x is a real number satisfying
0 < a < 1 and C'+= the space of the C' functions, the rth derivatives of
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which satisfy a Holder condition of exponent at. Furthermore, the identity
operator HI a C' is continuous. The norm of C2 is:

IIu11c = sup luI + sup{Iu(P) - u(Q) I [d(P, Q)] '}.
P*Q

We shall also denote the space C'+', by when 0 < a < 1. Cr, ° = Cr.
We will mainly discuss the first part of the theorem, because the other part
concerns local properties (except the continuity of the imbedding) and so
there is no difference in the case of manifolds. One will find the complete
proof in Theorem 2.21.

But first of all, let us prove that the first part of the Sobolev imbedding
theorem holds for all k, assuming it is true for k = 1.

2.11 Proposition. Let M be a C°° Riemannian manifold. If H '10(M.) is im-
bedded in with 1/po = 1/qo - 1/n (1 < qo < n), then is

imbedded in with l/p, = l/q - (k - l)/n > 0.

Proof. Let r be an integer and let ' e C". Then

(1) IVIV''II _< Iv'+1y 1

To establish this inequality, it 1'i's sufficient to develop

(.'veal...Q. Offl1...VPr7 - V9V,1 ...v,r Y'V21 ...vxrl//)
/X yV'1g2IA1g2222 Yl ...

vxl

... vZr

'I

vYr Y'

- vYvY1

JD

vYrWvxl ... va.rT) >- 0.

We find 41V"10121vr*I2 - Ivlv'4/I2I2 < 0.

Since Hr°(M.) is imbedded in there exists a constant A, such that
for all tp e H1°(M,J:

IIQIl,q <- A(IIV(pllq° + 11IIq).

Let us apply this inequality with rp = I V''fi 1, assuming tp belongs to HI°:

Ilo''II, < A(IIV170111 qo + IIV'ch' lq°)-

(2) < A(IIV" ,ViIqo + Ilo'khq°)

Now let t/r a n Applying inequalities (1) and (2) with
q=goandr=k-l,k-2,...,wefind:

Ilvk-10Il,,,_1 5 A(IIV 1hffq + llvk-`4,IIq),

Ilvk-2VIpk_l 5 A(IIV'-'d'llq + Ilvk-2V/IIq),

II P pk_l 5 A(IIVIIIq + 11011q);
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thus

II1IIH,, < 2AIIV0IIH,.

Therefore a Cauchy sequence in HI of C°° functions is a Cauchy sequence in
Hkk-1, and the preceding inequality holds for all, e H.

Similarly, one proves the following imbeddings: HI c Hk =; c icHP.

§4. Sobolev's Proof

2.12 Sobolev's lemma. Let p' > 1 and q' > 1 two real numbers. Define A
by 11p' + l/q' + A/n = 2. If A satisfies 0 < I < n, there exists a constant
K(p', q', n), such that for all f e and g e LR(R"):

(3) f(x)g(y) dx dy < K(p', q', n)Ilf IIq- Ilgllp
fR-fR- IIx - YII

IIxII being the Euclidean norm.
The proof of this lemma is difficult (Sobolev [255]), we assume it.

Corollary. Let A be a real number, 0 < A < n, and q' > 1. If r, defined by
1/r = A/n + 1/q' - 1, satisfies r > 1, then

h(y) = fn f (x) x dx belongs to L,, when f e Lq.(R").
lx - YII

Moreover, there exists a constant C(A, q', n) such that for all f E Lq,(R")

Ilhllr <- C'(A, q', n)Ilf IIq-

Proof. For all g e with 11r + 1/p' = 1:

$h(y)g(y) dy < K(p', q', n)IIf llq IgIIp-;

therefore

h E L, = LP*. and IIhlI, <- K(p', q', n)IIIIIq-.

Now we will prove the existence of a constant C(n, q) such that all (P C- -9(R)
satisfy :

(4) II(vllp <- C(n, q)Ilogvllq,

with 1/p = 1/q - 1/n and 1 < q < n.
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Since 2(18") is dense in H1(18") Theorem 2.4 the first part of the Sobolev
imbedding theorem will be proved, according to Proposition 2.11.

Let x and y be points in R", and write r = lix - yll. Let 0 E S"_ 1(1), the
sphere of dimension n - 1 and radius 1. Introduce spherical polar coordinates
(r, 0), with origin at x. Obviously, because cp e 2(18"):

0) °° 1 _n arp(r, 0) r"- 1 dr

0
f Or

dr = - fo
llx - yll ar

and

I(p(x)I < LX - ylllo(r, 0)lr1 dr.

Integrating over Srt_ (1), we obtain:

1 1 Vg (.v) I
I p(x) I

W.- 1 fRn Ilx -
y11"- 1 dy,

where w"_ 1 is the volume of S"-1 (1).
According to Corollary 2.12 with A = n - 1, inequality (4) holds.

§5. Proof by Gagliardo and Nirenberg (1958)

2.13 Gagliardo [118] and Nirenberg [220] proved that for all rp E 2(18"):

(5)
1 "

Ilwlln/(rt-1)S2
a4

ax`

1/n

1

It is easy to see that the Sobolev imbedding theorem follows from this
inequality. First l aqp/ax' l < i V(p l ; therefore II (plln/(n- 1, <_ 4 JI V9II 1 Then
setting I (p I = u°{" -1) " and applying Holder's inequality, we obtain:

Ilullo)"-1)/n =
zP

n
n

1 Ilu° Iou111

<Pn2n 1 11Vu11giu° 11q-,

where 1/q + 1/q' = 1 and p' = p(n - 1)/n - 1. But p'q' = p since
1/q - 1/n; hence:

1/p =

hull, < P n
2n 1

1
ullq.
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We now prove inequality (5). For simplicity we treat only the case n = 3;
but the proof for n # 3 is similar.
Let P be a point of l3, (x, y, z) the coordinates in f83, (xo, yo, zo) those of P,
and Dx (respectively, Dy, D=) the straight line through P parallel to the x-axis,
(respectively, y-, z-axis). Since (P a -9(R"),

rxo Ea'
(P(P) az (x, Yo, zo) dx 8x(x, Yo, zo) dx.

Thus I p(P) I <_ JD. I a.W I dx. Likewise for Dy and D=:11, 2
()312[J aIdx

fD, a'pIdy JDIDx

Integration of xo over R yields, by Holder's inequality,

Yo, zo)13/2 dx

JD

1 3/2

(p(x,Y, zo)IdxdylaxrG(x, Yo, zo)Idx
fD.y

10,
2

1/2

x f I a= 'P(x, y., z) I dx dz
Dxz

where Dxy means the plane through P parallel to the x- and y-axes.
Integration of yo over R gives, by Holder's inequality,

13.z
I G(x, y, zo)13iz dx dz < () f ax P(x, y, zo) I dx dyfDxv 2 Dxy

1/2

x f la>rP(x,y,zo)Idxdy LIazIdx d ydz

Finally, integrating zo over R, we obtain inequality (5).

§6. New Proof

2.14 Next we give a new proof of the Sobolev imbedding theorem (Aubin
(1974)), which yields the explicit value of the norm of the imbedding.

Theorem (Aubin [13] or [17], see also Talenti (257)).
If 1 <q <n,allcoaHI(P")satisfy:

(6) IIpII, <_ K(n, q)IIow114,
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with 1/p = 1/q - 1/n and

2. Sobolev Spaces

K(n, q) = q- 1 n q 1 9 r(n + 1) 1 /n

n - q n(q - 1)] I [r(n/q)I(n + 1 - n/qkv" _ 1

for 1 <q < n, and

1 r n
n

K(n, q) is the norm of the imbedding HQ c Lp, and it is attained by the functions

(P(X)
= (A + 1IxI14/(9-1))1-n/9'

where A is any positive real number. J

When q = 1, this gives the usual isoperimetric inequality, Federer [113];
the extremum functions are then the characteristic functions of the balls of
R.

The proof is carried out in three steps.
First step, Proposition 2.16: Since 2(R") is dense in HIM"), we have only

to prove inequality (6) for the functions in question in Proposition (2.16).

Second step, Proposition 2.17: it is sufficient to establish inequality (6)
for functions of the kind 1p(x) = f(IIxH), f being a positive Lipschitzian
function decreasing on [0, x ] and equal to zero at infinity.

Third step, Proposition 2.18: the proof of inequality (6) for these functions.

2.15 Proposition (Milnor [200] p. 37. This is actually due to Morse).
Let M be a Riemannian manifold. Any bounded smooth function f : M - R
can be uniformly approximated by a smooth function g which has no degenerate
critical points. Furthermore, g can be chosen so that the ith derivatives of g on the
compact set K uniformly approximate the corresponding derivatives of J' for
i S k.

We recall that a point P e M is called a critical point of f if I V f (P) I = 0,
the real number f (P) is a critical value of f. A critical point P is called non-
degenerate if and only if the matrix V1V f (P) is nonsingular. Nondegenerate
critical points are isolated.

2.16 Proposition. Let f 0 0 be a C°° function on M. with compact support K.
f can be approximated in by a sequence of continuous functions fp
with compact support K. e K (the boundary of K. being a sub-manifold of
dimension n - 1); moreover f ,,c- C°°(Kp) and has only nondegenerate critical
points on K..
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Since they are isolated, the number of critical points of f, on K, is finite.

Proof. According to Proposition 2.15 there is a sequence of C°° functions
gp which have no degenerate critical points and which satisfy I f - gp I < 1/p
on M. and I V(f - gp) I < 1/p on K. Choose a real number ap satisfying
1/p < ap < 2/p, such that neither ap nor -ap is a critical value of gp. Then
gP'(ap) and gp'(-ap) are sub-manifolds of dimension n - 1, unless they
are empty. Let A p = {x E M I gp(x) > - ap} and A _ p = {x E M I gp(x) < - ap}.
Define fp by:

fp(x) = [g p(x) - ap]X:1 (x) + [gp(x) + aP]X.I _ P(x),

where XE is the characteristic function of the set E.
The support Kp = AP u A_P of f, is included in K because for x e Kp,
I gp(x) I > 1 /p; thus I f (x) I > 0. fp E C'O(K p) and fp is Lipschitzian, hence
fp e H9l
Since I f (x) - fp(x) I < (3/p)XK(x), II f - fpllq 0 when p -+ x. Moreover,
at a point x where f (x) 96 0, we have I V[f (x) - fp(x)] I -+ 0, because
x e Up 1 Kp. But the set of the points where, simultaneously, f (x) = 0 and
I Vf (x) 196 0, has zero measure; consequently I V[ f (x) - fp(x)] I - 0 almost
everywhere. Therefore II V(f - fp)IIq --+ 0, according to Lebesgue's theorem,
since I V( J' .fp) I <- (sup I V f I + 1 /p)7.E .

2.17 Proposition. Let f >- 0 be a continuous function on E (E denoting the
sphere the euclidean or hyperbolic space), which is C°° on its compact
support K, whose boundary (if it is nonempty) is a submanifold of dimension
n - 1, and assume f has only nondegenerate critical points. Pick P a point of E,
and define g(r), a decreasing function on [0, x[, by

p{QIg[d(P, Q)] ? a} = p{QIf(Q) >- a} = i/i(a).

Then

IIVgIIq :5 IIVf 11q for 1 < q < x.

Proof. Let d(P, Q) be the distance between P and Q on E, and let a > 0 be a
real number ; p denote the measure defined by the metric, and write g(Q) =
g[d(P, Q)].
Let Qi(i = 1, ... , k) be the critical points of f in K. Consider the set EQ =
f - '(a) and note that, if Q e E. is not one of the points Qi, then I Vf (Q) 10 0.
Ifdo(Q) denotes the area element on E., then we may write

5IvfIdV= f(JIvfI_1do)da
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Furthermore, when a is not a critical value of f, rp(a) = l y. I Vf I do exists.
p(a) is continuous and locally admits - vi(a) as primitive.

We consider cp(a) = -i'(a) as given. Therefore f y. J Vf Iq-1 do has a
minimum, in the case q > 1, when I Vf I is constant on E according to
Holder's inequality:

jdi (q-1 )/q 1q

s(f -1 do) r Vf1 do
a Ea / R.

But E, is the boundary of a set, whose measure 0(a) is given. Hence f Eadc
is greater than or equal to the area of the boundary of the ball of volume
4'(a) (by A. Dinghas [I 10]). This completes the proof. 0

Furthermore, one verifies that g(r) is absolutely continuous and even
Lipschitzian on [0, oc [.

2.18 Proposition. Let g(r) be a decreasing function absolutely continuous on
[0, co[, and equal to zero at infinity. Then:

00 1/y

co

1/q

(7) (o).- j)-'," j
I

g(r)I°r"-1 dr) < K(n, q) I g'(r)Igrn-1 dr ,
0 0

where K(n, q) is from Theorem 2.14.

Proof. Let us consider the following variational problem, when q > 1:
Maximize 1(g) = f

o
I g(r) I°r" - I dr, when J(g) = fo I g'(r) Iqr" - 1 dr is a

given positive constant.
The Euler equation is

(8)
(Ig'Iq-'r"- 1)r = kgp- lr"- 1,

where k is a constant.
It is obvious that we have only to consider decreasing functions. One verifies
that the functions y = (R + r41(q-1))I-"/q are solutions of (8), A > 0 being a
real number:

In - q19-1r"(A.+ rq/(q-1))-rH9-I)1q- I /q-1
q-1

(IY Iq-1r"-1)r = n,1
n - q ra- lyp- I
q -1

According to Bliss, Lemma 2.19, the corresponding value of the integral
1(y) is an absolute maximum.
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The value of K(n, q), the best constant, is

K(n, q) =
(co"-1)-"n[l(y)]"P[J(y)]uq

Letting q 1, we establish the inequality (7) for q = 1:

K(n, 1) = lim K(n, q).
q- 1

Let us compute K(n, q).

fo"*
rA + Lq/(q-1)]-nrn+IIN-1)dr.

9

Iy jqr"-1 dr =
n - ql

fo,
q-1 L J

Setting A = 1 and r = t(q-1"q, we obtain:

fo""

I

yPr"-1dr=q1 -filq dt=q1B.
o q Jo

Q

q

Furthermore, B/A = (n - q)/n(q - 1), because

A = fo (1 + t)-"t"-^ dt =
n

n 1 q
q

1 fo (1 + t)1-ntn-1-n-q dt

n q-(A+B).
n-1 q

Hence:

1

K(n, q) (co. B
1/q-1jnA- /q q- 1 q

1/q

q ) n-q q-1

K(n, q) = q

q

(B\ Ilq(q q l
But,. with B =

r(n/q)r(n - n/q)
n - AJ l r(n)

2.19 Lemma. Let h(x) >- 0 a measurable, real-valued,function defined on 18,
such that J = f

o
h"(x) dx is finite and given. Set g(x) = $o h(t) dt. Then

I = $o g"(x)x'-P dx attains its maximum value for the functions h(x)
(Ax' + 1)-+ "I", with p and q two constants satisfying p > q > 1, (p/q) - 1
and A > 0 a real number.

43

Iy,Igr"-1dr=ln-glgq-1 fo, ( 1+t) ntn-"Igdt=ln-glgq-IA.
q-1 q q-1 q
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This is proved in Bliss [55]. The change of variable x = r19-nu(9-1) now
yields the result used in the Proposition 2.18, above. Recall that here 1/p =
(1/q) - (1/n) and so we have a = p/n, (i x/8r)'-9 = r"' and x'+'_p = r".

§7. Sobolev Imbedding Theorem for Riemannian Manifolds

2.20 Theorem. For compact manifolds the Sobolev imbedding theorem holds.
Moreover HI does not depend on the Riemannian metric.

Proof We are going to give the usual proof of the first part of the theorem,
because it is easy for compact manifolds. But for a more precise result and a
more complete proof see Theorem 2.21. Let {Qi} be a finite covering of M,
(i = I, 2, ... , N), and (fli, cp) the corresponding charts. Consider {ai} a
C°° partition of unity subordinate to the covering {Qi}. We have only to
prove there exist constants C; such that every C°° function f on M satisfies:

(9) Ilaif Ilp C Cillaif IlH?.

Indeed, since I V(ai f ) 1 < 1 of I + I f I I Vai 1,

hfllp 5 Ilaifllp <_ sup CiN[llvfllq + I 1 + sup Ivail)lIfllq
i=1 151SN \ 1<i<N

and by density the theorem holds for k = 1.
In view of Proposition 2.11, this establishes the first part of the theorem.

9On the compact set Ki = supp xi c S2i, the metric tensor and its deriva-
tives of all orders are bounded in the system of coordinates corresponding to
the chart (fl,, lpt). Hence:

f e H,I(M,,, g) ea [xi f e HI(M,,, g), for all i]

- [xt f o (pi 1 e HI(R" ), for all i].

We define the functions ai f c (pi ' to be zero outside (pi(K).
In particular, there exist two real numbers µ >- .l > 0, such that for all vectors

e R" and every x e K1, g., being the metric tensor at x:

211 112 < g:[((a ')*(), ((Pi')*()] s MR 112.

And now according to Theorem 2.14, for any f e C°°:

1 laif ° rpi ' Ip
dE)riv 5 K(n,

q)I f IV(aif ° Bpi ')I9
dE)1i4

R- e.
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Thus we obtain inequality (9):

lip

Ila(f Ilp <- µn'2" f Ia;f Ip

dE\

l

< µni2 K(n, q)µlizA-°,Zgllo(aif)Ilq.

2.21 Theorem. The Sobolev imbedding theorem holds for Mn a complete
manifold with bounded curvature and injectivity radius b > 0.
Moreover, for any E > 0, there exists a constant Aq(E) such that every
cp a Hq(Mn) satisfies:

(10) Ilwllp <- [K(n, q) + E]Ilowllq + Aq(E)IIgiIIq, with 1/p = 1/q - 1/n > 0,

where K(n, q) is the smallest constant having this property.
According to Proposition 2.11 and Theorem 2.6, to prove the first part

of the Sobolev imbedding theorem, it is sufficient to establish inequality (10)
for the functions of The proof will be given at the end of 2.27 using
Lemmas 2.24 and 2.25. First we will establish the second part of the Sobolev
imbedding theorem.

2.22 Lemma. Let Mn be a complete Riemannian manifold with injectivity
radius b0 > 0 and sectional curvature K, satisfying the bound K < b2. There
exists a constant C(q) such that for all (p c- .9(M,,):

(11) sup 19 <_ C(q)IIrpllxy ifq > n.

Proof. Let f (t) be a C°° decreasing function on R, which is equal to 1 in a
neighbourhood of zero, and to zero for t >_ b (b < So satisfying 2bb < n).
Let P be a given point of Mn, then

cp(P) = -
J

rc,[cp(r, O) f (r)] dr,
0

where (r, 0) is a system of geodesic polar coordinates with center P. Thus we
have the estimate:

I q'(P) I S f IV [9(r, 9)f (r)] I (r' - n)rn-1 dr.
0

Integration with respect to 9 over S,_ 1(l) leads, by Holder's inequality, to

I/q

W(P)I <_ (w.-1) (f (h)
9)f(r)]I9r" drd9)

Bp(dl

x Cvn -
0

r(n- U(1-q') dr)
1
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with 1/q' = 1 - 1/q. According to Theorem 1.53, for r < b, rn-1 dr d6 <
(n/2Y'-' dV. Thus:

Y'(1)I I2r (CAn_1)-1!9

IlVwllq\ /q-1
1-11q

x b(q- nu(q - u
q - n

+ sup If'(r)IIIq'IIg
0<r<6

2.23 Proof of the Sobolev imbedding theorem 2.21 (Second part). '(M,,) is
dense in HI(Mn) by Theorem 2.6. So let f E H1 and {(pi} be a sequence of
functions of -9(Mn) such that 11f - (piIIH° 0 when i -* oo. Clearly {Cpl} is a
Cauchy sequence in HI. By (11), sup l (pi - (P l <_ C(q)II (pi - (p; II H'; . so cpi is

a Cauchy sequence in Co. Therefore cpi - fin C°° and f e C.
Letting i - oe in sup I (pi I < C(q) 1191 we establish, for all f e H q when
q > n, the inequality :

11f llC... <- C(q)IIf l] .

Let f E Hg n C. Then (1) implies that I V'f I E HZ-,. If (k - r)/n > l/q,
according to the first part of Theorem 2.21, that we are going to prove below,

Hk_rCH; with 1-kr1_1<1
q n q n

Therefore

}V'fllcoSC(q")IjV'fiIHj<-Constx IIfIIHkandJIfIIc'<- Constx IIfIIHt.

This inequality holds for all f e HI since HZ n C°° is dense in H. Let us
now prove that if q = n/(1 - a), where a satisfies 0 < a < 1, then HI c C'
and the identity operator is continuous. First of all, f e H; implies f is
continuous.
Choose S as in Lemma 2.22 (6 < 6° and 2bb < n). When d(P, Q) >- 6, we
may write:

I f(P) - f(Q)I [d(P,
Q)]-z

s 26°C(q)IIf IIH;.

When d = d(P, Q) < 6, consider a ball of radius d/2 and center 0, with P
and Q in !5; note y = expo' P and z = expo' Q; y and z belong to a ball
B c R" of radius d/2. Consider the function h(x) = f (expo x) defined in B
and let (r, 0) be polar coordinates with center y.
For -3 x = (r, {1), 0 5 r S p(9), (p(9), 0) belonging to 8,9, the boundary of B:

8oh(rt, B) dt.h(x) - h(y) = To a, h(p, B) dp = r
fo,



§7. Sobolev Imbedding Theorem for Riemannian Manifolds 47

Integration with respect to x over 9 leads to

f
r rule) 1

h(x) dx - - con-1(d/2)"h(y) =
J J

r" dr dO f a,h(rt, 0) dt.
a n §" o o

Hence, putting u = rt and using the inequality r < p(O) < d, we obtain:

$h(x)dx
1n- n con 2 I h(y)

1 w(O)

<dJ t-"dtJ
J

Iaph(u,0)1u"-1 du dO
0 §"_, 0

f.'

119

(vol L)1- 1jgt-" dt,< d(f IVEh(x)Iq dE)
1\ a

where we have applied Holder's inequality. Let $, be the ball homothetic to B,
with ratio t. Then vol 11, = (1/n)cwn_ 1(d/2)"t". Thus, since q > n, the second
integral converges:

n

l
(2)"

(x) dxh(y) - n h
fi

l

)'q
q nq q

A similar inequality holds with z in place of v, and so:

q n 1/q 1/q

I h(y) - h(z) I<
2 2 n

q n wn
d° r

I VE h(x) Iq dE)
- -1 J

According to Theorem 1.53, since d < 6:

1 q [ fin- 11 q

If(P) - f(Q)ICd(P,Q)]
2q 2"n sinh(a6)

q - n (w"-11
I

ad (2) IIo1 IIq.

The other results are local and do not differ from the case of l".

Proof of the Sobolev imbedding theorem 2.21 (First part). According to
Proposition 2.11, if we can prove that inequality (10) holds then Theorem 2.21
will be proved. First two lemmas.

2.24 Lemma. Let b e Cq satisfy 0 < S < 8o and 2b6 < ir. If Bp(6) is a ball of
M,, with center P and radius 6, where the sectional curvature a satisfies
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-a2 < a < b2, there exists a constant Ka(n, q), such that for all functions
f e H; with compact support included in BP(S):

(12) lIfIIp < K6(n,q)IJVfI1q

For S sufficiently small we can make Kj(n, q) is as close as we like to K(n, q).
K,,(n, q) depends on a and b, but does not depend on P.

Proof. Let (r, B;), (i = 1, 2, ... , n - 1) be a system of geodesic polar co-
ordinates with center P. According to Theorem 1.53, the components g;i of
the metric tensor satisfy:

sin br sinh(ar)

br ar
, g.. = 1.

Let s > 0 be given; one may choose S small enough so that, when r < S:

sinh(ar)/ar < 1 + e and sin(br)/br >_ 1 - E.

Setting J(x) = f (expp x), when 11x11 < b, then according to Theorem 2.14
we have

(fii Ip dE)
1Jp

< K(n, q) (f I VE. Iq dE

Since(1-cr'dE<dV<(1+s)n-1dEandIVEf1<(1+E)IVfl;this
establishes inequality (12) with

K5(n, q) = (1 - c)I1-n)/q(1 + E)1+(n-1)/PK(n,
q).

2.25 Lemma (Calabi). Let M. be a Riemannian manifold with injectivity
radius So > 0; then for all 5 > 0, there exist two real numbers y and $
(0 < y < fi < S), a sequence of points P. e M and (Oil a partition of M by
sets, satisfying Bp,(y) a 4 c Bp,(f) for all i, Bp(p) being the ball with center P
and radius p.

According to this lemma, we are able to prove:

2.26 Lemma. Let M. be a Riemannian manifold with injectivity radius So > 0
and bounded curvature; then there exists, if b is small enough, a uniformly locally
finite covering of M. by a family of open balls B,,(5).

Uniformly locally finite means : there exists a constant k, which may depend
on S, such that each point P e M. has a neighborhood whose intersection
with each Bp,(S), at most except k, is empty.
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Let us prove that the balls Bp,($) form a uniformly locally finite covering
of M. Let Bpj($) be given, and suppose that k balls Bp,($) have a nonempty
intersection with Bpo), i 0 j. Since the curvature is bounded, the set of the
points Q satisfying d(P;, Q) < 2$ + y has a measure less than a constant w
independent of j. By theorem (1.53), if the Ricci curvature is greater than
-(n - 1)a2; therefore

20+y
w < w" -I f [sinh(ar)/a]"-' dr.

0

Also, if the sectional curvatures are less than b2, then the measure of
Bp,(y) is greater than y, with y = co,, . i Jo [sin(br)/b]"-' dr.
Therefore (k + 1) y < w, since the balls Bp,(y) are disjoint.

2.27 Proof of Theorem 2.21 (Continued). Consider a partition of unity
h, e C°° subordinate to the covering {Bp,(S)}, such that IV(h; iq)I is uniformly
bounded, (I V(h;'q) I < H, for all i, where H is a constant). Such functions hi
exist, because the covering is uniformly locally finite.
Let {hi} E Cm be a partition of unity subordinate to the covering {Bp,(5)}
such that IVhiI < Const. We may set hi = h'"'/(Eh"'), with m an integer
greater than q. Let I be a finite subset of N. By Lemma 2.24,

I IlrPghillp/q = Y Ilcph; /"llp <- KS(n, q) Y IIV((phi'q)IIq
iEl iel iE/

<K$(n,q)E $IVIh'a +(plohP1l)'dV
iel

< K3(n, q) fy [IVIh1 + µI orPlq-'hiq-'ilgl
(PII oh;1gI

,El

+ vl(PJ IVh;/gIg1,

(13) < KJ(n, q)[IIV Iq + ukHllowllq-'llrPllq + vkH111911q],

using Holder's inequality. p and v are two constants such that for t >- 0

(1+t)q<1+pt+vtq;

for instance, p = vq and v = sup(l, 24-2), if q > 1. Recall that 0 < 6. If we
choose 6 small enough, then K5(n, q) < K5(n, q) < K(n, q) +e/2. Since the last
expression of (13) is independent of I, we establish the inequality

II(PIIp q= IIwo p/q = <- Y, Ilwghillp/q
p/q iEN

< [K(n, q) + e/2]1[(1 + Fo)IIVq,llq + A(Eo)Ilwllq]
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by virtue of the inequality :

(14) qxq-Iy S A(q - 1)x4 + Al - qyq,

2. Sobolev Spaces

valid with any x, y, and A., three positive real numbers. To complete the proof
of inequality (10), we have only to set A = qao/pkH(q - 1), x = Ilo4pllq, and
y = IIcoIIq, where e0 is small enough so that [K(n, q) + e/2][1 + Eo]ljq <
K(n, q) + E, and Aq(E) _ [K(n, q) + e/2][A(eo)]l

§8. Optimal Inequalities

2.28 Theorem. Let M. be a C°° Riemannian manifold with injectivity radius
&o > 0. If the curvature is constant or if the dimension is two and the curvature
bounded, then A,(0) exists and every cp E Hi satisfies

IkkpIlp < K(n, q)IIVggIIq + Aq(0)IltpIIq

For R" and H. the hyperbolic space, the inequality holds with Aq(O) = 0.

For the proof, see Aubin [13] pp. 595 and 597.

2.29 Theorem. There exists a constant A(q) such that every 4 E H' (S")
satisfies:

K'(n, 9)Ilotpll4 + A(q)Ilpll4 if 1 < q < 2,

IIWIIPH9-')
Kq/(9-1)(n, q < n.

Let M"(n >- 3) be a Riemannian manifold, with constant curvature and injec-
tivity radius So > 0. There exists a constant A, such that every cp e Hi(M")

satisfies:

I1 K2(n, 2)Ilorpll2 + AII911i

For the sphere of volume 1, the inequality holds with A = 1.

See Aubin [13] pp. 588 and 598. For the proof of the last part of the
theorem see Aubin [14] p. 293.

§9. Sobolev's Theorem for Compact Riemannian Manifolds
with Boundary

2.30 Theorem. For the compact manifolds W .with C'-boundary, (r >- 1), the

Sobolev imbedding theorem holds. More precisely:
First part. The imbedding HJ(W) a HP(W) is continuous with 1/p = 1/q -

(k - e)/n > 0. Moreover, for any s > 0, there exists a constant Aq(s) such
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0

that every 4p e Hq(W") satisfies inequality (10) and such that every cp c- Hq(W")
satisfies :

(15) Ilwllp < [2""K(n,q) + E]IIDrpIIQ + AQ(E)Ilwllq.

Second part. The following imbeddings are continuous:

(a) HZ(W) c CB(W), f k - n/q > s >- 0, s being an integer,
(b) HZ(W) c CS(W), f in addition s < r;
(c) HI(W) c C'(W), f a satisfies 0 < a < 1 and x < k - n/q.

Proof of the first part. Let (S2i, cp) be a finite C'-atlas of W", each S2; being
homeomorphic either to a ball of R" or to a half ball D c E. As in the proof
of Theorem 2.20, we have only to prove inequality (9) for all f E HJ(W) n
C'(W), ai being a Cr partition of unity subordinate to the covering Q.
When Q, is homeomorphic to a ball, the proof is that of theorem (2.20).
When fl, is homeomorphic to a half ball, the proof is similar. But one applies
the following lemma:

2.31 Lemma. Let i be C1 function on E, whose support belongs to D, then i
satisfies:

II0IIp <- 2''"K(n, q)JJVc119, with 1/p = 1/q - 1/n > 0.

Proof. Recall that E is the half-space of R" and D = B n E, where B is the
open ball with center 0 and radius 1.
Consider defined, for x e E, by t%i(x) = /i(x) and (z) = i(x), when
z = (-XI, x2, ... , x"), (x1, x2, ... , x") being the coordinates of x. is a
Lipschitzian function with compact support, thus E H;(l8") and according
to Theorem 2.14:

K(n,

The lemma follows, since

2 f I/IpdE=JaIkIpdE and 2J V/ dE=JHVThdE.

2.32 The proof that every cp E $;(W") satisfies inequality (10) is similar to
that in 2.27. But here it is easier because the covering is finite.

Using Lemma 2.31, we can prove that all cp e H;(W") satisfy (15); for a
complete proof see Cherrier [97].

Proof of the second part of Theorem 2.30. a) There exist constants C1(4) such
that for all f e H4(W) n C°°(W)

(16) sup Iaif 1 < Ci(q)11f11H?, if .> n.
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Set h(x) = 0 for x 0 D, and h(x) = (a; f) o cp;-'(x) for x e D.
Consider a half straight line through x, defined by 0 e S,_ (1), entirely
included in E. We have

I h(x)I <_ f 1 IVh(r, 0) 1 dr.
0

Now we proceed as in the proof of Lemma 2.22, but integration with respect
to 0 is only over half of (l):

1/q 1/q'

Ih(x)(Wn-1/2)-1((' 1ohlgdx (Wn-1

fo,

ra-1)(1-q')drJr
) 2 /I

with 1/q' = 1 - 1/4.
Since the metric tensor is bounded on i2; (by proper choice of the (52;, q j),
without loss of generality), for some constant Cj(q`) we obtain:

sup Ia;f I <- C,(q-) 11 o(21f)11j.

Inequality (16) follows; thus, recalling that I is finite, we have

sup I f I < C(4) 11 f IIy?, with C(4) = Y C,(4).

Since k > n/q, there exists q > n, such that the imbedding H, (W) c
H1(W) is continuous; we have only to choose 1/4 >- 1/q - (k - 1)/n. So
there exists a constant C, such that everyf e HJ(W) n C°(W) satisfies:

sup Ifl <C11f11Nk.

Thus a Cauchy sequence of C°° functions in HJ(W) is a Cauchy sequence in
C°(W) and the preceding inequality holds for all f e HZ(W).
For s > 0, apply the preceding result to IV lf 1, 0 < C < s, and the continuous
imbedding H,J(W) e CB(W) is established (the proof is similar to that of
2.23).

b) Instead of taking f e C°(W), we may establish an inequality of the type:

(17) Ilf llc <- Alif when 0 < s < r,

for the functions f e C(W), with A a constant and q > n.
According to Theorem 2.9, C'(W) is dense in H, 1(W). Thus Hs+1(W)
Cs(W) and inequality (17) holds for all f e H;+ 1(W). When k - n/q > s, we
may choose 4 > n, such that 1/4 > 1/q - (k - s - 1)/n. In this case the
imbedding HA(W) c Hs+1(W) is continuous and so HJ(W) c C'(W).
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c) And now for the last part of Theorem 2.30:
Let f e H22(W); according to the preceding result f E C°(WV) because
k - n/q > 0. Consider the function on D, defined by h(x) = (a; f) a pj '(x),
for a given i e 1. By a proof similar to that in 2.23, we establish the existence
of a constant B such that every f E HI(W) satisfies

u9
IVh1 dx) ,Ih(x) - h(y)111x - yli-' < B(fD

l

where q = n/(1 - a). Instead of considering a ball of radius IIx - y1112, we
must integrate over a cube K with edge IIx - yll, included in E, with x and y
belonging to K (see Adams [1] p. 109).
Then, since the metric tensor is bounded on Q;, there exists a constant B.
such that, for every pair (P, Q) of points of W, any f E HI satisfies:

I a;(P)f (P) - ai(Q)f (Q) I [d(P, Q)]
_'

<- B; II f II H;.

Thus we establish the desired inequality:

If(P) - f(Q)IId(P,Q)I_Z< Br)lifsConst x IIfIIHj,
IE1

where the last inequality follows from the first part of the Sobolev imbedding
theorem, since q = n/(1 - a) satisfies 1/4 >- 1/q - (k - 1)/n. 0

§10. The Kondrakov Theorem

2.33 Let k >- 0 be an integer, p and q two real numbers satisfying I -t 1/p >
1/q - k/n > 0. The Kondrakov Theorem asserts that, if fI, a bounded open set
of R", has a sufficiently regular boundary & (cQ of class C', or only
Lipschitzian):

(a) the imbedding HZ(S2) c Lp(c2) is compact.
(b) With the same assumptions for a the imbedding HZ(O) c C'(fl) is

compact, if k - a > n/q, with 0 < a < 1.
(c) For Q a bounded open set of R", the following imbeddings are compact:

Hf(l) c Lp(Q), If(a) c Cz().

Proof. Roughly, the proof consists in proving that if the Sobolev imbedding
theorem holds for a bounded domain f1, then the Kondrakov theorem is true
fort).

a) According to the Sobolev imbedding theorem 2.30, the imbedding
HI a H1 is continuous with 1/q = 1/q - (k - 1)/n. Thus we have only to
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prove that the imbedding of H4 c Lpiscompactwhen 1 >-1/p> 1/4- 1/n >0,
since the composition of two continuous imbeddings is compact if one of
them is compact.

Let .s:l be a bounded subset of Hi(S2), so if f e d,

Il f 11 y1 <- C, a constant.

By hypothesis HI(Q) c L with 1/r = 1/4 - 1/n, and there exists a constant
A such that for f e HI (0),

11f Il, <- A11f I1mi.

Set Kf = {x a 0/dist(x, aft) >- 2/j }, j e N. For f e sad, by Holder's inequality:

11r 1-1/r 1-1rI/c
Ifdx:5 IfI'dx

J
dx <AC

J
dx)1-x'

-xJ 11-K,
o-x,

which goes to zero, when j - oc. Thus, given e > 0, there exists jo a N, such
that (volf2 - K,))'-'I' S e/AC. Now, by Fubini's theorem:

1

JIf(x+Y)- f(x) I dx S fdxJ
o

d
f (X + ty) dt

<- IIYII f IVfldx 5 11yllJIVf111
K 210

f o r IyI < 1 / j o since x + y E K2 , if x e K0. Since C°°(i2) is dense in HI (Q),
the preceding inequality holds for any f e Hl(l). Moreover, by Holder's
inequality, IVf I1 5 IVf I,(vol 12)' -'r' 5 B, a constant.
Theorem 3.44 with S = a/B then implies that d is precompact in L1(Q).
Hence d is precompact in Lp(Q), because iffm c -.d is a Cauchy sequence in
L1, it is a Cauchy sequence in Lp:

If. flip 5 if. - flur 5 (2AC)'`"Iifm - fill1,

by Holder's inequality, with it = [(r/p) - 1]/(r - 1).

b) Proof of the second part of Theorem 2.33. Let 2 satisfy a < ) <
inf(1, k - n/q). Then by the Sobolev imbedding theorem 2.30, Hj(Q) is
included in CA(f3), and there exists a constant A such that 11f Ilex -< A 11 f 11Rt

Let s+l be a bounded subset of H,I(i2); if f e soft, Of IInt 5 C, a constant,
and IfINSAC.
Thus row can apply Ascoli's Theorem, 3.15. sad isa bounded subset of equicon-
tinuous f tions of C°(ID), and 0 is compact. So d is precompact in C°(0).
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Then, since

If(x) - f(Y)I IIx - YII -a = (If W - f(Y)I IIX - YII-d)al"If(X) - f(Y)I'-al.l

if a sequencefm e d converges to f in C°(S2), 11f Ilca <- AC and

IIf - frhlC' C f - fmllco)'_a12 + Of - fmllco

Thus s4 is precompact in C'(Q).

c) -9 (SZ) is included in .moo (R"), so we can apply the theorem of Sobolev,
2.10, to the space HZ(S2). A proof similar to those of a) and b) gives the desired
result.

§11. Kondrakov's Theorem for Riemannian Manifolds

2.34 Theorem. The Kondrakov theorem, 2.33, holds for the compact Riemannian
manifolds M", and the compact Riemannian manifolds W. with C'-boundary.
Namely, the following imbeddings are compact:

(a) Hk(M") c L,(M") and Hk(W") c L,(W"), with 1 >_ 1/p > 1/q -
k/n > 0.

(b) HZ(M") c C'(M") and c C'(W"), if k - a > n/q, with
0<a<1.

Proof. Let (0i, cp), (i = 1, 2, ..., N) be a finite atlas of M" (respectively, C'-
atlas of W"), each Qi being homeomorphic either to a ball of D8" or to a half
ball D c E. We choose the atlas so that in each chart the metric tensor is
bounded. Consider a C°° partition of unity fail subordinate to the covering
{0i}. It is sufficient to prove the theorem in the special case k = 1 for the same
reason as in the preceding proof, 2.33.

a) Let if ) be a bounded sequence in H. Consider the functions defined
on B (or on D), i being given:

hm(X) = (ai fm) o (p1 '(x)

Since the metric tensor is bounded on fli, the set di of these functions is
bounded in H; (0) with S2 = B or D. (The boundary of D is only Lipschitzian,
but, since supp(ai o to,-') is included in B, we may consider a bounded open
set c with smooth boundary which satisfies D c S2 c E).
According to Theorem 2.33, . s k i is precompact. Thus there exists a subse-
quence which is a Cauchy sequence in L. Repeating this operation success-
ively for i = 1 , 2, ... , N, we may select a subsequence {fm} of the sequence
if 1, such that ai m is a Cauchy sequence in LP for each i.
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Thus If.} is a Cauchy sequence in LP, since

]
N

il
`

- el < IaiJM - aiJel.
i=1

2. Sobolev Spaces

b) Let A satisfy a < A < inf(l, k - n/q). According to Theorems 2.21 and
2.30, the imbeddings Hk(M") c and c CA(W") are con-
tinuous. Thus the same proof used to show 2.33, b) establishes the result.

2.35 Remark. We have given only the main results concerning the theorems
of Sobolev and Kondrakov. These theorems are proved for the compact
manifolds with Lipschitzian boundary in Aubin [17]. To obtain complete
results for domains of R" see Adams [1].

2.36 Remark. Instead of the spaces Hf(M,), it is possible to introduce the
spaces Hk (M"), which are the completion of S'k with respect to the norm

II(PIIu;p = I IIA`(PIlp + Y_ IIoA`wllp,
0=t k/2 0=6<(k-1)/2

with 9k the vector space of the functions (p E C°°(M,), such that A'rp e Lp(M")
for 0 < 1 5 k/2 and such that IVA`(pI a Lp(M") for 0 <- t 5 (k - 1)/2.
For these spaces, the Kondrakov theorem holds, as well as the Sobolev
imbedding theorem when p > 1 (see Aubin [17]).

Fork < 1, Hf = Hkp. But fork > 1, the spaces H;° may be more convenient
for the study of differential equations.

§12. Examples

237 The exceptional case of the Sobolev imbedding theorem (i.e., H" k" on
n-dimensional manifolds).

Consider the function f on R2 defined by:

R' 3 x -+ f (x) = log l log IIxiii, for 0 < RxlI < 1/e, and f (x) = 0,

for the other points x of R2.

rile dr
110E l(i = 2n f.

rllog r12
= 2n

and f 2 is integrable; thus f e H;(R2).
As 1/q - 1/n = 0 here, we could hope that the function f would be bounded,

but it is not: Hkrk ¢ L.. On the other hand, of is integrable:
r1/e

ll of II 1 = 2n
J

r I log r I dr, see (2.46).
0
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2.38 The Sobolev imbedding theorem Hk e L. holds when 1/p = 1/q -
k/n > 0, but the Kondrakov theorem does not.

Consider the sequence of functions fk defined on 6i" (n > 4) by:

2)14 1 2 1 -n/2

fk(x) =
(1)(.-k(k + Ilxll)

Let us verify fk e Hi(a8"). Now

foo
1

2-n x
IfkII2 = wn-Ikt-n/2 a (k + r2) r - t dr _ k t Jo (1

is finite and so is

+ t2)2-nt"-1 dt

(n - 2)2( + r2) r"+1 drIlofklli = wn - tk'-^rz roW n

J f

=co"-1(n-2)2
I

(1 +tz)-"t"+tdt=A.
0

Also,fk belongs to LN, with N = 2n/(n - 2), because

0

CkJo
(k+r2)-"r"-1drfkr"-' dr --

0

(1 + t2)-"t"- t dt = C < oo.

Let hk(x) = fk(x) - (f + 1/lk)t -"/2 for Ilxll < 1.
Then hk a HI; ), where B is the unit ball of 08" with center 0. Clearly,
IIhkliH,(B) -' A when k - oo, the sequence hk is bounded in Hi(B), and
Ilhkll LN(B)

Ct' # 0.

Now hk(x) - 0 when IIxII 0. Thus a subsequence of {hk} cannot converge
in LN, without the limit being zero in L. But this contradicts the above
result (C # 0). The imbedding H'(B) in L(B) is not compact.

§13. Improvement of the Best Constants

2.39 Let M. be a complete Riemannian manifold with bounded curvature
and injectivity radius S > 0. According to Theorem 2.21, if 1/p = 1/q -
1/n > 0 then every cp a H1(M") satisfies:

(18) Il(plln <- BIlVcOIIq + AIItIIq,
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where A and B are constants. It is proved in 3.78 and 3.79 that K = {inf B
such that all tp e satisfy inequality (18) for a certain value, A(B)} is
strictly positive. By Theorem 2.21, K depends only on the dimension n and
q: K = K(n, q). For the value of K(n, q), see Theorem 2.14. We are going to
show that the best constants K(n, q) can be lowered if the functions cp satisfy
some additional natural orthogonality conditions.

2.40 Theorem. Let M" be a complete Riemannian manifold with bounded
curvature and injectivity radius S > 0, and f (i e I) functions of class C', with
the following properties: they change sign, their gradients are uniformly
bounded, and the family {If I9} forms a partition of unity (subordinate to a
uniformly locally finite cover by bounded open sets).
Then the functions 4 a Hi(M"), which satisfy the conditions

(19)
SM,

iq,l'flfl°-'dV =0 forall iel,

satisfy inequality (18) with pairs (B, A(B)), with B as close as one wants to
q). Thus the best constant B of inequality (18) is 2"" times smaller

for functions cp satisfying (19).

Proof. Set f = sup(f, 0) and f = sup(-f, 0); thus f = f - J. Unless other-
wise stated, integration is over M. Since I V I w I I = I Vcp I almost everywhere,
Proposition 3.49, we can suppose, without loss of generality, q0 >- 0. On the
other hand, the functions f may be chosen more generally, for instance,
uniformly Lipschitzian.

By hypothesis, f eff d V = f (poj'? d V, and cp j;, as well as cp f , belong to
HI (M.).

Let K > K(n, q) and A0 = A(K), the corresponding constant in (18).

II(,pJ'tIID s KQIIV(cpf)Ilq + Aoll(pfllq,

'II$.
IItP by s K4 V((p )Ilq + i4ollq f

Suppose, for instance, that IIV((pf)Ilq ? IIV(wf)Ilq. Then write:

2q/PII40ffIIP C 2q/p(KgIIV(Wfi)IIQ +Aollofillq)
2-g/nKq(IIo(Vfi)Uq

+ IIV(cpJ )IIq) + 2q/pAoIIcQfillq.

If NV(cpf,)II4 < JV(cpjf)bq, we obtain a similar inequality, using cpf instead
of ytj;. Thus in all cases:

11

wf IIp <_ 2- 1 KgtIV(4f)Nq + 29rnAoll tPf lI .
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Consider again the computation in (2.27). Set H = supiE, sup,, I VJ I and
pick k an integer such that, at every point of M, at most k of the functions f;
are nonzero. Let J be a finite subset of I. Then there exist constants p and v
such that

IkkpJ llp <_ 2-11^K1[IJV iq + NkHIlowllq-11ltpllq + vkH9ll(pliq]
ie.l

+ 2q/°Aoilwilq

The second member does not depend on J, hence the corresponding series is
convergent. There exist two constants /i and y, such that

II't' p = Il'V p/q = < 2 I9gIf IgIIp/q
piq iel

L(nglllq
iel

< 2-91"Kgllowliq + /3II'tPIIq-tIlwllq + yliwllq

Using inequality (14), for any E1 > 0, there exists an MO such that

(20) Ilowllq tIIwIIq <_ E1IIV Ilq + MoIkoIIq.

Thus the stated result is proved:

II(vIIp <- (2-91"Kq + (y +

To establish that 2-1/"K(n, q) is the best constant, when the functions qO
satisfy (19), we have only to use the functions which are defined in Theorem
2.14. Indeed, for convenience, suppose f i is equal to 1 over a ball P with
center P and radius p < S, and f1 is equal to 1 over a ball b with center P
and radius p.

Consider the sequence of functions t'/m(m a N), which vanish outside
P u h and which are defined by

0m(Q) = (rgl(q-1) + 1/m)1-"/g - (pgl(q-1) + 1/m)1-"19

for Q e P with r = d(P, Q), and for Q e B with r = d(P, Q). This sequence
satisfies :

lim I ml p loYmllq
1 = 2-t/"K(n, q),

M-00

while

lim II/'mIIgII/mIIp 1 = 0. 0
M- cc
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2.41 For applications to differential equations, the useful result is that
concerning H,. Since the best constant K(n, 2) is attained for the manifolds
with constant curvature, Theorem 2.29, 2-11nK(n, 2) is attained in that case.

Corollary. Let M"(n >- 3) be a Riemannian manifold with constant curvature
and injectivity radius b > 0, and f (i a I) CZ functions, having the properties
required in Theorem (2.40), and satisfying A f z < Const.,.For all i e 1. Then
there exists a constant A2, such that all functions cp a H, satisfy:

(21) fi,pJ' s 2-2/mK2(n,
2)IIVapII2 7 + A2.11wl12

when they satisfy the conditions (19) with p = N = 2n/(n - 2).

Proof. This is similar to the preceding one. Use (14) instead of (18) and write:

f Iv(pfJ21 dV = ffflvcI2 dV + } fvq,ivp dV + J'2IvfI2 dV

= JfIVcoT2 dV + 5(lvI2 + fAf?)g2 dv.

Since I V f I2 + JA f; 5 Const, (21) follows.

2.42 The preceding theorem can be generalized. A similar proof establishes
the following

Theorem. Let M", (n >_ 3), be a Riemannian manifold with bounded curvature
and i n j e c t i v i t y r a d i u s S > 0, and let f, j (i e 1, j = 1, 2, ... , m, m >_ 2 an integer)
be uniformly Lipschitzian and non-negative unction, with compact support
i2, j, hawing fire following properties: j n a = 0 (for 1 < j < e < m and
all i E 1), at each point P E M, only k of all the functions f j can be nonzero, and

m

E E I f.ji9 = 1.
1(1 1-1

Then the functions ap e H1, which satisfy the conditions

J'lcolJ'ff,jdV= f (for

satisfy inequality (18), where B can be chosen equal to m-11"K(n, q) + e, with
e > 0, as small as one wants. (The best constant B of inequality (18) is now
mlm" times smaller than K(n, q).
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2.43 Remark. On a compact manifold, if we consider the Rayleigh quotient
inf II Ocp 11211 0I z ',when (p satisfies some well-known orthogonality conditions,
we obtain, successively, the eigenvalues of the Laplacian Ao = 0, Al, AZ, ... .
Even if we know some properties of the sequence ).;, we cannot compute )
from A, It is therefore somewhat surprising that in the nonlinear case, the
sequence is entirely known, the mth term being m'""K-'(n, q).

§14. The Case of the Sphere

2.44 Definition. On the sphere S, A will denote the vector space of functions
0, which satisfy AIi = A ,O, where ,1, is the first nonzero eigenvalue of the
Laplacian.
Recall that A is of dimension n + I. One verifies that the eigenfunctions are
1li(Q) = y cos[ad(P, Q)], for any constant y and any point P E S, with
az = R/n(n - 1), R being the scalar curvature of the sphere.
There exists a family S, (i = 1, 2, ..., n + 1) of functions in A, orthogonal in
L2 and satisfying °= i S; = 1 (see Berger (37)). In fact, if x =
(x1, x2, ... , x"+ 1) are the standard coordinates on R"+', ; is the restriction
of x, to S".

Thus, we can apply Theorem 2.40 with f = S; when n > 2, q = 2, and
p = N = 2n/(n - 2). But to solve the problem 5.11, we need the somewhat
different conditions:

J1IIdV = 0, instead of
J

0.
a §"

If we want to use Theorem 2.40, we must choose as functions f , the functions

I
I'I ` -'. But this is impossible for two good reasons. On the one hand,

does not form a partition of unity; on the other, the functions
do not belong to H1(S"). Nevertheless, these difficulties can be over-

come. We are going to establish the following.

2.45 Theorem. The functions 11 are a basis of A; then all 9 e H(S), 1 < q < n,
satisfying $ ; I rp IP dV = 0 (for i = 1, 2, ... , n + 1) satisfy:

(22) Ilwllp <- [2-'m"K(n, q) + s]"IIowIIq + A(E)Il(all$,

where A(E) is a constant which depends on z > 0, E as small as one wants.

Proof. Let 0 < n < 1/2 be a real number, which we are going to choose very
small. There exists a finite family of functions ; e A (i = 1, 2, ..., k), such
that:

1 +n< j1 11g1p < 1 + 2q with II <2-P.
i=1



62 2. Sobolev Spaces

Indeed, let Q e S and Q(P) the eigenfunction of A, such that i;Q attains its
maximum 1 at P = Q; since Q(P) = ,(Q), we have

fI Q(P)11" dV(Q) = f l r(Q) I q/p dV (Q) = Const.

From this property of the family clearly the above family
exists.

Consider hi, C' functions, such that everywhere 0 and such that
I I hi Iq - I bi Iq'p I < (n/k)p. Then

k

(23) 1 1hi Iq < 1 + 3r7
i=1

and

Ihilp - ISFI Ih1Iq - Iilq/p <q(k)p=Eg,

according to Theorem 3.6, and since I bi 141p + (r1/k)p < 1. As in the proof of
Theorem 2.40, we suppose that (p > 0:

14114P = 11(Pgllp/q < pgIhi lq
i=1

k

< Y ilwhillo.
p/q j=1

If II hi I V ( p 111q ? it hi I V 1 1 1 , , using (23) and the hypothesis, from Theorem 2.29
we obtain

0(phillp <- J(i + e$)cpp dV + f9Ef
dV]9/p

_ [f(I; + 4)q dV + fr&r dV]g1P

9/0
2q/p[ f rpp(hf + sg)dV f

< 2q/pllrp(hi
+ Eo)IIpS

< 2glp[Kq(n, q)IIV[(p(hi + ro)]IIq + A(q)IIgp(hi + Eo)IIq].

Set H = sup 1,, i k sups. I Vhi 1. Then there exist constants u and v such that:

IloCw(hi + Eo)711q 5 f(hi + eo)"IV(pl' dV +.HlIOWII$-'Il(pllq

+ vHgp(pllq.
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Since (h; + Soy <_ h9 + q(h, + EO)q_'so < h? + qaO, then

Ilpllp 291PK9(n, q) 1 j f Ihrl"Iog1Q dV + gkeollVgpllq2;_t

+ kiHMMVQli9- t Il(pllq + vH9kllgllq] + 2411'kA(q)Ilwliq.

Using (20) and (23), this leads to:

11(pll; <_ KQ(n, q)[2-91"(1 + 3n) + 241vgkc0 + kpHE1]llowllq

+ 29/Pk[K9(n, 9)(pHMo + vH4) + A(q)]II rpll q.

Since Eok = (p/q)t1Pri, setting Et = q/Hk and taking n small enough we
obtain the stated result.

Thus B in (18) is as close as desired to 2-11nK(n, q).
We applied Theorem 2.29 for q < 2. In the case q > 2 the proof is not
different, because E is nonzero in (22). 0

§15. The Exceptional Case of the Sobolev Imbedding Theorem

2.46 We will expound the topic chronologically. The exceptional case of the
Sobolev imbedding theorem concerns the Sobolev space H"(M), where n is
the dimension of the manifold M, or more generally, the spaces Hk`(M).

When cp E Hi we might hope that cp e L.. Unfortunately, this is not the
case. Recall Example 2.37; the function x --* log I log IIx 111 defined on the ball
B11 c R2 is not bounded but belongs, however, to f12(Bi/r). But when
rp E H i it is possible to show that em, and even exp[a I (p 1 n/1" 1)], are locally
integrable, ifa is small ehough (Trudinger [261], Aubin [10]). More precisely,

Theorem 2.46. Let M. be a compact Riemannian manifold with or without
boundary. If (p E Hi (M"), then e' and exp[a(Ipl Ilwllg; )"'t"-t)] are integrable
for a a sufficiently small real number which does not depend on cp. Moreover,
there exist constants C, p and v such that all cp E Hi satisfy:

(24)
fM

el dV < C exp[pIIV
11 + vlltPllk]

and the mapping H1 a T -+ e' e Lt is compact.

Proof. a) Using a finite partition of unity we see that we have only to prove
Theorem 2.46 for functions belonging to H,(B), where B is the unit ball of

". Indeed, if the ball carries a Riemannian metric we use the inequalities of
Theorem 1.53, and if the function obtained has its support included in the
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half ball we consider by reflection the x1-even function which belongs to
H', (B), as in 2.3 1.

O

ft) Now cp a H"I(B). For almost all P E B

(25) I Op) 15 w.1 f I V (Q) I [d(P, Q)]' -" dV(Q),

(see the end of 2.12). Then by Proposition 3.64, we obtain for all real p > n

1/k

II II, <_ wn 1l llV(p sup [ J [d(P, Q)]k(1-") dV(Q)

PER a

with 1/k = 1/p - 1/n + 1. This yields:

1 I /k

1101, < wn li f r.(k-1)(1-n) dr
o

= w^it 1/kllo(pIIn

Cp

+ 1 - p/nl ilk
n

Thus there is a constant K such that for any p > 1:

(26)

and we obtain

VI(pIIp 5 KNVco){"p("-')/'

f'0e'P dV < > KP[1V p!I (p!)-1p(n-1)p/n.

s P=0

But according to Stirling's formula, when p - oo

(p/n)!(p!)-lp("-1)P/n (p/en)°Inn-112(e/p p(n-1)P/" e' l)P/nn-P/n- 1/2
,

so that

f's
el' dV < Cexp(µIIV(pI ),

where C and p are two constants.

Remark. When M is compact, using Equation (15) of 4.13 after integrating
by parts, and the properties of the Green's function yield immediately
(without step a) an inequality of the kind (25). Thereby we can obtain a
similar result when A147 6 4/2k instead of lp e H/k k (see Aubin [10]). When
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cp e with ms = n, exp[a I tP I'"'- 1)] is locally integrable for a > 0 small
enough (see Cherrier [96]). Brezis and Wainger [67] obtained fine results in
this field by using Lorentz spaces.

y) Using (26) leads to

00

(27) fex[vIc"l"- ' )] dV < E vp(p!)-1[KIIow11"]p"i1"-')[pn/(n - 1)]p.
p=0

According to Stirling's formula (p!)- 1 (p/e)Ppl /2 < Const, thus the series in
(27) converges for (KIIV II,,)"/1r-')v en/(n - 1) < 1.

S) To prove the last statement of Theorem 2.46 we will use the Kondrakov
theorem 2.34: the imbedding H'(M) c L,(M) is compact. Let d be a
bounded set in Hm,(M). Rewriting (24) with qcp instead of (p (q >_ 1) implies
that the set {e5'},,E,, is bounded in L. for all q. Then II Ve" 11 l < II V II"Il e0ll "i(" -1)
shows that the set {e`°},,Er is bounded in H. Thus the result follows.

§16. Moser's Results

2.47 For applications, the best values of a and y in Theorem (2.46) are
essential. On this question the following result of Moser [209] was the first.

Theorem 2.47. Let 0 be a bounded open set in Q8" and set x" = ncu,,,-" i 11. Then
all cp a fin(Q) such that IIVwll. <_ 1 satisfy for x <- a":

(28) JexP[ll'] dV < C f
an

ere the constant C depends only on n.H
a" is the best constant: if a > a" the integral on the left in (28) is finite but it can
be made arbitrarily large by an appropriate choice of (p.

Proof. Making use of symmetrization as in 2.17 reduces the problem to a
one-dimensional one. We have only to consider radially symmetric functions
in Bp, the ball in R" of radius p which has the same volume as Q. Set g(IIx11) =
t,(x). On the other hand, we can suppose tp e C°°(Bo). Indeed, if cp a lli(Bp)
there exists {1/i;};. N, a sequence of C°° functions on B. vanishing on the
boundary, such that 0; -+ tp in H, when i - oo and such that 0. - cp almost
everywhere (Proposition 3.43). Thus if we prove (28) for smooth functions,
(28) holds for all qp e H;(Bp) since

f exp(a I c p I"i1"-')) dV 5 lim inf f exp(a dV.
B(v) e)v)
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So the problem is now:
For which a e R, do all functions g e C°([0, p]) which vanish at p satisfy
the inequality joexp(aIgI"/("-') dV < Cp"ln when joIg'l"r"-' dr < w, 11?
Applying Proposition 2.48 below with q = n and k C exists if and
only if a5a"=na),1,!(i 1)

The following proposition discusses the existence of the integral for all a.

2.48 Proposition. Let g be a Lipschitzian function on [0, p] which vanishes at
p. If J o I g' lgrg-1 dr 5 k for some q > 1 and some k > 0, then
j00 exp(fIgtq11-'))r"-' dr < Cp"ln, with C a constant which depends only on
q and n, if and only if fi < fig = nkl/(1-q). Moreover, the integral exists for any
f, although the inequality holds only for f < fig.

Proof. Mosey stated the result only for q = n, but he gave the proof for
arbitrary q > 1. We will follow his proof.
Set e -' = (r/ pp' and f (t) = g(pe - `/"). Then f (0) = 0 and we have (1 /q) d(rq) _
- (1/n)pge-gtl" dt and f'(t) = -(p/n)g'(r)e-t/".

Thus ng - ' jo I f' ' dt < k and we want to have:

0(29) f exp(f If Iq'(q -1' - t) dt 5 C.
0

By Holder's inequality:

t

llq

If (t)1 5 T If' I dt 5 f I f' 1q dt) t(g- 1)/9 5 k'/q(t/n)(9- 1)19 = (t/pq)(q- 1)1q

0 0 /

Hence for f < P. the result follows at once:

5exppIfI'w_1) - t)dt 5 f exp[(B/fq - 1)t] dt = (1 - N/$q)-'.
0 0

If f = fig it is not easy to establish the result (see Moser [209] for the proof).
When f > fig the integral we are studying exists, but it can be made

arbitrarily large. Consider for T > 0 the function f defined as follows:
f (t) = (T/fq)'q- a/qt/T for t 5 T andf(t) for t > r. Clearly these
functions satisfy the hypotheses and

fexP(flIf1 (9-1) - t) dt > f* exp(QT/fq - t) dt = exp[(///3q - 1)t]

tends to infinity as r - oo.
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It remains to prove the convergence of the integral. Applying Holder's
inequality we find that for t > r

ir9

I f(t) - ft)I If'l dt < (JrJ f'IQ dt) (t - z)1-1'9.

Since we can choose t so that f I I f' J" dt is as small as one wants, t1 q- If (t) - 0
as t oc. Hence Q I f (t) Igrq -11t-1 --i 0 as t -+ oo and the integral in (29)
exists.

2.49 Proposition. Let g be as in Proposition 2.48. Then there are constants C
and A such that

(30)
fo

e9rn-1 dr < C exp[A $gIr1 dr

the inf of A such that C exists is equal to A. = ((q - 1)/n)q-1q-g.

Proof. It is easy to verify that all real numbers u satisfy

u < kAq + 3glulgr(g-1);

thus according to Proposition 2.48,

F

rv C v
gr"- 1 dr < - - pneU,,, where we pick k =

J
I g' Igrq-1 dr.

o n o

Corollary 2.49. Let fl be a bounded open set of R" and set µ" = (n -
1)n- 1

n1-Z"cwn '1. Then all cp e A' (!Q) satisfy

(31)
J

el' dV < C Jdv
n n

where C depends only on n.

Proof. After symmetrization we use Proposition 2.49 with q = n and we get
µ" _ )co;.1 This result may also be obtained from (28) by using the in-
equality: uv < a"Iul"I("-1) + µ"IvI" with v = IIVQ11" and u = rp110cP11- `

§17. The Case of the Riemannian Manifolds

2.50 Return to Theorem 2.46. Set a", the sup of a, such that
exp[a(I rD I II tP II a;1)"' I" -1)] is integrable and µ", the inf of µ, such that C and v
exist in inequality (24). Two questions arise. Does A. depend on the manifold?
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Is A. attained? (I.e., is y = µn allowed.) The answers were first found in
Cherrier [95]. In Cherrier [96] there are similar results when cp 6 H',"' or
Ak(p e Ln,21k. He proved the following:

Theorem 2.50. For Riemannian manifolds Mn with bounded curvature and
global injectivity radius (in particular this is true if M is compact), the best
constants µn and aR in Theorem (2.46) depend only on n. They are equal to

'-111
.(n - 1)n-1n1-2nw" --1

1 and atn = ncon-1

For compact Riemannian manifolds with C' boundary the best constants are
equal, respectively, to 2µn and 2- 1/(n-
A. is attained for the sphere S. and 142 is attained for compact Riemannian
manifolds of dimension 2.

2.51 The can of the sphere. We have seen that we have the best possible
inequality (31) for rp e H,(0) when 1Z is a bounded open set of ln: A = AR
and v = 0 in (24).
This is also the case for the sphere S. The following was proved by Moser
[209] when n = 2, and by Aubin [21], p. 156.

Theorem 2.51. All cp a H'(SR) with integral equal zero (Js,, cp d V = 0) satisfy

(32)
J

e4' dV 5 C exp(p,Il V(p II:),s
where C depends only on n and A. = (n - 1)"-'n'-2nw,,; in particular
µ2 = 1/16n.

2.52 As in other inequalities concerning Sobolev.spaces, the best constants
can be lowered when the functions cp also satisfy some natural orthogonality
conditions. Theorems similar to those in 2.40 and 2.42 are proved in Aubin
[21], p. 157. The sequence of best constants is {µn/m}mE N. For the sphere S.
the following is proved.

Theorem 2.52. Let A be the eigenspace corresponding to the first nonzero
eigenvalue. The functions cp a H,(S,) satisfying Is, 1;ewdV = 0 for all e A
and Js.cp dV = 0, satisfy the inequality

° dV 5 C(u) exp(A1IV pII'),(33)
Js. e

where it is possible to choose µ > µR/2 as close to µR/2 as one wants. C(u) is a
constant which depends on µ and n.
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2.53 The case of the real projective space P.

Theorem. For any e > 0 there is a constant C(e) which depends only on n such
that all i e with integral zero &.0 dV = 0) satisfy

(34)
J

e' dV < C(c) exp[(µ" + a)11V j'I ].

Proof. P: S, P", the universal covering of. has two sheets. We associate
to 0 e Hi(P") the function cp on 5" defined by p(Q) = 4i(p(Q)) for Q E S".

The function cp so obtained satisfies the hypotheses of Theorem 2.52.
Ss' dV = 2 f p,, d V = 0 and e`° is orthogonal to A. Indeed, if Q and Q are
antipodally symmetric on 5", (Q)e"'QI = for e A. Thus
fs, (Q)e1o(Q) dV(Q) = - f dV(Q), and so vanishes.
By Theorem 2.52, for any e > 0 there is C(e) which depends only on n, such
that all cli E Hi(P,,) satisfy

2 Je dV = fs. e' dV < C(e) expl (µ"/2 + e) Is. JV(pl" dV]

= C'(e) exp[(P. + 2e)

JThus we get (34) with C(e) = C(e/2)/2.

§18. Problems of Traces

2.54 Let M be a Riemannian manifold and let V c M be a Riemannian
sub-manifold. If f is a C' function on M, we can consider f the restriction of
f to V,I E C"(V).

Now if f c- Hk(M), it is often possible to define the trace Iof f on V by a
density argument and there are imbedding theorems similar to those of
Sobolev. Adams [1] discusses the case of Euclidean space. In Cherrier [97]
the problem of traces is studied for Riemannian manifolds; he also considers
the exceptional case.

The same problems arise for a Riemannian manifold W with boundary
8W. We can try to define the trace on aW of a function belonging to Hk(W).
The results are useful for problems with prescribed boundary conditions.



Chapter 3

Background Material

§1. Differential Calculus

3.1 Definition. A normed space is a vector space Rover C or 118), which is
provided with a norm. A norm, denoted by 11 II, is a real-valued functional on
a, which satisfies:

(a) a -3 x II x11 >_ 0, with equality if and only if x = 0,
(b) !1).x11 =121 llxll for every x e a and A E C,
(c) Ilx+yll _Ilxll+IIYIIforevery x,yEj5.

A Banach space 0 is a complete normed space: every Cauchy sequence in Z
converges to a limit in B.

A Hilbert space.5 is a Banach space where the norm comes from an inner
product:

so 11x112= <x,x>.

13 is an inner product provided that ¶ is linear in x, that it satisfies <x, y> _
<y, x>, and that <x, x) = 0 if and only if x = 0.

3.2 Definition. Let j5 and ( be two normed spaces. We denote by 2'(`; , 6)
the space of the continuous linear mappings u from a, to (5..'(R, (5) has the
natural structure of a normed space. Its norm is

(lull = suplu(x)jI for all x e a with llxll < 1.

Fr*, the dual space of 5, is 2(a, C) or 2(a, 68), according to whether a is a
vector space on C or l . a is said to be reflexive if the natural imbedding
a a x -+ x E a**, defined by z(u) = u(x) for u E F*, is surjective.

3.3 Proposition. A linear mapping u from $r to (5 (where a and 6 are two
normed spaces) is continuous if and only if there exists a real number M such
that 11u(x)11 s M11x11 for all x e ar.

If 0 is a Banach space, then 2(R, B) is a Banach space.
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3.4 Definition. If 1 is an open subset of 5, (j5 and 6 being two normed spaces),
then f : i2 --+ (5 is called differentiable at x e S2 if there exists a u E &(j5, 6) such
that :

(1) f(x + Y) - f(x) = u(Y) + llyllou(x, y),

where w(x, y) -+ 0 when y - 0, for all y such that x + y E Q. it, called the
differential of f at x, is denoted by f'(x) or Df(x).

3.5 Definition. Let f be as above. f is called differentiable on Q if f is differ-
entiable at each point x E S2.
f is continuously differentiable on (2, written f e C'(Q, (5), if the map
: D x f'(x) E ( , (5) is continuous. f E C'(S2, 6) is twice differ-
entiable at x if 0 is differentiable at x. We write DZf (x) = ty'(x) E
2(R,O(R,(5))_2(Rx `i,(5)

f is CZ, written f e CZ(S2, (5), if 0 E C'(S1, P(R, (5)). In this case D' f (x)
is symmetric. Dzf (x) E £2(R, fl, the space of continuous bilinear maps
from a x a to 5. Continuing by induction, we can define the pth differential
off at x (if it exists): DPf (x) = D[DP - 'f (x)].
If x - ee+ DPf (x) is continuous on S2, f is said to be CP, f e CP(Q, (5), DPf (x) e
-'P(U, (5) = (5)

1.1. The Mean Value Theorem

3.6 Theorem. Let j5 and (5 be two normed vector spaces and f e C'(S2, 6),
with () c jj. If a and b are two points of S2, set

[a, b] = (x e a such that x = a + t(b - a) for some t E [0, 1] }.

If [a, b] e S2 and if Il f'(x)ll <- M for all x E [a, b], then

(2) Ilf(b) - f(a)ll s Mllb - all.

3.7 Definitions. When a and (5 have finite dimension: jj = R", (5 = RP, a
mapping f is defined on S2 c j5 by p real-valued functions f (x', x2, ... , x"),
(a = 1, 2, ... , p). Then f c- C'(Q, (5) if and only if each function f a has
continuous partial derivatives.
The matrix (n x p), whose general entry is of a(x)/ax', is called the Jacobian
matrix of f at x e ft
The rank off at x c- S2, is the rank of f'(x), that is to say the dimension of the
range of f'(x).
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3.8 Taylor's formula. Let f e C"(S2, (5), 0 c a, (jj and (S two normed vector
spaces), and [x, x + h] c a Then

(3)

f (x + h) = f (x) + f'(x)h + JD2f (x)h2 +

+
1

D"J(x)h" + IIhII"co"(x, h)
n!

where w"(x, h) - 0, when h - 0.
D'Ff (x)h* means D'f (x) (h, h, ... , h), the h repeated k times. If f e C"+'(a, (5)
and if (5 is complete, then

I
11hII wh(x,h) = ni (1 - t)"D"+'f(x + th)h"'' dt.

Jo

3.9 Definition. A homeomorphism of a topological space into another is a
continuous one to one map, such that the inverse function is also continuous.
A C'`-difeomorphism of an open set Q c a onto an open set in 6 is a C'`-
differentiable homeomorphism, whose inverse map is C`, where ty and (5 are
two normed spaces.

1.2. Inverse Function Theorem

3.10 Theorem. Let FS and (5 be two Banach spaces and f e C'(S), (b), Q c 98.
If at xo a 11, f'(xo) is a homeomorphism of B onto 6, then there exists a neigh-
borhood 0 of xo, such that 0, the restriction off to e, is a homeomorphism
of 0 onto f (0).
If f is of class Cc, (D isa C-di f'eomorphism.

Implicit function theorem. Let (9, a and B be Banach spaces and let U be an
open set of (f x a. Suppose f e C'(u, f) and let Dq f (xo Yo) e Y(R, B) be the
differential at yo of the mapping y -f (xo, y). If at (x0, yo) e U, Dr f (xo, yo) is in-
vertible, then the map (x, y) - (x, f (x, y)) is a C' dii feomorphism of a neighbor-
hood Cl c U of (xo, yo) onto an open set of (>; x B.

1.3. Cauchy's Theorem

3.11 Let B be a Banach space and f (t, x) a continuous function on an open
subset U a U8 x B with range in B.
Consider the initial value problem, for functions: t - x(t) e!5:

(4) d = f (t, x), x(to) = xo with (to, xo) a U.
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If, on a neighborhood of (to, xo), f (t, x) is a uniformly Lipschitzian in x, then
there exists one and only one continuous solution of (4), which is defined on a
neighborhood of to.
If f is C°, the solution is C°+ t. Moreover the solution depends on the initial
conditions (to, xo); set x(t, to, xo) the unique solution of (4). The map 0:
(t, to, xo) x(t, to, x0) E 8 is continuous on an open subset of R x R x $.
Iff isC°,0 is C'.

Recall that we say f (t, x) is uniformly Lipschitzian in x on O c R x '$ if
there exists a k such that for any (t, x1) e 0 and (t, x2) E O,

(5) Ilf(t, xi) - f(t, x2)11 <- kllxi - x211.

It is possible to have a more precise result on the interval of existence of the
solution. By continuity off, there exist M, a, and p, three positive numbers,
such that II f (t, x) 11 < M, for any (t, x) E I X 9,,O(p) c U, with I = [to - a,
to + a] and B,,O(p) _ {x E $ I Ilx - x011 < p}. If Ma < p, the solution of (4)
exists on I.

§2. Four Basic Theorems of Functional Analysis

2.1. Hahn-Banach Theorem

3.12 Let p(x) be a seminorm defined on a normed space 6, as linear subspace of
(fi, and f (x) a linear functional defined on Fr, with I f (x) I < p(x) for x E a. Then
f can be extended to a continuous linear junction f on (fi with I J(x) I S p(x) for
allxc(5.

A seminorm is a positive real-valued functional on (fi which satisfies b) and
c) of 3.1.

2.2. Open Mapping Theorem

3.13 Under a continuous linear map u of one Banach space onto all of another,
the image of every open set is open. If u is one-to-one, u has a continuous linear
inverse.

2.3. The Banach-Steinhaus Theorem

3.14 Let and R be Banach spaces and a fami ly of u, e 2'(48, a), (a e A a given
set). If for each x E Z, the set {u=(x)}1EA is bounded, then there exists M, such
that 11uz11 <- M for all a e A. In particular, if ui e 9(25, a) and if limi- , ui(x)
exists for each x e Z, then there exists an M such that 11 uill <- M for all i e NJ,
and there exists a u e 2( 3, j5) such that ui(x) u(x) for all x E'.8.
But ui does not necessarily converge to u in Y(S, W).
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2.4. A.scoli's Theorem

3. Background Material

3.15 Let R be a compact Haussdorffspace and C(R) the Banach space of the
continuous functions on R with the norm of uniform convergence.
A subset A c C(R) is precompact (A is compact), if and only if it is bounded and
equicontinuous.
(Recall A is said to be equicontinuous if, to every e > 0 and every x e R, there
corresponds a neighborhood U of x such that I f (x) - f (y) I < s for all
y e U and all f e A).

§3. Weak Convergence. Compact Operators

3.16 Definition. {x;}, a sequence in a a normed space, is said to converge
weakly to x e to if u(x;) -i u(x) for every u e t5*, the dual space of a (see defini-
tion (3.2)). A subset A is said to be weakly sequentially compact, if every
sequence in A contains a subsequence which converges weakly to a point in A.

3.17 Theorem. A weakly convergent sequence {x;} in a normed space jj has a
unique limit x, is bounded, and

(6)

3.1. Banach's Theorem

Ilxll <- lim infllx,ll
t-00

3.18 Theorem. A Banach space !5 is reflexive, if and only if its closed unit ball
$1(0) is weakly sequentially compact.

Particular case. In a Hilbert space, a bounded subset is weakly sequentially
compact.

3.19 Definition. Let a and (5 be normed spaces and S2 c a. A map f : sZ - 6
(not necessarily linear) is said to be compact if f is continuous and maps
bounded subsets of U into precompact subsets of (5.

3.20 Schauder fixed point theorem. A compact mapping, f, of a closed bounded
convex set 0 in a Banach space 48 into itself has a fixed point.

3.2. The Leray-Schauder Theorem

3.21 Let T be a compact mapping of a Banach space S into itself, and suppose
there exists a constant M such that 11x II 5 M for all x e S and a E [0, 1)
satisfying x = aTx. Then T has a fixed point.
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3.22 Definition. Let a be a normed space on C and T e 2'(j5, W). A number
A e C is called an eigenvalue of T if there exists a non-zero element x in cj
(called an eigenvector) satisfying Tx = Ax. The dimension of the null space of
the operator AI - T is called the multiplicity of A.

3.23 Theorem. The eigenvalues of a compact linear mapping T of a normed
space a into itself form either a finite set, or a countable sequence converging to
0. Each non-zero eigenvalue has finite multiplicity. Ift # 0 is not an eigenvalue,
then for each f e a the equation Ax - Tx = f has a uniquely determined solu-
tion x E tj and the operator (Al - T) - ' is continuous.

3.3. The Fredholm Theorem

3.24 Let T be a compact linear operator in a Hilbert space S5 and consider the
equations:

(7) x - Tx = f,

(8) y-T*y=g,

where T* is the adjoint operator of T, (<Tx, y> = <x, T*y> for any x and y in
S5). Then the following alternative holds:

(a)

(f)

either there exists a unique solution of (7) and (8) for any f and g in .5, or
the homogeneous equation x - Tx = 0 has non trivial solutions. In that
case the dimension of the null space of I - T is finite and equals the dimen-
sion of the null space .N* of 1 - T*. Furthermore (7) has a solution (not
unique of course) if and only if <f, y> = O for every y e .NV*.

§4. The Lebesgue Integral

3.25 Definition. Let 0 be a locally compact Haussdorff space and CO(.*')
the space of real-valued continuous functions on .at" with compact support.
A positive Radon measure p is a linear functionnal on C0(.)to), p: f - p(f) E R,
such that p(f) >- 0 for any f > 0.

3.26 Definition. Let p be a positive Radon measure as above. We define an
upper integral for the non-negative functions as follows. If g >- 0 is lower
semicontinuous:

p*(g) = sup p(f) for all f e C0(.a °) satisfying f < g,

and for any functions h 0: p*(h) = inf p*(g) for all lower semicontinuous
functions g satisfying h < g.
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3.27 Definition. Let p be a positive Radon measure as above. A function f is
said to be p-integrable, if there exists a sequence f e C0(.,Y) such that
p*(I f - f I) - 0- Then {p(f1)} converges, and we set $ f dp = lim, . p(f,).

3.28 Definition. A set A c -° is measurable and with finite measure p(A), if its
characteristic function XA is integrable (by definition XA(x) = 1 for x e A,
XA(x) = 0 for x 0 A). We set p(A) = $ XA dp. We say that a property holds
almost everywhere on ,Y if it holds for all x e W except on a set A of measure
zero. Almost all points means all points, except possibly those of a set with
measure zero.

3.29 Remark. By Definitions 3.26 and 3.27, a non-negative lower semi-
continuous function g, with u*(g) finite, is integrable and p*(g) = $ g dp.
One can prove that an integrable function f is equal almost everywhere to
g, - g2, with g, and g2 non-negative lower semicontinuous integrable
functions.
A compact subset R c .' is measurable and with finite measure. An open
subset 11 is measurable (Xn is lower semicontinuous).

330 Definition. f is said p-measurable (or measurable, when there is no
ambiguity) if for all compact sets R and all a > 0, there exists a compact set
R, c R, such that p(R - R j < e and such that the restriction f 1A. is
continuous on RR.

If a sequence ofp-measurable functions converges almost everywhere, then
the limit function is p-measurable.

3.31 Remark. For convenience, we develop the theory for real-valued
functions; however, the theory of the Lebesgue integral is similar for the
functions f on .' with values in 23, a Banach space.

Given p, first we define $ f dp for continuous functions f with compact
support. Let { fk} be a sequence of simple functions (fk = D'= 1 dkjXAj, with
dkj e f and Aj measurable sets), which converges uniformly to f By definition
$' f dp = limk.. W D=1 Aj)4kj.
Then we define the integrable functions g', as in definition 3.27. g" is p-integrable
if there exists a sequence of continuous functions f with compact support, such
thatp*(119 -

4.1. Dominated Convergence Theorem

3.32 The first Lebesgue theorem. Given p a positive Radon measure on . a
locally compact Haussdorff space, let {1.} be a sequence of p-integrable func-
tions, (1.:.*' -+ F$ a Banach space) which converges almost everywhere to f.
Then f is integrable, $ j dp -* J f du and 1111 - f.11 dp - 0, if there exists h,
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a non-negative function, satisfying u*(h) < oo and II f"(x)II < h(x) for all n and
XE.,.

Recall µ*(h) is finite, in particular, if h is integrable.

4.2. Fatou's Theorem

3.33 Given p as above. Let {hi} be an increasing sequence of non-negative
functions on

lim p*(hi) = y*(lim hi
1 00

3.34 Theorem. From now on, we suppose that V, the locally compact Haussdorff
space, is a denumerable union of compact sets, and that the Banach space !5 is
separable. A measurable function j: )r -+ B is p-integrable if and only if
µ*(II.f II) is finite.

4.3. The Second Lebesgue Theorem

335 Let f be a real-valued function defined on [a, b] c R. If f is integrable on
[a, b] with the Lebesgue measure, then F(x) = fa f(t) dt has a derivative
almost everywhere, and almost everywhere F'(x) = f (x), for a <- x <- b.

The Lebesgue measure on R" corresponds to the positive Radon measure,
defined by the Jordan integral of the continuous functions with compact
support.

3.36 Theorem. If a function F(x) is absolutely continuous on [a, b], then there
exists f (x), an integrable function on [a, b], such that F(x) - F(a) = $ f (t) dt,
and conversely. Also F(x) has a derivative almost everywhere, which is f (x).

Recall that F(x) is said to be absolutely continuous on an interval I if, for
each e > 0, there exists a 6 > 0, such that t= i I f (yi) - f (xi) I < a, whenever
]xi, yi[, i = 1, 2, ... , k, are nonoverlapping subintervals of 1, satisfying
Y,. i I yr - xi I < 6. In particular, a Lipschitzian function is absolutely
continuous.

4.4. Rademacher's Theorem

3.37 A Li pschitzian function from an open set of R" to RP is differentiable almost
everywhere.
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4.5. Fubini's Theorem

3. Background Material

3.38 Let jr and F be locally compact separable metric spaces. Given two
positive Radon measures p on .' and v on JF, if f (x, y):.lt° x F - R is
p ® v-integrable, then for v-almost all y, fr(x) = f (x, y) is p-integrable and for
p-almost all x,fx(y) = f (x, y) is v-integrable. Moreover

fjf(x. y) dp(x) dv(y) = f[Jf(x. y) dv(y)] du(x)

= J[Jf(x. y) du(x)] dv(y).

Fubini's Theorem is very useful, but for most applications, we don't know

(9)

that f (x, y) is p ® v-integrable.
We overcome this difficulty as follows: More often than not, it is obvious that
f (x, y) is p ® v-measurable. (Is it not a recognized fact, that function is
measurable, when it is defined without using the axiom of the choice!)

Then by using Theorems (3.34) and (3.39), we shall know if f (x, y) is
p ® v-integrable or not. Recall that a locally compact metric space is separ-
able if and only if it is a denumerable union of compact sets.

3.39 'I'beorem. Let (k", p) and (3F, v) be as above, and f (x, y) a p ®v-
measurablefunction. Then

(p(9 v)*(Ifl) = p*[v*(lfxl)] = v*[p*(If,l)]

§5. The L. Spaces

3A0 Dekioe. Let.*' be a locally compact separable metric space and p a
positive Radon measure. Given p >_ 1 a real number, we denote by Lp(Y)
the class of all measurable functions f on 0 for which p*(I f Ip) < x. We
identify in L,(. functions that are equal almost everywhere. The elements of
LA(.tf°) are equivalence classes under the relation: ft - f2 if f = f2 almost
everywhere. L,(A°), (denoted by LP when no confusion is possible), is a
separable Banach space, the norm being defined by:

1/p

(10) Ilf1I,= (ffPd)
The Banach space L,(.°) consists of all p-essentially bounded functions.
The norm is:

(11) I f 9 = p-ess sup If (x) I = inf sup I f (x) I,
A x.Jf-A

where A ranges over the subsets of measure zero.
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3.41 Proposition. C0(.$") is dense in Lp(.$) for all 1 < p < cc.
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For p = 1, this is true by definition 3.27. The result is not true for L.
of course; otherwise every function belonging to L. would be continuous.
If -Y is an open set 0 of 18" and p the Lebesgue measure, we have a more
precise result, proved by regularization (see 3.46 below): -9(fl) is dense in
Lp(SZ). Here 2(i)) is the set of C°°-functions with compact support lying in 0.
Likewise, if (V, g) is a C°° Riemannian manifold and p the Riemannian
measure, .9(V) is dense in Lp(V). .9(V) consists of the Cm-functions on V, with
compact support.

3.42 Proposition. For 1 < p < oo, Lp(Ye) is isometric isomorphic to Lq(. )

with 1/p + 1/q = 1. Hence L. is reflexive provided 1 < p < oc.

The isomorphism: La a g U9 a L* is defined as follows:

Lv3f -' u9(f) _ ffg dp.

Indeed fg, which is p-measurable, is p-integrable according to Holder's
inequality 3.60:

(12) IIfgMI, <- Ilf IIpII9Ilq

3.43 Proposition. Let { fk} be a sequence in Lp (or in Lam) which converges in
LP to f e L. Then there exists a subsequence converging pointwise almost
everywhere to f.

3.44 Theorem. Let i2 be an open set of R. A bounded subset sl c Lp(S2) is
precompact in Lp(i2) if and only if for every number a > 0, there exists a number
b > 0 and a compact set R c S2, such that for every f e &0':

If (x) Ip dx < E
n-x

and

f+ y) - f (x) I' dx <a when II Y II <- b,

where without loss of generality, we suppose that b is smaller than the distance
from R to ail, the boundary of i2.

3.45 Theorem. Let 1 < p < oo and { fk} be a bounded sequence in Lp(.3l°),
converging pointwise almost everywhere to f. Then f belongs to LP and fk
converges to f weakly in L. The result does not hold for p = 1, of course
(see below).
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5.1. Regularization

3A6 Let y e 2 (R") be a non-negative function, whose integral equals 1. For
convenience, we suppose supp y c R.

For k E N, consider the function 7k(x) = k"y(kx), IiYkil 1 = 1, and yk(x) -+ 0
almost everywhere (except for x = 0) when k -+ oo. In fact {yk} converges
vaguely to the Dirac measure concentrated at zero. Let f be a function locally
integrable on R" (this means that f XR is integrable for any compact R c 18");
we define the regularization off by:

(13) fk(x) = (Yk * f) (x) = fYk(x - Y)f (Y) dY

Obviously fk is C. Moreover, if f e Lp(R" ), then { fk} converges to f in
Lp(1 5 p < oo), and

(14) Il fkilp < llf IIp-

When f e Co(R"), the result is obvious, since fk converges uniformly to f :

I A(x) - f(x) I = fyk(x - y) [f (Y) - f (x)] dy < sup If (Y) - f(x)
IIy-xlI<1/k

so the assertion follows from the uniform continuity of f. Clearly Ilfk - f IIp
- 0 when k -+ oo. If I e Lp(R"), for each e > 0, there exists f e C0(R") such
that 1J - f IIp < re (Proposition 3.41). But

I''i k - l Ilp s 111k - fkgp + Ilfk - f Ilp + flu - JIlp s + Ilfk - f II p,

where we used inequality (14), which we are going to prove now. According to
Holder's inequality (21), q being defined by 1/p + 1/q = 1:

(Yk * f)(x) I s f [yk(x - f ( y )

1/q 1/p

s fyk(x - y) dy] [fvk(x - y) I f (y) I P dY

l1/P
= fYk(x - Y) I f (Y) I P

dYJ

Hence by Fubini's theorem, 3.38:

flYk*flPdx fifI'dYJx-Y)dx= 11fIIP
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5.2. Radon's Theorem

3.47 Theorem. Let B be a uniformly convex Banach space and { fk} a sequence
in Z which converges weakly to f c- Z.

If IIfkll - If II, then fk --+ f strongly (Ilf - fkll 0) as k -a oo.

Recall that 93 is said to be uniformly convex, if 119k11 = llhkII = 1 and
II9k + hkII 2 implies llhk - 9k11 -+ 0, when k -+ oo, for sequences {gk} and
{hk} in 0.

A uniformly convex Banach space is reflexive; the converse is not true. The
spaces L,(1 < p < oo) are uniformly convex. This result is due to Clarkson
as a consequence of his inequality 3.63 below.
It is obvious that a Hilbert space is uniformly convex.

Proof. If f = 0, we have nothing to prove: IIfkll -,. 0.
If f 0 0, we can suppose without loss of generality that II f II = 1 and that
11 fk11 0 for all k. Set gk =IIfkll -'fk and hk = f for all k.
By the Hahn-Banach theorem 3.12, there exists u0 c -!B* such that u0(f) = 1
and 11 uo 11 = 1. Since fk ---+ f weakly, we have ask -+ oc :

UO(9k) = IIfkll -'uo(fk) --+ U0(f) = 1.

Using Iluoll = 1 we get:

I 1 + U0(9k) 1 <- II 9k + f II <- 2.

Letting k -+ oo, we obtain I1 9k + f 11 2. Thus 119k - f II 0 and 11f - fk11
-0,since 11f-fk1l<-ilf-9k11+I1-IIfk111

3.48 Definition. Let u be a locally integrable function in 0, an open set of R".
A locally integrable function lj is called the weak derivative of u with respect
to x' if it satisfies

J
9b dV = - J'u a, w dV for all (p E 2(0).

n n

By induction we define the weak derivative of u of any order if it exists.

Proposition 3.48. Let f be a Lipschitzian function on a bounded open set S2 c li".
Then ai f exists almost everywhere, belongs to L,,(Q), and coincides with the
weak derivative in the sense of the distributions.

Proof. According to Rademacher's Theorem (3.37), ai f exists almost every-
where, since f is a Lipschitzian function. Moreover, ai f is bounded almost
everywhere, since I f (x) - f (y) I S k 11 x- yll implies I ai f I S k, when ai f
exists.
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On any line segment in a f is absolutely continuous. Thus by Theorem (3.36),
a, f defines the weak derivative with respect to x'. ai f is the limit function,
almost everywhere, of a sequence of µ-measurable functions; hence it is
measurable (see definition 3.30).
Since 1 a, f I° 5 kP, µ.*nn (I a, f 11) < k"p(!l) < oo. Consequently ai f e Lp(f)),
according to theorem (3.34).

3.49 Proposition. Let M. be a Cm Riemannian manifold and cp a H°(M); then
almost everywhere I V I cp I I= I ocp 1

Proof. Since a Riemannian manifold is covered by a countable set of balls, it is
sufficient to establish the result for a ball B of R", provided with a Riemannian
metric. Denote the coordinates by {x'}.
First of all we are going to prove the statement for COO functions. Let f e C m(B).
When f (x) > 0, ai f = ai I f I, and when f (x) < 0, a, f = - ai I f

I . Thus the
result will follow, once we have shown that the set d of the points x e B,
where simultaneously f (x) = 0 and I Vf (x) I # 0, has zero measure. Since, for
x e sad, I Vf (x)1 0 0, there exists a neighborhood ® of x, such that OX n f .' (0)
is a submanifold of dimension n - 1 (see for instance Choquet-Bruhat [99]
p. 12). Consequently, u[e n f -'(0)] = 0. As there exists a countable basis
of open sets for the topology of B, ss' is covered by a countable set of(x e d).
Let { }kEw be this set. We have Qf c Uk t 1k and p[*x,, n -4] = 0;
thus Ad) = 0.

Now let cp aHi(B). By definition, Cm(B) n HT(B) is dense in H?(B). So
using Proposition 3.43, there exists (ff), a sequence of C' functions on B, such
that I fj - cpJH? -- 0 and such that f; - (p a.e. and ai f; h, a.e. for all
i(1 < i < n) as j - co, where hi denotes the weak derivatives of cp.
Define for a function f, f + = sup(J, 0) and f - = sup(-f, 0). Obviously
J; rp+ a.e. and f; -+ cp a.e.
Moreover f j is a Cauchy sequence in Hi, which converges to an element of
Hi, which is cp+, since If j - (p+ Iv -+ 0. Thus cp+ a H° likewise cp- a H.
According to Proposition 3.43, taking a subsequence { fk} of {f,), if necessary,
we have for all i(1 S i < n):
ai f k - h:' a.e. and a, f k -+ hi- a.e. as k - oo, where h; (respectively, hi-)
denote the weak derivatives of cp+ (respectively cp-).
Since we have proved that almost everywhere I a, fk I = I ai I fk 11, letting k - 00
yields I h, I = I hi + ht I a.e. Likewise, ai, fk ai, fk = ai, I fk I ai, I fk I a.e. gives
h,, hi, = (h, + h,, Xh 2 + h,;) a.e. Hence I Dcp I = l V l 911 a.e.

3.50 Proposition. Let W. be a compact Riemannian manifold with boundary
of class C'.1f f e Ck-'(W) n Hf(W) (1 5 k< r), then f and its derivatives up
to order k - 1 vanish on the boundary aW.

Proof. Let {i3c, cpi} be an atlas of class C such that cpi(Q) is either the ball
B e R" or the half ball D = B n E. Consider a Cm partition of unity (ail
subordinate to the covering {0,}.
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Choose any point P of aW At least one of the a; does not vanish at P. Let
a;0(P) > 0 and set f = (a;0 f) cpio'. e C"`-'(D) n Hf(D). For all u and n
belonging to C'(D)

) d r,(15)
J

n a,u dx +
J

u a1v dx = faD

wherev is the outer normal and a", the first unit vector of the basis of R.
If u e 3(D), the right side vanishes. Hence, by density, the left side of (15) is

zero for all u e H(D). In particular, if u is J or one of its derivatives up to order
k - 1, foralluEC'(D):

J
un(e,,v)du =Jn31udx+ JDu a udx=0.

D

Consequently u vanishes on 3D, and f, as well as its derivatives up to order
k - 1, vanishes at P.

Remark. It is easy to prove the converse when f e C'(W): If f and its deriva-
tives up to order k - 1 vanish on aW, then f e Hf(W).

§6. Elliptic Differential Operators

3.51 Definition. Let M, be a Riemannian manifold. A linear differential
operator A(u) of order 2m on M., written in a local chart (S2, cp), is an expres-
sion of the form:

2m
(16) A(u) _ I aeiaa...aNa'a2...alu,

e=0

where at are e-tensors and u e C2m(M). For simplicity, we can write A(u) =
aeV'u. The terms of highest order, 2m, are called the leading part (a2m is
presumed to be nonzero).

The operator is said to be elliptic at a point x c- Q, if there exists 2(x) > 1
such that, for all vectors :

(17) g 2mA-1(X) < aZm2...aam(x) 2,".

We say that the operator is uniformly elliptic in Q, if there exist A and
2(x), 1 < 2(x) < 2o, such that (17) holds for all x E Cl.

3.52 Definition. A differential operator A of order 2m defined on M is written
A(u) = f (x, u, Vu, ... , 02mu), where f is assumed to be a differentiable
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function of its arguments. Then the first variation off at ua E C2ni(.l) is the
linear differential operator

(18)

- af(x, UO, Vuo,... , V2"'UO)
A (u) V2122...av,, ...Vii

aV `` u
(x, u°' Duo' . - -, V2.uo)Veu.

If A.,is an elliptic operator, then A is called elliptic at u0.

6.1. Weak Solution

3.53 a) Let A be a linear differential operator of order 2m defined on a
Riemannian manifold M, with or without boundary. Until now, by a solution
of the equation A(u) = f we meant a function u E C2m(M) such that the
equation is satisfied pointwise. There are other quite natural ways that a
more general function, such as an element of H2.(M) or a distribution, can
be said to be a solution of A(u) = f.

b) If f e L. and if the coefficients of A are measurable and locally bounded,
we say that u E Hzm(M) is a strong solution in the Lo sense of A(u) = f if
there is a sequence {cp,} of C°° functions on M such that (pi - u in HZ,.(M) and
A(cpl) - fin L°(M). Indeed, in this case the weak (distribution) derivatives up
to order 2m are functions in L°(M) and A(u) = f almost everywhere.

c) Let A(u) = a,V`u. If the tensors a., e C(M) for 0 < e < 2m, then we
define the formal adjoint of A by

A*((p) = (-1)'V((pae)

We say that u e L1(M) satisfies A(u) = f, in the sense of distributions, if
for all cp c -.9(M):

i'M
dV = iM' dV.

If the coefficients a,, a C°°(M), then a distribution u satisfies A(u) = f if for all
cp 62(m):

<u, A*((p)> = <f, cp>.

Now a given distribution is some weak derivative of some order, say r, of a
locally integrable function. In this case <u, A*((p)> makes sense if the coef-
ficients satisfy a., E
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d) If the operator can be written in divergence form, i.e., if we can write
A(u) as

m

, akPl .- D2! ... Rk(ak. r fVB, ....6e, + br OCuA(u) 9

05k5m e=0
OSCSm

where ak,r are k + t-tensors and be e'-tensors, then u e HP(M) is said to be a
weak solution of A(u) = f with f e L ,(M) if for all cp c- -9(M):

Y (-1)k
J

ak.,OruV co dV +
J

$pbeVeu dV =
J

f(p dV.
O5k5m M C0 M M
OSCSm

Here we need only suppose that ak, a are measurable and are locally bounded
for all pairs (k, e'). Note these definitions of weak or generalized solutions are
not equivalent; they depend on the properties of the coefficients. But the
terminology is standard and does not really cause confusion.

e) For a nonlinear differential operator of the type

A(u) _ (- 1)'V,,...,eAe'1...11(x, u, Vu, ... , Vmu) _ (-1)tVtAe,
r=o

where Ar are t-tensors on M, u E Cm(M) is said to be a weak solution of
A(u) = 0, if for all cp a -9(M):

r=0

6.2. Regularity Theorems

3.54 And now some theorems concerning the regularity of (weak) solutions
in the interior, then on the boundary, of the manifold. Roughly speaking, we
can hope that if we can define in some sense, for some function u, A(u) = f,
then u will have the maximum of regularity allowed by the coefficients. This is
almost the case. Precisely, we have:

Theorem. Let Sl bean open set of U8" and A = a,V a linear elliptic operator of
order 2m with C°° coefficients (arc- C°°(Q) for 0 < t < 2m). Suppose u is a
distribution solution of the equation A(u) = f and f e (resp., C°°(il)).
Then u e Ck+ zm. a(Sl), (resp., C°°(sl)) with 0 < a < 1.

If f belongs to Hf(fl), 1 < p < oo, then u belongs locally to Hf 2m

Proof. Although it is basic, I did not find exactly this theorem in the literature.
First of all, if f e C°°((), u e C(()); this is the well-known result of Schwartz
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(250). On the other hand, if f e H*(S2) (k >_ 0), then u e Hk+2m locally accord-
ing to Bers, John and Schechter (50) p. 190. Now if f c- obviously f
belongs locally to H. Therefore u E Hk+2m locally and according to Morrey
(204) p. 246, U E C2m +k, 2(0). Finally, let us establish the result whenE Hk(S2)
p 9& 2. There exist continuous u and integer r > 0 such that u = A'u (Bers, John
and Schechter (50) p. 195). But AO' is elliptic of order 2(m + r) and u belongs
locally to L2. Thus if f EHC(f) (1 < p < co), then n belongs locally to
Hf+2(m+r) and u e Hf+2m locally, according to Morrey (204) p. 246. 0

335 Theorem (Ladyzenskaja and Uralceva [173] p. 195). Let !Q be an open set
of R" and A a linear elliptic operator of order two, with coefficients (k > 0
an integer, 0 < a < 1). If a bounded function u e H2(S1) satisfies A(u) = f
almost everywhere, where f e Ck.'(c2), then u E Ck+ 2,'(S1). The same con-
clusion holds if u E H1(SZ) is a weak solution of A(u) = f.

For this last statement, the operator must be written in divergence form. In
general this requires a" E C'(Q). Then, according to Ladyzenskaja (173), u is
locally bounded (p. 199), and belongs locally to H2 (p. 188). Thus we can apply
the first part of theorem 3.55, on any bounded open set O with O c n.

Remark. If the coefficients and f belong locally to Hq, with q > 2 + n/2, and
if u e H 1 , then we can prove (see Aubin (20) p. 66) that u belongs locally to
Hq+2

3.56 Theorem (Giraud [127], Hopf [146], and Nirenberg [216] and [217]).
Let A(u) = F(x, u, Vu, o2u) be a differential operator of'order two, defined on
S1 an open set of R", F being a C°° differentiable function of its arguments. Sup-
pose that A is elliptic on Cl at uo a C2(Q), and that A(uo) = f e C' (Cl)Owith
0 < f < 1. Then uo c- C" ', 0(0).

Let E) be a bounded subset of C2(C1), and suppose that A is uniformly elliptic
on !Q at any u e 0, uniformly in u (the same ,o is valid for all u e 0, see definition
3.51). If A(@) is bounded in then 0 is bounded in C"'- (K), for any
compact set K e Cl.

The result for n = 2 is due to Leray, and Nirenberg [217] established the
theorem in the case n > 2, when there exists a modulus of continuity for the
second derivatives of uo. Previously Giraud [127] and Hopf [146] proved the
result assuming that uo e C28'(O) for some a > 0.

Remark. When A is a differential operator of order two on a compact
Riemannian manifold M", it is possible to prove similar results: If A(O) is
bounded in Hq(M") with q > 2 + n/2, then O is bounded in Hq+2(M"), (see
Aubin [20] p. 68).



§6. Elliptic Differential Operators 87

3.57 Theorem (Agmon [2] p. 444). Let S2 be a bounded open set of 68" with
boundary of class C2rn and A be an elliptic linear derential operator of order
2m with coefficients ae e C`(0). Let u E L (f2) for some q > 1, and f E Lp(S2),
p > 1. Suppose that for all functions v e CIm(3F) n H (S2),

fuA(v) dV = 5fv dV.5

Then u e Hi,,,(S2) n !f (S2) and

IIuIIHZ,,, <- C[Il f II p + IIull,],

where C is a constant depending only on fl, A, n, and p.
Moreover, if p > n/(m + 1) then u e C"- t(n) and u is a solution of the

Dirichlet problem

A*u = f inS2,Vu =0 onda0 <f <m- 1

in the strong L. sense.

3.58 Theorem (Gilbarg and Trudinger [125] p. 177). Let S2 be a bounded open
set of l." with Ck+1 boundary (k >- 0) and A a linear elliptic operator of order
two, such that a2 E Ck+'(n) and a, a° e Ck(K))
Suppose u e Ht(S2) is a weak solution of A(u) = f, with f E Hk(S2). Then
U E Hk+2(Q) and

(19) IIUIIHk., <_ C(IluI 2 + 11P H),

where the constant C is independent of u and f.
Thus, if the coefficients and f belong to C'(fl) and if the boundary is C°°, then
U E

3.59 Theorem (Gilbarg and Trudinger [125] p. 106). Let Q be a bounded open
set of P" with Ck+ 2' 2 boundary and let A be a linear elliptic operator of order two,
with coefficients belonging to (k >- 0 an integer and 0 < a < 1).
Suppose u e C°(rl) n C2(Q) is a solution of the Dirichlet problem A(u) = f in
S2, u = v on Oft with f e Ck,'(0) and v e Then u e 0+1.:(C)

Now let us prove a result which will be used in Chapter 8.

Proposition 3.59. Let 0 be a bounded open set of P" with C°° boundary and let
A(u) = F(x, u, Vu, O2u) be a differential operator of order two, defined on S2, F
being a C°° differentiable function of its arguments on 11. Suppose that A is
uniformly elliptic on 3I at u° e C2-'(D), with 0 < a < 1. If u0,,Q c- C'(00) and if
A(u0) e C°°(D), then u° E C°°(9)).
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Proof. By Theorem 3.56, u° e C°°(D). It remains to prove the regularity up to
aft. Let X be a CO vector field tangent to M. Differentiating A(u°) with
respect to L X' ai yields A;1a(Lu°) e C°(fl) where A' is a linear elliptic
operator with coefficients belonging to C2(fl). As Lu° E C°(11) n C2(0) and as
Lu0/30 e C°°, by Theorem 3.59, Lu° a C2.'(1F). So the third derivatives of u°
are Holder continuous up to aft, except maybe the derivatives three times
normal. Now let P E aft and 0, be the normal derivative. As A is elliptic
aa,,,,A(u°) is strictly positive at P. By the inverse function theorem, a,,, u0
expresses itself in a neighborhood O of P in function of u° its first derivatives
and its other second derivatives which belong to n O). Thus u° e

By induction u° a C0 (fl).

3.60 The Neumann Problem. Until now we talked about the Dirichlet
problem. But we may wish to solve an elliptic equation with other boundary
conditions.

For the Neumann Problem the normal derivative of the solution at the
boundary is prescribed. For this problem, and those with mixed boundary
conditions, we give as references Ladyzenskaja and Uralceva [ 173] p. 135, Ito
[152], Friedman [116], and Cherrier [97].

6.3. The Schauder Interior Estimates'

3.61 Let f2 be an open set of R" and let u E a < 1) be a bounded
solution in Q of the equation

a''aiju+b'aiu+cu= f,

where f and the coefficients belong to C2(f2), a''satisfying a'i.i S j >_ A I I2 with
A > 0 for all x e !Q and e R. Then on any compact set K c 0:

(20) 11U110-- W s C[IIuIIco(Q) + Ilf Ilc"tn),

where the constant C depends on K, a,.1 and A a bound for the C2 norm of the
coefficients in 11

§7. Inequalities

7.1. Holder's Inequality

3.62 Let M be a Riemannian manifold. If f e LP(M) and h e Lq(M) with
p - ' + q -' = 1, then fh e L1(M) and :

(21) Ilfhllj s IIf HpIIhllq

' Gilbarg and Trudinger (125) p. 85.
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More generally, if f e LP; (M), (1 < i < k), with Yk= 1

L1(M) and Il k=1 fill, <- IIk=, IIf+llp,.

p;-' = 1, then flk=, f, E

Proposition 3.62. Let M be a Riemannian manifold. If f e L,(M) n Lq(M),
1 < r < q < oo, then f e LP for p e [r, q] and

(22) Ilfllp- llfllallfli'-" with a =
1/p - 1/q
1/r-1/q'

The proof is just an application of Holder's inequality.

7.2. Clarkson's Inequalities

3.63 If u, v e LP(M), when 2 < p < oo,

lu+vlll+llu-vIlP<2P-'(llullP+llvll,),

lu + vllp + 11u - vIIP >- 2(11u11 + IlvllP)4-

with p-' + q-' = 1. When 1 < p:!5; 2, then

lu + vll" + lu - vllp <- 2(IIuIIPP + I1vlip)q-

lu + v1IPP + lu - vlll > 21-'(llull + llvllP).

7.3. Convolution Product

3.64 Let u e LP(a8"), n e Lq(R) and p, q E [1, co[ with p- 1 + q - ' >- 1. Then
the convolution product (u * v)(x) = JR. u(x - y)o(y) dy exists a.e., belongs
to L, with r -1 = p -' + q -' - 1, and satisfies

(23) Ilu * till, <- Ilullpllull9

Proposition 3.64. Let M", M,, be two Riemannian manifolds and let M" x ft,, B
(P, Q) - f (P, Q) be a numerical measurable function such that, for all P G M,
Q f,,(Q) = f(P, Q) belongs to LP(M) with suppEM.llfp(Q)llp < O C), and for
all Q e M", P -+ A(P) = f(P, Q) belongs to LP(M) with

co.

If g e Lq(M,,) with p-' + q-1 > 1, then h(P) = JM f (P, Q)g(Q) dV (Q)
exists for almost all P e M" and belongs to L,(M") with r- 1 = p + q-
Moreover:

(24) lhll, s sup I1 fp(Q)111-I'lIg11q sup IIJQ(P)11P/r.
Pemn QeM.
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Proof. It is sufficient to prove inequality (24) for nonnegative Co functions
with compact support. If p = q = 1, it is obvious:

Ilhil1 <- sup I11Q(P)11111g111
QeA!

In the general case we write

f (P, Q)g(Q) _ [f P(P, Q)gq(Q)]
1/r[f

P(P, Q)]
1/P-

11r + (1/p - 1/r) + (1/q - 1/r) = 1, applying Holder's inequality, we
are led to

rr
Ih(P)1 <- [f _fP(P, Q)gq(Q) dV(Q)l

llL
f fP(P, Q) dV(Q)

1!p- l/r

M J 1!

x [JQ)dv(Q)

and the result follows.

7.4. The Calderon-Zygmund Inequality

3.65 Let to e L.(P") with compact support satisfy w(tx) = w(x) for all
0 < t S 1 and Ilxll <- p for some p > 0, and also satisfy w(x) da = 0.
For all e > 0 let

(Kr * fxx) = f w(y)IIYII-"f(x - y) dy with f e LP(R").

If 1 < p < co, then limt_°(K, * fxx) exists almost everywhere and the limit
function denoted by K° * f belongs to L.

Moreover, K, * f - K° * f in L. and there exists a constant C, which
depends on co and p, such that

(25) IIKo * f 11, <- Cllf ii (Calderon-Zygmund inequality)

If co e L,(R ") satisfies w(tx) = w(x) for all t > 0 and f w(x) dcr = 0,
then 11K, * f - KO * f 11 P - 0 when a - 0 and (25) holds.
In addition, if co e C1(P" - {0}), Kt * f - K° * f a.e. (see Dunford and
Schwartz [111]).

7.5. Korn-Lichtenstein Theorem

3.66 Theorem. If w(x) is a function with the properties described in 3.65 and
K° is defined as above, there exists, for any a(0 < a < 1), a constant A(a) such
that

IIKo * f Ilc s A(a)Ilf

for all f e C2(F.") with compact support.
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3.67 Theorem. Let M be a compact Riemannian manifold and p, q, and r real
numbers satisfying 1/p = 1/q - 1/n, 1 < q < n and r > n. Define d _
{cp e L/f cp dV = 0}.
Then there exists a constant k, such that, for all a >- 1, any function cp a .sad
with I V I T Ial e Lq, satisfies

(26) 11171"IIp < k211VIT1'11q.

If cp e sl with I VT I E L then supl cp I < Const x II VT 11, If rP E L I and
AT E Lq (in the distributional sense), then

l Vcp I E L. and 11 V9 lp <_ Const x 11ATPllq

If cp e Lt and AT e L, then I VT I is bounded and

sup I V91 < Const x IIDcPII,-

The constants do not depend on cp, of course.
Let M be a compact Riemannian manifolds with boundary. Then the

theorem holds for functions cp E .9(M).

Proof. First of all, we are going to establish (26) for x = 1.
Let G(P, Q) be the Green's function of the Laplacian. As f q dV = 0, in the
distributional sense (Proposition 4.14):

(27) (P(P) = fG(P, Q)AT(Q) dV(Q),

whence:

(28) I cP(P) I <- 5VQGPQ)IIVQ)ldVQ)

and according to Proposition 3.64, we find

II(Pllq < IIVcoIIq sup JlVQG(PQ)IdV(Q)
PeM

for all cp a sad, such that I VT I E Lq.
Using the Sobolev imbedding theorem 2.21, we obtain

(29) Ilwllp <_ KIIV IIq + AII(PIIq < kolIVcollq,

with ko = K + A supPEMS IVQG(P, Q)I dV(Q).
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Let us now prove (26) for a > 1. Since the set of the C°° functions which
have no degenerate critical points is dense in the spaces H, (Proposition 2.16),
we need only establish (26) for these functions. Let rp # 0 be such a function,
with $ rp dV = 0.
Set * = sup(cp, 0) and $ = sup(- gyp, 0).
If the measure of the support of cp is less than or equal to a (the a of Lemma 3.68
below) (34) applied to IV J2 gives (26) with k = B. Otherwise, let a > 0 be
such that the measure of

(I. = {x E I V(x) I >- a} is equal to e: µ(f2Q) = E.

We have aE < I1V 111.

Since I cp I' < .I cp I - a + a', then by (34) below we have

(30) a 1/p lip

111m1'Hp <_ IIp + a'(fdV) <_ BIIVIVI2IIq + ax fdV I .

Suppose that 11inlla, (otherwise, replace rP by -gyp); then we write:

(31) as 5 H9111 = 211011, 5 21Iiallz(f
dull-l;=,

by using Holder's inequality.
Now consider the function Hwlla(o)'/II II . satisfies
2110Ja and 10 dV = 0. Thus applying (29), where we choose ko >- 1, yields:

(32) 114,11p:5 koHV1IIq <- kollVIVI211q

As 1011 H011p(f dV)I-I1P, using (30), (31), and (32) leads to (26), with
k = B + 2ko f dV/e. Indeed V > B + kos-'2°-'(J dV)'.

One easily obtains the other results, by applying the properties of the
Green's function from 4.13 below to (28) or (27) after differentiation:

(33) 1VgP(P)I s fIvPG(PQ)tILS4(Q)I dv(Q)

The proof for the compact manifold with boundary is similar.
Finally we must prove the following lemma which was used above.

3.68 Lemma. Let M. be a Riemannian manifold and p, q as above. There exist
B, a, two positive constants, such that any function q e HI satisfies:

(34) HVHp <- BIIowHq

when ju(supp gy p ) = J , d V s E.
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Proof. Since Ilwllq <- 1411,[µ(supp (p)]'t" <- 01"II0Io, using (29) we obtain
(34) with any c < A-" by setting B = K(1 - E'I"A)-'. 0

7.6. Interpolation Inequalities

3.69 Theorem. Let M" be a Riemannian manifold and q, r satisfy 1 < q, r < x.
Set 2/p = 1/q + 1/r. Then all functions f e p(M) satisfy:

(35) IlVf IIP <- (n"' + IP - 2DIIf IlgIlV2f II,.

Let a denote the completion of -9(M) under the norm IIf IIq + IIv2f II,
1f f e a, then I Vf I E L,(M) and (35) holds.

In particular, when M is compact (with boundary or without), if f E L9(M) and
I V2f I E L then f E L,(M) and (35) holds for f c- HZ(M).
Moreover, if 1/q + 1/r = 1, then all f e -Q(M) satisfy

Ilvf 112 <- If IIQIIAf il,

Proof. First of all, suppose p > 2. For f E 9(M):

(36) v"(f Ivf Ip-2vf) = IVf I° + f IVfI"
(p - 2)IVf I°-`fVYNfv`fv"f

Integrating (36) over M leads to IIVf III = $ f Af dV if p = 2, and when
p > 2 it yields:

(37) IIvfIII= JfL\flVf2dV+(2-p )JlvfIP-4fv,.µfv°fv"f dv.

But Iof 12 < nIV2fI2 and
I <- IV2f IIVfI2;thus:

IIVfIIP<(nt'2+IP-21)5IfIlv2fllvfl°-2dV.

Applying the Holder inequality 3.62, since 1/q + 1/r + (p - 2)/p = 1, we
find:

IIvfIII <- (n' 2 + IP - 21)IIfIIgIIv2fIl,IIVf1II-2,

and the desired result follows. When 1 < p < 2, the proof is similar, but a
little more delicate (see Aubin [22]). When M is compact, if f E Lq(M) and
I02f I e L then by the properties of the Green's function f c- L,(M).

3.70 Theorem (See Nirenberg [220] p. 125). M. will be either R", or a compact
Riemannian manifold with or without boundary. Let q, r be real numbers
1 < q, r < oc and j, m integers 0 < j < m.
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Then there exists k, a constant depending only on n, m, j, q, r, and a, and on
the manifold, such that for all f e 2(M) (with ! f dV = 0, in the compact case
without boundary):

(38) 11V'f11p <

where

(39)
p=-+atl--I+(1-a)q,

n r n

for all a in the interval f/m < a < 1, for which p is non-negative.
If r = n/(m - j) # 1, then (38) is not valid for a = 1.

Proof. a) The result holds also for j = m = 0, with k = 1. This is just
proposition (3.62).

Once the two cases j = 0, m = 1, and j = 1, m = 2 are proved, the general
case will follow by induction, by applying the inequality

(40) I V Vef I I s I o6+ 1f I(see Proposition (2.11)).

For the proof, we are going to use Holder's inequality, Theorem (3.69), and
the Sobolev imbedding theorem. It may be written (Corollary 2.12, and
Theorem 3.67):

(41) HhII, < Const x IIVhII,, where s = I - n > 0, for all h e -9(M,,)

(with f h dV = 0, when the manifold is compact without boundary).

P) The case j = 0, m = 1, p < co. By (41), with t = r < n and Proposition
(3.62):

(42) IlfIlps 11fII:IIfilq-a-kllVfIl;llf11' °,

with 1/p - 1/q = a(l/s - 1/q) = a(l/r - 1/n - 1/q). Thus for j = 0 and
m = 1, if r < n, then (38) holds for 0 5 a < 1 and p runs from q to s =
rn/(n - r).

If r >- n, use (41), with 1/ap = 1/p - 1/n. Putting h = I f IIla, we find the
desired result when p < co. Indeed, llhllap _-5 Cl!Vhll,, becomes

C
(43)

Itllp/°saC Illofllfl'1ml-'Nu<- a IIVf11.1111191/a)-I

by using Holder's inequality, since 11r + (1/a - 1)/q = 1/µ = 1/ap + 1/n.
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y) The case j = 0, m = 1, p = +oo. If r > n, let s E [(n + r)/2, r]. When
M" 96 I", all f e 2(M) (with f f dV = 0 in the compact case) satisfy
(Theorem 3.67):

If llp _< Const x 110.81.,

for all p, 1 < p < ce, and the constant does not depend on p and s. Thus C
does not depend on p in (43). Letting p -+ co in (43), we obtain the inequality
for p = + co.
If r > n and M. = R", a proof similar to that of the Sobolev imbedding
theorem, yields:
There exists a constant C(v), such that for all f e -9((f8"):

(44) sup I f I <- C(v)(11 Vf II. + 11 f II v), when v > n.

Consider the function 9(x) = f (tx), with 0 < t < x. Applying (44) to
and setting y = tx lead to:

Sup If I <- C(v)(tI-"l'llVf11, + t- "Ilfli")

Choosing t = (II f II ,11 Vf 11 ')'"'v + ' we find :

(45) sup If I

co

with d-' = 1 + v(1/n - 1/r).
If q > n, we can choose v = q, and the result follows for p = + x, (d = a).
If q < n, since I I f I I " <- If I$'"(sup I f I )' ", (45) gives:

(sup If 1)'-(1 d)"-91v) < 2C(v)IIVfIld11fII'-d)q,v

which is the result for p = + x, with

a-t = q/v d + 1 - q/v = 1 + q(1/n - l/r).

S) The case j = 1, m = 2. We have established (Theorem 3.69) inequality
(38) for a = j/m = 1/2. If r < n, inequality (38) for a = I is just the Sobolev
imbedding theorem (Corollary 2.12, Theorem 3.67). By interpolation (22),
we find the inequality for I < a < 1. If r > n, according to (38) with j = 0,
m = 1, applied to the function I Vf 1:

(46) IIVf II p <- Const x IIV2f ll:llof ll' -b.

with i/p = 1/s + b(1/r - 1/n - 1/s) > 0 and 0 < b < 1.
Using (35) in (46) yields the desired inequality. Indeed, IIVf IIS <- Const x
IIV2f II.IIf 11, with 2/s = 1/r + 1/q. Thus we find inequality (38) where j = 1,
m = 2 and a = (1 + b)/2.
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We can verify that a < at = [1 + (1/n - 1/r)/(1/n + 1/q)]- t implies
b <- ao = (1 + s/n - sly). Thus (38) holds. N

§8. Maximum Principle

8.1. Hopf's Maximum Principle'

3.71 Let it be an open connected set of la" and L(u) a linear uniformly elliptic
differential operator in it of order 2:

L(u) _ a;j{x)
ax, axi

+ b,{x) oX + h(x)u
i.!

with bounded coefficients and h < 0.
Suppose u e C'(il) satisfies L(u) >- 0.

If u attains its maximum M >- 0 in f2, then u is constant equal to M on il.
Otherwise if at x0 e ail, u is continuous and u(xo) = M >- 0, then the outer
normal derivative at x0, if it exists, satisfies au/av(xo) > 0, provided xo belongs
to the boundary of a ball included in S2.
Moreover, if h - 0, the same conclusions hold for a maximum M < 0.

Remark 3.71. We can state a maximum principle for weak solution (see
Gilbarg and Trudinger [125] p. 168).

Let Lu = a,{a`f a;u) + b' a; u + hu be an elliptic operator in divergence
form defined on an open set it of R", where the coefficients a'', b' and h are
assumed to be measurable and locally bounded.

u e H1(0) is said to satisfy Lu 2t 0 weakly if for all ip a `e(fl), cp >_ 0:

[a'' aiu a;p - (b' aiu + hu)cp] dx < 0.
:

In this case, if h 5 0 then supra u < supznrnax(u, 0).
The last term is defined in the following way: we say that v e H i(Q)

satisfies v/ail < k if max(v - k, 0) e H t(f).

8.2. Uniqueness Theorem

3.72 Let W be a compact Riemannian manifold with boundary and L(u) a linear
uniformly elliptic differential operator on T:

L(u) = a''(x)Vi V1 u + b'(x)V1 u + h(x)u

with bounded coefficients and h < 0.

2 Protter and Weinberger [239].
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Then, the Dirichlet problem L(u) = f, uIaW = g (f and g given) has at
most one solution.

Proof. Suppose u and u are solutions of the Dirichlet problem. Then v = u - u
satisfies Lt) = 0 in W and u 10 W = 0. According to the maximum principle
a S 0 on W. But the same result holds for -v. Thus v = 0 in W.

3.73 Theorem. Let W and L(u) be as above. If m e C2(W) n C°(W) is a
subsolution of the above Dirichlet problem, i.e. w satisfies:

Lw >- f in W, w/a W < g,

then to < u everywhere, if u is the solution of the Dirichlet problem. Likewise,
if n is a supersolution, i.e. D satisfies Lv < f in W and v/aW > g then u < v
everywhere.

8.3. Maximum Principle for Nonlinear Elliptic Operator of Order Two

3.74 Let W be a Riemannian compact manifold with boundary, and A(u) =
f (x, u, Vu, V2u) a differential operator of order two defined over W, where f
is supposed to be a differentiable function of its arguments. Suppose v,
to e C2(W) satisfy A(n) = 0 and A(w) >- 0. Define u, by [a + t(w - n)].

Theorem 3.74. Let A(u) be uniformly elliptic with respect to all t e 10, 1 [.

Then (p = to - n cannot achieve a nonnegative maximum M >- 0 in W, unless
it is a constant, if af(x, u Vu,, V2u,)jau < 0 on W.

. Moreover suppose v, to e C°(W) and to < v on the boundary, then to < n
everywhere provided the derivatives off (x, n Vu,, V2u,) are bounded (in the
local charts of a finite atlas) for all t e ]0, 1[.
If in addition at x0 a aW, cp(x°) = 0 and acp/av(x°) exists, then 0 9/av(x°) > 0,
unless cp is a constant, provided the boundary is C2.

Proof. Consider y(t) = f (x, u,). For some 0 e ]0, 1[ the mean value theorem
shows that 0 5 A(w) - A(v) = y(l) - y(0) = y'(0) with

af(x,ne)v0p+Of(x,09)Di(p+Of(x,09)(P=L(ip)
y () - avi;u aviu au

Thus (P = to - v satisfies L(cp) >- 0. Applying the above theorems yields the
present statements.

3.75 As an application of the maximum principle we are going to establish

the following lemma, which will be useful to solve Yamabe's problem.
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Proposition 3.75. Let M be a compact Riemannian manifold. If a function
i/i >- 0, belonging to C2(M), satisfies an inequality of the type 0qi > Of (P, i/j),
where f (P, t) is a continuous numerical function on M x R, then either (i is
strictly positive, or Eli is identically zero.

Proof. According to Kazdan. Since M is compact and since >V is a fixed non-
negative continuous function, there is a constant a > 0 such that A4 +
atj >- 0. By the maximum principle 3.71, the result follows: u cannot
have a local maximum >-0 unless u = 0. Here L = -A - a. 0

8.4. Generalized Maximum Principle

3.76 There is a generalized maximum principle on complete noncompact
manifolds Cheng and Yau (90). Namely:

Theorem. Let (M, g) be a complete Riemannian manifold. Suppose that for any
x e M there is a C2 non-negative function cps on M with support K" in a compact
neighborhood of x which satisfies cps(x) = 1, cps < k, I Ocpx 1 < k, and cp >-

-kgi,for all directions i, where k is a constant independent of x.
If f is a C2 function on M which is bounded from above, then there exists a

sequence {xj} in M such that lim f (x;) = sup f,

lim I V f (x;) I = 0 and lim sup o;; f (x;) < 0

for all directions i.

Proof. Denote by L the sup off, which we suppose not attained; otherwise
the theorem is obvious by the usual maximum principle. Let {y;} be a
sequence in M such that lim f (y) = L. On Kyj consider the function (L - f
911. This is strictly positive and goes to cc when x - aKyj.
Let x; a Kyj be a point where this function attains its minimum. We have

(L_f)() (f)() = L -I(Y;)

yjq
LL- f) (x') - Dcpsj (x)

(Vii(L_f))(X) (")(xj) for all direction i.

From these we get

0 < L - f(x1) < k[L - f (y1)]

I VI(x;)I 5 k[L - I(Y;)]

VLII(x;) s k[L - f(Y;)]gii.

Thus {xj} is a sequence having the required properties.
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3.77 Theorem (Lions [188]). Let $,, B2, !53 be three Banach spaces and u, o,
two linear operators: 01 --* B2 4 B3. Suppose u is compact and u continuous
and one to one. Then given any e > 0, there is A(&) > 0 such that for all x e'$, :

lu(x)II%, < EIIxII, + A(E)Ily o u(x)II$,

Proof. Suppose the contrary. Then there exists Eo > 0 and a sequence {xk} in
B,, satisfying lxkllz, = 1 such that

(47) IIu(xk)II13, > EOIIxkIIIZ, + klIv ° u(xk)IIm,,

Since u is compact, a subsequence of {u(xk)} converges in 13,, Say u(x,,)
YO a $2. Rewriting (47) for this subsequence gives:

IIU(xk,)Ilg, > Eo + kills ° u(xk,)II9;

Whether yo = 0 or not, letting ki -+ x yields the desired contradiction.

3.78 Theorem (Aubin [17]). Let Bt, $2, B3 be three Banach spaces and u, w
two continuous linear operators: Bt -s B2, Bt Z. B3.
Suppose u is not compact and w is compact. And consider all pairs of real
numbers C, A, such that all x e Z, satisfy:

(48) Ilu(x)II,, 5 Cllxlls, + Allm(x)IIf,.

Define K = inf C such that some A exists. Then K > 0.

Proof. Since u is not compact, there exists a sequence {xi} in B, with
Ilxillis, = 1, such that no subsequence of {u(xi)} converges in B2. But w is
compact. Hence there exists {tv(xk)}, a subsequence of {w(xi)}, which con-
verges in B3. Because {u(xk)} is not a Cauchy sequence in B2, there exist
q > 0 and {k;} an increasing sequence in N such that

Ilu(y) II > q, where y; = xk2j+, - xk,j.

Write (48) for y;:

lu(y,)IIz, 5 CIly,ilia, + AIIw(yi)IIs,

Letting j oo leads to rl < 2C, since w(y3) - 0 in B3. Thus K >- q/2 > 0.



100

9.1. Application to Sobolev Spaces

3. Background Material

3.79 Let M. be a compact Riemannian manifold with boundary or without.
Consider the following Banach spaces $, = Hi(M), B2 = L,(M) and
$3 = Lq(M) with q < n and 1/p = 1/q - 1/n.

Recall Sobolev's and Kondrakov's theorems, 2.21 and 2.34. The imbedding
81 c $2 is not compact (example 2.38) and the imbedding $, c $3 is
compact. Thus there exist constants A, C such that

(49) IIfIIP<C(NofIIq+IIfllq)+AIIfIiq,

for instance (CO, 0), and K = inf{C such that some A exists} > 0.
Of course K depends on n, q and on the manifold. But we have proved

(Theorem 2.21) that K = K(n, q) is the same constant for all compact mani-
folds of dimension n and that K is the norm of the imbedding Hi(R") c
Lp(F2" ).



Chapter 4

Complementary Material

The main aim of this book is to present some methods for solving nonlinear
elliptic (or parabolic) problems and to use them concretely in Riemannian Ge-
ometry. The present chapter 4 consists in six sections. In the first two, we prove
the existence of Green's function for compact Riemannian manifolds. In §3
and 4, we present some material concerning Riemannian Geometry and Partial
Differential Equations, the two main fields of this book. This material, which
completes the previous one (in Chapter 3), is crucially used in the sequel of
this volume. Many theorems will be quoted without proof, except if they are
not available in other books. Then we describe the methods and we mention
the sections of the book where one finds concrete applications of them to some
problems concerning curvature and also harmonic maps. For instance, to illus-
trate the steepest descent method, the pioneering article of Eells-Sampson is the
best example. We end this chapter with a new result on the best constant in
the Sobolev inequality. Its proof shows the power of the method of points of
concentration.

§1. Linear Elliptic Equations

4.1 To prove the existence of Green's function, first of all we have to solve
linear elliptic equations. We also need some results concerning the eigen-
values of the Laplacian. Let g) be a C°° Riemannian manifold. We are
going to consider equations of the type

(1) -0`[a;,.(x)V qol = f(x),

where a;,{x) are the components, in a local chart, of a C°° Riemannian
metric (see 1.15) and where f belongs to L,(M).

I.I. First Nonzero Eigenvalue A of A.

4.2 Theorem. Let (M, g) be a compact C°° Riemannian manifold. The
eigenvalues of the Laplacian A = -V"V are nonnegative. The eigenfunctions,
corresponding to the eigenualue A0 = 0, are the constant functions. The
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first nonzero eigenvalue Al is equal to µ, defined by: .t = infllocpll2. for all

cp E si, with d {cp e H
1

satisfying 11 Q 112 = 1 and J cp d V = 0}.

Proof. The first statement is proved in 1.77; the second in 1.71.

Let {cp,),EN be a sequence in d, such that Ilo(o+lli µ when i - oo. {gyp,} is

called a minimizing sequence. Obviously {g,} is bounded in H 1.

According to Kondrakov's theorem, 2.33, there exists a subsequence {cp;} of

{g,} and q c- L2, such that qp; -+ go strongly in L2 (11 cp1 - cpo112 -+ 0)
Hence 11 rv; -(poll 1 - 0 when j - oc, since the manifold is compact. Thus

go satisfies 11go112 = I and J go dV = 0.
By Theorem 3.18, there exist ipo a H1 and {cpk} a subsequence of {cps} such

that cpk -+ ipo weakly in H 1.
Furthermore, (p,, - rpo weakly in L2 (strong convergence implies weak
convergence). Thus, since the imbedding H 1 c L2 is continuous, q and

Wo are functions in L2 which define the same distribution on 2(M). Therefore

go=00,andgoasd.
According to Theorem 3.17, IlcooIIH, <- lirn infk.. IIwkUIH,, since cpk go
weakly in H,. This implies Il ocpo II i <_ limk-. II orpk II2 = u, because II cPk II 2
= 11'0 112 = 1. But cpo E .2f, hence II V vo IIi = u, and the minimum u is
attained.

Writing Euler's equation of our variational problem (see, for instance,
Berger [421, p. 123), leads to: There exist numbers a and f, such that for all
0eH1:

$V'coVidV= a fNol dV + fl f 0 N.

Picking >G = 1, gives fl = 0. Choosing next fr = go leads to a = t. So
go e H 1 satisfies weakly

(2) Ago = µcpo-

Thus, by the regularity theorem 3.54, go e C. In fact, here it would be
easy to prove this regularity result without using Theorem 3.54. Let us
begin by observing that by (2), Ago E L2. Since

(3) f ViJcpV,1 dV = f()2 dV - fR,jV`QV cpdV,

coo a H2. Taking the Laplacian of Equation (2) gives A2c0o = AA90 =
juAcpo a L2. By induction Akcpo E L2 and I V Ak'Vo I E L2 for all k e 101. A
straightforward calculation gives equalities like (3) for derivatives of higher
order. So go E Hk for all k e N, and the Sobolev imbedding theorem implies
go E C`°.

Thus y is an eigenvalue of is., and go an eigenfunction. On the other hand,
let y be an eigenfunction satisfying Ay = A1y; then Al = IIV'111i Ilyllz 2 >_ Fi,
according to the definition of A, because J y dV = 0.
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4.3 Corollary. Let M be a compact C°° Riemannian manifold. If cp e H,
satisfies ! cp dV = 0, then 114)112 <_ Al 1/2 11VP112 , where A 1 is the first nonzero
eigenvalue of A.

4.4 Theorem. Let W. be a compact Riemannian manifold with boundary of
class C. The eigenvalues of the Laplacian A are strictly positive. The eigen-
functions, corresponding to the first eigenvalue A1, are proportional (the
eigenspace is of dimension one). They belong to C'(W) and they are either
strictly positive on W or strictly negative. Moreover A, is equal toy defined by:
µ = infllowlli for all 9 e a, with d = {cp a H1(W) satisfying 114)112 = 1}.

Proof. We recall that A is said to be an eigenvalue of the Laplacian A if the
Dirichlet problem

(4) Au = Au in W, u = 0 on aW

has a nontrivial solution (in a given space-here in C" (W)).

First of all, we are going to establish the existence of cpo > 0, a nontrivial
weak solution of Au = µu in W, belonging to H 1(W). By Proposition 3.49,
if cpe19(W), IVIcell = IVcpI almost everywhere. And IcpleH1(W) by Pro-
position 3.48. Thus, since Q(W) is dense in H 1(W), by definition p =
infllV I( for all cp C d. = {cp a H1(W) satisfying I1cvll2 = 1 and cp > 0}. We
proceed now as in Theorem 4.2. Let {cpi}ic.,v be a minimizing sequence in
d.,.. There exist a subsequence {Pk} and ago e H 1(W), such that 114)k - coo 112

0 and cpk -- go weakly in H 1, when k -+ oo.
According to Proposition 3.43, there exists a subsequence of {cpk} which
converges almost everywhere to go. Since cpk > 0 for all k, go >- 0 and
cpo e.Af.4. µ is attained by go, and writing the Euler equation yields: q
satisfies weakly in H1(W), Acpo = y po. It remains to prove the regularity of
the solution. According to Theorem 3.54, we have at once go e C°°(W).
But the regularity at the boundary is more difficult to establish.
Let {52,, ,},EN be a C°° atlas of W, such that t/ii(i)i) is either the ball
B = Bo(1) c 6B" or the half ball D = E n B. And let fail be a C°° partition
of unity subordinate to the cover {0i}. We have only to prove that the func-
tions f = (a, go) ° Oi 1 belong either to 9(B) or to C'(6). Theorem 3.54
implies the result for the former. For the latter we can prove (see Nirenberg
[218], p. 665) that f, e H,(W) for all k e N. Hence, according to the Sobolev
imbedding theorem, f e C°°(D).

So cpo a H1(W) n C°°(W). Consequently go is zero on 8W, by Proposition
3.50. If p is zero, II V 4o II 2 = 0 and (Po = 0 in W. This fact contradicts 11 go 112
= 1. Hence p > 0 and p = A. Indeed, let u e C2 be a solution of (4).
Multiplying the equation by u and integrating over W lead to 11Vu112 =
zllulli, by means of an integration by parts of the first integral. Hence A
As go # 0 satisfies go >_ 0, go a C°°(W), cpo/8W = 0, and Ago = 1A go in W,
according to the maximum principle 3.71, go > 0 in W.
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Let Vo be an eigenfunction with i'o = We are going to prove that
qio and (oo are proportional. Define f = sup{v e l such that (o0 - vi,0 > 0
in W).
Obviously cpo - foo >- 0 in W. But we have more: there is a point P E W
where the function 00 - P410 vanishes. Indeed, suppose (o - #V/o > 0 in W.
According to the maximum principle 3.71, (a/av) ((po - fl>/io) < 0 on 0W,
since

(5) A(gvo - f1o) = A1((Po - fll 0) ? 0.

But the first derivatives are continuous on W, so there exists an e > 0 such
that cpo - (13 + e)Oo > 0 in W. Hence our initial supposition is false and P
does exist. Applying the maximum principle yields <oo - Poo = 0 every-
where, since (5) implies that rpo - flifio cannot achieve its minimum in W,
unless it is constant.

4.5 Remark. If W. is only of class C', the preceding proof is valid, except
for the regularity on the boundary.
When k > n/2, we can prove that cpo a C'(W) with r < k - n/2. The proof is
similar to the previous one, except that now the atlas {S2i, Oi}icu is of class
Ck. The functions f satisfy elliptic equations on. with coefficients belonging
to C- 2(D); then by Theorem 3.58, f,, e Hk(D). Applying Theorem 2.30, we have

f, E C'(.D).

4.6 Corollary. Let W be a compact Riemannian manifold with boundary of
class C, k 1, or at least Lipschitzian. There exists A, > 0, such that

Al 1 IIVOI12 for all W e 1(W). Thus IIowllz is an equivalent norm
for 1(W)

Proof. Since the Sobolev imbedding theorem 2.30 and the Kondrakov
theorem 2.34 hold, the proof of Theorem (4.4) is valid, except for the regu-
larity at the boundary. Thus p is attained in sad and consequently p = A, is
strictly positive.

1.2. Existence Theorem for the Equation A (p = f

4.7 Theorem. Let (M., g) be a compact C°° Riemannian manifold. There exists
a weak solution op a H1 of (1) if and only if f f (x) dV = 0. The solution ip is
unique up to a constant. If f e C ", (r >- 0 an integer or r = + oo, 0 < x < 1),
then ep E C""'.

Proof. a) if 'p is a weak solution of (1) in H 1, by Definition 3.53, 1 ai; oiip0'I/i d V
= j Of dV for all 1 e H 1. Choosing 0 = 1, we find f f dV = 0. This con-
dition is necessary.
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fl) Uniqueness up to a constant. Let cp, and cp2 be weak solutions of (1) in
H1. Set 0 = cp2 - (p,. For all i E H1, $ ai;V'i/ V'ip dV = 0. Choosing ip

leads to f ai;V'oV'Cp dV = 0. Thus w = Constant.

y) Existence of cp. If f = 0, the solutions of (1) are cp = Constant. Hence-
forth suppose f 0- 0. Let us consider the functional I(q) = f ai;V'cpVjcp d V.
Define p = inf 1((p) for all ep e , with 9 = {cp E H1 satisfying $ cp dV = 0
and $ pf d V = 11.
µ is a nonnegative real number, 0 < p < 1(f IIf Ilz2)

. Let {4' }&EN be a
minimizing sequence in 2: I(cpi) p. Since a;,{x) are the components of a
Riemannian metric, there exists a > 0 such that I((pi) >_ aIIVcpill'. Thus the
set { l Vcpi I }iE N is bounded in L2. Moreover, since f (Pi dV = 0, it follows by
Corollary (4.3), that I1 9i112 <_ Al 112 IIV(r112. Consequently {cpi}iEN is bounded
in H1. Applying Theorems 3.17, 3.18, and 2.34 gives: There exist a sub-
sequence {cpk} of {pi} and cpo e H 1 such that Il4'k - (Po II 2 0 and such that
I((po) < p, (see the proof of Theorem 4.2).

Hence coo E -4 and 1(cpo) = M. Since cpo minimizes the variational problem,
there exist two constants fi and y such that for all 0 E H 1:

dV= dV+yJ dV.

Picking = 1 yields y = 0. Choosing 0 = cpo implies $ = p. Since
cpo f dV = 1, q is not constant and p = I(cpo) > 0. Set ipo = coo/µ. Then

ip satisfies Equation (1) weakly in H1 and Theorem 3.54 implies the last
statement.

4.8 Theorem. Let W. be a compact Riemannian manifold with boundary of
class C. There exists a unique weak solution of (1): cp e H 1(W). If f E C"°(W),
then cp e C" (W) and cp vanishes on the boundary.

Proof. Uniqueness is obvious. Let cp and cp2 be weak solutions of (1) in
H1(W). Set ip = (P2 - p1. For all i E R1:

J
ai;V'OVip dV = 0. Choosing 0 E w leads to = 0.

W

For existence, let us consider the functional

J(W) =
J

ai;V4pVjcp dV - 2 $fQ dV.
W w

Define p = inf J(q) for all cp a H1(W). p is finite. Indeed, since ai; are the
components of a C" Riemannian metric on W which is compact, there exists
an a > 0 such that
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J
ai;Vi(p0'cp dV > ot11Vrvllz-

w

On the other hand, by Corollary 4.6, I I g1I i <- Al ' I I Vp 1 1 ' 2 . Thus for all s > 0,

(6) j(g) >_ xllowlii - EIIPNi -
E 11f112 > (c - i-')llVc'IIi - E IIIIIi

Choosing e = ot21/2 gives µ > - 2(x.11)-' 11f112-
2

Let (cpi)i N be a minimizing sequence of J in H1(W). According to (6),
{co )1E,, is bounded in H1. Applying Theoremsa 3.17, 3.18, and 2.34 yields:
There exist a subsequence {g,,} of {,pi} and go a H 1 such that Ilwk - 00112 0
and such that J(4,0) < p. Hence J(go) = µ, and go satisfies Equation (1)
weakly in H 1. Theorem 3.58 and Proposition (3.50) imply the last statement.

§2. Green's Function of the Laplacian

4.9 The Laplacian in a local chart can be written as follows:

AP = -Vjj( 'jV ) = -ai(9ija;v) - 9'a;(Prix,

Ag = -191-'12a1LYt' 1916;(0], because r k = ak log 191

If 9 = f(r) in geodesic polar coordinates:

-Af(r) --11
1 9 1

a.[r"-' I 9 l a,f] = f" + n r 1 f' + f'a, log I9I.

By Theorem 1.53, there exists a constant A such that

(7) 10, log 1911 <- Ar.

2.1. Parametrix

4.10 In 88", n >- 3, AQdistr (r2-") = (n - 2)cv"_ Ibi and in R2, eQdistr. log r =
-2nbi, where b11 is the Dirac function at P, r = d(P, Q) and w"_ is the
volume of the unit sphere of dimension n - I.
On a Riemannian manifold, r is only a Lipschitzian function. For this reason
we must consider f (r) a positive decreasing function, which is equal to 1 in a
neighborhood of zero, and to zero for r >- b(P) the injectivity radius at P
(see Theorem 1.36). We define:
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(8) H(P, Q) = [(n - 2)wn-1]-'r2-"f(r), for n > 2 and

H(P, Q) = - (2n)-' f (r) log r, for n = 2,

and compute when n > 2:

AQH(P, Q) = [(n - 2)w,-i]-'r'-"[(n - 3)f' - rf"

+ ((n - 2) f - rf') 8, log -g I I.

According to (7), there exists a constant B such that

(9) IAQH(P, Q) I <
Br2-s'
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B depends on P. But on a compact Riemannian manifold, we can choose
f (r) zero for r >- b the injectivity radius, and then B does not depend on P.
Henceforth in the compact case, f (r) will be chosen in this way.
2.2. Green's Formula

4.10

H(P, Q)ii(Q) dV (Q),(10) AP) =
SM

H(P, Q)AO(Q) dV(Q) -
SM

for all >V e C2. Recall (8), the definition of H(P, Q).

For the proof, we compute fM-Bp(,) H(P, Q)AO(Q) dV(Q), integrating by
parts twice. Letting a - 0 yields Green's formula.
If /i e C°°, by definition <Adi,tr, H, s> = <H, Ao> in the sense of distributions,
and <H, Jm H(P, Q)AO(Q) dV(Q). Thus:

(11) AQ dish. H(P, Q) = AQ H(P, Q) + bP(Q)

Picking 0 - 1 in (10), gives I m AQ H(P, Q) dV(Q) = -1.
From (10), after interchanging the order of integration, we establish that
all w e CZ satisfy :

(12) tG(Q) = AQ f H(P, Q)(p(P) dV(P) - f AQ H(P, Q)(o(P) dV(P).
M M

4.11 Definition. Let W" be a compact Riemannian manifold with boundary
of class C. The Green's function G(P, Q) of the Laplacian is the function
which satisfies in W x W :

(13) AQdlstr.G(P, Q) = bp(Q),
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and which vanishes on the boundary (for P or Q belonging to OW).

Let M. be a compact C°° Riemannian manifold having volume V. The
Green's junction G(P, Q) is a function which satisfies:

(14) AQaav. G(P, Q) = ap(Q) - V -'.

The Green's function is defined up to a constant in this case. Recall that 6 p
is the Dirac function at P.

4.12 Promotion (Giraud [126] p. 150). Let 0 be a bounded open set of 11"
and let X(P, Q) and Y(P, Q) be continuous functions defined on 0 x Q minus
the diagonal which satisfy

I X(P, Q) 1 <_ Const x [d(P, Q)]a-" and I Y(P, Q) 1 < Const x [d(P, Q)]fi-"

for some real numbers a, $ belonging to ]0, n[. Then

Z(P, Q) = $x(P. R)Y(R, Q) dV(R)

is continuous for P # Q and satisfies:

I Z(P, Q) I s Const x [d(P, Q)]a+,- m if a + A < n,

I Z(P, Q) 1 < Const x [1 + I log d(P, Q) I ] if a + 13 = n,

I Z(P, Q) 15 Const if a + f > n;

in the last case Z(P, Q) is continuous on S2 x Cl

Proof. The integral which defines Z(P, Q) is less than the sum of three
integrals, an upper bound of which is easily found. The integrals are over the
sets 0 n Bp(p), [BQ(3p) - Bp(p)] n S2, and C - S2 n BQ(3p), with 2p =
d(P, Q) small enough. U

2.3. Green's Function for Compact Manifolds

4.13 Theorem. Let M. be a compact C' Riemannian manifold. There exists
G(P, Q), a Green's function of the Laplacian which has the following properties:

(a) For all functions cp a CZ:

(15) qa(P) = V` f w(Q) dV(Q) + $G(P , Q)t p(Q) dV(Q).
M N
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(b) G(P, Q) is C°° on M x M minus the diagonal (for P A Q).
(c) There exists a constant k such that:

I G(P, Q) I <k(1 + I log r I) for n=2 and
(16) IG(P, Q) I < kr2-" for n > 2, IVQG(P, Q) I < kr'-",

I OQ G(P, Q) I < kr " with r = d(P, Q).

(d) There exists a constant A such that G(P, Q) >_ A. Because the Green
function is defined up to a constant, we can thus choose the Green's
function everywhere positive.

(e) f G(P, Q) dV(P) = Const. We can choose the Green's function so
that its integral equals zero.

(f) G(P, Q) = G(Q, P).

Proof of existence. Definel-(P, Q) = r'1(P, Q) = -AQH(P, Q)and r i+1(P, Q)
= JM Ti(P, R) F(R, Q) dV(R) for i e N. Pick N a k > n/2 and set

(17) G(P, Q) = H(P, Q) +
J

I',{P, R)H(R, Q) dV(R) + F(P, Q).
i=1 M

By (11), (12), and (14), F(P, Q) satisfies

(18) AQF(P, Q) = r"k+ 1(P, Q) - V- 1.

According to (9), I r"(P, Q) I < Br2 -". Thus from Proposition 4.12, r'k(P, Q)
is bounded and consequently r"k+1(P, Q) is C'.

Now for P fixed, there exists a weak solution of (18), (Theorem 4.7), unique
up to a constant. Using the theorem of regularity 3.54, the solution is C2.
G(P, Q), defined by (17), satisfies (14). And Q -+ G(P, Q) is C" for P Q

(Theorem 3.54). For the present, we choose G(P, Q) such that:

Q) dV(Q) = 0.
SM

Proof of the properties. a) (14) applied to tp a C°° leads to (15) and p1(M) is
dense in C2.

b) We are going to prove that P - G(P, Q) is continuous for P # Q.
Since we know that Q -+ G(P, Q) is C°° for Q # P, the result is a consequence
of f): G(P, Q) = G(Q, P), using for the derivatives a proof similar to the
following. Iterating k-times (k > n/2) Green's formula (10) leads to:
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i(P) =
J

Q)AO(Q) dV(Q)1MH(P.

+
i

fN [Jr,{P, R)H(R, Q) dV (R)JAO(Q) d V (Q)

+ jfk+ 1(P, QV(Q) dV(Q).
M

Using (8), (9), and Proposition 4.12 gives:

(19a) I'(P) I < Const x (sup 14' I + II0112).

According to Corollary 4.3, if f dV = 0:

(19b) iI .II < A1 1

I[9,i' 2 -- 1i 1

the last inequality arises after integrating by parts and using Holder's
inequality. Hence, there exists a constant C such that the solution of A4 = f
with $ 0 dV = 0 and $ f dV = 0 (Theorem 4.7) satisfies:

SUP 10 I5CsupIfI

Applying this result to (18):

SUPQ [F(P, Q) - F(R, Q)] - V -1 5'(p, Q) - F(R, Q)] dV (Q)
v

5 csup Irk+1(P, Q) - rk+1(R, Q) 1.
Q

Since SM G(P, Q) dV(Q) = 0, it follows from (17) that f. F(P, Q) dV(Q) is a
continuous function of P.
Thus P - F(P, Q) is continuous, and for P # Q, P - G(P, Q) is also.

Using only this continuity of G(P, Q), we will shortly prove parts d)-f).
Assuming this has been done, we complete the proof of part b). By f)
G(P, Q) = G(Q, P). Thus G(P, Q) is C'° in P for P # Q and any r-derivative
at P a.G(P, Q) is a distribution in Q which satisfies AQ a 'P' G(P, Q) = 0 on
M - {P}. arpG(P, Q) is then C°° in Q for Q # P according to Theorem 3.54.

c) The inequalities follow from (17). When Q - P, the leading part of
G(P, Q) is H(P, Q).
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d) From this fact, there exists an open neighborhood S2 of the diagonal in
M x M, where G(P, Q) is positive. On M x M - S2, which is compact,
G(P, Q) is continuous. Thus G(P, Q) has a minimum on M x M.

e) Since P --+ G(P, Q) is continuous for P # Q and I G(P, Q) I < Const r2 - ",
we can consider fm G(P, Q) dV(P), and the transposition of (15):

(20) 4(Q) = V-' f(P) dV(P) + OQ
J

G(P, Q)i/i(P) dV(P).

Picking 0 - 1 gives f m G(P, Q) dV(P) = Const.

f) Choosing = Ocp in (20) leads to

Oco(Q) = OQ f G(P, Q)A(o(P) dV(P).
M

Thus cp(Q) = I m G(P, Q)tlcp(P) dV(P) + Const, by (15), and this equality
yields

(21) J[G(P, Q) - G(Q, P))Eco(Q) dV(Q) = Const
m

for all cp e C2. Integrating (21) proves that the constant is zero, since

f G(Q, P) dV(P) = 0 and fG(P, Q) dV(P) = Const.

Thus G(P, Q) -. G(Q, P) = Const. Interchanging P and Q implies the second
member is zero.

4.14 Proposition. Equality (15) holds when the integrals make sense.

Proof. Suppose that OcpeL1. Since 91(M) is dense in Lt there exists a
sequence {gm} in 2(M) such that Ilgm - A9111 0. Thus j m gm dV - 0
andgm - V-' fMgdV -OcpinLt.

Therefore we can choose {g,"} with fu dV = 0 and, according to
Theorem 4.7, there exists { fm} such that J .v fm dV = fM cp d V and Afm = gm.
fm belongs to C°° and satisfies

dV + f G(P, Q)gm(Q) dV(Q)fm(P) = V-1 ffm
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According to Proposition 3.64, fm -- V- 1 J;,, (p dV + JM G(P, Q)A(p(Q) dV(Q)
in L,. On the other hand, fm - cp in the distributional sense, since $M fm dV
= JM p dV and Af,,, - Arp in L1. Thus w satisfies (15) almost everywhere.

4.15 Remark. It is possible to define the Green's function as the sum of a
series (see Aubin [12]). This alternate definition allows one to obtain
estimates on the Green's function in terms of the diameter D, the injectivity
radius, d, the upper bound b, of the curvature and the lower bound a of the
Ricci curvature. As a consequence, Aubin ([12] p. 367) proved that ,1, the
first nonzero eigenvalue is bounded away from zero:
There exist three positive constants C, k, and which depend only on n,
such that d, >- CD-20Ja, S satisfying -aS2 < s, 26sup(0, b) < it, and
0<S<d.
Other positive lower bounds were found by various authors. Let us mention
only Cheeger [82] and Yau [274].

4.16 Remark. The Green's function was introduced by Hilbert [140] and
the Green's form on a compact Riemannian manifold by G. De Rham [105]
and Bidal and De Rham [52].

2.4. Green's Function for Compact Manifolds with Boundary

4.17 Theorem. Let W. be an oriented compact Riemannian manifold with
boundary of class C'. There exists G(P, Q), the Green's function of the Lap-
lacian, which has the following properties:

(a) All junctions (p a C2(W) satisfy

(22) (p(P) = JG(P, Q)A(p(Q) dV(Q) - f v`VLQG(P, Q)w(Q) ds(Q),
w w

where v is the unit normal vector oriented to the outside and ds is the
volume element on OW corresponding to the Riemannian metric j*g
(j: aW - W the canonical imbedding).

(b) G(P, Q) is C°° on W x W minus the diagonal (for P # Q).
(c) J G(P, Q) j < kr2'" for n > 2, JG(P, Q) j < k(1 + I log r J) for n = 2,

1VG(P, Q)J < krl -",
IvyQ G(P, Q) J < kr- with r = d(P, Q) and k a constant which depends
on the distance of P to the boundary.

(d) G(P, Q) > 0 for P and Q belonging to the interior of the manifold
(e) G(P, Q) = G(Q, P).

Proof of existence. Let P e W given. We define H(P, Q) as in (8), where f (r)
is a function equal to zero for r > 6(P) (k + 1)- t with iJ a k > n/2 and S(P)
the injectivity radius at P.
F(P, Q) defined by (17) satisfies
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AQF(P, Q) = r k+,(P, Q), F(P, Q) = 0 for Q eaW.

According to Theorem 4.8, there exists a solution in A I (W).
G(P, Q) defined by (17) satisfies (13), is C°° on W - P, and equals zero for
Q e SW. (We can apply the theorems of regularity to W - BP(e) with e > 0
small enough.)

Proof of the properties. a) The result is obtained by using Stokes' formula
(see 1.70).

b) The proof is similar to that of Theorem 4.13 b).
c) The leading part of G(P, Q) is H(P, Q)
d) Let P e W given. According to the previous result G(P, Q) > 0 for Q

belonging to a ball BP(e) with e > 0 small enough. Applying the maximum
principle 3.71, G(P, Q) achieves a minimum on the boundary of W - BP(e),
since A. G(P, Q) = 0. Thus G(P, Q) > 0 for Q e W.

e) Transposing (22) with p and i/i belonging to -9(W) yields:

(Q) = AQ fG(P, Q)i/r(P) dV(P).
w

Choose fi(Q) = A(p(Q). By Theorem 4.8,

cp(Q) = ,Q)Acp(P) dV(P).
W

Hence G(P, Q) satisfies

APaielr. G(P, Q) = SQ(P)

and G(P, Q) = G(Q, P).
Indeed AQ[G(P, Q) - G(Q, P)] = 0 and G(P, Q) - G(Q, P) vanishes for
Q e 6W. Applying Theorem 4.8 yields the claimed result. -

4.18 Let us now prove a result similar to that of Theorem 4.7, a result which
we will use in Chapter 7.

On a compact Riemannian manifold M, let fl be a C'+' section of T*(M)
® T*(M), which defines everywhere a positive definite bilinear symmetric
form (9 is a C'+' Riemannian metric) where r >- I is an integer and x a real
number 0 < a < 1. Consider the equation

(23) -V[a;,.(x)V p] + b(x)g = f(x)

where a;,{x) are the components in a local chart of fl and where b(x) and f (x)
are functions belonging to C'+'. Moreover, we suppose that - V a;,{x)
belongs to C'+'
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Theorem 4.18. If b(x) > 0, Equation (23) has a unique solution belonging to

Proof. Suppose at first that a;,{x), b(x) and f(x) belong to CO. In that case
we consider the functional I(q) = j a,;0`cpV'cp dV + $ b92 dV and u =
inf I((p), for all p e H, satisfying $ cpf dV = 1. A proof similar to that of 4.7
establishes the existence of a solution, which belongs to C"` by the regularity
theorem 3.54 and which is unique by the maximum principle 3.71.

Now in the general case we approximate in C"' the coefficients of
Equation (23) by coefficients belonging to C. We obtain a sequence of
equations

Ek: -V[akiJ{x)Vip] + bk(x)p = fk(x)

with C" coefficients (k = 1, 2, ...). And we can choose E. so that bk(x) > bo
and ak;,{x}c''S' ? AI IZ for some bo > 0 and A > 0 independent of k.

By the first part of the proof, Ek has a C°° solution (0k. And these solutions
(k = 1, 2,...) are uniformly bounded. Indeed, considering the maximum
and then the minimum of Qk, we get

II(Pkl1Co b0'Ilfklic..

Now by the Schauder interior estimates 3.61, the sequence {ipk} is bounded
in C2, '. To apply the estimates we consider a finite atlas {i2,, /i,} and compact
sets K, c S2, such that M = U, K,.
As {cpk} is bounded in C2,2, by Ascoli's theorem 3.15, there exist (p eC2
and a subsequence {(p,) of {(pt} such that (p; - cp in C2. Thus cp e C2.=
and satisfies (23). Lastly, according to Theorem 3.55, the solution [p belongs
to"C'+2+a and is unique (uniqueness does not use the smoothness of the
coefficients).

Remark. For the proof of Theorem 4.18, we can also minimize over H, the
functional

J(Q) = $a1jV4Vjcp dV + Jb2 dV - 2 ffco dV.

We considered a similar functional in the proof of Theorem 4.8.
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§3. Riemannian Geometry

3.1. The First Eigenvalue

4.19 Let Al be the first non-zero eigenvalue of the Laplacian on a compact
Riemannian smooth manifold (Ma, g) of dimension n > 2.

Lichnerowicz's Theorem 4.19 [185]. If the Ricci curvature of the compact man-
ifold (Ma, g) satisfies Ricci > a > 0, then \1 > °'1

Proof. We start with the equality

(24) V3V1V f - VtiV'V3f = RijV3 f

valid for any f E C3(M).
Multiplying (24) by Vi f and integrating leads (after integrating by parts

twice) to

(25) f(Lf)2 dV -J ViVjfV Vif dV = fRj V2fVuf V.

Choosing as f an eigenfunction of the Laplacian d = -ViVti related to.X1:
.6f = Al f , we obtain at once

r ff2A2 ff2 dV > aJ Vf12dV =a,\1 d V.

Thus \1 > a, but we have better, because for any f E C2:

(26) fVV3fVtVifdV > 1 1(,6f)2 dV.- n
This inequality is obtained expanding

(v v f + 1 df9ij) (v vaf +
1 dfgti) > 0.

n n -
When f satisfies Af = \1 f, (25) and (26) imply the inequality \1 > ofal

Theorem 4.19. After this basic result, a lot of positive bounds from below and
from above for \1 have been obtained.

4.20 For a Kahler manifold the Laplacian L is one half of the real Laplacian
L. In Chapter 7 we will write the complex Laplacian without the bar, but in
this section we must have another symbol than that for the real Laplacian.

Of = -VAVxf = -20'Otif = Zdf,

A = 1, 2, ... , in, where m is the complex dimension (n = 2m).
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For a compact Kahler manifold the first non-zero eigenvalue of the Laplacian
Al is equal to A1/2 (in Chapter 7, we write the first non-zero eigenvalue of the
complex Laplacian without bar).

Theorem 4.20 (Aubin [20] p. 81). If the Ricci curvature of the compact Kahler
manifold (M2m, g) satisfies Ricci > a > 0, then Al > a.

Proof The complex version of (24) is

(27) V"V V f- VI V"VV f= R, V' f

since V"V V f. = V V"V"f . Multiplying (27) by V" f and integrating yield

J (f)2 dV - J
V'VµfVVV"f dV = fR, V"f0"f dV.

Thus, for any
2f E C2, f (6f) dV > f R""V"f 0"f dV.

The inequality of Theorem 4.20 follows. This inequality will be the key for
solving the problem of Einstein-Kahler metrics when CI (M) > 0 (see 7.26).

Corollary 4.20. The first non-zero eigenvalue a1 of the Laplacian on a compact
Einstein-Kahler manifold satisfies Al > R/m, where R is the scalar curvature
of (M2mi g), that is one half the real scalar curvature R:

R = gµ"R"" = g'avRN," = R/2.

We verify that a1 = R/m for the complex projective space Pm(C). But there
are other Kahler manifolds having this property.

There is no complex version of Obata' s theorem [*260] for the sphere.
S2 x S2 or more generally P,r,,(C) x Pm(C) have this property: a1 = R/m

(see Aubin [20]).

4.21 The preceding results concern the case of positive Ricci curvature. Without
this assumption we have the

Theorem 4.21 (Berard, Besson and Gallot [*36]). Let (M g) be a compact
Riemannian manifold satisfying Ricci > (n-1)Ea2D-2, where D is the diameter
and e _ -1, 0 or 1. Then Al > nD-2a2(n, E, a).

For the value of a(n, E, a), see Theorem 1.10.
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3.2. Locally Conformally Flat Manifolds

4.22 Definition. The Riemannian manifold (Ma, g) is locally conformally flat if
any point P E M has a neighbourhood where there exists a conformal metric
(g = of g for some function 0 which is flat.

When (Ma, g) is locally conformally flat, there exists an atlas (fi, 0i)iEf
where cpi are conformal diffeomorphisms (Qi, gi) --+ (Rn, e), with gi = g/,Qi.

In 1822 Gauss proved the existence of isothermal coordinates on any surface
(Chern [*94] gave an easy proof of this fact). Thus, any Riemannian manifold
of dimension 2 is locally conformally flat.

In dimension greater than 2, we introduce two tensor fields.

4.23 Definition. The Weyl tensor (or tensor of conformal curvature) is defined
by its components in a local chart as follows

(28) Wijkl = Rijkl -
1

n - 2 (Rik 9jl - Ril 9jk + Rjl 9ik - Rik gil)

+
R

(9jl 9ik - 9jk 9il)(n - 1)(n - 2)

The Schouten tensor is defined by

(29) Sij=n 1 2[2Rj-(nR1)9ij]

We verify that the tensor Wijkl is conformally invariant: for the metric

9 = egg, Wi3kl = Wij.kl We verify also that, in dimension 3, Wijkl - 0-

4.24 Theorem (Schouten). A necessary and sufficient condition for a Riemannian
manifold to be locally conformally flat is that Wijkl = 0 when n > 3 and
VkSij = V jSikwhen n = 3.

Proof. The Weyl tensor of the Euclidean metric vanishes (its curvature is zero).
Since Wijkl is conformally invariant, the necessary condition follows at once
when n > 3.

Set of g. A computation gives

(30) `̂'ij = Sij +Tij,

with Tij = V Vjf-2VifVjf+gVkfVkf9ij; thus, we have VkSij-V Ski
0, in particular when n = 3. Indeed, if g =6, Rijkl - 0 and

2RijklV2f =VkfViVif -VifViVkf +V'f(9ilVkVif -9ikVlVjf)

Thus VkTij = VjTik. Since Sij - 0, we have VkSij - OjSik =- 0, in
particular when n = 3.



118 4. Complementary Material

We verify that O3Wi'kl = '2 (7ksil - V1Sik) Thus Wijk1 = 0 implies
VkSil - VLSik - 0 when n > 3.

The condition is also sufficient. Assume there exists a 1-form w with com-
ponents wi satisfying in a local chart {xk}:

(31) aiwj = Aij (x, w)

with
k 1 1 kAij = ijwk + 2wiwj -

4w
wkgij - Sij.

Since Sij = Sji and rk = r, aiwj = ajwi.
Thus, locally, there exists a function f such that w = df. According to

(30) and (31), for the corresponding metric g, Sij = 0. This implies, R =
(n - 1)Sijgij = 0 and then Rij = 0.

So g is flat since Wijk! = 0 (by assumption when n > 3, in any case when
n=3).

The local integrability conditions of system (31) are

akAij + A-

Akt = aiAkj + Ow`' Ail
awl

A computation shows that they are equivalent to the conditions

Wi'kiwj = Oksil - VzSik

which are satisfied by hypothesis (when n > 3, we saw that Wijk! = 0 implies
VkSil - v{Sik = 0).

4.25 Proposition (Hebey). Let (M,,, g) be a locally conformally flat manifold
(n > 3) and let P be a point of M. Then there exists in a neighbourhood of P a
metric g conformal to g, which is flat and invariant by any isometry a of (Mn, g)
such that o (P) = P.

Proof Let us go back to the proof of Theorem 4.24. If we fix df (P) = 0 and
f(P) = 0, the solution of (31) with w = df is unique. Now w o o satisfies (31)
and the conditions at P. Thus f o o, = f.

4.26 Examples. The Riemannian manifolds of constant sectional curvature are
locally conformally flat. The Riemannian product of two manifolds (M,, gi )
and (M2, g2) is locally conformally flat if one of them is of constant sectional
curvature k and the other of dimension 1, or of constant sectional curvature - k.

We also have the

Theorem 4.26 (Gil-Medrano [' 142]). The connected sum of two locally confor-
mally flat manifolds admits conformally flat structure.
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3.3. The Green Function of the Laplacian

4.27 Gromov [135] found a new kind of isoperimetric inequalities, which con-
cern the compact Riemannian manifolds (Mn, g) of positive Ricci curvature. By
an homothety, we can suppose that the Ricci curvature is greater than or equal
to n - 1 which is the Ricci curvature of the sphere (S,,, go) of radius 1 (endowed
with the standard metric).

Let Si c M be an open set which has a boundary 8f2.
Gromov considers a ball B C S,, such that

(32) Vol B/ Vol S = Vol ,f2/ Vol M.

The Gromov inequality is

(33) Vol(raQ)/ Vol M > Vo1(8B)/ Vol 5,,.

With such inequality, we can for instance obtain an estimate of the constants
in the Sobolev imbedding theorem, or a positive bound from below for the first
non-zero eigenvalue A, of the Laplacian, see Berard-Gallot [*37], Berard-Meyer
[*38] and Gallot [*133].

However these results concerned only compact manifolds with positive Ricci
curvature. This extra hypothesis has been removed.

4.28 Let (Ma, g) be a compact Riemannian manifold.
Berard, Besson and Gallot defined the isoperimetric function h(/3) of M as

follows:

(34) h(t3) = inf [ Vol(8fl)/ Vol M]

for all 51 C M such that Vol ,R/ Vol M = 0 with /3 E]0, 1 [ of course. Changing
(2 in M \ ,R proves that h(1 - /3) = h(/3).

The properties of h(/3) are studied in Gallot [* 133] (regularity, under-
additivity).

We denote by Is(/3) the isoperimetric function of (S,,, go) of radius 1. Let D
be an upper bound for the diameter of (M, g) and let r be the inf of the Ricci
curvature of (M, g).

Theorem 4.28 (Berard, Besson and Gallot [*36], see also Gallot [* 133]). Assume

(35) rD2 > e(n - 1)a2 with e E {-1,0,+1} and a E R.

Then, for any /3 E]0, 1[,

(36) Dh(0) > a(n, e, a) Is(/3),

with a(n, 0, a) = (1 + )
I /n - 1,
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/na/2 1

a(n, + 1, a) a [wn /n _ 1 J 1 (2J (cos t)n1dt)

(in this case a < 7r)

and a(n, -1, a) = ac(a) where c(a) is the unique positive solution x of the
equation x fo (ch t + x sh t)n-1 dt = wn /wn_ 1.

This solution c(a) satisfies c(a) > b(n, a) = inf(k, k1 /n) with

fo
(sint)n-1 dt

(n- 1)ak
fo (ch 2t)(n-1)/2 dt -

_ (n - 1)wn/wn_1 (e

In dimension 2, we can choose a(2, +1, a) = a / sin(a/2), a(2, 0, a) = 2 and
a(2, -1, a) = a/ sh(a/2).

4.29 Let G(x, y) be the Green function of the Laplacian on (M, g) satisfying

J G(x, y) dV (y) = 0.

In this section, we want to find a lower bound of G(x, y) in terms of n, r, V
and D, that is, resp., the dimension, the inf of the Ricci curvature, the volume
and the diameter of the compact manifold (Mn, g).

In [* 31] Bando and Mabushi gave such a lower bound

(37) G(x, y) > -y(n, a)D2V-1,

where -y(n, a) is a positive constant depending only on n and a > 0 a constant
such that rD2 > -(n - 1)a2.

With the result of Theorem 4.28, independently Gallot found an explicit
lower bound for G(x, y). His proof is unpublished, we give it below.

Proposition 4.29 (Gallot). For any x, y,

f/3(l(38) G(x,y) > -V)h2(Q)dQ,
where V is the volume of (M, g), h is defined by (34).

Proof Note that the integral at the right side converges since h(/3) N C01-1/n
when 3 -+ 0 and h(1 - /3) ti C(1 -,3)1-1/n when /3 -+ 1.

Fix X E M and set f (y) = G(x, y). Let us define the function a: R --* R by

a(p) = V-1 Vol{y/f(y) > p}

and the function f of [0,11 in R by j (P) = inf{µ/a(µ) < Q}. Since f is harmonic
on M - {x}, Vol{y/ f (y) = Al = 0 and p -+ a(p) is continuous. As p -+ a(µ)
decreases, f is the inverse function of a.
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According to Gallot [* 133] (Lemma 5.7, p. 60),
(i) for any regular value µ of f, f o a(µ) = A and

V a'(µ) = V/f' [a(p)] _- f I V f I-' da,
{ f=µ}

where do is the (n - 1)-measure on the manifold { f = µ}.
(ii) For any continuous function u: R -* I18,

fofdV=Vfu u o f () d .

We have

J IVfIdo=J dfdV
{f=µ} {f>j.}

(by-V-1)dV=1-a(µ).
{f>µ}

Moreover, using (i) and the Cauchy-Schwarz inequality, we have

(39) (Vol{ f =,o), < f JV f1do,
J V f I dv

f=µ} {f=µ}

_ -V [1 - a(µ)] a'(/h)

Thus, by the very definition of h,

Vh2[a(µ)] <- -[1 - a(J1)]a (µ)

We can rewrite this inequality in the form

1 - 3 > -Vh2(8)f'(/3).

Integrating yields

f(l(40) f() < f(1)+V- s)h2(s)ds.

Using (ii) with u(x) = x gives

fiVdV = f(0)dQ < f(1)+V f(i - s)h 2(s)dsd.
0 o

Since f f dV = 0 and f(1) = inf f(y) = infy G(x, y), we get (38) after
integrating by parts the last integral.

4.30 Let H be a C' positive function on [0, 1/2]. We define the function h* by

h*(Q) = Q1-1/"`H(Q)
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for /3 E [0, 1/2] and
h*(/3) = h*(1 -)3)

for 0 E [1/2, 1].
Let us consider the function S(3) = pl2 and its inverse function

A: [0, L] -- [0, 1/2] where L = S(0).

Definition 4.30. M* = [-L, L] x S,i_1 is the manifold endowed with the one-
parameter family of metrics

9t(s, x) = (ds)2 + t2 {h* [A (IsJ)] } (x),

where is the canonical metric of Sn_1(1).

We identify all the points of {+L} x S,i_1 to a pole noted xo (resp. all
the points of {-L} x S,,_1 to a pole noted x1) of the Riemannian manifold
(M*, 9t)-

B(xo, r) being the geodesic ball of (M*, gt) centered at xo of radius r, by
construction,

(41) Vol [&B(xo, r)] / Vol M* = h* [Vol B(xo, r)/ Vol M*] ,

where the volumes are related to the metric gt.
We denote by Gio = G*(xo, ) the Green function of the Laplacian on

(M*, gt) with pole xo, and V* = Vol(M*, gt).

4.31 Proposition (Gallot). For any compact Riemannian manifold (M, g) whose
isoperimetric function h satisfies h > h* on [0, 1],

(42) G(x, y) > (V*/V)G*(xo, XI)

x, y being two points of M.

Proof. I VGi,, I is constant on each hypersurface {G* = Al, so that the Cauchy-
Schwarz inequality used in (39) is an equality for Gx0. Thus, according to (41),
the same proof as that of Proposition 4.29 leads to (40) with equality.

1

(43) G2p(Q) = G* (xo, x1) + (V*)- I f (1 - s) [h*(s)] -2ds
A

where V* = Vol(M*,gt) and

(44) inf G*(xo, y) = G*(xo, x1) = -(V*)-l j s(1 - s)[h*(x)] -eds.
1, o 1

(38) together with (44) imply (42).
If the manifold (M, g) has its Ricci curvature bounded from below by

-(n - 1)K2, according to Theorem 4.28,
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h(0) > y(KD, n) [inf(3, 1 - ,(3)]
t-t/n,

where D is the diameter of (M, g) and -y an universal function.

Set then h*
For a suitable choice of t, (M*, gt) is Bn(R)#Bn(R) the union of two eu-

clidean balls of radius R = R(KD, n) glued on their boundaries by the identity.
We obtain the

Corollary 4.31. Assume Ricci(Mn,g) > -(n - 1)K2, then

G(x, y) ? [2wn-I/nV]RnGBn(R)#Bn(R)(xo,xi),

where R = R(KD, n) and where xo and x1 are the centers of the two balls.

4.32 Theorem (Gallot). Assume Ricci(Mn, g) > -(n - 1)K2, then

(45) G(x, y) > RnwnV -1 X0,

with R = R(n, K, D) = K-' b-' (n, KD), GS,(R) being the Green function of
the sphere Sn(R) with xo and x, their two poles. b(n, KD) comes from Theorem
4.28.

Proof. If we choose h*(Q) = Kb(n, KD)I.,(i3), for a suitable choice of t,
(M*, gt) is a canonical sphere with radius R = K- t b-1(n, KD).

Moreover according to (13), h(19) > h*(Q). Then (42) implies (45).

3.4. Some Theorems

4.33 The Sard Theorem [*279] (see also Stemberg [*294]). Let Mn and Mp be
two Ck differentiable manifolds of dimension n and p. If f is a map of class Ck
of M into k, then the set of the critical values of f has measure zero provided
that k - 1 > max(n - p, 0).

P E M is a critical point off if the rank off at P is not p. All others points
of M are called regular. Q E M is a critical value of f , if f -1(Q) contains at
least one critical point. All other points of M are called regular values. Since
our manifolds have countable bases, a subset A C ic! has measure zero if for
every local chart (9, V)) of M, O(A n 9) C RP has measure zero.

4.34 The Nash imbedding Theorem [*252]. Any Riemannian Ck manifold of
dimension n, (3 < k < oc) has a Ck isometric imbedding in (RP, E) when
p = (n + 1)(3n + 11)n/2, in fact in any small portion of this space. If the manifold
is compact, the result holds with p = (3n + 11)n/2.

Previously Nash [251] had solved the C' isometric imbedding problem. If
in the sequence of successive approximations, we keep under control only the
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first derivatives, Nash does not need more dimensions than Whitney (see 1.16).

So for k = 1, the theorem holds with p = 2n+ 1 and with p = 2n in the compact

case.

435 The Cheeger Theorem [*861. Let (Me,, g) be a Riemannian manifold, and

let d, V and H be three given real numbers, d and V positive.
There exists a positive constant C,,(H, d, V) such that if the diameter d(M) <

d, the volume v(M) > V and the sectional curvature K of M is greater than H,
then every closed geodesic on M has length greater than C,,,(H, d, V). Thus we
have a positive lower bound for the injectivity radius.

Proof. Let P be a point of the simply connected space MH of constant curvature
H, and v a non-zero vector of R'. We define the angle 0, 0 < 0 < 7r/2, by
Vol expp [ad,e(v)] = V/2 where ad,e(v) denotes the set of vectors in R" of
length < d making an angle of 0 or more with both v and - v. Then we define
r by

Vol expp [Br(0) - ar,a(v)] = V/2.

Since 8 < 7r/2, there exists a constant C,,(H, d, V) > 0 such that, if a,
r are geodesics in MH, a(0) = T(0), (0'(0), T'(0)) < 0, then the distance
dM (o (r), r(t)) < r for 0 < t < C,,(H, d, V). Suppose now there exists on
(M,,, g) a closed geodesic y of length l < C (H, d, V), and let us prove then
that v(M) < V, which is a contradiction.

By the Rauch comparison Theorem (see 1.53), since K > H,

v [exp,,(o) ado (-Y'(0))] < V/2

and

v{exp,y(o) [Br(0) - ar,o (-f'(0)) ] } < V/2.

These inequalities imply v(M) < V since

M C exp,,(o) {ad,e(7 (0)) U[Br(0) -ar,o(y'(0))]}.

Indeed, let a be a geodesic with a(0) = y(0) and (0'(0), y'(0)) < 0; then
dM (a(r), y(l)) < r since 1 < C11(H, d, V). But y(l) = y(0), thus a is not
minimal between a(O) = 7(0) and a(r).

From this result, Cheeger proved his finiteness Theorem (see [*86]), which
asserts that there are only finitely many diffeomorphism classes of compact n-
dimensional manifolds admitting a metric for which an expression involving
d(M), v(M) and S(M) a bound for the sectional curvature IKI (or for the norm
of the covariant derivative of the curvature tensor) is bounded.
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4.36 The Gromov compactness Theorem [* 1471 asserts that the space m(S, V, D)
of compact Riemannian n-manifolds of sectional curvature IKI < S,
v(M) > V > 0 and d(M) < D, is precompact in the C""" topology.

The following theorem has the same purpose.

Theorem 4.36 (Anderson [*3]). The space m(\, io, D) of compact Rieman-
nian n-manifolds such that I Ricci _< A, d(M) _< D and injectivity radius
_> io > 0, is compact in the C',°` topology. More precisely, given any sequence
(Mi, gi) E m(A, io, D), there are diffeomorphisms fi of Mi such that a sub-
sequence of (Mi, fi gi) converges,in the C""" topology, to a C1"1 Riemannian
manifold (M, g).

§4. Partial Differential Equations

4.1 Elliptic Equations

4.37 Let E and F be two smooth vector bundles over a CO° manifold M. We
consider the vector spaces of the C°° sections of E and F: C°°(E) and CI(F).

Let (flj,cpj) be an atlas for M, the coordinates in (lj. 7r
being the projection E --> M, 7r-1(flj) is diffeomorphic to flj x RP if lR is the
fibre of E. (i;'}, J, . .. , 6P) will be the fibre coordinates. Likewise if IIt9 is the
fibre of F, {rl } (a = 1, 2, ... q) will be the fibre coordinates of F over flj.

A C°O section % of E is represented on each flj by a vector-valued CO°
function Vij(x) = {}(x)} (i = 1,2,,.. , p).

Definition 4.37. A linear partial differential operator A of order k of C°°(E)
into C°°(F) is a linear map of CI(E) into CO°(F) that can be written in the
coordinate systems defined above in the form

(46)

k

al
t=o

a = 1 , 2, ... , q and Q = 1, 2, ... , p. a Q i are l-tensors and 1'A E Ck(M).

The principal symbol o- (A, x) is obtained by replacing 8/8x,' by real vari-
ables Si in the leading part of A, that is the part corresponding to the highest
order derivatives appearing in A:

(47) [o' (A, x)] [a' O',

i,i'..ik

4.38 Definition. A linear differential operator A is elliptic at a point x E M if
the symbol o-£ (A, x) is an isomorphism for every f 0.
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A necessary condition for this is p = q, and we can identify E and F.
We say that A: COD(E) C°°(E) is strongly elliptic if there exists a constant

6>0such that

(48) [QC(A,x)]77a77p > bieiki?7I2.p

Replacing l; by - 6 shows that k must be even: k = 2m.
We have assumed here that (M,g) is a Riemannian manifold (1612 =

gi2(xXjC,), and that a Riemannian metric hap(x) is defined on the fibres

(77. = hap'gp)
When (M, g) is compact, we define on COD(E) an inner product by

(P, P) = f h;.p(x)V, (x)4 (x) dV.

We note L2(E) the space COD(E) with the norm (O,1G).

The formal adjoint A* of A is defined as usual by

(AO, co) = (0, A* V)

for any V) and cp belonging to COO (E).
For the strongly elliptic operator A on C°°(E) with (M, g) compact, the

Fredholm alternative holds: Ker A and Ker A* are finite dimensional.
If f E L2(E) there is a solution ?P of A' = f if and only if f is orthogonal

in L2(E) to Ker A* (there is a unique solution orthogonal to Ker A).
The eigenvalues A3 of A are discrete, having a limit point only at infinity.

Moreover the eigenspaces Ker(A - A3I) are finite dimensional.
For more details see Morrey [*243].

4.39 Definiton. A differential operator A of COD(E) into C°°(E)

AV) = F(x, 0, V O, ... , V kV))

where F is assumed to be a differentiable map of its arguments will be elliptic
(resp. strongly elliptic) with respect to 0 at x if the linearized operator at ?!i is
elliptic (resp. strongly elliptic).

4.40 For the equations Au = f, where A is a partial differential operator on
scalar functions, we will find in Chapter 3, some regularity theorems. Here we
mention one more.

Let 12 be an open set of Rn with coordinates {xi}, and let u(x) be a weak
solution in H1(1) of the equation

n n

(49) E ,9i (aid (x)aju + ai(x)u) + > bi(x)aiu + a(x)u
j=1 i=1

n

= f(x)
+

Eaa"i{Ji(x)-
i=1
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We suppose that there exist p > v > 0 such that

(50)

n n

vE( ,)2 <aij(x)S'Cj <p EW)2

for x E 5 and q > n such that

(51) IIail q lbillq, llallq/2, Ilfllq/2 and IIfiIIq

are bounded by p for all 1 < i < n.

Theorem 4.40 (Ladyzenskaja-Ural'ceva [*206]). On any open bounded subset
0 C 5 such that the distance d(6, a,(2) > 6 for some 6 > 0, a weak solution
in H1(57) of (49) is bounded and belongs to Ca on 6 for some a > 0, if we
suppose conditions (50) and (51) satisfied. Moreover IHullco(e) M a constant
which depends only on n, v, p, q, 6 and II UII L2(n) Furthermore a and k an upper
bound for IjuIIc_(e) depend only on n, v, p, q, 6 and M. -

We have a uniform estimate of max IVul on 0 depending on the same quanti-
ties if in addition II akaij 1q, Ilakbillq, I1aIIq, llfllq and Ilakfillq are bounded by p
for all i, j, k. According to the first part of the theorem, we have then a uniform
estimate of HuHIc' r (e) for some 0 > 0, this estimate and 0 depending on the
same quantities.

Indeed, differentiating (49) with respect to xk, v = aku satisfies an equation
of the following form:

n n

E ai (aij aj v) = F(x) +

n

ai Fi W.
i=1 j=1 i=1

4.41 Let A be an elliptic linear differential operator of order two on 57 an open
set of Rn:

n n

(52) Au = E aij(x)aij u + E bi(x)aiu + c(x)u
i,j=1 i=1

such that aij(x) satisfy

(53) 0 < A < A

for x E 57 and any 6 E Rn of norm l(Il;I = 1). bi(x) and c(x) are supposed to
be bounded, lb(x)MM2 + I c(x)l < k for x E ,f2.

Theorem 4.41 Harnack inequality (see Krylov [`204] and Safonov). Let u E
H2'(9) be a non-negative function (u > 0) which satisfies Au = f in Br C ,f2.
Then, for 0 < a < 1,

(54) sup u(x) C (.inf u(x) + rI f hI L (Br)
xEB,,, - a EB.,.
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where C depends on n, A/. and kr '/A. Bp is the ball of radius p with center
at a given point xo E S7.

From (54) we can deduce uniform estimates on osc u in Bp(p < r) and on
the Holder continuity of u (see Moser [*244]). In [*244], Moser gave a proof
of (54) in case u > 0 satisfies

n

(55) Au - E ai [ai3(x)Oju] = 0 on .R.

i,j_i

His conclusion is: in any compact set K C Q,

m ax u(x) < c min
u(x),

where c depends on K, .fl, A and A only. The proof of (54), as that of (55), is
given in two parts corresponding to the following two propositions.

4A2 Proposition. Let u E H2 (,fl) satisfy Au > f, with f E L,(Q). Then for
B2,.C(2andp>0, -

K

I/P
(56)

su
u(x) < C I l r-n f dx) + rII f II L'(B,,.),

ZEB,

For the proof we use the following Alexandrov-Bakelman-Pucci inequality.

Theorem 4.42. Let u E co) °n H21 (,fl) satisfy Au > f, where A is given
by (52) and (53) holds. Setting det((aij)) = 9", we assume c(x) < 0 in ,fl, IbI/9
and f/9 belonging to L,, (S7).

Then

(57) sup u(x) < sup u+(x) + CII f - /OII
xE17 xEB(?

where C depends on n, diam 1 7 and II IbI9-' IIL (n) only.

4.43 Proposition. Let u > 0 satisfy Au < f in Q2. Then there exists p > 0 so
that

IIUIIL,(QJ)<_C
mni

where C depends on A, A, n and k only.

Qh denotes the cubes Ixil < h/2(i = 1, 2, ... , n).
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For Moser [*244], who studied equation (55), the two propositions are:
(i) If u is a positive subsolution of (55) in Q4, then for p > 1

max u(x) < C1 (p p
1) 2 (JQ uP

dx)
"P

(ii) If u is a positive supersolution of (55) in Q4, then

f \
Ci uPdx

l/P
I < C2 minu(x)

Q3 / (P0 - p)2 xEQ,

for 0 < p < po = n/(n - 2), where C1 and C2 denote constants which
depend on n, ..\ and A only.

4.2. Parabolic Equations

4.44 The heat operator L. On a compact Riemannian manifold (Ma, g), we
consider the operator

L = d + a/at

on C2-functions u: M x [0, oo[-+ R.

K (P, Q, t) = (2/
-nt-,12

exp [-p2(P,
Q)14t]

is a parametrix for L with p smooth, p(P, Q) = d(P, Q) when d(P, Q) < 6/2
and p(P, Q) = 0 when d(P, Q) > 6 the injectivity radius.

We define N1(P, Q, t) = -Lp K(P, Q, t) and

rt r
Nk(P,Q,t) = J drrJ Nk_I(P,R,t -rr)N1(R,Q,T)dV(R).

0 M

The fundamental solution of the heat operator L is

(58) H(P, Q, t) = K(P, Q, t)
rt

Im
+J d-r K(P, R, t -7)>Nk(R,Q,T)dV(R)

0 k=1

(see Milgram-Rosenbloom [*235], Pogorzelski [*265]).
H(P, Q, t) is C°° except for P = Q, t = 0; it is positive and symmetric in

P, Q. In the sense of functions, it satisfies LpH(P, Q, t) = 0.
Any function u(P, t) on M x [0, oo[ which is C2 in P and C' in t satisfies

for t > to

f
r

(59) u(P, t) = dT
J

H(P, Q, t - r)Lu(Q, T) dV(Q)
o

r
M

+
J

H(P, Q, t - to)u(Q, to) dV(Q)
M



130 4. Complementary Material

The spectral decomposition of H(P, Qo, t) is

00

(60) H(P, Q, t) = V -' + (P)co (Q),

where the A. are the non-zero eigenvalues of a, the c (P) being the corre-
sponding orthonormal eigenfunctions.

4.45 Theorem. On a compact Riemannian manifold (Ma, g) let us consider the
parabolic equation

(61) Lu(P, t) = f (P, t), u(P, 0) = uo(P).

Equation (61) has a unique solution which is given, when the integrals make
sense, by

(P, Q, t - T) f (Q, T) dV (Q)tu(P, t) =
J

d7-

IM
H

0

+ f H(P, Q, t)uo(Q) dV(Q).
M

d the second derivativesAssume uo - 0. If f is Holder continuous, ai an
of u with respect to P are Holder continuous.

If f belongs to Lp, 'Ft and the second derivatives of u with respect to P
belong to Lp; moreover

(62) 18t lip +
IIV2uIIp < Const. II.f IIp,

where the norm Lp is taken over M x [0, oo [.
The left hand side of (62) is the norm of H2 (M x [0, oo [) .
For the details on the regularity of u(P, t), see Lady zenskaja-Solonnikov-

Ural'ceva [*207] and Pogorzelski [*265].

4.46. Maximum principle. Let u(P, t) be a continuous function on M x [0, to].
Assume u < 0 on M x {0} and on 8M x [0, to].

If whenever u > 0, u is C2 in P, C' in t and satisfies

(63) 8u/8t < -du + bs(P, t)8;u + cu

with the b' bounded and c a constant, then we have always u < 0.

Proof. Let w = e-(`"'')tu. w and u have the same sign. Since

8w/8t = e-(")t [8u/8t - (c + 1)u],

we have

(64) 8w/8t < -Aw + b''(P, t)81w - w.
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Assume w is positive somewhere and let (Q, t) be a point where w is max-
imum. Then 6w(Q, t) > 0, aiw(Q, t) = 0 and aw(Q, t)/at > 0. Thus (64)
implies w(Q, t) < 0, which yields a contradiction.

Remark. The usual maximum principle, when the maximum is positive, is simi-
lar to the maximum principle for elliptic equations. It holds when the coefficient
of u is non-positive.

4.47 On a compact Riemannian manifold (Mn, g), let us consider a linear
parabolic equation of the type

(65) au'/at = -Au' + a'aup + bpup + f

when written in a system of coordinates {xi}.
u"(a = 1,2,.. . , k) are k unknown functions on M x [0, oo[, f '(a =

1, 2, ... , k) are k given functions on M x [0, oo [. The coefficients a Qi and
by are supposed to be smooth. W e write u for (uI, uz, 2 ' . . . ' ) and f for
(ft fz fk) We choose p > n + 2.

Theorem 4.47. For every f E Lp(M x [0, to]), there exists a unique

u E H2 (M x [0, t0])

satisfying (65) for I < a < k and u(P, 0) - 0.

Proof. In [149] Hamilton gave a proof of Theorem 4.47 when the manifold has
a boundary. His proof, written in our easier case, is the following.

Let us prove uniqueness first. We have to prove that u 0 is the unique
solution of (65) when f = 0.

Since p > n+2, ua and 9iu' are continuous. Using the regularity properties
for a single equation (65), a fixed, by induction we show that u is smooth for
t > 0. Let

V) satisfies

_ 1) Dua)2.
c=1

"

n n

(66) L,b Viu&Vtua + E u' (ataiu1 + bpuo)
Ck=1 C1=1

Then, for an appropriate constant C, we have that the right side of (66) is
smaller than CO: Lip < Co. Since O(P, 0) = 0, the maximum principle 4.46
shows that , = 0. Thus u =_ 0.

Let us prove now the existence. Denote by HZ (M x [0, to]) the subspace
of the functions of HZ (M x [0, to]) which vanish for t = 0.

According to Theorem 4.45, u -+ Lu defines an isomorphism of HZ (M x
[0, to]) onto Lp (M x [0, t0])

Let Ku = {apiaiup + bpu$ }. The map K: HZ --+ Lp is compact, since the
inclusion Hp C Lp is compact.
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By the theory of Fredholm mappings, the map H2 - LP given by u
(Lu - Ku) has finite dimensional kernel and cokernel. Moreover its index is
zero, since the index is invariant under compact perturbations. Since we saw
that its kernel is zero, this map is an isomorphism.

4.48 Definition. A strictly parabolic equation is an equation of the type

(67)
alpt

= AtiPt,

where t 'I't belongs to C' ([0, oo[ C°°(E)) and [0, oo[.3t - At is a smooth
family of strongly elliptic operator ofC '(E) into C°°(E), see Definition 4.39.

4.49 We now prove local existence of solutions for the non linear parabolic
equation of Eells and Sampson (see 10.16).

Let u = {u"} be k unknown functions on M x [0, T], and fa be k given
smooth functions on M(a = 1, 2, ... , k).

Theorem 4.49. There exists e > 0 and u E H2 (M x [0, E]) with p > n + 2
solving the equation

(68)
( Lu' - f (u(x, t))gii(x)aiu'5aiury = 0
t ua(x, 0) = f °(x), a = 1, 2, ... , k.

Moreover, u is unique and smooth on (M x [0, E]).
I'as,y are smooth functions on Rk, u(x, t) being the point of Rk whose coor-

dinates are ua(x, t).

Proof (Hamilton [* 149]). We will find u as a sum u°(x, t) = f"(x) + v"(x, t)
and write (45) as P(f + v) = 0 with v(x, t) = 0 when t = 0.

The linearized equation Auh of (45) at u E H2 has the form

(69) (Auh)° = Lha - api(u)aih" - bp(u)hQ, h(x, 0) = 0,

with aali(u) and b*(u) continuous since p > n + 2. So v --> P(f + v) defines
a continuously differentiable map of HZ (M x [0, T]) into Lp (M x [0,,r]). Its
derivative at v = 0 is Af: HZ (M x [0, r]) -. Lp (M x [0,,r]) which is an
isomorphism according to Theorem 4.47.

Therefore by the inverse function theorem the set of all P(f + v) for v in a
neighbourhood (2 of 0 E Hz (M x [0, T]) covers a neighbourhood 9 of P(f) in

LP(M x [0,T]).

If e > 0 is small enough, the function equal to 0 for t < E and equal P(f) for
e < t < T belongs to 9. Thus there exists w E 42 (M x [0, T]) which satisfies

P(f +w) =0

on M x [0, r].
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4.50 Corollary. Let (Mn, g) and (Mm, g) be Coo compact Riemannian manifolds
and fo a smooth map M -4R. Then there exists e > 0 and a map f : M x [0, E] 3
(x, t) -> ft(x) E M belonging to HZ (M x [0, s], Al) satisfying the parabolic
equation

(70) aft (x)lat = -D fA(x) + 9yj(x)rµ (ft(x)) Gift (x)aj ft (x)

with fo as initial value. Moreover f is unique and smooth on M x [0, e]. { xt } (I <
i < n} denote local coordinates of x in a neighbourhood of a point P E M and
yA(1 < A < m) local coordinates of y in a neighbourhood 9 of f (P) E M.
The parabolic equation is written in these systems of coordinates, F ',, are the
Christoffel symbols in 0.

Proof (Hamilton [* 149]). Hamilton embeds Al in Rk, k large enough. He con-
siders a tubular neighbourhood T of M in I18k and extends the metric g on M
smoothly to a metric on T. There is an involution is T --i T corresponding to
multiplication by -1 in the fibres, i(Q) = Q for Q E Al. We can choose the
extension g of g to T so that i is an isometry of (T, g). Finally we extend
smoothly to all of IRk.

Now we apply Theorem 4.49 with I'Q,y the Christoffel symbols of (Rk, g)
and u(x, 0) = fo.

We have fo(M) C M. If u(x, t) does not always remain in M, we can
suppose a small enough so that u(x, t) E T for any x E M and t E [0, c].

Since i is an isometry, i o u would be another solution of (68), which is in
contradiction with the uniqueness of the solution. For more details see [* 1491.

4.51 Theorem. Let E be a bundle of tensors over a smooth compact Riemannian
manifold (M, g). We seek a smooth family [0, T[--+ ut of smooth tensor fields on
M(ut E C°°(E)) which satisfies the equation

8u_
(71) j 8t = ai- (t, x, u, V u)V Vju + f (t, x, u, Vu)

I. uo(x) = cp(x)

W(x) is given and belongs to C°°(E), the components air of a doubly contravari-
ant symmetric tensor field on M are, in a local chart, smooth functions of their
arguments, and f, with values in E, is smooth in its arguments. If equation (71)
is strictly parabolic at cp (the tensor field ai9 (0, x, cp, V W) is everywhere positive
definite), then there exists a unique smooth solution u on [0, s[ for some s < -r.

We leave the proof to the reader. Friedman [* 130] and Eidel'man [* 125] deal
with the local solvability of the Cauchy problem for arbitrary nonlinear parabolic
systems. In [*231] Malliavin solves the Cauchy problem for linear parabolic
equations on a vector bundle E when M is compact. See also Dieudonne [* 113]
when the coefficients of the linear equation on E do not depend on t.
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§5. The Methods

4.52 In these sections, we will mention the methods used in the book for solving
elliptic equations. Then we will deal with some other methods.

The variational method, the continuity method and the method of lower and
upper solutions are studied in detail throughout this book.

The method of successive approximations, probably the oldest method, was
used by Vaugon (see 5.15-5.17) to prove the basic theorem on the Yamabe Prob-
lem. For the Leray-Schauder fixed point theorem (3.20), see Gilbarg-Trudinger
[* 143] p. 228.

The steepest descent or the gradient-line technique was used by Eells-Samp-
son (see 10.10) to prove the existence of harmonic maps. Bahri-Coron (see
5.79) studied the gradient lines to see if they go through the critical level of the
functional or if they go to infinity. The steepest descent was used by Gaveau-
Mazet [* 137] and by Inoue [* 181] to prove the basic theorem on the Yamabe
Problem.

4.53 We continue with the method which consists, instead of solving the elliptic
equation directly, in studying the corresponding parabolic equation. Examples:
Eells-Sampson (see 10.10), Hamilton (see 9.15).

The method of points of concentration (see 6.53). It was used by Dong [* 118]
to prove the basic theorem on the Yamabe Problem. The points of concentration
were introduced many years ago see for instance P. L Lions [*222]. Here we
use the approach developped by Vaugon [*309] ten years ago. But only recently
we discovered all the possibilities of this technique.

When a group of isometrics acts, Hebey (see 6.36) developed the method of
isometry-concentration.

The method of B-B-C (Bahri-Brezis-Coron see 2.65-2.67): under a topolog-
ical assumption, they prove that the equation cannot have no solution. There is
a contradiction beetwen some algebraic-topological arguments and the study of
the problem by Analysis. Bahri solved with this method the Yamabe Problem
for the compact locally conformally flat manifolds.

4.54 The Mountain Pass Lemma (Ambrosetti and Rabinowitz [*2]). Let f be
a C' real function defined on a Banach space B and satisfying (PS). Assume
there is an open neighbourhood .(l of 0, and a point xa' I?, such that f (0) and
f (xo) are strictly less than Co < infxEan f (x) Then the following number C is
a critical value of f,

(72) C = inf sup f (x) > Co
PEP xEP

where P is the set of all continuous path P from 0 to x0.

(PS) means Palais-Smale condition: Any sequence {xj } C B such that
I f(xj)J < M and f'(xj) 0 strongly in B* (the dual space) has a strongly
convergent subsequence.
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In [*258] Nirenberg introduced the condition (PS)c any sequence{xj } C B
such that f(x3) -> C and f'(x2) -+ 0 strongly in B* has a strongly convergent
subsequence. The mountain pass lemma holds under (PS) C instead of (PS). For
details on theMinimax methods see Ni [*255], Nirenberg [*258] and Rabinowitz
[*271].

4.55 The Leray Schauder Degree D. Consider a real Banach space B, 9 an
open set of B and a map F: B --+ B of a special form F = I - K with K
compact (see 3.19 ) and I the identity map. We consider the triplets (F, ,(2, y)
with ,(2 a bounded open set of B such that .(2 C 0 and y E B, y V F(c7.f2),
(here 81 = ,(2 - (). To such a triplet (F, .R, y) there corresponds an integer
D(F, ,(2, y)

The Z-valued function D having these three basic following properties is
unique

(i) D(I, ,(2, y) = 1 for y E 1,
(ii) D(F, 0, y) = D(F, fi, y) + D(F, 02, y) whenever .fll and .(22 are dis-

joint, 1= h2i U ,(22 and y ¢ F(S? - (21 U (22).
(iii) Let t -* Ft be a continuous family of maps for t E [0, 1] of the form

defined above and t -+ yt E B be continuous with yt V Ft(8Q) on
[0,1]. Then D(Ft, 0, yt) is independent oft E [0, 1].

Moreover the Leray-Schauder degree has the following properties.

(73) (iv) If D(F, 1, y) 0, then F(x) = y has at least a solution.
(v) D(F1, ,f2, y) = D(F2, f(l, y) whenever Ft/an = F2/an-
(vi) D(F, fI, y) = D(F, n, y) for every open subset ,(2 of ,(l such that

y' F(fl - ().
(vii) Suppose that a solution x of F(x) = y is a regular point of F

(F' is a homeomorphism). Then the local degree (index) of F at
x is defined as

ind(x) = D(F, B.(e), y),

where By(e) is the ball in B with radius E and center x.

It is independent of a for E small, and equals +1 or -1 according to whether
the sum of the algebraic multiplicities of the negative eigenvalues of F(x) is
even or odd.

For the existence of D, see for instance Leray-Schauder [180], Nirenberg
[*257] and Rabinowitz [*270].

The Leray-Schauder degree was used by Chang, Gursky and Yang to prove
their result on the Nirenberg problem in dimension 3 (see 6.88).

4.56 Bifurcation Theory. We will mention only one theorem, when there is
bifurcation from a simple eigenvalue. For other results, see for instance Smoller
[*293].
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Let I C R be an open interval with .o E I and B1, B2 be two Banach
spaces, 1? C B, being an open subset. We consider f E C2(I x 0, B2) satisfying

f(A,0)=0when AEI.
Hence, for any a E I, f (a, x) = 0 has a solution x = 0; the problem is to

exhibit non trivial solutions of f (A, x) = 0 if there are any.
A necessary condition for having non trivial solutions in a neighbourhood

of (A0, 0) is that Lo - Dx f (Ao, 0), the differential at x = 0 of x --> f (A0, x),
is not invertible according to the implicit function theorem (see 3.10). But this
condition is not sufficient.

Theorem 4.56. If (i) Ker Lo is one-dimensional, spanned by uo,
(ii) R(L0) the range of Lo has codimension 1,
(iii) [DADx f (Ao, 0)] (uo) V R(Lo), then (A0, 0) is a simple bifurcation point

for f. More precisely, let Z be any closed complementary subspace of
uO in B1, (B, = Z (9 Ker Lo), then there is a 6 > 0 and a C' - curve

- b, b [Ds - (A(s), cp(s)) E R x Z such that A(0) = 0, cp(0) = 0
and f [.1(s), s(u0 + (p(s)) = 0 for Isl < S. Furthermore, there is a
neighbourhood of (A0, 0) such that any zero of f either lies on this
curve or is of the form (A, 0).

This Theorem was used by Vazquez-Veron [*3121 to solve the problem of
prescribing the scalar curvature in the negative case (see 6.12).

4.57 The method of Moving Planes. This method uses the maximum principle
in an essential way. To understand how the method works, let us give the original
proof of the

Theorem 5.57 (Gidas-Ni-Nirenberg [140]). Let 9 C Rri by a bounded open set
symmetric about x' = 0, convex in the x' direction and with smooth boundary
a.a. Suppose u E C2(,(2) is a positive solution of du = f (x, u) in .(2 satisfying
u=0onas2.

Assume f and auf are continuous on f2, and f is symmetric in x' with f
decreasing in x' for x1 > 0. Then u is symmetric in x' and 8j u < 0 for x' > 0.

Proof Set AO = max.E1) x' and let xo E an with xo = AO.

Since u > 0 in I? and u(xo) = 0, a1u(xo) < 0. First we prove that for
x E .f2 close to xo, atu(x) < 0. If atu(xo) < 0, this is obvious by continuity. If
a, u(xo) = 0, the proof is by contradiction. Assume there is a sequence { xj } C (2
converging to xo such that al u(x,) > 0. Consequently all u(xo) = 0 and hence
du(xo) = 0 (since u = 0 on a(). Thus we must have f (xo, 0) = 0. In that
case u > 0 in ,(2 satisfies an equation of the type du + h(x)u > 0 for some
function h(x). By the version 1.43 of the maximum principle 0, u(xo) < 0, thus
the contradiction.

Now we start with the method of moving planes.
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We denote by Ta the plane x' = A. For A < A0, A close to Ao, we consider
the cap E(A) _ {x c ,f2/A < x' < ao}, the set of the points in ,(l between TA
and Tao.

For any x in [l, we use XA to denote its reflexion in the plane TA. When
a > 0, xA is defined on E(A) since ,(2 is convex in the x' direction and symmetric
about x1 = 0.

At the beginning, when A decreases from Ao, since u(x) is strictly decreasing
for x close to xo, wa(x) = u(xA) - u(x) > 0 in E(A).

For x E aE(A) with x' > A, w,\(x) > 0 and, for x E Ta n aE(A), wa(x) = 0
and at wa (x) > 0.

Decrease A until a critical value p is reached, beyond which this result no
longer holds: at a point y E Tµ n (, cOtw(y) = 0 (we drop the subscript p in
wµ). But w satisfies in E(p), when p > 0

zAw = f (xµ, u(x,2)) - f (x, u(x)) > f (x, u(xµ)) - f (x, u(x))

We can write this inequality in the form

(74) Aw > h(x)w.

Moreover w satisfies w > 0 in E(µ). Thus, according to Proposition 4.61, w - 0
in E(p) since w(y) = 0 and atw(y) = 0. The result follows and p = 0.

We must have p > 0, since otherwise we start with the reflexions from
A = Al = infXE f x' and we increase A.

4.58 Corollary (Gidas-Ni-Nirenberg [140]). In the ball .(l: Ixj < R in R', let
u E C2(.(2) be a positive solution in ,(2 of

(75) Au = f (u) with u = 0 on a(l.

f is supposed to be C'. Then u is radially symmetric and 8" < O for 0 < r < R.

If f'(u) < 0, the Maximum Principle (see 3.71) implies that the solution u
is unique. Thus u is radially symmetric, otherwise by rotations, we would get a
family of solutions. In any case the result is a consequence of Theorem 4.57. We
apply it for all directions. Since the paper [* 140], the maximum principle was
improved; it holds in narrow domains (see Proposition 4.60), thus the hypotheses
of Theorem 4.57 and Corollary 4.58 may be weakned.

Theorem 4.58 (Berestycki-Nirenberg [*39]). Let .(l be an arbitrary bounded
domain in ]R' which is convex in the x' direction and symmetric with respect to
the plane x' = 0. Let u be a positive solution of (75) belonging to C(S2) n Hiloc
f is supposed to be Lipschitz continuous. Then u is symmetric with respect to xt
and 81u<Oforxi>0in 0.

Proof. We can start at once with the method of moving planes. Since f is
Lipschitz, wa satisfies (74) in a narrow band .(A) when A is close to A0.
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Moreover w), > 0 on 8E(A), thus wa > 0 in E(A) (according to Proposition
4.60) and, on Ta n Si where wa = 0, we must have 81w), > 0, otherwise the
function vanishes.

4.59 The method of moving planes may be used also for unbounded domains.
To start with the process, we need an assumption on the asymptotic expansion
of u near infinity.

Using this method in [*69], Caffarelli and Spruck proved uniform estimates
for solutions of some elliptic equations.

In [*39], Berestycki and Nirenberg use with the method of moving planes a
new one, the sliding method introduced by them. They compare translations of
the function.

4.60 The Maximum Principle (see 3.71). It concerns second order elliptic op-
erators A in a bounded domain S? C R'. Let gij(x) be a Riemannian metric on
S2 and e(x) be a vector field on Q. Set

(76) Au = gs28t;u + i;'(x)8iu + h(x)u.

A is supposed to be uniformly elliptic (a-'17)1' < g'jrlirh !5 a,177 12) , and its
coefficients to be bounded by b in (.

The maximum principle holds for A in (l, if

Au > 0 in fl and lim sup u(x) < 0
X-,an

imply u(x) < 0 in (.
.

The usual condition for this to hold is h(x) < 0 (see 3.71).

Proposition 4.60. The maximum principle holds if there exists a positive function
f E H2°(,(l)nC°(t) satisfying Af < 0, or if ,fl lies in a narrow band a < x1 <
a + e with e small, or (Bakelman-Varadhan) if the measure IQ1 is small enough
(ICI < 6)/ifore precisely, assume diam (l < d, there exists 6 > 0 depends only
on n, d, a and b.

Proof.

(i) Consider v = of -1, v satisifies

g'.7 8ijv+ (£' +2V'logf)8iv+vf -1A(f) > 0.

Since limsupx_anv(x) < 0, the usual maximum principle implies
v < 0 in fl,thus the same is true for u.

(ii) If .(2 lies in a narrow band, we construct a function f as above.
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(iii) We use the following theorem of Alexandroff, Bakelman and Pucci
[*268] (see 4.42). If h(x) < 0 and if u satisfies Au _> f and
lim sups , u(x) < 0, then supxE f u(x) < CIIfIIn where C depends
only on n, d, a and b. u satisfies

[A - h+(x)] u > -h+(x)u+.

Thus
sup u+ < C (sup h+) (SUP u+) IQI IIn.
0 S? S?

Choose 6 = (Cb) -n, then u < 0.

4.61 The Maximum Principle (Second part). Suppose there is a ball B in .f2
with a point P E afl naB and suppose u is continuous at P and,u(P) = 0. If u 0
0 in fl and if u admits an outward normal derivative at P, then au (P) > 0. More
generally, if Q approaches P in B along lines, then liminfQ.p utp)-QQ> > 0
otherwise u - 0 in fl. This holds for u E C2(f2) satisfying (76) if h(x) < 0. -

Proposition 4.61 (Gidas-Ni-Nirenberg [* 140]). If u E CZ(fl), u < 0 satisfies
Au > 0, the maximum principle holds. That is, if u vanishes at some point in fl,
or if u vanishes at some point P E aS? with ae' (P) = 0, then u = 0 in D.

Proof Set A = A - h+. u < 0 satisfies Au > -h+u > 0. Since -h- < 0, the
usual maximum principle holds.

§6. The Best Constant

4.62 Theorem (Aubin [13], [17]). Let (Vn, g) be a complete Riemannian mani-
fold with positive injectivity radius and bounded sectional curvature, n > 2 the
dimension. Let q be a real number satisfying 1 < q < n: then for all E > 0 there
exists a constant AE (q) such that any function cp belonging to the Sobolev space
H°(,,) satisfies

(77) [K(n,q)+E]IIVcIIq+Af(q)IIcoIq

with 1/p = 1/q - 1/n. The best constant K(n, q) depends only on n and q, its
value is in 2.14.

Remark. Recently, tanks to sharp estimates on the harmonic radius obtained by
Anderson and Cheeger [5], Hebey [ 165A] was able to prove that Theorem 4.62
still holds if one replaces the bound on the sectional curvature by a lower bound
on the Ricci curvature.

We can ask the question: does AE(q) tend to oo when E --+ 0?
In [13] we made the conjecture that the best constant K(n, q) is achieved

(Ao(q)) exists. The conjecture is proved when n = 2 and when n > 3 if the
manifold has constant sectional curvature.
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This result is obtained by choosing a nice partition of unity and by using
the isoperimetric inequality (which holds when the curvature is constant).

Later Hebey and Vaugon extended this result to the locally conformally flat
manifolds by a similar argument. But recently by new methods they proved

4.63 Theorem (Hebey and Vaugon [*171], [*172]). For any complete Rie-
mannian manifold with positive injectvity radius, bounded sectional curvature,
bounded covariant derivative of the curvature tensor and dimension n > 3, the
best constant K(n, 2) is achieved.

The statement of Hebey and Vaugon is more precise. We still sketch the
proof when the manifold (M, g) is C°° compact, because it is very interesting
and a good illustration of new technics; but before to read it, the reader must
see chapter 6 (Note that the assumption of Theorem 4.63 are obviously satisfied
by compact manifolds).

Assume Proposition 4.64 below. Let (Q j, iki) (i = 1, 2, ... , m) be a finite
atlas such that 44)i(Qi) = B the unit closed ball of R'. We can choose the atlas
such that B is convex for (V)s ') *g (1 < i < m), since any point has a convex
neighbourhood.

Let us consider {71i } a C°° partition of unity subordinated to the covering
(li such that rli and IO rlil belong to C°(Qi). Setting ui = rliu for some
u E C°°(M), we have by using (79)

m m

IIuIIN = IIu2IIN/2 IIUi IIN/2 =
1:

IIuillN
i=1 i=1

m m

K2>2IIVuiII2+C>2 IuiII2'
i=1 ti=1

Since Ftm--1 f IVuil2dV = f IVul2dV + Ell f u2IV77i12dV (indeed the
additional term 2 E I f Vi ?72

i= V, u2 dV = 0), there is a constant C such that
any u E H1 (M) satisfies

(78) IIuJIN < K2IIVUIIz+CIIuII2

K = K(n, 2) is achieved.
When the manifold has constant curvature, we use the isoperimetric inequal-

ity to prove Proposition 4.64, but in the general case the proof is harder.

4.64 Proposition. Let B C Rn be the closed ball of radius 1, and g be a C°°
Riemannian metric on a neighbourhood of B such that B is convex for g. Then
there exists a constant C such that any cp E H1 (B) satisfies (the norms are taken
with the metric g):

(79) II(GIIN
< K2IIVWII2'} CIIWII2
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The proof is by contradiction. For any a > 1, we suppose that there exists
ua E H1(B) satisfying IIuaIIN > K2(IIVuallz+alluallz)

Thus

uEi fB) [Iloul12 + allull2]
IIuIIN2 < K-2 =

n(n -42)wni"`
H

Since Aa < K-2, the minimum is achieved. The proof is that of the basic
theorem 5.11 on the Yamabe problem. As a consequence, there exists
H 1 (B), with I I cpa I I N = 1, which satisfies the equation

(80) N-1Qva + kava and cpa > 0 in B.

goo E

Hence cpa E C°°(B), cpa/aB = 0 and

(81) IIVWallz +allsoallz = K-2.

Therefore IlWalI2 = 0 and there exists a sequence qj -+ oo such that
cpq; -+ 0 a.e.. By interpolation

(82) lim Ilcpalln -+ 0 for 2 < p < N.
a °o

Lemma 4.64. There exists a sequence {qj } such that {cpq, } has a unique simple
point of concentration.

Moreover) q, -+ K-2 and
qi I I q. I2 0 when qj -+ oo.

According to Theorem 6.53, there is only one point of concentration. Indeed
here f (P) = 1 and µ/µ9 = aq, K2 < 1. Moreover since the energy of a point
of concentration is at least K-2 (see 6.52, formula 64), xo is a simple point of
concentration. Consequently Aq; -+ K-2 and gillcoq:II2 -- 0. Remark that

(83) lim f cpq dV = I.
q. --goo P(S)

since P is the unique point of concentration.

4.65 Proof of Proposition 4.64 (continued).

For convenience set u = n91 (s-2)/4Wqi- u satisfies

(84) duff + giui = n(n - 2)uN-1_

Denote by xi a point where ui is maximum, ui(xi) = mi = supB ui --> 00,
xi --+ xo and ui -+ 0 uniformly on any compact set K C B - {x0}.

Let µi = (mi)-2/(n-2).

Now we study the speed of convergence of xi to 8B (if any).

c) lim infirm". d( ;,aB) = 0
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This implies xo E 8B. After passing to a subsequence if necessary we can
suppose that the limit exists.

We do a blow-up at xo. Define the maps i,b of R" in llIn: y -- oi(y) _

µ1y + xo; Bi = `1'27'(B) = B-xa/{4i (-L) and
Jui

Vi(y) =
ui(,Ui.y + x0) =

xo)
rni

Let us consider the metrics hi = µa 20 g. On Bi, vi satisfies 0 < vi < 1
and

.
(85) 'Ahivi +giµivi = 77 .(n - 2)vN-1

On any compact set of R'i, hi --, £ uniformly in C2 (we are able to do so
that g(xo) = £(xo)).

A similar proof of that of Corollary 8.36 of Gilbarg-Trudinger [ 143] shows
that the vi are uniformly bounded in C' on a neighourhood of 0 E Bi.

But hypothesis a) implies limi, d(V)i ' (xi), &Bi) = 0 which is in contra-
diction with vi (fit 1(xi)) = 1 and vi = 0 on aBi. So a) is impossible.

/3) lim infi-,,. d(xj,aB) = l > 0.
gi

This implies also xo E aB. As previously we suppose that the limit exists.
Since 0(n) acts on B, we can suppose without loss of generality that all points
xi and xo are on the same ray (the n - 1 first components of xi and x0 are
zero).

We denote by gi the metric corresponding to g after the action of the element
of 0(n).

Now we do the same blow-up as previously (in a).
hiThen U°°1 i is the half space

E = {(yl, y2, , yn) E Rn/yn < 0}.

Since the sequence {vi} is equicontinuous, a subsequence converges uni-
formly on any compact set K C E to a function v which satisfies

(86) hey = n(n - 2)v (n+2)/(n-2) in E

v/aE = 0 and v(z) = I where z = (0, 0, ... , -1) E E, (yi = X. u -> z) .

Indeed q1µ2 -' 0. Let K C E be a compact set. When i is large enough

g1µ1 v2 dVe < 2qi pi JK dVh< 2glv dV,,
K B;

2-n 2 2 n/2 =

lB
0= vdVhi ({2) = 2qudVg--Bi

according to Lemma 4.64.
Now such a positive function v cannot exist by Pohozahev's identity. First

by the inverse of a stereographic projection, we get a function on a half sphere
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of pole Q. Then a stereographic projection of pole Q (opposite to Q) yields a
function v satisfying equation (86) on a ball B and also v(0) = l and v/a p = 0.
So /) is impossible.

d(xi,aB) =y) limi
µi

+oo, In this case xo may be on aB or inside B. We

do a blow-up at xi. We define the maps Wi bby ,(2i E) y + expx (µiy) with

fli '(B).
Wi is well defined since ,(li is star-shaped according to the convexity of B for
9

We consider on ,Ri the metric hi = A 2 iii g.
hi(0) = £(0) according to the properties of the exponential mapping. hi £

uniformly in C2 on every compact set K. The function vi on fli defined by

Vi(y) =
yi F((n-2)/2ui

( i(y))
mi

satisfies
0 < vi < 1, vi(0) = 1, vi/a,(2i = 0

and

(87) Lhivi + gi/livi = n(n - 2)v
(n+2)/(n-2) on Q.

The sequence {vi} is uniformly bounded in C, on every compact set K.
A subsequence converges, uniformly on any K, to a function v satisfying 0 <
v < 1, v(0) = 1 and equation (86) on Rn, since qiu --+ 0 (see Q). We know

such function v, v = (1 + llyIJ2)'-n/2. In order to exclude the third case -y), and
to establish a contradiction to the existence for any a > I of a function co,,
satisfying (80), we need to use the Pohozahev identity

(88) J Vkr2Vkvidevi dV

2 f da - (n - 2) J vi/avi dV.
n ; ni

In (88) the metric is the euclidean metric, a is the outside normal derivative
and r = IIyUU.

Since S?i is star-shaped,

X = J
dVE + (n - 2) J viAevi dVE

n; ai

=- 1

2 avr2la"vil2da<0.
an;

Define

(89) Y = 1 akr2akvidhivi dVE + (n - 2) vidhivi dVe
k_t Jn; Jn;

=X+Y-X <Y - X.
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Using (87), we get Y = 2gip fn, v1 dVE.
Now some computations lead to

(90) Y-X _<c1i [Li
jai

vzdVg+r2VNdVe]

for some constant C1 independant of i. Moreover there exists a constant C2 such
that for any i, v1 < C2v.

This result is proved by different authors; it holds when the point of con-
centration is simple. According to the value of Y, (89) and (90) yield

f 2

(91) (2qj - CI) J; vt dVE < CI C2"' J +
r r2)n dVE < Const..

n n; (1

But vi -4 v uniformlyf on any K, hence for i large enough

J vZ dVe > IK v2 dV>nSo
we get a contradiction: vi cannot exist for i large enough.



Chapter 5

The Yamabe Problem

Yamabe wanted to solve the Poincare conjecture (see 9.14). For this he thought,
as a first step, to exhibit a metric with constant scalar curvature. He considered
conformal metrics (the simplest change of metric is a conformal one), and gave
a proof of the following statement "On a compact Riemannian manifold (M, g),
there exists a metric g' conformal to g, such that the corresponding scalar cur-
vature R' is constant". The Yamabe problem was born, since there is a gap in
Yamabe's proof. Now there are many proofs of this statement. We will consider
some of them, but if the reader wants to see one proof, he has to read only
sections 5.11, 5.21, 5.29 and 5.30.

§ 1. The Yamabe Problem

5.1 Let us recall the question.
Let (M,l, g) be a compact COO Riemannian manifold of dimension n >_ 3, R

its scalar curvature. The problem is:
Does there exist a metric g', conformal to g , such that the scalar curvature

R' of the metric g' is constant?
In fact Yamabe [269] said that such metric always exists, but there is a gap

in his proof which is impossible to overcome in general, He said that the set
{(pq}(2 < q < N) is uniformly bounded (see 5.14) without proof in the positive
case.

Among other things, in this chapter we give a positive answer to the problem
above (see Theorems 5.11, 5.21, 5.29 and 5.30).

5.2 The differential equation. Let us consider the conformal metric g' = of g
with f E COO. By 1.19, if vl- and r- denote the Christoffel symbols relating
to g' and g respectively:

ri'j - rij = 1[9ki aif +9ki ajf - 9ij akf]9kt

= 2[bjaif +6sajf -9ijvlf]

According to 1.13,
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Ri; = Rikj
n 2 n - 2

= Rtj - 2 V+if + 4 VifV3f

- 2 (oaf + n
2

2v fV fl
9ij

so

flR'=e-f I R-(n- 1)VUf - (n - 1)(n - 2)
V-fV,

If we consider the conformal deformation in the form g' = cp4/(n-2)g (with
cp E C°°, cp > 0), the scalar curvature k satisfies the equation:

(1) 4((n - 1)/(n - 2))i +Rcp = R'lp(n+2)/(n-2) where AV = -p"V cp.

So the Yamabe problem is equivalent to solving equation (1) with R' = Const,
and the solution cp must be smooth and strictly positive.

5.3 On a C°° compact Riemannian manifold Mn of dimension n > 3, let us
consider the differential equation

(2) AV + h(x)cp = Af(x)coN-'

where h(x) and f (x) are COO functions on Mn, with f (x) everywhere strictly
positive and N = 2n/(n - 2).

The problem is to prove the existence of a real number A and of a C°°
function cp, everywhere strictly positive, satisfying (1).

1.1. Yamabe's Method

5.4 Yamabe considered, for 2 < q < N, the functional

[fM

fM

l
ElM

(3) = V1g VicpdV + J h(x)W2 dv] f(x)VI dV]

where cp : 0 is a nonnegative function belonging to H1, the first Sobolev
space. The denominator of Iq(cp) makes sense since, according to Theorem
2.21, H1 C LN C Lq. Define

µq=inflq(cp) for all cEH1,cp>0,cp=0.

It is impossible to prove directly that AN is attained and thus to solve Equation
(2). (We shall soon see why.) This is the reason why Yamabe considered the
approximate equations for q < N:

(4) AV + h(x)cc = Af(x),pq-I

and proved (Theorem B of Yamabe [269]):
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5.5 Theorem. For 2 < q < N, there exists a C°° strictly positive function coq
satisfying Equation (4) with A = µq and Iq(coq) = µq.

Proof.
a) For 2 < q < N, µq is finite. Indeed

(5)

2/q

Iq(cP) [z inf (0, h(x))) [ sup f(x)J IIcPMM2EM xEM
-2
qIcI

and

(6) IHHPll2MMtcljq
2

< V'-2/q < SUp(1, V2/"),

with V = fm dV. On the other hand,

2/q
µq < Iq(1) _ VM

h(x) dVlJ [IM f (x) dVJ

(b) Let {cot} be a minimizing sequence such that fm f(x)co' dV = 1:

p E H,, cot > 0, lim Iq(cp,) = µq.
1-400

First we prove that the set of the cp, is bounded in H,,

IIWtIIH, = Ilwtill2 = fM h(x)co dV + II(v=112.

ince we can suppose that Iq(cp,) < µq + 1, thenS

µq + 1 + [1 + sup Ih(x)I, IIctI12
XEM

r -
l

2/q
[V]1_2/9

Iinf f(x),
c) If 2 < q < N, there exists a nonnegative function W. E H1, satisfying

(x)cpdV = 1.Iq(cOq) = pq and
fM

f

Indeed, for 2 < q < N, the imbedding H, C Lq is compact by Kondrakov's
theorem 2.34 and, since the bounded closed sets in H, are weakly compact
(Theorem 3.18), there exists {cps} a subsequence of {cpt}, and a function Wq E
H, such that:

(a) cps --+ co, in Lq,
( 3) cpj -+ cpq weakly in H1.
(y) coj --+ cpq almost everywhere.
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The last assertion is true by Proposition 3.43. (a) fm f (x)cpq dV = 1;

ry) : 'Pq > 0, and j3) implies

I I cvq I I H, < lim f II cps I I H, (Theorem 3.17).

Hence Iq((oq) < limj-,,. Iq(cpj) = µq because cps ---' coq in L2, according to (a)
since q > 2. Therefore, by definition of µq, Iq(loq) = LLq.

d) coq satisfies Equation (4) weakly in H1. We compute Euler's equation. Set
cp = cpq + vii with 0 E H1 and v a small real number. An asymptotic expansion

gives:

-r 2/q

Iq(co) = Iq(coq) 1 + vq
J

f (x)cPq-1 0 dV
I M J

11

+2v f
[IM

V 'VgVvV) dV + IM dVJ + 0(v).

Thus co, satisfies for all 0 E H1:

(7) fm V `'cPq V,,o dV + fm h(x)cPq') dV = µq f
M

f (x)(oq-' V) dV.

To check that the preceding computation is correct, we note that since -9(M)
is dense in H1 andco$0,then

inf lq(co) = inf Iq(cp) = inf Iq(IcI) > inf Iq(co) > inf Iq(co).
coEH, W EC- EC- rpEH, pEH,

(p>0

I(co) = I(I col) when cp E C°° because the set of the point P where simultaneously
co(P) = 0 and IVco(P)I 0 0 has zero measure (or we can use Proposition 3.49
directly).

e) cpq E CI for 2 < q < N and the functions coq are uniformly bounded for
2<q<qo<N.

Let G(P, Q) be the Green's function (see 4.13). coq satisfies the integral
equation (see 4.14)

(8) coq(P) = V-1
JM

coq(Q)dV(Q)

+ f G(P, Q)[µgf (Q)cPq-' - h(Q)Wq] dV(Q).
M

We know that coq E Lro with ro = N. Since, by Theorem 4.13c there exists a
constant B such that IG(P, Q)I < B[d(P, Q)]2-n, then according to Sobolev's
lemma 2.12 and its corollary, coq E Lr, , for 2 < q < qo with

1 n-2+q0-1 1qo-1 2

r1 n ro ro n

and there exists a constant Al such that IIwQII, <_ A, IIcOgllro 1



§1. The Yamabe Problem

By induction we see that cPq E Lrk with

1 qo - 1 2 (qo -
I)k

2 (qo - 1)k - 1

rk rk_I n ro n qo - 2
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and there exists a constant Ak such that IWgjI ., <_ AkjIW,II(.Q-1)k.

If for k large enough, 1/rk is negative, then coq E LCO. Indeed, suppose
I/rk_, > 0 and I/rk < 0. Then (qo - 1)/rk_, - 2/n < 0, and Holder's
inequality 3.62 applied to (8) yields I1(oq11 .. ) < Const X IVgIIQk',
There exists a k such that

Iro
1 k1 2 + 2 <0
rk

= (qo - I)
n(qo - 2) n(qo - 2)

because n(qo - 2) < 2ro = 2N, since qo < N = 2n/(n - 2).
Moreover, there exists a constant Ak, which does not depend on q < qo, such
that:

IIPq . < AkIIcPcjIN ilk.

But the set of the functions W. is bounded in H, (same proof as in b)).
Thus by the Sobolev imbedding theorem 2.21 the functions W. are uniformly

bounded. Since coq E Lam, differentiating (8) yields coq E Cl- coq satisfies (4);
thus Ocoq belongs to C' and coq E C2 according to Theorem 3.54.

f) coq is strictly positive. This is true because fu f(x)coq dV = 1, Proposition
3.75 establishes this result since coq cannot be identically zero. Lastly coq E C°O
by induction according to Theorem 3.54.

5.6 Remark. The proof of Theorem 5.5 does not work for q = N. The problem
is that if q = N, we cannot apply Krondrakov's theorem in c), and therefore
only have

1.

fM

Moreover, the method in e) yields nothing when qo = N. In this case rk = ro = N
for all k. Indeed, we shall see below that if q = N then Equation (4) may not
have a positive solution (see Theorem 6.67).

5.7 Remark. Using the same method, one can study equations of the type AV+
h(x)co = A f (cp, x), where f (t, x), a CO° function on R x M, satisfies some
conditions. In particular, If (t, x) I < Const x (1 + It I9O) with qo < N (see Berger
[39]) or with qo < N (see Aubin [16]). The idea is to consider the variational
problem:

fm fM

f
inf of VVdV + h(x)2 dV when J

F(, x) dV = Const,
M

where F(t, x) = j o f (u, x) du.
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1.2. Yamabe's Functional

5.8 To solve Equation (1), Yamabe used the variational method. He considered
the functional, for r2 < q < N = 2n/(n - 2),

1

(9) Jq((P) _ [4n - 2 IM VcoVcpdV + R(x)2 dVJ 2

JM

and defined /Cq = inf Jq(cp) for all cp > 0, cp 0 0, belonging to HI. Set µ = µN
and J(W) =

Proposition. A is a conformal invariant.

Proof Consider a change of conformal metric defined by g' _ V 4/(n-2)g. We
have dV' = ,pN dV and

11 r

4n-2 [f (p2Vv,)VV dV+J c002AcpdV] +J Rcp2Vi2dV
n

M M M

[ fm (p NN

dVll

J

2/N

Using (1) yields J(cpo) = J'(z]i) and consequently µ = p'. J' is the functional
related to g', and p' the inf of X.

By a homothetic change of metric we can set the volume equal to one. So
henceforth, without loss of generality, we suppose the volume equal to one.

1.3. Yamabe's Theorem

5.9 In his article [269], Yamabe proved Theorem 5.5 and then he claimed that
the C°° strictly positive functions cpq, q E]2, N[ satisfying

(10) 4n-2Acoq+R(Pq=pggo''

and JI(gIIq=1

are uniformly bounded.
But this does not hold in general. The functions W(r) of Theorem 5.58 are not
uniformly bounded on the sphere. This counterexample shows that Yamabe's
proof is wrong. Indeed (p. 35 of Yamabe [269]), the inequality Ilv( )j q <_
Coast X Jw(q)l1q, must be replaced by 1w(q)IIq < Const X Jw(q)jj9q-1)"-' and
this does not yield the result.
In the negative or zero case, (p < 0), it is easy to overcome the mistake. But
in the positive case (p > 0), it is impossible. Yamabe did not solve his problem
but he proved the following.

Theorem (See Aubin [11] p. 386). Let M,, be a C°° compact Riemannian man-
ifold; there exists a conformal metric whose scalar curvature is either a non-
positive constant or is everywhere positive.
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Proof. a) the positive case (µ > 0). If µq,, > 0, aq is positive for q E ]2, N[.
Indeed

Aq = Jq(Pq) = Jg0(ccq)IIcogIIqaII'PgIIq
2

Pg0 ko9IIgo

4 ("_2)g, applying (1) and (10) leadsThen consider the conformal metric g' = Vgo
to

(11) R'(x) = µgocPQo-N(x),

the scalar curvature R' is everywhere strictly positive. Moreover we can prove
that u > 0. Indeed the functional J' corresponding to g' satisfies

[4:J,
M M

J'(O) 2
iXEMnf n-2R'(x)J Lf g'ijVbVbdV'+J 'dV'J

X I

J
oN dV1 1

M21N

According to the Sobolev imbedding theorem, J'(i,b) > Const > 0 for all bi E
H1. Thus µ' > 0 and we have a =,a' (Proposition 5.8).

/3) The null case (µ = 0). If µq0 = 0, by (11) the scalar curvature R' vanishes,
and µq = 0 for all q E ]2, NJ, because for all z/i and q, Jq(o) > 0.

y) The negative case (p < 0). If PLgo < 0 there exists a V) E C°° such
that Jg0(zb) < 0. Hence Jq(5) < 0 for all q E [2, NJ and µq < 0. In particular,
µ < 0. Moreover, µq G Jq( ) = %II N

2 - JON. Thus pq(q E [2, N])
is bounded away from zero.
Now we are able to prove very simply that the functions cpq(q E]qa, N[) are uni-
formly bounded with qo E ]2, N[. At a point P where cpq is maximum Ocpq > 0,
hence Ugcpq'i(P) > R(P)cpq(P). We find at once that cpq-2 < I inf RI IJ(')I-1

and cpq < 1 + [I infRI IJ(b)I-1]1/(80-2). By (10), cog satisfies:

(12) cog(P) = fM cPq(Q) dV(Q)

+ f G(P,Q)4(n - 1)[µgcPq-1(Q) - R(Q)cPg(Q)l dV(Q)
M

Differentiating (12) yields W. E C' uniformly, and according to Ascoli's theo-
rem 3.15, it is possible to exhibit a sequence cpq, with qi -+ N, such that cpq
converges uniformly to a nonnegative function WN.
But 0 > µq > infR(x)IIccgIIz ? infR(x). Therefore a subsequence Pqi con-
verges to a real number ri (in fact µq is a continuous function of q for q E ]2, NJ
by Proposition 5.10, so µ = v).
Letting qj --> N in (12), shows that cpN is a weak solution of

'
(13) 4 n 2

AcoN + RcpN = V V N
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Since 1, IIoNIIN = 1. Multiplying (13) by cPN and integrating yield
J(cPN) = v.

The second term in (13) is continuous; thus, by (12), cpN E C'. Now apply
the regularity theorem 3.54: the second member of (13) is Cl; thus cON E C2.
Now according to Proposition 3.75 cON is strictly positive everywhere, since
II SON II N = I implies 'PN 0 0. We can use the regularity theorem again to prove
by induction that cPN E COO. Thus the C°° function cON > 0 satisfies (1) with
R' = Const (in fact, R' = p).
In the negative case it is therefore possible to make the scalar curvature constant
and negative.

5.10 Proposition. pq is a continuous function of q for q E ]2, N], which is either
everywhere positive, everywhere zero, or everywhere negative. Moreover, IpgI is
decreasing in q if we suppose the volume equal to 1.

Proof. If the volume is equal to 1 for '0 E C°°, IIV)IIq is an increasing function
of q. Thus IJq(V))I < I Jp(V')I when p < q and this implies Ippl > Ipgl since C°°
functions are dense in H1.
Moreover, Jq(ii) is a continuous function of q. It follows that pq is an upper
semicontinuous function of q. Indeed, for all e > 0, there exists Eli E CO,
such that Jp(,O) < pp + E and since pq < Jq('O), limq.p Jq(1l)) = Jp(V)) yields
lim Supq_,p pq < pp + C.
Let qj be a sequence converging to p E]2, N].
In the negative case, we saw, 5.9'y, that the functions W. are uniformly bounded.
Therefore Ilcpq; IIp --+ 1 and as pp < Jp(coq,) = Pq, IIcPq, IIP 2, lim infq.p pq > pp.
This establishes the continuity of q -+ pq in the negative case. Similarly we can
prove that this function is continuous on ]2, N[ in the positive case, because if
qo < N, the functions cpq are uniformly bounded for q E ]2, qo] by (5.5e). Finally
pg --+ ,UN when q -+ N because the function q -+ pq is upper semi-continuous
and decreasing in the positive case. If the volume is not one, we consider a
homothetic change of metric such that the volume in the new metric is equal to
one.

§2. The Positive Case

5.11. Definition. Recall p = inf J(cO) for all cp E H1, cp 0 0, J(W) being the
Yamabe functional.

We have the basic theorem:

Theorem 5.11 (Aubin 1976 [14]). p < n(n - If p < n(n -
there exists a strictly positive solution 0 E C°° of (I) with R = p and IIcoIIN = 1

Here R is the scalar curvature of (Mn, g) with = cp4/(n-2)g and w" is the
volume of the unit sphere of radius 1 and dimension n.
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We will give below (a) to e)) the proof of this Theorem. Then, to solve
the Yamabe problem, we have only to exhibit a test function 0 such that
J(t) < n(n-1)wn/". All subsequent work to date has centered on the discovery
of appropriate test functions, except for Bahri's results obtained by algebraic-
topology methods. Bahri exhibits a solution, which is not in general a minimizer
of the Yamabe functional.

Conjecture (Aubin 1976 [14] p.294). p satisfies µ < n(n - 1)w21" if the com-
pact Riemannian manifold (of dimension n > 3) is not conformal to (S", go).

According to Theorems 5.21, 5.29 and 5.30, this conjecture is proved. The
consequence of this conjecture is that the Yamabe Problem is proved.

Proof. a) Recall that K(n, 2) = 2(w")-1/"[n(ri - 2)]-1/2 is the best constant
in the Sobolev inequality (Theorem 2.14). By theorem (2.21), the best constant
is the same for all compact manifolds. Thus there exists a sequence of C°°
functions 4)i such that

IIIiHIN = 1, Nib -* 0 and IIVVGiII2 -b K-1(n, 2),

when i --+ +oo. Therefore n(n - 1)wn/" and p < n(n - 1)wn/

,3) Let us again consider the set of functions coq (q E]2, N[) which are
solutions of (10). This set is bounded in H1 since we have II cpq II2 <- 1 and

4n-2IMVcoq 1 1 2 Pq+supIRI < f RdV+supIRI.

Therefore there exists Wo E H1 and a sequence qi --> N such that coq; - (oo
weakly in H1 (the unit ball in H1 is weakly compact), strongly in L2 (Kon-
drakov's theorem) and almost everywhere (Proposition 3.43). The weak limit in
H1 is the same as that in L2 because H1 is continuously imbedded in L2, and
strong convergence implies weak convergence.

y) Since coq; satisfies (10), then for all 0 E H1:

4 n 2 f V "OV ,co dV + f Rtbcpq, dV = µq, f Ooq -1 d[!

Letting qi -+ N gives us
r r

(14) 4 n - 1 f v"bvvcoo dV + J R11icpo dV = µ J tJicpa -1 dV

Indeed, according to Theorem 3.45, q'-1 converges weakly to cpo -1 in

LN/(N_1) since (pq -1 -> W -1 almost everywhere and

IIOQ:-1IIN/(N-1) = 1(q;II(q; _1)N/(N-1) - Const

x Ilcpgi Iltr, 1
<- Const.
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Therefore cpo satisfies (14) for all 0 E H1 C LN. According to Trudinger's
theorem ([262] p.271) cpo E CO° and satisfies (1) with R' = p.

b) The problem is not solved yet because the maximum principle implies
that either cpo > 0 everywhere or cpo - 0, and for the moment we cannot exclude
the latter case. In order to prove that cPo is not identically zero, we must use
Theorem 2.21. We write, using (10),

(15) 1 = IIcPgII9 < II'g1IN < [K2(n,2)+e]
n-2

I µq - J RWgdVJ
4(n - 1) LL

+ A(E)IIcPg IIz,

where e > 0 is arbitrary and A(E) is a constant which depends on E.
When p < n(n - 1)wn/", if we choose E small enough, there exist Eo > 0 and
i > 0 such that for N - q < r),

r _ 2/n

(16) 0<EO<1-
n(n -

1)+E4(n
- 1) Ag

since Uq --> p when q -4 N.
In this case, (15) and (16) imply

liminnf II'gII2 > Const > 0.

Because coq; converges strongly to coo in L2, 1k00112 # 0. Thus cPo 0 0 and
'Po > 0. Picking 1/, = coo in (14) gives J((oo) = AIIcPo II N-2; thus II'o II N > I

since J(coo) > p. But since the sequence coq; /N of 5.11/3 converges weakly to
9:/N b Theorem 3.17.coo in LN by Theorem 3.45, II cPo II N S lim infq, -N IIcPg: II g, Y

Hence II'Po II N = 1 and J(cpo) = A.
Moreover by Radon's theorem, 3.47, coq; --+ coo strongly in HI because
II coq; I I H, -° I I coo I I H, since p , --+ A. Therefore by the Sobolev imbedding theorem
coq; -, coo strongly in LN.

E) In fact, when µ < n(n - 1)w2,,,/n, it is possible to prove directly that the
functions coq q E ]2, N[ are uniformly bounded and we can proceed as in the
negative case, without using Trudinger's theorem.

5.12 More generally, let us consider the equation

(17)
n1

4 n - 2Ocp + h(x)co = Af (x)coN -1,

with h E C°°, f E C°° given (f > 0), and A (= 0, 1, or -1) to be determined
as in 5.3. Let

_ l 2/N
I (cP) = [-: f V'cpV ;,w dV + f hca dV I / f J fcoN dV]

-
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and define v = inf I(cp) for all cp E HI, co 0 0. Using the same method one can
prove:

Theorem. v < n(n - 1)w2n/n[sup f]-2/^'. If v < n(n - 1)wn/"[Sup f]-2/!`'
Equation (10) has a C°° strictly positive solution.

5.13 Now we have to investigate when the inequalities of Theorems 5.11 and
5.12 are strictly satisfied. For this, consider the sequence of functions 1k (k E N):

1-n/2 1-n/2
Gk(Q) _ ( +r2)

- Ck +621 , for r < 6,

and Ok(Q) = 0 for r\> 6, with 6 the
injectivity/radius,

r = d(P,Q), P fixed. A
computation shows that limk_. I(0k) = n(n -1)wn/n[ f (P)]-2/N. Pick a point
P where f (P) has its maximum. In order to see if equality in Theorem 5.12
does not hold, we compute an asymptotic expansion.
If n > 4, the coefficient of the second term has the sign of

h(P)-R(P)+n-4_f(P)

2 f(P)

More precisely, the asymptotic expansion for n > 4 is

I(V)k) = n(n - 1)wn/nIf(P)]-2/N
l / \

X{ 1+ [n(n - 4)k]- I h(P) - R(P) + n 2 4 f P) +0 k

and for n = 4

I (Ok) = 12[w4/f (P)]I /2 f 1 + [h(P) - R(P)]
g

k t
+0

(Lock)

Proposition (Aubin [ 14] p. 286). If, at a point P where f is maximum, h(P) -
R(P) + ((n - 4)/2)(A f (P)l f (P)) < 0, Equation (17) has a C°° strictly positive
solution when n > 4.

5.14. Let us return to Yamabe's equation (1) with R' = Const.. That is equation
(17) with f (P) = 1 and h(P) = R(P). We cannot apply Proposition 5.13.
Hence Yamabe's equation is a limiting case in two ways: first with the exponent
(n + 2)/(n - 2) and second with the function R.

Since the original proof of Theorem 5.11 (in [14]) many new proofs of this
theorem appeared which don't use the sequence cpq of positive solutions of the
approximate equations

4 ((n - 1)/(n - 2)) AV + RV = µgcp9-I with 2 < q < N.

Let us mention Inoue's proof [` 181] (discussed also in Berger where the
steepest descent method is used and Vaugon's proof [`311] which is certainly the
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simplest and the fastest. This proof is an illustration of the method of successive
approximations.

When ji < 0 we can overcome the difficulty in Yamabe's proof. In the zero
case, the functions coq are proportional , cpq solves the Yamabe equation (1). In
the negative case, the wrong term in Yamabe's proof may be removed in the
inequalities (it has the good sign). So Yamabe's argument works: the functions
cpq are uniformly bounded.

In the positive case, when µ > 0, the operator L= 0 + (n - 2)R/4(n - 1)
has its first eigenvalue a > 0. Any cp E C°° satisfies f cpLcp dV > a f cp2 dV.
L is invertible with a Green function GL(P, Q) > in > 0.

It is interesting to write up here Vaugon's proof of the following theorem
which is more general than theorem 5.11.

5.15 Theorem. Let h and f be CO° functions, f > 0 and L= A + h such
that any cp E C°° satisfies: f cpLcp dV > a f cp2 dV for some a > 0. Set
v = inf f cpLco dV for all cp E C°° such that f f IccIN dV = 1.

If v < vo = n(n - 2)w2n/"/4(sup f )2/N there exists a C°° strictly positive
solution of the equation Lcp = fcpN-1.

Proof. Pick `1'o E C°°, To > 0 which satisfies f f qo dV = 1 and I(41o) < vo.
We set

I(W)=f WLIP dV=J VYWDYWdV+J hW2dV.

Define the sequence {11j } for j > I by

(18) LWj = A 111 I1Fj-i IN-'

where the positive real numbers Aj are fixed by the conditions f f 1Wj N dV = 1.
If LIP is a stricitly positive C°° function, 41 is a strictly positive C°O function.

Thus, as it is the case for LW1, by induction Wj E CO° and 1j > 0 for all j.

5.16 Lemma. Set I(W) = f W LW dV = f I V W 12 dV + f hi p2 dV

(19) Aj+1 5 I(W2) < Aj for all j > 1.

Indeed multiply (18) by Wj and integrate, we get

I(`yj) = Aj f fWN-'Wj dV

(
1-1/N 1/N

5 \j (f
fT'

1dV) (ffWdv) =Aj

by the Holder inequality used with volume element f dV.
Then multiply (18) by'Pj-1, integrating yields f'Pj-1LWj dV = \j. But as

I(W j - Wj-1) > 0, I(`I'j) + I(`yj-1) > 2f T j-1LW j dV = 2A2. Thus I(W j-1)
> A,.
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5.17 Proof of theorem 5.15 (continued). The set {T j } is bounded in H, . Indeed
by hypothesis I(Wj) > a f T dV, thus {'j} is bounded in L2, then in H,
since by (19)

0<I(''3)<,\1 for all j> 1.
According to the usual theorems (Banach's theorem, Kondrakov's theorem ...
there exists a subsequence {'Vjk} of {%Fj} which converges weakly in H1,
strongly in L2 and almost everywhere to a function' E Hi.

But for j > 1, 0 < I(W j - `pj_i) < aj - 2aj + aj_1 = Aj_1 - \j which
goes to zero when j --+ oo (the sequence \j is convergent, let A its limit).

Therefore the sequence 'j,_1 converges weakly in H1, strongly in L2 and
almost everywhere to .

By (2) for all y E H1

f VZWjkVi7dV+ f hq'jkydV=\jkJfZ:dV.

Letting k --+Ioc yields

fhtdV l1 V V ydV+ = A 11 f N-1ydV.

By the Trudinger theorem of regularity [262], ;P E COO, ID satisfies LiF =

.AfIN-1 and 4P > 0. Now left us prove that'' > 0. By construction we have

; Z+J
On the other hand by the Sobolev inequality

\2/N

I = (f fWy3 - 2dV J < (SUP f)21N(K2(n,2)+C)IIV j112+Be11q'jIli

where e > 0 is chosen small enough so that (sup f )21N (K2(n, 2)+e) I(Wo) < 1.

This is possible since I(xPo) < vo, recall K-2(n, 2) = n(n - 2)w2n/n/4.
We obtain limj-»o inf 11 Tj 112 > 0. As W;,, --+ ID in L2, II' 112 # 0 and' $ 0.

Then the maximum principal implies if > 0.

§3. The First Results

5.18 In order to use theorem 5.11, the first idea is to choose %P = I as test
function in the Yamabe functional J.

J(1) = V -11N J R dV where V = J dV,

so we get the following
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Proposition. If f R dV < n(n - there exists a conformal metric
with constant scalar curvature R.

When equality holds, two cases can happen:
a) µ < n(n - 1)w2n/" and Theorem 5.11 may be applied.

) µ = n(n - In that case the function cp - 1 minimize the func-
tional J (cp), we have R = Const.. In fact the manifold is the sphere.

5.19 To see if µ < n(n - 1)w2n/", we can consider test functions 9 in the
Yarnabe functional J(T) corresponding to a conformal metric of g, since µ
is a conformal invariant (Proposition 5.8).

The components of the Ricci tensor of g are

Rij=Rj-n22Oijf+n42Vi.fvjf+2(of-n22lOfl2)gij.

At a point P E V, if f satisfies f(P) = (Vf(P)j = 0 and

(20) aijJ (P) = [2Rj(P) - R(P)9ij/(n - 1)] /(n - 2)

we have R(P) = R(P) + (n - 1)L f (P) = 0 and

(21) Rij (P) = 0.

Moreover if we choose f such that

(22) aijkf(P) = 2[VkRij(P)+ViRkj(P)+VjRik(P)]/3(n - 2)

- [8kR(P)9ij + 9iR(P)gjk+8jR(P)9ik]/3(n - 2)(n - 1)

(we suppose that the coordinates are normal at P), we obtain after contraction
(akLf)p = -8kR(P)/(n - 1) according to the Bianchi identities.

Thus lVA(P)I = 0 and we obtain

(23) VkRij(P)+ViRkj(P) + V3Rki(P) = 0 for all i, j, k.

Recall the following well known result [14], the beginning of the limited
expansion of Jgj in normal coordinates {xi}:

Y lgl = 1 - Rj(P)xixi/6 - VkR,.j(P)XiXjXk/12+O(r4).

If (21) and (23) are satisfied we obtain

(24) 191 = 1 + 0(r4) with r = d(P, x).

Remark. By a suitable choice of the successive derivatives of f at P, it is
possible to prove by induction (Lee and Parker Theorem 5.1 of [*208]) the
existence of conformal normal coordinates at P:
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5.20 Proposition (Lee and Parker [*208]). For each k > 2 there is a conformal
metric g such that

-

(25) Ig(x)I = 1 + 0(rk) with r = d(P, x).

Recently this result was improved by J. Cao [*73], then by M. Gunther
[* 148]. They proved that, in a neighbourhood f of a given point P, there exists
a conformal normal coordinate system such that the determinant is equal to 1
identically.

Suppose that, on Sl, og (a- a positive function) is such that ry = IgI = 1
in a geodesic coordinate system {yi}. Then u, the square of the geodesic distance
to P for g (u = E(yi)2), satisfies gzj I 0' = 4u and Au = -2n, {xi} being
a normal coordinate system for g). Written these two equations in the metric
g, we obtain a system of two equations in the unknowns u and a. We seek u
and a satisfying u = r2+O(r3) and a = 1 +O(r) when r, the geodesic distance
to P for g, is small. J. Cao uses the Schauder fixed point theorem. As for M.
Gunther, he solves this system by the method of successive approximations; for
that he considers the linearized equations of the system at (r2,1, bi3).

5.21 Theorem (Aubin [ 14] p. 292). If (Mn, g)(n > 6) is a compact nonlocally
conformally fiat Riemannian manifold, then µ < n(n - 1)w2n1 2. Hence the min-
imum is achieved and there exists a conformal metric g' with R' =,4V-2/n, V

being the volume of the manifold (Mn, g').

Proof By hypothesis the Weyl tensor Wijki (see Definition 4.23) is not zero
everywhere, there is a point P E M where I Wijki(P)l # 0. We consider a metric
g = of g with f satisfying (4), and we choose, as test functions for J(c ), the
following sequence of lipschitzian functions q1k:

(26)
'Pk(r) = 0 ifr=d(P,Q)>6>0

and
`Pk(r) = (r2 + k)' Z - (62 + k)t-T' for r < 6,

where we pick 6 smaller than the injectivity radius at P.
A limited expansion in k yields for n > 6

J(Tk) = n(n - [1 - k-2a2/(n - 4)(n - 6) + o(k-2)]
and

J(`Pk) = 30w6/3 [1 - a2k-2(log k)/80 + 0(k-2)]

for n = 6 with a2 = IWijkz(P)I2/12n. Thus J(WPk) < n(n - 1)wn/n for k large
enough.

5.22 Remarks. For any compact manifold Mn(n > 3), J(qfk) tends to
when k --+ no. This implies the first part of Theorem 5.11.n(n - 1)wn'
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In dimension 3 to 5, there are integrals on the manifold in the limited expan-
sion of J(q'k) instead of a coefficient like a2, and it is not possible to conclude
a priori, but see 5.50.

For locally conformally flat manifolds, it is obvious that local test functions
cannot work since for the sphere p = n(n - 1)w,21 (Theorem 5.58).

5.23 Theorem ([14] p.291). For a compact locally conformally flat manifold
M, (n > 3), which has a non trivial finite Poincare's group, p < n(n - 1)wn/n

For the proof, we consider Mn the universal covering of Mn. Mn is compact,
locally confonnally flat and simply connected. Kuiper's theorem [172] then
implies that 1 1 is conformally equivalent to the sphere Sn. Hence Equation (1)
has a solution with R' = p

5.24 Proposition. When the minimum p is achieved, let J(cpo) = p. In the cor-
responding metric go whose scalar curvature Ra is constant, the first nonzero
eigenvalue of the Laplacian Al > Ro/(n - 1).

For the proof one computes the second variation of J(W) (see Aubin [14]
p. 292).

§4. The Remaining Cases

4.1. The Compact Locally Conformally Flat Manifolds

5.25 The effect of §4 is to prove the validity of conjecture 5.11. The results of
the preceding paragraph do not concern the locally conformally flat manifolds
with infinite fundamental group for which V211-1 f RdV > n(n - 1)w / 2

The known manifolds of this type are

c) some products 9n_1 x C and S,, x Hn_p where C is the circle and Sq
(resp. Hq) are compact manifolds of dimension q with constant sectional
curvature p > 0 (resp. -p < 0).

0) some fibre bundles with basis one of the manifolds with constant sec-
tional curvature mentioned previously and for fibre Sq or A. according
to the situation.

'y) the connected sums V1 # V2 of two locally conformally flat manifolds
(V1,91), (V2, 92).

Most of these manifolds are endowed with a metric of constant scalar curva-
ture by definition. But for them, according to the conjecture 5.11, the problem
is to prove that the infimum of J(V) is achieved, and thus we shall prove
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5.26 Theorem (Gil-Medrano [* 142]). The manifolds a), p), and -y) satisfy

µ < n(n - 1)w2n/".

161

Proof. It consists to exhibit a test function u such that J(u) < n(n - 1)w,
By an homothetic change of metric, we can suppose that p = 1. Let lI be

the projection
S11-1 x C --+ C.

On Sn-i x C the function u will be u(P) = (chr)'-n/2 where r is the
distance on C from 1I(P) to a fixed point yo E C.

On Sp x Hn_p, the same function u(P) works, but here II is the projection
Sp x Hn_p --i Hn_p and r is the distance on H11_P from 11(P) to a fixed point
yo E Hn-p. The proof is similar for the fibre bundles.

For the connected sums we have first to study the conformal class of the
locally conformally flat metric go constructed on the connected sum Vo = Vl #
V2. Then Gil-Medrano proved that µo < inf(µl, µ2), where µt(i = 0, 1, 2) is the
µ of (Vi, 9i)

4.2. Schoen's Article [*280]

5.27 As µ is a conformal invariant, it is possible to do the computation of J(T),
for some test function T, in a particular conformal metric (as in 5.20). When
the manifold is locally conformally flat, after a suitable change of conformal
metric, the metric is flat in a ball B6 of radius 6 and center xo. We saw above
that locally test functions yield nothing for these manifolds. The idea of Schoen
is to extend the test functions used in 5.21 by a multiple of the Green function
GL of the operator

L = A + (n - 2)R/4(n - 1).

We are in the positive case (µ > 0), L is invertible and GL > 0. More
precisely let p < 6/2 and r = d(xo, x). Fore > 0 set

(e+r2/e)'-n/2 for r < p,
(27) fi(x) = co [G(x) - h(x)a(x)] for p < r < 2p,

coG(x) for r > 2p.

G(x) is the multiple of GL(xo, x) the expansion of which is the following in
B6:

(28) G(x) = r2-n + a(x)

where a(x) is an harmonic function in B6.
h(x) is a CO° function of r which satisfies h(x)=1 for r < p, h(x) = 0 for

r > 2p and IVhJ 5 2/p.
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6O=(p2-,+A)-1(,- +p2/e)1-n/2 with A = a(xo) in order the function IV is
continuous hence lipschitzian, p will be chosen small, eo infinitely small with
respect to p, then E is well defined and E ti 02/(n-2)

when Eo 0. Indeed the

function t -+ [t + p2/t]
1-n/2

is increasing for t E ]0, p] and goes from 0 to
(2p)1-n/2.

5.28 Proposition (Schoen [*280] 1984). If G(x) is of the form (28) for any n > 3
with a(xo)=A>0then p<n(n-I)w,,

-

The proof is easily understood. By an integration by parts, all the computa-
tions can be carried out in B2p. They yield

(29) J(') < n(n - CAE2 + O(peo)

where C > 0 is a constant which depends on n. The result follows.

5.29 Theorem (Schoen and Yau [*289] 1988). If (Mn, g) is a compact locally
conformally flat Riemannian manifold of dimension n > 3 which is not conformal
to (Sn,go), then A > 0. Hence conjecture (5.11) is valid and there exists a
conformal metric g with R = pV-2/n, V being the volume of the manifold
(M.., 9)

The result follows from Proposition 5.28 combined with 5.37 for n = 3 and
Theorem 5.48 for n > 4.

4.3. The Dimension 3, 4 and 5

5.30 Theorem (Schoen [*280]). If (Mn, g) is any compact Riemannian manifold
of dimension 3 to 5, which is not conformal to (SS,go), then p < n(n - 1)wn'n
Hence according to theorem 5.11, there exists a conformal metric g with R =
MV-2/n, V being the volume of the manifold (Mn, g).

Proof. The result follows from Proposition 5.28 combined with the fact A > 0
to be established below §4. When n = 3, the Green function Gp of L at P E M
has for limited expansion in a neighbourhood of P:

Gp(x)= [1/r+A+O(r)]/4ir

where A is a real number and r = d(P, x).
This expression is the same as (28). So the method of 5.27 works. For the

dimensions 4 and 5, Schoen [*280] replaces in a small ball Bp(p) the metric g by
a flat metric. He considers a CO° metric which is euclidean in Bp(p) and equal
to g outside the ball Bp(2p). Thus he can use his method, but the approximation
is too complicated. It is simpler to use the following fact which is one of the
hypotheses of Proposition 5.28.
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5.31 Proposition. Let (Mn, g') be a compact Riemannian manifold of dimension
4 or 5, belonging to the positive case (µ > 0). Pick P E Mn, there exists a
metric g conformal to g' such that the Green function Gp of L at P has, in a
neighbourhood 0 of P, the following limited expansion

G,(x) = (r2-n + A)/(n - 2)w,a_I + a(x)

where A is a real number and r = d(P, x). a(P) = 0, a E C' for n = 4 and a is
lipschitzian for n = 5.

With this proposition, the method of 5.27 works and Proposition 5.28 implies
theorem 5.30.

Proof of 5.31. We consider a conformal metric g to g' which has at P the
properties (21) and (23).

Thus (24) Jg(x)I = 1 + 0(r4) in normal coordinates. As in 4.10, consider
H(P, Q) = f (r)r2_,/(n - 2)wn_I with r = d(P, Q) and f a C°° function equal
to 1 in a neighbourhood of zero and to zero for r > 6 > 0 (6 small enough).
Recall 4.10, the singularity of OQH(P,Q) is given by r'-n8r Log IR/wn_I

which is in 0(r4-n):

(30) AQH(P, Q) = 0(r4-r`).

According to the Green formula (4.10), any cp E C2 satisfies

QH(P, Q)cp(Q) dV(Q)W(P) = J
H(P, Q)Lcp(Q) dV(Q) - fV L

v

Thus by induction

k r

GL(P, Q) = H(P, Q) + J ri(P, R)H(R, Q) dV(R) + Fk(P, Q),

with Fk(P,Q) continuous on M x M if k > (n - 1)/4. Here r,(P,R) _
-LQH(P, Q) and

ri+,(P, Q) = fm ri(P, R)rt(R,Q)dV(R).

Moreover

(31) LQFk(P, Q) = rk+l (P, Q)

As R(P) = 0 and IVR(P)I = 0 (see 2.8), R(Q)H(P, Q) = 0(r4-n) thus

(32) LQH(P, Q) = 0(r4-n)

According to Giraud (4.12) this implies for n < 5 that r2(P, Q) is C', hence
(31) yields F1(P, Q) is C' on M x M.
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Moreover ff 171 (P, R)H(R, Q) dV(R) is a continuous function on M x M.
It is even Ct when n = 4 and lipschitzian when n = 5, according to the following

5.32 Lemma. The convolution product rn-r * T in a compact domain of
Rn(n > 3) is lipschitzian.

Proof Let Q be a point of Bp(l) and r = d(P, Q) small. We have to compute

h(r)
= f [d(P,

R)] 2-n [d(R,
Q)] -1 dV (R).

r(')
Set y = d(P, R) and 0 the angle at P of RPQ.

(r) - h(0) = wn_2
r
r dsin2 0 [y(r2 + - 2ry cos 9) - 1] 1 /do.fh
0

Pick k a large integer and k < 1/2r. The absolute value of the integral on
Bp(kr) is smaller than Cr for some C (same proof as that of Giraud's theorem
4.12). With y = rt, the absolute value of the integral on Bp(l) - Bp(kr) is
smaller than

Wn_2J
1/r

r dt
fr/2

sinn-201(1+2-'cos0+t-2)-t/2

k

0

+ (1 - 2t-1 cos o + t-2)-1/2 - 21 do

which is smaller than Kr for some constant K. For instance we find when
n = 5: h(r) = 4m3 (I - 3r/4 + r2/5) /3.

5.33 Corollary. Let (Mn, g) be a compact Riemannian manifold of dimension 3,
4 or 5, such that g has at P the properties (21) and (23). Then the Green function
G of the laplacian A satisfies: G(P, Q) = H(P, Q) +,0(Q) with Q a C°° function
on M - {P} which, on M, is C2 when n = 3, C1 when n = 4 and lipschitzian
when n = 5.

Proof similar to that of the preceding proposition 5.31.

§5. The Positive Mass

5.34 We now prove A > 0, and hence conclude the validity of conjecture 5.11.

Definition. A C°° Riemannian manifold (Mn, g) is called asymptotically flat of
order r > 0 if there exists a compact K C Mn such that Mn - K is diffeomor-
phic to Rn - B0 (Bo being some ball in Rn with center 0), the components of
the metric g satisfying in {y`} the induced coordinates by the diffeomorphism:

(33) 9ij = bif +0(P-r), ak9i.i = 0(P r-1), ak19ij =
0(P_T-2).
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Example. Let (Mn, e) be a compact Riemannian manifold and {xt } be a system
of normal coordinates at xo E MM(xo has zero for coordinates). Set g = r-4e
near xo with r2 = > t xi and M = R,, - {xo}.

Then (M, g) is asymptotically flat of order 2 with asymptotic coordinates
yz = r-2xi. Indeed in polar coordinates (p or r, 9 i...,On_1) with p = 1/r we
have

9PP = P-4r-49rr = err, 90,p = 9e,r = 0 and p2ge,e; = p4(r29o,e;)

5.35 Definition. The mass m(g) of the asymptotically flat manifold (Mn, g) is
defined as the limit, if it exists, of

Wn11 9(P0)9t2(ai9pj - a9)(P, 0)dT(9)f n - i (P)

when p - oo, dT being the area element on Sn_1(p).

Remark. The preceding definition depends on the asymptotic coordinates, but
according to Bartnik [*32], m(g) depends only on g if T > (n - 2)/2.

5.36 Proposition. Let (Mn, e) be as in example 5.34 with it > 2.

Assume (Mn, g) belongs to the positive case (p > 0). Set g = G4/(n-2)9 where

G(x) = (n - 2)wn_IGL(xo, x) and M = Mn - {xo}. Suppose

(34) 1§(r, 0) 1 = 1 + 0(rk) with k > n - 2

and

(35) G(x) = r2-n + A + 0(r).

Then (M, g) is asymptotically flat of order 2 (only of order 1 if it = 3 and of
order it - 2 if (M, g) is flat near xo) and the mass of (M, g) is m(g) = 4(n -1)A.

The proof of the first part is as for example 5.34,

g = r-4 (1 + Arn-2 + 0(rn-' ))4/(n-2)g.

For the computation of the mass, choose polar coordinates with p = 1/r.

aP I9(P,B)I = (1/2) I9(PB)I91j8P9tij-

Thus

m(9) = Plim Wn I1

J ( I9(P, B)I apgpp - 28 I9(P, B)!) dr(B).
00 -

sn -, (P)

But
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Ig(Pj e)I = p-2nG2n/(n-2) I9(r, 0)I

P2 -n 1 n 2n/(n-2)

If k is large enough m(g) = (4n - 4)A = 4(n - 1)A.

Remark. If we choose a metric g which satisfies properties (21) and (23) of
5.19 near x0, g and G satisfy (34) and (35) with k = 4 when n < 5. Moreover
when n = 4 or 5, we have (n - 2)/2 < 2 and when n = 3, 1/2 < 1, thus m(g)
makes sense (see remark 5.35). When (M, g) is locally conformally flat, m(g)
makes sense also, as the order T > (n - 2)/2.

There are the remaining cases. For them to prove A > 0 is equivalent to
prove m(g) > 0 (according to the preceding proposition).

5.1. Positive Mass Theorem, the Low Dimensions

5.37 Conjecture. If (Mn, g) is an asymptotically flat Riemannian manifold of
order T > (n - 2)/2 with non-negative scalar curvature belonging to L, (Mr'),
then m(g) > 0 and m(g) = 0 if and only if (Mn, g) is isometric to the euclidean
space.

In his article [*280] Schoen announced that he and Yau proved this conjec-
ture.

Then he concluded that he proved the Yamabe problem for the remaining
cases by Proposition 5.28 and 5.36 and the study of the dimensions 4 and 5.
In fact at that time, the conjecture was solved without extra hypothesis only in
dimension n = 3 (Schoen-Yau [*288], Witten [*318]).

Even now it is not known (to the Author) that a written proof of the con-
jecture exists.

Using the result in dimension n = 3, a proof by contradiction and induction
on the dimension (see Lee and Parker [*208] 1987 and Schoen [*281] 1989)
allows us to say that the conjecture is proved also for the dimensions 4 and 5.
This proof does not work when the dimension of the manifold is greater than 7
because then a minimal hypersurface may have singularities.

It remains to consider the compact locally conformally flat manifolds. For
these manifolds the proof of the positivness of the mass is quite different and
appeared later on.

5.2. Schoen and Yau's Article [*289]

5.38 Let (Mn, g) be a compact locally conformally flat manifold which belongs
to the positive case (,u > 0). We can choose g so that the scalar curvature
R > Ro > 0. Moreover we suppose the dimension n > 4.

Consider (M, g) the universal Riemannian covering manifold of (M, g). Set
7r:M-->M,g=7r*g.
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(M, g) is complete, locally conformally flat and simply connected. A well
known theorem of Kuiper [*205] asserts that there exists (D a conformal immer-
sion of (M, g) in (Sn, go) where go is the standard metric of Sn.

5.39 Theorem (Schoen-Yau [*289] 1988). 4D is injective and gives a conformal
diffeomorphism of M onto 4?(M) C S. Moreover Sn - (b(M) has zero New-
tonian capacity and the minimal Green function of L at P E M is equal to a
multiple of H o (D. Where H is the Green function of L0 at (D(P) on
(Sn,, go) and JVJ is the (g, go)-norm of V. Thus M is the quotient of a simply
connected open subset 1 of S.n by some Kleinian group, Sn - 1 having zero
Newtonian capacity.

This theorem allows to prove A > 0 for manifolds of this type not conformal
to (Sn,, go). The proof (starting at the end of p. 59 of [*289]) must be completed
at least at one point.

First we will give the definitions of the new words used above and explain the
existence of the minimal Green function Op (lemma 5.44), so as the positiveness
of the energy of (Mn, g), A > 0, if the manifold is not conformal to the sphere
(Sn, go). For this we follow Vaugon (private communication) who first clearly
explained the proof of 5.39.

5.40 Definition. Let (M, g) be a Riemannian manifold with scalar curvature
R _> 0 and dimension n > 3.

A Green function Gy of L at P is a function on M - P which satisfies
LGp = bp. Recall

(36) L = A + (n - 2)R/4(n - 1).

Gp is the minimal Green function if any Green function G' satisfies Gp < G''P.

If some Green function G'', exists, the minimal Green function GP exists
and is obviously unique.

Let {fl } be a sequence of open sets of M with C°° boundary and S2i
compact, such that for all i P E Sti C S2i C S2j and U°0,0i = M.

Let Gi be the Green function of L at P with zero Dirichlet condition on
BSZi. We have Gi > 0 on f2i - P. At Q E S1iJ (Q # P), Gi(Q) is an increasing
sequence for i > io, according to the maximum principle since L(Gi+1-Gi) = 0
and Gi+1 - Gi > 0 on BSZi. Likewise G; < G'', for all i, if we extend Gti by
zero outside S2i. So when i --> oo, G; tends to some positive function Gp which
satisfies in the distributional sense LGp = Sp on M.

5.41 Proposition (Vaugon). If Gp is a Green function for L at P and if
9 = (p4/(n-z)g is a conformal metric then

(37) Op(x) = Gp(x)/co(P)<o(x)
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is a Green function for the operator L related to g. In particular if Gp is the min-
imal Green function for L at P, Gp(x)lcp(P)cp(x) is the minimal Green function
for L at P.

Proof For any function f E V(V),

jV GpL(fcp)dV = f(P)cp(P).

We have dV = cp2n/(n-2) dV and a computation gives

(38) 0(cPf) +
n - 2

RWf =
cp(n+2)/(n-2) (f+ n - 2

4(n - 1) 4(n - 1)

so

p(x)cp-' (x)Lf (x) dV (x) = f (P)co(P)JV G

Thus Gp(x)/cp(x)cp(P) is a Green function for L at P.

5.42 Definition. If g is an euclidean metric in a neighbourhood 9 of P a Green
function Gp at P is equal in 9 to

(39) Gp(x) = [d(P, )]2-n/(n - 2)wn_I + a(x)

where a(x) is an harmonic function in 9.

When Gp is the minimal Green function of L at P, we call energy at P
related to g the real number a(P).

5.43 Proposition. If g and g = cp4/(n-2)g are euclidean metrics in a neighbour-
hood 0 of P, a(P) = In particular the sign of the energy is a
conformal invariant in the set of the euclidean metrics near P.

By 5.42 and Proposition 5.41 for x E B:

x)/(n - 2)(,).-, +a(x)

_ [d2-n(P, x)/(n - 2)wn_1 + a(x)] l cp(P)cp(x)

Moreover we can prove that d2-,(p, x) = cp(P)cp(x)d-n(P, x), the result fol-
lows.

5.44 Lemma. (M, g") being the covering manifold of (M, g) considered in 5.38,
at each point P E M, there exists a minimal Green function for L.

9 = *(go) is conformal to g, so there exists a C°° function u > 0 such that
u4/(n-2)g-.
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Set W As L(Ho-D) = >QEty 6Q, according to Proposition
5.41, there is H a multiple of u-'HocD such that

L ft = 1] aQ 6Q with aQ > 0 and a p = 1.
QEW

Let us return to the definition and to the construction of the minimal Green
function (5.40). Set Oi be the Green function of L at P with zero Dirichlet
condition on o9Qj. Pick Bi C M an open set such that (W - P) n Qi C Bi with
Bi small enough so that H - Oi > 0 on BBi. We extend by zero Oi on M - 0i.
On li-QinOi,L(H-Gi)=0and H-Gi>0on 8(SZi-Qjn0j).Thus
by the maximum principle Oi < Al and Op the minimal Green function for L
at P exists. Moreover Op < H. We have H - Op > 0 if W j {P}.

5.3. The Positive Energy

5.45 Definition. A compact set F C S (n > 3) has zero newtonian capacity
if the constant function 1 on Sn is the limit in Ht of functions belonging to
D(Sn - F).

We verify that the measure of F is zero. And we can prove that the minimal
Green function for Lo at P E Sn - F on (Sn - F, go) is the restriction to Sn - F
of the Green function H for Lo at P on (Sn, go).

5.46 Remark on the proof of Theorem 5.39. Return to the proof of lemma 5.44.
We have R - Op > 0 if W # {P}. So if we prove that R = Op, the injectivity
of 1) follows. For this, define v = GpH-t.

We have 0 < v < 1. After some hard computations which must be detailed,
Schoen and Yau infer v = 1.

Set F = Sn - 5(Mn), since H = Op, the restriction of H to S, - F is
a minimal Green function for Lo on (Sn - F, go). This implies F has zero
Newtonian capacity.

Before the main proof, one step consists in showing that fM Op dV < 00
when n > 4 and & G'p £ dV < oo for some e < 0 when n = 3.

The last inequality holds because the Ricci curvature of (M, g) is bounded.
Let us prove the other inequality. Return to the construction of the minimal
Green function Op (5.40).

Let ui the unique solution of Lui = 1, uilen, = 0. We extend ui by zero
outside 0j.

L
At Q a point where ui is maximum, Dui(Q) > 0 so

sup ui 5 4(n - 1)(inf R)-'/(n - 2) < 4(n - 1)/(n - 2)R0.
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Thus {Gt} is an increasing sequence of non-negative functions which goes
to Gp. According to Fatou's theorem, Gp is integrable and

L Op dV = Jim Gi V <4(n - 1)/(n - 2)Ra.
S-oo JM

5.47 Proposition. If (M,l, g) is flat near a point P, the energy of g at P is zero.

Assuming R > Ro > 0, we have proven the existence of the minimal Green
function Gp for L corresponding to the metric g. But the manifold (M, is
locally conformally flat, so there exists a CO° function u > 0 such that =

u4/(n-2) g is flat near P (we can choose u = I ouside a compact neighbourhood
of P). According to Proposition 5.41, Op(x) = GP(x)/u(x)u(P) is the minimal
Green function of L.

Now the energy of the sphere is zero since H4/(n-2)go is the euclidean metric
on Rn with zero mass. So by Theorem 5.39 the energy of g is zero.

5.48 Theorem (Schoen-Yau [*289]). Let (Mn, g) be a compact locally confor-
mally flat manifold which belongs to the positive case (µ > 0) but which is not
conformal to (Sn, go). If g is fiat in a neighbourhood of some point P then the
energy of g at P is positive.

Proof As the Riemannian manifold is not conformal to (Sn, go), it is not simply
connected and (Ma, g) is a non trivial Riemannian covering of (Mn, g). Set
IT : Mn - Mn, g = rI*g is flat near each point of TI-'(P), let P one of them.
We know (lemma 5.44) that the minimal Green function C p of L at P exists.
In a neighbourhood 0 of P.

Gp(x) = f2- '/(n - 2)wn_I + &(x) with r = d(P, x). a is an harmonic
function and &(P) = 0 (Proposition 5.47).

On the other hand Gp o II satisfies L(Gp o II) _:QEn_'(P) 6Q, Gp being
the Green function of L at P.

Thus G. o II - Op > 0 on M (see the proof of lemma 5.44) because

II-I(P) 0 {P}.

But in 0 G1, o II(x) = r2-n/(n - 2)wn_ I +a o II(x). So a(P) > 0, the energy
of g at P (see Definition 5.42) is positive.
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§6. New Proofs for the Positive Case (µ > 0)

6.1. Lee and Parker's Article [*2081

171

5.49 In this article Lee and Parker present, among other things, an argument
which unifies Aubin and Schoen's works. They transfer the Yamabe problem
from (Mn, g) to (Mn - P, g) an asymptotically flat manifold, P E M. If neces-
sary, we change g by a conformal metric which has the property of Proposition
5.20 and g = g, C being the Green function of L at P. Then they use
as test functions the well known functions cpk.

Ok = (k + p2)1-n12 for p > Ro, <Pk = (k + on K

Ro the radius of the ball Bo (see Definition 5.34) is fixed large and we let
k --goo.

In fact, after picking a good conformal metric g on Mn, Lee and Parker use
in the Yamabe functional J on (Mn, g) the test functions:

u,(x) = r'-2GP(x)(e+r2)'-n/2 if r < 6, (6 > 0 small),

ue(x) = 6n-2GP(x)(e2 + 62)1-n/2 if r > 6, r = d(P, x)

see [*208] and they let e --+ 0.

6.2. Hebey and Vaugon's Article [* 166]

5.50 Theorem (Hebey-Vaugon [* 166]). If the compact Riemannian manifold
(Mn, g) is not conformal to (Sn, go), the test functions:

ug(x) = (e+r2)'-n/2 if r < 6, (6 > 0 small)
te(x) _ (E + 62)1-n/2 if r > 6,

in the Yamabe functional, yield the strict inequality of the fundamental theorem
5.11.

These test functions are the simplest one. In fact the following proof is in
my opinion the clearest.

Proof. First we choose a good conformal metric. When n > 6, if the Weyl tensor
Wtijkt is not zero at P, we choose the conformal metric g so that Rz,(P) = 0 (as
in 5.19). J(u8) has the same limited expansion than in (5.21) with r = d(P, x)
and e = 1/k. Then J(u,) < n(n - 1)w2ln for e small enough.

When the manifold is locally conformally flat, we choose a conformal metric
which is euclidean near a point P. We get

(40) J(uE) = n(n.- 1)wn/n+Ccn/2-' I fV R dV - 4(n - 1)6"-2wn_, + O(c) I
JJJ

which C > 0 a constant which does not depend on E.
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When the dimension n equals 3 to 5, we choose a conformal metric g' so that
(21) and (23) hold. Then we have (24) and R'(x) = 0(r2). A limited expansion
yields (40).

In In the remaining cases, we will have J(uE) < n(n- 1)wn if in a conformal
metric as above, we have fv RdV < 4(n- 1)bn-2wn_, for some b. This comes
from the following caracterisation of the mass together with (5.37) and Theorem
(5.48).

5.51 Theorem (Hebey-Vaugon [* 166]). When the compact manifold is locally
conformally flat at P

(41) A = limsup[4(n - 1)(J dV)-' - tz-n/wn_l](n - 2)-'

where the sup is taken over the conformal metrics e/(n-2)g which are flat
in Bp(t) with V (P) = 1.

When n = 3 to 5, (41) holds the sup being taken over the conformal metrics
which are equal to g in Bp(t).

Recall m(g) = 4(n -1)A and m(j) = m(g) by Proposition 5.43. The theorem
holds in the low dimensions thanks to Proposition 5.31 and 5.36.

6.3. Topological Methods

5.52 In Bahri [*20] for the locally conformally flat manifolds, and in Bahri-
Brezis [*23] for the dimensions 3 to 5, the authors, by using the original method
of Bahri-Brezis-Coron (see 5.78 for a more complete discussion of this method)
solved the Yamabe problem in the remaining cases without the positive mass
theorem. They analyse the critical points at infinity of the Yamabe functional
J and prove by contradiction the existence of a critical point which yields a
solution of the Yamabe problem, but in general it is not a minimizer of J.

5.53 In Schoen [*282] a different approach is used. As we are in the positive
case, the operator L= A + (n - 2)R/4(n - 1) is invertible, let L' its inverse.
For any A > I and any p E [1, (n + 2)/(n - 2)], we define FP by

(42) S2A u -- Fp(u) = u - E(u)L-'u' E C2'"

where

f2A={uEC2'" IJUIIC2.a. < A, m nu > A-' },
M

and
p

E(u) = J uLu dV = f I Vu12 dV + (n - 2) fRu2dv.
4(n - 1)
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Theorem (Schoen [*282]). Let (M,, g) be a compact locally conformally flat
manifold which is not conformal to (5,,, go). There exists a large number Ao > 0
depending only on g such that Fp'(0) C 524 for all p E [1, (n + 2)/(n - 2)].

Actually Schoen wrote this theorem for any Riemannian manifold not con-
formal to (Sn,, go), but he gave a complete proof only for locally conformally
flat manifolds. It is not known (to the Author at this time) that a general proof
is written up.

5.54 When p = I it is well known that the equation Fl(u) = 0 has only one
positive solution.

Let Ao be the first eigenvalue of L. Since we are in the positive case Ao > 0.
By minimizing E(u) = f uLudV on the set A = {u E Hj/IIuII2 = l,u >_ 01
we find (as in 5.4) a positive eigenfunction cp : Lcp = Aocp.

Proposition. cp is the unique positive solution of F1 (u) = 0.

First a solution of Fp(u) = 0 satisfies IIuIIpI = 1, indeed compute
f uLFp(u) dV. So Fl (cp) = 0

Then, it is a general result for the normal-compact operators, that the
eigenspace corresponding to the first eigenvalue \o is one dimensional.

To see this, let T 0 be such that L' = .\.T. Pick k E R so that T+kcp < 0
and equals zero in some point P E M. We apply the maximum principle to

(-0)(W + kW) - h(' + kW) = [(n - 2)R/4(n - 1) - \o - h](W + kV)

which is > 0 when h E R is chosen large enough. If the maximum of ' + kcp
is > 0 then ' + kW = Const. As ' + kW is zero at P, it is zero everywhere and
T is proportional to cp.

Finally if ' :$ 0 is an eigenfunction of L corresponding to an eigenvalue
A # Ao, W changes of sign. Indeed multiplying LT = AT by cp and integrating
on M yield

A f cpW dV = f cpLT dV =
J

'Lcp dV = Ao f cplk dV

since L is self-adjoint. We get f cpW dV = 0.

5.55 When 1 < p < (n + 2)/(n - 2) we can prove Theorem 5.53, for any
manifold, by using the following theorem:

Theorem (Gidas and Spruck [* 141]). In I[2', n > 2, the equation Ov = vp with
1 < p < (n + 2)/(n - 2) has no non-negative C2 solution except v(x) 0.

Following Spruck the proof is by contradiction. On the compact manifold
(Mn, g), let us suppose there exists a sequence of positive C2'' functions ui
which satisfy:

(43) Lui = uP, sup ui - co.
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This is equivalent to Fp(vui) = 0 for some v since p > 1. Pick zi a point
where ui is maximum: ui(zi) = mi without loss of generality, since the manifold
is compact, we can suppose that zi -+ P. We blow-up at P. In a ball Bp(b),
consider {xi } a system of normal coordinates at P with xi (P) = 0. We suppose
zi E Bp(6/2). Define for y E R'+ with Ilyll < bm /2 = ki.

Vi(y) = mi
1 ui(zi + mi ay) with a = (p - 1)/2

zi + my °ty is suppose to be the point of Bp(b) of coordinates the sum of
the coordinate of zi in Bp(6) and the coordinates of m7"y in R. We set
yJ = (xJ - z1)ma

The function vi satisfies on the ball B0(kio) for i > io the elliptic equation

2
a'Ui

9k, (y) 8yk
aye + ai (y) ayi + ai(y)vi = vp(y)

where 9ki(y) = 9ki(ym ° - zi), ai(y) _ -mz a(gk'r' .)(ym7a - zi) and

ai(y) _ (n - 2)mi2' R(ymi - zi)/4(n - 1).
kj

When i oc, gzi -> ke,
a 0, a; --+ 0 and ai -+ 0 uniformly on

B0(kir,). Moreover the functions vi are uniformly bounded 0 < vi < 1. The
conditions of Theorem 4.40 are satisfied. So IIviIIc. is uniformly bounded on
B0(ki,) for some a > 0. By the Ascoli Theorem, there exists a subsequence of
{vi} which converges uniformly to a continuous function v. v satisfies in the
distributional sense on R' the equation Av = VP, so v E C2and v(0) = I since
vi(0) = 1. This is in contradiction with Theorem 5.55. Thus the assumption
sup ui -i. oo is impossible and there exists a real number such that I ui I < k.

GL (P, Q) being the Green function of L (see 5.14) we have

(44) ui(P) = fGL(P, Q)u'(Q) dV (Q)

juil < k implies IIuiIIci,. < Const. and then IIuiIIcZ.a < Ao some constant.
Moreover (44) implies ui(P) > m f up dV. As Ilui II't' > (n - 2)µ/4(n - 1) >
0, fu? dV is bounded away from zero since fu ;+' dV < k f uP dV. Hence
there exists a constant vo such that ui > V. > 0.

Remark. For p = (n + 2)/(n - 2) the preceding arguing yields no contradiction.
The equation &v = v("+2)/tn-21 on R" has positive solutions. The solution, with

v(0) = 1 as maximum, is w = [1 + II yII2/n(n -
2)]'-n/2

New proof by Schoen [*282].
Let us return to 5.53. The map u -+ E(u)L-lup is compact from fi;A into

C2,a. So Fp = 1+ compact and the Leray-Schauder degree makes sense. By
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Theorem 5.53, 0 V Fp(8clA,,) for any p E [1, (n+2)/(n-2)] thus deg(FP, 52,x,,, 0)
is constant for p E [1, (n +2)/(n - 2)]. Moreover cp the unique positive solution
of Fl(u) = 0 (Proposition 5.54) is nondegenerate.
Thus deg(Fi, 52A,,, 0) = f land deg(F(n+2)f(n-2), S2Ap, 0) is odd. So the Yamabe
problem has at least one solution on the compact locally conformally flat man-
ifolds.

6.4. Other Methods

5.56 In [*181] Inoue uses the steepest descent method to solve the basic theorem
of the Yamabe problem. R. Ye in [*320] studies the Yamabe flow introduces by
Hamilton

&g/t=(s-R)g with s=J RdV/f dV.

Ye proves that the long-time existence of the solution holds on any compact Rie-
mannian manifold. In the positive case for the scalar curvature, if the manifold
is locally conformally flat, Ye shows that the solution converges smoothly to a
unique limit metric of constant scalar curvature as t tends to oo. The estimates
are obtained by using the Alexandrov reflection method.

§7. On the Number of Solutions

7.1. Some Cases of Uniqueness

5.57 In the negative and null cases (p < 0) two solutions of (1) with R = Const.
are proportional. Let Wo be a solution of (1) with R' = p. In the corresponding
metric go the Yamabe equation is always of the type of Equation (1), since
Yamabe's problem is conformally invariant. So let cpt be a solution of Equation
(1) with R=R'=p.

If p = 0, Ocp1 = 0 , thus cp' = Const.. If p < 0, at a point P where coc
is maximum, Ocpl < 0 , thus [cpI(P)]1-2 < 1, and at a point Q where cp, is
minimum, Ocpl < 0 thus [c01(Q)]N-2 > 1. Consequently coo = I is the unique
solution of (1) when R = R' = p < 0.

In the positive case, we do not have uniqueness generally, neversless we
have below Obata's result.

Examples. The sphere Sn (Theorem 5.58).

M,,, = T2 x Sn_2 with T2 the torus when R(f dV)2/n > n(n - 1)w2.1n and
n _> 6. Indeed in this case there exists on Mn at least two solutions of Equation
(1) with R' = R = Const. First, cpl =_ 1 and second, cpo for which (Theorem
5.21)

J(cpo) = p < n(n - 1)w;,/n < J(l).
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On the other hand, according to Obata [225], we have uniqueness for Einstein
manifolds other than the sphere.

Proposition (Obata [225]). Let (Mn, g) be a compact Einstein manifold not iso-
metric to (Sn,, go). Then the conformal metrics g tog with constant scalar cur-
vature are proportional to g.

Proof. Let us consider the conformal metric g on the form g = u2g.
Set Tij = Rij - (R/n)gij. We have (see 5.2):

(45) Tij =Tij + (n - 2)t -1 [ViVju+(Au/n)gij].

As Tijgij = 0

f ugikgj1TijZkl dV > f uTijTtj dV + 2(n - 2) J T'jViju dV.

But V iTi = (I -
n)

V j R by the second Bianchi identity (see 1.23). If g
has constant scalar curvature, we get f uTijTij dV = 0 since Tij = 0.

Thus if R = Const., g is Einstein. According to (45), if u 0 Const. there
exists a non-trivial solution of

ViOju+(Au/n)gij =0.

In that case Obata proves that (Ma, g) is isometric to (Sn, go).

Remark. When g is Einstein, µ the inf. of the Yamabe functional J is attained
by the constant function. J(1) = A. So At > R/(n - 1) (see [14] p. 292), which
is the inequality of Theorem 1.78.

But we have more for Einstein manifolds:

/r
J(1)=RIJ dV)n =p<n(n-1)a2n'n,

with equality only for the sphere.

7.2. Particular Cases

5.58 The case of the Sphere.

Theorem 5.58 (Aubin [13] p.588 and Aubin [14] p. 293). For the sphere Sn,
(n > 3), p = n(n - 1)ii ? and Equation (1) with R' = R has infinitely many
solutions. In fact, the functions cp(r) _ (Q - cos ar)t-n/2 with 1 < ,3 a real
number and a2 = R/n(n - 1), are solutions of (1) with R' = R(32 - 1).

Moreover on the sphere Sn with f dV = 1, all W E H1 satisfy:

(46) I I c IN < K2(n, 2)IIV II + IIVI li.
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Proof. Recall r is the distance to a fixed point P. According to Theorem 6.67,
Equation (1) has no solution on the spere when R' = 1 + E cos &r, e # 0.
Indeed, F = cosar are the spherical harmonics of degree 1: AF = A1F, with
Al = R/(n - 1) the first nonzero eigenvalue.

If ,u < n(n - 1)wn , we can choose a small enought to apply Theorem 5.12
with h = R and f = 1 + E cosar since v < µ(1 - e)-2/N. This contradicts the
nonsolvability of Theorem 6.67.

Writing µ = n(n-1)wn/n yields (46) when f dV = 1. (46) is an improvement
of the inequality of Theorem 2.28. Both constants are optimal, the second,
Aq(O) > 1, since the inequality must be satisfied by the function cp - 1.

For the unit Sphere (Sn, go) the solutions of (1) with R = R = n(n - 1) are

(47)
VQ,p(Q) = [(R2 - 1)/(i3 - cosr)2](n-2)/4

with /3 E] 1, oo], P E Sn and r = d(P,Q), (see [14] p.293). All solutions are

minimizing for J : J(cpp,p) = n(n - 1)wn/n.
There is no other solution. To see this, let 7r be the stereographic projection

at P, 7r is a conformal map from Sn \ {P} onto R". Consider (p, 92) i =
1, 2,... , (n - 1) polar coordinates in R" and set g = (qr-t)*go. As p = cotg(r/2),
g = 4 sin4(r/2) = 4(1 + p2)-2E.

By virtue of (38), L(co1 p) = n
4

2 cO -l yields

(48) ID = [(1 + p2)/2]
1-n/2

[n(n - 2)/4] (n-2)14'A3,
P

with cos r = (p2 - 1)/(p2 + 1) is a solution of

n

(49) E aij + pN-i = 0 on R".
i=t

According to Gidas-Ni-Nirenberg [* 140], the positive solutions of (49) are
radial symmetric. The solutions T(r) satisfy a second order equation, moreover
V(0) = 0. So there is only one positive radial solution such that IP(0) = k a
given real positive number. This solution is

'I'(p) = k [I + k4/(n-2) p2/n(n -
It is a solution found in (48) with /3 E ]-oo, -1[ U ]1, 00].
It is of the kind (47) ; indeed W-, 3,p = cp p, p with P the opposite point to P

on the sphere.

5.59 Schoen [*281] found all solutions of the Yamabe problem for C x Sn_t the
product of the circle of radius r with the sphere of radius 1. Set -ro = (n-2)-112.

The result is:
If r < ro the unique solution of (1) with R = R is c =- 1. If r E ]rro, 2,ro]

there are two inequivalent solutions, the constant solution and the minimizers of
J which are a C-parameter family of solutions with fundamental period 27r r.
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For ,r E ](k- 1)7-o, kro] there are k inequivalent solutions, (k-1) C-parameter
families of solutions and the constant solution for which J has the greatest
critical value.

7.3. About Uniqueness

5.60 In the positive case there is no uniqueness in general. It is very easy to con-
struct manifolds for which equation (1) with R = R has more than one solution.
Let us consider two compact manifolds (M1,gi), (M2ig2) with dimension Tai
(resp. n2) volume Vi (resp. V2) and constant scalar curvature Rt (resp. R, > 0).
Pick k large enough so that (Ri+kR2)(Vi V2)2/" > n(n-1)w, In that case the

functional J for the manifold (MI, kgl) x (M2,92) satisfies J(1) > n(n - 1)w2n/",
The constant function is not a minimizer for J. Hence there are at least two
solutions.

Now we will discuss another method to exhibit examples with several solu-
tions.

7.4. Hebey-Vaugon's Approach

5.61 Let us consider (Ma, g) be a compact Riemannian manifold of dimension
n > 3 and G be a compact subgroup of C(M, g) the group of conformal
diffeomorphisms.

Theorem (Hebey-Vaugon [* 168]). The inf, on the set of G-invariant metrics g'

conformal to g, of J(g') = [f dV'] -("-2)'" f R' dV' is achieved.

The case G = {Id} is the Yamabe problem. For most cases the proof consists
in two steps. First they prove that the inf. is attained if it is strictly less than
,3 = n(n - 1)w /n(infxEMCard OG(x))2/" (when G = {Id} this is Theorem
5.11). Then they prove that the inf is smaller than Q (we have always )3 < 0).

Now if, under some conditions,

inf J(u) > µ = inf J(u) > 0
u>O,u G-invariant

the theorem above yields two solutions to the Yamabe problem. The correspond-
ing critical values of the Yamabe functional J are not the same.

A more general case is that of the Riemannian covering manifolds it
(M, g) -- (M, g) with g = 7r*g. The question is: find conditions so that

infUEH,(M),u0o J(u o Zr) > infuEH,(Nt),u00 .J(u),

J being the Yamabe functional of (M, g).

5.62 Theorem (Hebey-Vaugon [* 167]). Let (MO, go) be a compact Riernannian
manifold not conformally equivalent to the standard sphere. We suppose there
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exist m Riemannian m a n i f o l d s (Mi, gi) (i = 1 , 2, ... , m) such that (Mo, go) is
a Riemannian covering manifold of (Mi, gi) with bi sheets (7ri : (Mo, go) --+
(Mi, gi), 1 = bo < bi < ... < b,,). If for each i there exists ki E [0, 1] such that

2/n
dVo)I < n(n - 2)W ( [(1 - ki)b2/n - b2/i-1 ] /4Ck; (Mi, 9i) (fMo / -\

then on (M0, go) there exist at least m + 1 metrics conformal to go with same
constant scalar curvature (and different critical values of J).

Ck(M, g) is the smallest positive real number C such that any u E H,(M)
satisfies

(I - k)n(n - 2)wn/n2-2 f Iul2n/(n-2) dV

<J IVu12dV+ (n-2)
J Ru2dV+CJ U2 dV4(n-1)

Ck(M, g) always exists when 0 < k < I (see the value of the best constant
K(n, 2)). It is proven that C0(M, g) exists when the manifold has constant
curvature (Aubin [14]), more generally when the manifold is locally conformally
flat (Hebey-Vaugon [* 166]), and recently by the same authors for any compact
manifolds (see 4.63).

For applications of the Theorem above see Hebey-Vaugon [* 1671.

7.5. The Structure of the Set of Minimizers of J

5.63 Theorem (Y. Li [*Thesis, Univ. of Paris VI]). In a conformal class the set
of the metrics with volume 1 and constant scalar curvature p is analytic compact
of finite dimension bounded by a constant which depends only on n.

Moreover for a generic conformal class, the minimal solution is unique.

§8. Other Problems

8.1. Topological Meaning of the Scalar Curvature

5.64 We have seen that p is a conformal invariant (Proposition 5.8), but does
its sign have a topological meaning? Considering a change of metric (a non-
conformal one, obviously) it is possible to prove:

Theorem (Aubin [11] p.388). A compact Riemannian manifold Mn (n > 3)
carries a metric whose scalar curvature is a negative constant.

Proof. According to Theorem 5.9 if we are not in the negative case, there exists
a metric g with R > 0. Then we consider a change of metric of the kind:
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g2j = Vigzj + 9 a,o with 0 > 0 a C°° function. It is possible to determine 0
such that the corresponding functional j(u) is negative for some u. Hence the
result follows by Theorem 5.9.

Since on every compact manifold M (n _> 3) there is some metric with
µ < 0, there is no topological significance to having negative scalar curvature.
In contrast to this, Lichnerowicz [186] has proved that there are topological
obstructions to admitting a metric with µ > 0, that is, to positive scalar cur-
vature. He showed that if there is a metric with nonnegative scalar curvature
(not identically zero), then the Hirzebruch A-genus of M must be zero. This
work was extended by Hitchin [145], who proved that certain exotic spheres do
not admit metrics with positive scalar curvature-and hence certainly have no
metrics with positive sectional curvature.

In a related work, Kazdan and Warner [161] proved that there are also topo-
logical obstructions to admitting metrics with identically zero scalar curvature,
that is, to p = 0. Thus there are obstructions to p > 0 and µ = 0, but not to
µ<0.

More recently, Gromov and Lawson [136] and [137] proved that every com-
pact simply-connected manifold Mn (n > 5), which is not spin, carries a metric
of positive scalar curvature. For the spin manifolds they generalize Hirzebruch's
A-genus in order to obtain almost necessary and sufficient conditions for a com-
pact manifold to carry a metric of positive scalar curvature. In particular, the
tori T, n > 3, do not admit metrics of positive scalar curvature. For the details
see the article in references [136] and [137] or Bourbaki [34].

8.2. The Cherrier Problem

5.65 It concerns the C°O compact orientable Riemannian manifolds (M, g) with
boundary and dimension n > 2. Denote by i;' the unit vector field defined on the
boundary aM, normal to aM and oriented to the outside.

When n > 3, let h be the mean curvature of aM. h is the trace of the
following endomorphism of the vector fields X on aM : X -+ V X i; /(n - 1).

If we consider as previously the change of conformal metric c0_-7 g,
cp E C°°, cp > 0, the new scalar curvature R is given by

(1) 4((n - 1)/(n - 2))Ocp + Rcp = Rcp(n+2)/(n-2).

and the new mean curvature h by

(50) (2/(n - 2))5 + hcp = hcpn/(n-2)

5.66 The problem is [97]: given R' E COO(M) and h E C°°(aM) does there
exist a Riemannian metric g' conformal to g such that R' and h' are respectively
the scalar curvature of (M, g') and the mean curvature of aM in (M, g').

The problem is equivalent to solve the Neumann problem constituted by (1)
and (50) with R = R' and h = h'.
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First, Cherrier [*97] proves the existence of best constants in the Sobolev
inequalities including norms of the trace and he proves inequalities with norms
of the trace in the exceptional case of the Sobolev theorem. Then he shows that
a variational problem I with constraint r has a minimizer. Writting the Euler
equation yields a weak solution for (1) and (50).

Finally, and it is not the simplest, he proves that the solution is regular. For
the geometrical problem the functional

(51) I = f (vI2+ 4(n - 1)
Rco2) dV +

n
2

2

fM

hp2 do,

and the constraint

n do.(52) r = [ R'1coI _-_7 dV +
1 JaNr

h,IGI2°

5.67 Theorem (Cherrier [*97]). If the inf ,ao of the functional I under the con-
straint r = I is smaller than an explicit positive constant, then the problem has
a solution. The constant depends on the data and the best constants.

For instance, if we want to find a conformal metric with constant scalar
curvature (R' = 1), such that the boundary is minimal (h' = 0), the condition is
µo < K- (n, 2).

This last part is the equivalent of Theorem 5.11 for the Yamabe problem.
K(n, 2) = 211'K(n, 2) is the best constant for manifolds with boundary.

The same problem occurs in dimension 2. In this case h is the geodesic
curvature of 8M and the equation to solve is

(53) L + R = R'e`0 on M

(54) ao + 2h = 2h'&°"2 on aM.

5.68 Hamza [* 155] studied the particular cases of a hemisphere and of an eu-
clidean ball. For these manifolds, there are obstructions similar to those of
Kazdan and Warner for the Nirenberg problem (see 6.66 and 6.67).

5.69 Theorem (Escobar [* 126]). Define

E={(x,t)EPn/xERn-1,t>0}
when n > 3. Any cp E D(E) satisfies

(55) Icl2(n-1)/(n-2) dx

[18E
< k(n, 2)

J
I VcI2 dx dt

E

where k(n, 2) = (n/2 - 1)wtt_1-1). The equality holds in (55) only if co is pro-
portional to a function of the form:

(56) cpe(x, t) _ [(e + t)2 + Ix - xol2]
1-n/2.

J

ln-cl/ln_
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Finding these functions is the key point. They act the part of the functions
(E + r2)1-n/2 for the Yamabe problem.

5.70 Theorem (Escobar [* 1271 and [* 128]). Let (Mn,g) be a compact Rieman-
nian manifold with CO° boundary and n > 3, there exists a conformal metric
of constant scalar curvature such that 8M is minimal, except if the manifold
satisfies these four properties all together: n > 6, non-locally conformally flat
but with a Weyl tensor vanishing on 8M which is umbilic.

The case of these manifolds is still open. For the proof Escobar considers
test functions, constructed from the functions (56), in the functional IF (2-,,) 1',

[see (51) and (52) for the definitions of I and r] after a change of conformal
metric as for the Yamabe problem. A limited expansion yields in most cases the
inequality µo < K-2(n, 2) which allows to use theorem 5.67.

8.3. The Yamabe Problem on CR Manifolds

5.71 Let M be an orientable manifold of odd dimension 2n + 1. A CR structure
on M is given by a complex n-dimensional subbundle E of the complexified
tangent bundle CTM satisfying E n E = {0}.

A CR manifold is such manifold with an integrable CR structure (the Frohe-
nius condition [E, E] C E is satisfied). G = Re(E+E) is a real 2n- dimensional
subbundle of TM which carries the complex structure J : G --+ G defined by
J(X + X) = i(X - X) for X E E. As M is orientable there is a 1-form B which
is zero on G . Now we define the Levi form L9 of 0 by

(57) Lo (X, Y) = 2 dO(X, JY) for X, Y E G,

and we suppose Lo positive definite. Then 0 defines a contact structure and we
say that M is strictly pseudoconvex.

Example. A strictly pseudoconvex hypersurface in Cn+' is a strictly pseudo-
convex CR manifold.

Associated to the Levi form, Webster [*315] has defined a curvature, thus a
scalar curvature S.

The CR Yamabe problem is: given a compact, strictly pseudoconvex CR man-
ifold, find a contact form B for which the Webster scalar curvature S is constant.

5.72 Theorem (Jerison & Lee [* 187]). Let M be a compact, orientable, strictly
pseudoconvex CR manifold of dimension 2n + 1. Define the functional on the
contact forms B:

F(o) = I
J

S(9)9 A don] If OA donI
n/(n+l)

A(M) = info F(o) depends only on the CR structure, \(M) < A(S2n+1).
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If A (M) < \(S2n+l) then the infimum is attained by a contact form B which
has constant Webster scalar curvature S(B) = \(M).

Given 0 a contact form, any contact form B is of the form B = u2/n8 with u
a CO° positive function. The transformation law for the Webster scalar curvature
S is

(58) S = u-('+2/n)[2(1 + 1/n)Obu+ Su].

So there is a COO function v > 0 (given by the theorem) which satisfies the
equation

(59) 2(1 + 1/n)Abu + Su = A(M)u1+2/n.

Here Ob is the

f
soperatorrdefined on the Cfunction by

(Abu)w0 A dBn =
J

L9* (du, dw)9 A dBn

for all w E C°°(M) where LB is the dual form on G* of LB. LB extends naturally
to T*M. For w c T*M

n

Le(w,w)=2EIw(Z,i) 2

whenever Z, ... , Z, form an orthonomal basis for E.

5.73 Theorem (Jerison & Lee [*188]). Let z E Cn+t and B = z(d - d)Iz12.
The restriction to TS2n+1 of B is a contact form for Stn+i which minimizes the
functional F(9) on the sphere. The corresponding Webster scalar curvature S =
n(n + 1) and \(S2n+i) = 27rn(n + 1). Any contact form with constant scalar
curvature is obtained from a constant multiple of the standard form 0 by a CR
automorphism of the sphere.

Now with the extremal contact forms of F(0) on the sphere, Jerison and Lee
[*1881 can prove that most CR manifolds M satisfy A(M) < \(S2n+1).

8.4. The Yamabe Problem for Noncompact Manifolds

5.74 In [11] Aubin proved that we can decrease (until negative values) the local
average of the scalar curvature only by local changes of metrics.

Then we can exhibit a sequence of metrics g2 each having negative scalar
curvature on SZi with Sta C S2ti+i and E°O ci = M.

As the manifold M is denumberable at infinity there is no problem of con-
verging, since each point has a neighbourhood where the sequence gj is constant
from some rank. For such Riemannian manifold (M, g) with negative scalar
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curvature, we can ask if there exists a conformal metric g' such that the scalar
curvature R' = Const., and if (M, g') may be complete.

Contrary to the compact case, the Yamabe problem on complete Riemannian
manifolds has not always a solution. In [*190] Jin Z. gives some counterexam-
ples. Let us consider a Riemannian compact manifold (M, g) with scalar curva-
ture R = -1 and dimension n > 3. Let P be a point of M. On M - { P } there
does not exist a complete Riemannian metric g' E [g] .

Indeed equation (1) has no positive solution if R' equals 0 or 1. If u > 0 is
a solution of (1) with R' = -1, according to a result of Aviles [16] u can be
extended to a C' function on M. Tbus u - I.

5.75 Theorem (Aviles-Mc Owen [* 18]). Let (M, g) be a complete Riemannian
manifold Assume the Yamabe functional (see 5.8) is negative for some function
belonging to D(M), then there is a conformal metric with scalar curvature equal
to - 1.

There is a complete conformal metric g with R = -1 if the scalar curvature
R of (M, g) is non-positive and bounded away from zero on M \ Mo for some
compact set Mo or if on M \ Mo R(x) < -cl[r(x)]-' and the Ricci curvature
at x greater than -c2[r(x)]-21 on M where 0 < a < 1 and 2a < I < I + a (c,
and c2 are two constants and r(x) is the distance of x to a given point x0 in the
interior of Mo).

For the proof Aviles and Mc Owen use the method of upper and lower
solutions.

5.76 In [* 105] Delanoe studies the following problem:
Given a compact Riemannian manifold (M, g) with dimension n, a closed

d-submanifold E and a real function f, is there a complete metric on M \ E
conformal to g with scalar curvature f ?

Among other results he gives the proof of

Theorem. There exists on M \ E a complete conformal metric g with scalar
curvature

R=-1 if and only ifd> n/2- 1,
R = 0 if d < n/2 - 1 and µ(g) > 0.

There is no complete conformal metric on M \ E with R > 0 if µ(g) < 0.

For instance if M = Sn and d > n/2 - 1, we have the standard metric
on Sn restricted to Sn \ E with R = +1, a conformal metric g' with R' = 0
(obtained by some stereographic projection) and a conformal complete metric g
with f? = -1.
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8.5. The Yamabe Problem on Domains in R'

5.77 We will consider this problem on smooth bounded domain Il with Dirichlet
data. If the Dirichlet data are zero we have to solve the following equation for
n>2:

(60) Du = u(n+2)/(n-Z) u > 0 on SZ is with ulaa = 0.

We know by the Pohozaev identity (see 6.58) that (60) has no solution if SZ
is star-shaped.

On the other hand if S2 is an annulus, i.e.

SZ={xER"/0<a<IxI<b}

Kazdan and Warner pointed out that (60) has a solution. Seeking a solution
depending only on r, we have to minimize the functional fa (u2rn-1 dr on
the set

/b
A= fu E H1([a, b])/u >0 and

J
uNrn-1 dr = 1}.

n

As A C C1/2([a, b]), it is easy to prove the existence of minimizer.

5.78 Theorem (Bahri-Coron [*25] see also Brezis [*57]). If there exists a pos-
itive integer d such that Hd(1l, Z/2Z) 0, then (60) has a solution.

The proof is difficult and of a new type. Analysis and algebraic topology
arguments are used. The best is to read the article. Nevertheless we give below
some steps of the proof to have an idea on it.

Define E = {u E H1(SZ)/u > 0 and IIVu1I2 = 1} and J(u) = 1/ f uN dV for
u E E. According to the Sobolev imbedding theorem, for u E D(SZ) C D(Rn),
1JuJIN < K(n, 2)IIVu112, thus J(u) > [K(n, 2)]-N.

If u is a critical point of J in E, then u [J(u)]
1/(N-2)

is a solution of (60).
The proof of the existence of a solution proceed by contradiction.

We assume henceforth that (60) has no solution. First this implies the fol-
lowing

Lemma. Let ui E E be a sequence such that J(ui) converges to a real number v
and such that J'(ui) -* 0, then v = bk = k2/(n-2) [K(n, 2)]-N for some k E N*.

We can suppose without loss of generality that ut E D(SZ). The sequence
{ui} is bounded in H1, thus there is a subsequence which converges weakly in
H1 strongly in L2 and a.e.. As the differential of J on E : J'(ui) 0,

(61) Dui - UN-1 J(ui) = w; with wi -- 0 in H_1,

H_1 is the dual of H1. The assumption that (60) has no solution implies that
any converging subsequence converges to zero. Thus ui -> 0 a.e..
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In §5 of Chapter 6 we will study a similar situation. There is a subsequence
{uj} which has only points of concentration, in the sense of definition 6.38
when at x ui(x) does not converge to 0. Let (E = {P1, P2,..., P,,,,} C S2 be the
set of the points of concentration. E is finite and nonempty.

Pick b > 0 small enough so that the balls B(P1iS) C S1 are disjoint
(1= 1, 2, ... , m). We have 771 = limb-,OO fB(PL 6)

u dV > 0 and E!'_` m = 1 /v.
Moreover if we blow-up at a point of concentration (see Chapter 6, §5.5),

we find that the sequence v? -+ w > 0 which satisfies on R' Aw = vwN-'.
Hence fa wN dV = [K(n, 2)]-"v-n'2. Thus 771 = g1[K(n, 2)]-"v-"/2 where
q1 is the order of multiplicity of P1 as a point of concentration.

So v1"-2t/2 = k[K(n, 2)]-" with k = Em'1 q1 a positive integer.

5.79 The proof of Theorem 5.78 proceeds as follows.
Define J, = {u E E/J(u) < c} and set Wk = Jbk,,. When cl and c2 belong

to ]bk, bk+1 ] for some k, the topologies of JJ, and JJ2 are the same. The change
in topology across the level bk is described in the article. For this we consider
the lines of the flow associated to - J' starting from uo E Wk - Wk-1. Let
f : [0, oo[ x E -+ E be the solution of

(62) a f (t, u) J'(f (t, u)), f (0, u) = uo.

The solution of (62) is in E according to the maximum principle.
Recall J'(uo) >E 0 for any uo E E since we suppose that (60) has no solution.

When k is large enough (k > ko for some integer ko),Bahri-Coron prove that
the solution of (62) with bk < J(uo) < bk.,, laies in Wk-1 for large t. Thus
there is no change in topology across the level bk for k > ko.

However Bahri-Coron prove the following.

Lemma. If Hd(1, Z/2Z) # 0 for some d > 0, then for each k > I the pair
(Wk,Wk_1) is nontrivial, assuming that J'(uo) 0 0 for any uo E E.

X being a topological space and A C X, the pair (X, A) is trivial if there
is a continuous map [0, 1] x X 9 (t,x) --+ ft(x) E X such that ft(x) = x for
x E A and all t, fl(x) c A and fo(x) = x for all x E X. The proof of the
Lemma is by induction and uses algebraic topology arguments. The Lemma is
in contradiction with the analysis of the lines of the flow solutions of (62) for
large k, thus J(u) has a critical point in E.

5.80 When n = 3, if Hk(SZ, Z/2Z) = 0 for k = 1, 2 then SZ is contractible.
Moreover if SZ is star-shaped (60) has no solution. Thus we could think that

(60) has a solution only when Si is not contractible. This is not true (see Ding
[* 114]), there are examples of contractible bounded regular open sets Si with
solutions of (60).
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5.81 Let us consider now the same equation, but with non zero Dirichlet data
(O):
(63) AU = Au(n+2)/(n-2) u > 0 on 1 with u > 0laa= _

for some constant A > 0. This problem is quite different to the former one.
Let h be the harmonic function on SZ such that hIa- = cp and consider the

following variational problem.

(64)

with

IVul2dxinf fnuEA

A={uEHi(1)I u-hEHHl(S2),u>0 and fuNdx=}
11111 _

If u is a solution of (63), u is a supersolution of the equation

(65) Av = 0, vIao = W.

Thus u > h on SI (see 3.73), h being the solution of (65). Moreover
h>infcp>0.

So when ry > fn hN dx, a minimizer of (64), if it exists, satisfies (63) with
A > 0. For -y = fn hN dx the minimizer is h, A = 0. A solution of (63) with
A < 0 is a subsolution of (65) and so it is smaller than h.

5.82 Theorem (Caffarelli-Spruck [*69]). Suppose 852 E C2 and cp E C'+Q(8St)
> 0 positive somewhere. If -y > fn hN dx, there exists a minimizer u E C°°(52)n
C'+p(f2) of (64) which satisfies (63) with some positive constant A.

8.6, The Equivariant Yamabe Problem

5.83 Let (Mn, g) be a compact Riemannian manifold of dimension n > 3 and
I(M, g) be its group of isometrics. The problem is:

Given G C I(M, g) a subgroup of isometrics, does there exist a G-invariant
metric g conformal to g which realizes the infimum v(G) of

/ r (n-2)/n
(66) J(g') = I J dv') I R' dV'

on the set of the G-invariant metrics g' conformal to g. J on the set of conformal
metrics to g, is the Yamabe functional when we write g' on the form g' _
cp4/(n-2)g. When the infimum v(G) is attained at g, the scalar curvature R of
is constant.

5.84 Theorem (Hebey-Vaugon [* 168]).

(67) v(G) < n(n - 1)wn/n [ E Card OG(x)] 2/n'

If the inequality is strict v(G) is achieved.
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OG(x) is the orbit of x under G. When all orbits are infinite this Theorem
implies immediately the existence of a minimizer for J. There is equality on
(Sn, go) when G has a fixed point. But for the other manifolds, Hebey and
Vaugon prove that the inequality (67) is strict in most cases

In particular

5.85 Theorem (Hebey-Vaugon [* 168]). The inequality (67) is strict in each of
these cases

1) All the orbits of G are infinite.
2) 3<n<11.
3) The manifold is locally conformally flat.
4) There exists a point P of some minimal orbit of G such that W3kl(P) 0 0

or VW23kl(P)I 0 0 or IV2We3kl(P)I # 0.
5) There exists a point P of some minimal orbit of G such that

IVmWiikl(P)I = O for all m satisfying 0 < m < (n - 6)/2.

When 3 < n < 5 or when the manifold is locally conformally flat the proof
is "classic" if we consider as well known the proof of the Yamabe problem.
But before it is necessary to prove, for a point P of some minimal orbit of G ,
the existence of a G-invariant metric g' conformal to g which is euclidean on a
neighbourhood of P.
In the general case the computations are done in a special conformal metric
the analogue of Proposition 5.20 is proved but with g a G-invariant metric. The
proof of 5) assumes the strong form of the positive mass conjecture. Hebey-
Vaugon conjecture that the inequality (67) is strict except if the manifold is
(Sn,, go) and G has a fixed point. But they solve the problem (5.83) in all cases.

5.86 Theorem (Hebey-Vaugon [* 168]). Let (Mn, g) be a compact Riemannian
manifold of dimension n > 3 and let G be a compact subgroup of C(M, g) the
set of conformal transformations. There exists a conformal metric to g which
realizes the infimum of J(g') on the set of G-invariant metrics conformal to g.

Corollary (Hebey-Vaugon [* 168]). Let (Mn, g) be a compact Riemannian man-
ifold of dimension n > 3, which is not conformal to (Sn, go). There exists a
conformal metric g for which R = Const. and I(M, g) = C(M, g).

8.7. An Hard Open Problem

5.87 Let (M, g) be a compact Riemannian manifold of dimension n > 2. Con-
2

sider the functional (66) J(g') = (f dV') f R' dV' on the set of the C°°
Riemannian metrics g' on M.

Let us prove the well known result: The critical points of J are Einstein-
metrics.
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Let h be a symmetric twice-covariant smooth tensor field, hij its components
in a local chart. We consider for t small the family of metrics gt = g + th. In a
local chart set

Ck=ri - rik =
t
29'X(Vihka + Vkhia - Vahik)

where gtk is the inverse matrix of (gt)ik and I'ik the Christoffel symbols of gt.
A computation gives (see [*7] p. 396):

Rtij = Rij + Vc CC - V iCaj + Cca -
The first derivatives with respect to t, at t = 0, of Rtij the components of

the Ricci tensor of gt are

2
d

dt Rtij = V"(Dihjk + Ojhik - Vkhij) - Vi(Vjhk).t
Thus we have (Rt the scalar curvature of gt):

CdtRt J = ViVjhij - VjVjhj - R'jhij.
t=0

Moreover (dt
VI-1-9t I) t=o = i I9[gti hij.

These two results give

dJ(9t) 1 2^n'
[J(Rgui/2

dt ) _ [ f VJ - R'j)hid dV f dV
t

- (1/2 - 1/n)J RdV J hijgi' dVJ.

If g is a critical point of J

(fRdv)(68) [R- (R/2)9] f dV +(1/2 - 1/n) gij = 0.

Multiply by gij yields R = Const.. Thus (68) implies Rij = (R/n)gij.

5.88 In a conformal class [g] the functional J is the Yamabe functional. We
know that µl.,] the inf of J on [g] is attained (Theorems 5.11, 5.21, 5.29 and
5.30). For the sphere (S", go) p[go] = n(n - 1)w2,/" (see 5.58). It is the unique
manifold having this property.

Define µ = supu[g] on the set of the conformal classes.
We can ask the questions

1) If µ is achieved by a metric g, is g an Einstein metric?
2) When µ < n(n - 1)w2n1", is Ti achieved?

There are partial answers to the first question.
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5.89 Proposition. Assume µ is achieved by a metric g. If al the first nonzero
eigenvalue of d satisfies Al > R/(n - 1) then g is an Einstein metric.

Remark the functional J (66) is invariant by homotheties, for c > 0 J(ag') =
J(g'). So we can suppose that the volume is constant, equal to 1: V = 1. Consider
again the family of metrics gt = g + th. The scalar curvature Rt of gt is not
constant in general, so we have to solve the equation

42Atcot+Rtwt=1LtWt -1

where µt is the inf of J on [gt], the set of the metrics conformal to gt. We have
po=µ=R=Ro and cpo=1.

Let S1 be a neighbourhood of cpo in Cr," (0 < c < 1, r > 2) such that any
function in S2 is positive. Now consider the following map:

E, E[XS2 E) (t, 7) --r+ 4n - I At-y+ Rt7 - µ.7N-1 E C''-2.
2

r is continuously differentiable and the differential of r with respect to 7 at
(0, coo) is \

D.yr(0, cpo)(W) = 4 n - 2
(.iii - nRo 1 T I .

As . > Ro/(n - 1), D yr(0, coo) is invertible. /
By the implicite function theorem, for t small (Itl < Er), there is a unique

function cot in 92 which satisfies

4n-2Atc5t+Rtcot=1W'otN-1

and ] - E, [ E) t -+ cPt is smooth.
Moreover pt = µo(f cotN dV)2/n is a smooth function of t and cot =

cot II cot 11 N-'. Then the family of metrics g = cpt /("-2)gt is smooth as a function of
t.

,at = J(gt) is the scalar curvature of gt. Writting (dtpt)t, = 0 implies g is
an Einstein metric.

Application. Remind there are three types of compact manifolds according to
they carry a Riemanian metric whose scalar curvature has a given sign. Consider
those which has a metric with zero scalar curvature and which carry no metric
with positive scalar curvature (examples: T the torus, K3 surfaces). Those
manifolds with zero scalar curvature are Ricci flat (,t = 0 is achieved).

5.90 Remarks. We know that 1 > R/(n - 1), but in the case ) = R/(n - 1)
we cannot conclude. For instance we can find a family tpt of t which has a
derivative with respect to t from the left at t = 0 and a different one from the
right (at t = 0). In this situation we cannot conclude.
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When µ = n(n- I )w2,' , there are two cases. Either the manifold is conformal
to the sphere with its canonical metric and µ is attained, or it is not conformal
to the sphere and in this case µ is not achieved. As an example, for the manifold
C x Sn -I (n > 2), Gil-Medrano [* 142] proved that µ = n(n - 1)w2n/".

An other result. Aviles and Escobar [* 17] proved that there exists e(n) > 0
such that µ[g] < n(n-1)wn/n -E(n) if (Mn, g) is any compact Einstein manifold
which is not conformal to (Sn, go).

In fact we known very few on A. For instance it would be interesting to
prove that µ = n(n - 1)(wn/2)2/n for the real projective space P,(R), in other
words that the metric with constant curvature has the greatest A.

8.8 Berger's Problem

5.91 The problems concerning scalar curvature turn out to be very special when
the dimension is two, the scalar curvature is then twice the Gaussian curvature.

Let (M, g) be a compact Riemannian manifold of dimension two.
It is well known that there exists a metric on M whose curvature is constant.
Considering conformal metrics g' of g, Melvyn Berger ([40]) wanted to prove
this result by using the variational method.

Set g' = ewg. Then the problem is equivalent to solving the equation

(69) A p + R = R'ew

with R' some constant (see 5.2). Here R denotes the scalar curvature of (M, g)
(in dimension two R is twice the sectional curvature) and R' is the scalar
curvature of (M, g').

By Theorem 4.7 we can write R = R+oy with R = Const and y E C°°(M)
satisfying f y dV = 0. Setting = cp + y, Equation (69) becomes

(70) AO + R = R'e'rye'u.

Note that we know the sign of R'; it is that of x, the Euler-Poincare character-
istic. Indeed, by the Gauss-Bonnet theorem 47rX = f RdV, so integrating (69)
over M gives R' f & dV = f RdV, which is equal to R f dV.

5.92 Solution for X < 0. If X = 0, R' = R = 0, = 0 is a solution of (70), so
the metric g' = e-"g solves the problem.

If x < 0, R < 0 and R' will be negative. We are going to use the variational
method to solve Equation (70).
Consider the functional

(71) I( )=2J V OdV

and set v = inf I(,b) for all 0 E HI satisfying f e'O-ry dV = 1.
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a) V is finite. Since the exponential function is convex

J(O - -y) dV < log J elk-Y dV = 0.

Thus f zbdV < 0 and v > 0.

b) v is attained. Let {Yb } be a minimizing sequence. We can choose it such
that 1('i) is smaller than v + 1. Then

fViVv)idV<2(1+v) and RJ OidV < 1+v.

Thus the set Ni }iEN is bounded in H1, since II V4'i dI2 < Const and (1 + v)/f?
< f Y'i dV < 0. Indeed, by Corollary 4.3 II Will2 _< If ?,b dVI[f dV]-1'2 +

al 1/Zlly 112 where Al is the first nonzero eigenvalue. Using Theorems 3.18,
2.34, and 2.46 we see that there exist i(i E Ht and a subsequence {0j} such
that;ij --+ weakly in H1, strongly in L1, and such that eOi e" strongly in
Li. Therefore f e0-1 dV = 1 and according to Theorem 3.17, I(ii) < v. But
satisfies the constraint. Thus by definition of v we have I(V)) = v. Hence v is
attained.

c) Writing Euler's equation yields

f dV + A f h dV = K f hey'-' dV

for any h E H1. Picking h = I gives the value of K, the Lagrange multiplier
K = R f dV = 47rX. Thus , is a weak solution of

(72) A +,R =

By Theorem 2.46 the right-hand side belongs to Lp for all p. Therefore A4 E LP
for all p. Differentiating Equation (15) in 4.13 and using the properties of the
Green's function show that E C" for 0 < a < 1. Thus A E C'+« and
according to Theorem 3.54, E C3+a. By induction E COO.

5.93 The Positive Case x > 0.
There are only two compact manifolds which are involved S2 if X = 2 and

the real projective space IP2 if X = 1. We suppose M is one of these manifolds.
From now on R is a positive real number. More generally than previously,

we will consider the equation

(73) Acp+R= fe°,

where f E C°° is a function positive at least at one point.
This property of f is necessary in order that Equation (73) have a solution, since

.R f dV = f f e`' dV.
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Henceforth, without loss of generality, we suppose the volume equals 1. Set
v = inf I(cp) for all eo E H1 satisfying f f e`' dV = R, where I(cp) is the functional
(71).

Theorem 5.93. Equation (73) has a C°° solution if R < 87r.

Proof
a) v is finite. First of all there are functions satisfying f few dV = R since

f is positive somewhere.
On the other hand, according to Theorem 2.51 or 2.53

(74) R = ff&' dV < sup ff e`° dV

< C(e) sup f exp I (92 + e)II f cp dVl .

Thus

(75) I (cp) > ['-2 - (112 + e)R] II V W I12 + R log(R/C(e) sup f).

112 = 1/167x, if R < 87r we can choose e = eo > 0 small enough so that
2(112 + e0)R < 1. Therefore v is finite, v > R log(R/C(eo) sup f).

b) v is attained. Let {cp}iEN be a minimizing sequence; (75) implies

[i - (112+rO). ] VV, 112 <- Const, thus IIVWiII2 <- Const.

Moreover, I(cpi) _< Const implies f cpi dV < Const, and by (74) f cPi dV >
Const. Therefore {cpi}iEN is bounded in H1 (Corollary 4.3).
As in 5.92b it follows that v is attained. There exists cp E H1 such that l((p) = v
and f f &'° dV = R.

c) Writing Euler's equation yields

r

f
V"cpV"hdV+A

r
hdV=KJ hfe"dV

for any h E H1. Picking h = 1 gives K = 1. cp satisfies Equation (73) weakly
and by the proof in 5.92c, ep E C°°.



Chapter 6

Prescribed Scalar Curvature

§ 1. The Problem

1.1. The General Problem

6.1 Let (M,,, g) be a C°° Riemannian manifold of dimension n > 2. Given f a
smooth function on M, the Problem is:

Does there exist a metric g' on M such that the scalar curvature R' of g' is
equal to f ?

This problem was solved entirely by Kazdan and Warner [* 195] [* 198]
[*200]. Since the equations are different for n = 2 and n > 3, the proofs
are different as are the results. When n = 2 the scalar curvature R has strong
topological meaning because the sectional curvature is fully determined by R
(At a point where the coordinates are chosen orthonormal R = 2R1212).

So more often than not, we will present the proofs when n > 3.

6.2 Theorem (Kazdan and Warner [* 198]). Let M be a CO° compact manifold
of dimension n > 3. If f E C°°(M) is negative somewhere, then there is a C°°
Riemannian metric on M with f as its scalar curvature.

Proof. Using Aubin [11], on any M we can choose a smooth metric g whose
scalar curvature R = -1. This shows that negative scalar curvature has no
topological meaning.

In a pointwise conformal metric g' = u4/(n-2) g with u > 0, we use formula
(1) in 5.2 for R'. If u E Hz (M) with p > n, then u E C1(M) according to the
Sobolev imbedding theorem. Set cZ = {u E H2 (M)/u > 0}. Now we consider
the map

SZ x Lp 3 (u, K) r+ 4(n - 1)(n - 2)-'Au - u - KuN-1 E LP,

where N =nn2. F is continuously differentiable and its partial differential with
respect to u is

Dur(v) = 4(n - 1)(n - 2)-'A v - v - (N - 1)KuN-2v.

At (1,-1), Dj(v) = 4(n-1)(n-2)-1Av+(N-2)v is invertible as an operator
acting on G(H2 , Lp). Hence, by the implicit function theorem, there exists e > 0
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such that if K satisfies 11K + 1llp < e the equation F(u, K) = r(1, -1) = 0 has
a solution in a neighbourhood in HZ of the constant function u = 1. We can
choose E small enough so that the functions u in this neighbourhood are positive
everywhere (this follows from the Sobolev theorem).

Since f is negative somewhere there exist a > 0 and cp a C°° diffeomor-
phism of M such that K = a f ow satisfies 11K + 1 lip < e. So a f is the scalar
curvature of the metric g = (cp-1)*(u4/("i-2)g), where u is the solution founded
above of the equation r(u, K) = 0. u E C°° by the bootstrap method, since
u E C' is a solution of Du = (n - 2)(u + KuN-')/4(n - 1) with K E CO°.
Therefore a C°° metric (homothetic to g) has f as scalar curvature.

6.3 Theorem (Kazdan and Warner [* 198]). Let M be a CO° compact manifold
of dimension n > 3 which admits a metric whose scalar curvature is positive.
Then any f E C°°(M) is the scalar curvature of some C°° Riemannian metric
on M.

Proof. We know that there are compact manifolds, such as the torus T"` which
have metrics with zero scalar curvature but no metric with positive scalar curva-
ture. Here by hypothesis there is a metric with positive scalar curvature, hence
the manifold admits a metric with zero scalar curvature. Indeed we can pass
continuously from a metric with positive scalar curvature to a metric with neg-
ative scalar curvature. So we get a metric which is in the zero case: p = 0 (µ is
defined in 5.8).

Thus we have to consider only the case f positive somewhere. By the the-
orems which solve the Yamabe problem, there exists a metric g with scalar
curvature equal to +1 which minimizes the Yamabe functional in the conformal
class [g]. Then we procede as for Theorem 6.2. We consider on S2 x Lp,

r(u, K) = 4(n - 1)(n - 2)-'Au + u - KuN-1.

At (1,1), Dur(v) = 4(n - 1)[Av - v/(n - 1)]/(n - 2) is invertible only if
A,(g) > 1/(n - 1) which is not always true (we can have \,(g) = 1/(n - 1),
for instance on the sphere with the standard metric satisfying R = 1). If XI (9) =
1/(n - 1), we choose a metric g close to g (so that R(g) > 0) not belonging to
[9].

For g well chosen, a minimizing metric in [g] for the Yamabe functional,
with scalar curvature equal to 1, will have its Al > 1/(n - 1). With this metric
the proof of Theorem 6.2 will work, K = a f o c p satisfying 1 1 K - 1 ll , < c.

Using this result, the problem of describing the set of scalar curvature func-
tions on M,,, is completely solved if n > 3. To see this, note that the topological
obstructions mentioned above show that there are tree cases.

The first case: M does not admit any metrics with p > 0. Then p < 0 for
every metric, so the scalar curvature functions are precisely those which are
negative somewhere.
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The second case: M does not admit a metric with µ > 0, but does admit
metrics with p = 0 and p < 0. This is identical with the first case except that
the zero function is also a scalar curvature.

The third case: M has some metric g with p > 0. Any function is scalar
curvature.

6.4 Theorem (Kazdan and Warner [* 198]). Let M be a non compact manifold
of dimension n > 3 diffeomorphic to an open submanifold of some compact man-
ifold M. Then, every f E C°°(M) is the scalar curvature of some Riemannian
metric on M.

Proof. Without loss of generality, we can suppose that M - M contains an open
set. On M we pick a metric g with scalar curvature equal to -1. Consider a
diffeomorphism cp of M such that f ocp E Lp(M), and an extension f of fop
on M by defining it to be identically equal to -1 on M --M. Therefore given
e > 0 there exists a diffeomorphism 41 of M such that II f o4i + 111, < E. Now
we can apply the proof of Theorem 6.2.

1.2. The Problem with Conformal Change of Metric

6.5 Henceforth on this chapter we will deal with the following problem:
Let (Mn, g) be a C°° Riemannian manifold of dimension n _> 2. Given f E

C' (M) does there exist a metric g conformal tog @ E [g]) , such that the scalar
curvature of g equals f ?

We suppose f 0 Const., otherwise we would be in the special case of the
Yamabe problem. The problem turns out to be very special when the Riemannian
manifold is (Sn,, go) the sphere endowed with its canonical metric. This comes
from the fact that (Sn, 90) is the unique Riemannian manifold for which the set
of conformal transformations is not compact. This result was a conjecture of
Lichnerowicz solved by Lelong-Ferrand [175].

Thus the problem on (Sn, go) is especially hard. It was raised by Nirenberg
on S2 in the sixties. Chapter 4 will deal with the Nirenberg Problem. In this
chapter we suppose that (Mn, g) is not conformal to (Sn, go).

6.6 Recall the equations to solve.
When n = 2, we write the conformal change of metric on the form e`°g.

The problem is equivalent to finding a C°° solution of

(1) Acp+R= fe`°

where R is the scalar curvature of (Mn, g).
When n > 3, we consider the change of conformal metric cp4/(n-2)

9
The problem is equivalent to finding a positive C°° solution of

(2) 4(n - 1)(n - 2)-1 AV + RV = fcpN-1,
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where N = 2n/(n - 2). For simplicity set R = (n - 2)R/4(n - 1). Then (2)
becomes

(3) Ocp+f?V=fWN-1,c,>0,

where we have written f for (n - 2) f /4(n - 1) without loss of generality.
As the problem concerns a given conformal class of metrics, in writing

equations (1) and (2) we may use in any metric in this conformal class. So
when M is compact, we choose g the (or one of the) metric minimizing the
Yamabe functional, accordingly R = Const..

§2. The Negative Case when M is Compact

6.7 In this section we consider (1)-(3) when R (or R) are negative. The first
result is in Aubin [11].

Theorem 6.7 Let (Ma, g) be a compact C°° Riemannian manifold with µ < 0
and n > 2. Given a C°° function f < 0, there is a unique conformal metric with
scalar curvature f. µ is defined in 2.1.

When n > 3 we consider the functional

1(W) = f I V cp I2 dV + f Acp2 V.

Set v9 = inf I (W) for all

f
cpEAq={cpEH1/W ?O,J fcp9dV=-1}

with 2 < q < N. Consider a minimizing sequence {Wi}.
SfSince f cpq dV < uffpq dV = FSU/ff , II pi 112 < Const.; and II Pi II H, <

Const. because I(cpi) -+ vq. The proof proceeds now as for the Yamabe problem.
In the negative case, a uniform bound in C° for the minimizers cog satisfying
Ocpq+Rcpq = -vq f cpQ-1 is very easy to find. At a point P where W. is maximum
Ocpq(P) > 0, thus cp4-2(P) < -R/vq f(P) < Const.. Uniqueness is proved by
Proposition 6.8 and the solution ' = limq_.,N cpq.

When n = 2 we consider the functional

I(cp)= 2 fIvl2dv+JRwdv

Set v = inf I(W) for all

coEAcoEHi/f fe4°dV=J RdV}.
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v < 1(0) = 0 since cp - 0 is not a solution of (1) when R = Const. and
f 0 Const..

Consider a minimizing sequence {cpi}, 0 > I(coj) --+ v.

First step. I f cpti dVI < Const.. Obviously f cpi dV > 0. Furthermore the result
follows from

and

f cpt dV < V log I J e 'ea dV/V I

fedv < [inf(- f )] -' f (- f )e`Q2 dV = fRdV/supf

where V = f dV.

Second step. II cpi II H, < Const..

I(ca) < 0 implies I I Vi II2 < -2R f cpi dV < Const. and

11v,112 <- 11V, - ,v2112
+ Vpt <-

IIo(P2li2A1 ' + Vc01

where cpi = f cpi dV IV.

Third step. v is attained by a CO' function.
The map H, 3 cp -* e`e E Lp is compact for any p (Theorem 2.46), so

a subsequence {cps} of {cpi} tends to a weak solution of (1) in H1. By the
bootstrap method together with the regularity theorem, the solution is smooth.

Remark 6.7. Kazdan pointed out that one does not need any assumption on the
exponent q > 2 in the negative case when f is negative. He proved that the
equation

(3b) Du = 9(x, u)

has a solution when the continuous function g(x, t): M x R -. R has the property
that there exists numbers a < b so that if t > b then g(x, t) < 0, and if t < a
then g(x,t) > 0.

When 9(X, U) = f(x)tIuIq-2 - Ru, we get a positive solution. Indeed we
can use the method of lower and upper solutions with b > a > 0. We verify
that a > 0 is a lower solution of (3b) if a is small enough:

9(x, a) > a(-R + x of f (x)aq-2) > 0 = Da

when a < [R/ infXEM f(x)] '. Moreover b > [R/ suprEM f (x)] 4- _2 is an
upper solution of (3b).

6.8 Proposition (Aubin [14], Kazdan and Warner [*198]). If f < 0 on M,
equation (1) (resp. equation (2)) has at most one solution (resp. one positive
solution).
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We suppose f $ 0 otherwise the problem has no solution. Set 52 = {x E
Ml f (x) = 0} and let T be a solution of (1) when n = 2 (resp. a positive solution
of (2) when n > 3). Consider ePg when n=2 (resp. 04/(n_2)g when
n > 3).

When n > 3, if there is another solution, equation (2) (written in the metric

(4) 4(n - 1)(n - 2 ) ' u + fu = fuN-i (u = cP/0

would have a solution not equal to the constant function it = 1. First suppose
ci = 0 then u - 1 is the unique solution of (4) indeed at a point P where it is
maximum Du(P) > 0 thus u(P) < 1; and at a point Q where it is minimum
Au(Q) < 0 thus u(Q) > 1.

If S2 $ 0, Diu = 0 on S2 and it cannot reach a maximum or a minimum on S2.
Therefore, if u > 1 somewhere on M, it attains its maximum at a point P $ Q.
Accordingly there is a sequence {Pti} C M - S2 which tends to P. Du(P) = 0
and for Pi near enough to P, Du(P,) > 0. Thus u(PL) < I and u(P) < 1.
Likewise if Q is a point where u is minimum, u(Q) > 1.

Similarly when n = 2, we prove that it =_ 0 is the unique solution of equation
(1) written in the metric g

Au+f=fe" (u T).

6.9 Proposition (Kazdan and Warner [* 198]). A necessary condition for a solu-
tion of (3) to exist is that the unique solution of

(5) Au-(N-2)(.Ftu- f)=0

is positive.
A necessary condition for a solution of (1) to exist is that the unique solution

of

(6) Au - Ru+f=O

is positive. In both cases this implies the weaker necessary condition f f dV < 0.

Proof. If cp > 0 satisfies (3), multiplying both members by cp1-N and integrating
yields f f dV < 0. Since u > 0, integrating (5) gives f f dV = R f u dV < 0.

As R < 0, the operator r = A - (N - 2)R is invertible (in the space of CO°
functions for instance). We have to prove that if (3) has a solution cp > 0 then
the unique solution u of (5) is positive. For this we compute r(W2-N) and find

r(p2-N) = -(N - 2)f - (N - 2)(N - 1)cp-NV1VVicp < -(N - 2)f.

Thus -r(co2-N-u) > 0. According to the maximum principle a 2-N -u < 0
and it > 0 (we have co2-N - u $ Const.).

Similarly, when n = 2, we prove (-A + R)(e-`P - u) > 0. This yields
it > e- P which is positive.
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Remark. With Proposition 6.9 it is easy to find functions f satisfying
f f dV < 0 such that equations (1) and (3) have no solution.

For instance f = -Du/(N - 2) + Au when n > 3, and f = Ru - Au when
n = 2, where u is a function changing sign and satisfying f u dV > 0.

6.10 Proposition (Kazdan and Warner [*198]). If f E C°° is the scalar cur-
vature of a conformal metric, any h E C°°, satisfying h < a f for some real
number a > 0, is the scalar curvature of a conformal metric. More generally, if
(3) has a positive solution for some f E CO, the equation

(7) Au +au = huN-t with R < a < 0

will have a positive solution for any h E CO satisfying h < a f with a > 0. If
(1) has a solution for some f E C°, equation

(8) Au+a=he" with R<a<0

will have a solution for any h E Co satisfying h < c if with a > 0.

Proof. As equation (3) has a solution for af, we have to prove Proposition 6.10
when a = 1. Let V be a solution of (3), u+ = cp is an upper solution of (7).
Indeed

Acp + acp - hco ' = (a - R)w + (f - h)ca ' > 0

Pick a positive real number /3 small enough /3 < a and[mp(h)]
inf cp, the constant function u_ /3 is a lower solution of (8) which satisfies
0 < u_ < u+ = V. Indeed OQ + a/3 - hfN_t = ,Q(a - h,3N-2) < 0.

We are in position to use the method of upper and lower solutions, and
conclude that (7) has a solution. Similarly (8) has a solution.

Here /3 = u_ < u+ = cp with Q < log[(-a)/ sup(-h)].
If h is only C°, the solution of (7) (resp. (8)) is in Ct°p for any /3 E JO, 1[.

In this case, for the proof we use the Maximum Principle for weak solution
(Remark 3.71). Kazdan and Warner state Proposition 6.10 for h E Lp(M) with
p > n, the solution is then in CO for some Q > 0 and also in HIP.

6.11 Theorem. Assume f is the scalar curvature of a conformal metric. If f < 0,
there exists a neighbourhood V of f in C' (any a E]0, 1[) such that each h E V
is the scalar curvature of a conformal metric.

A necessary condition for (3) to have a solution is -R < A, where

A = inf [II 2] for all u E V(6).

If S2 = 0, A = +oo. Here

ci = {x E M/f(x) > 0},

f may have positive values.
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Proof. Writting equation (2) in the conformal metric g which has f as scalar
curvature, the equation to solve is

(9) 4(n - 1)(n - 2)-1 au + f u - huN-1 = 0, u> 0.

Consider the map (u, h) 4(n - 1)(n - 2)-1 Au + fu - huN-1 from

{uEC2'a,u>0}XC° in Ca.

D,,,F(v) = 4(n - 1)(n - 2)-1av+ fv - (N - 1)huN`2v.

At (1, f), Dj = 4(n - 1)(n - 2)-1Q - (N - 2) f is invertible. Indeed,

[(n
f {Jv2d]v= inf - 1) f IVvI2d V-

J f v2d VI

is achieved by a smooth positive function, thus v > 0. Recall N - 2 = n4
2

As I, is continuously differentiable, we can apply the implicit function theorem.
This proves the existence of V. Similarly when n = 2, we write (1) in the metric
g and we consider the map

(u h) r; Au + f - he".

At (0, f), Dj = D - f is invertible, the spaces being well chosen.

Remark. According to Proposition 6.10, the neighbourhood V of f may be in
CO.

Praoof of the second part. Let W C 92 be a submanifold with smooth boundary
(W # 0), and let A be the first eigenvalue for the Laplacian A on W with zero
Dirichlet data. On W consider T the eigenfunction such that' < V on W with
T = cp somewhere in W (recall co is supposed to be a solution of (3)). On W,
0l=AW,TEC°°and

(10) A(`p-

If 5 < -R, as f > 0 on W, (10) implies L (cp -') > 0. Thus co >
everywhere on W since cp > T on W. This contradicts' = cp somewhere.

So -R < A, but A is as close as one wants to A and we obtain -R < A.
To get the strict inequality, consider f - = inf(0, f) which is Lipschitz con-

tinuous. According to Proposition 6.10, equation (3) with f'cpN-1 in the right
hand side has a positive solution in C°'a. Then using the first part of the The-
orem proved above, there exists a neighbourhood of f - in C", where we can
choose h E C°O having zero as regular value and satisfying h(x) > 0 when
xES2.

Now, if (3) has a solution, A _ -R yields a contradiction. Indeed equation (3)
with hcpN-1 has a positive solution coo E C. Let A0 be the first eigenvalue of
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A (with zero Dirichlet data) on flo = {x E M/h(x) > 0}. S1o is a submanifold,
thus -R < A.. As A < A, we get the desired inequality.

6.12 Theorem (Ouyang [*262], Rauzy [*273], Tang [*298], Vazquez-Veron
[*312]). On (M., g) a C°° compact Riemannian manifold of dimension n > 3,
let f < 0 be a C' function (a E]0, 1]). Define K = {x E Ml f (x) > 0} and
A = inf[IIVujj2jjujI2 21 for all u E D(K). Then Equation (3) has a solution if
and only if

1

(11) < A.

When f E C°°, f is the scalar curvature of a conformal metric, if (11) holds.

This theorem is a particular case of Theorem 6.13 below. For the proof
Ouyang, Vazquez and Veron use the method of bifurcation. They study equation

(12) Du - Au= fup, u> 0

with A > 0 and p > 1. For this they consider

(13) C2,a x R 3 (u, A) -+ f(u, \) = Du - Au - f IuIP-'u E Ca.

(0,0) is a point of bifurcation and there exists a C' bifurcated branch issuing
from (0,0).

Recently Tang gave a simple proof of Theorem 6.12, using the method of
upper and lower solutions, advocated by Kazdan and Warner. If we exhibit a
positive upper solution u+ of (3), a positive constant i3, small enough, is a lower
solution of (3) and we can take u- < u+. Indeed A)3 + Rp < f/3N-' as soon
asp < [Al inf f ](n-2)/4.

So we can choose u- = p < u+ and we are in position to use the method
(see § 12 of Chapter 7).

We saw in 6.11 that condition (11) is necessary. Let us prove it is sufficient.
Assume -R < A, there exists a neighbourhood of K : W which is a manifold
with boundary whose first eigenvalue A satisfies -R < A < \ (for A with
zero Dirichlet data). Since K is compact, W has a finite number of connected
components Wi (1 < i < k). On each Wi, pick Wi > 0 an eigenfunction
satisfying cpi/8W = 0 and on Wi Oci = Ai o , with Ai > the first eigenvalue
for A on W.

Now consider cp a positive CO° function on M which is equal to coj on
a neighbourhood 9i of KnWW C Wi. For a large enough, let us verify that
u+ = acp is an upper solution of (3). On any Oi

Du++Ru+=(Ai+R)u+>0> f(u+)N-t.

And on M - Uk Bi, as f < -e for some e > 0, we will have

AV +Rcp > -eaN-2WN-1
>_

aN-2f(PN-1

if a is large enough.
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6.13 Theorem (Rauzy [*273]). On (Ma, g) a C°° compact Riemannian manifold
of dimension n > 3, let f be a C°° function satisfying (11) where A is the first
eigenvalue for i on fl with zero Dirichlet data (as defined in Theorem 6.12).

There exists a positive constant C which depends only on f sup(-f, 0)
such that if f satisfies

(14) sup f < C

then equation (3) has a solution (f is the scalar curvature of a conformal metric).
Assume sup f > 0. Equation (3) has more than one positive solution when 6 <
n < 10 if at a point P where f is maximum Af(P) = 0, and when n > 10 if in
addition dWijkl(P)MI 0 0 and L1z.f(P) = 0.

The first part of the theorem is proved by using the mini-max method.
Condition (14) means that, when f - is given, equation (3) has a solution for
any f+ on S2 satisfying (14). For the proof of the second part of Theorem 6.13,
Rauzy uses the method of points of concentration.

Remark 6.13. We can ask how C depends on f -. The answer is given by
Aubin-Bismuth in [* 13].

Set K = {x E M/ f (x) > 0}, K must satisfy A(K) > -R. Condition (14)
is

sup f < C(K) inf 1-f (x)].
(M-tt)

where fl is a neigbourhood of K such that A(S2) > -R, A (Q) being the first
eigenvalue of A on fl with zero Dirichlet data.

6.14 Theorem. When n = 2, if f a C°° function on (M2, g) satisfies f < 0 and
f # 0, there is a conformal metric with scalar curvature f.

If we consider f - = sup(-f, 0) 0 0 as given, there exists a positive constant
C such that the same conclusion holds whenever sup f < C.

Proof Assume f < 0 and set fl = {x E Ml f (x) = 0}. _
Let W be a manifold with boundary which is a neighbourhood of 0. W

exists since S2 M. On W let w be a solution of Aw+ R = 0, for instance with
zero Dirichlet data. If k is large enough let us verify that w+ = - + k is an upper
solution of (1) when y = w on a neighbourhood 0 of S2, with 0 C W.

On 0, A(y+k)+R = 0 > fe,,+k. And on M-0, as f < -6 for some e > 0,
we will have A(y + k) + R > -t;ery+k > fey+k. On the other hand when k is
large enough w- _ -k is a lower solution of (1) satisfying w- < w+.

Indeed . w- + R = R < fe-k = few for large k. The method of lower
and upper solutions yields a solution of (1).

For the proof of the second part of Theorem 6.14, we use Theorem 6.11.
According to the proof above, -f - is the scalar curvature of a conformal metric,
so there exists a neighbourhood V of -f - in C° such that each function in V
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is the scalar curvature of a conformal metric. In V there are functions h > - f
which are equal on Sl to a positive constant C if C is small enough.

Now if sup f < C, f < h on M and by Proposition 6.10, f is the scalar
curvature of some metric conformal to g.

Remark. The necessary condition of Proposition 6.9 is satisfied under the hy-
pothesis f < 0, f 0 0. Indeed, GR beeing the Green function of 0 - R, the
solution of (6) is u(P) _ - f GR(P, Q) f (Q) dV(Q).

We know that GR satisfies GR > E for some e > 0. Thus u > -e f f dV >
0.

Similarly when n > 3, if f < 0 and f $ 0, the solution of (5) is positive.
In case f changes sign, if Theorem 6.12 can be apply to the function -f - (i.e.
(11) is satisfied), there is a positive constant C(f-) such that f is the scalar
curvature of a conformal metric whenever sup f < C(f - ).

The proof is similar to that of the second part of Theorem 6.14. It is an
alternative proof to the first part of Rauzy's Theorem.

§3. The Zero Case when M is Compact

6.15 In this case, the manifold carries a metric with zero scalar curvature. In
this metric equations (1) and (3) are

(15) Ocp = fe`0, when n = 2.

(16) Ocp= f(pN-l, cp>0 when n>3.

Obviously there are two necessary conditions:

(17) f changes sign

(18) ffdV<0.

f OcpdV = 0 implies (17). Multiplying (15) by e-`°, (16) by cpt-N and
integrating yield (18).

The zero case is not different than the positive case, we can use the varia-
tional method. Whereas the negative case, when f changes sign, is very peculiar.

6.16 Theorem. When n = 2, f E Coo is the scalar curvature of a conformal
metric (equation (15) has a solution) if and only if (17) and (18) hold.

Proof. Define v = inf IIVuI12 for all

l
u E A = (cp E H, /J f e`° dV = 0 }
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To see that A # 0, let cp E C°° a function which is positive in a ball S2 where
f > 0 and which is zero outside 52, f f e" dV = 0 for some a > 0 since
f fdV <0.

Consider a minimizing sequence uti E A. Set ui = vi + ui where ui =
V-1 f ui dV, v = limy-111 II VVd2 and f fe"i dV = 0. As vi = 0 the set {v1} is
bounded in Hi.

So there exist W E H, and a subsequence {vj} such that vj IP weakly
in Ht, strongly in L2 and such that e"i --> eP in L1 since the map H, D cp

e`° E L, is compact (Theorem 2.46).
This implies f f eO dV = f f e"j dV = 0, thus 0 E A and II V II2 = v

since II V II2 < lim II Vvi II2 = v. We cannot have v = 0, otherwise = 0 which
contradicts f f dV < 0. Hence 0 satisfies

(19) AV) =kfe with k E R.

Multiplying both members by e-b and integrating implies k f f dV < 0.
Thus k > 0 and cp = 0 + log k is a solution of (15). Regularity follows by a
standard bootstrap argument.

6.17 Proposition. When n > 3, if (17) and (18) hold, there is a positive C°°
solution cpq of the equation Ocp = f cpq-1 for 2 < q < N.

Proof. Define vq = inf IIVu1I2 for all

r
UEAq=l`SuEH,/u>0,

J
fugdV=1}.

Aq # 0 (see the proof of 6.16). Consider a minimizing sequence {ut}. If no
subsequence of the sequence {IIujII2} is bounded, set v1= uti/IIUJ2.
The functions v1 satisfy IIvjII2 = 1, IIVv=II2 0 and f fvq dV --* 0. Thus {v;}
is bounded in H, and v, -* V-1/2 in H, (V is the volume). This implies a
contradiction with (18) since we would have f f dV = Vq/2lim f f v° dV = 0.

Similarly vq # 0, otherwise as we know now that {u;} is bounded in H,,
the constant function is a minimizer and this implies a contradiction.

Consequently vq > 0 and there exists a subsequence {uj } which is bounded
in HI. As H, C L. is compact, we prove (as we did many times) the existence
of a positive solution cpq E C°° satisfying

(20) &pq = Uq f (pq-1 and ffcodv = 1,
q

where vq > 0 is the inf of the variational problem considered above.

6.18 Lemma. The set of the functions cpq satisfying (20) is bounded in H1.

First of all let us prove that the set of the Uq is bounded. Thus we will have

II V Oq II2 < Const..
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For this we may pick any function u > 0, u 0 0, with support in the subset
of M where f > 0. But in order to have a proof useful in a more general context

we choose u = f+ = sup(f, 0). ry = f+ [ f (f+)q+l dV] -1 /q E Aq (see the proof of
6.17 for the definition of Aq).

Thus,

< sup 1) lI Vf+II2 [f(f+)3dv

Now the proof is by contradiction. Suppose IkogII2 is not uniformly bounded.
There exists a sequence qj such that IIWq:II2 -' oo when i -+ oc. Then,
vi = (Pq; I1(q: II2

1 is a sequence of C' functions which satisfies II Vvi II2 -+ 0,

I
I vi II2 = 1 and f f vq' dV -+ 0. Thus vi --+ V-112 in H1 when i -> oo and by

the Sobolev Theorem lIvi - V-1/2IIN ---' 0 . This implies

f Ivq. _ V-q+/2I dV < qj f Ivi - V-1/2IIvq,-1 + V-(q=-1)/21 dV
%

< Const. IIvi - V-1/2IIN -, 0.

So f fvq` dV --> 0 yields f f dV = 0 which contradicts with (18) the
necessary assumption f f dV < 0.

6.19 Now we need to use a Theorem which will also be useful later on, which
is why we consider a more general situation.

Let (M, g) be a C°° compact riemannian manifold. Consider the operator

(21) Lu=Au+hu

where h E CO°.

Theorem 6.19 (Aubin [14] p.280). Assume there exists a sequence, bounded
in H1, of positive C°° functions coq; (2 < qi < N, lim qi = N) satisfying
f f `oqq dV = I and

(22)

- 2/q

Vq <_ II V7II2 II Vf+II2 dVl

1-2/q

IlVfll(f f+ dV) [ff43dv]'

LWq: = Aif(pq
-1

where f is a C°° function with sup f > 0 and µi positive real numbers. If

(23) 0 < p = Jim pi < n(n - 2)wn/n/4[sup f]1-2/n
t-- 00

then a subsequence {cpq, } converges weakly in H1 to a positive COO function
which satisfies

1

I

(24) L2/) = µ fV)N-1.
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Proof. Since II cpc; 11H, < Const., we can proceed as for the Yamabe problem.
There exists a subsequence {cpq, } and 0 E H1 such that cpq, - 0 weakly in
H1, strongly in L2 and almost everywhere. Then Wq;.-c -> ON-' weakly in
LN/(N-1) and 0 satisfies (24) weakly in Hl.

According to Trudinger [262], 0 E C°°. Then the maximum principle im-
plies either 0 > 0 or 0 - 0. In order to show that the last case cannot occur,
we must prove that 110112 0 0.

For this we will use K(n, 2) = 2w,,, 1/"[n(n - 2)] -1/2 the best constant in
the Sobolev inequality (Proposition 2.18). Given E > 0 there exists A(E) such
that all cp E H1 satisfy:

(25) [KZ(n,2)+E]IIocII2+A(E)IIVII2

We now write

(26) 1

=Icpq dV <(supf)II,pq,IIq;

From (21) and (22) we get

(27) II V'Pq, I12 + f hq, dV = ui

(25) and (26) together with (27) yield

1 - (sup f)2/q.V2(N-g;)lNq [K2(n,2)+e]p.lti < Const. IIcoq.II2

Taking the lim inf of both sides when i -+ no we find

1 - (sup f )21N [K2(n, 2) + E]µ < Const. lim f I.
Since s is as small as one wants, if µ satisfies (23) then 110112 > 0.

6.20 Remark. When f > 0 there is an alternative proof of Theorem 6.19 which
doesn't use Trudinger's Theorem. For this see (6.39) below. We do the same
computations without the function i(77 __ 1). In the left hand side of (45), the
limit when i -+ no of the term in brackets is

I = 1 - k2(2k - 1)-cCµE2/"`(sup f)2/N.

The assumption (23) µ(sup f )21 NK2(n, 2) < 1 allows us to pick C enough
near K2(n, 2) and k > 1 enough near 1 so that l > 0, since E° = I according to
the hypothesis.

So we get for some k > 1, Ilcpq;IlkN < Const.. This is sufficient to prove
that {coq } is bounded in ' for any r > 0. The proof begins by using the
Green function of the Laplacian as in 5.5: we prove that the functions cpy; are
uniformly bounded in Co then in C1.

The bound in C' is obtained by induction thanks to the regularity theorems
(§6.2 of Chapter 3).

Hence a subsequence of {cpgj} converges in C''-c to a smooth positive
solution of (24).
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6.21 Let's return to our problem, the existence of a positive CO° solution of (16).
Of course we assume (17) and (18). According to Proposition 6.17, Lemma 6.18
and Theorem (6.19), the problem is reduced to find sufficient conditions so that

(28) v = Qlim vq < n(n - 2)wn/n/4[sup fj t -2/n

Moreover, v is equal to v = inf of IIVWII2 for all

EH1/cp>0, f fcp^'dV=1}.

Let us prove by contradiction that v9 has a limit when q -# N and that
v = t'. Consider a sequence vq, with qj -> N such that limi-,,. Vq, = v # v.

We will prove. in 6.39 (see Corollary 6.40) that there exists a subsequence
{qj} of {qj} such that the sequence {cpq, } converges uniformly on the set
K={xEM/f(x)<0}.

Moreover

JM\K

giIN t-qi/NdV<(fco dV(J fdVJM\K q' \ q' / M\K

Thus, given e > 0, if qj is enough close to N

JM\x f cqi
dV > f

M\K
f cpq' dV - E and ( N 41) dVqi - wgi < E.

This implies a = f f cp9 dV > 1 - 2e. Hence

<IIVWgill2aj2a2 <(I-E)-21Nvgi.

We find v < (1 - e)-21''v for any E > 0. So v < v according to our
assumption.

In that case there exists a positive COO function u such that f f uN dV = 1
and IIVuII2 < vqi for all qj > N - 77 (rl > 0 some real number). Now this is
impossible since

J
f uqi dV --4 1 when qj N.

Remark. We have always v < n(n - 2)wn/n/4[sup f]t -2/n.
The proof is similar to that for the Yamabe problem. We take the standard

test-functions centered at a point where f is maximum. As results of existence
we have

6.22 Theorem (Escobar and Schoen [* 129]). Suppose (M, g) of dimension n > 3
is locally conforinally flat with zero scalar curvature. Assume f (P) > 0 at a point
P, where the C°° function f attains its maximum. If all its derivatives of order
less than or equal to n - 3 vanish at P and if f f dV < 0, then f is the scalar
curvature of a conformal metric.
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When n = 3,4 the locally conformally flat assumption on M can be removed.
So, in these cases,the result is optimal.

We have the same result for the dimension n = 5, according to Bismuth
[*54B].

6.23 Theorem (Aubin-Hebey [*15]). Let f be a C°° function satisfying
f f dV < 0 and sup f > 0. If at a point P where f is maximum the Weyl
tensor is not zero, then f is the scalar curvature of a conformal metric in the
following cases:

when n=6 ifAf(P)=O
when n > 6 if Af(P) = 0 and IAAf(P)I/f(P) is small enough.

§4. The Positive Case when M is Compact

6.24 We write the equation in the metric which minimizes the Yamabe func-
tional: R = Const. > 0. When n > 3 we set R = (n - 2)R/4(n - 1). We have
to solve

(29) Acp + R = f e`°, when n = 2

(30) Ocp + Rep = f cpN- " cp > 0 when n > 3.

Since we deal with the sphere in §7 to 10 below, when n = 2 the manifold
is the projective space. If it comes from the unit sphere, R = 2 and its volume
V = 27r. If ep E C°° satisfies (29) or (30), at a point P where f is maximum,
Acp(P) > 0 and we get f (P) > 0. The only necessary condition for f to be the
scalar curvature of a conformal metric is f is positive somewhere.

6.25 Theorem (M.S Berger [40] and J. Moser [*245]). On the projective space
P2(R), any f E C°° with sup f > 0 is the scalar curvature of a conformal metric.

Proof. Define I(ep) = 1 Il Vw + 2 f co fdV and set .X = inf l(co) for all
2 2

cpEA={uEHi/J feudV=1), A O.

Recall the following inequality: )))

For any

fe
e > 0 there exists rC(e) such that all cp E He satisfy

1

(31) ` ° dV <c(e)expl(a+l/I67r)JI VcOI12+(1/21r)J cpdVJ.

For u E A, I = f f eu dV < sup f f eu dV. Thus

(32)
J

udV > -(27re+1/8)IIDu112-Const.
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This implies

(33) 1(u) > (1/4 - 47re)IIVuI12 - Const.

As c is as small as one wants, A is finite. Let {ui} be a minimizing sequence.
From (33) we get Il VudI2 < Const. since I(ui) -+ A when i -+ oo.

I(ui) < Const. and (32) imply I f ui dV I < Const..
So IIuiIIH, < Const.. The method used many times yields a minimizer

E H1 for our variational problem. For this we use the compactness of the
map H1 E) cp --+ e`° E L1. Thus ' satisfies (29) weakly in H1. By a bootstrap
argument xP E C°°.

Berger's Problem is described in Chapter 5 (§8.8).

6.26 Proposition. When n > 3, if sup f > 0 there is a positive C°° solution
cpq(2 < q < N) of the equation Ocp + Rcp = f cp9-', cp > 0.

Proof. By the variational method as for the Yamabe problem (see 5.5). Define
I(u) = IIVuI12 +RIIuII2 and((Aq = inf 1(u) for all

l
uEAq={cpEH1/cp>0, =1}.

Aq 0 since we have supposed sup f > 0. Consider {ui} a minimizing se-
quence. As 1(ui) --+ .q, {ui} is bounded in H1. A subsequence {uj } converges
to cpq weakly in H1, strongly in Lq (since qi < N) and a.e.. Hence, epq > 0
satisfies weakly in H1

(34) Aqf
Wq-1

.

Moreover f f coq dV = 1 implies Oq 0 and Aq > 0.
According to the maximum principle, W. > 0, and by the regularity theorems

cpq E C.

6.27 Proposition. The variational problem, considered above, has a minimizer
cpq E C°°. cpq > 0 satisfies (34) and f f coq dV = 1. The set of the functions cpq
(q E [2, N[) is bounded in H1.

If A = inf 1(u) for all u E A = {cp E Hl/cp > 0, f fcpNdV = 1},
limq-N Aq = A. Since A. < Const. (see vq < Const. in Lemma 6.18),
II cpq II H, <_ \q/ inf(l, R) < Const.. The proof of the last assertion is in (6.21).
Then Theorem 6.19 implies:

6.28 Theorem (Aubin [14] p. 280). If

(35) A < n(n - 2)wn/n/4[supf]1-2/" = A,

equation (30) has a C°° solution which minimizes 1(u) over A Therefore f is
the scalar curvature of a conformal metric.
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With this theorem, the problem is reduced to finding a test-function u0 sat-
isfying 1(uo) < A. As A < A, an asymptotic expansion can produce the desired
inequality.

6.29 Corollary (Aubin [14] p. 286). When f f dV > 0, if

r r f J

(36) J R dV < n(n - 1)wn/'` IJ f (x) dV/ sup f
I - 2/n

f is the scalar curvature of a conformal metric.

Taking [f f dV]-1/N

as test-function yields

A < II [ f dV] t/N I = [If dV] _2/N (n - 2)
J

RdV/4(n - 1).

Then applying (36) gives

A < n(n - 2)wn/n/4[sup.fIt-2/"

If A = A, the constant function is a minimizer, f is proportional to R.
Otherwise A < A and we can apply Theorem 6.28.

6.30 Theorem (Aubin [ 14] p. 289). If (M, g') is not conformal to the sphere
with the standard metric, there exists a constant k > 1 (which depends on the
manifold) such that any f E C°° satisfying

(37) 0 < sup f < k inf f

is the scalar curvature of a conformal metric.

Proof. The hypothesis on (M, g') implies (see Aubin's conjecture 5.11) that p
the inf of the Yamabe functional, achieved by the metric g E [g'], satisfies:

p = RV21n < n(n - 1)w2n".

Pick k = [n(n - 1)/R]n/(n-2)(wn/V)2/(n-2)(37) implies

[sup .f/ inf f] 1-2/n < k'-2/n = n(n - 1)(wn/V)2/n/R

and

r f

I

1-2/n
r

1-2/n

ff] <n(n-1)wnnV nR[Vsupf/J fdV <R[in
LU-Pf

which is inequality (36). The result follows from Corollary (6.29).

6.31 Theorem (Escobar-Schoen [* 129]). Let f be a C°° function with sup f > 0
on a compact riemannian manifold (Mn, g) not conformal to the sphere with the
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standard metric. Then f is the scalar curvature of a conformal metric when n = 3.
The same conclusion holds for the locally conformally flat manifolds when n > 4
if at a point P where f is maximal, all its derivatives up to order n - 2 vanish.

When the manifold is locally conformally flat there exists a metric g' which
is flat in a neighbourhood of P. Escobar-Schoen use the test-functions centered
at P that Schoen constructed for the Yamabe Problem. In the limited expansion
in r = d(P, Q), the first term after the constant A = n(n - 2)w2n1' /4[sup f]1 -2/n
will be that with -a(P)( see 5.28, A = a(P)) if the function f is enough flat
at P. It is the reason of the hypothesis on the derivatives of f at P. This result
is improved by Hebey-Vaugon.

6.32 Theorem (Aubin-Hebey [*15]). Define

W = {Q E M/I Wijkl(Q)I 0 0}.

Let f be a C°° function with sup f > 0. If at a point P where f attains its
maximum P E W and A f (P) = 0 and I Wi3kt (P) 10 0, then f is the scalar
curvature of a conformal metric when n = 6. When n >_ 7, the same conclusion
holds if in addition 1of<t?)l is small enough.

We use the test-functions (e + r2)'-,/2 of the original proof of the Yamabe
problem. When n > 6 the first term after the constant A, in the limited expansion
in r = d(P, Q), will be that with -IWijktl2 if Af(P) = 0. When n > 7 a term
with I

A2 f (P)I /I f (P)I is of the same order of that with -I W 3kl I2. We set
A' f = A f and Ak f = AAk-t f for k > 1 entire.

6.33 Theorem (Hebey-Vaugon [* 168]). Let f be a C°° function satisfying
sup f > 0 and A f (P) = 0 at a point P where f is maximum. Then f is the
scalar curvature of a conformal metric when n = 4 or 5. When n > 6 we sup-
pose I Wijkl (P)I = 0. The same conclusion holds if IA2 f (P)I = 0, when n = 6 or
7, and when n = 8 if in addition I V Wijkl(P)I # 0 or A' f (P) = 0.

When n > 8 the same conclusion holds if IVWijkl(P)I 0, &2 f (P) = 0
and 03.f(P) = 0, or when IVWijkt(P)I = 0 if IV2Wi,kl(P)I 0, 02f (P) = 0,
03 f (P) = 0 and D4 f (P) = 0, or when all derivatives of Wijkt vanish at P if
Qk f (P) = 0 for all k satisfying 1 < k < n/2 - 1.

For other results when IV2Wijktl = 0 and IVkWijki(P)I # 0 for some k > 2
see [* 168]. For the proof they use their test-functions (see 5.50) and the positive
mass theorem. From Theorems 6.32 and 6.33 we get

6.34 Corollary. When n > 4, the set of the functions which are the scalar curva-
ture of some conformal metric is C' dense in the set of the C°° functions which
are positive somewhere.
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Given f E C°° with sup f > 0, for any E > 0 there exists f satisfying
11 f - ill c, < E, sup f = sup f and f = sup f in a neighbourhood V of P a point
where f(P) = sup f . At a point Q E V we can apply Theorem 6.32 if (M, g) is
not locally conformally flat at P. Otherwise we can apply theorem 6.33.

6.35 Remark. All the results obtained are proved by using Theorem 6.28: Find
sufficient conditions which imply that A, the inf of the functional, is smaller
than A. When the function f is neither close to the constant function nor flat
enough at a point where f attains its maximum, we suspect that \ = A and
that there is no minimizer. In this case we must use other methods (those used
for the Nirenberg problem), for instance the method of isometry-concentration
(Hebey's method) studied in the next paragraph or algebraic-topology methods
(Bahri-Coron's method) studied in Chapter 5 (see 5.78). With this method, we
can prove many results of the following type:

Theorem 6.35 (Aubin-Bahri [* 11 ]). On a compact manifold (Ma, g), of dimen-
sion n > 4, let f be a C2 function with only non-degenerate critical point
yo,Y1.... yk.

We suppose 0f(yi)>Ofor0<i<1,LXf(y,)<Ofor1<j<kand

f(yo) >_ ... >_ f(yl) > f(yt+t) >_ ... ? .f(yk)

Let Z be a pseudo-gradient for f which has the Morse-Smale property. For
this pseudo-gradient we define X = U;<tW9(yj), where W8(yi) is the stable
manifold of yti. Assume X is non-contractible, but contractible in Kc for some
positive real number c < f (yt ). There exists a constant co independent off such
that if f (yo)/c < 1 + co then f is the scalar curvature of some metric conformal
to g.

Here KC = {x E M/ f (x) > c} . The constant co is of the order of 1. Let
us remark that we do not assume that f is positive everywhere. On the sphere
(Sn, go), this theorem can be seen as a generalization of Chang and Yang's
theorem (see 6.81). In [*7] Aubin-Bahri generalized this result.

For compact manifolds of dimension four, (the sphere (S4, go) included), Ben
Ayed-Chtioui-Hammami (E.N.I.T. of Tunis) and Y. Chen (Rutgers University)
obtained a nice result in [*34]. It is not a generalisation of the Bahri-Coron
Theorem 6.87. The result is of a new type and the proof technically still more
difficult. The hypothesis is different, although it is of the same kind.
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§5. The Method of Isometry-Concentration

5.1. The Problem

6.36 Let (Ma, g) be any compact C°° riemannian manifold of dimension n > 3
and scalar curvature R > 0. The manifold may have a smooth boundary 3M.
We consider a group of isometries G, which can be reduced to the identity.

Given f a G-invariant C°° function on M, the problem is: Find a G-invariant
metric g' conformal to g such that the scalar curvature R' = f.

More precisely we want to find a G-invariant C°° solution of the equation

(38) Ocp+Rcp= fcpN-1 cp>0.

When 8M 0, cp must vanish on the boundary. Here R = In- R and
N = n2. Of course we suppose that f satisfies the necessary condition: f
positive somewhere (see 6.24) and when R - 0 with 3M = 0 the second
necessary condition f f dV < 0 (see 6.15).

6.37 We rewrite the proofs of (6.17) and (6.26) with C-invariant functions. So
there exists for any q E [2, N[ a G-invariant function V. > 0 satisfying for any
' G-invariant:

J
cp(OT+RT)dV =µ9J

where µq = inf I (W) for all

JfudVcp E Aq = { u E Ht /u > 0, u G-invariant, = 1 }.

Recall I(cp) = f JVcp12 dV + f Rcpt dV.
When R # 0, A + R is invertible. Let Tq be the solution of the equation

DWq +RVq =
J1gfc pq-t

.

As the right hand side is G-invariant, the equation has a G-invariant solution.
So we have for all G-invariant functions '

f(cpq - Wq)(OW + RAY) dV = 0.

Pick W = cpq - T9, we find cp9 = Wq. Thus cpq is a positive C°° function
satisfying

ffcodV(39) + Rcpq = and = 1.

When R =- 0, the proof is similar and cpq satisfies (39). The set {cpq} q E
[2, N[ is bounded in H1, this is already proved in (6.18) when R - 0. Indeed as f
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is G-invariant, f+ = sup(f, 0) is G-invariant. So y = f+[ f (f+)q+' dV ] -I,q E Aq
thus

cpq 11 H, < I((pq)/ inf(l, ft) = ,
µq < 1(y)/ inf(1, f?) < Const. .

mf(1,R) -

Rewritting the proof of Theorem (6.19), there exists a sequence qj --* N
such that either (q, converges in L2 to a G-invariant positive CO° solution of
(38) or (pq; 0 in L2 and almost everywhere.

In this case cpq; -# 0 in all Lq with q < N. Indeed as {(pq;} is bounded
in H1, it is bounded in LN and the result follows from the inequality (when
2<q<N):

\ (N-q)1(N-2) (q-2)/(N-2)

f `p9, dV < (f,(pqi dV I I J 1p9 dV ) .

We will study such a sequence.

6.38 Definition. P is a point of concentration for the sequence {(pqj } which is
supposed tending to zero a.e. and in Lq for all q < N, if for any 6 > 0

(40) lim f (p9 dV > 0.
qi-.N L(P,S)

We take a subsequence for which (40) holds in case we only have that the
lim sup of the integral in (40) is positive. As there is only a finite number of
points of concentration (see below), without loss of generality we suppose that
either the limit of the integral is zero or (40) holds.

Remark. Let us consider a sequence of C°° functions ui > 0 which satisfy
f f O dV = I and

(39b) Aui + Rui - vti f uN- = wi

with wi-40inH_1 and vti-v>0wheni-->oc.
Assume the sequence {u,} tends to zero a.e. and in L2. Thus ui -> 0 in Lq

for any q < N.
For such a sequence, P is a point of concentration if for any 6 > 0

(40b) lim f f uN dV > 0.
°° (P,6)
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5.2. Study of the Sequence { cpgj }

6.39 Theorem. Suppose the C°° positive functions coq, (qj -+ N) satisfy (39)
and are uniformly bounded in Ht. There exist E0 > 0 and 60 > 0 such that if
fB(P,d) f

oq; dV < Eo for all qj and all b < 60, then we can exhibit a subse-
quence { coq; } of { epq; } so that { (oqi } converges to zero in CI (r > 0 given) on
a neighbourhood of P.

Proof. Multiply (39), with cpq = (oqj, by 772Vgi and integrate. k > I is a real
number, and rl > 0 a C°° function with support in B(P, 6), is equal to 1 on
B(P, 6/2).

For simplicity we drop the subscript qj. The first term is

(41) f 77
2(P2k-10cp dV = (2k - 1) f 772(P2k-2I0(PI2 dV

+2J 77V2k-1V VicodV

When we compute f IV(77Wk)I2dV we find the first term in the right hand
side of (41):

[ff22k+_z dV - f Rn2W2k dV(42) J dV =
2k

k2
1 J-

+ k f dV - 2 J Vi(71V ?))cP2k dV.

At first suppose f (P) > 0. We pick 6 so that f is positive on B(P, 6).
Applying the Holder inequality gives

r
(LP,6,

11-2/q

(
2

(43)
J

f g22k-2 dV
dv) \f f qq(k-1)q dv)

Recall that for any C > K2(n, 2) = 4wn 2/"/n(n - 2), there exists A(C)
such that

(44) 1177Wk 112 < CII V(77,Pk)II2 + A(C)IIri(Pk II2

Using (43) and (44) in C times (42) yields

(45) Irl(Pgk; IIN 1
/

1 - k2 Cpq.EO Q ( S U P V2(y 7) f2k- 1 /

< Const.
J

V2k dV

since I17lepkll2 <
II71(PkIINV2(1/q-1/N)
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We suppose qi close to N, for instance 2 + 2/(n - 2) < qi < N. Then, it is
possible to choose eo small enough so that the left hand side in (45) is positive
for some ko > I + n/2. eo is independent of P and qi since

0 < /1q. < sup(1, R)Ilcpq;1IH, < Const..

For k < ko (45) gives I §Wq; II2iv < Const. f cp9k dV.
As I1wq, 11 H, < Const., by the Sobolev Theorem IIwq.IIN < Const.. Choose

2k = N, we find
I

N < Const..
Then pick k = (N/2)1 with l = 2, 3, ... until (N/2)1 > I + n/2. If p < 6/2

is small enough, we obtain

(46) J VP dV _< Const. for some P > "n"
Zt.

B(P22P)

Using the properties of the Green function of 0 + R:

V q.(y)I5Av+ f
Const.

qq: (x) dV(x)+p'-n

cpq'-1 dV
f[JB(y,p) [d(y, x)]"-t f q. ]

< Const.

since the integral on B(y, p) is smaller than Const. fB(P 2P) cpq dV which is
bounded by virtue of (46).

Then we obtain a uniform estimate of the functions cpgi in C'+1 near P
(Theorem 4.40). Thus a subsequence of {(pq; } converges uniformly in C' on a
neighbourhood of P.

Now if f (P) < 0 we pick 6 so that f is negative on B(P, 6). From (42) and
(44) we get immediately:

wq; II N <- Const. f qk dV

where the constant does not depend on k > 1. The proof continues as above.
If f (P) = 0, for any > 0 there exists a ball B(P, 6) such that f < on

B(P, 6). In (42) we write f < . The Holder inequality (43) without f yields

f
where B is a constant since Const. IHVq;IIH, which is bounded. Thus
instead of (45) we obtain:

I1r1cPq; IN(1 - k2(2k - Const. f cp9!` dV.

As we can choose C as small as one wants the proof is completed just as
above.
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Corollary 6.39. Let {uti} be as in Remark 6.38. There exist eo > 0 and bo > 0
such that if fB(P 6) f u'Y dV < co for all uti and all 6 < 6o, then there is a
subsequence {uj } of {uti}, so that uj -+ 0 in LN on a neighbourhood of P.

The proof is similar. Ilrluk 11 H, < Const. implies by the Kondrakov Theorem
that a subsequence {u. } converges in LN/k on a neighbourhood of P. The limit
may be only zero since uj -- 0 a.e.

6.40 Corollary. Let h, f be C°° functions and 0 < p3 < Const.. Assume the
C' positive functions epj satisfy Aepj + h(pj = pi f cpq.'-', 2 < q. < N. Define
K = {xEM/f(x)<0}.

If the set {eon I. is bounded in Hl, then there is a subsequence of {cpj } which
converges in CT (r > 0 given) on a neighbourhood of K.

5.3. The Points of Concentration

6.41 Proposition. Assume P is a point of concentration for the sequence of
functions epgi satisfying (39), (Ic0q, IIx, < Const. and the conditions of Definition
6.38, then for any 6 > 0

(47) lim f f cpq- dV > Fo.
qi--'N JB(P,60)

Assume there exists some 6o > 0 for which

lim f cpq dV < eo.
qi- N B(P,60)

Therefore there exists qo < N such that fB(P 60) f Wq dV < eo if qj > to.
Since cpgi - 0 almost everywhere when qj -a N, cpgi -. 0 uniformly on a

neighbourhood of K = {x E Ml f (x) < 0}, according to the end of the proof of
(6.39). Thus there exists ql < N such that fB(P,6) f coq; dV < Eo for all 6 < 6o
if q2>ql.

Then we can apply Theorem 6.39,

q,-N B(P,6)
lim J f cpq dV = 0

and P is not a point of concentration.

6.42 Proposition. The set 0 of the points of concentration is finite and non-
empty: (5 = {P1, P2,. .., P,,,, }. A subsequence of {cpgi } tends to zero in Cioc
(r>0)onM-t3.

Moreover f(Pj) > 0 for all j.
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Proof. Let P be a point of concentration. If f (P) = 0, pick 6 > 0 so that
f (Q) < 77 on B(P, 6). ri > 0 will be chosen small enough in order to get a
contradiction. We can write

f f cpq dV < 77 vq dV < 77I q: q
B(P16) B(P,6)

< 77Const. IIp9JIH,
C

77c

with C a constant. Choose 77 < co/C, by (47) P cannot be a point of concen-
tration.

If f (P) < 0 the proof is simpler, in this case we have only to choose 6 so
that f is negative on B(P, 6).

According to Theorem 6.39 if P E M - 0, a subsequence of {W,, } tends
to zero in C' on a neighbourhood of P.

Since M has a denumberable basis of neighbourhoods, after taking subse-
quences, we can find a subsequence of {Cpgj } which tends to zero in C1 on
M - 0. Hence we find again

(48) f f dV 0 when qj N.
<o

For simplicity we write all subsequence {(pq; I-
Consider m points of concentration P j (j = 1, 2, ... , m) and choose 6 small

enough so that the balls B(PP, 6) are disjoint. Applying (48) together with Propo-
sition 6.41 gives

1 = ff cpq dV > lim J
f cpgi dV > meo.

9 - q

Thus, there are at most 1/eo points of concentration, Q3 is finite and E
since

(49) lim f cpq dV = 1.
q.-.N P EE B(P7,6)

Remark. The sequence {uti}, introduced in Remark 6.38, satisfies Proposition
6.42 except there is a subsequence {uj } which tends to zero in LNIOC on M - Q3
(see Corollary 6.39). Indeed we know only that w1 -+ 0 in H_t.

6.43 Proposition. Assume P is a point of concentration (see definition 6.38) for
the sequence of functions epq, such that epg7 --+ 0 in C12 ,on M - 0.

Then, in the sense of measures on a neighbourhood S2 of P such that f2 C
M-Q3+{P}

4; -+ [1 /f (P)] 6P and I V pq, I2 -+ 1µ6P

where p = limgt..N µq, and I = limq,.N fn fcpq dV.
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Proof. Let h be a continuous function with supp h C S2 and B = B(P, 6) c Q.

f ho' dV -
J

f dV
n-B

Ij Oq,1I H, < Const. thus f pq dV < Co some constant. Given E > 0, we
choose 6 small enough so that sups I h - h(P) f If (P) I < 3Co

Then, there exists q < N such that

I h(P)I

f (P) f fVgdV-l
B

< 3 and JIhlcp9j dV < 3
n-B

for qj > q. So I fn hcpgj dV - lh(P)/ f (P)I < E.
For the proof of the second assertion we suppose h E C2.

in hV L o V v`Pgj dV = in hco., A4Pq, dV - in q, Oh dV/2

= µq3 J h f coq dV - f(h+ h/2)dV.

So

n

l-. f hV1' dV = plh(P).
qi-'V 2

Because the C2 functions are dense in C°, the proof is complete.

Corollary. Assume P is a point of concentration for the sequence of functions
ui introduced in Remark 6.38. Consider a subsequence {u3) such that uj -+ 0
in LN lo, (see Remark 6.42).

Then in the sense of measures on a neighbourhood ) of P with n c M -
t +{P} we have: -a [l/f(P)]bp and IVu;I2 --i lvbp where

1 = lim ffudV.
3-'OO

6.44 Proposition. If P is a point of concentration for the sequence of functions
cpq, satisfying (39), P is a critical point of f (i.e. I V f (P)I = 0) when P 3M.
When P E OM the result holds if an f (P) > 0.

This result was proved by Bahri-Coron [*26] and very easily by Hebey
[* 162] on the sphere by using the conditions of Kazdan and Warner (see 6.67).

In fact this is a general result, that we prove below, assuming P 0 aM
when aM 0 0. But in most cases, it appears that a point of aM cannot be a
point of concentration (for instance when an f (P) > 0).
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Let ' be a C°° function, with support in a neighbourhood SZ of P, such that
ai'P(P) = ati f (P) and ai;'P(P) = 0 for all i, j in a system of normal coordinates
at P. From (39) and an integration by parts we obtain

(50) fccV7VvWdV

= f f fcoq;-'Vv`yV'coq, dV

= f fWqi 0W dV - (qj l tLgi) f A qi V AV V Oqi dV

2
+ (qjl2Pgj) fv(vW) dV.

Integrating again by parts gives

(51) JAqjVvWVOq, dV

=
fV Vq2 dV + J

V dV f V oqj vu, bvLcoq; dV.

According to Proposition 6.43 and taking in account the properties of T at

P we get

lIVf(P)I2/f(P) = lim JVfV'PdV = 0
N qj9i --

indeed the limit of each term in the right hand side of (51), then of (50), is zero.
Integrating by parts (50) is valid if P E aM # 0 since cpq, 1,9M = 0. But

the right hand side of (51) contains an additional term -'-2 faM IV 128n'Pda.
Thus this computation yields only an f(P) > 0, where an means the normal
derivative oriented to the outside.

Corollary 6.44. If P is a point of concentration for the sequence of functions u
introduced in Remark 6.38, P is a critical point of f.

5.4. Consequences

6.45 From Proposition 6.42 we get immediatly some consequences.

Examples. Consider the unit ball B C R"(n > 3) endowed with the euclidean
metric. If f is a CO° radial function positive somewhere with f (0) < 0, equation
(38) with zero Dirichlet condition (cpI aB = 0) has a C' solution.

_

Indeed a sequence { cpq, } of radial functions cannot have point of concentra-
tion. 0 is not possible since f (0) < 0. The same is true for other points P of B,
otherwise all the points of the sphere centered at 0 with radius r = d(0, P) would
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be points of concentration which is impossible since the points of concentration
are isolated.

Likewise equation (38) on the sphere S,, with the standard metric has a C°°
positive solution if the C°° function f, positive at some point, depends only on
the distance to a point P E Sn and if f (P) < 0 and f (P) < 0 where P is the
antipodal point to P.

These results will be improved below.

6.46 Lemma. Assume P is a point of concentration for the sequence of functions

( qi satisfying (39) with is = lim IL., when qj --+ N. Then

f
2/n

(52) f (P) 21NA
lira J f(q; dV] > eq,-'N B(P,6)

where p = K-2(n, 2) = n(n - 2)wn/n/4.

For simplicity write B for B(P, 6). Pick 60 > 0 so that B C M - 0.
For 6 < 60 we saw that lim fB f cpq'; dV when qj --+ N does not depend on

6. Set this limit equals to 1.
Return to the proof of Theorem 6.39. If

(53) (A/ )12/f[.f(P)]2/N < 1,

it is possible to use inequality (45) for some k(1 is defined in 6.43).
Indeed we can choose C near 1/µ9, S small enough and j large enough so

that

[13

t-2/q,,

Cpgi f co dV] sup f)2/q' < a <
B

Thus for some a > 0 and some p < S

(54) f cpN+ a dV < Const. for all qj large enough.
(P,p)

Using the Holder inequality, for any open set 0 with 0 C M - CAS + {P}

/ r 4i/N r
(55) Const.I J cpq dV) >

J
Wqj dV -+ 11f (P) > 0

according to Proposition (6.43) and

(56) (f O4 dV ) < (e a dV ) (109 +a dVl .

Pick 9 = B(P, p), (54) and (55) together with (56) imply /

liminf Jfco ' dV > 0.
qi -.N a gi

This contradicts a property of {cpq, } (see the end of (6.37)), {cpgi } or a
subsequence converges to zero in Llv_a.
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6.47 Proposition. Assume P is a point of concentration. Then

(57) µ[f(1')1[-2/n > µs[Card0(P)]2/n

where O(P) is the orbit of P under G and µ = lim inf --+N µq,.

Proof. Set k = Card O(P). There are at least k points of concentration Pj which
are the points of O(P). Choose 6 small enough so that the balls B(Pj, 6) are
disjoint and without other point of concentration. We have

lim fB(Pi'6) f cp9= dV <lim
J

f (pq' dV = I
q; N j_t

q 4; 'N q

since (pq, 0 uniformly on a neighbourhood of the set K of the points where
f < 0 (Corollary 6.40). Put in (52) the inequality

lim f (p9 dV < 1/k
q;- N (Pj'b)

we get (57).

So we have proved the

6.48 Theorem. The equation (38) has a G-invariant C°° positive solution if

(58) f (P) < [Card O(P)]2/(n-2)[µs/µ]n/(n-2)

at any critical point P of f satisfying the necessary condition: f is positive
somewhere, and in the case R =_ 0, M without boundary, the second necessary
condition f f dV < 0.

Recall µ = inf 1((p) for all

f' l
(pEA=(uE.H,/u>0,uG-invariant,) fuNdV=1y

where I ((p) = I I V
I

z
+ f R p2 dV . Moreover µ = lim µq, when qj - N. The

proof is written up in (6.21). O(P) is the orbit of P under G. µs = K-2(n, 2).
We will see, in §6 through 10, some applications of this theorem of Hebey.

5.5. Blow-up at a Point of Concentration

6.49 Assume P is a point of concentration for the sequence (Pq, which is sup-
posed tending to zero a.e. and in L. for all q < N. (pq; satisfies (39), µq, -> µ
when qi --+ N. So we suppose for all 6 > 0,

lim
J

(pqi dV > Eo > 0.
qi- N B(P,6)

Let 6ti > 0 with 6i < 6/2 be a sequence tending to zero.
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After passing to a subsequence, if necessary, we can suppose that Vq, < 71
on B(P, 6) - Bp(bi) for some small constant rl > 0 and all i, since {cpq. } tends
to zero in Cl.(r > 0) on M - 6 (Proposition 6.42). Our hypothesis implies
that mi = SUP cpq; on B(P, bi) tends to + oo when i oo. Pick zi E B(P, bi) a
point where mi = Oq; (zi). Consider {x3 } a system of normal coordinates at P
with xJ (P) = 0. Set

(59) vi(y) =
1

_ _ oq, (zi + mt a` y) with ai = qi/2 - 1.
MI

y E Bk; the ball in RI of radius ki = bmi' /2.
Fix k large in N. For ki > k let us prove that the functions vi are bounded

in H1(Bk), Bk being endowed with the euclidean metric.
On B(P, 6) there exists .A > 1 such that

A-

7=1

for any vector i;.CC

n
tt()2 < 9jkCjCk < a E(bj)2'

j=1

We have 0 < vi < 1 thus fBk v? dV < Const.. Moreover

J
£10vi v= d£ < min-2>a;-2A1+ r9aA -g, -Pg: dV < C

Bk ya y0 - J a p -
some constant, since (n - 2)ai - 2 = (n - 2)qi/2 - n < 0. Here 9113 = bQ and
d£ is the euclidean measure.

6.50 After passing to a subsequence if necessary, using the Banach Theorem,
we can suppose without loss of generality that:

(60) vi --+ w weakly in Hl(Bk) for any large k E N.

Let us seek the equation satisfied by w on R.
Let 91 E D(Bk) and set Wi(x) = 41 [ma' (x - zi)] whose support is included

in B(zi, kmti a') C B(P, 6) since i is large enough. Since

910 aax-g'
1alx0i

dV +
J
fRcpq,'pi dV = ue,f

in coordinates yi we get

(61)
2a, a2Ji 991

mi

mq,-2F2q. J fvc;-'W fl -gI dy.

Now there exists a constant Co such that

(ga13 j9I - £ap)Sg13I < CoIIyII2m 2a,IIeii2 < Cok2mi 2a, IIeii2
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for all vectors %I II is the euclidean norm) and

IfVIgI - f(P)l < CoIlyllm''

These two inequalities suggest writting (61) in the form:

av aq,
dy-Ftq;f(P) Jf ayo

(Slap _ 9ap &j (91P dy -
f

Rvti IF V IJI dya aypy11 J
+ µq, f (f - .f(P)) vq: ' W dy.

Where the right hand side tends to zero when i --i oo. Since vi ---> w weakly
in Hl(Bk) and j1q. - µ, we get

f OU) 04,

ayp dy - µf (P) f wN-'4f dy = 0.

That is, w satisfies weakly in H, on ]Il;":

(62)

n
Ea.7jw+µf(P)wN-' = 0.

j=1

The functions {vi } for i large satisfies an equation E; on Bk. The equations
Eti are uniformly elliptic, the coefficients in the left hand side and in the right
hand side are bounded. Thus according to Theorem 4.40, there exist ,Q and ko
such that IIv2IIcO(Bk) < ko. By Ascoli's theorem, {vi} or some subsequence
tends uniformly on any compact set. This implies that w is non trivial since
w(0) = 1. Moreover w E C°° by the regularity theorems.

6.51 When w is maximum in y=0, which is the case here, we claim that all
positive solutions of (62) are of the form C2(l + IIyII2/E)'-"/2 with E > 0 a real
number. As w(0) = 1 the solution of (62) is

(63) WP = (1 +IyII2/E)t-' 2 with E = n(n - 2)/µf (P).

Indeed as equation (62) is radial symmetric, according to Gidas, Ni and
Nirenberg [* 140], the positive solution is radial symmetric: w = h(r). Thus
h(r) satisfies a second order equation, so by the Cauchy Theorem the solutions
depend on two constants h(0) and h'(0). Now in our problem h(0) = 1 and
h'(0) = 0. Hence (62) has only one radial solution which achieves its maximum
1 at y = 0. We can verify that this solution is wp given in (63).
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6.52 According to Bliss (Lemma 2.19), w is a minimizer for the Yamabe func-
tional. Thus

r 2/N

(64) = K2(n, 2) = lp-

Using (62) yields

UP
2/n

) )
= p3/pf(P)-(65) w dy

Furthermore

lim j fco dV = Jim m9'-' i

1-110 (P b) z-°°

set

f vQi V-JgJdy.
Bki

As qi - nai = qi(l - 11)+n > 0 and since vi -* wp uniformly on all compact

(66) f (P)
J

wP dy < lim J f cpgi dV.
i-'°° B(P,b)

Now cpq, --+ 0 uniformly on any compact set included in V - Cl3 thus

(67) lim >
J

f cpq' dV = I.a00
PEO B(P,5)

if b is chosen small enough so that the balls B(PP, b) are disjoint.
From (66) and (67) we get EPE,8 f (P) f wP dy < 1.
Applying (65) yields

6.53 Theorem. Let (5 be the set of the points of concentration. Then

(68) > [f (P)]
t-n/2

5 (,,/,,)n/2.
PEO

See (6.48) to recall the definitions.
Inequality (68) is valid for the sequence {ui} introduced in 6.38 with p = v.

For p = Inf g'EA f dV with

A= Ip E HIIW G-invariant, f f IcpJN dV = 1

we can prove that actually t is the orbit of some point P (03
=

O(P)). In that
case (68) is not other than (57).

=
CC

On the one hand, considering in the functional the test functions Uk
T &Q), where rQ is the distance to Q and %Pk is defined in 5.21

with 26 smaller than the distance of two points in O(P), we get

µ < A. [Card
O(P)]'-2/N [ f(P)] -2/N
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On the other (52) implies

f (P)] 1Pµ ( lim f cp9 dV Card O(P) ^ .

If Q3 # O(P), limgi- N EQEO(t') fB(Q,5) fco dV < I = f fcpga dV and the
inequalities above yield a contradiction.

Example. In the Yamabe Problem f (P) = 1. If µ < µ,q, l = 0 according to (68).
There is no point of concentration, cpgi cannot tend to zero almost everywhere,
thus the Yamabe Problem has a solution.

When µ = µs we are on the sphere, where there exist sequences {uj } of
solutions of (38) with f = 1 such that uj -+ 0 a.e. and there is one point of
concentration. See the proof of the Yamabe Problem in [*1181 where R. Dong
uses the idea above.

§6. The Problem on Other Manifolds

6.1. On Complete Non-compact Manifolds

6.54 On Rn(n > 3) endowed with the euclidean metric E, the equation to solve
reduces to

(69) Du = fuN-1, u > 0 with i = -
i atii

There are many results on this equation and also on the more general equation
in (Rn, E):

(70) Du = f up, u > 0 with p > 1.

Theorem 6.54 (Ni [*256]). Let x = (x1, x2) E R3 x Ri-3. If If(x)I < CI x1 11 for
some l < -2, uniformly in x2 when x1 --+ oo, then equation (70) has infinitely
many bounded positive solutions which are bounded below by positive constants.

If f (x) < 0 and If (x)I > CIx I t at oo for some l _> -2, equation (69) does
not have positive solution.

If we seek solutions of (70) in H1, of course f must be positive somewhere
since f fuN dx > 0. There is another nonexistence result proved by using the
Pohozaev identity in Li and Ni [*212]. In [*256] the asymptotic behavior of
radial solutions of (70) is studied in case f is radially symmetrical and decaies
at infinity.

Bianchi and Egnell (in [*52]) seek radial solutions of (69) satisfying u(x) _
0(Ix12-n) as x oo. They have results of existence and nonexistence, that
we can compare with those of 4.32. Indeed when u satisfies the preceding
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assumption at infinity, the problem is similar to the Nirenberg problem on the
sphere.

When u is bounded from below by some positive constant (as in the Theorem
above), we are guaranted that the conformal metric is complete. In [*77] A.
Chajub-Simon proves some existence results of solutions of (69) such that u - 1
belong to some weighted Sobolev spaces.

In [*213] Yan-Yan Li studies equation (69) on R3, especially when f is
periodic in one of its variables. For more results see the articles in references
an their bibliographies.

On a manifold which is not (R', E), let us mention the two following results.

6.55 Ratto, Rigoli and Veron [*272] studied the problem of prescribed scalar
curvature on the hyperbolic space (Hn, g) of sectional curvature -1. Let B be
the unit ball in 118' endowed with the Poincare metric 9H = 4(1 - Ix]2)-2E.

Given K E C°°(B), they seek a complete metric conformal to 9H whose scalar
curvature is K. Among results of existence and non-existence they prove the
following

Theorem 6.55. Let a(r) ba a nondecreasing positive function on [0, 1 [ satisfying
ff a(r) dr < oo. If for some 6 E]O, 1 [, -a2(IxI) < K(x) < 0 when I - 6 <
(xI < 1, then there exists cr > 0 such that if K(x) < a in B, K(x) is the scalar
curvature of a metric conformal to gH. The metric is complete if in addition

LU'
I

a(s) ds) dr = +oo.

6.56 Theorem (Le Gluher [*209]). Let (Mn, g) be a complete Riemannian man-
ifold (n > 3) with injectivity radius b > 0, bounded curvature and I(cp) coer-
cice on H1. Given f a C°O function on M, positive somewhere and satisfying
lim sup f (x) < 0 at infinity, then equation (2) has a COO positive solution in H,
if

(71) inf I(w) < p, inf {[Card0(x)]2/n[f(x)]-2/N}
c'EA zEK

f is supposed to be invariant under G a group of isometries of (Mn, g) which
can be reduced to the identity.

A = { cp E H, , cp G- invariant, cp > 0/ J f cpN dV = I }.

K = {xEM/f(x)>0 and IVf(x)I=0}. )

µ9 is d e fi n e d in 6.46 and 1(cp) = f (I V l2 + Rcpt) dV.

The proof uses the method of Bahri-Coron.
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6.2. On Compact Manifolds with Boundary

6.57 Let 52 be a bounded domain of R" (n > 3) with C°° boundary. We consider
the following equation:

(72) Au + a(x)u = f (x)uN-1, u > 0 on SI, u(x) = 0 on 852.

a(x) > 0, f (x) are given functions in C°°(cl) and A = - E i tay f
If f < 0 on 0, equation (72) has no solution. Indeed multiplying (72) by u

and integrating yield j o f(X)UN dx > 0.
According to Kazdan and Warner, equation (72) has also no solution, when

52 is star-shaped with respect to 0, if

(73) as > 0, f > 0 and L < 0 on 52.

This result is an improvement of Pohozahev's identity below. If a = Const.
and f - 1, conditions (73) are satisfied and we get Corollary 6.58.

6.58 Pohozahev identity [*267]. Let 52 be a star-shaped open set of W with
aft differentiable. f being a continuous function on R, we set F(v) = fo f (t)dt.
If U E C2(SZ) satisfies Du = f (u) on S2, u/a52 = 0, then

(74) (1 - n/2) u f (u) dx + n
J

F(u) dx = 1I a,h(8,u)2do,fn 2 n

where h(x) _ IIx112/2, 0 = - Eti=i ati2 and a denotes the outer normal deriva-
tive on 90.

For the proof we compute A = J Vi(VjhVjuViu)dx in two different ways.
At first A = fan V?hVjuaudo = fan since u/852 = 0. Then, as

Vi;h=6?, A = f ViuVjudx+1 fVjhV;IVU12dx- fVi hVj uf (u)du, and
(74) follows after integrating by parts.

Corollary 6.58. On SZ a star-shaped open set of ]R' with a52 differentiable, the
equation Du = uN-1, u > 0 on S2, u/acl = 0 has no solution.

As 52 is 0. So the right hand side of (74) is strictly positive
since 0 on 952 according to the Maximum Principle (see Chapter 3, §8).
But this is impossible, since the left hand side of (74) is zero when f(u) = uN-1

6.59 Let G be a group of isometries of (S2, E). We suppose a(x) and f (x) are
G-invariant. Let's denote the orbit of x E 52 by O(x) _ {o(x), a E G} and
consider the functional

I(v) = in jVvj2 dx + fn a(x)v2 dx.
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We define µ(G) = inf I(v) for v E A(G) = {v E Hi (S2), v > 0, v G-invariant
and f i f (x)v" dx = 1 }.

Theorem 6.59 (Hebey [*163]). Let e3 = {x E S2/f(x) > 0 and IOf(x)l = 0}.
Equation (72) has a smooth solution if

µ(G) [ f (x)]'
-2/"

< µs [Card O(x)]
2/n

for all x E C5.

The proof uses the method of isometry-concentration.

Corollary 6.59 (Hebey [* 163]). When f is a ball in R"(n > 4), a(x) and f (x)
are radial functions, equation (72) has a smooth solution if f (0) < 0. The same
conclusion holds when f (0) > 0, if

(n - 2)(n - 4)A f (0) + 8(n - 1)a(0) f (0) < 0.

6.60 On a smooth compact orientable Riemannian manifold (Ma,, g) with bound-
ary, the Cherrier Problem consists in finding g' conformal to g such that the
scalar curvature of (Ma, g') and the mean curvature of aM in (Ma, g') are
given functions. The equation to solve is equation (2) (resp. (1) when n = 2)
with non-linear Neumann boundary condition.

We studied this problem in Chapter 5.

§7. The Nirenberg Problem

6.61 In 1969-70 Nirenberg posed the following problem: Given a (positive)
smooth function f on (S2, go) ("close" to the constant function, if we want), is
it the scalar curvature of a metric g conformal to go (go is the standard metric
whose sectional curvature is 1).

Recall that if we write g in the form g = e`Pgo, the problem is equivalent to
solving the equation

(75) Ocp + 2 = f e`'.

Since the radius (1/a) of the sphere is chosen equal to 1, the scalar curvature
R=2a2=2.

Consider the operator r : cp -+ e-'°(Ocp + 2). It is well known that the dif-
ferential of F at cpo = 0, DF,o(W) = AT - 2W is not invertible. The kernel of
DF is the three dimensional eigenspace corresponding to the first non zero
eigenvalue of A. Indeed the functions cos r, where r is the distance to a given
point of 52, satisfy

A cos r = -(cos r)" - cotg r(cos r)' = 2 cos r.

Or if we consider S2 C 113, the traces of the coordinates xi (i = 1, 2, 3)
satisfy Ox' = 2xi.
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6.62 The same problem can be posed on (Sn,, go) with n > 2. Given f a smooth
function on (Sn, go), is it the scalar curvature function of a conformal metric g
to go.

If we write g on the form g = cp4/(n-2)go the problem is equivalent to
exhibiting a positive solution of the equation

(76) 4 n
1 0cp + n(n - OW = N (n+2)/(n-2)
2n-

As before the differential of the operator

-(n+2)/(n-2) [4n__l
n-2

Acp + n(n - 1)cp]

is not invertible at cpl = 1, and the kernel of

df, 4 - [ I '
1

[
I'-n"Y]

is the n+1 dimensional eigenspace corresponding to the first non zero eigenvalue
of A.

§8. First Results

6.63 Let us try to solve the Nirenberg problem by a variational method. We
consider the functional

(77) I(ca)=J IVV12dV+4J cpdV

and the constraint f f e P dV = 87r, where 47r is the volume of (S2i go). Set
v = inf l (cp) for cp E A= { cp E Hi / f f 0* dV = 8ir}.

First we have to prove that if cp E H1, e`° is integrable, and for the sequel,
that the mapping H1 E) cp -+ c'° E L1 is compact (see Theorem 2.46).

So if f is positive somewhere A is non empty.
Then we must see if v is finite. For this we need an inequality of the type

(see 2.46 and Theorem 2.51):

(78) Je'0dV [,U f IVcp12dV+V-' fccdV]

which holds, on a compact manifold of dimension 2, for all cp E H1 when
µ > µ2 = l/167r. Here V is the volume and C(µ) a constant. On (S2igo), (78)
is valid with µ = I/ 16a (C(µ2) exists) and V = 47r. Thus

87r < sup f
J

e`P dV < C sup f exp [I(cp)/ 167r] .
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So v is finite. Unfortunately, the value of Y2 does not enable us to prove
that a minimizing sequence {cpj} is bounded in H1. Indeed, I(cpi) v but we
can have

lIVWll2 +00 and fcoidv_*_oo.

6.64 In higher dimensions the variational method breaks down immediately.
Consider the functional

1 f=2 fv2 dV + n(n - 1)J cp2dv] [ fcpNdV
2/N

1

for cp E H1. By using Aubin's test function (see 5.10)

LLcentered

at P, a point
where f is maximum, it is easy to show that

infJ(cp) = n(n - f]-2/^'.

On the other hand if f = 1, we know the functions ID for which
J(AY) = n(n - 1),,n (see 5.58). For these functions if f $ Const.,
f f N dV < sup f f c dV. Thus if f is not constant, for any cp E H1, cp 0 0,
J(cp) > inf J(cp). So the inf cannot be achieved.

Nevertheless, J. Moser succeeded in solving the Nirenberg problem in the
particular case when the function f is invariant under the antipodal map x --+ -x
(S2 is considered imbedded in R3).

8.1. Moser's Result

6.65 Theorem (Moser ["2451). On (S2, go) let f E C°° be a function invariant
under the antipodal map x - -x. If sup f > 0, f is the scalar curvature of a
metric conformal to go.

If cp satisfies (1), f f ev dV = 87r. So the condition sup f > 0 is both
necessary and sufficient.

As f is antipodally symmetric, we can pass to the quotient on P2(R). Now
on P2(R) the problem of prescribed scalar curvature is entirely solved. The proof
is written up in 6.25. The variational method works on P2(1l ). The reason is
that the volume of P2(R) is half of that of the sphere. With V = 27r in (78), it
is possible to prove that a minimizing sequence is bounded in H1.

Remark. For n > 3, we can consider the same problem as Moser. We will deal
with this subject in a more general situation when f is invariant under a group
of isometries (see §9), not only under the antipodal map.
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8.2. Kazdan and Warner Obstructions

6.66 Theorem (Kazdan and Warner [*1951). Let F be the eigenspace corre-
sponding to the first non zero eigenv .fit = 2 of the laplacian of the unit sphere
(S2,90)-

If cp satisfies (75) then for all l; E F

(79) fe'° dV = 0.fs,

Proof. Differentiating f = e-`P[Ocp+2] gives

V,f = e-wV,AV - [A<p +

Multiplying by e`eV"l; and integrating yields

J
ewV" V f dV

=
J

dV - 2 J
V'CV,,co dV - fVVdV.

Any t; E F satisfies Vjjl; _ -lgtij and AC = 21;. Thus integrating by parts
twice gives f V"l;V,,ApdVr= 2 f V" Moreover

"cpdV
J

OcpV"I;VvcpdV=J Vµ'cpVvN,VV"l;dV+

= 2 f V'IVcp12Vv dV - f 61VW12 dV = 0.

6.67 Theorem (Kazdan and Warner [*198] p. 130). Let F be the eigenspace
corresponding to the first non zero eigenvalue At = n of the laplacian on the unit
sphere (S1 , go) n > 3. If cp satisfies (76), then for all E F

cpN dV = 0 with N = 2n/(n - 2).(80)
Js

The proof is similar to those of 6.66. We differentiate

f =(n - 1)[4Acp/(n-2)+ncp]cpt-N.

Then, after multiplying by cpNV"C, integration over Sn yields

(81)
fvvfNdv= 4(n- 1)

Vn-2
+ (1 - N)fAVV pV"f dV - nf pVcpV"1dV1
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As satisfies V, and LI = nl;, integrating by parts many times
yields

r f
f cpp p p dV = - I A dV + n

J
CWAW dV

f f V"CV"µcpV' dV +J

(n/2 - 1) f CIVW12dV,

f CWApdV= fjvyI2dv+fvvdv.
Thus the right hand side in (81) is zero.

Consequences. Many smooth functions on (S,,, go) are not scalar curvature of
any metric conformal to go. If V"1:0"f > 0 for instance, for some C E F
(i; $ 0), equation 75, if n = 2 or equation 76 if n > 3 has no solution. But we
have more. The set of functions f, which are scalar curvature of some metric
conformal to go, is stable under C(S,,,) the conformal group of (Sn, go).

So if there exist u E C(S,z) and C E F (i; 0- 0) such that V '(l;ou)V"f > 0,
then f is not scalar curvature of any metric conformal to go. In this way we
have the following

6.68 Theorem (Bourguignon-Ezin [*56]). Let X be a conformal vector field on
a compact Riemannian manifold (M, g). Then

(82) JX(R)dV = 0 where R is the scalar curvature of g.

For n > 3 the identity is obtained by integrating the formula of Lichnerowicz
[185] p. 134.

0(V Xt) = RVi,Xt/(n - 1)+nXiViR/2(n - 1).

For n = 2 the proof is in [*56], where the authors exhibit a function f such
that V"1;V"f does not keep a fixed sign for any E F, but such that X(f)
keeps a fixed sign for some conformal vector field X on S2.

Note that the integral condition (82) provides examples of functions f which
are not scalar curvature of any conformal metric only on (Sn, go). Indeed by
the Lelong-Ferrand theorem [175], the connected component of the identity of
C0(M, [g]), the conformal group, is compact, except if the manifold is (Sn, go).
If Co(M, [91) is compact, there exists 9 E [g] such that C0(M, [g]) is the group
of isometries of (M, g): /"X" = 0.

Thus on (M, g) (11) is trivial:

J X(f)d' = J XfdV = f f7"X"dV =0.



§8. First Results 235

Examples. In [*56] the authors exhibit a function R which cannot be excluded
by (79), but for which there exists a conformal vector field X such that X (R) >
0.

Let us mention also the example of Xu and Yang in [*319], of a rotationally
symmetric function R on S2 for which the obstruction (79) is satisfied but
equation (1) has no rotationally symmetric solution.

Chen and Li [*89] generalized this result: if R is rotationally symmetric
and monotone in the region where R > 0, then equations (1) and (2) have no
rotationally symmetric solution.

6.69 We saw in 6.67 that the necessary conditions for equations (75) and (76)
to have a solution are

a) f is positive somewhere
/3) f satisfies the Kazdan-Warner conditions (i.e. there does not exist u E

C(SS) and E F ( 0 0) such that VL ( o u)V, f > 0).
Are these conditions sufficient? The answer is no. Chen and Li [*90] pro-

duced functions f which satisfy a) and 0), but are not the scalar curvature of
any metric g E [go].

Theorem 6.69 (Chen and Li [* 90]). If f is rotationally symmetric and monotone
in the region where f > 0, then equations (75) and (76) have no solution.

Under these hypotheses, in order to satisfy $, it is essential that f changes
sign. When n = 2 we have more. According to Xu and Yang's result [319] (see
6.85), for the class of positive nondegenerate rotationally symmetric functions,
,3) is a necessary and sufficient condition.

To go further, Han and Li [* 158] produced, when 2 < n < 4, a family
of positive functions f satisfying /) which are not the scalar curvature of any
metric g E [go].

8.3. A Nonlinear Fredholm Theorem

6.70 On the unit sphere (S2i go), any cp E H1, satisfies (78) with µ = µ2 = 1 / 167r
and V = 47r. The constant C(µ2) can be taken equal to 1 according to Onofri
[*261]. But we can improve the best constant µ2:

Theorem 6.70 (Aubin [211). Let F be the eigenspace corresponding to the first
non zero eigenvalue for A. The functions 0 E H1 satisfying f V dV = 0 and
f ee`e dV = 0 for all E F satisfy

(83) fe`° dV < with any µ > E2 _ __

C(µ) being some constant.



236 6. Prescribed Scalar Curvature

Chang and Yang pointed out that (83) is valid with µ = 1/327r for any
functions cp which, in addition of the hypothesis of Theorem 6.70, satisfies
equation (1) with f > 0. In fact if we look at the proof of Theorem 6.70 when
we are on the sphere S2 , we can write µ2 instead of p2 + s (p. 158 of 1211) and
we have to bound a term in IIWHH2.Thus

Corollary 6.70. If in addition to the hypothesis of Theorem 6.70, IIV112 < k,
there exists a constant C(k) such that cp satisfies:

(84) J
e° dV < C(k)exp(IIVWIIz/32n).

When cp satisfies (75) with f > 0, IIAWJI1 < 162r. Moreover, as J '(p dV = 0,
II<PII2 < C1, JAW111 < C2 and (84) holds (Cl and C2 two constants).

6.71 On the unit sphere (Sn,, go) n > 3 we know that any function
satisfies

(85) IItPIIN < K2(n, 2)II VtIi2 + Wn 2/nIItII2,

where K(n, 2) is the best constant in the Sobolev imbedding theorem

K(n, 2) = 2Wn 11n[n(n - 2)]-1/2, N = 2n/(n - 2).

But we can improve the best constants (see Theorem 2.40).

tpEH1

Theorem 6.71 (Aubin [21]). Let li(i = 1, 2, ... , n+l) be a basis of F on (Sn, go).
Then all tp E H1 satisfying f ei I WIN dV = 0 for all i satisfy

(86) II1P1It2v <

where A(e) is a constant which depends one > 0, a as small as one wants.

Recall F is the space of the eigenfunctions corresponding to Al = n (the
space of the spherical harmonics of degree 1).

We saw in 6.64 that the variational method breaks down. But if we consider

v = inf J(tp) for all cp E A = { cp E H1 /
J

C&IN dV = 0 for all i

then v may be achieved (for the definition of J(W) see (6.64)).

6.72 Theorem (Aubin [21]). Given a smooth function f on S2 satisfying
f f dV > 0, there exists h(f) E F such that Equation (75) with f = f - h(j)
has a solution' E C°°, e" being orthogonal to F in the L2 sense. Moreover q,
minimizes I(W) on A.

Proof. As in 6.63, consider the functional (77):

I(cp)_f IVcpI2dV+4f tdV.
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Here we will consider G, the inf of I (cp) for W E A with

A=(cpEH1/J fe`°dV=8rr and f dV = 0 for all I;EF}.

Similarly we prove that 0 is finite. Let { vi } be a minimizing
sequence..

Pick
p satisfying 1/ 2 < 167rµ < 1, by (83) any cp E A satisfies:

1

87r < sup IC(u) exp [ivi2' + f cp dV/47r] .

Thus, for some constants Ci,

(1 - 2+Ct < I(co) < C2.

Hence JVcpi l12 < C3 and I f co dV j < C4. As the map Hl cp e`0 E L,
is compact, there is a subsequence {cps} of {Vi} and IQ E A such that cps T
weakly in Ht. So P minimizes I(cp) on A. Consequently satisfies weakly in
H1

AT+2= [f - h(f)] e'' where h(f) E F.

Bootstrap method then implies lk E C°°.

Corollary 6.72. On (S29go) a necessary condition for solving the Nirenberg
problem is that the candidate function is positive somewhere. This condition is
also sufficient modulo a vector space of dimension at least three.

Proof. Suppose f is positive at P, and consider a conformal transformation
of the sphere with pole at P. The new metric is of the form g(Q) = ()3 -
cos ar)-2g(Q) for some /3 > 1, 1/a being the radius of the sphere (R = 2a2).
The new scalar curvature is constant R = R(/32 -1). Then on the sphere we have
to solve an equation like (75) in the metric g with R instead of 2 (Ocp+R = f e`P).

Since we can choose 0 so that f f dV > 0, we can apply Theorem 6.72 in
the metric

6.73 Theorem (Aubin [21]). Given a smooth function f on (Sn,, go) (n _> 3),
satisfying sup f < 41/t"-1) inf f, there exists h(f) E F such that Equation (76)
with f = f - h(f) has a solution cp E C. So f is the scalar curvature of some
metric in [go].

Since H, C LN is not compact the proof is harder than that of Theorem
6.72. We must consider the approximation equation.

(87) 4n- IAp+n(n-1)cp= fco'-t, for 2 <q <N.

First of all we prove the existence of functions'Pq E CO°, Wq > 0 satisfying

J VW9dV =0
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for all l; E F which solves (87) with f = f - hq(f),hq(J) belonging to F.
Moreover, T. is a minimizer of the functional

n - 1 2/q
Jq(co)= 4n- fIVW12dV+n(n-1)J co2dVJLf

fj<PjgdV]-

over the set of the functions cp of H, satisfying f 61godV = 0 for all 6 E F.
Then we consider a sequence qti As T q is orthogonal to F in the L2

sense, we can apply Theorem 6.71 to the functions W9/m4the inequality (86)
instead of (85)). This allows us to complete the proof of Theorem 6.76.

This result was improved recently by Hebey.

6.74 Theorem (Hebey [* 164A]). Given a smooth function f satisfying sup f > 0
on (Sn, go) n > 3, there exists h(f) E F and a conformal diffeomorphism
u E C(Sn) such that f - h(f) o u is the scalar curvature of some metric in
[9o] the conformal class of go. On (S3, go) if there exists a point x E S3 such that
I (x) = 1(-x) = sup f > 0, then there exists h(f) E F such that f = f - h(f) is
the scalar curvature of some metric in [go].

§9. G-invariant Functions f

6.75 In this section, we suppose that f is invariant under a non trivial group G
of isometrics and we seek a solution of (76) invariant by G. If the group acts
freely, Mn = S/G is a manifold.

Let f be the quotient of f on Mn. The problem then becomes the problem
of prescribed scalar curvature on Mn, studied above. The advantage of this
approach is that the inf of the functional may be attained on Mn and there is
no longer any obstruction on Mn like those of Kazdan and Warner. As Mn is
locally conformally flat, Theorem 6.31 can be applied.

On (Sn, go) n > 3, any C°° function, positive somewhere and invariant
under a nontrivial group of isometries acting freely, is the scalar curvature of a
metric conformal to go when n = 3, and when n > 3 if, at a point where f is
maximal, all its derivatives up to order n - 2 vanish.

Actually, the hypothesis G acts freely is quite restrictive. When n is even,
there is only one such group, the group with two isometrics, the identity and
the antipodal map. Thus when n is even, only antipodally symmetric functions
are covered by the result of Escobar-Schoen (see Theorem 6.31).

More general groups of isometrics were deal with by Hebey. For n = 3
Hebey established the best result possible in this context.

6.76 Theorem (Hebey [* 162]). On (S3, go), any C°O function, positive some-
where and invariant under a group G of isometries acting without fixed point, is
the scalar curvature of some metric in [go].
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We saw that the hypothesis "positive somewhere" is necessary by integrating
(76). Moreover, if there is a point of S3 fixed by G, functions like + Const.
with l E F are not excluded. So the second hypothesis cannot be weakened too
much. For the proof Hebey used the method of isometry-concentration studied
in §5.

First, for any q satisfying 2 < q < N = 2n/(n - 2), there exists a G-
invariant C°° function uq > 0 solution of the equation obtained from (76) by
substituting q - 1 for the exponent (n + 2)/(n - 2) in the right hand side of
(2). The existence of such sub-critical sequence {uq; } with qti - N is proved
without difficulty since the Kondrakov Theorem (Hi C Lq is compact ) holds
for q < N. If any subsequence of {uq; } does not converge (the bad case), there
exists a subsequence which converges to zero except at a finite number of points,
the points of concentration.

Then the main idea is to estimate from above the number of points of con-
centration and to obtained a contradiction. Using this method Hebey established
many results; let us mention some of them.

6.77 Set µ(G) equal the inf of J(cp) (see 6.64 for the definition) for all G-
invariant functions cp E Ht such that f f IcpIN dV = 1. Define C(f) = {x E
SnIIVf(x)I = 0 and f(x) > 0 for f c C°°(Sn,)},O(x) = {u(x)/u E G} for
x E S, and µo = n(n - 1)wn/n, which is the inf of J(W) for all cp E H1 when
f=1.

Theorem 6.77 (Hebey [* 162], [* 163]). Let f E C°° be a G-invariant function
on (Sn, go) which is positive somewhere. If

.f (x) < [polll(G)]
nl(n-2) [Card O(x)] 2/(n-2)

holds for all x E C(f ), then f is the scalar curvature of a metric in [go].

Corollary (Hebey [* 162]). Let f E COO be a G-invariant function on (Sn, go)
such that f f dV > 0. If for all x E C(f)

(88) f (x) < [Card O(x)] 2/(n-2)

f f dV/wn,

f is the scalar curvature of a metric in [go].

From the theorem above, corollary follows directly by writing

2/N

µ(G) < J(1) = n(n - 1)wn
J

f dV)

For details on the proof see also Aubin [101.

6.78 Theorem (Hebey [* 162]). Let f be a G-invariant CO° function on (Sn, go).
At P a point with f (P) = sup f > 0, we suppose that all derivatives off of order
less than or equal to n - 3 vanish. Moreover we suppose Card O(P) > 2.
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If forallxEC(f)

(89) f (x) < [Card O(x)/ Card O(P)] 2/c"-21 suP f,

then f is the scalar curvature of some metric in [go], when n > 5 is odd, or when
n = 4 if in addition A f (P)l sup f is smaller than an explicit positive constant.
The same result holds when n > 6 is even, if IDn-2 f I/ sup f at P is smaller
than an explicit positive constant.

We dealt with the case n = 3 in 6.76. When n > 4 we need some condition
of flatness of f at P for the conclusion.

Remark. There is no obstruction (seen in §1.2) for a G-invariant function f to
be the scalar curvature of some metric in [go], when G acts without fixed point.
Indeed for all x E Sn Card O(x) > 2. So there exists a constant k enough large
such that f + k satisfies (88). Corollary 6.77 then implies that f + k is the scalar
curvature of some metric in [go].

6.79 Theorem (Hebey [* 162]). Let f be a G-invariant function which is positive
somewhere on (Sn, go). Define

CoCC(f)={xESn/IOf(x)I=0 and f(x)>0},

the set of the points where the function [Card O(x)] n [ f (x)] ---7 is minimum on

CM-
Assume all derivatives up to order n - 3 vanish at a point xo E Co where

Card O(xo) > 2. Then f is the scalar curvature of some metric in [go] when n is
odd or when n = 4 if

A f (xo) < 6 [Card O(xo) - I ] f (xo).

The same result holds when n > 6 is even if

ion-2f(xo)I < 23-n(n - 1)!(CardO(xo) - 1)f(xo)/(n - 2).

With this result, when G acts without fixed point, we can prove, on (S4, 90)
for instance, the following: There exists e > 0 such that any G-invariant function
f, positive somewhere and satisfying 11f - 111C2< e, is the scalar curvature of
some metric in [go].
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§ 10. The General Case

10.1. Functions f Close to a Constant

6.80 We begin with a result of Chang and Yang. For any n > 2 they solve
the Nirenberg Problem (or its extension for n > 3) in a neighbourhood of the
constant under the two following weak hypotheses

1) f has only critical points non degenerate of order at most n, when n is
even and at most n - 1 when n is odd.

This has the following meaning. Let P be the south pole of Sn C I[8"+'
with coordinates x 1 , x2, ... , xn+1. P(0,0,...,-l). We let Y1, y2, ... yn be the
stereographic coordinates, with respect to the north pole Q, of y E S, - Q.

xi = 2yi/(1 + IY12) for 1 <i<n, xn+1 = I - 2/(1 + y12)

The limited expansion of f at P of order a can be written

a

fk(Y) = f (P) + E Rk(y)
k=1

where Rk is a homogenous polynomial in yt of degree k.

Definition. f is nondegenerate at P of order a if Rk vanish for k < a and
G(P,t) defined by (90) satisfies I G(P, t)I > ct_a if a < n and , if a = n
IG(P, t)l > ct-" log t for some c > 0 when t is large.

We verify that a critical point P is nondegenerate of order 2 if A f (P) 0 0.
With this definition the critical points need be not isolated.

2) The map G defined below has deg(G, B, 0) 0 0.
Let cpq,t be the conformal map of Sn defined by cpq,t(y) = ty. G is the map

from the unit ball B C R"+' given by:

(90) B q = (1 - 1 /t) Q G' G(Q, t) = f (f ° 1pq,t) X.

q = 0 (t = 1) being identified with the identity map, the set of conformal
transformations is homeomorphic to B = {q E Rnt1/1qj < 1}. For q # 0,
jqj = I - 1/t and Q = q/IqI.

6.81 Theorem (Chang and Yang [*85]). Let f be a C°° function on (Sn, go)
whose critical points are nondegenerate of order at most n when n is even
and at most n - 1 when n is odd. Assume that the map G defined by (90) has
deg(G, B, 0) 0 0. Then there exists some constant e(n) such that if f satisfies
sup If - 11 < e(n), f is the scalar curvature of some metric conformal to go.
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For the proof, Chang and Yang start by applying Aubin's result (Theorem
6.72 when n = 2 and Theorem 6.73 when n > 3), to the family of functions
fp = f o cp p t with p = (1 - 1 /t)P E B.

There exists Ap E Rn+' and wp E CO°(S2) (resp. up > 0 smooth on Sn
(n > 3)) satisfying

(91) Owp + 2 = (f p - Ap - Y) e1°p when n=2 and

(92) 4 n - 2 Dup + n(n - 1)up = (fp - Ap d:) up -' when n > 3.

Indeed we can choose e(n) such that sup f < 4'/(n-2) inf f when n > 3.
Moreover wp minimizesrI(w) = IIVw1Iz +4 f w dVfewx_dvon

A2={wEHi/J fpewdV=87r and =0

and if e(n) is small enough, up minimizes

1
_ 2/N

J(u)= [4±__lvuII+n(n_ 1)IluI ] [ffu1] -

An={uEHI/ f IuIN: dV=0,u#0}.
Given p E B, it is proven by contradiction in [*85] that wp (resp. up) is

uniquely determined if e(n) is small enough. Join two distinct minima up and
Up by a 1-parameter family ua = +(1 - A)up and show that A , J(ua)
is convex. Similarly in the case n = 2. By the implicit function theorem it is
proved that wp, up and Ap are continuous in p. In particular A : B , Rn+' is
a continuous map.

If Ap = 0 at some q E B with IqI < 1, equation (75) (resp. (76)) has
a solution, and f is the scalar curvature of some metric in [go]. Indeed wq
satisfies (91) with Aq = 0:

(93) Awq + 2 = fqe' .

Thus zb = (Wq - log I det Dcpq I) o cpq t is a solution of Equation (75), where
cpq = coQ,t with q = (1 - 1/t)Q. Similarly when n > 3, uq satisfies (92) with
Aq = 0:

(94) 4 n - 2 Duq + n(n - 1)uq = fquq -1

Thus v = (uqI det Dcpgl-t/N) o cpq' is a solution of Equation (76).
To finish the proof, suppose A does not vanish. Under the non-degeneracy

condition I in 6.80, it is shown in [*85] that G(P, t) does not vanish for t large
enough and that

deg(A, B, 0) = deg(G, B, 0).

Thus the condition deg(G, B, 0) # 0 implies the contradiction and A vanishes
somewhere in B.
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10.2. Dimension Two

6.82 Theorem (A. Chang and Yang [*81]). Let f > 0 be a C°° function on
(S2, go) with only nondegenerate critical points, where A f does not vanish. Sup-
pose f has p + 1 local maxima and q 0 p saddle points where A f > 0; then f is
the scalar curvature of a metric in [go].

Recently Xu and Yang [*319] pointed out that we can remove the hypothesis
>0.

Set 52 = {x E S21 f (x) > 0} 0. Suppose f has only nondegenerate critical
f
points where A f (x) # 0 when x E Q. If, on SZ, f has p + 1 local maxima and
q # p saddle points where A f > 0, then f is the scalar curvature of a metric in
[go].

The critical points where f < 0 do not matter. This is not surprising, since
concentration phenomena can happen only at points where f > 0 (see 6.42).

Before these theorems, there were partial results in Chang and Yang [*81]
and Chen and Ding [*88]. The proofs are quite different than that of Theorem
4.21 which was recently improved by removing the condition "close to constant".

6.83 Theorem (A. Chang, Gursky and Yang [*78]). Let f > 0 be a COO function
on (S2, go), such that A f (Q) # 0 whenever Q is a critical point of f.

If deg(G, B, 0) # 0, then f is the scalar curvature of a metric in [go].

This result generalizes Theorem 6.82: f may have degenerate critical points.
Moreover the assumption is weaker. Indeed, when f has only nondegenerate
critical points, the hypothesis q }t p (or p + 1 - q # 1) is equivalent to the index
counting condition:

(95) (-1)k(9) 1)n

Q critical, 4(Q)>O

where k(Q) denotes the Morse index of f at Q, and it is shown in [*78] that
(95) implies the hypothesis deg(G, B, 0) # 0 in any dimension.

For the proof of Theorem 6.83, consider the family of functions:

(96) fs = sf +2(1 - s).

If so > 0 is small enough, we can apply Theorem 6.81.
So there exists a CO° function w9O solution of (75) with f = fso. Moreover

it is shown in [*85] that this solution is unique if so is small enough. Now we
will solve for s e [so, 1] the following continuous family of equations

(97) Aw + 2 = flew

by using the method of topological degree.
The critical points Q of fg are those of f and when s E [so, 1], JOf (Q)j _

sl.A f (Q)l > solA f (Q)I > e for some e > 0. Indeed suppose there is a sequence
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Qi of critical points of f such that A f (Q;) --+ 0. By passing to a subsequence,
Qi -# Q which is a critical point off where Af (Q) = 0. This is in contradiction
with the hypothesis.

Moreover f > 0 implies 0 < m < f, < M for some m and Al independent
of s E [so, 1]. Thus we can apply Proposition 6.84 below to the solution of (97).
These solutions satisfy I'wII2,« < C for some constant C. Set

Q= (w E C2," (S2)/
J

w dV = 0 and IIw'II2,« < c}.

and consider the map:

(98) w --> `"(w) = w - A-t (f'ew-P,)

where p, = log [f flew dV/87r].
We verify that ',(w) = 0 implies w, = w - p, is a solution of (97).

Conversely if w, is a solution of (97), w = w, - f w, dV/4irr satisfies 'Y,(w) = 0.
Now as w , A-t (flew-P-) +w is a Fredholm map 92 C2.", continuous

in s and 0 ''Y,(01l) for s > so , deg(W S2, 0) is well defined and independent
of s for s > so. Equation (97) has a unique solution for s = so; thus (97) has a
solution for s = 1. For more details and the proof of the following proposition,
see [*78] and [*85].

6.84 Proposition (A. Chang, Gursky and Yang [*78]). Let f be a C°' function
on S2 and let (8 be the set of its critical points. Assume A f (Q) 0 when Q E t!3
and 0 < m < f < M for some m and M, then there exists a constant C which
depends only on m, M and infQEe 1Af(Q)I, such that any solution w of (75)
satisfies I wI < C.

First if f < M, by (4) I(eo) = I I II2 + 4 f co dV > Const., and under the
hypothesis m < f < M, Chang and Yang proved that I(cp) is bounded from
above. Then the proof is by contradiction. A limited expansion in a neighbour-
hood of a point of concentration yields the contradiction by using the Kazdan
and Warner condition (79).

For this, the hypothesis IAf(Q)I > s > 0 for Q E 6 is crucial.

6.85 When f is rotationally symmetric, we could hope that the problem would
be easier. Indeed, if we seek for rotationally symmetric solutions, solving Equa-
tion (1) is equivalent in this case to solve an ordinary differential equation.
Actually the difficulties are almost the same. Let us mention the following

Theorem 6.85 (Xu and Yang [*319]). Let f be a rotationally symmetric Cam'
function on (S2, go) : f (x) = K(r) where r is the distance of x to a given point.
Assume K"(r) }t 0 when K'(r) = 0. If K' has both positive and negative values
in the set where K > 0, then f is the scalar curvature of some metric in [go].
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We complete this set of results on the Nirenberg Problem with the following

6.86 Theorem (K.C. Chang and Lin [*79]). On (S2,go) let f be a C°° function
which is positive somewhere. Set Sl = {x E S2/f(x) > 0 and A f (x) > 0}.
Assume 17f 0 0 when A f = 0 or when f = 0. If deg(S2, V f, 0) # 1, then f is
the scalar curvature of some metric in [go].

10.3. Dimension n > 3

6.87 Theorem (Bahri and Coron [*26]). On (S3, go), let f be a positive C°°
function which has only non degenerate critical points where A f 0 0. If (95)
holds, then f is the scalar curvature of some metric in [go].

We talked about the method used for the proof in Chapter 5. Bahri and Coron

consider the functional H(u) _ (f f(X)U6 dV) i on the set

l
E+={uEHi/u>0 and 81 IVuI2dV+6J u2dV=1}.

They study the flow solution in E' of du/ds = -H'(u), u(0) E V. When the
integral lines go to infinity, there is a lack of compactness. They introduce a
pseudo-gradient near infinity and concentration phenomena occur. It appears that
a point of concentration is a critical point where A f > 0.

6.88 Theorem (S-Y. Chang, Gursky and Yang [*78]). On (S3, go), let f be a
positive C°° function such that A f # 0 at its critical points. If deg(G, B, 0) # 0,
then f is the scalar curvature of a metric in [go].

This result is proved by removing the condition "close to constant" of The-
orem 6.81 as for Theorem 6.86. G is defined by (90). The authors showed that,
if the critical points are nondegenerate, the hypothesis (95) of Theorem 6.87
implies deg(G, B, 0) # 0.

The proof is similar to that of Theorem 6.86. We consider a family of
equations

(99) 8Au + 6u = f,u5, u > 0,

where f, = s f + 6(1 - s).
By Theorem 6.81, for s = so > 0 small enough, (99) has a unique positive

solution. On S2 = {u E C2,a(S3)/HUjj2,a < C and C-' < u < C}, where
C > I is large and 0 < a < 1, define the map

S2 E) u -+ ,,(u) = u - L-' (f,u5) E C" 0'(S3), where L = 8Au + 6u.

Equation (99) is rewritten in the form Vi3(u) = 0. According to Proposition
6.89 below, for C large enough 0 ¢ 0, (812). Thus deg(V , St, 0) is well defined
and independent of s for s > so, since u -, L-t (f,u5) is a Fredholm map
continuous in s. In Z/2Z, deg(o 1 , 0) = 1.
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The hard part of the proof is to establish the a priori estimates of the fol-
lowing Proposition.

6.89 Proposition (S-Y Chang, Gursky and Yang [*78], see also Y-Y Li
[*214]). Suppose u is some positive solution on (S3, go) of

8Au+6u= fu5

where f E C°°(S3) satisfies 0< m< f and

min
{xES3.IVK(x)I<d}

IOK(x) > d

for some d > 0. Then there exists a constant k, which depends only on in, d,
IKIjc2(s3), a and the modulo of continuity of OZK on S3 such that

IIullC3'_(s3)' Iu-tIIC3,'(S3) < k.

6.90 We can say that Bahri-Coron's result (6.87) and then Theorem 6.88 solve
the problem of the existence of a positive solution of Equation (76) when n = 3
andf>0.

Of course, we can hope to find some improvements as for dimension 2,
in the case where f is not always positive. But in some sense, the hypothe-
sis deg(G, B, 0) # 0 or (95) is optimal, except if we find some more general
topological assumption. Such hypothesis cannot be removed, since there are the
Kazdan-Warner obstructions.

When n > 3, there is Theorem 6.81, and until recently, only partial results
such as that of Bahri-Coron [*24].

In [*214] and [*215] Yan-Yan Li states existence results of positive solutions
of Equation (76) when f is some positive function on (Sn, go). When n = 3 Li's
result is similar to that of Bahri-Coron. But when n > 3, we have a new answer
to the problem. As in 6.80, Li considers the leading part of f (y) - f (q) in a
neighbourhood of some critical point q of f. He supposes that for any q E Q5 (the
set of the critical points of f ), there exists some real number a = ,0(q) E ]n-2, n[
such that the leading part Re(y) of f (y) - f (q) expresses, in some geodesic
normal coordinate system centered at q, in the form

n n

(100) Rp(y)_EajIyj I3, where aj #0 and A(q)_>aj#0.
i=1 j=t

6.91 Theorem (Yan-Yan Li [*215]). On (S, go), n > 3, let f be a positive C'
function which satisfies (100) at any q E 6. Then Equation (76) has a positive
solution if

E (-l)i(q) # (_1)n
qEB with A(q)<O

where i(q) is the number of negative a2(q), 1 < j < n.
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The main ingredients in the proof are some blow up analysis and some a
priori estimates of positive solutions of (76).

Let J be the functional of the problem (see 5.78) and

[8(x, A)] (y) = [A2/2]
(n-2)/4

[1 + A2 - A2 cos d(x, y)]
n/2

where d(x, y) is the distance on the sphere of the two points x and y. When
we compute a limited expansion in A of J[> 1 c 5(xi, at)], we find that the
interaction of two masses is in A2-n, whereas the self-interaction is in general
in A-2. When the self-intersection is smaller than the interaction of two masses,
the critical points at infinity are points where there is only one mass. Hence the
Bahri-Coron Theorem 6.87 in dimension n = 3.

The assumptions of Li's Theorem 6.91 imply that we are in the same situa-
tion, the interaction of two masses predominates. Thus the points of concentra-
tion are simple.

10.4. Rotationally Symmetric Functions

6.92 Theorem (Hebey [* 162]). On (Sn, go), n _> 3, let f be a rotationally sym-
metric C°° function which is positive somewhere. Denote by P and P the poles
of f. Then f is the scalar curvature of a metric in [go], if

(101) max [f (P), f (P)] < ffdv/w.

The same conclusion holds when n = 3 if

max [f (P), f (P)] < sup f /4

or for n > 4, if A f (P) < 0 when f (P) > f (P).

The results are proved by the method of Isometry-Concentration. Only P
and P may be points of concentration. An hypothesis like (101) does not allow
that P or P be point of concentration.

511. Related Problems

11.1. Multiplicity

6.93 Theorem (Hebey and Vaugon [*167]). On (S3,90), let f be a positive
C°° function invariant under two distinct finite groups of isometries G, and G2.
Assume G2 acts freely, its cardinality b > a the cardinality of G,, and G, acts
without fixed point. If

(ff
1/6

(102) (b/a)2/3 > 1 + b3 dV/w3 sup
f\

I

then f is the scalar curvature of at least two distinct metrics in [go] which are
respectively GI-invariant and G2-invariant. Their energies are different.



248 6. Prescribed Scalar Curvature

Set gi = cp4/(i-2)go, J(cp,) is the energy of g, is defined in 6.64).
We present here this theorem on (S3, go), but Hebey and Vaugon proved similar
results on (Sn, go) for n > 3.

We can obtain as many metrics in [go] with scalar curvature f as one wants.
Suppose a finite group of isometries G3, with cardinality c > b, acts freely. If

(c/b)213 > 1 + c3 (f f dV/w3 sup f
116,

then there exists 93 in [go] with scalar
curvature f. As the energy of g3 is different than those of gi and g2, the three
metrics are distinct. And so on. It is very easy to find functions f satisfying
(102), sup f / f f dV must be large enough.

The main ingredient in the proof of Theorem 6.93 is the value of the second
best constant in the Sobolev inbedding theorem for the quotient of the sphere.

Let (Mn, g) be a compact Riemannian manifold, n > 3. If the manifold
has constant sectionnal curvature (Aubin [141) or if the manifold is only locally
conformally flat (Hebey and Vaugon [* 166]), there exists a constant C such that
any cp E H, satisfies

-2/n
IIWI1N

nn- 2)
Recently Hebey-Vaugon [*171] and [*172] proved that such constant C

exists on any compact manifold. The proof is very different, it proceeds by
contradiction. Blow-up technics are used (see 4.63).

6.94 Yan-Yan Li [*215] proved that any given somewhere positive continuous
function may be perturbed in any C°-neighbourhood of any given point on

3) such that there exist many solutions for the perturbed function.

11.2. Density

6.95 The result of Li, just above, shows that the functions which are scalar
curvature of some metric in [go] on (Sn, go) n > 3, are dense in the set SZ C
C°(Sn) of the functions positive somewhere. Before this new result, we had the
following Lp density theorem:

Theorem 6.95 (Bourguignon and Ezin [*56]). Any smooth function on (S2, go)
which is positive somewhere belongs to the Lp-closure of the set of the functions
which are scalar curvature of some metric in [go].

With Hebey's results, the same proof works on (Sn, go) n > 3. In fact the
condition f positive somewhere is unnecessary since in any Lp-neighbourhood
there are functions positive somewhere.

Actually with the results of §10 we have the following C'-density theorem:

6.96 Theorem. Let f be a smooth function positive somewhere on (S2, go), or a
smooth positive function on (Sn, go) when n > 3. In any C',' -neighbourhood of
f (0 < a < 1), there are smooth functions which are scalar curvature of some
metrics in [go].
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We can suppose without loss of generality that f has only nondegenerate
critical points. For the proof, when n = 2, use for instance the improvement of
Xu and Yang of Theorem 6.82. In case q = p # 0, it is easy to see that we can
approximate in C',a the function f by a function f for which A! < 0 at some
saddle point where A f > 0. Thus 4 = q - 1 p = In case q = p = 0, it is easy
to see that we can approximate in C' the function f by a function f which has
a second maximum near the maximum of f. Thus p = 1.

When n = 3, use for instance Bahri-Coron's Theorem 6.87 and argue as
above. When n > 3, use Li's Theorem 6.91 when n is odd, and when n is even,
use Li's Theorem 0.13 in [*215].

11.3. The Problem on the Half Sphere

6.97 H. Hamza studied the Cherrier Problem (see §8.2 of Chapter 5) in the
particular case of the hemisphere Wn endowed with go the canonical metric on
the sphere.

When n = 2, the equation to solve is (see 5.67)

(103) AV + R = R'e`° on W2, 2h = 2h'e1P12 on 8W2 = Si .

When n > 3, the equation to solve is (see 5.65)

(104) 4
nn- 1 A(p+Rcp=R'cp^ ,cp>0on Wn,

n2 2a£cp+hcp=h'yp"z on 8Wn=Sn_,.

Let us consider

An = {F E C°O(Wn)/OF = nF on Wn, a.F = 0 on aW}.

If W,,,={x E Rn+1 / I x l = 1, xn+' > 01, An is the set of the traces on Wn
of the coordinate functions xi(1 < i < n), dim An = n. Any F E An satisfies
VjjF = -Fg,ij on Wn and of course AF = (n - 1)F on aWn = Sn_1 where
A is the laplacian on (Sn_, i go), V will denote the covariant derivative on
(Sn-1 , g0).

6.98 Theorem (Hamza [* 155]). A solution of (103) satisfies for any F E A2:

i e°V R'VtiFdV+4f
w, ,

A solution of (104) satisfies for any F E An:

f2-1
V'R'V F dV + 2n J

cpV'h't;Fdo = 0.
wn 5'n -1
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These conditions are similar to the integrability conditions of Kazdan-Warner
(see 6.66 and 6.67). On S" there is one more independent condition, correspond-
ing to the trace of the coordinate x"+

A consequence of these conditions is that equations (103) and (104) have
no solution if for some F E An VtR'V F > 0 on W" and Dih'tjF > 0 on
8W".
For the euclidean ball, H. Hamza established also some integrability conditions
(see [* 155]).



Chapter 7

Einstein-Kahler Metrics

7.1 Introduction. In this chapter we shall use the continuity method and the
method of upper and lower solutions to solve complex Monge Ampere equations.

But they can also be solved by the variational method. The difficulty is to
obtain the a priori estimates; either method can be used indiscriminately.

These equations arise in some geometric problems which will be explained.
The results and proofs appeared in Aubin [11], [18] and [20], and Yau [277].
An exposition can also be found in Bourguignon [59] and [60].

We introduce some notation. Let g, w, 41 (respectively, g', w', V) denote the
metric, the first fundamental form 7.2, and the Ricci form 7.4. For a compact
manifold, V = f dV. In complex coordinates, d' and d" are defined by d'cp =
DDacp dza and d"cp = aµcp dzµ. Also, let dccp = (d' - d")c. Then dd'cp =
-28AN,cpdz' Adzµ.

First definitions. Let M2, be a manifold of real even dimension 2m. We con-
sider only local charts (el, (p), where Sl is considered to be homeomorphic by a
map cp to an open set of Cl: cc(SZ).

The complex coordinates are {?j, (A = 1, 2, ... , m). We write z .

A complex manifold is a manifold which admits an atlas whose changes of
coordinate charts are holomorphic. A complex manifold is analytic. A Hermitian
metric g is a Riemannian metric whose components in a local chart satisfy for
all v, p:

9L,µ = 9f'p = 0, 9Vµ = 9µV =.

The first fundamental form of the Hermitian manifold is w = (i/27r)gaµ dz'
A dzµ, where g is a Hermitian metric.

§ 1. Kahler Manifolds

7.2 A Hermitian metric g is said to be Kdhler: if the first fundamental form is
closed: do = 0. A necessary and sufficient condition for g to be Kahler is that
its components in a local chart satisfy, for all A, p, v,

a,\9,µ = &'9aµ.
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On a Kahler manifold we consider the Riemannian connection (Lichnerowicz
[184] and Kobayashi-Nomizu [167]).
It is easy to verify that Christoffel's symbols of mixed type vanish. Only
I'Ll

Aµ
= F.,, may be nonzero. Thus, if f E CZ, then V Aµ f = 8f. On a Kahler

manifold we will write A f = -g µ 8a,f, which is half of the real Laplacian
(warning!).
Only the components of mixed type of the curvature tensor may he
nonzero. It is easy to verify that the components of the Ricci tensor satisfy
Raµ = 0 and

(*) R,\µ = -8aµ log gl,

where IgI is the determinant of the metric,

911 ... 91m

9mi ... gmm

In the real case we used the square of this determinant.
77 = (i/2)7"lgI dz1 Adz' A. Adz' Adz5` A Adzm Adz` defines a global

2m-form. A complex manifold is orientable.

1.1. First Chern Class

7.3' = (i/27r)Raµ dza A dzµ is called the Ricci form. According to (*),
is closed: dT = 0. Hence' defines a cohomology class called the first Chern
class: C1(M). Recall that the cohomology class of %P is the set of the forms
homologous to T. Chern [91] defined the classes Cr(M) in an intrinsic way.
For our purpose we only need to verify that C1(M), so defined, does not depend
on the metric. Indeed, let g' be another metric and V the corresponding Ricci
form, let us prove that IQ' - T is homologous to zero.

Since r) and r,' are positve 2m-forms, there exists f, a strictly positive func-
tion, such that rf' = f r!. Hence, according to (*),

V - = -_8aµ log f dz A dz

and the result follows from the following:

Lemma. A 1-1 form y = a,\µ dza A dzµ is homologous to zero if and only if
there exists a function h such that a,\µ = 8aµh. For the necessity we suppose the
manifold is compact.

Proof. The sufficiency is established at once:

y = 8,\µh dz' A dzµ = dd"h, where d"h = 8µh dzµ.

Now let us consider y, a 1-1 form homologous to zero.
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Pick a function h such that Ah = -gaµa,\µ+Const (in fact the constant is zero),
and define = daµ dz' A dzµ with daµ = 8,\µh.

g'\u(aau, - aaN,) = Const, so V. a\µ)] = a µ) = 0

and S"(y-y) = g a,p) dz" = 0, since dy = dy = 0 implies
and Likewise, = -gaµVµ(da;,-aay)dz" = 0.

y" - y is homologous to zero and coclosed, so it vanishes (de Rham's
theorem 1.72). On p-forms, the operators b' and 6" are defined by 6' =
(-1)p-1 *-1 d'* and 6" _ (-1)p-1 *-1 d"*, (see 1.69); they are, respectively,
of type (-1, 0) and (0, -1).

1.2. Change of Kahler Metrics. Admissible Functions

7.4 Let us consider the change of Kahler metric:

(1) 9aµ = 9aµ +

where co E C°° is said to be admissible (so that g' is positive definite). Obviously
g' is a Kahler metric, since (1) is satisfied.
Let M(cp) = Ig'I 9I-1 Then dV' = M(cp)dV. Since

1+Vj(p V2cp ... V,l,l

v2 1 + VI
M(co) = Ig' o 9-1 I = i

V TV 1 + V m co

by expanding the determinant we find

(1 a)

M(cp) = 1 + V'cp + 2

VUcp VXcp

where the last determinant has m rows and in columns.

Remark. The first fundamental forms w' corresponding to the metrics g' defined
by (1) belong to the same cohomology class (Lemma 7.3). Conversely, if two
first fundamental forms belong to the same cohomology class, there exists a
function cp such that the corresponding metrics satisfy (1).

A cohomology classy is said to be positive definite if there exists in y a
Hermitian form (i/27r)Caµ dz ' A dzµ E y such that everywhere Caµ '6µ > 0
for all vectors 0. A Kahler manifold M has at least one positive defi-
nite cohomology class defined by w. Thus the second Betti number, b2(M), is
nonzero.
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If a Kahler manifold has only one positive definite cohomology class up to a
proportionality constant, in particular if b2(M) = 1, the all Kahler metrics are
proportional to one of the form (1).

7.5 Lemma. The Kahler manifolds (M, g') with M compact and g' defined by
(1) have the same volume.

Proof. The determinants in (1a) are divergences

VA

vas vacp
v,ucp Vucp

V,o V VVV

vas Dace V'0 ... vaV
VA,V Vµ

vX v"UV VV

Indeed the differentiation of the other columns gives zero, because on a Kahler
manifold VAvacp = V1''vacp.

So integrating (la) yields: V' = fn dV' = fm M(cp)dV = fm dV = V.

We can prove Lemma 7.5 by another method. Denote by w' (respectively,
w") the m-fold tensor product of w (respectively, w'). w' = w - (i/4ir) dd`cp
and

m
wm

27r)
m!(-2i)ro' I gI dx' A dy' A dx2 A dy2 A ... A dxm A dym.

Since dw = 0, then by Stokes' formula, f w' = f w'. Hence

V'=jrmJwM=7-mJwm'=V

m! m!

§2. The Problems

2.1. Einstein-Kahler Metric

7.6 Given a (compact) Kahler manifold M, does there exist an Einstein-Kahler
metric on M?

If g is an Einstein-Kahler metric, there is a real number k such that
Raµ = kgaµ. The Ricci form ID = a , Rap,dza A dzµ is equal to k times the
first fundamental form W, so kw E C, (M), the first Chern class and we have
the following:

Proposition 7.6. A necessary condition for a compact Kahler manifold to carry
an Einstein-Kahler metric is that the first Chern class is positive, negative or
zero.
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We say that C1(M) is positive (resp. zero or negative) if there is a positive
(1-1) form w in C,(M) (resp. 0 E C1(M) or a negative (1-1) form -Y E C1(M)).
It is easy to see that the three cases mutually exclude themselves.

2.2 Calabi's Conjecture

7.7 The Calabi conjecture ([73] and [74]), which is proved in 7.19, asserts that
every form representing the first Chern class CI(M) is the Ricci form W' of
some Kahler metric on a compact Kahler manifold (M, g).
Let (i/27r)Caµ dz" A dzµ belong to C1(M). According to Lemma 7.3, there
exists an f E C°° such that C,\µ = Raµ - i%Af.
Consider a change of metric of type (3), the components of the corresponding
Ricci tensor in a local chart are:

R1 = -BaN, log Jg'J = -8,\F log M(W) + R.

So we shall have R' = Ca,,, if there is an admissible function cp E C°° that
satisfies

(2) log M(cp) = f + k, with k a constant.

By Lemma 7.5, we can compute k, k = log V - log f of V.

§3. The Method

3.1. Reducing the Problem to Equations

7.8 If C1 (M) > 0, we consider as initial Kahler metric g some metric whose
components gaN, (in a complex chart) come from w = y;ga) dz) Adz'` with w E
C1(M) as above . If C1(M) < 0, we choose g such that -y = - igapdza Adzf'
belongs to CI (M).

If C1 (M) is zero, we start with any Kahler metric. This case is a special case
of the Calabi conjecture. We want to find a Kahler metric whose Ricci tensor
vanishes, the zero-form belongs to Cl (M).

Next we consider the new Kahler metric g' whose components are:

9 = 9AA + 8 gyp,

where cp is a CO° admissible function (see definition below).
If aw E C1(M) , since the Ricci form %F = dz'Adzµ E C, (M), there

exists, by Lemma 7.5, a C°° function f such that

(3) R,\µ = Agaµ + ea,, f
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If g' is an Einstein-Kahler metric, Aw E C1(M) and we can choose w'
homologous to w. So according to Lemma 7.5, g' is of the form (1) and Rail =
Agap is equivalent to

(4) aaapW = Rap - RAN, - aapf = -a,\µ log(I9'II9I-') - a' f,

since on a Kahler manifold, the components of the Ricci tensor are given by

(5) Rap = -aap log Ig'I.

Definition. cp admissible means that g' is positive definite. A will be the set of
the C2 admissible functions.

If g is an Einstein-Kahler metric, it is proportional to a metric of the form (1),
except in the null case when there are more than one positive (1-1) cohomology
class. Then we proved that the problem is equivalent to solve the equation

(6) log M(cp) = cp + f

log M(W) = f + k

if C, (M) < 0,

if Ct (M) = 0,

(7) logM(cp) = -cp+ f if C1(M) > 0,

where M(cp) = I9' o 9- t I = g' I I9I -' and f is some C°° function.
The proof is not difficult. Multiplying (4) by gap and integrating yield

A[Acp+logM(cp)+ f] =0.

Thus

(8) )op + log M(cp) + f = Const.,

which is nothing else than equation (2) when A = 0, or equations (6) and (7),
where the unknown function is cp - Const., when A = -1 or +1.

3.2. The First Results

7.9 Equation (2) is the equation of the Calabi conjecture [*70]. T. Aubin [18),
[20] and S.T. Yau [277] solved the two first equations (2) and (6), when A < 0.

Theorem 7.9. If Ci(M) < 0, there exists an Einstein-Kahler metric unique up
to an homothety. If CI(M) = 0, there exists a unique Einstein-Kahler metric (up
to an homothety) in each positive (1-1) cohomology class.

For the proof, it is possible to use the variational method as in the original
proof (Aubin [20] and [18]), but here the continuity method is easier.
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7.10 The continuity method. Let E(ca) = 0 be the equation to solve. We proceed
in three steps:

a) We find a continuous family of equations E, with T E [0, 1], such that
E, = E and E°(cp) = 0 is a known equation which has one solution cp0.

b) We prove that the set 0 = {rr c- [0, 1]/E1.(cp) = 0 has a solution} is
open. For this, in general, we apply the inverse function theorem to the map
r : cp --> Er(cp) in well chosen Banach spaces.

c) We prove that the set Q3 is closed. For this we have to establish a priori
estimates.

§4. Complex Monge-Ampere Equation

7.11 More generally, we can consider an equation of the type

(9) M(cp) = exp[F(cp, x)],

where I x M D (t, x) -+ F(t, x) is a CO° function on I x M (or only C;), with
I an interval of R.

(9) is called a Monge-Ampere Equation of complex type.

4.1. About Regularity

7.12 Proposition. If F is in C°°, then a C2 solution of (9) is C°O admissible. If
F is only Cr+« r > 1, 0 < a < 1, the solution is CZ+r+«

Proof. At Q a point of M, where cp, a C2 solution of (9), has a minimum,
8aj,cp(Q) > 0 for all directions a. So at Q, g' is positive definite. By continuity,
no eigenvalue of g' can be zero since M(cp) > 0. Hence cp is admissible.

Consider the following mapping of the C2 admissible functions to CO:

(10) F : cp F(cp, x) - log M(W).

r is continuously differentiable. Let drp denote its differential at cp:

(11)

A' is the Laplacian in the metric g'; A' = -g"'° where g"'µ denotes the
W (P

components of the inverse matrix of 9' A. Ft means 8F/8t.
Since cp is admissible, Equation (9) is elliptic at W. Hence, by Theorem 3.56,
p E C2 implies cp E C°°. If F is only Cr+«(r > 1), co belongs to C2+r+« 0
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4.2. About Uniqueness

7.13 Proposition. Equation (9) has at most one C2 solution, possibly up to a
constant, if Ft (t, x) > 0 for all (t, x) E I X M.
In particular, Equation (8) has at most one C2 solution when A < 0, while the
solution is unique up to a constant if A = 0.

Proof. This follows from the maximum principle (Theorem 3.74). Let V, and
P2 be two solutions of (9). According to the mean value Theorem 3.6, there
exists a function 8 (0 < 9 < 1) such that 0 = cpz - cp, satisfies

(12) yV) + Ft (7y, x)b = 0 with y = tP, + O(yP2 - w t )

Since Ft > 0, Equation (12) has at most the constant solution.
If Ft > 0, (12) has no solution except zero.

§5. Theorem of Existence (the Negative Case)

7.14 On a compact Kdhler manifold, Equation (8) has a unique admissible C""
solution if A < 0 and f E C3+«. The solution is Coo if f E CO°.

Proof. We shall use the continuity method. For t > 0 a parameter, let us consider
the equation:

(13) logM(cp)= -Acp+tf,

with f e C3+« If for some t, Equation (13) has a C2 solution cpj, then y?, is

unique, admissible, and belongs to C5+«, by Proposition 7.12 and 7.13.

a) The set of functions f, for which Equation (8) has a C5+" solution is
open in C3+«
To prove this, let us consider I', the mapping of the set 8 of the C5+" admissible
functions in C3+« defined by:

Cs+" D 8 1) cp r -atp - log M(W) E C3+".

log M(W) E C3+« since tp is admissible and M(cp) involves only the second
derivatives of co.
F is continuously differentiable; its differential at W is

dF,pM _ -Ai + A''i.

Indeed for cp given, IHdrw('))UI3+" < Const X IIV)II5+a and C5+" D e 2) 0 -,
drW E C3+«) is continuous since C5+" D 8 3 cp gia{ E C3+<y

is continuous. By Theorem 4.18 the operator dI',, is invertible since -A > 0.
Indeed, we can write the equation dr (W) = f in the form:
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- V [M(W)g""''' Vµ'P] + AM(cp)V) = f M(cc)

Since C5+« and C3+1 are Banach spaces, we can use the inverse function The-
orem 3.10. Thus if cp c C5+« satisfies

log M((p) = AcP +

there exists 'Y' , a C3+« neighborhood of f, such that Equation (8) has a C5+«
solution when f E r.

Return to Equation (13), where f is given. Because WO = 0 is the solution
of (13) for t = 0, (13) has a solution for some interval t E [0, r[, where T > 0.
Let r be the largest real number such that Equation (13) has a solution for all
t E [0, r[. If r > 1, then cps is the solution of (8) and Theorem 7.14 is proved.
So suppose T < 1, and come to a contradiction.

b) We claim that the set 2 of functions Wt, t E [0, T[, is bounded in CZ+«,

(0<a<1).
If cct has a maximum at P, then M(cct) < 1. Indeed in a local chart for which
gaN,(P) = Sa (Sa the Kronecker tensor), and BaN,cpt = 0 for A p, at P, we have
M(cct) = I ja 1(1 +3,,acp) < 1, since all the terms are less than or equal to 1.
Thus Acct(P) + t f (P) < 0.
Similarly, we prove that if cpt has a minimum at Q, then M(cct) > I and

AcPt(Q)+tf(Q) >- 0.

Hence sup IcPt _< (r/a) sup I f 1. The set 9 is bounded in CO. According to
Proposition 7.23 below, 9 is bounded in C2+«

c) We now show that (13) has a solution for t = r and hence for some t > r
by a). This will give the desired contradiction.
According to Ascoli's theorem 3.15, the imbedding C2+« C C2 is compact.
Thus there exists cp, E C2 and ti --+ r an increasing sequence such that cpT;
converges to co, in C2.
Letting i --+ oo in log M(cct;) = )'.cot; + ti f we prove that cp, is the solution
of (13) for t = T. According to the regularity theorem cp, E C5+« and the
contradiction follows from a), since (13) has a solution for tin a neighborhood
of r.

§6. Existence of Einstein-Kahler Metric

7.15 Theorem (Aubin [18]). A compact Kahler manifold with negative first
Chern class has an Einstein-Kahler metric (all the Einstein-Kahler metrics are
proportional).

Proof. According to 7.8, finding an Einstein-Kahler metric when C1(M) < 0 is
equivalent to solving Equation (8) with ) > 0. By Theorem 7.14, Equation (8)
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has a unique solution. Thus there exists a unique Einstein-Kahler metric whose
Ricci curvature is equal to a (we must choose g such that \w E CI(/Il)).

7.16 An application of the preceding theorem is the proof of the following,
which is equivalent to the Poincar6 conjecture in the case of a compact Kahler
manifold of dimension 4:

Theorem. A compact Kahler manifold homeomorphic to P2(C), the complex pro.
jectif space of dimension 2, is biholomorphic to P2(C).

In their proof, Hirzebruch-Kodaira [143] supposed that the first Chern class
is nonnegative. This extra hypothesis can be removed, as Yau 12761 pointed
out.
If C1(M) < 0, by Theorem 7.15 there exists an Einstein-Kahler metric. Some
computations done with this metric (see Yau [276]) lead to a contradiction: the
manifold would be covered by the ball and could not be simply connected.

§7. Theorem of Existence (the Null Case)

7.17 On a compact Kahler manifold, Equation (2) has, up to a constant, a unique
admissible Cr+2+« solution (respectively, C°°) if f E C'+«, r > 3 (respectively,
f E Coo).

Proof. We shall use the continuity method. For t > 0 a parameter, let us consider
the equation:

(14) M(cp) - 1 = t(ef - 1)

with f E C3+a satisfying f of dV = f dV.
If for some t (0 < t < 1), Equation (14) has a C2 solution apt, then it

is unique up to a constant, admissible, and belongs to C5+a. Indeed M(cpt) =
(1 - t) + tef, so for t in a neighborhood of [0, 1], M(Wt) is strictly positive and
we can apply Propositions 7.12 and 7.13.
Set ECr+a/ f fdV=O}.

a) The set of the functions h E C3+a for which the equation

M(cp) - I = h

has a CS+a admissible solution is open in C3+«
Let us consider the mapping I of the set 8 of the admissible functions belonging
to C5+a in C3+0 defined by

C5+0 D 8 D cp r M(cp) - I E C3+a

F is continuously differentiable; its differential at cp
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dF"(o =

is invertible. Indeed, f M(cp)OW ' V) dV = f A' P dV' = 0.

Since Cs+a and C3+a are Banach spaces, we can use the inverse function The-
orem 3.10. Thus if cp E O satisfies M(cp) - 1 = h there exists K, a C3+a
neighborhood of h in C3+°, such that equation M(cp) - I = h has a solution in
ewhenhEY.

Return to Equation (14). Because Sao = 0 is the solution in O of (14) for
t = 0, (14) has an admissible solution for t E [0,,r[, r > 0. Let r be the largest
real number such that Equation (14) has an admissible solution (Pt E O for all
t E [0, T[. If T > 1, then cp1 is the desired solution of (6) in O.
So we suppose T < 1 and come to a contradiction.

b) We claim that the set R C CZ+a of the functions (Pt, t E [0, T[, is bounded
in C2+a
Let us prove that -4 is bounded in CO. Then by Proposition 7.23 below, -4 is
bounded in C2+a. Repeating the proof in 7.14c then establishes Theorem 7.17.
The idea is to find a bound, uniform in t and p ? 2, of Ilcptlip for 0 < t < T < 1.
Then II cot I I p < -y and letting p -* oo will imply sup I (Pt I <_ -y. For simplicity we
drop the subscript t.

Setting h((p) = (plcplp-2 in Proposition 7.18 below yields:

(15) 4 mpg
fV vl P1p'2V'I(PIp/2dV < f[1 - M(So)](PI (PI p-2dV.

According to the Sobolev imbedding theorem, there is a constant, independent
of p, such that

1 IPI m/(m-1) = I
IPIP/21I2m/(m-1) < Const x (IIVH'2I2+

IIwIIp)

This inequality together with (15) leads to

(16) II (pf IVIP-' dV + f IVIP dV) (p > 1)

where C is a constant, since M((p) is uniformly bounded; we pick C >_ 1. The
desired result, I I cp I I p < y for all p and (p E 9, will follow from:

Lemma. There exists a constant y such that for all real numbers p > I and all
cpE9:

(17) IIAP <
y(oY"`CP)-m/p

with a = m/(m - 1) and C = C(1 + V1/P), C the constant of (16).

Proof. Because cp is admissible, then Lcp < m. Thus IIOcpII1 < 2m f dV,
since f Ocp dV = 0. According to Theorem 4.13, as f co dV = 0, there exists a
constant CO such that IIcPII1 1 5 2mCoV. Picking p = 2 in (15) gives
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HV II2 < Const, since M(cp) is uniformly bounded. Hence IIc01I2 < Const, by
Corollary 4.3 because f cp dV = 0.
Choosing p = 2 in (16) yields

110U2m/(m_I)
< Const. By the interpolation

inequality 3.69 there exists a constant k such that I < q <
2m/(m - 1).
Set -y = kam(m-t)Cmem/e. Then we can verify that inequality (17) is satisfied
for I < p < 2m/(m - 1). Either IIVIIP is always smaller than 1, and there is
nothing to prove (we pick k > 1 and (17) is satisfied); or else, for some p,
11cpjjp > I and then by Holder's inequality f dV < dV)I/P <
V'/P f dV.
Inequality (16) becomes

f lI/a r
(J jpl"dV f <CpJ IVIPdV

and inequality (17) follows by induction:

f dV < (Cp)a,yPa(am-ICp)-ma =,,,pa(am-ICpa)-m

since a(m - 1) = m, (a - 1)(m - 1) = 1.

7.18 Proposition. Let h(t) be a Ct increasing function on R. Then all C2 ad-
missible functions cp satisfy:

fh#(ca)VLcoVpdV.(18) - M(cp)lh(cp)dV > m

Imp
h(co)(wm - W/m).(1 - M(cp)lh(ca) dV =

Jm!

But wm - w" _ (i/47r) dd'cp A (Wm-t + wm'-2 A W' + ... + w"). Applying
Stokes' formula leads to

f h(cO)(wm - W'm)

= -2 f h%P) dcp A d`cp A (wm-t L o " " _ ' )w'+4n

> (m - 1)! 2
yn-i

(-2i)m-t f h%O)V-wV,wdV,
2

which gives (18).
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§8. Proof of Calabi's Conjecture

7.19 Theorem. On a compact Kahler manifold, everyform representing C1 (M)
is the Ricci form of some Kahler metric.
To each positive cohomology class there corresponds one and only one metric.
In particular, if b2(M) = 1, the solution is unique up to a homothetic change of
metric.

Proof. Let g be the Kahler metric, w its first fundamental form, and -y E C1(M).
According to 7.7, to find g', with w' - w homologous to zero and is
equivalent to solving equation (2).
By Theorem 7.17, Equation (2) has a unique solution up to a constant. Thus in
each positive cohomology class we find a unique w' whose V equals y.

§9. The Positive Case

7.20 According to (7.8), in the case C1(M) > 0 there exists a Einstein-Kahler
metric, if and only if Equation (8) with A > 0 has a CO° admissible solution.

This problem is not yet solved. It is more difficult than the two preceding
cases. First, since the linear map dF,o of 7.14 is not necessarily invertible, it
is not obvious how to use the continuity method. Then we must find a Co
estimate in order to use Proposition 7.23. On the other hand, Equation (8) with
A > 0 may have many solutions (see Aubin [20] pp. 85 and 86). For instance,
on the complex projective space, log M(W) = -A1 1P has many solutions; these
solutions come from the infinitesimal holomorphic transformations which are
not isometries. Worse, we know that some Equations (8) have no solution, since
if we blow up one or two points of projective space, the manifold obtained
cannot carry an Einstein-Kahler metric according to a theorem of Lichnerowicz
[185] p. 156 (see Yau [275]).

We will see below that there has been great progress in the positive case
(§13 and the ones following).

§10. A Priori Estimate for Ocp

7.21 Notations. On a compact Kahler manifold, let . be a set of C5+1 admis-
sible functions and \ real numbers satisfying JAI < Ao. We suppose that , the
set of the corresponding functions f = log M(W) - AV, is bounded in C3+°
F0 and F1 are real numbers such that everywhere for all cp E 9,

Af<F1 and f<Fo.
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Proposition (Aubin [18]). There exist two constants k and K depending only on
A0, F°, F1, and the curvature, such that all cp E 9 satisfy:

0 < m - O(p <

Moreover, if . is bounded in CO, all corresponding metrics g' are equivalent.

Proof. The first inequality is obvious. Since cp is admissible, for all directions
A, gµµ + aµµcp > 0; thus by summing over µ we obtain in - 0(p > 0.
To prove the second inequality set

A = log(m - Ocp) - kW,

where k is a real number that we will choose later. Let us compute O',A =
-g'Aµ aafA (we will omit the index (p below).

W

(19) 0'A= -(m - O(P)-'L 'A(p - ki '(p+(m -

Recall g'-\T' are the components of the inverse matrix of ((g,\µ + Differ-
entiating (8) yields:

o1,f = V, log M(So) = g"iip'V«pcP

(20) -AL1(p - Af =

But from 1.13,

(21) O'Lcp - gi«I R«4,\µV«4WgJ\µ - RaµVX(pg"'`` = E

and there exists a constant C such that E satisfies

(22) JEl < C(m - Acp)9"µ9aA.

Write A'cp = -g'aµ(gaµ - g,\µ) = g'aµgaµ - m and observe that

(23) 9"49"\AVvDaµ(PVyVA4cp > (m - Ocp)-tg"\"VAA(pVfAp.

To verify this inequality, we have only to expand

[(m - Acp)V,V,\$co + VAOcpg'V4]

/XA 1 > 0.x [(m - A(P)V V«µco+VAAwg'ary]9ia4

9 9

(19)-(23) lead to

(24) t,'A < k(m - g"µ9,\µ) - (m - AV)-'(E - AOcp - 0 f ).

At a point P where A has a maximum, 0'A > 0. We find, using (22),

(25) (k - C)g' (m - Li(p)-1 (Ai(p + 0 f) + mk.

Since the arithmetic mean is greater than or equal to the geometric mean,
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1 - Oco/m >_ [M(co)]1/m. = e(\w+f)/*R.

Thus at P inequality (25) yields

(26) (k - C)9"Agvµ < mk - A + (A + A f /m)e-(,\w+f)/+R.

However, g'"µgvµ > m[M(cp)]-1/'', so that

(27) m(k-C)-A-Of/m<(mk-A)e(Aw+f)/m

Pick k such that m(k - C) > I + sup(A, 0) + sup(z f)/m, expressions (26) and
(27) lead to: There exists a constant Ko such that at P

(28)
9 S Kp.

KO depends on A0, F1, and the curvature through C.
In an orthonormal chart at P for which 0,,aW = 0 if V # µ

1
1

m-1

1 + 8vv1P S MOP) fl g'µµ < M(cp) [m - I
9'µµ l

µ" µ4"
J

Taking the sum and using (28) yields at P

(m - OcP)P S m[Ko/(m - 1)]m.-te)'w(P)+f(p)

Hence everywhere

(29) (m - Ocp)e-kw < (m - O(P)Pe-kw(P) < Ke-(k-A1m)w(P)>

where K is a constant depending on Ko and Fo.
The inequality of Proposition 7.21 now follows since k > A/m.

If .1 is bounded in CO that is Jcpj < ko, using (29) for all cp E a we have
Ocp uniformly bounded: IAcpl < k1. Therefore, in an orthonormal chart adapted
to cP ((9vµ = 0 if v # µ),

as 8µµcp> -1, 1+k1,

and (1 + 5µµw)-1 < (m + kt)m-1[M(cp)1-t < (m + kj)--tek0lal+f . Thus the
metrics g', co E °P, are equivalent to g; for all directions A

e-kohl-sup f(m+ki)1-m'9µµ 5 9µµS (m+k1)9 µ.
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§ 11. A Priori Estimate for the Third Derivatives of
Mixed Type

7.22 Once we have uniform bounds for IVI and IoVI, to obtain estimates for
the third derivatives of mixed type, consider

(30) IV)I2 = 9
aA9'aµg

vryyV.V vvx w

The choice of this norm instead of a simpler equivalent norm (in the metric 9,
for instance) imposes itself on those who make the computation. We now give
the result; the reader can find the details of the calculation in Aubin (11) pp. 410
and 411.

Lemma.

expression)

+ (V Aabc(p - V abp(PV aiV9t pv - V )'f'c(OV pbaV9'p')

x (conjugate expression)] - g'cd(2gagg 7A9tab

+9 9
aAa6" gt7b)DabcwV

(ASP + f) - Rry6]

+9 tao
9

ab9'cd[QAadW0abc0W + f) + VabcVVV ,d(AV + f )]

+9 rakg
aµv(P + R6µ V,\Accp

+ Reµa Dab conjugate expression
+9'a4

9
Icd1VAadW(9'aµVXRZaa - g'abVaRcb)

+ conjugate expression].

Hence there exists a constant k2 which depends on Ao, II-4IIco, IIWIIc3, and the
curvature such that

(31) A'IV)I2 < kz(IVGI2 + IVGI ).

Proposition. There exists a constant k3, depending only on Ao, I 2 II c'), IIW Icy,
and the curvature, such that VAN,vcpVAA'W < k3, for all cp E R.

Proof Equations (20) and (21) give

(32) O'Aco = AOcp - A f + E.

As all metrics g' are equivalent (Proposition 7.21), there exists a constant B > 0
such that

BI I2.

Let h > 0 be a real number. According to (31),



§12. The Method of Lower and Upper Solutions 267

At( V)I2 - hAV) < k2(IVGI2+ V)I) - hBIV) I2 +h(AAcp+Af - E).

Picking h = 2k2B-', we get

(33)
A' V) I2 - hAco) <- -(k2/2)IV) I2+k2/2+2k2B-'(AAlc+Af - E).

At a point P where ?pI2 - htlcp has a maximum, the first member of (33) is
nonnegative. Thus

IV)(P)I2 < 1+4B-'(AAp(P)+Af(P)-E(P)).

So by Proposition 7.21, I0(P)I2 < Const. Hence everywhere, IV)I2 < Const.

7.23 Proposition. On a compact Kahler manifold, let -4 be a set of C5 admissible
functions, -4 bounded in Co. Let (cp, \) E 9 x [-A0, A0] with .o a constant, and
let

f = log M(AP) - A.

If the set T of corresponding functions f is bounded in C3, then -4 is bounded
in C2+a for all a E]0, 1[.

Proof. According to Proposition 7.22, the third derivatives of mixed type of
the functions co E .4 are uniformly bounded. Hence there exists a constant k
such that for all co E R J V A p j _< k since the gradient of AV involves only
third derivatives of mixed type. By the properties of Green's function (Theorem
4.13), for any a E]0, 1[, -4 is bounded in C2+« 0

§ 12. The Method of Lower and Upper Solutions

7.24 Suppose we have to solve an elliptic differential equation a'. If there exist
a lower solution a and an upper solution v satisfying u < v we can hope to use
the method of lower and upper solutions. But for this we also need to be able to
solve an equation "close" to equation '. Thus the method of lower and upper
solutions requires an additional basic step. It is simpler to give an example.

7.25 Return to Equation (9),

(34) log M(cp) = F(cp, x),

and set S(t) = supXEM F(t, x) and P(t) = infrEM F(t,x). Recall that F(t, x) is
a C°° function on I x M where I =]a, /3[ is an interval of R. We will prove:

Theorem 7.25. Equation (9) has a C°° solution if there exist two real numbers
a and b belonging to I, (a < b) such that S(a) = P(b) = 0.

In this problem a is a lower solution of Equation (9). Indeed, log M(a) >
F(a, x), since F(a, x) < S(a) = 0; and b is an upper solution, log M(b) < F(b, x),
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since F(b, x) > P(b) = 0. Moreover, a < b. Before giving the proof of this
theorem, let us establish the following:

Corollary 7.25. The equation log M(W) - F(cp, x) = O(x) has a COO solution for
any function 0 E C°° if P(t) --+ +oo as t - /3, and S(t) -* -oo as t a.

Proof. Corollary 7.25 follows from Theorem 7.25. Indeed set Po(t) =
infxEM[F(t,x) + fi(x)] and So(t) = fi(x)]. These functions
are continuous and obviously P(t)+inf0 < po(t) < So(t) < S(t)+sup0. Thus,
when t a, So(t) and PO(t) go to -oo and when t -+ /3, So(t) and Po(t)
go to +oc. So there exists a E I such that So(a) = 0. But as Po(a) < 0 there
exists also b E [a, /3[ such that Po(b) = 0. The hypotheses of Theorem 7.25 are
satisfied.

If one solves the equation under the assumptions of Corollary 7.25, note that
only the behavior of F(t, x) as t goes to a and /3 is important.

Now we give the proof of Theorem 7.25.

a) By Theorem 7.14, the equation log M(W) - acp = f has a unique solution
when A > 0. With this result we will consider an increasing sequence of func-
tions converging to a solution of Equation (9). Pick \ > sup[0, Ft (t, x)] for all
(t, x) E [a, b] x M. According to Theorem 7.14 we can define the sequence of
functions cps by coo = a and

(35) logM(cpj) - acpj = F(co _1,x) - \cpj-t for j > 1.

This sequence of C°° functions is increasing and satisfies a < cps < b. The
proof proceeds by induction by using the maximum principle. We suppose that
for all i < j, a < cpi-t < Vi < b and we write:

log M(cpj+t) - log M(cp.i) - \(c +t - cps)
= [F(cc , x) -- Aco,] - [F(Vj-t, x) - A_1] <- 0.

The last inequality is obtained by applying the mean value theorem. The max-
imum principle implies cpj+t - cps > 0. Moreover we can start the induction
because log M(WI) - .\(cpt - a) = F(a, x) < S(a) = 0. Similarly

log M(cpj+c) - A(Wj+t - b) = [F(co x) - Acpj] + Ab > F(b,x) > P(b) = 0

shows that cps+l - b < 0. Therefore the sequence {W,}, which is increasing
and bounded, converges pointwise to a function V which satisfies a <_ V) < b.
It remains to establish the regularity of V). For this we need estimates on the
functions cod.

/3) We will prove that the set of the functions cps is bounded in C2+o, (0 <
a < 1), because then, by Ascoli's theorem, there exists a subsequence {cpi}
of the sequence {cpj } which converges in C2 to a function which cannot be
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different from 7P. Then zG E Cz" and by the regularity theorem 3.56 V) E C°°.
We already have the C°-estimate a < cps < b. To prove that JOcpj I is smaller
than a constant independent of j, we compute A' B where

B = log(m - AcOj) - kcc +rrcp? -t + vcpzi-t,

k, o, and v being real numbers which we will choose later. Recall that A'_
and is the inverse matrix of ((gaN, + 8ay,cpj)). At a point P

where B has a maximum, we note that A'B > 0. First of all we choose v
so that the terms in L 4 B which involve the first derivatives of cps _ j are less
than some constant. Then we pick v large enough to control the terms with the
Laplacian of cpj_t. Finally k is chosen sufficiently large (in particular k > Q) so

that the inequality OMB > 0 at P becomes gj"4gofp < Const. (For the details of

this computation see Aubin [20] p. 89). In 7.21 we saw that gj"pg < Const
at a point where B is maximum implies that the functions JL1cpj I are uniformly
bounded, and consequently that the metrics g', are uniformly equivalent to g.

-y) Finally we prove that the set {ocp;} is bounded in H4 for all q > 1 (see
Aubin [20] p.90) by using the following inequality instead of inequality (31):

(36) JAIIVijl2+I'7I I),

where 10j I is defined by (30) with cp = cps, and r2 is a positive term which
involves the fourth derivatives of cps.
Hence the set of the functions {cp j } is bounded in CZ+' for all a (0 < a < 1).

§ 13. A Method for the Positive Case

7.26 A priori it seemed that it was impossible to use the continuity method in
this case, until Aubin [*7] showed how to proceed; indeed, the differential of.
cp -+ log M(cp) + acp is not necessarily invertible when ) > 0. Still, instead of
(13), let us consider the following family of equations:

(37) Et : log M(W) = -tW + f for r E [e, 1], with S > 0.

By this equation we control the Ricci curvature. If it exists, let Wt be a
solution of Et for some t. According to (1) and (3), a computation gives:

(38) Ri,\p, = (1 - t)gaµ +tgta4)

where Rtaµ are the components of the Ricci tensor corresponding to the metric
9t of components gaµ + aaµcPt, According to (8), the Ricci curvature of
(M, gt) is greater than t for t < 1, and by Theorem 4.20 we know that the first
eigenvalue At of the Laplacian Ot = -gtA"DAVp satisfies at > t; here gt
are the components of the inverse matrix of
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7.27 Now we are in position to prove part b) of the continuity method. Define
the map r:

R x e D (t, cp) L tcp + log M(cp) E C3+a

Recall that e = A n CS+,. r is continuously differentiable and its partial
differential with respect to cp is given by

(39) [DVr(t, ca)] ('Y) = tT - 0'W T

I' is invertible for E < t < 1 according to Theorem 4.20, since At > t. Indeed
(38) implies Rtaµ - tgt,\µ is positive definite.

By the implicit function theorem, the map (t, cp) --), [t, F(t, V)] is a diffeo-
morphism of a neighbourhood of (T, cp,) in R x 0 onto an open set of R x C3+C'
So, if we can solve the equation F(t, co) = f at t = T, we can solve it when t is
in a neighbourhood of T.

7.28 Now, let us complete part a) of the continuity method. There is a difficulty:
we cannot consider equation (37) at t = 0, even if f is chosen so that f of dV =
f dV, because E° will have an infinity of solutions cPo (the solution is unique
up to a constant) and, according to (39), the map r is not invertible with respect
to cp at (0, c'o).

This is the reason why we consider Et for t E [e, 1] with E > 0, but we
have to prove the existence of cp, for some small E. For this we consider the
map

r : R x 0E) (t, cp) tco + log M(W) +,3 f ep dV E C3+,, where Q > 0 is a
given real number.

I' is continuously differentiable and its partial differential with respect to co
is

[Dw r(t, cP)] (`f') = tW - A' T + Q f i dV.

I is invertible even at t = 0. Since equation (2) has a unique solution up to a
constant, the equation log M(ep) + /3 f co dV = f has a unique solution cp..

Now we apply the implicit function theorem to r at (0, cp.), and deduce
that, for some small e > 0, the equation r(E, cp) = f has a solution W, E e.

Thus cp, = coE + P- f c3E dV is a solution of E.

7.29 The estimates (part c of the continuity method).
Set P3 = {t E [r, 1]/Et has a solution}.

Proposition. If the set of {cot}(t E (5) is bounded in CO, equation (7) has a C°°
admissible solution.

Since C3 is open and non empty, if we prove that it is closed, 15 = [0, 11
and equation (7) has a solution. If the set {cot} (t E 6) is bounded in Co, it is
bounded in C2+1 by Proposition 7.23. Then 0 is closed. Indeed let {ti} C !3
be a sequence which goes to 7-(ti --+ T).
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By Ascoli' s theorem, there exists a subsequence {tj } such that cpt, con-
verges to a function W E C2+« in C2 when j --> oo. Letting j --+ oo in Et.,
we prove that T = co, thus T E Q5.

About the regularity, recall from proposition 7.12, that a C2 solution of (5)
is C°° admissible.

§ 14. The Obstructions when C1 (M) > 0

14.1. The First Obstruction

7.30 Let G(M) be the group of automorphisms of M. By the Lichnerowicz-
Matsushima theorem, we obtain the first known obstruction. This theorem ([185]
p. 156) asserts that, if a compact Kahler manifold M has constant scalar curva-
ture, then the group G(M) is reductive. Thus we obtain

Proposition. Any compact Kahler manifold, whose automorphism group is not
reductive, does not admit a Kahler metric with constant scalar curvature.

7.31 Application to the projective space Pm(C) blown up at one point.
Let (z0, z1, ... , z,,,,) be homogeneous coordinates of Pm(C).
Blowing up P,(C) at the point Q = (1, 0, ... 0, 0), we obtain a manifold

M whose group G(M) is not reductive (see below). So M cannot carry an
Einstein-Kahler metric, although its first Chern class is positive.

We can visualize M as the set of the points of Pm(C) x P,,,,_i(C) such that
Z, /61 = z2/62 = ... = zm /Sm where (61,62.... 6,,,,) are homogeneous coordinates
of Pm_ i (C). We get a holomorphic mapping 7r from M onto Pm(C) such
that 7r'' (Q) = D is isomorphic to PTZ_ 1(C) and M - D is biholomorphic to
Pm(C) - Q by 7r.

The (1-1) form (i/27r)dd"[mlog(1z012+r2)+logr2], with r2 = Ell Izs12,
belongs to C1(M) which is positive definite. D = 7r-t(Q) in M is an exceptional
divisor which has a unique representative cycle.

Thus G(M) consists of all automorphisms in G(Fl(C)) preserving Q. GL
(m + 1, C) acts on PP(C), its kernel is K = {AI/A E C).

Let {ej }(j = 0, 1,...,m) be a natural basis of Cm". G(M) is isomorphic
to S/K where S = {f E GL(m+ 1)/ f (eo) = \eo with 0:/,\ E C1.

Now a group is reductive if and only if any linear representation is com-
pletely reductible. This is not the case for S. In its natural representation Ceo is
an invariant subspace which has no invariant supplementary subspace. Indeed
S is represented by the matrices ((aij))(j for the column) with ati,0 = 0 for
1 < i < m, and the group of the transposed matrices has no invariant subspace
of dimension one.

The same argument proves that the manifolds, obtained by blowing up
Pm(C) at less than m + 1 points in general position, have non-reductive auto-
morphism groups. Conversely, the maximal connected group of automorphisms
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of P,(C) blown up at m+1 points in general position is reduced to the maximal
connected group of automorphisms of Pm(C) preserving each of the rn+1 points.
These automorphisms are represented by the diagonal matrices with laid
for all i.

14.2. Futaki's Obstruction

7.32 If C, (M) > 0, we can choose the Kahler metric such that the first funda-
mental form w E Cl (M). Then the Ricci form P is homologous to w, so that
there exists a function F such that T - w = (i/27r)dd"F, .

Denote by h(M) the Lie algebra of holomorphic vector fields. Futaki con-
siders the application of h(M) in C defined by

r
h(M) D X f (X) = (i/27r)

J
X(FL,,)wm.

Theorem (Futaki [* 131]). The linear function f does not depend on the choice
of w E C1(M). Therefore, if ho(M) is the kernel of f, the number bM =
dim [h(M)/ho(M)] depends only on the complex structure of M. If M admits
an Einstein-Kahler metric, then bM = 0.

In his article [* 131] and his book [* 132], we find examples of compact
complex manifolds with Ct (M) > 0 and dimension m > 2 which are reductive
but with number bM = I.

Futaki explains that his theorem is a complex version of the obstruction of
Kazdan and Warner 6.66.

Remark. We can generalize Futaki's obstruction when w V Ct (M).
Let [w] be the cohomology class of w and let F,,, be a function such that

AF4/ = R - V- t f R dV . If there is a metric g with (D E [w] and R = Const.,
then 6M = 0.

14.3. A Further Obstruction

7.33 If M is a compact Einstein-Kahler manifold, the tangent bundle TM satis-
fies the Einstein condition (trivial). So, by a theorem of Kobayashi [*201] (see
also Lubke [*2281), TM is semi-stable. Thus we obtain the

Proposition. Let M be a compact Kahler manifold. If TM is not semi-stable,
M cannot carry an Einstein-Kahler metric.
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§15. The C°-estimate

15.1. Definition of the Functionals I(cp) and J(co)

7.34 We set

and

,((P) = f cp [I - M(cp)] dV =
J

co dV -
J

cp dV'

J(cp) = (1 /s)
J

I(scp) ds.
0

Thus, if t --> cpt is a smooth map of an interval of R in the set of Cr
admissible functions (r > 2), we have

(40) dtJ(`pt) = f Ot [1 - M(cpt)] dV, where d
cPt = dtcpt-

This comes from the fact that 1 - M(W) is a divergence. Here, this is easy to
verify since M(cp) is the sum of m determinants but the result is true in general:
see M.S. Berger [*41],

I(cp) and J(cp) satisfy the following inequalities (see Aubin [*7]):

(41) J(cp) < I (cp) < (m + 1)40);

in [*31] we find (1 + 1/m)J(cp) < I(cp).
For more details on these functionals see Bando-Mabuchi [*31]; these will

be useful for the C°-estimate. When m = 1,

I (w) = f I V I2 dV = 2J(co).

It is possible to prove the following

Proposition (Aubin [20]). Let h(t) be an increasing C' function on R. Any C2
admissible function cp satisfies

r
(42) f[l - M(cp)] h(cp) dV > (1/m)J h'(co)I7cpI2dV.

Choosing h(t) = t, we find I(W) > (1/m) f IVcp12 V. Thus if cp $ Const.,
I(cp) > 0.
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7.35 Proposition. If we have an estimate of I(cp) (or J(W) according to (41)),
we have the C°-estimate.

Proof. Recall that for t E (5, cct is a solution of Et (37).
Since f M(ept) dV = V the volume of the manifold, we have: V-' f (-tcpt +

f) dV < log f e-4'1'f dV - log V = 0. Thus

(43) fotdV > inf 10, e-' f f dVl = k°.

Likewise, V-' f (tcpt - f) dV' < log f etwt-f dV' - log V = 0. Hence

(44)
J cot dV' < sup [0, e-' V sup f] = kt .

Multiplying g',\,, = g,\µ + (9,\T wt by its inverse matrix g'tµ, then by gA µ,
we get:

m = 9ft µgaµ - cot and 0 < m - Ocpt.

Thus,

(45) AcPt < m andAtcpt > -m.

Using the first inequality in the following equality (Theorem 4.13)

(46) cOt(P) = V -t f Wt dV + J G(P, Q)z (Q) dV(Q)

where the Green function G(P, Q) of the Laplacian 0 is chosen > 0, we obtain:

(47) wt(p) < V-' + rn f G(P, Q) dV(Q) = V -' ftdV + k,

with k a constant.
Since t E [e, 1], the Ricci curvature of (M,gt) is greater than a according to

(38). By Myers' theorem 1.43, the diameter Dt of (M, gt) satisfies the inequality
Dt < ir[(2m - 1)/e]' I2.

Consequently, Theorem 4.32 (or inequality 37 of 4.29) gives a uniform bound
from below for the Green functions Gt(P, Q) of the laplacian At with integral
zero (f Gt(P, Q) dVt (Q) = 0):

Gt(P, Q) > - Const. Dt /Vt > -k2 for t E Q5;

since Vt = f dVt = f M(ept) dV = f dV = V, k2 is a positive real number
which depends only on m and e. Now, using the second inequality (45) in
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cot(P) = V-' f cot dVi + J[Gt(P, Q) + k2] AtcPt(Q) dVt (Q),

we get:

(48) ot(P) > V-' JtdV' - mk2V.

Thus, since I(co) < K yields f ept dV < K + k, by (44) and f co dV' >
ko - K by (43), using (47) and (48), we obtain:

V-'(ko - K) -mk2V < cot(P) 5 V-'(K+k1)+k.

From (47) and (48) we deduce the following

7.36 Proposition. On (M, g) a compact Kahler manifold, let us denote by
AE(E > 0) the set of the functions eo E A such that R', - Ega4 > 0 (g' is
defined in (1)). There exists a constant k, depending on e, such that any cp E AE
satisfies

(49) -V-'I(co) - k < cp- V-' f cpdV<k.

Remark. In [*291], Siu proves that the quantities sup(-V), supcp, f cpdV,
- f cp dV', log f e"P dV and log f dV' (c > 0) are comparable in the
sense that any two such quantities Q, Q' satisfy Q < AQ' + B for some a priori
constants A and B.

Siu [*291] proves the following Harnack inequality: for each e > 0, there
exists C(E) > 0 such that

sup(- cot) < (m + E) sup cot + C(E),

where cot satisfies (37) for t E [E, to[. The proof is by contradiction. This result
was improved by the following:

Theorem 7.36 (Tian [*301]). There exists a constant C(t) such that, for any C2
admissible function V) satisfying f of -41 dV = V, the solution cot of (37) satisfies

sup(o - cot) < m sup(cot - 0) + C(t).

Therefore, if the initial metric is Einstein-Kahler, any C2 admissible function
V) with f e- dV = V satisfies

sup Vi < -m inf + C.

Indeed, in this case, cot =- 0.
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7.37 To proceed further, we need an inequality concerning the exponential func-
tion for admissible functions with integral zero.

For the dimension m = I (see Aubin [*9], p. 155), any function cp with
f cp dV = 0 satisfies

V 'aV cp dV I.< Const. exp I g J

Recall that we are on a Kahler manifold, so f dV is one half of
f VicpVicp dV on a Riemannian manifold (here the best constant is not 7r/16
but 7r/8).

By analogy we will suppose that any CO° admissible function with zero
integral satisfies:

(50) J
e -`° dV < Cexp[i;1(cp)], with C and i; two constants.

With this inequality, we obtain the C°-estimate (Aubin [*7]), see below.
Since we will apply (50) to the functions cat (solutions of (37)), it is necessary

to prove (50) only for the functions cpt - V -' f cat dV, or more generally for
the functions in AE with zero integral (AE is defined in 7.36).

In our case CI > 0, w E C1, we can conjecture that the best constant
= inf such that a constant C exists) is the one we found for the ball (see

8.30): gym, = mmm!7r-1(m + 1)-2m-1

15.3. The C°-estimate (Aubin [*7])

7.38 Set x(t) = f cot dV, y(t) = J(cat) and z(t) = I(cat) for e < t E 5. Recall
that cot is a solution of Et (37).

Differentiating with respect to t the equality f e-tw°+f dV = V gives

f(-cot - tcpt)M(cpt) dV = 0, where cbt = dept/dt;

hence, according to (40),

(51) z(t) - x(t) + t(y' - x') = 0.

We have then:

V = f e-twt+f dV < eS°pf-txV-c fe_t(coL_xV)dv.

Using Holder's inequality and (50), we deduce:

t
Vex-sup f < (Je-(wt-v)dV) V1-t <CtV'-t

thus
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(52) x < k3 + V z, with k3 a constant.

From (51) and (52), we also have

(53) y' - x' = (x - z)/t < k3(EVt;)`' +x[1 - (Vi;)-'it-

If Ve < 1, since x > ko by (43), we have that y' - x' < Const. and
y(t) - x(t) < k4. This inequality, together with (41) and (52), gives

y(t)[1 - (m+ 1)i;V] < k3 +k4.

Hence if (m + 1)CV < 1, we have y(t) < Const. and an estimate of z(t) _
I(ept) since z < (m+1)y by (41). Then, according to Proposition 7.35, we obtain
the C°-estimate and, by Proposition 7.29, the

7.39 Theorem. If for some C and some 6 < 1/(m + 1)V, the functions
cot - V-1 f cpt dV satisfy inequality (50) when w E CI(M), then there exists
an Einstein-Kahler metric. Recall that 'Pt is a solution of Et(37).

15.4. Inequalities for the Dimension m = 1

7.40 Theorem (Aubin [*9]). Let M be a C°° compact Riemannian manifold of
real dimension n = 2. Define

f
fIcoIdV

l
EN, = VE C2/ J

cp dV = 0 and < 2lL }.

Given a < 47r/µ, there exists a constant C, depending on V, a and µ, such that
any cp E E,A satisfies

(54) Je_dv<C.

Proof. We can suppose that f JAcoI dV = 2p, from which the general case
follows. Let G(P, Q) be the Green function of the Laplacian A such that
G(P, Q) > 0. Write G(P, Q) = -(1 /27r) log f (r) + F(P, Q) with f (r) =
r = d(P, Q) in a neighbourhood of r = 0, f (r) increasing and f (r) = 6/2
for r > 6 the injectivity radius. eo(P) = f G(P, Q)icp(Q) dV(Q) implies
-cp(P) < - fow<o G(P, Q)AW(Q) dV(Q) and we have - fog<o Ocp dV < µ
since - fo ,<o Ocp dV = foP>o Aco dV.

(P, Q) -+ F(P, Q) is a continuous function on M x M, thus IF(P, Q) 1 < a,
for some constant a. Hence, for any real number a > 0, we have

e- C"' < eaaµ exp (-a t/27r) [log f (r)] (-Ocp/µ) dV.
< o

This yields
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e-"w < eaaµ f [1 (r)] dV.
, p<o

For a < 47r/µ, e-"° is integrable and

Je_dv < e"°" sup f [f (r)] -"u/2n dV(Q) < Const..
PEM

7.41 Corollary. Let M and E. be as in Theorem 7.40. Suppose there exists a
group G of isometries such that each orbit admits at least k > 1 distinct points.
Then, for 1 < 47rk/µ, the G-invariant functions cp E Eµ satisfy

f e-131P dV < Const..

7.42 The case of the sphere S2. Let (S2, go) be the sphere endowed with the
canonical metric go. Its sectional curvature equals I and V = 47r. co is admissible
if its real Laplacian satisfies Ocp < 2.

Set cp = cp - (1 /47r) f co dVo. cp satisfies (54) if a < 1 /2 (here it = 87r). More
generally:

Proposition. Let g' be a Riemannian metric on S2, and V' be its volume. When
fi < 27r/V', any function cc, admissible for g', satisfies

f e-00 dV < Const..

15.5. Inequalities for the Exponential Function

7.43 We could think that inequality (54) is special for the dimension m = I and
comes from the particularity of the Green function. In fact inequality (54) holds
for the admissible functions when m > 1. This was shown by Hormander [148]
and Skoda [*292] for the plurisubharmonic functions.

7.44 Theorem (Hormander [ 148]). There is a constant C such that any plurisub-
harmonic function in the unit ball in C'n with V)(z) < 1 when Iz 1 and
,0(0) = 0, satisfies

(55) e-'P(z) dV < C.

Proof. When m = 1, the Green function for zero Dirichlet data, on the unit ball
in C' endowed with the euclidean metric, is - 2 log( Il'Z According to
(22) in 4,17 we have
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27r(z) = log Iz -
El

IO,0I ds +
41=1

(I dl.
41<1 I1 - 4 Iz - EI2

Choosing z = 0, we obtain

V(e) dl < 27r.(56) 0 < - f(1<1 log ICI) I ds = 41=1

Thus

L1=1
47r and, when IzI < 1/2,

(57) (1 - IzI2) lz - eI -2VG(C) dl < 127r.
IeI='

Choosing p so that 1/2 < p < e-'/z, we have according to (56):

(58) a =
J

IOC ds/27r < -1/ log p < 2.
I(1<p

Then, for some C, when IzI < 1/2

(59) (1/27r)J I

I(I>p
< C.

Using the inequality exp [fn f dV/ fn dV] < fn of dV/ fn dV, we obtain
for IzI < 1/2, according to (57) and (59):

e-O(z) <exp16+C+f
EI<p

< e6+C f Iz - CI-°'l1 - ds/27ra.
IEI<p

Summing up, we have proved Theorem 7.44 for m = I since a < 2.
When m > 1, we can apply the preceding result to any complex line through 0.
Introducing polar coordinates (r, () we have

dV(z) = fs2mi d) J rzm2e-ds(w)/2Iz<IwI<2

where w E C and do-() denotes the surface area on the unit sphere S2,,,,_1.

7.45 Corollary. Let BR = {z E Cm/IzI < R} and A > 0 be a real number.
There exists a constant C which depends on m, A and R such that any plurisub-
harmonic function V) in BR, with 0(0) > -I and V)(z) < 0 in BR, satisfies
f zI<r ex'P(z) dV < C, where ro < Re-A/2.
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Proof. By an homothety, we have to prove the inequality for R = I and
rt = ro/R. In the proof of Theorem 7.44, if we want an estimate of the
integral of e-,W, we must have Aa < 2.

The inequality (58) is valid: a < -1/ log p, and we must choose r1 < p.
Thus we have )ca < 2 if r1 < e-a/2.

7.46 Proposition (Tian [*300]). Let (M, g) be a compact Kahler manifold. There
exist two positive constants a, C depending only on (M, g) such that

(60)
IM

e-a`° dV < C

for each C2 admissible function cp with sup cp = 0 (or with f cp dV = 0).

Proof. Choose 5r smaller than the injectivity radius of (M, g) and xi points of
M (i = 1, 2, ... N) such that M = UN1 Br(xi).

Since sup cp = 0, we have, according to (47):

J
cot dV > -kV.

Thus supB,(x.) cp(x) > -kV [Vol Br(xi)] -1; let yi E Br(xi) be such that

cp(yi) >- -kV[Vol Br(xi)] -1 = -v.

Choose the Kahler potential Oi of (M, g) in B5r(xi) such that i(yi) = 0
and set C = supi supB5,(z) IVJ,i(x)I.

We will apply Corollary 7.45 with ro = 2r, R = 4r and ,\ = I to the function
V = a(cp + ii - C) with a = (v + C)-1 . We verify that cp + wi -C < 0 in
B4r(yi) C B5r(xi) and cp(yi) + 'i(yi) - C > -(v + C). So

fB(y)
e-a(`°+O;-c) dV < Const..

Summing up, since Br(xi) C B2r(yi), we obtain (60), when sup cp = 0 and,
in fact, for any C2 admissible function positive somewhere. This is the case
when f cp dV = 0.
The converse is true; since - v f cp dV < k by (17), setting cp = cp - v f cp dV,
we have f e- 11'0 dV < f e-a`° dV < elk f e-0'0 dV.

Remark. a(M, g) = a(M, g') if g and g' belong to the same Kahler class. In
the case C, (M) > 0, we will write a(M) for a(M,g) with w(g) E C, (M).

7.47 Theorem (Tian [*300], see also Ding [*116] and Aubin [*8]). A compact
Kahler manifold (M, g) of dimension m with C1(M) > 0 admits an Einstein-
Kahler metric if a(M) > m/(m + 1) , when w E C, (M).

Proof. Adding -V-1 f cc dV to both members of inequality (18) yields
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(61) - [(,at - V-1
f cot dVJ

< V -1I (cPt) + mk2V.

If a(M) > 1, (60) implies (50) with = 0. Indeed

fex[_t+ftdV]dV < C exp [v
J

Wt dV - sup cptl < C.

If a(M) < 1, we apply to j = cpt - V f cpt dV the inequality)

J e-'' dV < e(t - a)supc-C r e dV.

By virtue of (60) and (61), we obtain (50) with 6 _ [I - a(M)] V- 1. More-
over the hypothesis on a(M) implies l; < 1 /(m + 1)V. The conditions of The-
orems 7.39 are satisfied, hence there exists an Einstein-Kahler metric.

§16. Some Results

7.48 Let (M, g) be a compact Kahler manifold with Ct (M) > 0. How to know if
(M, g) carries an Einstein-Kahler metric? At first, there may exist an obstruction,
see § 14. If there is none, we can compute a(M) to see if a(M) satisfies a(M) >
m/(m + 1) in order to apply Theorem 7.47. However, this procedure may not
be viable: in fact, for the simplest Kahler manifold Pm(C), which does carry
Einstein-Kahler metrics, a(P,,,,(C)) = 1/(m+l) (see Aubin [*9] and Real [*275]
for the proof). In dimension m = 1, on the sphere S2, Moser (see 6.65) found
the same difficulty. Here, if the Kahler manifold has some symmetries, we can
hope to solve the problem, considering in (60) only functions cp having these
symmetries.

7.49 Definition. Let G be a group of automorphisms of the compact Kahler
manifold (M, g) with w E CI (M) > 0, wG-invariant, We define aG (M) =
sup a, for a such that any G-invariant admissible function cp with f cp dV = 0
satisfies f e-aP dV < C for some constant C which depends on a, G and M.

Suppose (M, g) has a non trivial group of automorphisms G. We can ap-
ply the continuity method in 7.10, considering instead of 0, the set O of the
C-invariant functions in © = A n C5+a and instead of r, rr from R x O into
CG" the set of G-invariant C3+a functions.

D,,t (t, cp) E £(CG a, CG a) and it is inversible fore < t < 1. Thus the
functions cpt belong to An C'. For more details see Real [*274].

Thus, to obtain the C°-estimate, we only have to verify that G-invariant
admissible functions with f cp dV = 0 satisfy (60). Proposition 7.29 then implies

7.50 Theorem. If ac (M) > m/(m + 1), the compact Kahler manifold (M, g),
with g G-invariant and w E Ct (M) > 0, carries an Einstein-Kahler metric.
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7.51 Proposition (Real [*2751). cac(P,..(C)) = 1 where G is the compact sub-
group of Aut P,(C) generated by the permutations Qj,k of the homogeneous
coordinates together with the transformations ryj,e, j = 1, 2.... m and B E [0, 27r]

ak,

y,,e: ,zeeie,...z.m]

[Z0....Z,j,...,Zk,...zm] --+ 1Z0,...,Zk,...,Zj,...,Zm,.

Proof. The Kahler potential is K = (m + 1) log(1 + Emt xi), where x.i = I z.i 122,
in U0 defined by zo' 0, the usual metric is gad,, = aaaaK, ((9A = a/azA).

Since idd"(K + cp) is positive definite,

(62) aaa(K + co) =
8X'\

(XA a(K + ) 0;

cp is admissible and supposed to be a function of x1, x2, ... , x,,,,, moreover
f cp dV = 0. From (62) we obtain

8(K + cp)

(63) 0 < x ax (xt, x2, ... , xm) < m + 1
t

for (x I, X2i ... , x,,,,) E \(R+)m. Indeed the expression of K gives

Cxi K I = 0 and Xi aK 1 = m + 1.
axi

JJJ i_0 i9-Ti / x;=+00

Moreover (xi a ) Xi _ (xi a ) xi=+oo = 0 and Xi ata is increasing in xi.
Now, for (XI,x2,...,x,,) E E=]0, 1]m,

(64)
mri

xj) ?(K 1)

since, according to (63), the partial derivatives of the left hand side of (64) are
<0.

Since cp < k (47), - fv<o cp dV = f,,>o cp dV < W. Consider L =
[1/2, 1]'n C Pm(C), -kV < fL cpdV < V supXEL cp(x) = Vcp(y) for some
point y E L.

Hence (K+cp)(y) > -k and, since K+cp is increasing in each of its variables
(according to (63)), (K + cp)(l, ... , 1) > -k.

Thus, for all (x1,. .. , x,) E E:

(65) -(K+cp)(xi,...,xm) <k-(m+1)logflxil

1t
I.

Henceforth, we suppose cp E A0, the set of admissible G-invariant functions
with zero integral. For (xt, ... , Xm) E E, Real proves that
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-(K + (p)(x l , ... , x,,,,) < - ( K + ) ( , . . . ) where = I f xi

and

m

(66) -(K+(p)(x1,...,x,,,,) < k -log fixi
x-1

It is now possible to complete the proof. For (p E AO,

J e-a`° dV = (m + 1)
J

e-a`°wm with w = 2xdd' K)
E

I 1

= (m + 1) e-(a'o+K)(x,, .,x,,,..) dxl dx2 ... dx,.
0 0

Choose a E]0, 1[. According to (66) and since K > 0,

/
fl

\m
J e-Ow dV < (m + 1)eak I

J
t-a dt I = (m+ 1)eak(1 - a)-"`.

Pr(c) \ 0 J

Thus aG(P,,,,(C)) > 1. For the details and the proof of 1,

see Real [*274].

7.52 Proposition (Real [*275]). aG(p)(Pm(C)) > inf{1, - ; } where G(p) is
the compact subgroup of Aut P,,, (C) generated by the permutations Qj,k and 'yj,o
with 0 = 27r/p, p E N*.

For the definition of 0 ,k and yj,o see Proposition 7.51. Picking p = m + 1,
we do not have an alternative proof of Proposition 7.51. Indeed, for the proof,
Real uses the result of Proposition 7.51.

7.53 The dimension m = 2. The compact complex surfaces with C1 (M) > 0
are: P2(C), S2 x S2 and P2(C) blown up at k generic points (1 < k < 8).

We saw (7.31) that if k = 1 or 2 the corresponding manifolds have no
Einstein-Kahler metric. Tian and Yau [*303] proved that for any k (3 < k < 8)
there is a compact complex surface of this type (with k exceptional divisors)
which has an Einstein-Kahler metric.

Siu [*291] solved also the case k = 3. The following theorem solves entirely
the case m = 2.

-(K + m loge < -(K + (p)(1,. .. , 1).

Thus, and this is the analogous of (65), for (x1, .. . , x,,,,) E E,

Theorem (Tian [*302]). Any compact complex surface M with CI(M) > 0
admits an Einstein-Kahler metric if its group of automorphisms is reductive.
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7.54 Conjecture (Calabi). Any compact Kahler manifold with C1(M) > 0 and
without holomorphic vector field has an Einstein-Kdhler metric.

In [*71] and [*72] Calabi studied the functional f R2 dV when g belongs to
a given cohomology class. Note that f R dV = Const. since f R dV = lr"` f'P A
w"`-1, where T is the Ricci form and w the first fundamental form (see 7.1).

Let [w] be a fixed class of Kahler metrics. The Euler-Lagrange equation of
S(g) = f R2 dV when g E [w] is V, VpR = 0 (or equivalently V& V, R = 0).
That is to say, the real vector field on M

generates a holomorphic flow (possibility trivial, if R is constant).
After this, Calabi proved that, if g is a critical point of S(g), then the second

variation of S(g) with respect to any infinitesimal deformation with 6gap = 8apu
is effectively positive definite (it is zero if and only if 6gap is induced by a
holomorphic flow).

The problem of minimizing f R2 dV for all Kahler metrics in a given class
is very hard. Solving it when CI (M) > 0 and [w] = CI (M) would prove the
conjecture. Indeed, if R = Const. and Raµ = gaµ + 3f, we have f = Const.
and g is an Einstein-Kahler metric.

To illustrate his study on S(g), Calabi [*71] minimized S(g) on P,(C) blown
up at one point. This Calabi conjecture is proved for m = 2 (Theorem 7.53). In
[*302] Tian discusses the problem when m > 2.

7.55 Fermat hypersurfaces X,,,,,p.

Xm,p = {(ZO, ... Zm+1) E Pm+1(Q/zo + ... + Z, 1 = 0}

where p is an integer satisfying 0 < p < m+ 1. C1(X,,,,p) > 0, the restriction of
K = (m+2-p)log(Jzo)J2+...+Iz,,,+1 I2) to Xm,p is the potential of a Kahlerian
metric whose first fundamental form belongs to C1(Xm,p).

Tian [*300] and Siu [*291] prove that X,,,,,,,+1 and X,,,,,,, have an Einstein-
Kahler metric. Tian proves that c c(X,,p) > m/(m + 1) if p = in or m + 1.
Here G is generated by aj,j. and yj,o with 9 E [0,22r] (see 7.51). Siu applies
his method. cp being an admissible function, Siu [*2911 considers restricting cp
to algebraic curves in M. When m = 1 we saw (§15.4) that we can obtain the
C°-estimate by using the Green function. If the curves , considered by Siu, are
invariant under a large group of automorphisms of M, the C°-estimate obtained
is sharp enough to infer the existence of an Einstein-Kahler metric (compare
with 7.41 and 7.42, )3 is larger when the volume V' is smaller or when k is
larger).

7.56 Theorem (Nadel [*248], Real [*274]). The Fermat hypersurfaces X, ,p

with 1 + m/2 < p < m + I have an Einstein-Kahler metric.
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Real proves that ac(Xm,,p) > 1 when p > 1 + m/2, by using Proposition
7.52; he then applies Theorem 7.50. For the proof of Theorem 7.56, Nadel uses
the following:

7.57 Theorem (Nadel [*248]). Let (M, g) be a compact Kahler manifold with
C, (M) > 0 and let G be a compact group of automorphisms of M. If M does
not admit a G-invariant multiplier ideal sheaf M admits an Einstein-Kahler
metric.

The proof proceed by contradiction. If M does not admit an Einstein-
Kahler metric the C°-estimate fails to hold. We saw that inequality (60) with
a > m/(m + 1) implies the C°-estimate for the functions Vt. Wt solution of Et
(37) is G-invariant.

Hence for each a E ]m/(m+ 1), 1[, there exists an increasing sequence {tk}
(tk < 1) such that cpk = T tk - SUP c°tk satisfies.

J
e-01`°k dV -+ oc when k -> oo.

After S = {cok} is replaced by a suitable subsequence, we may find a
nonempty open subset U C M such that fu e-'wk dV < Const..

Then, Nadel introduces the coherent sheaf of ideals I9 on M, called the
multiplier ideal sheaf (in particular I9 is not equal to the zero sheaf of ideals
and is not equal to all of OM). It is defined as follows: for each open sub-
set U C M, I5(U) consists of the local holomorphic functions f such that
fu JfJ2e-Wk dV < Const. for all k.

Various global algebro-geometric considerations lead to a contradiction.

7.58 Other results. Nadel [*248] uses his theorem to prove that the intersection
of three quadrics in P6(C) or two quadrics in P5(C) or a cubic and a quadric in
Ps(C) admit an Einstein-Kahler metric.

Ben Abdesselem and Cherrier [*33] proved that some manifolds carry
Einstein-Kahler metrics. Among other things, they study manifolds obtained by
blowing up Pm(C) along l independent subprojective spaces Pd(C)(ld = m+ 1).
When l = 2 the manifold has an Einstein-Kahler metric.

§17. On Uniqueness

7.59 By the maximum principle, we prove that equations (2) and (6) have only
one solution. Hence when Cl (M) < 0, there is a unique Einstein-Kahler metric
if we fix the volume of the manifold, and when C1(M) = 0, there is a unique
Einstein-Kahler metric in each positive (1-1) cohomology class of the manifold
with a given volume (Theorem 7.9).
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When C, (M) > 0, the identity component G of the group of holomorphic
automorphisms of M is not necessarily a group of isometries. Suppose g is
Einstein-Kahler; if u E G, u * g is Einstein-Kahler so the following result is
the best possible.

7.60 Theorem (Bando, Mabuchi [*3 1]). If (M, g) is a compact Einstein-Kahler
manifold with C, (M) > 0, g is unique up to G-action.

The proof involves many steps. We will give some of them and a sketch
of their proof. Let wo be the first fundamental form of the initial Kahler metric
go. Denote by wo(cp) the first fundamental form of the metric go(cp), whose
components are g,,\,, + 8kµcp (cp is supposed to be admissible for go). First we
introduce the functionals

I(cP, cP) = V-t J cP)
[wo(W)"''' - wo(c3)m], and

J(co, P) = -L(cp, cP) + V-1 J P - cp)wo(cp)"'',

with cp and cP admissible functions for go, V the volume and

/brr
L(co, cP) = V-' J I

J
Otwo(cPt)m] dt

a L

where cbt = aWt/et, (t, x) -> cpt(x) being a smooth function satisfying cpa = cp
and cpb = c70-

We verify that L(cp, cP) does not depend on the choice of the family Wt, as
M(cp, cP) defined by

b

(67) M(w, P) = V- I
f4 JI (m - Rt)cptwo(ot)m] A

J

where Rt is the scalar curvature of the metric go(Wt).
When cP = 0, we recognize Aubin's functionals I(V) and J(cp) (see 7.34) in

1(cp, 0) and J(cp, 0) respectively.
Bando and Mabuchi prove many properties of these functionals such as (41)

and

(68) dt [1(0, WO - J(0, W01 = V-'
J cPt

d

7.61 The family of generalized Aubin' s equations on (M, go) is defined by

(69) log M(Vt) = -t(pt - L(0, wt) + f

where f is the function satisfying (3) and f of wo = f wo = V (we suppose the
manifold is positively oriented). (37) is the original family of equations.

For t = 0, equation (69) has a unique solution cpo. cpo satisfies L(0, cPo) = 0,
and the Ricci form of wo(cpo) is wo.
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Lemma 7.61 (Bando-Mabuchi [*31]). Let {cpt} be a CO° family of solutions of
(69) on [a, b] (0 < a < b < 1), then

(70) dt [I(0, cot) - J(0, cot)] > 0.

Proof. A computation leads to

dt 11(0' pt) - J(0, Pt)] = V J [AU,ocwt)cPt - tot]

According to Theorem 4.20, the right hand side is > 0.

Theorem 7.61 (Bando-Mabuchi [*31]). Let {cot} be a C°° family of solutions
of (69) on [a, b] (0 < a < b < 1), then

(71)
ddtt) _ -(1 - t)

dt [I(0, V0 - J(0, cot)] < 0

where p(t) = M(0, cot).

Proof. Multiplying (38) by the inverse of the metric go(cpt), we have
Rt = m + (1 - Pt (71) follows from (68), since

dp(t)
dt

= f (m - Rt)otwo(cot)m.

7.62 Theorem (Bando-Mabuchi [*31]). Any solution co, of (69), 0 < T < 1,
uniquely extends to a smooth family {cpt } of solutions of (69), 0 < t < T + E for
some e > 0. In particular (69) admits at most one solution at t = T. Moreover if
µ(t) is bounded from below T + e = 1.

Proof. According to Aubin (see 7.27), the solution uniquely extends locally. We
prove, by contradiction, that it extends until t = 0 (see [*31]). Moreover if we
suppose that there are two smooth families {cot} and {cpt} of solutions of (69)
satisfying co, = cpT, the set C3 of the t, for which cot = cPt, is open. But it is also
closed since the families are smooth. Thus 0 = [0, T + e[.

For the last part of the theorem, the hypothesis µ(t) > K implies that
.1(0, cot) - J(0, cpt) is bounded from above. The rest of the proof is similar to
that of the first part.

7.63 Sketch of the proof of Theorem 7.60. Suppose (M, go) admits an Einstein-
Kahler metric g. Then any w in 0, the orbit of w under Aut(M), is Einstein-
Kahler.

Now any w E 0 is of the form w = wo(t%) for some C°° function /, since
wo and w belong to C1(M).
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If the first positive eigenvalue at of the Laplacian 0 on (M, go(i )) is equal
to 1, there is a necessary condition to extend z%1 = 1, to a smooth family 'fit
of solutions of (69). Indeed v = (dt' t) t=t must satisfy (0 - 1)v = %. Thus
f icpw"" = 0 for all cp in the first eigenspace.

Nevertheless, using a bifurcation technique, Bando and Mabuchi prove the
existence of some 9 E 0, such that, for every sufficiently general w E Ct (M)
with positive definite Ricci tensor, there exists a smooth 1-parameter family of
solutions `Pt of (69), 0 < t < 1, satisfying

wo(i 0)=w and wo(' l)=0.

Now suppose there exists two distinct orbits 9 and 9'. Consider the families
of solutions '/t and z/it of (69), '/t as before, and 11' satisfying wo(oo) = D and
wo(bi) E 9'.

According to Theorem 7.62, 'fit = 0'. Thus 0 = 0'.

§18. On Noncompact Kahler Manifolds

7.64 Since problem 7.6 is now well studied when the Kahler manifold is com-
pact, it is natural to seek complete Einstein-Kahler metrics on noncompact
manifolds. Let us mention some references where the reader may find results
on this topic.

In [*201] R. Kobayashi generalized Aubin's theorem 7.9 in the negative
case, to the noncompact complex manifolds. The noncompact version of Calabi'
s conjecture is studied on open manifold by Tian and Yau [*304], [*3051 and
solved on C7z by Jeune [* 189]. Cheng and Yau [*93] constructed complete
Einstein-Kahler metrics with negative Ricci curvature on some noncompact
complex manifolds. Compactification of Kahler manifolds is studied by Nadel
[*249], and Yeung [*321].



Chapter 8

Monge-Ampere Equations

§1. Monge-Ampere Equations on Bounded Domains of l"

8.1 In this chapter we study the Dirichlet Problem for real Monge-Ampere
equations.

Let B be the ball of radius 1 in 11" and let I be a closed interval of 18.j (x, t)
will denote a C°° function on B x I and g a C°° Riemannian metric on B.
Consider u(x) a C°° function on S = aB with values in I, defined as the restric-
tion to S of a C°° function y on B.

The problem is to prove the existence of a function cp E C°°(B) satisfying:

(1) log det((V q + ai;)) = f (x, tp), cp/S = u,

where a;,{x) = aji(x)(1 < i, j < n) are n(n + 1)/2 C°° functions on B.
This problem is not yet solved, except for dimension two under some addi-
tional hypotheses. The reason for the difficulty is the following: for the present
it is possible to obtain a priori estimates up to the second derivatives but not
for the third derivatives in the general case. We need such estimates to exhibit
a subsequence which converges in C2(B) to a C2 function which will be a
solution of (1). Then according to Nirenberg [217] the solution is C. In the
special case when n = 2, Nirenberg [216] found an estimate for the third
derivatives in terms of a bound on the second derivatives. When n z 3 this
estimate depends in addition on the modulus of continuity of the second
derivatives.

I.I. The Fundamental Hypothesis

8.2 The hypothesis that B is convex in the metric g is fundamental: there
exists h E C°°(B), h/S = 0 satisfying V 0 for all vectors # 0 and
all points x in B.

Proposition. Under the hypothesis of convexity, there exists a lower solution of
(1): yl E C°o(B) if the right-hand side satisfies lime. - j I t I -" exp f (x, 01 = 0.
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Proof. Consider the functions cp, = j + ah for or > 0.
They are equal to u on S and when x -- xo, det((Vjj(p, + a. )) converges to
a" det((V11h)). Thus, for z large enough x-"det((Vjj9, + a;;)) >_ Const > 0
and exp J(x, gyp,) < det((o,; cp, + a;;)).
Hence there exists y, e C°°(B) satisfying

(2) log det((VU;y, + ai;)) >- f(x, y1), yj/S = u.

Remark. An open question : can one remove the hypothesis of convexity for
some problems?

8.3 The problem. For simplicity we are going to consider the more usual
Dirichlet problem for Monge-Ampere equations.

Let 0 be a bounded strictly convex domain in Ii" (n >_ 2) defined by a C'°
strictly convex function h on D satisfying h/as2 = 0. Given u(x) a C°° function
on as2 which is the restriction to cS2 of a C°° function y on i2, we consider the
equation :

(3) log det((aii(p)) = f(x, (p), rP/aQ = u,

where f (x, t) E C°°(KI x i8).

This equation was studied by Alexandrov [5], Pogorelov [235], and
Cheng and Yau [89]. These authors all use the same method, that of
Alexandrov, while the ideas for the estimates are due to Pogorelov. Under
some hypotheses they prove the existence of a "generalized" solution of (3)
(see 8.13 below) and then they try to establish its regularity. The result
obtained is the following:

If f ;(x, t) >_ 0 for x e 0 and t < supon u, then there exists q e C°°(Q), a
strictly convex solution of (3), which is Lipschitz continuous on i2 (S2 is strictly
convex).

Here we will use the continuity method advocated by Nirenberg [222].
The continuity method is simpler and allows us to prove the existence of a
solution of (3) which belongs to CZ(i2) if there exists a strictly convex upper
solution of (3) (Theorem 8.5). Unfortunately the proof is complete only in
dimension two. When n >_ 3, estimates for the third derivatives is still an
open question.
We are going to show, among other things, how to obtain the estimates by
using the continuity method. Pogorelov's estimates are different.

Notation. Henceforth we set M(q) = det((a;;(p)).

1.2. Extra Hypothesis

8.4 For the continuity method we suppose that f,(x, t) >_ 0 on Q x R. We
will remove this hypothesis later by using the method of lower and upper
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solution. But we must suppose (the obviously necessary condition) that there
exists a strictly convex upper solution of (3), yo E C2(0), which satisfies:

(4) M(yo) = det((atiyo) 5 exp f'(x, yo), yo/aS2 = u.

This hypothesis will be used to estimate the second derivatives on the
boundary.
If there exists a convex function 0 E C2(rl) satisfying:

M(iJi) = 0 Oi/af) = u

(0 exists, in particular, if u is constant), then iJi satisfies (4) strictly for any
function f' and we can choose for yo a function of the form i'o = iV + /ih with
$>0.

1.3. Theorem of Existence

8.5 The Dirichlet problem (3) has a unique strictly convex solution belonging to
C`°(Ll), when n = 2, if there exists a strictly convex upper solution yo E C2(S0)

satisfying (4) and if f,(x, t) > 0 for all x e S2 and t < supzn u (we assume Q is
strictly convex).

Proof. If n > 2 only inequality (23) is missing; otherwise the whole proof works
for any dimension. This is why we give the proof for arbitrary n.

Let us consider the equations:

(5) log M(tp) = J (x, (P) + (1 - o) [log M(yi) - f (x, 'h)], (P/cQ = u,

where a > 0 is a real number and ;', is a lower solution, the existence of which
was proved in Proposition 8.2. Thus ;,, satisfies:

(6) log M(71) ? f (x, -/1), 7,100 = U.

Let s4 be the set of strictly convex functions belonging to C2t1(i2) with
a c- ]0, 1[ which are equal to u on aft The operator

r: Z( -D ip f (x, ip) - log M(P) E C'

is continuously differentiable,

f;(x, 9)0 - g` aijo,

.sad a cp dF4, E , '(Co+'(0) C'(S)) is continuous, and dl-' is invertible
because f ; > 0 (Theorem 6.14, p. 101 of Gilbarg and Trudinger [125]). Co(S)
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denotes the functions of C(D) which vanish on the boundary ail, and g'i are
the components of the inverse matrix of ((a;;(p)).

Thus we can apply the inverse function theorem. If o E.4 satisfies log M(Cp)
= J '(x, Cp) + fo(x), there exists 'V, a neighborhood of fo in C7(0), such that
the equation r (q) = -f ,(x) has a solution 0 e,%f when f, e *. If f, e C°°(KF),
Vi a C`°(C), according to the regularity theorem 3.55. Moreover, 0 is strictly
convex, because it is so at a minimum of > and remains so by continuity since
M(ill) > 0. Lastly, the solution is unique since f; > 0 (Theorem 3.74).

At a = 0 Equation (5) has a solution cpo = 71; therefore there exists ao > 0
such that (5) has a strictly convex solution (p, e C%1) when a- e [0, ao[.
Let Qo be the largest real number having this property.

If co > 1, Equation (3) has a solution and Theorem 8.5 is proved. If
ao < 1, let us suppose for a moment the following, which we will prove
shortly: the set of the functions cp, for a e [0, ao[ is bounded in C3(Ll). Then
there exist gyp, e C" '(El) for some a e ]0, 1 [ and a sequence a, vo such that
Po, - co, in Cz+'(K)).
Since cpQ, satisfies (5), letting i -- ce, we see that cp,o satisfies (5) with a = ao.
But now we can apply the inverse function theorem at cp,o and find a neighbor-
hood .3 of co such that Equation (5) has a solution when a e 3. This contradicts
the definition of co.

Now we have to establish the estimates, the hardest part of the proof.

§2. The Estimates

2.1. The First Estimates

8.6 C° and C' estimates. Henceforth, when no confusion is possible, we
drop the subscript a. Then cp = cp, a C°'(91) is the solution of (5) with a e [0, 1].
We have

log M(q,) - f(x, (p) <- log M(Y1) - f(x, Y1),

since the second term is positive. Thus by the maximum principle (Theorem
3.74), cp - yt >- 0 on it because f, > 0 and tp - yt = 0 on ail. This implies
that on ail: ato < a.y1, where a, denotes the exterior normal derivative.

We have thus proved the C° estimate:

(7) inf y, < cp < sup u.
n an

Since cp is convex, the gradient of cp attaines its maximum on the boundary.
Let P be a point of all The tangential derivatives of cp at P are bounded since
u e CZ(ail). On the other hand we previously saw that a, cp < a, y 1. It remains
to establish an inequality in the other direction. The normal at P intersects ail
at one other point, which we call Q.
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On the straight line Z, through P and Q, let w be the linear function equal to u
at P and Q. Let p(P) be the gradient of w. Since iP is convex on Z, q < w on
f2 i) Z and (a, (p),. > u(P). µ(P) is a continuous function on aft; let p be its
minimum on the compact set On. Hence a, (p >- M.

2.2. C2-Estimate

8.7 C2 -estimate on the boundary. Let P E M and Y be a vector field on R"
which is tangent to Q. Suppose II Y(P)II = 1 and choose on R" orthonormal
coordinates such that v = (1, 0, 0, ... , 0) is the unit exterior normal at P and
Y(P) = (0, 1, 0, ... , 0). We will estimate D'.., cp, 0',, (p and aXtx,cp at P.

a) Let R2 be the radius of curvature of aft at Pin the direction Y. Since 3S1
is strictly convex, R2 > Ro > 0 (R0 a real number independent of P and Y).
At P:

(8)
z z

Rz R1R 1 1

zz

X
""Therefore a2 cp is estimated

b) Let us consider a family g of vector fields on R' tangent to On and bounded
in Cz(n); thus the components X'(x) of the vector field X E g are uniformly
bounded in Cz on K2.
Set 0 = cp - y and L = X'(x) 0, for X E g.
Differentiating the equation

(9)

yields

(10)

log M(p) = F(x, ip)

LF = g`'Xk

aijk(P,

where F(x, (p) is the right-hand side of (5) (recall that ((gij)) is the inverse
matrix of ((gij)) with gij = aij cp. We will compute B = gij a;,{L0 + ah + fiii),
where a and $ are two real numbers which we will choose later.

B = g,3Xk aijk4' + 2g" aiXk ajk + gij aijXk akt

+ agij aijh + $(gij aij(P - gij aijy).

Since gij aikcp = Sj, using (10) we obtain:

B = LF + fin + 2 a i Xi + gij(m ij + a aij h),

with

mij = -$ aijY - Xk aijk y - 2 aiXk ajkY + aijX"
ak i
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At first we pick P = flo >- -(1/n) inf(LF + 2 a,X'), where the inf is taken for
all x c- S2 and all functions q,,. Note that this inf is finite since the functions cp,
are already estimated in C'.

Then we choose a = xo large enough so that

(mi; + ao ai;h)g'' >

The real numbers ao and flo can be chosen independent of X e g. This is
possible by our hypothesis. Thus

g'fai,{LO+%0h+!oo) _ 0.

Likewise, let $ = Y1 < -(1/n) sup(LF + 2 aiX'), where the sup is taken for
all x E 0 and all cpo, and let x, be such that g''(mi; + ai ai;h) S 0. Q1 and (,
are chosen independent of X e g. Thus

g''ai,{LVi+x1h+#1/')<-0.

Since Lilt, h, and 0 vanish on 8Q, by the maximum principle:

-(r.,h + #10) 5 Ll/i < -(aoh + Poi/i)

and

-a.(aoh + /jots) < a,L < -a,(xlh + (3106).

These inequalities yield the estimate of a,xo.
In order for the family g to be large enough so that, for all pairs (P, Y) with

P e 8Q, and Y E T1,(aQ) a unit vector, there exists X E g such that X(P) = Y,
we define g as follows.
Let B be the unit ball of R n and CD be a C3-diffeomorphism from B toil. Then
ni; = xi a; - x; ai are vector fields tangent to 3B. Consider the family
g _ { 23 = ai; Di;, where ai; are real numbers with I ai; l <- II(C -' ),k 11 1. Then
g = (D* j5 has the desired property.

c) To estimate a,', 9, we need to know a strictly convex upper solution yo
satisfying (4).
Since q satisfies (5), log M((p,) f (x, (p,). According to the maximum
principle, since J', > 0, then as in 8.6, cp, < yo and a, q' >- a, yo on 00.
Since yo is strictly convex, there exists an e > 0 such that for all x E D2 and all
i = 1, 2, ... , n, ax,, yo >- e. From (8) it follows for i >- 2:

aX;X;
1

(p = az,X,yo + (aYrP -
R

e.
i
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Suppose we choose the orthonormal frame in Tp(aQ) such that for j > i > 2,
c72,; cp = 0 if i 36 j. Then (9) implies

n n

(11)
ux,x,9 [I

aX,x, = exp F(x, (V) + (- 1)p ax,x,rPµI"
p=2 p=2

where µ1p, the minor of axe. q. in the determinant M(ap), does not contain
aXlx,lp. Therefore µ1p can be estimated by the inequalities in the preceding
paragraphs.
Thus by (11) a',x,(p is estimated on aQ since a2"'Pcp > g.

8.8 C2-estimate on I2.Since cp is convex, 8yy q >- O for all directions y. Thus an
upperbound for Yk=

1
a, q is enough to yield the C2-estimate. Computing the

Laplacian of (9) leads to:

(12)
cn n-

. 9" ai jkk P _ 9im9'1 aijk ( amlk (P + Y_ akk F(x, (p).
k=1 k=1 k=1

Let $2 < 1/n inf Yk=
1

akkF(x, (p,), where the inf is taken over 52 and for all
functions 9,. It is finite since all of the terms have been estimated except the
term which involves A4, and that term is positive: F;(x, cp) 'k=1 akkcp >- 0-
#2 can be chosen negative and independent of a. Hence

9" aij Y_ akk(P - 9243) >- np, + akkF(x, (p) >_ 0.
k= k=1

By the maximum principle Y-k = 1 akk 9 - $2 cp attains its maximum on 0Q.
But by (8.8) A4 is bounded on 852. Hence the C2-estimate follows:

0 < ayylp < 211P21suplcpI + SUP I akk(n-
0 8S) k=1

Consequently the metrics (g,)ij = 8ij cp, are equivalent for a e [0, Q. Indeed,
according to the preceding inequality (g,)yy < C, where C is a constant, and
(5) implies

C"-1(9a)xx ? B > 0,

where B is a constant. Thus for all vectors 5 and a E [0, 1]

(13) s (go)ijS`s' < CIII112.
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2.3. C'-Estimate

8.9 Proposition. R = ag=#g`kg't aai;cpaktcp satisfies

(14) 9"V1 R > 2 R2 + CR'; zn-1

where V is the covariant derivative with respect to g and C is a constant which
depends on the function F(x, t) and on an upper bound of II(PIIC2 (as do the
constants introduced in the proof).

Proof. Calabi [75] p. 113 establishes the following inequality in the special
case F(x, cp) = 0:

2(n + 1) 2

gi'D`jR -- n(n - 1)
R .

He introduced Ai;k = ri;k = f ai;k q. Ai;k is symmetric with respect to its
subscripts and we can verify the following equalities:

(15) g"Ai;k = akF and VeAi;k = V.Aeik

where F is written in place of F(x, (p) for simplicity.
A computation similar to that of Calabi (see Pogorelov [235] p. 39) leads

to

g'jVijR > A"k0;kViF + 2 n + 1 R2 +
C1R312 + C2R + 20'A''kVeAi;k.n(n - 1)

C1 and C2 are two constants and the indices are raised using g", for instance
rk = g'eritk are Christoffel's symbols of the Riemannian connection.
Moreover:

A''kVi;kF = A'jk ai(a;kF - Fillk aeF)

- A''kr (aek F - fl am F)

- A''kr-[a; F - r;t am F].

Thus

A''k(VIJkF + V'FViA;II) < Const x (1 + R)vfR.
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According to (15) for some constant C3 we get:

g'1o,.R>2 n+1
n(n - 1)

R2+C3(1+R)VfR_

+ 2(YeA`'" - 'A`'kv(F)(OeAi,.k - -Ai;kVj),

and inequality (14) follows.

8.10 Interior C3-estimate. In this paragraph we assume that the derivatives of
cp up to order two are estimated. A term which involves only derivatives of cp of
order at most two is called a bounded term. First of all note that a;[g"M((p)]
= 0. Indeed,

019"M(9)] = M((p)
[9"gke

akei(P - 9`k9't akettP]-

Interchanging e and i in the last term, we obtain the result. Multiply (12) by
h2M(cp) and integrate over 0. Since a;[g''M(cp)] = 0, integrating by parts
twice leads to:

Jh2g1mgut a,;,, cp a., cpM(cp) dx < Const.
n k=1

Set R = Zg'#g'kg'` aij p a$klcp. Since the metrics g, are equivalent, the pre-
ceding inequality implies

(16) Jh2R dx < Const.
n

It is possible to show that In R dx < Const, but that yields nothing more here.
Let us prove by induction that for all integer p:

(17) Jh2PRP dx < Const.
n

Assume (17) holds for a given p. Multiplying (14) by h2P+2RP-1 M(cp) and
integrating by parts over C1 lead to:

(1 - p) Jh2I2gRP_2 a,R a;R M((p) dx
n

- fg 'i aih2P+zRP-' ajR M(AP) dx
n

2 (n h2P+2Rp+
1 M(g) dx + C

J
1h2P+2RP-112 M(cp) dx.n- l n n
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Integrating the second integral by parts again gives, by (15),

2 I h2p+ 2Rp+ 1 M((p) dx < 1 f nRpg"O;Jh2 2 M(cp) dx + Const
n - 1 J .1

2pRpConst x I 1 + 1
fo

h
p

Thus, since(17) holds forp = 1(inequality 16), (17) holds for all p. Accordingly,
for any compact set K c S2 and any integer p, I4QII x,uc) <_ Const for all
(s E [O. 1].

By the regularity theorem (3.56), for all r > 0:

Const.

In particular the third derivatives of (p, are uniformly bounded on K.

8.11 C'-estimate on the boundary.
a) Recall (8.7), where we defined L = Xk o, with X E g. Differentiating (9)

twice with respect to L gives: L2F(x, (p) = -g'1g'kL(0,,k(p)L(a,;(p) +
g''L2(a;;(p). Next we compute g`J a,;L2(p. Since

(18) L29 = L(Xk ak(p) = X'Xk alk(p + X'01 Xk ak(p,

then

9"(a;L-(p) = 9"L2(ai;(p) + 4g'j(aiX,)Xk a;Ck(p + 9`' a;(X`Xk) aCk

+ g'' a;,{x' a,Xk) ak(P + 2 a;(Xk okX`).

Thus

(19) g'j a,;L2(p = (Xk a;,k(pg`' + 2 aeX')(X" a;.ej g°` + 2 a, X`)
+ bounded terms.

Consequently, there exists a constant x such that

g" a;,.(L20i+ah)>_0.

Since L20 and h vanish on the boundary Of), by the maximum principle
L2t/i + ah < 0 on S2 and on the boundary

(20) 0, L21Ii > -a a, h.
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b) If we get an inequality in the opposite direction, the third derivatives will
be estimated on the boundary. Indeed, then we have on the boundary:

(21) Ia,L291 < Const.

Consider P c OKI and use the coordinates in (8.7). Differentiating (18) with
respect to L yields L3(p = X'X'Xk a;jkcp + bounded terms.

On OR L3(p = L3(t/i + y) = L3/, so (0222 c0)1 is estimated. Likewise the
third derivatives with respect to coordinates x; with i >- 2 are estimated. By
(21), (a1ij(p)p is estimated for i and j >- 2.

To get an estimate for j > 1, we differentiate (9) with respect to
xj. This yields:

9" bounded terms.

Because the metrics gij are equivalent, there exists a constant ri > 0 such that
g" > n > 0 and the estimate of (a, ,j (p)p follows.

Finally, differentiating (9) with respect to x, yields g" a111q = bounded
terms. Hence all the third derivatives are estimated on the boundary.

c) It remains to find an upper bound for a,L2t/i on the boundary. For the
present such a bound is established only in the case n = 2.

From now on, n = 2; consequently the dimension of aft is equal to one.
Consider a vector field X tangent to ail and of norm one on 8). Since the
second derivatives of Ip are estimated, there exists M such that I L2t/i I < M on
ail. Recall that ' = (p - y.
Let p be an integer that we will choose later and set

L=(1 +.11 +L2O)-p.

Let K c i2 be a compact set such that IIXII > 1/2 on it - K. Compute
g0 aa,(l; on 0 - K to obtain

9'Q a=a(_ -P(I + M + L20)-p- lg=a

p(p + 1) (1 + ;L1 + L21(i)-p-2g=v a,L2tfi a#L20.

Using (19) gives

(21) 9'fl p(I + M + L2ty)-p-2[(P + I)g2a 8 L20 a#L2o
-(I +M+LZt/i)(Xkajlk(P9"+2a,Xi)
x (X2 aAfl;(pgP' + 2 aiX')] + bounded terms.

At Q e i2 - K suppose that X is in the direction of x2. According to (10),
there exists a constant ko such that

10211<PI <_ ko(I + 1c221cPI + 10222(PI)
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Thus there is a constant k 1 such that

(Xk a;tk(P9" + 2 7,X`)(X" a,o;cpgs' + 2 a; X)

< kl(1 + 10221P12 + 10222(P 12).

Moreover,

9x0 anL2II aBL2'Y > k2(Ia221(P I2 + Ia222q'12 - 1),

where k2 is a constant which depends on K and on the preceding estimates,
much as did ko and k1.

Pick p such that (p + 1)k2 2t (1 + 2M)k1. Since the third derivatives are
bounded on K (by 8.9), (21) shows that (E satisfies the following inequality on
4:

g1f ago (E > Const.

Hence there exists a constant t such that

(22) g110 0=1((E + th) >- 0

since the metrics gQ are equivalent. Because (9 and E) are constant on an,
according to the maximum principle.

(9 +th<(1+M)-°,

while on ail: a,(1: + t a,h >t 0. This gives

-p(1 + M + a,L2I/i -t avh.

Hence we obtain the desired inequality

(23) aVL20 < (1 + 2M)p+1 sup a,h.
P en

C3-estimate on c2.

By inequality (14) there exist two positive constants a and a such that:

g''V1R?n 2

- 1[(R-a)2-a2].

Two cases can occur: R attains its maximum on aQ or in Q. In the first case
we saw that R is bounded, while if R attains its maximum at P e i2, according
to the preceding inequality:

R <supR <a+a
n

since g"V1 R < 0 at P.
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8.12 Using the method of lower and upper solutions (as in 7.25), and using
Aubin [23] p. 374 for the estimates, we can prove the following.

Theorem. Let C1 c 18" be strictly convex. If there exist a strictly convex upper
solution yo e C2(jj) satisfying (4) and a strictly convex lower solution 7, E C%2)
satisfying (6) with y1 < yo, the Dirichlet problem (3) has a strictly convex
solution cp belonging to C°°O when n = 2, and cp satisfies y, < cp < yo.

Corollary. If there exists yo as above and if lim,, _j I t I -" exp f (x, t)] = 0,
then the Dirichlet problem (3) has a strictly convex solution cp e C°°(rl) when
n = 2.

Proof. By Proposition (8.2), for x large enough y, = y + xh is a strictly
convex lower solution satisfying (6). Thus we can choose x so that y1 < yo
Moreover y1 E C°°(il).

The preceding theorem now implies the stated result.

§3. The Radon Measure .A(q)

8.13 Definition. For a CZ convex function on S2, we set

M(q) = M(q) dx' A dxz A .. A dx"

and we define the Radon measure:

fn
Co(D) -3 ii -+ .,&M'

where Co(f) denote the set of continuous functions with compact support.

This definition extends to convex functions in general, according to
Alexandrov. Here we will follow the analytic approach of Rauch and Taylor
[242].
First let us remark that for a CZ convex function

4((p) = d(a14p) A d(a24') A ... A d(a"cp).

We are going to show by induction that d(a;1cp) A d(a;2cp) A A

defines a current when 4 p is a convex function and 1 < i 1 < iz < < i," <_ n.
Let us begin with m = 1. Let co be a continuous (n - 1)-form with compact
support K c f2, and co = Y,=1 A(x) dx1 A A dx' A A dx". For such

cuwesetIIwIIo = suP s1s"SUP=EKIf,(x)I.Whencpisaconvexfunctionwewill
define

Jd(a4) A w.
a
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Choose a C`° positive function y with compact support K c S2 which is equal
to one on K.

Now consider a sequence of convex C'° functions co which converges to cp
uniformly on K. We have

J
f,d(ai(p;)ndx2n...ndx"

n

But since cp, is convex,

(24)

and

<supIf,IJ Ia,icpjldx'Adx2A...Adx".
K

210,ig;l <- allw; + aii(v;

2 f laiicpjl dx < 5(aj + dx =
J

cpj{airy + airy) dx.
X n n

Thus there exists a constant C, such that

(25) fd(a) A CO < Clllwllo SuPlw,l.

The constants C, (a E N) introduced depend on K and y only. In particular,
they are independent of cp; and w.
Let wk be a sequence of C°° (n - 1)-forms which converges uniformly to w.
We choose wk such that supp wk c K.
We define In d(ai l) A wk as a distribution and let j - x,

in
d(ai(P,) A wk

fn
d(ai(p) A wk.

Then by (25)

fnd(ai(p) A Wk < C1 11 COJ 0 SUP I O 1,

so that f n d(ai(p) A co, is a Cauchy sequence which converges to a limit
independent of the sequence wk. We call this limit In d(aicp) A w. It satisfies:

fd(a1) A CO
n

< C111wllosuPlcvI.

Now suppose we have defined in d(ai,cp) A d(ai2 (p) A A d(ai_ cp) A Co for
all families of integers 1 < i 1 < i2 < . < im < n, (m < n) and all continuous
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(n - m)-forms Co with support contained in K. Suppose we have proved that
there exists a constant C2 such that:

(26) fn d(ai,(P) A d(ai2(P) A ... A d(aim(P) A 6 < C21I(bII0[SUPI(PI]m.

As before, II6IIo is equal to the sup of the components of w.
Let Co be a continuous (n - m - 1)-form with support contained in K, and

let cuk be a sequence of C`° (n - m - 1)-forms which converge uniformly to w :
Ilwk - wllo -+ 0 when k -+ x. We pick thk such that supp wk c K.
Consider (m + 1) integers 1 < i, < i, < - - - < imt, < it We want to define
F(CU) = in d(ai,(p) A . . A d(aim cp) A Co. First we define In d(ai,(p) A . .

A A (5k = F(cvk) by integrating by parts. For instance, if
then by definition:

(m + 1) If(x)d(3i) A ... A A dxm+2 A darn+3 A ... A d fl
fl

m + 1
I(' {'

Y
J

(p d(ai,9) A ... A d(ai,_,Q) A d(ai,J) A d(ai,.,(P) A ... A
q=1 Sl

x d(aim+,(P) A dxm+2 A ... A dx°.

This equality holds if CP e C. When Cp is only convex the integrals of the
second term make sense by our assumption, with the continuous (n - m)-
forms

cUq = (-1)m+1-9(p d(ai4J) A
dxm+2 A ... A dx".

Then letting j -+ oo,

(27) r,{Cvk) = $d(a11J) A d(at:CP;) A ... A d(aj_,,(P;) A Cbk --> F(wk)
n

On the other hand,

J
f d(0; cps) A ... A d(a,_,(p) A dxm+2 A ... A dx"

n

< sup If I JD(x) I dx,

where D(x) = is the (m + 1)-determinant with 1 < 1, k < m + 1.
But because Cp, is convex, 2ID(x)I < D,(x) + D2(x) where D,(x) _
det((a,kCa;)) and D2 = det((aiki,(p;)).
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Indeed this inequality is the same as (24) on Am+ 1((18") The extension to Am+ 1

of the quadratic form defined by ((a;hcp;)) is a positive quadratic form whose
components are the (m + 1)-determinants extracted from ((a;h(P)) with
1 <i,h<n.
Thus there exists a constant C3 such that

2 Jl dx < r y[D1(x) + D2(x)] dx < C3[sup19;l]m+1
K R

For instance, according to (26):

fYD1(x) dx

= JYd(a1) A d(a2 9j) A
R

.. A d(am+1(Pj) A dxm+2 A ... A dx"

= f lp; d(a1(p;) A d(a2(p;) A ... A d(am9;)
R

1A d(am+iY) A dxm+2 A ... A dx" < C3[suPIgq;I]"

Consequently, there exists a constant C4 such that

lFj(Cb )I _< C41I6)klIO[SUP1
(vjl]m+

Letting j -+ oc, by (27):

Ir(wk)I <_ C4II WkIIo[supl(OI]m+1

Therefore r(wk) is a Cauchy sequence which converges to F(CO) and this limit
is independent of the sequence wk.

By induction we have thus defined the Radon measure .&(cp) when cp is a
convex function. Moreover, for any compact set K c Q there exists a constant
C5 such that

(28)
in 0-0(cO) < Cs supI1'I[SUPI(gI]"

for all e C(Q) with supp /i c K.

8.14 Proposition. Let {pp} be a sequence of convex functions on Q which
converges uniformly to cp on Q. Then K((pp) - 4'(cp) vaguely (i.e. for all

(W))e CO(Q), In i4(gp) - In
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Proof. As in the preceding paragraph, the proof proceeds by induction. We
use the same notation.

Let w be a continuous (n - 1)-form and let {wk} be a sequence of C°°
(n - 1)-forms with support contained in K, and which converges uniformly
to co. Obviously

Jd(1cpp) A CUk -' Jd(a1c) n wk.
l

By definition

J'd(aP) A w= lira Jd(3cop) A wk.
n k-m n

But according to (25) this convergence is uniform in p:

f d(a; (p,) A (w - wk)
n

<-C1ll(') -()JkMIOSUP I(PpI<-Clll(^)k-wile

Thus we can interchange the limits in p and in k:

5d(a) A CD -
Jn

f d(ai (p) A (CO - wk)
n

Jd(ai) A Wk - Jd(a) A wk
n n

f d(ai (pp) A (w - wk)
a

These three terms are smaller than E > 0 if we choose k such that II Wk - wll o

< e/C 1, and then p large enough.
This proves the result for m = 1. We suppose now that it is true for some

m < n, so we assume:
for all continuous (n - m)-form th with support included in K,

f d(ai,(pp) A d(dia(pp) A ... A d(aj_cpp) A (u
n

f d(ai,(p) A d(ai2(P) A ... A d(aim(P) A (,U

We then prove the result for m + 1 in a similar way to the m = 1 case. 0
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§4. The Functional J((p)

8.15 Definition. For a C2 convex function which is zero on the boundary ail
we set :

(29) 5((p) = -n fM(c) dx.
n

This definition makes sense if the convex function is not C2. Indeed, for a < 0
set Q. = {x e n/(p(x) < a}. According to the preceding paragraph

- JJ((Q) = -r(a)

makes sense. Since .A'(9) is a non-negative Radon measure and cp < 0, r(a) is
an increasing function. We define

5((q) = -nlim JqJ((q,).
na

Of course J(cp) may be infinite. The set of the convex functions for which J(( P)
is finite will play surely an important role.

4.1. Properties of J(9)

8.16 Let us suppose that q e C2(KI) is a strictly convex function. As before. set
gi; = ai; cp and let gi' be the components of the inverse matrix of ((gij)). We will
prove that

8. Monge-Ampere Equations

(30) I((P) = JgiJ ai p aj 9M ((p) dx.
n

M((p) =
all a12(P ...

aia(p

aii(P ai;cp ... aikcp

aijw a;,9 ...

aik (P ... akk 9

where the sum Y is extended to all n x n determinants obtained when the n
subscripts i, j, ... , k run from 1 to n. If two subscripts are equal the deter-
minant is zero, otherwise it is equal to M(cp). Thus we see that M(9) is a
divergence:

. aik cp

1

M(c,)=n-Eai

akk Q

nM(cp) = ai(gi'M(q) a; g).
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When we differentiate a column other than the first, we get a determinant
which is zero. Thus integrating (29) by parts leads to (30).
For the preceding proof we supposed that cp e C', but the result is true if cp is
only C2. In this case we approximate cp in C2 by strictly convex C°° functions
iq. We have

-n jM() dx = aM() dx.

By passing to the limit we get the result.

We will now show that the functional .ss(cp) is convex on the set of the
strictly convex functions iP E C'(C2). Let i/i e C2(0) be a function which vanishes
on the boundary. c p + to is strictly convex for I t I small enough and the
second derivative of f((p + tl(i) with respect to t at t = 0 is equal to

n(n + 1)
J

gij ajl ajk M(cp) dx > 0.
n

Indeed, we have n terms of the form

1 f
(n - 1)! 1n

auo aij9 ... aik(P

aij lP ajj (

aik Y " . akk (P

and n(n - 1)/2 terms of the form

1 f
(n-1)! ,Jq

which are equal to

1

(n - 1)! fnaitP

This may be rewritten as

1

il,fa i(n- 1)1

dx = Ji ai[g''M((p) ajly] dx
n

aiiW aij auip ... aikiP

aij o ajj 0 ail tP ...

aikW ajk'Y ak19 ' - ' akk'P

aiW aij ail(P

ajk ajj 0 ail rP

akW ajk0 akiQP

ai0
ajk

akk (P

aip aij'Y ailp ...
a jl cp

ak w ajk akl 9 ... akk (P

dx,

dx.

dx,
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which is equal to In t/i 8;[g"M((p) aAi] dx. Altogether we have n(n + 1)/2
terms. Integrating by parts gives the result.

8.17 Remark. If S2 is a ball of radius r and gP a C2 radially symmetric function
vanishing on the boundary: qp(x) = g(11xII) with g(r) = 0.
The integrand in (30) is equal to I g' I"+ 'p' -" with p = Ilx11. Thus in this case

J((p) = w"- t Ig'
In+ t dp.

0

Let f be a function belonging to H;+'([0, r]). f is Holder continuous. Indeed:

(31)1f(b) -.f(a)I =
b

J
f '(s) ds

a J
bI

f'(s)1"+' ds

a

t O,+t)
Ib - aIniln+t)

Thus, f (i) = 0 makes sense, and if O(x) = f (11x11) we can define J(fl to be
equal to w"_

1 f o I.f' dp.

8.18 Proposition. Let {} pE s, be a sequence of convexfunctions on 0, vanishing
on act, which converges uniformly to cp on i2. Then

5((p) < lim inf J((pp).
P-x

Thus, J(gp) is lower semi-continuous.

Proof. We use the notation of 8.14. For a < 0, according to (28):

((P - 9,)-Z(9,)
r21a1

<- C(a) sup lgp - 9Pl[sup lwpl]"

< Const x 119 - ccPl1 o.

thus fn(a) (qp - g7),/f(gpP) - 0 when p -* x. But we can write

-n
fa)

(9p 9)-#(9P) n f qp./I(gpp) = -n f gpp.,#(gpp) <- J(gpp).n)n(a) n(a)

Taking the lim inf when p - x leads to

- n J 9#(gp) S lim inf . 0'((p,),
n(a) P- 'O

by Proposition 8.14. Then letting a - 0 we get the desired result.
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8.19 In this paragraph we will recall some properties of convex bodies which
will be useful in 8.20.

As previously, ) is a strictly convex bounded set of R". If Q e On, w(Q) will
denote the direction of the vector PH where P is the origin of the coordinates
of R" (which we assume is inside 52) and H(Q) the projection of P on the
tangent plane of 852 at Q.
We identify w with a point on the sphere S"_ 1(1). We let f'(Q) be the length of
PH.

For the proof of the next theorem, we are going to define a symmetrization
procedure which is not the usual one of 2.11. It will be a consequence of the
general inequality of Minkowski (see Buseman [71] p. 48) which applies to
the convex bodies Q and B and asserts that

(32) (i J 1(Q) dw)" >
u(K2)[y(B)]n-

n an

where y denote the Euclidean measure and dw the element of measure on the
unit sphere. Since equality holds for the ball, a consequence of (32) is:

Proposition 8.19. Among the convex bodies with fen < dw given, the ball has the
greatest volume.

8.20 Let d and D be the inradius and circumradius of Q.

Theorem. Let cp E C2(fl) be a convex function which vanishes on 852. There exists
a radially symmetric function w e C'(B) (d < r < D), vanishing for 1Ix11 = r,
with the following properties:

a) Cp has the same extrema as 9;
(33) fi) 5(CP) < 5%q);

y) µ(52a) < u(S'2a) for all a < 0,

where 52a = {x e B, I Cp(x) < a}.

Proof. Let m be the minimum of tp. On [m, 0] we define the function p by
p(0) = (1/a).- 1 ) fan I dw and p(a) = fe n . form < a < 0. p is
strictly increasing and C' on ]m, 0[. Indeed,

=
1

J

dw
for a e ]m, 0[.(34) P (a) - _1 an, Ocpw

p'(a) is a continuous strictly positive function which goes to infinity as
a - m because I otp(x) I -,. 0 as d(x, 52) -+ 0. Moreover, when a -+ 0,

1 r dw
P(a)

w"-1 Jan lV(PI

Thus a -+ p(a) is invertible. Let g be its inverse function: a = g(p).
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On 5 / satisfies d< l < D; hence d < r = p(0) < D. If µ(S2m) 0, p(m) > 0.
In this case we set g(p) = m for 0 < p 5 p(m). Thus g e C'([O, r]), g'(0) = 0,
andg'>0.

Consider now the radially symmetric function O(x) = g(Ilxll). Obviously
a) is true and y) holds by Proposition 8.19 since

(35)
fn.

l dw = p(a)wn-1 = J l d(u.aart,
It remains to prove fl). By (30)

0 n- 1

.I(q) _ da
faaa

I Vg2l f dc,
i=1 Ri

where R.(Q) are the principal radii of curvature of 00,, at Q E ails. Thus

0

J(<p) =
J da f I Vp I" dw

aS2ain

because du = fill=-l' Ri dw and

(36) J(() =
J

da
J

V I" dw = wn-1
J

Ig'[p(a)]I" dao o
in

ana

m

0

= wn-t
J

[pe(a)]-"da-
m

Applying Holder's inequality yields

+1)dw
wn -

r
dw < (

\1/(n+1)(.Li
danV(p I" dwI

J (p I

Consequently by (34):

jivr dco > wn-1[p'(a)]-"
ana

Integrating with respect to a over [m, 0] gives #).

8.21 Theorem. All convex functions (p, which are zero on a a satisfy:

(37) inf rp
n

n+1

D"wn 11f(q,),

where D is the circumradius of a
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Proof. If cp e C2(Kl), Theorem 8.20 shows that it is enough to prove the result
for radially symmetric function ip.
Set O(x) = f (11 x 11). We have f (0) = inf ip and f (T) = O with T < D. Using (31)
gives

If(0)In+1 < T" 1Tlf'(s)I"+' ds = T"con-'jJ(0).
0

And we get the result from Theorem 8.20.
If cp is a convex function but not necessarily CZ, we consider a sequence of

convex C°° functions i/i; which converges uniformly to cp on Da, where a < 0 is
close to zero. We can suppose that on 8i2a, iii > 2a. By Proposition 8.14,
in. oi-o(o) - in. WA(9)
Applying (37) to the function inf(0, 0; - 2a) leads to

2a)I" < DWn-',[-n Ji(i)];

letting i Do and then a -+ 0 yields (37).

§5. Variational Problem

8.22 Let f (t) e C"(] - x, 0]) (k >- 0) be a strictly positive function when t 0
and greater than some e > 0 for t < to, to some real number. Set F(t) =
10- 1,1 f (u) du and consider the functional r defined on the set of continuous
functions on the unit ball $ by:

F(O) = f F(O(x)) dx.
B

We are interested in the following problem:
Minimize J(O) over the set d of convex functions which are zero on 8B and
which satisfy r(') = ,f, for ? > 0 some given real number.

Theorem 8.22. The inf of .J(ai) for all , e -z(, which we call m, is attained by a
radially symmetric convex function 0o e Ck+z(B) which vanishes on 8B and
which satisfies .sa(go) = m, r(00) = 4, and for some v > 0

(38) M(ho) = vf(io)

Proof. a) First of all d is not empty. More precisely if tV < 0 (tG 0 0) is a
continuous function on B there exists a unique real number µo > 0 for which
1-(µo ) = 4. Indeed for p > 0

(39) 8M r(1) _ - f Of(uO) dx > 0
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because the integrand is strictly negative somewhere. It is easy to verify that
the hypotheses imply r(i Ji) oc as µ - oo and r(j 1i) -. 0 as µ -s 0.
Hence µo exists and is unique.

/3) One can show that the inf of . 0(') for 0 e .sd and that for 0 E .21 n C2(B)
are equal. The reader will find the details in Aubin [23] p. 370.

y) Now let 0 c-.4 n C2(B) and be the corresponding radially symmetric
functions introduced in 8.20. Then r(i) >- 17(4). Indeed consider Vii, the
radially symmetric function such that µ(S2,) = µ(i2.) for all a < 0, where
S2. _ {x c- B I i i(x) < a}.
By Theorem 8.19, µ(S2.) < µ(S'2.). Thus on B and therefore r(p) > r(ii)
since r is decreasing in 0. See (39). Moreover obviously, r(0).

Hence there exists µo < 1 such that F(µoiii) = r(>G) = ,1. See x). But
according to Theorem 8.20, J(ai) < .f(O). Thus µo+'_f(1i) <
5(i/i). Therefore m is equal to the inf of J(i/i) for all radially symmetric func-
tions 0 E .sad n C2(B).

8) It remains for us to solve a variational problem in one dimension. That is
the aim of the following.

8.23 Theorem. The inf of .fi(g) = wn_, fo jg'(r)I"+' dr for all nonpositive
functions g e Hi+'([0, 1]) which vanish at r = 1 and which satisfy r(g) _
w"_, fo F(g)r" dr = ,f is attained by a convex function go c- C" '([0, 1
which is a solution of Equation (38) with v > 0, go satisfying g'0(0) = 0 and
go(1) = 0.

Proof. Since this is similar to several proofs done previously, we only sketch it.
We already saw that this problem makes sense: g is Holder continuous on
[0, 1] (see 8.17), and there exist functions g satisfying r(g) = k (see 8.22, x)).

Let {gi} be a minimizing sequence. These functions are equicontinuous by
(31). Applying Ascoli's theorem 3.15 there exists a subsequence of the {gi}
which converges uniformly to a continuous function go. Thus r(go) = 1.
go < 0, and go(1) = 0. Moreover a subsequence converges weakly to go in
H;+'([0, 1]). Thus by 3.17 the inf of 1(g) is attained by go. Writing the Euler
equation yields

(40) f l s'Jg'0
I"- 'go dr =

-v J 1 jif(go)r"-' dr
0 0

for some real v and all function E H;+'([0, 1]) vanishing at r = 1. Picking
t = go we see that v > 0 (v = 0 is impossible because this would imply
.e(go) = 0 and consequently go = 0).
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We now prove that go(r) is equal to g(r) = fi [v f o f(9(,(t))t4dt]''" du.
4(1) = 0, g e C'([0, 1]), and (4'"(r))' = vJ(g0(r))r"-'. Thus for all integrable
functions y on [0, 1]:

y(Ig0I90 - 9")dr = 0.
Jo

This implies j g' J' 'g0 so s0 = g' since g > 0. Hence go = g. Con-
sidering the expression

9o(r) = v

jr
.l(9o(t))t" i dt]

,

0

we see that g0(1) > 0 since go E4 0 and therefore g0(r) < 0 for r < 1. Thus
g0(r) 0 0 for r > 0 and go is CZ on ]0, 1] where go > 0. Moreover as r -+ 0,
g0(r) - [(v/n)J(g0(0))]''"r. Thus go e C2([0, 1]) and it is convex. If f e Ck,
go c Cz+k 0

8.24 Corollary. Let f (x, t) be a C°` function on B x ] - oc, 0]. There exists a
real number v0 > 0 such that the equation

(41) M(tp) = v exp f (x, cp), cp/aB = 0

has a strictly convex solution ip E CQ(B) when n = 2 and 0 < v < vo.

Proof. For some P. > 0 define 7(t) = e + sup.,EB exp f (x, t). Consider F(t) _
J,0 7(u) du and the functional r(ii) = fB F(,b(x)) dx as in 8.22.

By Theorem 8.22, there exist v0 > 0 and a convex function 40 E C'°(B)
satisfying

M(io) = voJ(Oo), io/aB = 0.

Obviously o is a strictly convex lower solution of (41) for v < v0:

M(i0) >- vo exp f(x, fo(x))

and o is strictly convex since M(b0) > 0.
Then we choose Q > 0 small enough so that yo = a(Ilx112 - 1) is an upper

solution of (41) greater than /o, where v < v0 is given. Using Theorem 8.12
we obtain the stated result.
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§6. The Complex Monge-Ampere Equation

8.25 The problem. We cannot end this paragraph without discussing the
complex Monge-Ampere Equation.

Definition. A function cp with value in [- xo, +oo[, (q - oo) is plurisub-
harmonic if it is lower semi-continuous and if the restriction of qO to any
complex line is either a subharmonic function or else equal to - -)c. In case
q is CZ, cp is plurisubharmonic if the Hermitian form 0A,,cp dzl dz4 is non-
negative.

Henceforth i2 will be a strictly pseudoconvex bounded open set in C'"
defined by a strictly plurisubharmonic function h e C°0(0): h/ail = 0 and let
u E Ck(afl) (k > 0).

We consider the Dirichlet Problem

(42) det((a,,u cp)) = f (x, (q), (p/ail = u

where f (x, (p) is a non-negative function such that f "'°(x, tp) E C'(i2 x R),
r > 0. azµ cp denotes the second derivative of (p with respect to z" and z°
(1 <A,µ<m).

This problem was studied by Bedford and Taylor [29] and [30], who use
a very special method. They consider the upper envelope of the set of plurisub-
harmonic functions which are lower solutions of (42). They first prove that
this upper envelope is a solution of (42) in a generalized sense and then try to
prove that this solution is regular.

Remark 8.25. As boundary condition we can use cp(x) + oc when x -- an.
Cheng and Yau [90] solve a problem of this kind:

They set (p = u - log(- h) and write the problem using the Kahler metric
g defined by gAA = - a,, log(- h).
They now solve a Monge-Ampere equation on a complete Kahler manifold,
using the continuity method. The estimates are obtained by using the methods
for compact Kahler manifolds (Chapter 7) thanks to their generalized
maximum principle (Theorem 3.76).

6.1. Bedford and Taylor's Results

8.26 Bedford and Taylor [29] consider the case where the function f does
not depend on q and in Bedford and Taylor [30] the following is proved:

Theorem. If f "'"(x, gyp) is convex and nondecreasing in cp, then there exists a
unique plurisubharmonic function (p c- C(il) which solves the Dirichlet problem
(42) in a generalized sense. If k > 2 and f "'"(x, cp) is Lipschitz on 12 x R,
then the solution cp is Lipschitz on 0.
In case i2 is the unit ball B, if in addition r = k = 2, then the function cp has
second partial derivatives almost everywhere which are locally bounded.
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6.2. The Measure 97I(cp)

8.27 Recall that Sl is a strictly pseudoconvex bounded open set in Cm. For a
continuous plurisubharmonic function cp on S2, it is possible to define a
measure 9R(cp) which is equal to

im

W!
Am dd"cp = det((a;,u (p)) dzl A dzl A ... A dzm A d5m

in case 9 is C2. Recall Am is m-times the exterior product and X9 = axcp dzA.

The method used in an earlier article by Chern, Levine, and Nirenberg [93]
is similar to that of 8.13.
The main point is: for all compact K c fl there is a constant C(K) such that
Jk Am dd" cp < C(K) supnlcp Im for all plurisubharmonic function cp E C'(Q).

6.3. The Functional 3((p)

8.28 For a plurisubharmonic function q E C(l) n C2(S2) which is zero on the
boundary 0 we set:

(43) `m f Am dd"
(m - 1)! n

If the plurisubharmonic function belongs only to C(D) we can extend this
definition by the same procedure as in 8.15. For a < 0 set S2a = {x c- n/9(x)
< a). Since U (cp) is a non-negative Radon measure -5na 9931((p) = r(a)
makes sense and is an increasing function of a. We define

3((P) = -mlim
J

ONO.
a-o ci,

The set of the continuous plurisubharmonic functions on 11 vanishing on aQ
for which 3(q) is finite will play an important role.

6.4. Some Properties of 3((p)

8.29 Suppose cp e C2(D) is a strictly plurisubharmonic function vanishing on
asl. Set gx, = 7xycp and let gAl' be the components of the inverse matrix of
((gx,,)). Integrating (43) by parts leads to:

(44) 3((p) = im
J

9z a., 9 au cp det((azu 9)) dz l A dz t A ... A dz"'.
n
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Thus 3(q) is the integral on S2 of the square of the gradient of q in the Kahler
metric gAµ
To carry out the integration by parts we need, in fact, rp e C3; however we
obtain the result for cp e C2 by a density argument.

Proposition. 3((p) is convex on the set of the strictly plurisubharmonic functions
cp e C2(fl) vanishing on aQ.

Proof. Let oe C2(S2) be a function which is zero on the boundary. cp + to is
strictly plurisubharmonic for It I small enough. Thus we have to verify that
the second derivative with respect to t at t = 0 of 3((p + tai) is non-negative.
Integrating by parts enough times yields the following expression for this
second derivative:

a2
3((p+to)

=oatr

= m(m - 1)im J g^" a;, 0 a;, 0 det((c'A;, cp)) dz1 A dz' A dz2 A . . A d_'".

This is obviously non-negative.

Theorem. 3((p) is lower semi-continuous: if {cppj,,, is a sequence of pluri-
subharmonic functions continuous on K2 and vanishing on an which converges
uniformly to cp on 3'l, then

3(p) < lim inf 3((p p).
P_ cc

Proof. It is similar to that in 8.18. (p, being the uniform limit of the (pp, is
continuous on 3F, vanishes on act, and also is plurisubharmonic according to
the definition. Thus 3(cp) makes sense.

§7. The Case of Radially Symmetric Functions

8.30 If S2 is a ball of radius T in C' and cp a C2 radially symmetric function
plurisubharmonic on il vanishing on the boundary, we can write P(z) =
g(II z II) with g(T) = 0. In this paragraph we suppose that cp has these properties.
In this case, by (44)

-L

(p) = wzm-i Jo 4 g 2 2r
2mr'dr

and we can apply Proposition 2.48 with q = m + 1.
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Similarly we can associate to g the function 0 defined on the ball BL of
Rm+' byi(x) = J62m-,wm'IIVq/IIm+1' andwecanapply
all the results of 2.46-2.50 by noting that r2m-' < .rm-'r'. In particular, from
Theorem 2.47 we get

Theorem 8.30. If p satisfies 3((p) < 1, then

f exp[v.I(pI'm+I)Im] dV < C
J

dV
a a

where the constant C depends only on m and where

l:vm = (m + 1)2 1mw2m-1

From Corollary 2.49 we get

Corollary 8.30. Set Sm = 2mm(m +
1 Then all (p satisfy

in
e- 'P dV < C dV

in

where C depends only on n.

Proposition 8.30. Let d be a set of functions (p for which 3(q) <_ Const.
Then the set {ew} is precompact in L1.

The proof is similar to that of (2.465).
Using these results, under certain assumptions we can solve the Dirichlet
Problem (42) on a ball of Cm with u = 0 on the boundary, assuming the
dependence of f(x, cp) on x only involves Ilxll.

By seeking radially symmetric solutions we actually obtain all solutions,
provided f is decreasing in r = IxMI, by a result of Gidas, Ni, and Nirenberg
[124].

7.1. Variational Problem

8.31 Let 0 be a ball of radius Tin Cm. We can consider the following problem:
Find the Inf of 3(q) for all plurisubharmonic function (p e C(l) vanishing on
the boundary such that 19 IIq = 1 for some q > I (or In a-`0 dV = 1 + in dV,
for instance). We know that 3(q) is convex. So for q = 1 we can consider only
radially symmetric functions and it is possible to solve the problem in one
dimension. The same result holds for q < m. For q > m (or if the constraint
is in e - `° d V = 1 + In d V) it is conjectured that the inf of 3((p) is unchanged
if we consider only radially symmetric functions.
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7.2. An Open Problem

8.32 The regularity of the solution of (42) obtained by Bedford and Taylor is
an open problem.

If f is allowed to vanish, there is a counterexample of Bedford and Fornaess
[27] showing that the solution may not be C2.
Therefore, let us simply assume that k = r = x, S2 = B, and f < 0 every-
where on B. The problem of regularity is nevertheless open, not only on B, of
course (this case is not even solved for the real analog), but also on B.

One of the reasons we can get the interior regularity for the real Monge-
Ampere equation, is that for each compact R c 12 it is possible to obtain a
sequence of C°° convex functions cp; converging uniformly to the generalized
solution cp on R while M(q,) M(q) on R in C' for large r. This result is
obtained by geometrical considerations. At the present time a similar result
has not been established in the complex case.'

§8. A New Method

8.33 In [190b] P. L. Lions presents a very interesting method for solving the
Dirichlet problem for the real Monge-Ampere equation on a bounded
strictly convex set 1 of W" :

(45) log M(q) = f (x), cp/% = 0

where f belongs to C°`(il). an is supposed to be C.
The method consists to exhibit a sequence of functions cpk e C"(S2) which

are solutions of equation (45): log M(cpk) = f (x), but with approximated
boundary data: cpk/af2 = uk, uk being an increasing sequence of functions
converging uniformly to zero when k -+ oc.

Let}' e !2(I}B") be such that J/f2 = f and let p(x) e C°°(l ') be a function
which are equal to zero on rl and to 1 outside a compact set. Moreover p
satisfies: for all g > 0 there exists y > 0 such that p(x) > y when dist(x, K2) > q.

The idea is to consider instead of (45) the following equation on l":

(46) log det+ (a;J cp - P p9;;

with e > 0 and B;; the euclidean tensor.

8.34 We can prove that equation (46) has a unique solution belonging to
CB(R") for which the tensor g11 = a;;cp - (p/e)cpd;; defines a Riemannian
metric.

3 See 8.35 and 8.36 for new results.



§8. A New Method 319

The sketch of P. L. Lions' proof is the following. First he solves in CB '(R")
an approximated equation of equation (46):

log det((a;;cp - \p + A)c, ii)) = J

with a. > 0. For that he proves the existence of a solution in HZ (R") of an
associated stochastic control problem; and for the regularity he uses the
results of Evans (112b). These results yield uniform bounds with respect to A
for the second derivatives. So he obtains a solution rp, e CB '(R') of equation
(46), the regularity being given by Evans' results.

Instead of using the diffusion processes, it is possible by using the con-
tinuity method to solve directly equation (46).
In any case we must construct a subsolution go e CB (R") of (46) such that
(go);; = a;; go - (pie)rpo S;; defines a Riemannian metric. Then the maximum
principle implies that any solution of (46) satisfies cpo < <p < 0.

For t >- 0 a parameter we consider the equation:

(47) log det(a;;cp - P 900;; l l = tJ + (1 - t) log detl (a,;tpo - P 900ij))

and for x c- ]0, 1[ the operator F:

CB O 9 - log det((a;,cp 946,11 E CB(R")

where O is the subset of functions cp for which ((g;;)) is a positive definite
bilinear form. F is continuously differentiable and its differential df, at cp
is invertible. Indeed the equation

(48) g`J a;; 0 - 0g"9;; = F E CB(R")

has a unique solution belonging to
To establish this result we consider for instance the solution O k E of
(48) on Bk for Dirichlet's data equal to zero on the boundary. It is easy to
prove that the set of functions {,k}k E 1, is uniformly bounded, then we use the
Schauder Interior Estimates 3.61. At X E 68" we have for k > I1 x11 + 2:

III'kllc=.'(x) <- C[Il'kIIc"(5j^) + IIFIIc2(R.)] <- Constant

with K = BX(l) and the constant C independant on x.
It follows that a subsequence of J k converges to a solution of (48) which
belongs to The generalized maximum principle 3.76 implies the
uniqueness assertion. By Theorem 3.56 the solution belongs to CB '(R").
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The inverse function theorem 3.10 establishes that the set W of the t e [0, 1],
for which (47) has a solution, is open in [0, 1]. To prove that f is closed we
need uniform estimates of the solutions of (47) in C3(R"). To get them we do
similar computations to those done at the beginning of this chapter, but here
we use the generalized maximum principle 3.76.

8.35 Pogorelov, Cheng and Yau get C°° approximated solutions of (45) by
geometrical considerations. Here we get the functions tpk = 'V k/fl by analysis.
It is the distinction between both proofs, because we proceed as Pogorelov
[235] to have uniform estimates in C3(K) with the compact K c n. That is
why Lions' result is not an improvement for equation (45).

But we can apply the method to the Dirichlet problem for the complex
Monge-Ampere equation 8.25. By a similar approach, we get C°° ap-
proximated solutions of the complex equation.
Then we need estimates. The C° and C' estimates are not difficult to obtain-
But if there exists Aubin's estimate 7.22 for the third derivatives of mixed type
(and so for the gradient of the laplacian) when we assume the estimate for the
laplacian, there is no complex equivalent of Pogorelov's C2-estimate [235
pp. 73-75]. This is still an open problem.

8.36 Note added in proofs. In June 1982, Cafarelli L., Nirenberg L. and Spruck
J. proved [*66] that in the general case they have obtained the estimate of the
third derivatives of the functions cpo on the boundary (see 8.11). They claim
that there exists a modulus of continuity for the second derivatives of the
function cpQ:

I a14 (X) - t'i;tPQO')I < C[1 + Ilog llx -1'1117-'

with C a constant. It is also possible to obtain this modulus of continuity for
the complex equation 8.25 (see [*67] and [*68]).



Chapter 9

The Ricci Curvature

§1. About the Different Types of Curvature

9.1 In this chapter we deal with problems concerning Ricci Curvature mainly:

- Prescribing the Ricci curvature
- Ricci curvature with a given sign
- Existence of Einstein metrics.

This latter problem: to decide if a Riemannian manifold carries an Einstein
metric, will be one of the important questions in Riemannian geometry for the
next decades. Indeed, in spite of recent results that we will talk about, Ricci
curvature is not yet well understood. Ricci curvature lies between sectional
and scalar curvatures. We saw that scalar curvature is now well-known and we
recall below some results concerning sectional curvature. In this chapter (except
in § 1.4) we suppose that the dimension of the manifold is greater than 2.

1.1 The Sectional Curvature

9.2 We will mention some well-known results which prove that it is a strong
property for a manifold to have its sectional curvature of a given sign. We see
that it is impossible for a manifold to carry two metrics, the sectional curvatures
of which are of opposite sign.

Theorem 9.2. A complete connected Riemaniann manifold (Ma, g) has constant
sectional curvature if and only if it is isometric to S,,, R" or H,1 the hyperbolic
space, or one of their quotients by a group r of isometries which acts freely and
properly. S, li8' and Hn are endowed with their canonical metrics.

9.3 Theorem (Synge). A compact connected orientable Riemannian manifold of
even dimension with strictly positive sectional curvature is simply connected.

The proof is by contradiction. If the manifold is not simply connected there is
a shortest closed geodesic r in any nontrivial homotopy class. As the manifold
is orientable and of even dimension, there exists a unit parallel vector field
along r orthogonal to F. Then we can consider the second variation of the



322 9. The Ricci Curvature

length integral in the direction of this vector field (related to a family I'A of
closed curves near Fo = I'), as we do for the proof of Myers' Theorem 1.43.
The hypothesis on the sign of the sectional curvature implies that this second
variation is negative, which is a contradiction, since r would not be the shortest
curve in its homotopy class.

9.4 Theorem. A complete simply-connected Riemannian manifold (M, g) with
nonpositive sectional curvature is diffeomorphic to R.

Proof. Let P be any point of M. P has no conjugate point (Theorem 1.48), so
expp is a diffeomorphism from Rn to M (Theorem 1.46).

Corollary 9.4. A compact Riemannian manifold (M, g) with non-positive sec-
tional curvature cannot carry a metric g with positive Ricci curvature.

Indeed by Myers' Theorem 9.6, if g exists, (M, g) has a compact universal
covering space (1G1, -7r*g), 7r : M --> M. This is in contradiction with Theorem
9.4 which asserts that the universal covering space of (M, g) is diffeomorphic
to Rn.

1.2. The Scalar Curvature

9.5 In this section we suppose n > 3. We saw that there are obstructions for a
manifold to carry a metric with positive scalar curvature. But in Aubin [21] it is
proven that we can locally decrease the average of the scalar curvature by some
local change of metrics. Thus we get a metric with negative scalar curvature on
any manifold. So there are three types of compact manifolds. Those which carry
a metric with positive constant scalar curvature, those which carry a metric
with zero scalar curvature and no metric with positive scalar curvature, and
those which carry no metric with non-negative scalar curvature. For complete
non-compact manifolds Aviles-Mc Owen [* 18] proved that there always exists
a complete metric the scalar curvature of which is constant and negative.

1.3. The Ricci Curvature

9.6 Between the scalar curvature which has little significance, and the sectional
curvature which has strong meaning, there is the Ricci curvature. Recently
Lohkamp [*226] (see 9.44) proved that any Riemannian manifold of dimen-
sion n > 3 carries a complete metric with negative Ricci curvature. On the
other hand to carry a metric with positive Ricci curvature implies strong result
such as

Theorem 9.6 (Myers [*247]). A connected complete Riemannian manifold A1
with Ricci curvature > (n - 1)k2 > 0 is compact and its diameter is < 7r/k. Its
fundamental group is finite.

For the proof see [*247] or 1.43.
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1.4. Two Dimension

9.7 The two-dimension case is very particular. If the local chart is chosen so
that at P, gij (P) = 6j, we have at P : R11 = R22 = R1212 = R/2. Moreover, if
(M, g) is compact, the Gauss-Bonnet theorem asserts that fu RdV = 47rX(M),
where X is the Euler-Poincare characteristic. For complete manifolds Cohn-
Vossen proved the following inequality fm RdV < 47rX(M). So it is obvious
that a compact manifold cannot carry two metrics whose curvatures are of dif-
ferent sign. It is well known that there exists on a compact manifold a metric
with constant sectional curvature R/2. The problem of prescribing the scalar
curvature R is discussed in chapter 3, and the problem of prescribing the Ricci
curvature is considered in this chapter . For details on the Gaussian curvature
see Kazdan [* 194].

§2. Prescribing the Ricci Curvature

2.1. DeTurck's Result

9.8 Theorem (DeTurck [* 109]). If T = {Tij } is a C'"+a (resp. C°°, analytic)
symmetric tensor field (m > 2) in a neighbourhood of a point P on a manifold
of dimension n > 3, and if the matrix ((Tij)) is invertible at P, then there is a
C,,,+a (C°°, analytic) Riemaniann metric g such that Rij =Tij in a neighbour-
hood of P.

Recall the expression for the curvature tensor in local coordinates (see 1.13),
in terms of the Christoffel symbols of the metric:

(1) Rkii = air;k - aj"ik + rimr- - r; "I k.

Because the Ricci tensor is Rkij, we calculate that

(2) E(9) 1g2i (aikgji + ajt9ik - ailgjk - ak;9i1) + Qjk(9) =Tjk

where Qjk(g) is quadratic in the first derivatives aigjk.
(2) is a non linear second-order differential equation, its linearization gives

at P:

(3) [DE(g)] (h) = Zgi' (aikhjt + 9j,hik - ailhjk - akjhil)

- Rktij(P)ggP ha.b

if we suppose that the coordinate system is normal at P. Let _ {i;i} be a unit
vector of Tp(M), the symbol a of DE (g) at P is

n
r

(4) hij - (Ukhjk
k=1
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To see how acts o(i;) on the symmetric tensor h, we can suppose without
loss of generality that ft = I and i = 0 for i > 1. We find hij if
i # 1 and j # 1, [o())h]ti = 0 if i # 1 and Fn

k=Z hkk. Since there
are zero eigenvalues, the symbol o(ff) is not an isomorphism. Thus equation (2)
is not strictly elliptic. The presence of zero eigenvalues is not surprising since
under a diffeomorphism co

cp* Ricci(g) = Ricci(cp*g).

We can verify that for any the kernel of o(ff) consists of all tensors h of the
form hij = vir7j +r7ivj where vi and 77j are the components of two 1-forms. For
different points of view of this fact, see DeTurck [* 109] p. 181, Hamilton [* 151 ]
p. 261 and Besse [*44] p. 139. To overcome this difficulty DeTurck considers
the "gravitation operator" G.

2.2. Some Computations

9.9 Definition. We define (Gh)ij = hij - 2(gk'hkt)gij and (6h)i = -Vjhij
on a symmetric tensor h and on a 1-form v = {vi},(b*v)ij = z (vivj + V jvi).
Moreover set B(g, T) = -bGT and for any tensor field S, AS = -gijVijS.

The second Bianchi identity (see 1.20) gives

(5) B(9, Ricci) = 92k(VkRij - Z ViRjk) = 0

B(g,T)j = gik (akTij - Za0Tik) + (28kgi1 - b19ik)T g'tl.

As we suppose that T is invertible, differentiating T-' B(g,T) with respect
to g yields

(6) D9 [T' B(g, T)] (h) = 6Gh + terms in h.

Thus the leading part of D9 [b*T -' B(g, T)] (h) is

(7) Z (ajkhi! - ajihik - 19ikhj1)gil

Comparing (3) and (7) we find

(8) D. [Ricci(g)+6*T-'B(g,T)](h)='-zOh+lower order terms.

2.3. DeNrck's Equations

9.10 We saw that (2) E(g) = T is not elliptic. But we know that if g is solution
of (2): Ricci(g) = T, when T will satisfy B(g, T) = 0. Moreover we saw that
(8) is elliptic. This is the reason for which DeTurck considered the new system:

(9) Rij + [b*T-'B(g, T)]ij = Tij

(10) B(g, T) = 0
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He proved that this system is elliptic and it is equivalent to the original one
(2). As there exists a metric go which satisfies (2) at P, go satisfies (9) and (10) at
P and the local theory of elliptic systems can be used. For the proof of Theorem
9.8 DeTurck considered an iteration scheme and showed that it converges. In
[*I I I] DeTurck gives an alternative proof of Theorem 9.8 which is not so hard
as the original one. The new idea is to find a metric g and a diffeomorphism cp
such that Ricci (g) = cp*T

9.11 Remark. We cannot drop the hypothesis ((Ti,)) invertible at P. Consider,
as DeTurck did, the tensor field Tij = xi+xl+2bti >k=1 xk, which vanishes at P.
We verify that it cannot satisfy the Bianchi identity (5) at P for any Riemaniann
metric. Indeed it gives at P Lj_1 gi3 = 0 for i = 1, ... , n.

2.4. Global Results

9.12 On a compact kahlerian manifold (M, g), we completely solved the problem
of prescribed Ricci curvature (see 7.19). This problem was known as the Calabi
conjecture. Recall the answer : Let R,\µ be a 1-1 covariant tensor field. The
necessary and sufficient condition for which there exists a kahlerian metric with
Ricci tensor RaN, is that the Ricci form zn Raµdza A dzµ belongs to C1(M)
the first Chern class. Moreover, in each positive cohomology class there is a
solution g, which is unique up to a homothetic change of metric.

9.13 Myers' theorem 9.6 gives obstructions for a compact manifold to carry a
metric with positive Ricci curvature. On the other hand, there is no obstruction
for a manifold to carry a metric with negative Ricci curvature (see Lohkamp' s
result in 9.44). In Kazdan [* 194] we find other cases of non existence, such as:

Theorem 9.13 (DeTurck-Koiso [* 112]). On a compact manifold (M, g), if the
Ricci curvature is positive, the tensor cRtij is not the Ricci tensor of any metric
for c large enough. We may take c > 1 if Rqj is the Ricci tensor of an Einstein
metric, or if the sectional curvature of Rtij considered as a metric on M, is
< 1/(n - 1).

When 0 < c < 1, we can conjecture that there is no metric with Ricci
(g) = cR2j, and Cao-DeTurck [*75] proved that there is no conformally flat
metric with this property. DeTurck-Koiso [* 112] also established some results
of uniqueness for Ricci curvature.
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§3. The Hamilton Evolution Equation

3.1. The Equation

9.14 One of the most famous problems in geometry is:

The Poincare conjecture.

A compact simply-connected Riemannian manifold (M, g) of dimension n = 3 is
diffeomorphic to S3.

To attack this problem we can think of trying to deform the initial metric to
an Einstein metric. If we succeeded we would get a metric of constant curvature
since the Weyl tensor vanishes identically when n = 3. And we know (9.2) that
a compact simply connected Riemannian manifold with constant curvature is
isometric to the sphere. In his theorem (9.37) Hamilton supposes that the Ricci
curvature of the initial metric is positive. Of course a hypothesis of this type
is necessary since S2 x C has non-negative Ricci curvature. (C is the circle).
Actually we don't know how to express the hypothesis "simply connected" of
the Poincare conjecture, by means of Riemannian invariants.

9.15 To carry out this idea, R. Hamilton ['151] introduced the following evo-
lution equation:

a

(11) at gig
= (2r/n)gz3 - 2Rtij

where 9ij and Rte are the components of the metric gt and the Ricci tensor
of gt in a local chart.(To simplify we drop the subscript t when there is no
ambiguity). The solution gt of this equation will be a smooth family of met-
rics on the compact manifold M, and r is the average of the scalar curvature
R : r = f R dV/ f dV. Because et I9I =

2
I9Ig12

as = (r - R) Igf the vol-
ume of (M, gt) is constant. In order to make the computations easier, R. Hamilton
[` 151 ] considered the evolution equation

(12)
a
at- 9ij = -2Rj

Proposition 9.15. Suppose gt is a solution of (12). We define the function rn(t)

so that (M, gt) has volume I with gt = m(t)gt. Set t = f m(s) ds, then g satisfies
equation (11) with t instead of t.

Proof. First of all, in a homothetic change of metric, the Ricci curvature remains
unchanged: Rti2 = Rah.

So r = f RdV = [m(t)]"/2-1 f RdV. But by hypothesis

I = f dV = [m(t)] n/2

J
dV,
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hence

n
2 m/(t) - 2 [m(t)] nl2 gij

ate dV = [m(t)] "/z fRdv

using (12). Thus r" = 2m'(t)/m2(t). Now we verify that gi satisfies equation
(11).

a _ 1 a m'(t)
at9i; =

M(t)
at9ij = m2(t)9ij - 2Rij.

9.16 Let {xz} be a normal coordinate system at P E M (see 1.25). We will
write equation (12) at P in this local chart. According to the expression of the
components of the curvature tensor (1):

g
(13) Rij(P) = 2 P (aik9;t + ajtgik - (9ij9kl - aklgij) P

If the coordinate system would not normal at P, there would be, in the
expression of Rij, additional terms involving only gij, gkt and quadratic in the
first derivatives aig)k. So from (13) we get the linearization DE(g) of the right
hand side of (12): E(g) = -2 Ricci(g). We have DE(g) = -2DE(g) where E(g)
was defined in (2). Equation (12) is not strictly parabolic, as (2) is not strictly
elliptic (See 9.8).

3.2. Solution for a Short Time

9.17 Theorem (Hamilton [* 151 ], DeTurck [* 111]). On any compact Riemaniann
manifold (M, go), the evolution equation (12) has a unique solution for a short
time with initial metric go at t = 0.

For the proof Hamilton used the Nash-Moser inverse function theorem
[*150], some special technique is required because equation (12) is not strictly
parabolic. When this proof appeared, DeTurck [* 109] had already solved the
local existence of metrics with prescribed Ricci curvature (that we saw above
§2), and then he gave a proof of Theorem 9.17 which uses Theorem 4.51 for
parabolic equations.

DeTurck's idea is to show that (12) is equivalent to a strictly parabolic
equation (15) when n = 3 or (16) for n > 3.

Let c be any constant such that Lij = Rij + cgij is positive definite at any
point of (M, go). So L-' exists. Recall Definition 9.9: For a symmetric tensor
h = {hij },

(Ch)i; = hij - 1 kl29 hkl9ij

and for a 1-form v = {vi}, (65v)ij = ViVj + Vjvi.
The second Bianchi identity implies (see 1.20):

(14) (bGL)j = -Dz(GL)ij = -VtRij+!VjR=0.
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9.18 When n = 3, DeTurck [*I 111 considers the following parabolic equation:

g j = -2Rij - (b* [L-tbGL])ija [ ]

(15)
at

Lij = -ALij - 2c(Lij - cgij) - [Q(L - cg)],j

g(x, 0) = go(x), L(x, 0) = Ricci(go)(x) + cgo(x)

where the unknown is the pair [gij(x,t), Lij(x,t)]. Q(S) is some quadratic
expression in S using the metric. This system is strictly parabolic. Indeed by (8)
we have that the symbol of the right hand side of the first equation with respect
to g is the symbol of minus the laplacian.

Hence from Theorem 4.51 (15) has a unique solution for a short time. We
have to show that this solution solves (12).

For this DeTurck considers the quantities

ui = [L 16G(L)]i and P.,j = Lij - (Rij +cgij).

A computation gives the evolution equations for u and P. It is a parabolic
system which admits the solution u - 0 and P - 0. As the initial conditions
are P(x, 0) = 0 and 6GL(x, 0) = 0, we have indeed P - 0 since the solution is
unique. Since any solution of (12) is a solution of (16), the resulting solution of
(12) is unique.

When n > 4, the Weyl tensor does not vanish identically, and equation (15)
involves the curvature tensor. We must introduce a new unknown Tijki. The
parabolic equation to consider is of the form.

a
5igij = -2[Rj - (b*[L-'6GL])ij]

(16) Lij = - ALi j - 2c(Lij - cgij) + 2gp''gq'Tipaj L, - 2gpq Lpi Lja

atTijkl = -ATjki +quadratic expression in Tijkl using the metric

g(x, 0) = go(x), L(x, 0) = Ricci(go)(x) + cgo(x), T(x, 0) = Riem(go)

where Riem(go) is the curvature tensor of go.
Thanks to (8) it is obvious that this system is strictly parabolic. Hence (16)

has a unique solution for a short time. We prove that this solution satisfies (12)
by the same way as above for the dimension 3. The evolution equation for u, P
and S = T - Riem(g) is strictly parabolic and admits the solution u - 0, P - 0
and S 0.

So (12) has a solution. This solution is unique since any solution of (12) is
a solution of (16).
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9.19 DeTurck found a simpler proof of the existence, for a short time, of solu-
tions for the evolution equation (12).

Since his proof is unpublished, we reproduce it now. As before, DeTurck
replace (12) with a strictly parabolic equation. Let Ti7 be any symmetric tensor
field on M which has the property that Ti.i is invertible (as a map from Tp(M)
to TP(M)) at every point P of M. One could, for instance, take T equal to go.
Then the equation

(17)

d
atgij = -2Rij - 2[b*T-t B(9,T)].j,9(0) = go

has a unique solution for small time by the parabolique existence Theorem 4.51
For the notations b*, B, see Definition 9.9. The proof that the right side of

(17) is elliptic appears in [* 109], see also (8) in 9.9.
The introduction of T breaks the diffeomorphism-invariance of (12) and

renders (17) parabolic. To show how to get solutions of (12) from those of (17),
we need the following two results.

Proposition 9.19. Let v(y, t)(y E M, t E R') be a time-varying vector field
on M. Then for small t, there exists a unique family of diffeomorphisms Wt
M -> M such that a aryl = v (cpt(x, ), t) for all x E M, and with coo = identity.

Proof. The standard proof when v does not depend on t still applies, via the
existence and uniqueness theorem for ordinary differential equations (see for
instance Warner [*3l3]).

Lemma 9.19. Let gi.i (y, t) (y E M, t c IF) be a time-varying Riemannian
metric on M, and cpt the family of diffeomorphisms from Lemma 9.19. Then

a
at9)(x)= cOt [g(cot(x))] + 2cpt [b*w(cot(x))]

where w is the one form wi = gikvk

Proof. Compute

so

(acP*(9)) _
at

ac' awo
cP*(9)i,j = axi axj goo (cP(x), t)

ag

= cP* at
+2cp*(b*w)ij.

=
I\ ) ij + axi axi [ aye 9k,0 + ayR 9kcx + ayk v

J

av' 8wo acs IM acpa app a
axi axi gyp + axi axj gcp + axi axj at goo

aca" acoo a9"3 k

+ axi axi ayk v

* aq ae acpp avk avk agap k
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Proof of Theorem 9.17. Let w be the one-form w = T_t B(g, T) obtained using
T and the solution g of (17) above, and let cot be the family of diffeomorphisms
obtained by integrating v using Proposition 9.19 (vk = 9ktwi). Then according
to Lemma 9.19

a

at
9)

=cot +2cot(6*w)

= -2cpi [Ricci(g)+6*T-'B(g,T)] +2cot [6*T-'B(g,T)]

= -2 Ricci(cpt g).

Thus cot(g) satisfies (12).

3.3. Some Useful Results

9.20 Generalized maximum principle. Let F be a vector bundle over a com-
pact manifold M. To a doubly covariant symmetric tensor field T on F we
associate an other two covariant symmetric tensor field on F, N = p(T, g)
which is a polynomial in T formed by contracting products of T with itself
using the metric g. We say T > 0 if (T(v), v) > 0 for any v E F.

Theorem 9.20 (Hamilton [* 151] p. 279, Margerin [*233] p. 311). Let Tt and gt
be smooth families on 0 < t < r which satisfy

(18)
a

Tt = -ATt + u'VkTt + Nt

where Nt = p(Tt,gt). We suppose N = p(T,g) has the following property:
T(v) = 0 implies (N(v), v) > 0. Then Tt > 0 for any t E [0, r] if To > 0.

Proof. Set Tt = Tt + e(6 + t) Id, where e > 0 and 6 > 0 are small and Id = g if
F = T(M) and where (Id)ijkl = 2(9ikgjl - 9il9jk) if F = A2(M). These are the
bundle F for which we will use Theorem 9.20.

We assert that, for some 6 > 0, Tt > 0 on [0, 6] and for every E > 0. Then
letting a --+ 0 yields Tt > 0 on [0, 6], hence on [0, r]. If not there is a first time
0 (0 < 0 < 6) and a unit vector v e Fro for some (xo E M) such that TB(v) = 0.
Thus (p(TT, 9e)(v), v) > 0.

As N is a polynomial, II p(T', g) - p(T, g)II < Ct IIT' -T I1 for some constant
C1 which depends only on max(IIT'II, IITII).

Then

(19) (Ne(v),v) > -C2e6

We extend v in a neighbourhood of xo to a vector field denoted v, in such
a way that v is independent of t and such that V (xo) = 0.

Set f (t, x) = (TT v, 0). Then f > 0 on [0, 0] x M and at (0, xo), f = 0,
at <0,df=0 andAf <0.
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This implies among other things (VTB(v), v)y = 0 and (OT0(v), v),. < 0. But
(18) gives

at = (OT(v), v") + (ukvkT(v"), v) + (N(v), v) + e(b (v, v) + 6(f), v).

At (9, x0) we get

(20) (N(v), v) < -E [I - 2C6]

where C > C2 is chosen so that at (v, v) < C.
If we choose 6 < 113C, (20) is in contradiction with (19).

9.21 Theorem (Hamilton [* 151]). Interpolation inequality for tensors.
Let (Ma, g) a compact Riemannian manifold and let p, q, r be real numbers

> 1. If 1 /r = I /p + 1 /q, any tensor field T on M satisfies

1/r

(21)
IVTI2r dV]

1/q
[Jv2TPdV]

I/P [fTIdv]<[+2(r-1)].
(22)

[fvT2Pdv] P < [v/n- + 2(p - 1)] sup ITI
LJ

I V2TIr dV]
M LL

Proof. Set T = (Ta), a multi-index. Integrating by parts yields:

f IVTI2r dV = f ViTaViTaIVTl2(r-t)dV

(23) f TaViViTaIVTl2(r-t)dV

- 2(r - 1) J TaViVjT1VjTaV jT,3IVT

Now

(24) ITaV'ViTa12 < rr,ITI2IV2TI2

(25) TcV'VjTQViT«V jTp < ITI V2T I VT12.

2(, -2) dV.

In fact, expanding ITp V i V j Ta - AV TaV jTp l2 > 0 yields a polynomial in
A of order 2. The nonpositivity of the discriminant is of this polynomial gives
(25). To verify (24), we write

IT'ViVjTa - To' VkVkTagij/n12 > 0
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and

ITTViVjTa - TaV;VjTO12 > 0.

The first inequality is ITaVkVkTaI2 < nITaVjVjTaI2 and the second
ITaViV T«I2 < ITI2IV V,TTI2.

Putting (24) and (25) in (23) implies

fIrIIv2TlvTI2fr_1)dv.(26) fIvTI2rdv < [2(r - 1)+v]

As 1 /p + I /q + (r - 1)/r = I the Holder inequality then implies

f r f 1/P

J
VTI2rdV < [2(r- IV2TIPdV1IL/q1 /r

x [JITlJdv] [fIvTI2rdv]

which is (21). Similarly (26) implies (22) when q = oo.

9.22 Corollary (Hamilton [* 151 ]). Let (M, g) be a compact Riemannian man-
ifold and let m E N. There exists a constant C(n, m) independent of g such that
any tensor field T satisfies

(27) r IVkTI2m/k dV < C(n, m) sup ITI2(m/k-1) f IVmTI2 dV
J M J

for all integers k with I < k < m - 1.

Proof. Set f (0) = supM ITI and f (k) _ [f IVkTI2m/k dV]
k/2m.

Applying (21) to the tensor field (Vtjz,..ik_,Ta) with p = L ml' q = 2'' and
r = rn/k yields

(28) f 2(k) < C2 f (k + I) f (k - 1)

where we can choose C depending only on n and m. But (28) implies, as we
will see below,

(29) .f (k) <_ Ck) [ f (0)]
1-k/m

[.f (m)]
k/m

which is (27). Let us now prove (29). Set g(k) = log f (k) and a = log C. By
(28) we have 2g(k) - g(k + 1) - g(k - 1) < 2a.

k

Ej[2g(.7)-g(7+1)-g(j-1)] <k(k+1)a.
i=1

As (k + 1)g(k) - kg(k + 1) - g(0) = j[2g(j) - g(j + 1) - g(j - 1)] we
find

(30) (1 + 1 /k)g(k) - g(k + 1) < (k + 1)a + g(0)/k.
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And since (m-k)g(k+l)-(m-k-1)g(k)-g(m)= ET k+1(m-j)[2g(j)-
g(j + 1) - g(j - 1)] < (m - k)(m - k - 1)a, we can sum this inequality with
(m - k) times (30) to get

k
9(k) g(m) + m(m - k)a + m

k
k9(0)

which implies (29).

3.4. Hamilton's Evolution Equations

9.23 Theorem (Hamilton [* 151] p. 274). If g(t) satisfies the evolution equation
(12) on [0, r[, then the curvature tensor Rijkt(t), the Ricci tensor Rij(t) and the
scalar curvature R(t) satisfy the following equations:

(31) at
Rijkl = -ARijkl + 2(Bijkt - Bijik - Biijk + Bikil)

_ gPq (RPjkiRgi + RipklRgj + RijplRqk + RijkpRgt)

(32)

a
at Rik = -ARik + 291'9"RPigkRab - 2gPIRpjRgk

(33) tR=-OR+2g''j9klRikRjl

where Bijkt = gPaggbRPigjRakbl. Recall ARijkl = -V 'V Rijkl

Proof. As at Rik = gjl at Rijkl - Rij kl g'Pglq at gPq, contracting (31) by gjl gives
(32). Similarly contracting (32) yields (33). In normal coordinates for g(t) at P:

Elm mk
at rjl = 9 (akRjt - ajRkl - alRjk) .

As a tensor field in the local chart

(34) I =9mh (OkRji -at- ji kl - V Rik

According to (1) we have

atRyjml rm ) -oj(atrm).

Thus we get

(35)
at Rijkl = VikRjl - VizRjk - VjkRil + V IRik

- RkmRijmi - Rml Rijmk

since V.iRkl - VijRkl - 2RkmRijml = RijmkRmi - Rk.m,Rijml.
Differentiating the second Bianchi identity we obtain

ARijkl = VmViRjmkl + VmVjRmikI.
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Permuting the covariant derivatives and using the contracted second Bianchi
identity we obtain (31) from (35).

9.24 Theorem (Hamilton [* 151]). If R(0) > C > 0 then R(t) > C for 0 < t <
r. In dimension n = 3, if Rij (0) > 0 then Rij (t) > O for 0 < t < -r. Moreover,
when n = 3, if Rij (0) - aR(0)gij (0) > 0 with R(0) > 0 then for 0 < t < T,
Rij(t) - aR(t)gij(t) > 0.

Proof. The maximum principle for the heat equation implies the first result since
according to (33)

aR+AR>0.

When n = 3 the curvarture tensor expresses itself in terms of the Ricci
curvature and R since the Weyl tensor Wijkj vanishes. Thus (32) becomes

(36) atRij +ORj = Nij

with Nij = -6gk1RtlRjk + 3RRj - (R2 - 2RkjRkl)gij
We remark now that if Rijut = 0 with Jul # 0, Nijuiuj = (2RijRtj - R2)uI2
>0.

Indeed if the eigenvalues of ((Rij)) are A, a and zero 2RijRtj -R2 = (A- i)2,
zero is an eigenvalue since we suppose Rijui = 0.

Theorem 9.20 then implies the second assertion.
For the third we apply the same theorem to the tensor field Tij = Rid /

R - agi j . Indeed we verify that

a To + ATtj = 2 9k1 VkROITij + Nij
19t R

with Nij = 2aRij + Nij - 2R-2RkzRktRij.
As before Rju' = 0 implies Ntjutuj > 0.

9.25 The curvature tensor defines a linear operator on the space A2(M) of two
differential forms (wij):

Riem(g)(w) = Rijklwkt dxt A dxj.

Theorem 9.25 (Margerin [*233]). If Riem(go) is positive, Riem(gt) remains pos-
itive for all 0 < t < T. The smallest eigenvalue At of Riem(gt) satisfies At > A0.

Proof. One more time we apply Theorem 9.20.
This time F = A2(M), Tt = Riem(gt), u = 0 and Nt is given by (31). We

verify that Riem(g)(w) = 0 implies (Nt(w), w) > 0.
We prove the second part of the theorem by using Theorem 9.20 with Tt

defined by
Tt(w) = Riem(gt)(w) - Aow.



§3. The Hamilton Evolution Equation 335

9.26 The solution gt of (12) exists on [0, T[ for some T > 0 according to
Proposition 9.17.

Theorem 9.26 (Hamilton [* 151]). If Ro > c > 0, then T < n/2c.

Proof. Set f (x, t) = nc/(n - 2ct). at = 2f2 /n thus

at(R- f) > -0(R- f) + 2(R+ f)(R- f)

since IRij - Rgij12 >_ 0 implies RijRij >_ R2/n.
As R- f > 0 at t = 0, R - f remains > 0 on [o, T[. But f (x, t) , oo when

t - n/2c, so r < n/2c.

9.27 Let us return to the normalized equation (11). In 9.15 we have written g(tt)
for the solution of (11).

The key point is to prove that the solution g(T) exists for all t > 0 and
converges to a smooth metric when t --> oe.

E. Hebey pointed out to me that, altough the following theorem is not ex-
plicitly stated in Hamilton, all the ingredients needed for its proof were proved
in Hamilton.

This theorem is basic in the works of Hamilton [* 151], [* 179], Huisken
[*179], Margerin [*233], [*234] and Nishikawa [*259].

Let Z be the concircular curvature tensor

(37) Zijkl = Rijkl -
R

(gikgjl - gilgjk).n(n - 1)

(M, g) has a constant sectional curvature if and only if Z(g) = 0.

Theorem 9.27. Let (Mn,, 9o) be a compact Riemannian manifold of dimension
n > 3 and scalar curvature Ro > 0. If there exist positive constants a, Q, y,
independent oft such that on M and for all t E [0,,r [

(38) Rij(t) - ceRtgij(t) > 0

(39) Z(9t)I < QRt--r

then the solution g(t) of equation (11) exists for all t > 0, and g(t) converges to
a metric with constant positive sectional curvature when t --> oo.

The proof is given in 9.36 and uses many results that we give now, following
Hebey (private communication).

9.28 Proposition (Analogous to theorem 11.1 of Hamilton [* 151 ]). Under the
hypothesis of Theorem 9.27, for any i E ]0, 1/n[, there exists a constant c(rl)
independent oft such that

(40) IV Rt 12 < riRt + c(ri) for 0 < t < T.
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Proof. Ro > 0 implies there exists e > 0 such that Rt > e according to Theorem
9.24. Thus IZ(gt)I < C,Rt with C, =

Set A (t) = IVRI2R-1 - i7R2. Using (33) a computation gives:

a-A= -AA + 4 VaRVaIRij12+K

where

K R3 IRViVjR - ViRVjRI2 - R2IRijizJVR 2

+ 2r7IVR12 - 471RIRijI2.

We verify that K < 2R2(77 - IRij12R-2) -4iRIRij12 and since IRijI2 >
R2/n we obtain K < -4iiR3/n if 0 < r < 1/n.

2Now IZ12 = IRijkll2 - n(n t)R2 > n2-I IRijI2 n(n t)R2.

So by (40) there exists a constant C2 such that IRijI2 < C2R2.
Since IV,Rjki2 > IVRI2/n (obtained by developing ViEjk122 > 0 with

Ejk = R2k - Rgjk/n) we get

4 VaRV"IRijI2 < 8 IRijHIVRIIViRjkl <- C3IViRjk12

where C3 = 8 nC2. Hence

(41) A < -AA+ C3IVjRjk12 - 4iiR3/n.

Moreover using (31) a computation leads to

at
IZI2 = _AIZI2 - 2IVZI2 + n(n16 1)RJEij12

- 8 (Zijkl ZpklgZpil q + Zijkl
Zpik"Zpjl

q) .

As IZ12IWI2+n42IEij12> n42IEijI2 (see 37)

(42) IZI2 = -AIZI2 -21 VZ12 +
4(n - 2) RIZI2 + 16IZI3.

at n(n - 1)

According to Lemma 9.29 and using 37 leads to

IVZI2
= IViRjkl,nl2 _

2 IVRI2
n(n - 1)

> 2 [1 - 2(n- 1)(n+2)1IVtRik
I2n- 1 L n(3n - 2) J

2 2(n - 2)2
(43) VZ - n(n - 1)(3n - 2)

Now set F = A + aIZI2 where a > 0. For 0 < 77 < 1/n (41), (42) and
(43) give TF < -OF + C4RIZI2 + C5IZI3 - 477R3/n if a is chosen so that

C3 < n(na(t)(3n)- 2)'
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The hypothesis
C(n) such that

ZI < QR'-' then implies the existence of some constant

C4RIZJ2+C5 Z13 - 4,q
R3 <-

n
Hence at F < -AF + 0(77).
By virtue of the maximum principle 4.46, F < C(rl) for 0 < t < T.
The result follows.

9.29 Lemma. On any Riemannian manifold

3n - 2
V2R3klz

2(n - 1)(n+2)IVRI

Proof. We set Fijk = ViRjk - aViRgjk - /3(VjRgik +VkRgij) and seek a
and 3 such that gjkFijk = gx.Fijk = gikFijk = 0

By virtue of the second Bianchi identity a and R are the solutions of
a+/3(1 +n)= 1/2 and na+2/.3= 1.

These are a = (n-t>(n+z and Q = 2(" nt)(n+z)
So we find lViRjk12 = IFijk12+.IVtiRI2 with

A = naz + 2/32(1 + n) + 4a/3 =
3n - 2

2(n - 1)(n + 2)

9.30 Proposition (Hamilton [* 151] p. 296). For any m E N there exists a con-
stant C(n, m) independent of the metric andrt such that

(44)
dt J

IV- Riem 1z dV + 2 / I V-+' Riem 12 dV

< C(n, m) sup I Riem I J
IV' Riem I2 V.

Here we set I Vm Riem

Proof. For any tensor A and B, we write A * B to denote any bilinear combi-
nation of these tensors formed by contraction using the metric.

Differentiating (31) gives

a
at (Vm

Riem) = -0(V"° Riem) + E (VP Riem) * (Vq Riem),
p+q=m

Then

at I V 'Riem
I2 = - A I Vm Riem I2 - 2I Vm+t Riem I2

+ (VP Riem) * (V' Riem) * (V' Riem).
p+q=m
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For any C1 function f (x, t)

dt
f f (x, t) dV = f at f (x, t) dV + f f (x, t) at dV

this last term being smaller than supM I Riem I f If (x, t)I dV. Therefore for
p + q = m

r
(45) J VP Riem I IV9 Riem I IV' Riem I dV

< Const. (sup I Riem I)
J

IV- Riem 12 dV.
M

Now we verify this inequality. According to the Holder inequality the left
hand side is smaller than

V'Riem I12,>-,/pllo7 Riem II2m./gllVm Riem 112

and by (27)

II V
c Riem II2m/k < Const. sup Riem I1-k/m II Vm

Riem IIz /m
M

Thus (45) follows.

9.30 Lemma. If the maximal interval [0, r[ where the solution gt exists is finite,
Ro > 0 implies lim supt, (supM I Riem I) = oo.

The proof is by contradiction. Suppose I Riem I < C for any x E M and
t E [0, T[. Then gt converges, when t - r, to a smooth metric gr and [0, T[
would not be the maximal interval. Indeed any derivative of g is bounded. We
have

8
2Rt

8t gxj

and we can prove that I Riem I < C implies IVm Riem I G C(m).
For the complete proof see Hamilton [*151] p.298.

9.31 Lemma. Under the hypothesis of theorem 9.27

Jim inf Rt = +oo and lim [sup Rt/ inf Rt] = 1.
t-,r M t--,r M M

Proof. According to Lemma 9.30, there exists a sequence tj T such that

Jim sup I Riem(gtj)I = oo.
2Cc M

As

IZI2 = I Riem I2 - 2 R2 and IZI < )3R'--y
n(n - 1)

we have 1imj,,,,, supM Rt; = oo.
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Now consider xj E M a point where Rt; is maximum. Integrating I VRt, I
on any geodesic -y emanating from xj yields a bound from below of Rt, as we
will see.

We rewrite (40) in the form I V R, I < i Rt12 + C(77). For any rl > 0 there
exists C(77) independent of t. Fix y small. For j large enough (j > j(77)),

C(77) < z ( supM Rt,)312 and IVRt1< r72 (sup MRt,)312. So at y E -y with

d(xj, y) < S = I (suup Rt,) -
12

Rt:, (y) ? (1 - 77) sup Rt, .
M

But in fact, for y small enough, we get infM Rt3 > (I - 17) supM Rt,
when j > j(77), since the diameter of M is smaller than s. Indeed by the
proof of Myers' theorem 1.43, the hypothesis (38) implies that the Cut-locus
of xj is reached along -y at a point z satisfying d(x3, z) _< it n --I [c (l -
77) supM Rte ]-1122. The assertion is valid if 77 satisfies (n - 1)ir2r72 < all - 77).
Hence limb-,,[supM Rt, / infM Rt3 ] = 1.

Now, by the maximum principle, for t > tj, inf MRt > infM Rt3. Thus
limt_,T infM Rt = oo. - -

By the same reasoning as above, this implies limt.T[supM Rt/ infM Rt]
=1.

9.32 Lemma. Under the hypothesis of Theorem 9.27

sup Rtdt = oo,
0 M

fT

J'r

where rt = f Rt dVt/ f dV and limt, IZtI/Rt = 0.

Proof Let f (t) be the solution of f'(t) = 2C supM Rt f (t) such that f (0) =
supM Ro where C is some constant for which IRzj I2 < CR2 (C exists according
to (42)).

(33) then implies

at(R -
f) < -0(R- f)+2C(R- f)supR.

M

By virtue of the maximum principle Rt f (t) for t E [0, r[ and Lemma
9.31 yields limt-`T f (t) = +oo.

As
t

log f (t) = log f (0) + 2C f sup Rt dt,
0 M

we have for supM Rt dt = +oc. Hence for rt dt = oo according to Lemma 9.31.
(39) and Lemma 9.31 then give limt.T lZtI/Rt = 0.
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9.33 Let us return to the normalized equation (11).
g(t) denotes the solution of (11) obtained from g(t) as shown in Proposition

9.15
g(t) exists on the maximal interval [0, f[.

Lemma 9.33. Under the hypothesis of Theorem 9.27

(48) lim [sup R(t)/ inf P(t)] = 1, Rij > 014,

lim Z(t)J/R(t) = 0 and
t--iT

(49) sup R(t) < C < oo for any t E [0,,T[ and F = +oo.
M

Proof. Under dilations inequality (38) and JZI/R are unchanged. Hence (48)
comes from (38), Lemma 9.31 and 9.32.

As Rtij > caRgza > 0, we have V < an_tdn/n where V and d denote the
volume and the diameter of (M, g). Now by definition V = I and according to
Myers' theorem d2 < (n - 1)7r2/a infM R, thus infM R < constant. (48) then
implies supM R < C < oo and consequently r" < C.

Moreover dt = m(T) dt and m(t)r(t) = rt (see the proof of Proposition
9.15) yield fo r(t) d(t) = fo rt dt which is equal to +oo, according to Lemma
9.32.Thus f = +oo.

9.34 Lemma. Under the hypothesis of Theorem 9.27, there exists a constant
C > 0 such that infM R(E) > C for all t.

Proof. According to Lemma 9.33, 1Z(t)l < -R(i) for some e < n2n(-1) when t

is large enough (t > T1). The sectional curvature Kof (M, g) then satisfies

(n(nI
1) - E) A( < k(t) < (n(n1 1) +s) R(t) for tt> T1.

By (48) there exists T2 such that for t > T2

(50) 1 n(n2
1)

infR(t)J < R(t) < n(n2
1)

infR(t).

Now let us consider the Riemannian universal cover (Nl, g) of (M, g).
According to the Klingenberg Theorem, the injectivity radius b of (M, g)
satisfies > 7r (n( 1) infM So there exists a constant C such that

Vol(ts) > C(infM R) -n/2 since the sectional curvature is bounded, and we
get infM R > [C/v]2/n where v is the number of elements in the fundamental
group of (M, g). Indeed Vol(M, g) = v Vol(M, g) = v.
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Moreover, by Myers' Theorem v is finite since Rii > 0 (48), and of course
v does not depend on the metric.

9.35 Lemma. Under the assumptions of Theorem 9.27, there exist two positive
real numbers C and 6 such that for all t:

Ce-6t and sup R(t) - inf R(t) < Ce-6i

M M

Proof. From (33) and (44), we get at R > -AR + ZR and

(51) 8t
IZI2 < -AIZI2 - 2 VZI2 +

4(n - 2) RIZIZ + 16IZI3 - AI VRI2
n(n - 1)

for some constant A > 0. Set A = IZI2R-2. As A is homogeneous (unchanged
under dilations), A = A = IZIZR-2.

We compute B = at + AA - R ViRV A.

B = R-2a IZI2 -2 IZ12 R -3 atR - 2IVZI2R-2

+ R-'AIZI2 +2R-4IZI2(IVRI2 - RAR),

B < AR In(n - 1) -
4

+ 16Ati21

(52) + R2IVRI2(2A - A) - 2R-JJ21VZI2.

Since g = m(t)g and df = m(t) dt, we get

(53) B = a + AA - 4 MKIiA

AR(16At12 -
n(n

4
1)

+ R-2IoRI2(2A - A).-

By (48), there exists s > 0 such that for t > s

A' /2(f) = Z(t)/R(t) < inf( a/2, 1/8n(n - 1)).

Set 6 = '"t (53) yields B < -26A and by the maximum principlen(n-1) -
e2siA(t) < e26s supAs for t > s. Hence for all t, IZtIe26t < C some constant
since R is bounded by (49).

The proof of the second part of Lemma 9.35 is similar. By virtue of (43)
we have
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(54)
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at (I R3
< -R-2A(IyRR,) +C,R-21v,1,kl

- 2R-4I VR12

(-//AR

+ 218,112)

at
(R-3IvR12) <

4vi(2)v1I?I

J a

+C3R-2 V Rjkl2 -2I
R

1 -_ 4R

Set f = R.-'IVRI2+kR-21ZI2 for some constant k > 0. (52) and i id

8tf +Af - - vifV,R< (C3IViR;k12 --2klVZl`]R-

4_ z I'2( -R1 _ 4k
tt(n l 1)

4
tnR2 R 1

- R-2JVR12 (A - 21Z
l .

Pick k large enough, k > n 4(n1

-2 C;
As R-3 VR12 is homogeneous f = f and for t > s (s defined above) we

have by (45):

0 f+Of - 4 2 Rf t
C t' R

Thus fe26t < C2 some constant. Hence

IaRi < C, R312e-6< < C2e-6i

and supAl R(t) - infM R(t) < C2d(t)e26t. But we saw in 9.33 that the diameter
d(t) of (M, g(t)) is uniformly bounded, thus the result follows.

9.36 Proof of Theorem 9.27. We have

sup biggrdt = 2 sup (t.)
, Al Tt , h f ttfft2

(if

rt,
2J supIpij(t)I dt+

2
t;

J supIR(t) r(t)l,Tt
t, All ti it, At

Const(e-6t, - e-6ts)

according to Lemma 9.35.
The metrics g(t) are all uniformly equivalent and converge to some metric
as t oo in Co. Using (21), (22) and (27), we see that all the derivatives of

g(t are uniformly bounded and j(t) converge to g,,,, in the C` topology when
t --* oo. (48) together with lemma 9.34 then implies 2(g ) = 0. Thus i)., has

constant positive sectional curvature.
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§4. The Consequences of Hamilton's Work

4.1. Hamilton's Theorems
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9.37 Theorem (Hamilton [* 151 ]). A compact Riemannian manifold of dimension
3, which has strictly positive Ricci curvature, carries a metric of constant positive
sectional curvature. It is thus diffeomorphic to a quotient of S3.

Proof. As Ricci (go) > 0, we have Ro > 0 and there exists a such that Ricci
(go) > aRogo. By Theorem 9.24, Ri2(t) > aR(t)gij(t) for 0 < t < T. In order
to apply the main Theorem 9.27, which implies the announced result, we have
only to show that (39) 1Z(gt)l < )3R, -" for some positive constants 13, ry, this for
all t E [0, r[. In dimension 3, inequality (39) is equivalent to IE23(t)l < 13Rt "
for some positive constants p, y, since 1Z12 = IWijk1I22 + n42IEij12 with the
Weyl tensor Wijkl - 0.

Set A = Rt aIRi3(t)I2 - R'-a/3 = Ri alEij(t)I2 with 1 < a < 2.
A computation, using (32), (33) and the expression of the Weyl tensor, leads

to (see Hamilton [* 152] p. 285):

(55)

a
atA+AA < 2(a - l)R-'Vi RV A+2R-l-a[(2-a)IRj12IEij12-2Q]

where Q = jRijI' + R[R(R2 - 5IRijI2)/2+2RijRkiRk]
According to Lemma 9.38 below Q > a2IRijj2IEjI2. Pick a such that 2-a <
2ct2, we get

A + AA < 2(a - 1)R-' V RVzA.

By the maximum principle At < AO for all t E [0, r[. This is the inequality
we need.

9.38 Lemma. Q > a2 Eij-.R 2
ij

Pick normal coordinates at x E M such that Rij(x) is diagonal. Let A >
p > v > 0 be the eigenvalues of Rij (x). We have

R(x)=A+it +v, IRij(x)I2=A2+p2+112

and

Q(x)=(A2+p2+1122)2+(A+p+11)
x [(.\ + p + v)(Ap + Au + vp - 2A2 -2 p2 - 2112) + 2A3 + 2p3 + 2v3]

Q(x) = (A - µ)2 [x2 + (A + p)(lp - v)] + v2(A - v)(p - v).

Since both sides of the inequality that we wish to prove, are homogeneous
of degree 4 in A, p, v, we can suppose A2 + p2 + 1122 = 1.

This implies R2 = (A + p + 11)2 > 1, and since Rij > aRgij, v > a.
Now Q(x) > A2(A - p)2 + v2(p - 11)2 > a2 [(A - p)2 + (p - 11)2] and

Eij I2 = 3 [(A - p)2 + (A - v)2 + (p - 11)2] < (A - µ)2 + (p - 11)2.
Thus the inequality is proved.
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9.39 Theorem. A compact manifold of dimension 3, for which the Ricci curvanirc,
is non-negative and strictly positive at some point, is diffeomorphic to a quotient
of S.I.

The proof comes at once from Theorem 9.37 together with the tiOllowing
result (Auhin [21]): If the Ricci curvature of a compact Riemannian manifold is
non-negative and positive somewhere, then the manifold carries a metric with
positive Ricci curvature.

9.40 Theorem (Hamilton [* 152]). A compact Riemannian manifold of dinu'n-
sion 4, whose curvature tensor is strictly positive, carries a metric of constant
positive sectional curvature. It is therefore diffeomorphic to S4 or 11(68).

Curvature tensor strictly positive means that the bilinear form on the
two-forms, defined by (V, T) , Riern(ip, ID) = Rh.rCt ;,j Wkt is positive:
Riem(cp, ip) > 0 if V # 0.

The proof uses Theorem 9.27 after proving (39) holds.

4.2. Pinched Theorems on the Concircular Curvature

9.41 In order to use Theorem 9.27, the condition (39) suggests that a good
hypothesis on the initial metric go would be

(56) IZ(go)I2 < C(n)Ro.

But IZ12 = 4R2/n(n - 1)(n -2) for Si x endowed with the canonical
product metric. Consequently if the condition (56) is sufficient to apply Theorem
9.27 when Ro > 0, it must be therefore that C(n) < 4/rt(n -- 1)(n 2).

Lemma 9.41. If C(rt) < 4/71(n - 1)(n - 2), Ro > 0 together with (56) imply
Ricci(go) > 0. More precisely

IEij(go)I2 < n
4

2C(ra)Rq.

Proof. ) (i = 1, 2, ... , n) the eigenvalues of Eij satisfy E:', A, = 0. This
implies supt<M1<, IA,12 < "n 1 IEijI2 and if gijv'v- = 1,

Eijv1vj > -(1 - 1/n)t/2IEjl > -[(n - 1)(n - 2)c/4n]t _1?.

Thus Rijwivj > [71 - ((n- t4(n -2)c)1/2I R > 0 if C < 4/n(n - - 1)(n 2).

Remark. R > 0 and (56) with C = 4/n(n-1)(n-2) do not imply Riem(go) -0.
We get Riem(go) > 0 when C < 4/n(n - 1)(n - 2)(n + 1).

9.42 With a hypothesis of the type 56, Huisken [*1791, Margerin 1' 2331.
[*234] and Nishikawa [*259] succeeded in using Theorem 9.27. For Nishikawa,
C(n) = I/ l 6n2(n - 1)2.
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For Huisken, C(n) = 4/n(n - 1)(n - 2)(n + 1) if n > 6, C(5) = 1/100 and
C(4) = 1/30. In these cases Riem(go) is positive.

For Margerin, C(n) = 1/2n(n - 1)(n - 2) if n > 6, C(5) = 4/625 and
C(4) = 1/6. The constant C(4) of Margerin is optimal. When n = 4 and n > 6,
the best value for C(n) is those announced by Margerin. In particular Riem(go)
is not necessarily positive.

Theorem 9.42. A compact Riemannian manifold (Mn, go) of dimension n > 4,
with positive scalar curvature (Ro > 0), satisfying

IZ(go)I2 < C(n)Ro

where C(4) = 1/6, C(5) = 1 / 100, C(6) = 1/2 10 and C(n) = 1 /2n(n - 1)(n - 2)
when n > 6, carries a metric with constant sectional curvature. The manifold is
diffeomorphic to a quotient of S.

Proof. First we prove that, if (56) holds at time t = 0, it remains so on 0 < t < r.
This gives (38), (see Lemma 9.41). Then we prove the existence of some Q and
-y such that (39) holds. According to Lemma 9.41 the hypotheses of Theorem
9.27 are then satisfied, it implies Theorem 9.42. The evolution equations of
Theorem 9.23 yield

at (I
Z12R-a) _ -0(IZI2R-a) +2(a - 1)R-'Va(IZI2R_°)ViR+Aa

where (see for instance Huisken [* 179] p. 52):

Aa = -2R-(2+c')IRD2Rjk1m - RjklmViR12

- (2 - a)(a - 1)R-(a+2)IZI2IVRI2+4R-(a+0)[(1- a/2)IZI2IRijI22

+ 2RRijklR imkn
Rmjn

l
+ (1 /2)Rijkl R

klmnRmni'
- I Rijkl

l2
Rij

I21

The problem is to find a constant K such that IZI < KR implies A2 < 0
and the existence of some a < 2 such that A a < 0. Then we can apply
the maximum principle and the result will follow. The constant K is found by
algebraic computations.

Remark. Recently Margerin [*234] proved that we can take for n large, C(n) _
4/n(n - 1)(n - 2) in Theorem 9.42.

§5. Recent Results

5.1. On the Ricci Curvature

9.43 We could hope that Hamilton's equation (11) or (12) would yield results
on the Ricci curvature, especially after his first article [*151] in dimension 3.
But in dimension 3, the curvature tensor expresses itself in terms of the Ricci
tensor, and Hamilton's theorem (9.37) was a result on the sectional curvature.
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In higher dimension, the method yields, under some hypotheses, a metric
with constant sectional curvature.

The most general result on Ricci curvature is the following:

9.44 Theorem (Lohkamp [* 226]). Every Riemannian manifold Mn of dimension
n > 3 carries a complete metric g whose Ricci curvature satisfies

(57) -a(n) < Ricci(g) < -b(n)

where a(n) > b(n) > 0 are two constants depending only on n.

So, as for the scalar curvature, when n > 3, the negative sign for the
Ricci curvature has no topological meaning. Previously Gao and Yau [* 136]
proved that any compact Riemannian manifold of dimension 3 has a metric
with negative Ricci curvature.

But the proof of Lohkamp is quite different and begins with the existence
on R3, then on Rn, of a metric g,, which satisfies Ricci (g7z) < 0 on a ball B,
and 9, = E the euclidean metric outside B. Surgical techniques are used.

Then, using some deformation techniques, Lohkamp exhibits from g." a met-
ric g which satisfies (57).

Lohkamp ([*226], [*227]) studied the space of all metrics with negative
Ricci curvature. He also proved the following results.

9.45 Theorem (Lohkamp [*226]). A Riemannian manifold M,' of dimension n >
3 carries a complete metric g with negative Ricci curvature and finite volume.

9.46 Theorem (Lohkamp [*2261). A subgroup G of the group of diffeomorphisms
of a compact manifold M1z(n >_ 3) is the isometry group of (Ma, g) for some
metric g with negative Ricci curvature, if and only if G is finite.

Bochner's result asserts that the isometry group of a compact manifold with
negative Ricci curvature is finite, Lohkamp proved the converse.

5.2. On the Concircular Curvature

9.47 The concircular curvature tensor Z is defined in 9.27. We saw (see Theorem
9.42) that under an hypothesis of the type (56): IZ12 < C(n)R with R > 0, we
can prove the existence of a metric with positive constant sectional curvature
on a compact manifold.

Instead of to have (56) satisfied at each point of Mn, we can ask the following
question:

Can we get similar results with only integral assumptions on JZJ?
The components Zijkl of the tensor Z express itself in terms of W2jkl (W

the Weyl tensor) and of Eij = R2j - Rg22/n. If one of the two orthogonal
components of Z vanishes, Theorem 9.48 gives a first answer to this question.
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On a compact Riemannian manifold (Mn, go) n > 3, a Yamabe metric is
a metric g such that f dV(g) = 1 and such that f R(g)dV(g) < f R(g)dV(g)
for all metric g c- [g] (the conformal class of g) with f dV(g) = 1. We know
that there always exists at least one Yamabe metric in each conformal class and
that the scalar curvature R(g) is constant. If g is Einstein, g is unique in [g].

9.48 Theorem (Hebey-Vaugon [* 170]). Let (Mn, go) be a compact Riemannian
manifold with n > 3 and conformal invariant u([go]) > 0 (see 5.8). We suppose
either [go] has an Einstein metric or go is locally conforrnally fiat. Then there
exists a positive constant C(n), with depends only on n, so that if for some
Yamabe metric g E [go], IIZ(9)119 C(n)R2(g), then (Mn,g) is isometric to
a quotient of Sn endowed with the standard metric.

Here 11Z(g)11g,n/2 = j JZ(g)jn/2 dV(g)] 21n. If [go] has an Einstein metric,
we can pick C(n) = [(n - 2)/20(n - 1)]2 when 3 < n < 9 and C(n) _ (2/5n)2
when n > 10. If go is locally conformally flat C(3) = 25/63, C(4) = 6/64 and
C(n) = 4/n(n - 1)(n - 2) when n _> 5 suffices.

The last constant is optimal. Indeed on (Sn_I x C, g), g the product metric
with volume 1, IZ(g)12 =4R 2 /n(n - 1)(n - 2), and g is a Yamabe metric when
the radius of C is small enough.

Corollary 9.48 (Hebey-Vaugon [* 170]). P4(R) and S4, with their standard met-
rics, are the only locally conformally flat manifold of dimension 4, which have
positive scalar curvature and positive Euler-Poincare caracteristic. In particu-
lar if (M4i g) is not diffeomorphic to P4(R) or S4, M4 does not carry an Einstein
metric if g is locally conformally flat with R(g) > 0.



Chapter 10

Harmonic Maps

§ 1. Definitions and First Results

10.1 Let (M, g) and (M, g) be two C°° riemannian manifolds, Al of dimension
n and M of dimension m. M will be compact with boundary or without and
{xi}(1 _< i < n) will denote local coordinates of x in a neighbourhood of a
point P E M and y' (I < a < m) local coordinates of y in a neighbourhood
of f (p) E M.

We consider f E C2(M, M) the set of the maps of class C2 of Al into ,'l 1.

Definition 10.1. The first fundamental form of f is h = f'g. Its components are
hid = az f a8jf pgap where t3 f a = The energy density off at .r is r(f),
z (hj3gt3) x and the energy of the map f is defined by E(f) = IN c(f)dl'.

As g is positive definite, the eigenvalues of h are non negative and E(f) = O
if and only if f is a constant map.

10.2 Definition. The tension field -r(f) of the map f is a mapping of A! into
T(M) defined as follows. T(f)x E Tf(x)(M) and its components are:

(1) T1(f)x = -Of'(x)+g`i(x)I'CO(f(x))a,f,(x)d,f0(.r.).

Proposition 10.2 (Eells-Sampson [* 124]). The Euler equation for ' is r(f) = O
For any v E C(M, T(M)) satisfying v(x) E T f(X)(M) and ta(x) = O fear r j )h1

in case

(2) E'(f) v = -
JM

Proof

E '(f) v =
21 f a7g.0 (f (x)) vry(x)g0 aa. f" dV

M

+1
M

Integrating by parts the second integral in the right hand side, we get
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E'(.f) . v = f gap (f (x)) va(x)[d f p(x) dV
M

+ 2
fM (rryp9aa + r7a9ap) ftxlvy(x)9Z'(x)8i f a(x)8; f p(x) dV

- f vy(x)g'j(x)ajfp(x)aa97p(f(x))8if a(x)dV.

Since 8agryp = Papga, + hryagap, the symmetry beetwen a and i induced

by ,gij gives the result (2).

10.3 Definition. A harmonic map f E C2(M, M) is a critical point of E
(Definition 10.1). That is to say, f satisfies r(f) = 0.

We can introduce the harmonic maps in another way. Suppose f is an im-
mersion; f is injective on S2 a neighbourhood of P. Let Y be a vector field
on S2; Y = f*Y can be extended to a neighbourhood of f(P). For X belong-
ing to TT(1l), we set X = f*X. We verify that VXY is well defined and that

f*(VxY) = ax(X,Y) is bilinear in X and Y. Indeed

(3) ax(X, Y) = [ate fi(x) - P 8kfry(x)

a+ Pap (f (x)) aif a(x)ai f p(x)] X iYj
a

y

We call ax the second fundamental form of f at x. It is a bilinear form on
Tx(M) with values in T f(1)(M). The tension field r(f) is the trace of az for g.
f is totally geodesic if ax = 0 for all x E M and f is harmonic if r(f) = 0.

10.4 Proposition (Ishiara [* 183]). (i) f is totally geodesic if and only if for any
C2 convex function cp defined on an open set 0 C M, cp o f is convex on f '(0).

(ii) f is harmonic if and only if for any cp as above, cpof is subharmonic.

Proof We suppose that the coordinates {xi} are normal at x and that the coor-
dinates {y' } are normal at f (x).

(4) aij(co o P. =

If 8i; f a(x) = 0, (Hess cp) f(x) > 0 implies Hess (cp o f )x > 0.
Conversly if 9f(x) # 0, we can exhibit a convex function co such that

cp o f is not convex.
From (4), we get if f is harmonic

o P. =

cp convex implies 0(cp o f)., < 0. Conversly if r(f )x # 0, we can exhibit a
convex function cp such that L (cp o f )x > 0.

10.5 Proposition. A C2 harmonic map f is C.
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f satisfies -r(f) = 0 which is in local coordinates an elliptic equation. By the
standard theorems of regularity f E C°°.

Examples 10.5. If (M, q) is (R", E), we can choose the coordinates { It" 1 such
n Inthat r' '11 - 0. Thus f is harmonic if and only if A f" = 0 for I

case 8M = 0, f is a constant map.
Suppose g = f *g for f E C2(M, M), then e(f) = n/2.

10.6 Examples. The case 71 = 1. Suppose Al is the unit circle, ( ' and
C2(C, M) harmonic, then f (C,) is a closed geodesic on P.

Choose t, the central angle of C, as coordinate.

f CY 11
1 d df

e(f)
= 2 91113 dt dt

and the tension field is

Ty(f)= d2fry tI"'7 `Y!adJ11

dt2 all dt dt

This is the equation of the geodesics. Conversly if f (C) is a closed geodesic
on M, f is harmonic.

When n = 2, there are some relations between the Plateau problem and the
problem of harmonic maps (see Eells-Sampson [* 1241).

The case n'r = 1. In every homotop), class of maps AI their is an
harmonic map.

For other examples see Eells-Sampson [* 1241.

10.7 Proposition. Consider a third Cc'O Riemannian nranifohl (A!', q') and f
C2(M, M'). If f and f are totally geodesic maps, then f o f is totally yeotesii
If f is harmonic and f totally geodesic, then f o f is harmonic.

The composition of harmonic maps is not harmonic in general (see Fells
Sampson [* 1241).

10.8 By definition, E is defined if f E HI (M,AI), i.e, for each ci, f" belongs
locally to Ht (M).

Definition 10.8. A map f E H1(M,M) is weakly harmonic if it is a critical
point of E.

Thanks to the Nash Theorem, if Al is compact without boundary. there is
an isometric imbedding of M in Rk for k large enough. We can view .1! as
a submanifold of Rk, M C Rk and i*E = g, i being the inclusion neap. 'flue
second fundamental form A of AI is given by the in a suitable coordinates
system {z"}(1 < a < k) of )1Pk. For f E C2(A1,M), set r = i f '111en (is
harmonic if and only if
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(5) A(pa(x) = (x)A f(2) (
ax' ax;) for all a.

When f e Hi (M, M), co E Ht (M, Rk) and f is weakly harmonic if and
only if for any T E C°°(M, lick):

f a a

(6) Y J
gig (x) (a a

+ A f(y)
a-- , a

) fa(x) dv = o.
M

To see this, we introduce for instance Wt(x) = 7r o [p(x) + t'P(x)], where 7r
is the orthogonal projection of Rk on M which is well defined for t small (see
Eells-Lemaire [* 121] p. 397).

10.9 Theorem. If f E C°(M, M) f1 H1(M, M) is weakly harmonic, then
f E C°°(M, M). Thus f is harmonic.

For the proof see Ladyzenskaya-Ural'ceva [*206].
When n > 3, there exist weakly harmonic maps which are not CO and so

not harmonic.

Example 10.9. Consider the case M = S,,,, C Rrt+'. We can view the maps
f E H, (M, S,,,) as maps f E H, (M,1Rm ) such that En ' (f a)2 = l , {i ° }

1 < a < m + I being coordinates on R"'.
Set

IVf12=Fm,1gZJazfaa,fa.

Then f is weakly harmonic, if it satisfies in the distributional sense
A fa = faJV f11.

Indeed the second fundamental form of S,,,, is given at E S,,,, C I[ m" (see
Kobayashi-Nomizu [*202]) by A' (X, Y) = ff(X, Y).

§2. Existence Problems

2.1. The Problem

10.10 Let (M,,,, g) and (Mm,, g) be two C°° compact Riemannian manifolds.
Given fo E C' (M, M) does there exist a deformation of fo to a harmonic map?

This question was asked by Eells-Sampson who gave the first results in
[*124]. They approach the problem through the gradient-line technique. Instead
of solving the equation r(f) = 0 (see (1) for the definition), they consider the
parabolic equation

(7)

of
at = -r(ft) with fo as initial value.

If ft satisfies (7), from (2) we have
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(8)
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FIdE(ft) _ _ I C3ft (x)

dt i)tnr

)t (I'._ - 9ah (f, (x)) ofat
x) Oft x)

n
So E(ft) is a strictly decreasing function, except for the t for which r(f,) _ 0,

i.e. when ft is harmonic.
The basic result is Theorem 10.16; its proof is of independent interest. We

will give a sketch of it, but first we need some computations.

2.2. Some Basic Results

10.11 Lemma. if f is harmonic

(9) -De(f) = 1a12+Q(f)

with Ia12(x.) = 90_' (f(x))91k(x).9j1(x)(a'x) (as)kj and

Q(f) -Rapy6(f(x))gzk(x)9'l(x)ai fa(x)aifiI (x)akp(x)ia,f°(.r)
+ Rig (x)9ap (f (x)) ai f a(x)aj f 13 (x).

Recall ax is the second fundamental form of f at x (sec 10.3).

Proof. We suppose the coordinates {xi} normal at x and the coordinates
normal at f (x).

,n 71

(10) -De(f)= 1: 1: akk9i2(x)aifa(x)ajfa(x)
a=1 k=1
In n m it

2+E [a f(x)] +
a=1 i,j=l µ=1 i,k=1

I n

+ 2 (f (x)) ai f a(x)ai f"(x)ajf A(X)i)jf
i,j=1

In normal coordinates, according to (3) (ate) = d f'(x), thus
in 77

( 1 1 )

[a
f7(x)]2= 1a12(x).

y=l i,,j=1

Since f is harmonic r(f) = 0. Differentiating (1), we get

(12)
n n

a kkfµ(x) _ >[airkk(x)a;fµ(x)
k=1 k=1

- aarab (f (x)) aif A(x)akf a(x)C)k f a(x)] .
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Now at x, since the coordinates {xi } are normal

(13) Rij =

n

(ajrkk + airkk - 9kk9ij)

k_1

1

= 2 > (83rkk +Calrkk - akkgxj)
k=1

and at f (x), since the coordinates {y"} are normal

(14) RauaA = apraA + aarlaQ - aU09aµ.

Putting (11) and (12) in (10), then using (13) and (14), we obtain (9).

10.12 Proposition (Eells-Sampson [*1241). If f is a harmonic map, then
fm Q(f) dV < 0 and equality holds if and only if f is totally geodesic. Fur-
thermore if Q(f) > 0 on M, then f is totally geodesic and has constant energy
density e(f).

Integrating (9) yields the result.

Corollary 10.12 (Eells-Sampson [* 124]). Suppose that the Ricci curvature of
M is non-negative and that the sectional curvature of M is non-positive. Then
a map f is harmonic if and only if it is totally geodesic. If in addition there is at
least one point of M at which the Ricci curvature is positive, then every harmonic
map is constant.

If the Ricci curvature of M is nonnegative and the sectional curvature of M
everywhere negative, then every harmonic map is either constant or maps M
onto a closed geodesic of M.

Proof. The assumption implies Q(f) > 0 and e(f) is constant. Thus

Rz' (x)j.,3 (f (x)) ai f'(x)aj f 13 (x) = 0 for any x E M.

If at xo the Ricci curvature is negative, ai f a(xo) = 0 for all i and a, thus
e(f )x = e(f)x,, = 0 and f is a constant map.

Q(f) > 0 implies also

(15) R.0Y6
(.f('))gzk(x)Sit(x)ai.fa(x)aj.fp(x)akf'(x)&1f6(x) = 0.

If the sectional curvature of M is negative, (15) holds when and only
when dim f*(Tx(M)) < 1. The result follows, since e(f) constant implies
dim f* (Tx(M)) constant in that case.

10.13 Corollary. Assume there exist two positive constants k and C such that
Rij - kgij is non negative on M and

[R.A-r6 - c( 9a79P6-ja69p-r)1 X aX'YOY6 < 0

for any y E M and all X, Y in T.R. Then e(f) is sub-harmonic if f is an
harmonic map which satisfies e(f) < k/2C.
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If in addition L1e(f) = 0, f is a constant map.
Thus in example 10.9, if f is harmonic and satisfies 2e(f) <)\i, where A, is

the first positive eigenvalue of S, then f is a constant map.

10.14 If f E C2(M, M), we define the stress-energy tensor of f:
S(f) = e(f)g - f *j. We can prove that

div S(f) X = -9«pT(.f)a(.f*x)p;
see Baird-Eells [*29] and Pluzhnikov [*264] or Eells-Lemaire [* 1211.

In particular if f is harmonic, then div S(f) = 0 and conversly, if f is a
submersion which satisfies div S(f) = 0, then f is harmonic.

Application. If (M, g) has strictly positive Ricci curvature, then Id: (M, g)
(M, Ricci(g)) is harmonic.

In fact the condition div S(f) = 0 is only the contracted second Bianchi's
identity. It is not difficult to show that

div S(Id)] = MR - V R3.

10.15 Theorem. On the unique continuation (see Eells-Lemaire [* 120] p. 13).
Let f and cp be two C°° harmonic maps M --3 M. If at a point x0 E M, f

and cp are equal and have all their derivatives of any order equal, then f = co.

According to Hartman [*61], given two homotopic harmonic maps fo and
f,, there is a C°° family ft, t E [0, 1] of harmonic maps.

2.3. Existence Results

10.16 Theorem (Eells-Sampson [* 124]). Let (M, g) and (M, g) be two compact
Riemannian manifolds. If (M, g) has nonpositive sectional curvature, then any
f E C' (M, R) is homotopic to a harmonic map cp for which the energy E(cp) is
minimum in the homotopy class of f.

Eells-Sampson consider the nonlinear parabolic equation

(16) aft
A = f.

There exists a family of maps ft, t E [0,,r[ for some T > 0, which is
continuous at t = 0 along with their first-order space derivatives and which
satisfies (16) on ]0, T[ with fo = f.

Such ft is unique and C°° on ] 0, T [. By (8) A Lt `1 < 0 except for those
values of t for which T(ft) = 0.

As M has nonpositive sectional curvature, e(ft) is bounded on M x [0, T[.
Moreover Eells-Sampson proved that there is e > 0 independent of t such that
any ft can be continued as a solution of (16) on the interval ]t, t + e[. Thus

T=+00.
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Then as ft, along with their first order space derivatives, form equicontin-
uous families, there is a sequence a = {tk}, k E N, such that the maps ftk
converge uniformly to a harmonic map fa. A subsequence of these f" converges
uniformly to a harmonic map ep which has the desired property.

K. Uhlenbeck [*307] gave a proof of Theorem 10.16 by using the cal-
culus of variation. See the definition of Sobolev spaces in 10.20. For any
a E [0, 1], Hi n(M, M) C C'(M, M) and the inclusion is compact. We de-
fine fore > 0 a map EE of H n (M,1V1) into R by

EE(f)=E(f)+E f [e(f)]ndV.

EE is C°° and satisfies the Palais-Smale condition. It follows that there
exists a minimum of EE in each connected component 7-l of H2n(M, M).

If e is small enough, these minima are C°°. When M has nonpositive sec-
tional curvature, it is possible to show that for all a > 0, 36 > 0 such that the
set { f e 'Hl f is a critical point of EE for some E < 6 with EE(f) < a} has a
compact closure in 7-L. Then there is in 7-L a harmonic map.

The homotopy comes from the fact, that 71 is connected by arcs.

Remark 10.16. According to the Nash theorem, there is a Riemannian imbed-
ding of M in Rk for k large enough. In Theorem 10.16, we can drop the hy-
pothesis M compact if M is complete and if the imbedding M -> Rk satisfies
some boundedness conditions (see Eells-Sampson [* 124]).

If M is complete and M compact with nonpositive sectional curvature, a
map f E C'(M, M) with finite energy is homotopic to a harmonic map on
every compact set of M (Schoen-Yau [*287]).

There are other particular results in Eells [* 1191, White [*316], Lemaire
[177] and Sacks-Uhlenbeck [244].

10.17 Remarks. The uniqueness of the Eells-Sampson flow was studied by
Coron [* 1011 when M has a boundary.

The existence of a global flow was studied by Struwe [*295] and Chen-
Struwe [*91] (with a flow in the weak sense), as well as Naito [*250] under
some conditions on the initial data. Blow-up phenomenon at finite time was
studied by Coron and Ghidaglia [* 102].

10.18 Corollary. On a compact Riemannian manifold with nonpositive sectional
curvature, there is no metric whose Ricci curvature is non negative and not iden-
tically zero.

Proof. Without loss of generality, we can suppose M orientable. The proof is by
contradiction. Let us suppose that M is endowed with the metrics g and h, the
sectional curvature of h being non-positive and the Ricci curvature of g being
nonnegative and not identically zero.
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Then the identity of (M, g) into (M, h), which is of degree 1, would be
homotopic to a harmonic map of degree one. But this is impossible since a
harmonic map of (M, g) into (M, h) is a constant map (see Corollary 10.12).

10.19 Theorem (Eells-Lemaire [* 122]). Let f be a C4O harmonic map of'(M, g)
into (M, g) such that V2E(f) is nondegenerate. For any integer k > I and all
r E N, there exists a neighbourhood V of (g, §) in Mr+i+a x Mr+k+a and a
unique Ck map S of V into Cr+t+a(M, M) satisfying S(g, g) = f and S(h, h)
harmonic for (h, h) E V.

Here S(h, h) is a map of (M, h) into (M, h) and Mr+a denotes the set of the
Cr Riemannian metrics on M whose derivatives of order r are Ca, 0 < a < 1.

§3. Problems of Regularity

3.1. Sobolev Spaces

10.20 According to the Nash theorem, there is a Riemannian imbedding i of 11M
in Rk for some k E N. H? (M, IRk) is the completion of D(M, Rk) with respect
to the norm

(17) IIf112= f (ivf12+If12)dv.

Remember that M is compact. We consider M as a submanifold of Rk(M C
R c) and we identify f and cp = i o f.

Definition 10.20. Hl (M, M) is the set of f E Hl (M, Rk), such that f (x) E M
for all x E M.

H? (M, M), which does not depend on k and on the Riemannian imbedding,
has a structure of a C°° manifold. The tangent space at f is defined by

(18) T1 [H? (M, M)] E H? (M, Rk)/fi(x) E Tf() 1V1 for all x E M] .

10.21 Theorem. C°°(M, M) is dense in C°(M, M) fl H? (M, M). If dim M = 2,
Ck(M, M) is dense in H, (M, M) for all k > 1. When n > 3, Ck(M, M) is not
dense in general in H2(M, M).

C°°(M, M) is dense in H2(M, M) if and only if the homotopy group 7r2(M)
is trivial.

These different results where proved by Bethuel [*45], Bethuel-tang [*511
and Schoen-Uhlenbeck [*285].

For more details see Eells-Lemaire [* 121] and Coron [* 100].
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3.2. The Results

10.22 The first important result is Theorem 10.9: A continuous weakly harmonic
map is harmonic.

Theorem 10.22 (Helein [* 174]). When n = 2, the weakly harmonic maps are
harmonic.

The other results deal with the maps which minimize the energy E and the
subset of M where they are singular.

When n = 1, H2 (M, M) C C°(M, M), and when n = 2 we knew for a long
time by Morrey [*242] that the minimizers of E were regular. When n > 3 we
define Sf.

10.23 Definition. Let f be a map M -+ M. The singular set S f of f is defined
by:

(19) Sf = M - the open set where f is continuous.

We recall the definition of Hausdorff dimension.
Let X be a metric space and let p > 0 be a real number. We set

mp(X) = limomp,E(X), e > 0, where mp,e(X) = infT_m1(diamA4)p for
all denumerable partitions {Ai}iEN of X such that diamAi < e, i E N.

The Hausdorff dimension of X, dimH X is defined by

(20) dimH X = sup{p/mp(X) > 01.

Note that mp(X) < oo implies mk(X) = 0 for any k > p.

10.24 Theorem (Schoen-Uhlenbeck [*284]). Let f c H2 (M, M) be a weakly
harmonic map which minimizes E. Then dimH S f < n - 3. When n = 3, Sf is
finite. If x E Sf, there exists a sequence ej of positive real numbers, satisfying
limi-,,,, ei = 0, such that the sequence of maps hi E H2 (B, M), defined by
hi(z) = f exp .(Eiz), converges to a map u E Hl (B, M) which is a "minimizing
tangent map

Here B = B,,, is the unit ball in R".

Definition 10.24. A homogeneous map u E H?(B, ft) (i.e. satisfying &u/0r
= 0) is called a minimizing tangent map (MTM) if E(u) < E(v), for all v E
H (B, M) such that v = u on B.

The maps MTM characterize the behaviour, near their singularities, of the
weak harmonic maps which minimize E. One proves that a MTM is of the form
u(x) = w(x/jxj), where w : Sn-1 -+ M is a (weak) harmonic map.

If X E Sf is isolated, 0 E Rn is then an isolated singularity of u. In this
case, if M is real analytic, Simon [*290] proved that u is unique (see also
Gulliver-White). Recently White [*317] gave the first examples for which u is
not unique.
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10.25 Theorem (Schoen-Uhlenbeck [*284]). Assume there exists an integer
p > 2, such that u is trivial as soon as u E Hl (B9, M) is a MTM of iso-
lated singularity at 0, for any q < p. Then dimH Sf < n - p - 1 for all weak
harmonic maps f E H2 (M, .1121) of minimizing energy. If n = p + 1, S f is finite.
If n < p + 1, S f is empty.

This theorem is a generalisation of Theorem 10.24 and we have

Corollary 10.25. If M has non positive sectional curvature, any weak harmonic
map M --+ M of minimizing energy is harmonic.

Proof. If u E H2 (B9,1Ul), q > 3, is a MTM with an isolated singularity at 0,
then there exists w : S9_1 -+ N1 a harmonic map (smooth) such that u(x)
w(x/jxj). According to Corollary 10.12, w is a constant map and the hypothesis
of Theorem 10.25 is satisfied with p > n - 1.

10.26 Proposition (Schoen-Uhlenbeck [*284]). A MTMu E H (Bn, S,,,) whose
singularity at 0 is isolated, is trivial if n < d(m) where d(2) = 2, d(3) = 3 and
d(m) = 1 + inf([m/2], 5) for m > 4.

This result together with Theorem 10.24 implies

Theorem 10.26. If n < d(m), any weak harmonic map f of minimizing energy
of M into S,n is harmonic (i.e. smooth). If n = 1 + d(m), Sf is finite and if
n > 1 + d(m), dimHS f < n - d(m) - 1.

There are very few examples of MTM. Let us mention some of them.

10.27 Proposition (see Lin [*222]). The map of Bn, into S,i_1 (n _> 3) defined
by x -+ x/lxj is a MTM.

Proof. First we establish the following inequality for any u E C1(1R' , Rn) with
Jul = 1:

(21) IVu12 + n 2 [tr(Vu)2 - (divu)2] > 0.

Then we verify that u E H2 (B", S,_,) with u(x) = x on 8Bn satisfies

(22)
[(div u)2 - tr(V)2]2 dx = (n - 1)w,,_ 1.

B

Set u0(x) = x/Ixl. (21) and (22) imply that any u r= H?(Bn, S,_1) such that
u = u0 on 8Bn satisfies

-1
(23)

Vul2 >
n

_ n - wn-1-B

We have only to remark now that fB Du0I2 = n=2wn_1.
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10.28 Proposition. a) (Jager-Kaul [* 186]) The map of B,,, into Sn C Rn+1
defined by x ---; (x/ I x1, 0) is a MTM if and only if n > 7.

b) (Brezis-Coron-Lieb [*59]) u E Hi (B3i S2) is a MTM if and only if
u(x) = ±A(x/lxl) with A E SO(3).

c) (Coron-Gulliver [* 103]) For 2 < n < m - 1, the map of Bn+m C Rn+' x
R2,-n-1 into Sm, defined by (x, y) --r x/jxj is a MTM.

§4. The Case of 8M # 0

4.1. General Results

10.29 From now on M is a compact C°° manifold with boundary (aM $ 0)
and M is a compact C°° manifold without boundary. We deal with the Dirichlet
problem (see Eells-Lemaire [* 120] and [* 121] for other boundary conditions,
such as Neumann conditions).

For the existence problem, the equivalent of Theorem 10.16 for manifolds
with boundary was proved by Hamilton [* 149].

If is a C°° map of aM into M, we consider M,,(M, M) the set of the
map f of M into M such that f /am = V).

Theorem 10.29 (Hamilton [* 149]). If M has non-positive sectional curvature,
there exists, in each connected component of MV, (M, M), a unique harmonic
map which is a minimizer of E on the component.

10.30 The results on the regularity of weak harmonic maps which minimizes E,
obtained by Schoen and Uhlenbeck (Theorem 10.24), are valid when aM $ 0.

Recall u E H2 (M, M) n M,,(M, M) is a minimizer of E if E(u) < E(v)
for all v E HI (M, M) n MO(M, M).

Theorem 10.30 (Schoen-Uhlenbeck [`285]). If f E H? (M, M) is a weak har-
monic extension, with minimizing energy, of V) E C2,a(8M, M), then

a) Sf, the singular set of f, is compact and Sf n aM = 0.
b) f is C2'" in a neighbourhood of aM
c) The results on dimH Sf mentioned in Theorems 10.24 and 10.25 are valid.

In particular dimH Sf < n - 3.

The same goes for Theorem 10.26. Let f be a weak harmonic map of
minimizing energy of M into S,,,,. If n < d(m), then f is regular.

10.31 When f is no longer minimizing, Sf may be strange.

Theorem 10.31 (Riviere [* 278]). Let 0 E C°°(3B3i S2) be a non constant map.
Then there exists a weak harmonic map f of B3 into S2, satisfying f /as, _ .
such that S f = B3.
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4.2. Relaxed Energies

10.32 The relaxed energies were introduced by Brezis, Coron and l.ieh 1*59I,
see also Bethuel-Brezis-Coron 1*48].

The problem comes from a fact discoverd by Hardt and Lin I* 160B1:
There exist maps' E C°°((9B3i S2) of degree zero, such that

(24) inf{ E(u)/u E Hi (S2, S2), u = ) on aS2 }

< inf{E(u)/u E C'((, S2),u = i/, on 012}1

where S2=B3.
It is not difficult to prove the left hand side of (24) is attained. More generally.

if Hi (M, M) n M p(M, M) is not empty, the inf of E(f) on this set is attained
by a weak harmonic map eo. Moreover if JJ E C2 ", then the nunnnver is

C2,, on a neighbourhood of aM and dimtt S,p n - 3 ("Iheoreni 1030).
To prove the existence of ip, let us consider { fi } c H2 (AI, !11)i 1:1 j .(.1l .11)

a minimizing sequence. Since E(fi) < Const., there exists a subsequence
which converges weakly in Hi (M, k) to some minimizer 4' E 1112(M. M) i I

Mo(M, M).

10.33 We are interested now in the Hardt-Lin problem:
Is inf{ E(f )/ f E C' (S2, S2), f = 0 on as2} attained'?
Let Sl be a bounded open set of R3 such that SZ is a manifold with Cboundary,

and V) E C°°(as2, S2) a given map of degree zero.
We set

HI2 2
, t,(S2, S2) = {f E HI (S2, S2)/f = on 80

C',(fl,S2) = {f E C'(f2,S2)/f = tp on M21,

R0 (S2, S2) = { f E H,,,p(l, S2) which are C' on 52
except at a finite number of points of S2

Let f be a map of RG(S2, S2) and let jai, a2, ... , a,. } be the points of Q
where f is not C'. We define d; = deg(f, ai) as equal to the degree of the
restriction of f to a sphere centered at ai of small radius r(B,,,(r) n {(1, } = 0 if,
ii j). Asdegz/c=0,E tdi=0.

Now we denote by {Pi}(1 < i < p) the family of the a, for which rl, 0
each ai being repeated di times, and by {Qj}(1 < j < q) the family of the o,
for which di < 0, each a, being repeated Id,I times. Of course 1) = q.

Definition 10.33. L(f) = inf of l d(P1, Qoti1) on all permutations (r of

11, 2, .. . , p}. Here d is the geodesic distance on Q.

10.34 Lemma (Brezis-Coron-Lieb [*591). If D(f) is the vector field chose com-
ponents are D' (f) = det(f, Of /ay, a f /ax), D2 f = det(8 f /ax, f, 0f 10--) and
D3 f = det(af/ax, aflay, f),
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(25) L(f) = 41 sups f D(f).V - I D(f).u
l s2

for all E C' (S2) with J V I_ < 1. Here v is the outside normal.

Thus we can extend the definition of L(f) when f E H21'0(Q1 S2).

10.35 Proposition (Bethuel-Brezis-moron [*48]).
Define for f E H2 (12,S2),E1(f)=E(f)+8irL(f).

a) El is l.s.c. on Hi x(Q, S2) for the weak topology of H. In particular,
inf Ei (f) for f E H ,,p(12, S2) is attained.

b) inf{Ei(f)/f E Hi ,(S2,S2)} =inf{E(f)/f E C,p(c,S2)}.

With this last equality, the Hardt-Lin problem is reduced to proving the
regularity of the minimizers of El. In this direction there are some results.

Giaquinta, Modica and Soucek [139] proved that if cp is a minimizer of E1,
dimH S" < 1.

Bethuel and Brezis [46] proved that the minimizers of the functionals
EA, ) E [0, l[, are in Rp (12, S2) (i.e. regular except at a finite number of points).
Ea is defined by EA(f) = E(f) + 87r)L(f ).

Let us mention to finish this section the following

10.36 Theorem (Bethuel, Brezis and Coron [*48]). If for some, inequality
(24) is strict, then there exists an infinity of weak harmonic maps of St into S2
which are equal to zl) on 512.

4.3. The Ginzburg-Landau Functional

10.37 The functional. Let 12 C 1R2 be a smooth bounded domain in R2. For
maps u:12 C and e > 0, we consider the functional

(26) EE(u)= 1 f IVuI2dx+ 12 f (IuI2- 1)2dx
2

2
4E

where dx is the Euclidean measure on R2.
Bethuel, Brezis and Helein [*50] considered the minimization problem of

EE(u)for uEH9={uEH1(12,C)/u=gon 81l}where g:812--Cis a
fixed boundary condition. Here g is assumed to be smooth with values in C the
unit circle (Igi = 1 on (912).

The problem consists in studying the behavior of minimizers uE of (26)
when a --+ 0. It depends on the degree d of g d = deg(g, 512). Obviously such
minimizers exist.
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10.38 The case d = 0. There exists a unique harmonic map tc t t ' ` (S?. t ' i

such that uo = g on ac. uo satisfies in 0 (see Example 10.9) the equation

(27) Duo = uoIVuo12 and Itcol = 1

Indeed set uo = e"°-; then (27) is equivalent to AV,, = 0 in S2. Now we
know that the equation

(28) AVO = 0 in SZ, Vo = q,o on i)SI

has a unique solution.
When d = 0 there exists Oo E C"°(e)52, IR), defined up to a multiple of 2 7.

such that g = ex'i'
This gives the existence and uniqueness of a solution of (27) satisf'int;

uo = g on df2.

Theorem 10.38 (Bethuel, Brezis and Helein [`50]). As E * 0. it,
Cl,"(S2) for every a < 1. The uE satisfies the equation

(29) AUE = E2tE(1 - IUEI2).

Thus

(30) 1AIte12 = E-11U,12(l - 1uEl2) -- lct,,I2.

Hence luEl cannot achieve a maximum greater than one. At such point the
right side of (30) would be negative and he left side nonnegative.

So itE satisfies luEl < I on SZ.
Moreover, EE(uE) < EE(Uo) = 1 fst IO1coI2 dx; thus it, - tco in fl t since tit,

is unique.
Using a uniform bound for Du, in Lam, Bethuel, Brezis and Helcin deduce

Theorem 10.38.

10.39 The case d i 0. This case is very different since EE(uO +.' as 0.

Without loss of generality we may assume that d > 0.

Theorem 10.39 (Bethuel, Brezis and Helein [*501). Suppose S2 is steer-shaped.
There is a sequence E - 0 and there exist exactly d points it, in S2 (7

1, 2, ... , d) and a smooth harmonic map uo from SZ - K into (' with u =

on iS2 (K = Ud t {a, }), such that uE -+ uo uniformly on compact subsets of
S2-1i.

The energy of teo, f I Vuo12 dx, is infinite and each singularity at has degree
+1.

More precisely uo(z) - a,(z - a,)/lz - a,I in a neighourhood of a with
k J=1.
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Let (r, 0) be radial coordinates centered at ai E Q. Consider the map vc.
defined by v, = aeirn;e for r < a and va = eimi9 for r > a.

Here a is a positive real number and m a positive integer. If we compute
EE(va), we see that the leading part in a will be smaller if we choose a = E,
and Ee(v,) - -7rm2 loge when 6 0.

Furthermore the degree of va/aS2 is mj. Let u be the sum of some functions
of this type centered at different points aj E Q. In order to have the degree of
u/ao equal to d, the mj must satisfy E mj = d. But EE(u) - -ir(E loge.

So to make EE(u) as small as possible, we must choose each m3 equal to
+1. This prove the first part of the

10.40 Lemma. There exists a constant C such that

(31) E, (u,) < - Trdloge+C.

Moreover

st

We drope the subscript e for simplicity. Integrating the scalar product of
(29) with x3 9 u, we get after integrating by parts

(33) f[v3uvuta + xja`VkuVkux)J dx -
J

1- x'(1 - juj2)ajIul2dx.-262
"

a is the outside normal derivative, ds the measure on aQ and {x' } a
coordinate system centered at a point of S2. We set r2 = E(xi)2. Integrating by
parts the second and the last terms of (33) gives

an
[8r2(VkuiVknh) - xiajuiaui] ds = 2 2 J (1 - Iu12)2 dx.

This can be rewritten as (9 is the derivative on aS2)

(34) 2
f (1 - Jul2)2dx

J
S

2
aLr2 [(a$ui)2 - (au')2] - asr2asuiauui

}
ds

19,u' is given and smooth on a11, so it is bounded. If Za,r2 > a > 0, and this
is the case when S2 is star-shaped, (34) yields

If -b)2ds+C<c

for some constants b and c.
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10.41 Proof of Theorem 10.39 (continuation). Blowing up uE at a point y E 0,
we find that satisfies in some ball in 1[82

AVE = V, (I - Iv,I2) and IVEI < 1.

A subsequence, noted always vE, converges to v which satisfies

(35) Ov = v(I - Iv21) and lvl< 1 on R 2.

Proposition 10.41. If a function v satisfies (35), then

f (iv 2 - 1) 2 dx = 27rn2,

n=0,1,2,...00.

For the proof see Brezis, Merle and Riviere [*62]. As v depends on y, we
denote this limit by vy. So if vy is not a constant of modulus 1, f (Ivy12 - 1)2
dx > 27r.

According to (32), only for a finite subset K of 52, vy is not constant. Now
we can write with K = {b1 b2, ... , bd},

r
(1Vzs I2) dx = 7rdj log e1 +W(ff)+O(e).

W(K) can be expressed in terms of the Green function of the Laplacian on
52 with some Neumann condition depending on g.

There is K which minimizes W(K). uo satisfies (27) in 52 - K with uo = g
on 852 and for each i (1 < i < d), there exists ai E C with jail = 1 such that

juo(z) - a1(z - ai)iz - ail-' I < Const. Iz - ai12.

Remark. This problem in dimension 2 is very different than in the other di-
mensions. If B,,, is the unit ball in R', the map: B2 3) x --p x/IxI E C does not
belong to H, (B2, C). For n > 2 the map x -4 x/jxI belongs to H, (8,,, Sn_ I),
See for instance Bethuel, Brezis [*46] and Brezis [*58].
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Notation

Basic Notation

We use the Einstein summation convention.
Compact manifold means compact manifold without boundary unless we say otherwise.
N is the set of positive integers, n E N.
R': Euclidean n-space n > 2 with points x = (x1, xZ, ... , x') x' E R real numbers.
Cm: Complex space with real dimension 2m. z" (A = 1, 2,... , m) are the complex

coordinates 2' = z''.
We often write 8t for 8/8x', as for 8/aza.
1lI": hyperbolic space.

Notation Index

bp(M) 29

Br ball of radius r in R' generally with
center at the origin

B=Bi
Bp(p) Riemannian ball with center P and

radius p
B(P, 6) ball of center P with radius 6
C the circle (or a constant)
C(M, g) Set of conformal transforma-

tions 188

C(S,,) = C(Sn, go)
Ck, C°", C' differentiable manifold I

Cr (W), CB 35
Grr+a or C',' 35, 36

C1,( °) 75

Cp(S2, G) 71

C(K) or C"(K) 74

CI(M) First Chern Class 252
Dpf 71

dxj 26

dV 30
d', d", d` 251

d 3

D(M) space of C°° functions with com-
pact support in M

2d (M) 32

D=BnE 35
d(P, Q) distance from P to Q
E={xER'"/x'<0} 35

E euclidean metric

Ei; = Rte - Rg,, 336, 346
n

e(f) 348

E(f) 348

expp(X) 9

ft. Suppose f is a function of two vari-
ables (x, t), then f,' is the first partial
derivative of f with respect to t

g: Riemannian metric 4

gtij the components of g, g'3 5

19l in real coordinates 26

IgI in complex coordinates 252

[g] conformal class of g
G(x, y) Green function of the Laplacian
GL Green function of L 156, 161

G(P, Q) Green's function 108

GL(R")+ 23
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or HP when there is no ambi-
guity 32

Hk(Mn) 32
Hk 33

H(P, Q) 106

5 (ca) 306
1(cp) 315
I(M, g) group of isometries 187

the Yamabe functional (often) 150

K(n,q) 40
K(n, 2) the best constant in the Sobolev

inequality HI C LN 140, 153, 236
K(n, 2) 181

L conformal Laplacian (often) 156, 161

Lp(.Yt) or Lp when there is no ambigu-
ity 78

2'(F,G) 70
M (or M) manifold of dimension n 1

315
.l' (gyp) 301

M(cp) 253

M(p) 290

(M,,, g) Riemannian manifold 4
MTM 357
N is generally equal to 2n/(n - 2)
0(P) orbit of P
OG(P) orbit of P under the group C

188

lP (R) real projective space
complex projective space

Riikl 4

Rijk! 6

Rij, R 7

(S,,, go) the sphere of dimension n of
radius 1 endowed with the standard
metric go

Sf 357

sphere of dimension n and radius
P

supp cp means support of cp
Tp(M), T(M), T"(M), T, (M) 2

V generally denotes the volume of the
manifold when it is compact

Wijke components of the Weyl tensor
117

Zijke components of the concircular cur-
vature tensor 335

IZ12 = ZijkeZijke
a(M) 280

Notation

aG(M) 281

F(P, Q), rk(P, Q) 109

r,(M) 3

rzk Christoffel symbols 3

0 Laplacian Operator 27, 28
0 laplacian (in chapter 9: 0 = -V'0, is

the rought Laplacian)
A1(M) 3

1D., 4'" 2

41 252
(f2, gyp) a local chart I

6 codifferential 27
6', 6" 253

Kronecker's symbol 4
att, 8 normal derivative oriented to the

outside (often)

po 239

p inf J(W) (often) 150
(or in chapter 6: p = lim pq,) 222

)1 189

p(A) 76

ps 222
7) 26
A, first nonzero eigenvalue ai 31

X(M) (or X if there is no ambiguity)
Euler-Poincar6 characteristic 29

XE characteristic function of E 41
w volume of

251

254
T(f) 348

Other symbols

11
110 norm in C or C°

1111, with p > I norm in Lp 78

11 IIHk 32

viY 3

v',12...«e 4

Vkco 32
act the boundary of fI
0 empty set

C a
ai tangent vector at P 2

P
[X, Y] bracket 2

* adjoint operator 27

av(zo)
96



Notation

Convention

positive
negative
non-positive
non-negative
Compact manifold

aij > 0

means strictly positive
means strictly negative
means negative or zero
means positive or zero
means compact manifold without boundary unless
we say otherwise
(resp. aij > 0) for a bilinear form means aijE E > 0
for any vector i; (resp. aij i; 0).
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