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POSITIVE SCALAR CURVATURE
AND THE DIRAC OPERATOR
ON COMPLETE RIEMANNIAN MANIFOLDS
by MiksaAEL GROMOYV and H. BrainNe LAWSON, ]Jr. (¥)

PREFACE

One of the principal aims of this study is to understand spaces which carry metrics
of positive scalar curvature. In recent years this subject has been the focus of lively
research, and we would like to begin with a brief discussion of the developments ().

Certainly, one of the simplest invariants of a riemannian manifold is its scalar
curvature function. In general dimensions, this function (whose value at a point is just
the average sectional curvature) is a weak measure of the local geometry, and one might
suspect it to be unrelated to the global topology of the manifold. Evidence for this
suspicion can be found in the work of Kazdan-Warner and Aubin. For example, in [KW]
it is proved that on a compact manifold of dimension = 3, every smooth function which
is negative somewhere, is the scalar curvature of some riemannian metric. However,
the intriguing fact is that there are manifolds of high dimension which carry no metrics
whose scalar curvature is everywhere = o.

The first examples of such manifolds were given in 1962 by A. Lichnerowicz [Li],
who reasoned as follows. Over any riemannian spin manifold there exists a fundamental
elliptic operator, called the Dirac operator (#). Using Bochner’s method, Lichnerowicz
showed that on compact manifolds of positive scalar curvature, this operator is invertible.
In dimensions 4% he then concluded, via the Atiyah-Singer Index Theorem, that a certain
basic topological invariant of the manifold, called the A-genus, must vanish. For any
oriented 4-manifold M, it is a fact that 8A(M) = signature (M). Since there are many
spin 4-manifolds of non-zero signature, and since A is a  multiplicative ” invariant,
the above argument produces many examples of manifolds which do not carry positive
scalar curvature.

(*) Research partially supported by NSF Grant number MCS 830 1365.
(!) We also recommend to the reader the historical account of L. Berard-Bergery [B'].
(3) This operator was first constructed by Atiyah and Singer in their work on the Index Theorem.
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84 MIKHAEL GROMOV AND H. BLAINE LAWSON, JR.

Note that the spin assumption is essential here, since the complex projective plane
has both positive curvature and non-zero A-genus.

The next major contribution to the subject was made by N. Hitchin [H] who used
the Dirac operator to conduct an extensive investigation of spaces of positive scalar
curvature. One surprising and beautiful result of this study was a proof that half of the
exotic spheres in dimensions 1 and 2 (mod 8) cannot carry metrics of positive scalar
curvature. The major ingredient in this proof is a refined version of the index theorem,
due also to Atiyah and Singer [ASV].

Although it is very impressive, all of this work still left open the question of Geroch:
Can the torus T", n = g, carry a metric of positive scalar curvature? This question
was settled (for » £ 7) in a beautiful series of papers by R. Schoen and S. T. Yau [SY,],
[SY,]. Their principal result is the following * Splitting Theorem . Let M"* (n £ 7)
be a compact manifold of positive scalar curvature. Then any class « € H,_(M"; Z) can be
represented by a manifold which carries positive scalar curvature. ‘This is also true for homology
classes in any (possibly infinite) covering space of M". This result allows one to define
inductively a class of manifolds (‘Schoen-¥au manifolds) which do not carry positive scalar
curvature. The class contains all sufficiently large g-manifolds, and hence it is quite
rich.

The above Splitting Theorem is proved by choosing a manifold of least area in
the homology class «, and then applying the formula for the second variation of area.
The positivity of the second variation operator easily implies that the metric induced
on this minimizing hypersurface is conformally equivalent to one of positive scalar
curvature.

The major breakthrough made by Schoen and Yau was the discovery that the
standard second variational formula could be rewritten in a particularly useful way.
(See 11.11 below.) Although the computation is trivial, this important fact eluded
geometers for many years. It now forms the keystone of a solid arch between geometric
measure theory and riemannian geometry. This connection has led to an intriguing
circle of ideas involving minimal hypersurfaces, scalar curvature and the Dirac operator.

It should be mentioned that the restriction on dimension in the Splitting Theorem
results from the breakdown of interior regularity for solutions to the Plateau Problem
in #-manifolds for n = 8. Although it appears that Schoen and Yau have recently
succeeded in extending their techniques to all dimensions, the Splitting Theorem, as
stated above, remains conjectural.

The next step in the development of the subject of positive scalar curvature was
the introduction of the notion of ¢nlargeability [GL,]. With this concept it was possible
to introduce the fundamental group into the Dirac operator methods used in the past.
The key realization was that =, enters the problem through the geometry of the uni-
versal covering. A manifold was defined to be enlargeable if for every > o there exists
a finite covering which admits an e-contracting map of non-zero degree onto the unit
sphere. These highly contracting maps can be used to produce non-trivial bundles
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POSITIVE SCALAR CURVATURE AND THE DIRAC OPERATOR 85

which are almost flat by pulling back some fixed bundle from the sphere. Applying
the Bochner Method to the Dirac operator with coefficients in these bundles proves directly
that enlargeable spin manifolds cannot carry positive scalar curvature.

Enlargeability is a homotopy-theoretic property, and the category of enlargeable
manifolds is a rich and interesting one. It contains, for example, all solvmanifolds,
all hyperbolic manifolds and all sufficiently large 3-manifolds. In particular, it properly
contains all Schoen-Yau manifolds.

The category has some nice properties. Products of enlargeable manifolds are
enlargeable, and the connected sum of an enlargeable manifold with any other manifold
is again enlargeable. In fact, any manifold which admits a map of non-zero degree
onto an enlargeable manifold is enlargeable.

There is an important generalization of the notion of enlargeability which is given
by simply replacing the word “ degree” with “ A-degree ” in the discussion above.
(The A-degree of a map fis defined to be A(f~* (any regular value)).) With this more
general definition it remains true that enlargeable spin manifolds cannot carry positive
scalar curvature. As an example, the product manifold X XY, where X is hyper-
bolic and Y is spin with A(Y) # o, cannot carry positive scalar curvature.

This more general result has an interesting interpretation. In a sense, the basic
enlargeable manifolds are manifolds of K(=, 1)-type, such as solvmanifolds, manifolds
of non-positive curvature, or K(w, 1) 3-manifolds. Suppose now that a manifold X is
mapped onto such a K(=, 1) space. Then the A-degree of this map is one of the higher
A-genera of X. The higher A-genera are defined in strict analogy with the Novikov
higher signatures (or ¢ higher L-genera ’). In fact, the general arguments given in [GL,]
are related spiritually to the constructions of Lusztig in his proof of the homotopy inva-
riance of certain higher signatures [Lu]. The results in [GL,] can be interpreted as
establishing certain cases of the general statement that for spin manifolds of positive
scalar curvature, the higher A-genera must vanish.

Geometric intuition strongly suggested that the conclusions reached in [GL,]
should be true of a much broader class of manifolds. One of the principal deficiencies
of [GL,] was that the methods applied only to compact manifolds, whereas the natural
place to analyze largeness was on the universal covering space. This difficulty has now
been overcome.

In this article we deal directly with non-compact riemannian manifolds, and analyze
there the interplay between largeness and positive scalar curvature. This leads both
to improved results in the compact case and to new results for non-compact spaces.
Our methods follow two distinct lines of development. One involves the Dirac operator;
the other uses minimal hypersurfaces.

The adaptation of Dirac operator methods to non-compact manifolds requires a
replacement for the role of the Atiyah-Singer Theorem in the compact case. This has
led to the formulation and proof of a  Relative Index Theorem > for operators (on
L,-sections) over open manifolds. The result seems particularly well adapted to the
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86 MIKHAEL GROMOV AND H. BLAINE LAWSON, JR.

study of scalar curvature. It also has some independent interest, and has been sub-
sequently greatly generalized by Jeff Cheeger.

Using the Relative Index Theorem with some additional techniques we are able
to substantially widen the results in [GL;]. For example, it is shown that a compact
manifold X which admits a metric with sectional curvature < o, cannot carry a metric of positive
scalar curvature. The same holds for any compact spin manifold admitting a map of
non-zero A-degree onto X. In dimension 3, these methods lead directly to the * correct
result that @ compact g-manifold whick has a K(w, 1)-factor in its prime decomposition cannot
carry positive scalar curvature. (One uses here only the simple trick of the ¢ inflating bal-
loon ”, given in 7.36ff., and not the lengthier, more delicate results of that section.)

The operator techniques have also led to the establishment of topological conditions
under which a non-compact manifold admits no complete metric of positive scalar curvature. For
example, there is a non-compact version of the result above: Any manifold which admits
a complete hyperbolic metric of finite volume cannot carry a complete metric of positive scalar curvature.
Here * hyperbolic > means that the sectional curvature is bounded between two negative
constants.

An important aspect of the question of positive scalar curvature in the open case
is clearly presented by the following sequence of results. Let X be any (compact)
enlargeable manifold. Then a complete metric on:

X X R cannot have positive scalar curvature
X X R? cannot have uniformly positive scalar curvature
X X R3 can have uniformly positive scalar curvature.

In dimensions = 4 the second statement will be proved only under a mild restriction
on the metric. On the other hand in dimension 3 the results are particularly strong.
The second statement remains true with S! X R? replaced by any 3-manifold which is
homotopy equivalent to St or which is diffefomorphic to the interior of a compact mani-
fold with boundary such that H,0X — H;X is not zero.

Concerning metrics of uniformly positive scalar curvature, we shall prove an
interesting local non-existence theorem (where ¢ local ” here means local at infinity).
We shall define what we call a “ bad end ”’ of a non-compact manifold, and prove that
any complete metric on a manifold with a bad end cannot have uniformly positive scalar
curvature. ;

Our second line of argument here involves minimal hypersurfaces. These tech-
niques are most powerful in dimension §. Via the second variational formula, one gains
rather strong control over the geometry of even incomplete g-manifolds of positive scalar
curvature. For example, suppose X is a compact g-manifold with boundary, and with
scalar curvature = 1. Then it is shown that any closed curve v suck that [y] = o0 in
H;(X, 0X) and distance(y, 0X) > 2r, already bounds in its 2m-neighborhood. (In parti-
cular, [y] =0 in Hy(X).) Notice, for example, that this immediately implies: There
exists no complete metric of uniformly positive scalar curvature on S! x R2; also,
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POSITIVE SCALAR CURVATURE AND THE DIRAC OPERATOR 87

any g-manifold admitting such a metric and with =, finitely generated is simply-
connected at infinity. There are, of course, many other consequences. (See § 10.)

The key to the method here is to apply the second variational formula to non-simply-
connected regions on a stable minimal surface.

Several mathematicians have made contributions to this area. Among the first
were Burago and Toponogov [BT] whose were, at that time, not equipped with Osser-
man’s interior regularity results or the Schoen-Yau formula. (Hence, they considered
only positive Ricci curvature.) More recently there has been an important paper [SY,]
by Schoen and Yau, and a series of beautiful results by Fischer-Colbrie and Schoen
in [FCS].

In this last paper, Fischer-Colbrie and Schoen introduce a ‘ symmetrization
trick. Given a stable minimal surface X in a 3-manifold of positive scalar curvature,
they construct a warped product metric of positive scalar curvature on X X St. Real-
izing that this trick extends to all dimensions, we have combined it with our notions of
largeness to give results for incomplete manifolds of dimensions = 7. The basic result
is this. (See § 12.) Let X be a compact oriented riemannian n-manifold, n < 7, with scalar
curvature = 1. Then there exists no e,-contracting map (X, 0X) — (S", *) = unit sphere,

n I
of non-zero degree, where e, =

n—12'xn

The extension of symmetrization to higher dimensions was also noticed by Schoen
and Yau, who have recently announced similar results. They have also announced a
technique for by-passing the singularities which can appear on minimizing hypersurfaces
in dimensions = 8. This means that a large portion of the results discussed here can be
proved by either of the two complementary techniques (i.e., by ¢ Dirac operator > or
 minimal surface > methods). It is interesting to compare the methods since ultimately
each has its own strengths.

There are several categories of results which are at the moment provable only
by Dirac operator techniques. One involves the higher A-obstruction. For example,
a product X X Y, where X can carry sectional curvature < o and where Y is spin with A(Y) + o,
cannot carry positive scalar curvature. This is provable in dimensions = 8 only by operator
methods.

Another such category of results is that where, basically, one must invoke the index
theorem for families. For example, a compact manifold X which can represent a non-zero
rational homology class in a manifold Z of non-positive sectional curvature (i.e., for which there exists
a continuous map f: X —Z suck that f[X] =+ o in H,(Z;Q)), cannot carry positive scalar
curvature. 'This appears to be often provable only by Dirac operator methods.

Another example is the following. Suppose X is a compact manifold suck that X x R™
carries a complete metric of non-positive curvature for some m. Then X cannot carry positive scalar
curvature. It is, incidentally, unknown whether every compact K(=, 1)-manifold has
this property.
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88 MIKHAEL GROMOV AND H. BLAINE LAWSON, JR.

On the other hand, Dirac operator methods fail for any manifold which does not
admit a spin covering space, e.g., T4 # P2(C).

The relationship between the Dirac operator and minimal hypersurfaces is one of
the intriguing mysteries of riemannian geometry. Their roles in the study of scalar
curvature are analogous to the roles of the Hodge operator on 1-forms and geodesics in
the study of Ricci curvature. Even in this latter case, no deep relationship is understood,
although there is some interesting speculation.

It certainly seems to be the scalar curvature function which mediates between
harmonic spinors and minimal hypersurfaces. In fact, many of the results proved here
ultimately have applications to the topological structure of complete stable hypersurfaces
in manifolds with scalar curvature = o. There are also applications to the topological
¢ placement ” of minimal hypersurfaces and to the structure of stable cones. (See § 11.)

Note that, thus far, we have only discussed the negative side of the scalar curvature
question. Nevertheless, much is known about how to construct positive scalar curvature
metrics, and using this knowledge we are able to formulate some delicate conjectures.

We begin by recalling Hitchin’s Theorem. Let Q%" denote the spin cobordism
ring. Then there is a graded ring homomorphism

o : QW 5 KO, (pt.)

defined by Atiyah and Milnor [M,], which strictly generalizes the classical A-genus in
dimensions 4%. By means of the results in [AS], this invariant can be realized as the
index of the Dirac operator (taken in a suitable sense). In particular, for compact spin
manifolds X of positive scalar curvature, one concludes that Jai(X) = 0.

In the simply connected case, this result has almost been proved to be sharp. More
explicitly, the following is proved in [GL,]. Let X be a compact simply-connected
manifold of dimension 2 5. If X is not spin, then X carries a metric of positive scalar cur-
vature. If X is spin, the existence of a positive scalar curvature metric on X is completely
determined by a finite number of spin cobordism invariants. In particular, there exists
a surjective, graded ring homomorphism @ : Q™ — fo, which factors .52/: i.e. for which
there is a commutative diagram

to,
Qipin n
NG
Kot (Pt') b

and if X is spin, then there exists positive scalar curvature on X tf and only if 4(X) = 0. One
conjectures that = is an isomorphism. This has been shown to be true if one tensors
with the rational numbers.
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POSITIVE SCALAR CURVATURE AND THE DIRAC OPERATOR 89

It should be mentioned that the key differential geometric step in proving the
results above is the following codimension-3 surgery theorem. Suppose X carries a
metric with positive scalar curvature. Then any manifold obtained from X by doing
surgery on an embedded sphere of codimension = 3, also carries positive scalar curvature.
This theorem was independently proved by Schoen and Yau in [SY,]. Both the state-
ment of their theorem and the method of proof are different from those in [GL,]. Never-
theless the results are completely equivalent.

It should be mentioned that the ¢ equivariant > version of these questions is more
delicate. L. Berard-Bergery has found examples of G-manifolds with positive scalar
curvature which admit no invariant positive scalar curvature metric [B,].

The general spaces of positive scalar curvature are generated from basic ones by
surgery. The basic ones appear from S3-actions in the spirit of [LY] or from fibre bundles
having such spaces as fibres.

The results discussed above are quite suggestive. The homomorphism & deter-

mines a transformation of generalized homology theories: o Q¥e(.) > KO,(-). In
particular, for any group II this gives us a homomorphism

o+ QP(IT) — KO, (IT)

where by £,(II) we mean A, (K(II, 1)). Note that any compact spin manifold X with
fundamental group Il determines a class [X] in QP2(II) via the classifying map
X - K(II, 1) (taking m,X isomorphicially to II).

For “reasonable ” finitely presented groups II, the following conjecture seems
plausible.

CoNJECTURE. — Let X be a compact spin manifold with = X = II. Then there exists

~

a metric of positive scalar curvature on X if and only if o/ ([X]) = o.

There is some significant evidence for this whenever II is geometrically approa-
chable. The reader will find that all the results in this paper concerning the non-
existence of positive scalar curvature metrics on compact spin manifolds, are subsumed
in this statement (for various groups II). Quite recently T. Miyazak{ [Mi] has written
a very nice paper in which he carries over the results of [GL,] to manifolds X with
mX~ZERZ or mX > Z" for m<dim(X). In particular, he proves the existence
half of the conjecture (modulo torsion) in these cases.

Further evidence comes from a parallel approach to the scalar curvature question
which involves infinite dimensional bundles. The original point of enlargeability was
to construct, over each covering space, a k-plane bundle with connection, with the pro-
perty that the curvature went uniformly to zero as one passed up the tower of coverings.
Each such bundle could be pushed forward and considered on the base manifold. Pas-
sing to the limit, one might expect to find an interesting infinite-dimensional, flat bundle E,

301
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90 MIKHAEL GROMOV AND H. BLAINE LAWSON, JR.

over the original manifold, so that one could apply the Bochner Method directly to the
Dirac operator with coefficients in E,.

Jonathan Rosenberg has pointed out to us that the appropriate index theorem for
such an approach was recently proved by Mischenko and Fomenko. The index takes
its values in the K-Theory of the group C*-algebra C*(mw,X). Deep results on the
generalized Novikov Conjecture imply the “ only if ” part of the conjecture above (again
modulo torsion), for a wide range of groups Il. This includes fundamental groups of
compact non-positively curved manifolds, and discrete subgroups of connected Lie
groups. Rosenberg has proved the obstruction to hold for torsion classes which survive
the ¢ complexification ” map KO,(IT) - KU,(IT). The details of this appear in
Rosenberg’s paper following this one.

The first section of this paper presents a detailed summary of our principal results.
However, before setting to this task we want to express our great debt to Jeff Cheeger
who patiently explained to us a number of fundamental points concerning operators
on non-compact manifolds and whose comments and insights were invaluable during the
development of this work. We would also like to thank Marc Culler and Robert
Osserman for valuable conversations.
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o. A GLIMPSE AT THE MAIN RESULTS

The principal new analytic tool developed in this paper is the Relative Index
Theorem for pairs of elliptic operators which agree outside a compact set. The theorem
is stated and proved here for generalized Dirac operators. However the result holds
in considerably greater generality and will be the subject of a forthcoming paper of Jeff
Cheeger and the authors.

A generalized Dirac operator on a riemannian manifold X is a first order elliptic
operator defined on a bundle of modules over the Clifford bundle of X by the formula

D =2X¢-V,.
j J

Here the dot denotes Clifford multiplication. Examples include the Clifford bundle
itself, the spinor bundle (when it exists), and either of these tensored with an arbitrary
¢ coefficient > bundle. We begin the paper with a detailed discussion of these operators,
including a proof of their essential self-adjointness over complete manifolds. A central
point in the discussion is the generalized Bochner-Lichnerowicz-Weitzenbock formula,
which has the form:

(BLW) D2 = V'V + %

3

where V*V is the ¢ connection Laplacian > and where £ is an explicit zero-order sym-
metric operator defined in terms of the curvature of the bundle. We say that the
operator D is strictly positive at infinity if there is a constant 7> o0 so that £ = r,1Id
outside a compact subset. Under this assumption the kernel of D on L?-sections is finite
dimensional.

Over oriented manifolds of even dimension the module bundle S has a parallel

orthogonal splitting S = S*® S~ with respect to which D can be written as

th D}
Dt o

Thus, if D is positive at infinity, the operator D* : I'(St) — I'(S™) has finite dimensional
kernel and cokernel, and we can define
index(D*) = dim(ker D*) — dim(coker D)
= dim(ker D*) — dim(ker D7).
Suppose now that we are given two generalized Dirac operators D, and D, over
two complete riemannian manifolds X, and X, respectively. These operators are said
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92 MIKHAEL GROMOV AND H. BLAINE LAWSON, JR.

to coincide at infinity if outside of compact subsets K,CX, and K,;CX, there is an iso-
metry of manifolds and bundles which carries D, onto D,.

Under these assumptions there is a well defined relative topological index ind,(Dg, D),
obtained by compactifying the pair in the region of agreement and then taking the
difference of the indices of the resulting operators. This index has a purely topological
definition. It can also be expressed in the spirit of Chern-Weil Theory as the ¢ diffe-
rence ”’ of integrals of certain characteristic polynomials in the curvature tensors.

Two basic examples are as follows. Suppose D, and D, are the Dirac operators on
spinors over X, and X,. In this case the relative index is given by ind,(Df, Df) = A(Y)
where Y is any compact manifold obtained by taking the ¢ difference ” of X, and X,.
(Remove a neighborhood of infinity in the region of agreement, and attach the resulting
compact manifolds along their “ common ” boundary.) For the second example let S
be the bundle of spinors over a complete riemannian manifold X, and let E be a complex
k-dimensional vector bundle over X which is trivialized at infinity. Assume E has a uni-
tary connection compatible with the trivialization at infinity. (In particular, the con-
nection is flat at infinity. Such connections always exist.) Consider the Dirac ope-
rators D, and Dg on the bundles S®C*¥ and S®E respectively. These operators
agree at infinity and their relative topological index is given by the integral

ind,(Di , D) = fxcﬁ E A A(X)

where chE =chE —chCF= ch E + ch, E 4+ ... is the “reduced” Chern cha-

racter of E, K(X) is the total A-class of X, and where all these characteristic differential

forms are written canonically in terms of the curvature tensors of E and X respectively.

Note that ch E has compact support since E is flat outside a compact subset of X.
The fundamental result is the following.

THE RELATIVE INDEX THEOREM. — Let Dy and D, be two generalized Dirac operators
over complete riemannian manifolds X, and X,. Suppose these operators coincide at infinity and are
positive there. Then

index(Df) — index(Df) = ind,(D§, Df).
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POSITIVE SCALAR CURVATURE AND THE DIRAC OPERATOR 93

We also prove a refined version of this theorem for pairs of operators which coincide
and are positive on some family of ends of the manifolds X, and X,. (See § 4 for a state-
ment.) Here the difference of the indices is a ‘“ semi-topological » invariant. It seems
that this result should also be quite useful in the study of complete riemannian manifolds.

The Relative Index Theorem plays a major role in proving the main geometric
results of this paper. However, it also enables us to define some interesting integer inva-
riants for metrics of positive scalar curvature on a compact spin manifold X. Given
two such metrics g, and g, on X, we introduce on X X R a metric of the form
ds? = g, + dt* where

gofort=o0
g =14g for t =1

any smooth homotopy from g, to g, for o < ¢< 1.
We then define
i(g> &) = index(D*)

where D is the canonical Dirac operator on X X R. The Relative Index Theorem
proves that this integer is independent of the choice of homotopy g,; and our refined
index theorem shows that it satisfies a ¢ cocycle condition

(80> &1) + (g1, g2) + (825 &) = 0.

(Note that i(g,, g) = — (g, &), by a trivial change of orientation.) The vanishing
theorems can be applied to show that if g, is homotopic to g, through metrics of positive scalar
curvature, then i(g,, g) = o. Thus, i(g,, g;) is constant on connected components of the
space of positive scalar curvature metrics.

This invariant is non-trivial. If g, is the constant curvature metric on S7, then
the function g —1i(g, g,) takes on all integer values. This function is, incidentally,
invariant on the orbits of the group of diffeomorphisms acting on the space of metrics
on S7.

There is a family of similar non-trivial invariants which can be defined. A sys-
tematic study of these invariants will be made in a forthcoming paper of the authors.

The main geometric results of this paper concern the non-existence of metrics with
positive scalar curvature. To state results we must introduce the notion of enlargeabi-
lity. Let S" denote the euclidean n-sphere of radius one. Given > 0, we say that
a riemannian manifold X is e-kyperspherical if there exists an e-contracting map f: X — S"
which is constant outside a compact subset and of non-zero A-degree. By A-degree we
mean A(f~! (any regular value of f)). If dim X =n, this is the usual notion of degree.

DEeFINITION A. — A compact manifold X is said to be enlargeable if for any > o
and any riemannian metric on X, there exists a spin covering manifold X — X which
is e-hyperspherical (in the lifted metric).
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94 MIKHAEL GROMOYV AND H. BLAINE LAWSON, JR.

This definition differs from the one given in [GL,] in that here we no longer require
the coverings to be finite. This broadens enormously the class of enlargeable manifolds.
For example, any compact manifold which admits a metric with sectional curvature < o is enlar-
geable. As shown in [GL,] any compact solvmanifold is enlargeable. (A solvmanifold is a
solvable Lie group modulo a cocompact discrete subgroup, e.g. a torus.)

The property of enlargeability depends only on the homotopy type of the mani-
fold. In fact, considerably more is true. Any compact spin manifold which admits
a map of non-zero A-degree onto an enlargeable manifold is itself enlargeable. Thus,
the connected sum of an enlargeable manifold with any spin manifold is again enlargeable.
Furthermore, the product of an enlargeable manifold with any spin manifold if non-
zero A-genus, is again enlargeable.

THEOREM A. — An enlargeable manifold cannot carry a metric of positive scalar curvature.
In fact any metric of non-negative scalar curvature on an enlargeable manifold must be Ricci flat.

CoroLLARY A. — A compact manifold X which carries a metric of non-positive sectional

curvature cannot carry a metric of positive scalar curvature. In fact any metric with scalar curva-
ture = 0 on X must be flat.

One can conclude that if X carries a metric with sectional curvature < o, then there
is no metric on X with scalar curvature = o.

We now take up the question of complete metrics on non-compact manifolds.
Recall that a smooth map f: X —Y between riemannian manifolds is e-contracting
if ||f,V]|2¢]||V]|l for all tangent vectors V on X. We shall say that f is (g, A?%)-
contracting (or e-contracting on 2-forms) if

IAVALW][ = e]|[VaW]|

for all tangent 2-frames V, W on X. Clearly an e-contracting map is e2-contracting on
2-forms. However, to be contracting on 2-forms, it is only necessary to be contracting
in (n — 1)-directions at each point (where n = dim X). That is, if fof, has eigen-
values A, ..., A2, where at each point A} < 1 and 2® < & for j2 2, then fis (e, A%)-
contracting.

In analogy with the above we say a riemannian manifold X is (e, A%)-kyperspherical

if it admits an (e, A?)-contracting map f: X — S" which is constant at infinity and of
non-zero A-degree.

DEeFInITION B. — A (not necessarily compact) manifold X is said to be A2-enlargeable
if for any > o and any riemannian metric on X there exists a spin covering manifold
which is (e, A?)-hyperspherical (in the lifted metric).

The property of A?-enlargeability depends only on proper homotopy type of the
manifold. The product of an enlargeable manifold with a A2-enlargeable manifold is
again A2-enlargeable. So also is the connected sum of a compact spin manifold with
a AZ-enlargeable manifold. This property has a further contagious aspect.
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ProrosiTioN B. — Let X be a connected manifold, and suppose U CX is an open sub-
manifold with 7, U — 7y, X injective. Then if U is A2%-enlargeable, so is X.

Any enlargeable manifold is clearly A%-enlargeable. However, the interesting
examples are the non-compact ones.

ExampLEs. — The following manifolds are A%-enlargeable.

(1) X X R where X is enlargeable.

(2) Any hyperbolic (*) manifold of finite volume.

(3) X —K where X is compact with sectional curvature < o and where K is any compact
subset which misses a compact geodesic hypersurface.

(4) The product of any of the above examples with an enlargeable manifold (e.g. with a
manifold of curvature < o or with a spin manifold of non-zero A-genus).

(5) The connected sum of any of the examples above with any compact spin manifold.

Note that included in Example (1) above are manifolds of the form X X R where X
is a compact spin manifold of non-zero A-genus. Included in Example (g) is any mani-
fold of the form T" — K where K is a compact subset in the complement of a linear
subtorus T"~!CT" The main result is the following.

THuEOREM B. — A A%enlargeable manifold cannot carry a complete metric of positive scalar
curvature.

Using recent results of J. Kazdan [K] we can also conclude that any complete metric
with scalar curvature = o on a A2-enlargeable manifold must be Ricci flat.

CorOLLARY B;. — A4 manifold X whick carries a hyperbolic metric of finite volume cannot
carry a complete metric of positive scalar curvature.

CoROLLARY By. — There is no complete metric of positive scalar curvature on X X R if
X s either

(1) @ compact manifold which admits a metric of non-positive sectional curvature
or

(2) a compact spin manifold of non-zero A-genus.

Results of this kind in dimension three were first obtained by R. Schoen and
S. T. Yau [SY,].

Any covering of a compact manifold of positive scalar curvature is complete and of
uniformly positive scalar curvature, i.e. x = x, for some constant k,>o0. The existence of
such a metric has stronger implications than does the existence of a complete metric
with only k>o. Suppose that X is a (compact) enlargeable manifold. Then, as

(*) Here « hyperbolic » means complete with sectional curvature bounded between two negative constants.
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we have seen, X X R cannot carry a complete metric with k¥ >o0. However, X x R?2
can carry such a metric. Consider, for example, the product of a flat torus with a para-
boloid of revolution. Nevertheless, X X R? cannot carry a complete metric with
K = Ky, for some x,>o0. (We shall prove this only under some mild restrictions on
the metric.) Note that the process ends here. That is, X x R3 always carries a
complete metric with « = x,> o.

The central result is the following.

THaEOREM C. — Let X be a compact enlargeable manifold.  Then there is no complete metric g
of uniformly positive scalar curvature on X X R?* which satisfies either :

(1) Ricci 2 — ¢2g for some constant c,
or

(2) there are no properly embedded surfaces, cohomologous to {x} X R2, which are of finite
area.

Of course, the techniques of the proof apply to a much wider class of manifolds.
For a general statement of results, see § 7.

It should be pointed out that the techniques introduced in § 7 of this paper are
perhaps more important than the results. The techniques, once understood, can be
applied in a variety of situations. A good example of this is the following * local ”” non-
existence result.

DEeFNtTION D. — A connected manifold X is said to have a bad end if there exists a
(compact, oriented) enlargeable hypersurface ZCX and an unbounded component X,
of X —Z with a map X, —Z whose restriction to ZCX, has non-zero degree.
(More generally, the map X, -~Z may be replaced by a map to any enlargeable
manifold.) The set X, is, of course, the “ bad end.”” The result is basically that bad
ends cannot carry uniformly positive scalar curvature.

THEOREM D. — Let X be a connected manifold with a bad end X . Then there exists

no complete metric g on X satisfying the conditions x = x, and Ricci 2 — ¢2g (for constants c,
Ko->0) on the end X .

The above results are particularly strong when applied to manifolds of dimensions §
and 4.

Recall that any compact orientable 3-manifold X admits a unique decomposition
X =X, # ... # Xy into a connected sum of prime 3-manifolds. A prime g-manifold
which is not diffeomorphic to S! X S? is either a K(=, 1)-manifold or it is covered by a
homotopy 3-sphere.

THEOREM E. — Any compact orientable 3-manifold which has a K (=, 1)-factor in its prime
decomposition cannot carry a metric of positive scalar curvature.  Furthermore, any metric with scalar
curvature 2 0 on such a manifold must be flat. (And the manifold must be, in particular, prime.)
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This result is almost sharp since any g-manifold of the form
X = (S3Ty) # ... # (S3T},) # (S* X S%) # ... # (S x S?)

does carry positive scalar curvature (see [GL,]). The question of the existence of posi-
tive scalar curvature metrics on homotopy g-spheres remains open.

For non-compact g-manifolds we recover the following result of Schoen and
Yau [SY;]. A surface T embedded in a manifold X is called incompressible if Z is compact
with %(Z) £ o and if the homomorphism =X — n; X is injective.

Tueorem E'. — Any g-manifold which admits an incompressible surface cannot carry a
complete metric of positive scalar curvature.

Let X be a g3-manifold. An embedded circle yCX is said to be small if it has
infinite order in H, X and if the normal circle to v has infinite order in H,(X — y). The
circles S' X {x} are small in S! X R? but notin S! x S% If X is any K(=, 1) g3-mani-
fold, then the representative of a non-zero element in =,(X) is small in an appropriate
covering manifold. Note that small circles remain small after taking connected sums
of g-manifolds.

TueoreM E"'. — An open 3-manifold which admits a small circle cannot carry a complete
metric of uniformly positive scalar curvature.

There are some similar results for 4-manifolds. We say that a compact incom-
pressible surface £ embedded in a 4-manifold X is small if |7, X/m;Z| = oo and if the
normal circle about X is of infinite order in Hl()&(’ — X)), where X is the covering of X
with =, X = =,3.

TueoreM F. — A compact spin 4-manifold whick admits a small incompressible surface
cannot carry a metric of positive scalar curvature.

Note that if X carries a small incompressible surface, so does X # Y for any
4-manifold Y. Theorem F holds also for non-compact 4-manifolds, if we weaken the
conclusion to the non-existence of complete metrics with x = k>0 and Ricci = — ¢2.

Chapter 10 of the paper represents a by-product of our thinking about 3-manifolds.
This section does not at all involve the Dirac operator and can be read independently from the rest of
the paper. These results concern g-manifolds which are not necessarily complete. The
methods involve only stable minimal surfaces.

From a philosophical point of view, our main breakthrough here was the discovery
that the strength of the stability inequality is best used by choosing deformations sup-
ported on non-simply-connected domains.

Let X be a surface with a riemannian metric. Given a compact subset QCZ
and a number p>o, set

Qp) ={x eX: distg(x, Q) Zp}.

309
13



98 MIKHAEL GROMOV AND H. BLAINE LAWSON, JR.

THEOREM G. — Let T be a compact stable minimal surface in a 3-manifold with scalar cur-
vature 2 kg >o0. Let QCX be a compact connected domain, and let o >0 be chosen so that:

(1) Q(e) N 3% = o,
(2) Image[H,(Q) — H,(Q(p))] + o.
Then

k3
p < —
V%

The hypotheses here can be relaxed. (See § 10.) This result has the following major
consequence.

THEOREM Gy. — Let X be a compact 3-manifold with a possibly empty boundary, and
suppose X is equipped with a metric of scalar curvature = 1. Then any closed curve vCX such
that

(1) [yl =0 in Hy(X, 9X)
and (2) dist(y, 9X) > 2,

must already bound in its 2m-neighborhood U, (y) = {x e X : dist(x, y) S 2n}. That is,
[v] = o in Hy(Us(y))-

CoROLLARY Gy. — Let X be an oriented 3-manifold which is diffeomorphic to the interior
of a compact 3-manifold X with H,(0X) +0. Then X carries no complete metric with
uniformly positive scalar curvature.

An example, of course, is the manifold X = S! X R2 Thus we retrieve some of
the results in the E-series above.

CoroLLARY G,. — Let X be a compact riemannian 3-manifold with boundary, and con-
sider v CoX such that [y] £ o0 in Hy(X). If x 21, then any curve ¥’ in X which is homo-
logous to v must satisfy

dist(y, 0X) < om.
COROLLARY G;. — Suppose S* X R? is given a complete riemannian metric. Fix a circle
yCSt X R? generating H, and for each R > o, set
k(R) = inf{x(x) : dist(x, y) £ R}.

i
Then k(R) = "

A similar result holds for other non-simply-connected 3-manifolds.
There is also a basic result for 3-manifolds with il;lf K(x) > — oo,
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THEOREM Gg. — Let X be a complete 3-manifold with

K= — 1.

Let ZCX be a complete (connected) stable minimal surface. Fix xo€X and let
B(R) ={x € 2 : distg(x, o) < R}. For each R>o, let

«(R) = rank{image[H,(B(R)) - H,(Z)]} — 1.

Then Area(B(R)) 2 ﬁ‘t—:/——w (R).
In particular, of % () £ o, then

Area(S) 2 47 |1(D)]-
Thus, if y(Z) = — o, then Area(X) = oo.

The internal estimates above for 3-manifolds can also be made in higher dimensions.
Using a symmetrization process inspired by the last result in [FCS], we prove the following
result in § 12.

THEOREM H. — Let X be a compact riemannian n-manifold, n < 7, with scalar curva-
ture > 1. . (Here X may have boundary and need not be spin.) Then there exist no e, -contracting
maps X — S™ which are constant on dX and of non-zero degree, where

n I
g, = . .
" n—1 2'%

Our results on the non-existence of complete metrics with positive scalar curvature
have several interesting applications to the theory of minimal varieties. These are
explored in § 11. Some of the principal results are the following. Recall that a minimal
submanifold is stable if the second derivative of area with respect to compactly supported
variations is always 2 o.

THEOREM I,. — A complete stable hypersurface in a manifold of non-negative scalar cur-
vature cannot be A2-enlargeable, unless it is totally geodesic.

This holds in particular for stable hypersurfaces in Euclidean space. It shows
that no such hypersurface can be of the form X, X R where X is enlargeable (a torus,

say).
The results give estimates for ‘ Bernstein > questions.

TueoreM I,. — Let F: R* - R be a global solution to the minimal surface equation
(n = 8), and let A be the second fundamental form of the graph of F in R**1.,  Set

a(R) = inf_[|A]l"
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Then there is a constant ¢, depending only on dimension so that

¢

a(R) < _Ié

Our results also give restrictions on the topological type of stable minimal cones.

Such cones form the ¢ tangent spaces ”’ to minimizing varieties in a riemannian mani-
fold. The following observation was first made by Rick Schoen [S].

Tueorem I;. — Let M CS" be a compact (minimal) hypersurface such that the cone
CM) ={txeR*""!': xeM and ¢2o0}

is a stable-variety in R"*Y.  (That is, the second variation of area is > o on compact subdomains
of G(M) —{o0}.) Then M carries a metric of positive scalar curvature. In particular, M cannot
be enlargeable.

This gives the first known restrictions on the topology of stable cones in dimen-
sions = 8. For example, note that there are infinitely many isotopy classes of embeddings
of T* ' into S" for any n>2. However, none of these tori can appear as the link
of a stable cone in R**?,

There are also applications to the ¢ placement” question for (not necessarily
stable) minimal hypersurfaces.

THEOREM I,. — Let M be a compact, minimal hypersurface in a complete manifold X of
positive scalar curvature. Suppose X is 2-sided (i.e. the normal line bundle is trivial), and let X be
the manifold with boundary formed by “ separating ” X along M. Then the double of each com-
ponent of X carries a complete metric of positive scalar curvature.

This has powerful implications for the possible placement of M in X. For example,
we have the following generalization of results in [L,].

CoroLLARY I . — Let ZCS3 be a compact minimal surface for some metric on S® of
positive scalar curvature. Then X is isotopic to a standard embedding (as the boundary of a
“ pretzel ).

As an example, consider T2CS3 as the boundary of a tubular neighborhood of

a knot. One component of (@) is S! x D2, whose double S X S2? carries
k> 0. The double of the other component, however, cannot carry x> o0 by results
mentioned above (see S. de C. Almeida, Thesis, Stony Brook, 1982).

Corollary I, also appears in a series of beautiful results recently proved by Meeks,
Simon and Yau [MSY]. The implications in higher dimensions are currently being
examined by Sebastiio de Carneiro Almeida.

Theorem I, of course also applies to the complete case, and should have some interest
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in general relativity. For example, it seems to rule out certain topologically compli-
cated horizons (*“ worm holes ).

Using minimal boundaries as barriers to solve the Plateau problem gives the fol-
lowing result.

TuaeoreM Iy. — Let X be a compact riemannian n-manifold (n < 7) with « > o, and with
boundary 0X of mean curvature 2 o (with respect to the interior). Suppose 0X is an enlargeable
K(r, 1)-manifold, or more generally, suppose 06X admits a map of non-zero degree onto such a
manifold. Then

7, (0X) — 7y(X)

15 not injective.

As an example, consider the interesting component of the complement of a
“ knotted > T"~1CS"

If dim X = g and if 0X is connected and of genus > o, then the hypotheses of I,
are automatically satisfied and we retrieve the results above.

The conclusion of Theorem Ig can be strengthened somewhat. Suppose K is the
K(w, 1)-manifold onto which X maps with non-zero degree. Then the map
7, (0X) — 73 (K) must factor through =,(X).

It is a possibility that no compact K (=, 1)-manifold, and in fact, no manifold which
represents a non-trivial homology class in such a space, can carry positive scalar cur-
vature. In § 13 we give a proof of this fact for K(mx, 1)-spaces of non-positive sectional
curvature.

THEOREM J. — Let K be a compact manifold which admits a metric with sectional curva-
ture < 0. Then any compact n-dimensional spin manifold X which represents a non-zero class in
H,(K; Q) cannot carry a metric of positive scalar curvature.

By “ representing ” a class « € H,(K; Q) we mean that there exists a continuous
map f: X — K such that f[X] = «.

This theorem appears to be difficult to prove without Dirac operator methods,
even for n =< 7.

The case of general K(x, 1) manifolds is completely open.

It should be noted that in general it is not the homology, but more precisely, the
spin bordism of a K(=, 1) that is relevant to this question.

Note that any compact spin manifold X of dimension 7 canonically determines
a spin bordism class

[X] e (K (, 1))

where © = w;X. (Take the map X — K(m, 1) which is an isomorphism on =,.) It
can now be shown that the question of the existence of a metric of positive scalar cur-
vature on X is entirely determined by this bordism class.

313



102 MIKHAEL GROMOV AND H. BLAINE LAWSON, JR.

There is a transformation of generalized homology theories
o <, KO_,

which on the coefficients is just the &/-homomorphism referred to in the preface. It

seems reasonable to conjecture that for spin manifolds these =classes in KO, (K(=, 1))
constitute a complete set of obstructions to the existence of positive scalar curvature
metrics. This is nearly proved in the simply-connected case (cf. [GL,]), and one of the
themes of this paper is a marshalling of evidence for the conjecture in general.

Many of the results concerning the non-existence of positive scalar curvature metrics
can be collected in the following general framework. Let K be a compact oriented
K(=, 1)-manifold. Then given a compact spin manifold X and a smooth map f: X — K,
we can consider the “ fibre ” X, = f~! (a regular value). The spin cobordism class of X,
depends only on the spin bordism class [X] e Q**(K). Hence, .,Q{A(Xo) e KO, (pt.) is
a well defined invariant of the class [X] which we denote by @([X]). In succinct form,
the results say that for ‘ geometric > K(x, 1)-manifolds K, any spin manifold representing
a class x € Q"(K), such that @(x) + o, cannot carry positive scalar curvature.

This Jf-degrce ” class @ is something like the cap product of the of-class with
the “ fundamental class >’ of K.
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1. GENERALIZED DIRAC OPERATORS
ON A COMPLETE MANIFOLD

In this section we shall recall some basic properties of an important class of first-
order elliptic operators on a complete riemannian manifold X. Let Cl(X) denote the
Clifford bundle of X. This is the bundle over X whose fibre at a point x € X is the Clif-
ford algebra CI(T,X) of the tangent space at x. (See [GL,], [H] or [LM], for example.)
There is a canonical embedding T(X) CCl(X). Furthermore, the riemannian metric
and connection extend to Cl(X) with the properties that: covariant differentiation V
preserves the metric, and

(x.x) Vie.4) = (Vo). + @.(VY)

for all sections ¢, ¢ € I'(Cl(X)).

We now suppose that S — X is a bundle of left modules over the bundle of alge-
bras CI(X) (i.e. we assume that at each point x, the fibre S; is a module over the
algebra CL,(X), and that the multiplication maps vary smoothly with x). We assume,
furthermore, that S is furnished with a metric and an orthogonal connectiont (*) V such
that:

(r.2) The module multiplication e:S, - S, by any unit vector ¢ e T, X
is an isometry at each point x;

(x.3) V(p.0) = (V¢).0c + ¢.(Vs) for all ¢ e I'(Cl(X)) and o € I'(S).
Under these assumptions we define a first-order operator D : I'(S) — I'(S), called the
(generalized) Dirac operator of S, by setting

(1'4) D= kglek'vek

where {¢, ..., ¢,} denotes any orthonormal basis of the space T,X at each point x.
Since the multiplication is linear, the expression (1.4) is clearly independent of the
choice of orthonormal basis. The principal symbol of D at a cotangent vector
£ =Z5q = Zhq, i

(x.5) oi(D) = &-

(Y) If X is complex, the metric and connection are assumed to be hermitian.
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where the ¢ . ” denotes module multiplication. Note that
(x.6) o5(D?) = o(D)? = — [[E]]%

and so o¢(D) is a linear isomorphism for all £ # o, i.e. D is elliptic.
This argument proving ellipticity demonstrates a general phenomenon, namely,
that many basic properties of Dirac operators are independent of the bundle S and follow

formally from the ¢ axioms” (1.2) and (1.3). Nevertheless, there is a wealth of such
operators.

ExampLE 1.7. — Let S = CI(X). Then it is well known that under the cano-
nical vector bundle isomorphism CI(X) ¥ A*(X), one has

Dxd+ 4

where d* denotes the formal adjoint of exterior differentiation.

ExampLE 1.8. — Suppose X is a spin manifold of dimension 27 and let S =8
be the complex bundle of spinors over X with its canonical riemannian connection. To
be more specific, let Pgy(X) denote the bundle of oriented orthonormal frames on X,
and let Pg,,(X) be a principal Spiny,-bundle over X with a given Spin,,-equivariant
covering map & : Py (X) = Pgo(X). (The map § is called a spin-structure on X.)
Consider Spin,,C CI(R*), and recall that CI(R*)® C =~ Hom(C*) (cf. [ABS]).
Restriction gives a representation A : Spin,, -~ Hom(C?), and S is defined to be the
associated vector bundle

S = Py, (X) x, C".

Here D is the “ classical ” Dirac operator.

ExaMPLE 1.9. — Suppose S, is any bundle of modules over Cl(X) with a metric
and connection V* satisfying (1.2) and (1.3). Let E be any complex vector bundle
over X with a hermitian connection VE. Then the tensor product S = S,® E is again
a bundle of modules over Cl(X), and the tensor product metric and connection:

(x.10) VE@E = vEe®@1 L 1 ®VE
again satisfy conditions (1.2) and (1.3). Combined with 1.7 and 1.8, this construction
gives many non-trivial examples of generalized Dirac operators.

It is an interesting and important fact that any Dirac operator on a complete rie-

mannian manifold is essentially self-adjoint. The next few paragraphs are devoted to
proving this fact. We begin by observing that D is always formally self-adjoint.

ProrosiTION 1.1X. — Let D : I'(S) — I'(S) be a Dirac operator defined over a rieman-
nian manifold X, and consider the usual inner product

(x.12) (01, 09) = fx<61’ %%
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on the space T'(S) of C* cross-sections. Then
(I 13) (Dcl’ 62) = (0-1’ Do'z)

Jor any pair of sections o,, o€ I'(S) of which at least one has compact support.

Proor. — Fix xe X and choose local pointwise orthonormal tangent vector
fields e, ..., e, near x such that (Vg), = o for each .. Then at the point x,
(x.14) {Doy, 630, = 2£<6.9,,61, 630, = — XV, 01, .62,

= — Z{V,k {061, 6020 — {01, (Vo o) .02 + 6.V, 050},
= div(V), + (o1, Do),
where V is the tangent vector field on X defined by the condition:
(V, W) = — (o4, W.05)
for any tangent vector field W. Note that
div(V), = <V, V, 6>, = Z{V, <V, 6>}, = — Z{V, o1, &-62) },-

Since V has compact support, integration of (1.14) gives the result. ®

LemMA 1.15. — Let D : T'(S) — I'(S) be a Dirac operator on a riemannian manifold X.
Then
D(fs) = (Vf).c + fDc
Jor each section o € I'(S) and eack function f e C®(X).

Proor. — Let ¢,, ..., ¢, be a local orthonormal tangent frame field. Then
D(fo) = Z,.V,,(fo)

%ek‘{(vekf) c —{—fVcko'}

zk:(ve,‘f) .o +f§ &-Ve, O

= (gradf).c + fDo. B

We now consider extensions of D to L2sections. Let I';(S) CI'(S) denote the
space of C® sections of S with compact support, and let L2(S) denote the Hilbert space
completion of Ty (S) in the norm (1.12). The operator D: Ty (S) — Iy (S) has
two natural extensions as an unbounded operator on L2(S). The minimal extension is

I

obtained by taking the closure of the graph of D. Thus we say o is in the minimal domain
of D on L%(S) if there is a sequence {o}};—1C [y(S) such that o, —~o and Dgy—rt
(= some element) in L2(S). This limit * = D¢ is independent of the sequence chosen.
The maximal extension of D is obtained by taking the domain to be all ¢ € L%(S) such that
the distributional image Do is also in L2(S). That is, o is in the maximal domain of D if
the linear functional L(c") = (6, Do’) on I'y(S) is bounded in the L2norm. (Here
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we are using Proposition 1.11, 7.e. that D is its own formal adjoint.) The boundedness
of L implies that there exists an element Do e L2(S) such that

(x.16) (Do, ¢) = (o, Do)

for all o’ e ', (S), and hence for all ¢’ in the minimal domain of D. The minimal domain
is clearly contained in the maximal domain.

THEOREM 1.17. — Let D:T'(S) > I'(S) be any (generalized) Dirac operator on
a complete riemannian manifold. Then the minimal and maximal extensions of D coincide. In
particular, this is the unique closed, self-adjoint extension of D, i.e. D ts ¢ essentially self-adjoint.

Proor. — Let f: [0, ©) = [0, 1] be a C® function such that: f =1 on [o, 1],
f=o0 on[2,m],and f"~ —1 on [1,2]. Fix a point xye X and let 4: X —>R*
be a regularization of the function dist(x, x,), such that [|Vd|| = g/2. Then for each
positive integer m, we set

(1.18) ful®) =f (i d(x)).
We observe that
) 2
(x.19) AR
and
(I '20) supp(fm) c B2m - Bm

where B, ={xe X :d(x) £p} is approximately the ball of radius p centered at x,.
Completeness implies that B, is compact for all p.

We want to prove that an element ¢ in the maximal domain of D is also in the
minimal domain. This will be done by first cutting down the support of ¢ and then
smoothing.

We begin by noting that Lemma 1.15 holds for any ¢ e L%S) and any fe C?(X)
provided that Do is interpreted in the distributional sense. Consequently, we can define
sections

O =fm6 € Lﬁpt(s)
with the property that
Do, = (Vfw) -0 + fuDo

for each m. In particular, o, is in the maximal domain of D. Furthermore,
from (1.19) and (1.20) we see that ||(Vf,).c||—>o0, and so D, — Do in L2(S).

By the above argument, it sufficies to consider the case where both ¢ and De are
in L%(S) and have compact support. We now consider a local parametrix for D, that is,
a bounded pseudo-differential operator Q :L3%*S) — L%(S) such that

(x.21) DQ=1—% and QD=1-—-%
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where & and &’ are infinitely smooting operators and where Q, & and &’ all have
Schwartz kernels supported near the diagonal. We choose a sequence {{;}¥_;C [, (S)
with uniformly bounded supports, such that ¢, - Do in L2(S), and set

= QY+ S

Since Q is pseudo-differential and since Q) and &’ have kernels supported near the dia-
gonal, we have {o,}i_;CT(S). Clearly, we have that o, — QDo 4 &6 =g,
and Do, = DQY, + DF6 = ¢, — FY, + DF’6 > Do — &¥Do + DFs = Ds in
L2(S). Hence, o lies in the minimal domain of D. m

REMARK 1.22. — On a complete manifold we shall always work with this unique
closed, self-adjoint extension of a given Dirac operator D. This extension will also
be denoted by D. Of course for any two sections o;, 6, € domain (D), we have that

(Day, 0'2) = (o1, D°'2)-

This proves, in particular, that if ¢ € domain(D), then D2?¢ = o if and only if Ds = o.
This result extends to any o€ L%(S).

TueOREM 1.23. — Let D :T'(S) > I'(S) be a Dirac operator on a complete rieman-
nian manifold X, and let ¢ be any element of L2(S). Then

D26 = 0 <+ Do = 0.

Proor. — The non-trivial part is of course to prove that D26 = 0 = Do = o.
Since D? is elliptic, the equation D% = o implies that ¢ is of class C*. Choosing f,, as
above, we have that o = (D%q,f26) = (Do, D(f20)) = (£, Ds, 2(Vf,) ¢ + f,,Do).
Therefore, using (1.19) we have R

| fwDs|[* = — 2(fuDes, (Vfn) -0) = — (Ilf,..DGII2 + IIGIIZ),

from which follows that ||Ds||? = 11'£n || fuDs|[2=0. m

This is a reasonable place to insert a note concerning parametrices. We récé.il
that a parametrix for a generalized Dirac operator D : I'(S) - I'(S) is a bounded ope-
rator Q :L2(S) — L2(S) such that :

DQ=1—¢% and QD=1-—%

where & and &’ are infinitely smoothing operators, z.e. & and &’ have C* Schwartzian
kernels. The parametrix is said to be semi-local if Q , & and &’ have Schwartzian
kernels supported in a small neighborhood of the diagonal. The Green’s operator,
when it exists, provides a parametrix for D. Here & and %’ are harmonic pI‘OJCCt]OII
operators. However, if X is not compact, the Green’s operator is not semi-local. '~

Our main observation here is that paramctrlces for a Dirac operator are easily
spliced together. '
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ProposITION 1.24. — Let Q o and Q) , be parametrices for a generalized Dirac operator D
on a riemannian manifold X, and let f be any compactly supported C*® function on X. Then
Q=fQ,+ (1 —f) Qo is also a parametrix for D. In fact, if DQ,=1— % and
Q.D=1—, for k=o,1, then

DQ=1—% and QD=1—9%
where

S =fA+ 0 —=f) LK+ V) (Q1— Q)
(x.25)

L' =fA+0-f) K.

If Q, and Q , are semi-local, so is Q.
A similar result holds for Q' = Q,f+ Q,o(1 —f).

Proor. — This result follows directly from Lemma 1.15.

Since the Dirac operators are self-adjoint, their index by any definition must be
zero. However, if we assume that the manifold X is even-dimensional and orientable,
then each Dirac operator D: I'(S) — I'(S) canonically gives rise to a restricted ope-
rator Dt whose index in the compact case is not zero. The construction is as follows.
Suppose dim(X) = 2m and consider the “ volume form > « € I'(Cl(X)) defined by

(x.26) o =1" ... 6y

where ¢,, ..., €,, is a local tangent frame field. One can easily see that w has the fol-
lowing properties (cf. [LM]):

(x.27) 0 =1
(x.28) Vo =o
(x.29) we = —ew for any ¢ e T*X.

It follows that there is a parallel orthogonal splitting
(x.30) S=S*®S~

into the + 1 and — 1 eigenbundles for left multiplication by w. (If m is odd, we assume
the bundle S is complex.) In fact, we can write

(r.31) S*=§(Iim).s.

It follows from (1.28) and (1.29) that DI'(S*) < I'(S¥), and that for each non-zero
cotangent vector £ € T;X, the symbol o¢(D) =& :S* — ST is an isomorphism.
Hence, the restriction of D gives a pair of elliptic operators

(x.32) D*: I'(S*) > TI'(S") and D~ : I'(S7) - I'(8%)

which are formal adjoints of one-another. The splitting (1.30) gives rise to an ortho-
gonal splitting I'(S) = I'(ST) ®I'(S™) and thereby to an orthogonal decomposition
(x.33) L2(S) = L2(S*) ® L2(S™).
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Since this splitting respects I',,,(S) we see easily that it also respects the maximal domain
of D. That is, the + and — components of an element in the domain of D are also
in the domain of D. Hence, we may split the extended operator D on L2(S) into a direct sum

(x.34) D=D*®D~
where D~ is the adjoint of D*. Furthermore, if X is complete, then the maximal and minimal

domains of Dt (and of D™) coincide.

In a similar way any parametrix QQ for D with associated smoothing operators &
and & (cf. 1.21) can be decomposed as: Q=Qr®Q~, ¥ =LT"0F and
S = (F) D (F)", where
(x.35) D¥Qf =1 —%* and QFD*=1— (5=

When X is compact, the operator D* is Fredholm and has an index which is com-
putable from the Atiyah-Singer Formula [AS III].

ExampLE 1.36. — Let S = CI(X)®E as in Example 1.7 and 1.9 (with X
compact). Then

Index(D*) = {ch E-L(X)} [X]

where L is the total L-class of Hirzebruch (cf. [H]). In particular, if E is the trivial
line bundle, we have Index(D*) = signature(X).

ExampLE (x.37). — Suppose X is a compact spin-manifold, and let S =8S®E
be a twisted bundle of spinors as in examples 1.8 and 1.9. Then

Index(D*) = {ch E-A(X)}[X]

where A is the total A-class. (See again [H].) In particular, when E is the trivial
line bundle, Index(D*) = A(X), the *“ A-genus” of X.
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2. SOME VANISHING THEOREMS

In this section we prove that, under appropriate curvature assumptions, the kernel
(and cokernel) of a Dirac operator with various domains on a complete manifold must
vanish. The key to all arguments presented here is the general Bochner-Weitzenbock
formula for a Dirac operator D: I'(S) — I'(S) of the type discussed in § 1.

We recall that the connection V on the bundle S gives rise to an elliptic second-
order operator

v*v: I'(S) - I'(S)

defined by
(2.1) V'V = — %‘.V

€k sk

where ¢,, ..., ¢, denotes a local basis of pointwise orthonormal tangent vector fields,

and where Vg = V,‘.V,j — va_ej denotes the invariant second covariant derivative.
3

The following is well known (cf. [Si]).

ProPOSITION 2.2. — For any two sections oy, 6, € I'(S), at least one of which has
compact support, the following holds:

fx<V‘V°1: G2 =J.X<V<{1, Vaoy)

where, by definition, {Vo,,Vo,) =X (V,.01,V, 05> Hence, V'V is a formally self-adjoint,
non-negative operator. y

This fact motivates the following choice of a Sobolev 1-norm on S. For ¢ € I'y,(S)
we set

(2-3) it = [ (<o, 0> + <vo, Vo))

and denote by L"*(S) the completion of I'(S) in this norm. Using Proposition 2.2
and arguing as in § 1 proves the following.

PropoSITION 2.4. — If X ts complete, the operator VN*V is essentially self-adjoint. The
domain of its closed self-adjoint extension is exactly the subspace LY%(S). Furthermore, for any
6 € L¥(S), V*Vo = o if and only if Vo = o, i.e. if and only if o is parallel.

We now recall the fundamental Bochner-Weitzenbéck formula.
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ProrosiTioN 2.5. — Let D : I'(S) — I'(S) be any generalized Dirac operator. Then
(2.6) D2=V'V + %

where
I n
(2-7) .% E; Elei.ej.Re'.'ej
and where R, , = [V,,V,] —V,, ) denotes the curvature tensor of S.
Proor. — Fix x € X and choose a local orthonormal fra.me field ¢, ..., ¢, near x

such that (Ve), = o for all 2. Then at x,
D26 = .Zej.e,‘.V,qu‘ = Zej.ek.V

ej,ekc
—-—ZV, ¢ T 2 ¢.6.(V et — Vep,e) O

i<k 1
—V'Vc+.@c n

The first important consequence of this formula is the following.

THEOREM 2.8. — Suppose that D : T'(S) — I'(S) is a generalized Dirac operator on
a complete manifold X, and suppose further that the operator R in formula (2.6) is uniformly bounded
on X. Then the (maximal) domain of D on L2(S) is exactly L2(S), and for any o in this space,
we have that

(2.9) | Ds || = || vel[* + (%o, o).

Proor. — It follows immediately from (2.2) and (2.6) that formula (2.9) holds
for any o € 'y, (S). However, by Theorem 1.17, for any element o in the domain of D,
there is a sequence {o;}i-;C I (S) such that o, -6 and Do, — Do in LZ(S).
Since £ is a bounded operator on L2(S), it is clear that formula (2.9) holds for &, and
in particular that ¢ e L“%(S). m

COROLLARY 2.10. — Let D, # and X be as in Theorem 2.8, and suppose that Z > o
pointwise on X. Then ker(D) (= coker(D)) ={o}. If, furthermore, Z = ¢ Id. for some

constant ¢ > o, then D: LY“%(S) il L%(S) is an isomorphism of Hilbert spaces.

When £ > o, itis easy to see that these results hold without requiring £ to be
bounded above. In this case the domain of D can be a proper subspace of L“%(S).

TueoreM 2.11. — (Vanishing Theorem I) Let D : I'(S) — I'(S) be a generalized
Dirac operator on a complete riemannian manifold X, and suppose X > o. Then formula (2.9)
holds for all o in the domain of D. In particular ker(D) = coker(D) = o. If, furthermore,
Rz cId. for some constant ¢> o, then range(D) = L*S) and D~':L%S) — L“*S)
s a bounded operator.
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COROLLARY 2.312. — Let D and X be as in Theorem 2.11, and suppose X is even-
dimensional and oriented. Let D = D* @ D~ be the splitting of D on L2(S) given in § 1.
Then if Z>o, we have that ker(D) = coker(D) ={o}. If, furthermore % = cId.
Jor some ¢ > o, then both Dt and D~ are surjective and have bounded inverses on L2.

We now turn our attention to a completely different domain for D, namely, the
space I'yg(S) of uniformly bounded, smooth sections of S.

TrEOREM 2.13 (Vanishing Theorem II). — Let X be a complete riemannian manifold
whose Ricci curvature tensor is uniformly bounded from below. Suppose D :T'(S) — I'(S) is
a generalized Dirac operator over X such that X >o. Then

ker(D) N Tyg(S) ={o}.

Proor. — Suppose o € I}44(S) and Do = o. Then from (2.6) we see that
(pointwise on X),

LA o]t = — (V'Va, 0> + || Va2
=<, + ||Va||?
> |[Vs][®
where A = Z(e;e; — V, ) = —3d is the negative Laplace operator on X. The

result now follows from the maximum principle of Cheng and Yau [CY]. m

We now specialize our bundles and make a more detailed calculation of the term £
appearing in the Bochner-Weitzenbock formula. Suppose X is an even-dimensional
spin manifold, and let S be the complex bundle of spinors over X. (See 1.8.) Then
a fundamental result of A. Lichnerowicz [Li] states that

(2.14) D2=V‘V—|—i-x

where x = X R,;; is the unnormalized scalar curvature function on X. That is, for
i,J

LI

the classical Dirac operator on spinors S, the term appearing in formula (2.6) is
& = ~x 1d.
4

Suppose we now consider a bundle S =S®E with the tensor product connection,
as in Example 1.9. Then the curvature tensor of S®E is simply a derivation,
ie. R%®% = R5%®1 + 1 ® RE It follows that the term £°®F appearing in for-
mula (2.6) for the Dirac operator on S® E is (cf. [GL,], [LM]) '

(2.15) a%er — Ly 4 g"

I
4
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where

(2.16) R (c® o) =

N |-

I (49) ® (RE, ,0)
=

€, ¢

on simple elements c® ¢ e S® E. Note that ZF depends linearly on the curvature

tensor RE of E, and that there exists a constant ¢, depending only on the dimension #
of X, such that

(2.17) | 2°]] < e, || RF]].

Consequently, if the scalar curvature x of X satisfies: x> 4%F, and in parti-
cular, if

(2.18) x > 4¢, || R®,
then #%®%> 0 and the Vanishing Theorems apply.
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3. ESTIMATES FOR THE DIMENSION
OF THE KERNEL AND COKERNEL

Let D:I'(S) > I'(S) be a generalized Dirac operator on a complete riemannian
manifold X, and let # be the symmetric zero-order term appearing in formula (2.6).
Throughout this section we shall make the following hypothesis.

AssumPTION 3.X. — There exists a compact subset KCX and a constant x,> 0
such that

Z = «, 1d.
in X —K.

The first main result of this section is the following.

THEOREM 3.2. — There exists an integer d, depending only on D in a neighborhood of K
and on x,, such that

dim(ker D) < 4.

In particular, if D = DY @D~ is the splitting (1.34), obtained when dim(X) is even, then
dim(ker D*) + dim(coker DY) < d.
Consequently, the operator D+ = (1 + D*D™)~ 2D+ = D*(1 + D~D*)~2 is Fredholm with

index < d.

Proor. — Since K is compact, there exists k; > o0 such that x; Id 2 — £ on K.
Suppose now that o e L2(S) satisfies Do = 0. Then from the basic formula (2.9)
we know that

||Vs||? + (%o, 6) = o.
Since #Z2x, on X — K, this implies that

Ve |l* + [ (P, 0> + %0 [, llo]P=0
and consequently that
(3-3) [Vs|l* + kollolfx-x = %l ollk

where for A £ X, the symbol |||} denotes IAH o®
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We now make the assumption that ||o|]®=||o|%=||c|lk + [|o]|k-x = I-
Then equation (3.3) becomes
1 Ko

I Vel +

Ko + K3 Ko + ¥

(3-4) s |l o]l
We shall now appeal to the following basic fact concerning elliptic operators. (See
[Ag], for example.)

THEOREM (3.5) (The Friedrichs Lemma). — Let Q be any open subset of X with
KCQ, and let ||. ||ot x denote the uniform C*-norm for C¥ sections of S over the compact set K.
Then there exists a constant ¢, depending only on K, Q and k, such that for any o € I‘(S| ) with
Do = o, Q

(3-6) llollet,x = ¢l o ]la-

We now fix a neighborhood Q of K and let ¢ be the constant appearing in
Theorem 3.5 for £ = 1. We also fix an €>o0 and choose an e-dense subset {,,}3_,
of K. (That is, every point of K is within distance ¢ of some x,.) Let H denote the
kernel of D on L%(S) (over all of X), and suppose dim(H)>d. Then there exists an
element ceH such that ||o||=1 and o(x,) =0 for m=1,...,d. It follows
from (3.6) and e-density, that ||o(x)|| £¢cc for all xeK. For ¢ sufficiently small,
this is a direct violation of (3.4) and we have established the bound on the dimension H.

The remainder of the proof of Theorem 3.2 follows immediately.

Similar arguments also prove the following.

THEOREM (3.7). — Let D be a generalized Dirac operator on a complete riemannian mani-
Jold X, which satisfies Assumption §.1. Let H be the (finite dimensional) kernel of D on L2(S),
and let HY denote its orthogonal complement. - Then there is a- ¢ >0 so that

IDs|® 2 ¢*[ |2

Jor c€ HY. Thus, the operator D, and also, when dim(X) is even, the operators D* admit bounded
Green’s operators. o ‘ -

Proor. — Let E, denote the eigenspace of D on L2(S) with eigenvalue A. It will
suffice to prove that there exists ¢>o such that the space

H,= D E,

A <Le

is finite dimensional.
Let x, be as above, and observe that if |[|Dc||2 £ ¢?|c||% then formula (2.9)
and the above arguments show that, for ¢ e H,,

(3-8) [IVs|[* + (ko — %) [[a]]* = (ko + %3 || o[-
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We choose ¢>o0 with ¢2 € x,, and observe that if ¢ H, with ||c[[? % o, then
— _llsllk
(3-9) ¢ =
Ko + % el
Consider now a parametrix QQ for D so that QD = 1 — & were & is smoothing.

Let p denote restriction to K, and consider the compact operator & =po&. Then
for o H, we have

FPo = poc — pQDe.

For seH, we have ||Dc|| =¢||c]||. Hence, setting ¢ =||Q| and using (3.9),
we have that

(3.10) | Zsl = llesll — cgll ol = llollx — eall || = (" — cq) | o]]-

Choosing ¢ sufficiently small, we see that || .5’0-” 2 ¢"||s]|| for all ¢eH,, where ¢ is

some positive constant. Since Fisa compact operator, we conclude that SPH ~ H,
is finite dimensional. m

REMARK (3.11). — Of course the index of the Fredholm operator D+, presented
in Theorem 3.2, is just ker(D*) — ker(D™). This index is invariant under continuous
deformations of D* on compact subsets of X.

Using this remark, we are able to define a simple and useful invariant for studying
spaces of positive scalar curvature metrics. Suppose X is a compact odd-dimensional
spin manifold, and let gy, g; be two riemannian metrics of positive scalar curvature on X.
We than construct a complete metric g on X X R by setting

g +di? fort<o
(3.12) g=1< g +d? fortz1
anything for o <¢=<1.

Let D* denote the canonical Dirac operator on spinors associated to this metric. Then,
by (2.14) and Theorem 3.2 the index of D* is well defined. Moreover, by Remark 3. 11
this index depends only on g, and g, since any two metrics of type 3.12 can be joined by
a homotopy which is supported on the compact subset X X [0, 1]. (In fact, the linear
homotopy has this property.) Therefore, we can write

(3-13) i(go, £&1) = index(D*).

We shall see in the next section that ¢(g,, g,) depends only on the connectedness compo-
nents of g, and g; in the space #(X) of positive scalar curvature metrics on X. In par-
ticular, if g, is homotopic to g, in #(X), then i(g,, g,) = o.

Clearly, i(g,, g,) = — (g, &)- Furthermore, we shall show that

(80> &1) + 1(g1> &2) = (&> &)

for any triple of such metrics on X.
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This index is certainly non-trivial. Even when X = §' and g, = the canonical
metric, this index can assume all integer values. (See § 4.)

There are many similar constructions that can be made. For example, suppose X
is the boundary of a compact spin manifold X, and suppose that g is a metric of positive
scalar curvature on X. Then we can construct a complete metric § on intcrior(i) by
letting ¥ be the half-infinite cylinder g + d# on X X [0, ®) at the boundary and
extending in any manner to the compact piece.

o % ) )

As above the canonical Dirac operator D* has an index which is independent of this
extension of the metric over the compact piece, and we set

(3.14) i(g, X) = index(D*).

Note that if g can be extended to a metric of positive scalar curvature on X, then i (g, }'Z) = 0.
This follows from Theorem 2.11.

There are many further constructions of this kind. They are particularly useful
when put into families. We shall take up this subject again in § 4, and in a forth-
coming paper of the authors. However, for calculations with these objects we shall
need a certain non-compact index theorem. This is the subject of the next section.
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4. THE INDEX THEOREM

In this section we state and prove the central analytic result of the paper: a relative
index theorem for pairs of elliptic operators which agree outside a compact set.

Suppose that D,: I'(S,) - I'(S,) is a generalized Dirac operator on a complete
riemannian manifold X; for 2 = o0, 1. We make the following hypotheses:

AsSSUMPTION 4.X. — The operators coincide outside a compact set. That is, there exist

compact subsets KoCX, and K;CX, and an isometry F: (X, — K,) ad (X; — K,)
which is covered by a bundle isometry

F:s, is% so that D, = FoDgyoF!
)

(X1 —Ky)

(Xo—K,,

in X; —K,;.
It will be easier to drop the cumbersome notation of equivalence and actually
identify the manifolds and the operators on the set

(4.2) Q=X,—K, 2 X, —K,.

222

Xo

ExaMPLE 4.3. — A simple and important case of such a pair of operators occurs
when D, and D, are defined on the same manifold X. For example, suppose X is spin
and let D be the canonical Dirac operator on spinors 8 over X. Suppose then that E
is a complex vector bundle which is trivialized outside a compact subset of X. Let C¥
denote the trivial complex Z-plane bundle, and as in Example 1.9 construct operators

D,: T'(S®CH - T(S®CH,
D,: T(S®E) - TI'(S®E).
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(We assume that E and C* carry connections compatible with the trivializations.)
Clearly
DD, 2D®...®D

k-times

outside a compact subset.

EXAMPLE 4.4. — Another basic example of such a pair of operators occurs when
X, and X, are spin manifolds, and when D, and D, are the associated canonical Dirac
operators on spinors. Here, of course, we must assume that the isometry of X, with X,
at infinity preserves the spin structure.

Returning to the general case, we now suppose that the manifolds X, and X, are
even-dimensional and (compatibly) oriented so that we can consider the operators Df
and Df. These operators also agree at infinity, and their difference has a well-defined
topological index which we shall now discuss.

There are several possible equivalent definitions, and we begin with the most direct
and conceptual one. If X, and X, are compact, then the relative topological index is
simply defined to be the difference, index(Dj) — index(Dg). If they are not compact
we proceed as follows. Chop off the manifolds X and X, along a compact hypersurface H
contained in the set Q where the manifolds agree. Compactify X, and X, by sewing on
another compact manifold with boundary H. Extend the operators D and Df by an
elliptic pseudo-differential operator defined on the new piece. (This compactification
is always possible.) Let D and D} denote the elliptic operators so obtained. Then
we set

(4-5) ind,(D}, DF) = index(D}) — index(Dy).

(The expression on the right in (4.5) is independent of the choice of extensions 1’33“
and ]~);" , as we shall soon prove.)

This index can be reexpressed in terms of local formulas. In fact we have the
following. Given any smoothing operator & on a manifold X, the local trace of & is the
C® function

7 (x) = trace K¥(x, x)

where K¥(x, y) is the Schwartizian kernel of & on X X X. The topological index can
be computed in terms of certain local trace functions.

ProposITION 4.6. — Suppose that Q o and Q , are semi-local parametrices for the opera-
tors DF and D}, and suppose that Q , and Q , agree in a neighborhood of infinity. Write

D*Q,=1—% ad QDf =1—

J

where &, & are the associated semi-local smoothing operators for j = o, 1. Then the local
trace functions satisfy

(4-7) =1t ad ¥ =1t"
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near infinity, and
(4-8) ind,(D¥, DF) = [ (# — 1) — [ (% — ).

(Note that this integral is well defined since the function ¥7% — ¥+ — ¥% 4+ ¥ vanishes outside
a compact subset of the domain Q where the manifolds * coincide >.)

Proor. — Let Q,CQ be an open neighborhood of infinity where the local trace
functions coincide, i.e. where (4.7) holds. We chop off the manifolds along a compact
hypersurface HCQ, and compactify as above. Let Q be a local parametrix for the
new operator D = IN)fr on ?20, with Schwartzian kernel supported in a small neigh-
borhood of the diagonal in $y x &,. Patch Q onto Q, and onto Q, as in 1.24 using
a function f such that: f = o outside Q,, f = 1 near infinity, and Vf is supported in a
small neighborhood of H. This produces local parametrices Q , and Q , for the new
operators DF and D}, and writing

~
j

D,-*Q,.zl — % and Q,-D,-*’:I — ¥,
we know that (cf. [A])

(4-9) index(Dj) = fi, % — %)

for j = o0, 1. However, by construction we know that

(4.10) =& and F=¢ inX —Q=X,—Q
and that

(4.11) SR LN R in O,

(since we modified the two parametrices Q , and Q , in exactly the same way in Q).
Consequently, from (4.5), (4.9), (4.10) and (4.11) we see that

ind,(ﬁ;", ﬁg’) =fx a (f.?i . fy‘) _J‘X o (f.?"o . fYa)

which, by (4.7), gives the result.

Proposition 4.6 shows that the index defined in (4.5) is independent of the choice
of the extension.

It is useful to examine the index associated to the examples discussed above. Let D,
and D, be the two operators from Example 4.3 defined on the same manifold X. Using
the equivalence of the operators outside a compact set, we see that the difference of the
symbol mappings gives an element in the K-Theory of TX with compact supports.
(See [ABS].) The index ind,(Df", D{) is equal to the image of this element in K,(pt.)
under the map f;, where f:TX — pt.

Alternatively, we could do the following. Using Chern-Weil’s Theory (cf. [KN])

we can express the total A-class of X (formally) as a sum of differential forms X(X)
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constructed canonically out of the curvature tensor of X. Similarly, we can express
the Chern character of E

ch(E) = £ + chy(E) + chy(E) + ...

canonically in terms of the curvature tensor of E. (Recall that 2 = dim E.) Since E
is flat outside a compact subset, we see that the reduced Chern character

(4.12) ch(E) = ch(E) — % = ch(E — C¥)

has compact support in X.

ProPOSITION (4.13). — For the pair of operators Dy and D, given in Example 4.3,
(4-14) ind,(Df , D) = [, ch(E)-A(X).

Proor. — Let X be a compactification of X obtained by modification outside
the support of E. Let D and D be the canonical Dirac operators of X and X respecti-
vely. Then

ind,(D}, DF) = ind(D* ® E) — ind(D+ ® C¥)
= {ch E-A(X)} [X] — {ch C-A(R)}[K]
= {ch E-A(X)}[X] = {ch E-A(X)}[X].

The last equality holds since the support of ch E is contained in the support of E where X
and X coincide. m

‘We now focus attention on Example 4.4 Let X, and X, be two spin manifolds
with a spin-structure-preserving isometry (X, — K) K (X; — K;). Let Dy and D,
be the canonical Dirac operator on spinors on X, and X, respectively. We now chop
off X, and X, along a compact hypersurface HCX, — K, 2 X, — K,, producing
compact manifolds X, and X, with boundary H.  We then modify the (common) metric
near the boundary so that it becomes a product in the collar H X (o0, ¢). The mani-
fold X, can now be joined metrically to X, and X, (after a change of orientation). The
extended operators D, and ]N)1 are just the canonical Dirac operators of X,V (— X,)
(= the double of X,) and X, U (— X,). Since the A-genus of the double of a manifold
is zero, we have that

(4-15) ind,(D}, DF) = A[X, U (— X,)]
= [ A — [, A(X,)

where again A(Xj) denotes the canonical A-form associated to the riemannian metric
on X;. (The difference of integrals here is defined in the obvious manner, using the iden-
tification outside a compact set.)

From the two examples above it should be clear how to compute the index in
many more complicated situations.
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We now come to the fundamental result of this section. The theorem will be
proved under the following hypothesis on D, and D,.

AsSUMPTION 4.16. — The operators are strictly positive at infinity. That is, if Z denotes
the symmetric, zero-order term appearing in formula (2.6), for the operator Dy, = D,
in Q, then there exists a constant k> 0, such that

2 = xy Id.

in Q.

We know from Theorem 3.2 that under this hypothesis, each of the operators Dg
and Df has a well defined analytic index, index(D;") = dim(ker D*) — dim(coker D).
This enables us to define a relative analytic index for the pair

(4-x7) ind,(Df, Df) = index(D;f) — index(Dy).

The main result is the following:

THEOREM 4.18 (The relative Index Theorem). — Let D, and D, be generalized Dirac
operators on complete riemannian manifolds X, and X, and suppose these operators are strictly
positive at infinity and coincide outside a compact set (¢f. 4.1 and 4.16). Then

ind,(Df, D) = ind(Df, Dy).

REMARK. — A result of this kind holds in greater generality, but the above statement
will suffice for the purposes of this paper.

Proor. — We begin with a discussion of harmonic sections. Suppose
D: I'(S) - TI'(S) is a generalized Dirac operator on a (not necessarily compact) rie-
mannian manifold X, and let H = {6 € L%\S) : Do = 0}. Let (s,,),, denote an ortho-
normal basis for H. Then it is a general fact (cf. [A]) that the Bergman kernel

K¥(z,5) = Zop(x) ®5,()
converges uniformly in the C*-norm on compact subsets of X X X for any %22 o. This

is the Schwartzian kernel of the orthogonal projection operator s# : L%(S) - H. The
associated local trace function

() = 2 |ou()]l*

is C® on X, and clearly we have that
(4-19) dim H = [_#*.

We suppose now that X is complete and that D is strictly positive outside a compact
subset KCX (ie. 3.1 is satisfied). Let F:X — R* be a smooth exhaustion function
and set X(¢) ={xe X :F(x) >t} for each teR*. Fix {, so that F < ty, 1.6. SO
that D is strictly positive on X(Z,).
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Consider now the operator D restricted to X(¢,), and set

H(t) = (o e L¥(S

X(to)) : Do = o}.

Let £ denote the local trace function on X(#,) associated to the orthogonal projec-
mnX%NU@MQaHW.

Then we have the following

LeMMA 4.20. — For any t> ¢,

f P < oo,
X()

Proor. — Fix¢> t,. Choose s so that £, < s< ¢, and consider the compact
“annulus ” A = Closure(X(s) — X(#)). Recall

from above that the local trace function ¥*® =2X||o,||2, where (5,) is an ortho-
»

normal basis of H(zy), converges uniformly in the C! norm on A. In particular, the
sum of the Sobolev 1-norms on A is finite, i.e.,

(4.21) Z | alft4 < co.

We now claim that there exists a constant ¢ so that for each ¢ € H(t,),
(4-22) o]l xm = cllollia

To see this we choose a * cut-off ” function fe CG*®(X(f)) so that: oS f=1, f=1
on X(¢), and f=o0 on X(t) — X(s). Clearly there exists a ¢,>o0, such that
[|Vf]| <¢o. Applying 1.15 and 2.5, and integrating by parts (cf. Theorem 2.8), we
have that

o = (D2%q, f20) = ((V'V + ) o, f20)
= (fVeo, fVe) + 2(fVe, Vf®6) + (%fo, fo).
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From the positivity of # (Assumption g.1) and the properties of f, we conclude that
1Yo |z + ®oll ok < 2| (f Ve, Vf @ 0) | < 26, || Vo ||y [ o]]a
< ool Vel + Il a2

1
Thus loltxns (s + 2) el
0,

as claimed.

Combining (4.21) and (4.22) proves the Lemma.

Consider now the operators D, and D; which agree in Q = X, — K, ¢ X, — K,
and are strictly positive there (i.e. which satisfy Assumptions 4.1 and 3.1). Let G,
and G, be the Green’s operators for D and D respectively. Recall from Theorem 3.7
that for each j, G; is a bounded operator. It satisfies the relations

(4-23) DfG,=1—#" and GD} =1 —H#

where #* :L*(S*) - L?(S*) denote orthogonal projections onto the finite dimen-
sional subspaces

H; = ker(D})
(4-24) {

H;~ = ker(D;") = coker(D;").

Each of these Greén’s operators has a locally-L! Schwartzian kernel K%(x, y) which is
smooth off the diagonal. These operators can be easily restricted to the open set Q

where
def
— S

Q

S"’a ~ S,

and D;rl ~ D}| ¥ D+,

Q

Q
This restriction gives bounded opérators
G;: L3(S7) —»L¥(S*)

defined by setting GJ- = yG;x where y is the characteristic function of Q. The diffe-
rence of these operators satisfies the equation

(4-25) DG, — Gp) = # —#F i Q
where .;Ej-*‘ = y#;"y_is a bounded operator with finite dimensional range. This implies

that the range of G, — G, is nearly contained in the kernel H(Q) of D* on Q. To be

more specific, let V = ker(.??’l*' — 9?1,*‘). Then V is a closed subspace of finite codimension
in L*(S*), and

(4.26) (61 — Go)(V) g ker(D*).

We now claim that the local trace function of G, — G, is integrable at infinity.
Recall that Q = X; — K,. Choose Q' = X, — K where K; is compact and
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K,Cinterior(K;). Then Q'CQ 1is a “strictly smaller ” neighborhood of infinity,
and by Lemma 4.20 we have that if

#(Q) : L(S+) > H(Q)

denotes orthogonal projection onto the kernel of D* on Q, then

(4-27) fn' P < oo,
Lemma 4.28. — Let &€ =G, — G,. Then
J- || < .
a
Proor. — From the discussion above (cf. (4.26)) we know that range(&)

< H(Q) + F where F is a finite dimensional subspace of L3S™). Let (o,)m_,
be an orthonormal basis of H(Q) + F such that (o,),_y is an orthonormal basis
of H(Q). Then the Schwartzian kernel of & can be written as

K9 (x,5) = Zo,(x) ® (6"a,) ()

where &* denotes the adjoint of &. The local trace function satisfies

|¥(9)| = [<oux), £ on())]

Let &' = yq&yo denote the restriction of & to Q’, and note that ||&’|| 2 ||&]].
Then ’

fméz 1< Exax Om> O]

Q m=0JQ'
émgollglcmlln' “Gm”ﬂ’
<11€1l 2 [lonl

M
<€ loall + [ 279
<

by (4.27). This completes the proof of the Lemma.

We now construct local parametrices Q ; for Dj* by cutting off the Green operators
in a small neighborhood of the diagonal. That is, we choose ¢;e C*(X;x X;) with
support in a small neighborhood of the diagonal so that 0 = ¢; < 1 and so that ¢;=1
near the diagonal. Let Q ; be the operator whose Schwartzian kernel is

KQj(x’),) = ‘pj(x:.y) KGj(x’.y)
on X;x X, (for j =o,1). The operator Q; is a semi-local parametrix for D;* with
D}/}Q;=1—¢ and Q,Df =1—-*F
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where the semi-local smoothing operators satisfy
(4.-29) ¥/ = and =9

since Q ; and H; agree near the diagonal.

Recall from Proposition 4.6 that to compute the topological index we need to use
semi-local parametrices which agree in some neighborhood of co. We do this by spli-
cing Q, onto Q, in Q as follows.

Let f,,: X; > [o, 1] be a sequence of functions defined as in (1.18), and suppose
always that if, m is sufficiently large, f,, =1 on K,. Define a sequence of semi-local
parametrices Q, ,, for Df by setting

Q.1,m =fuQ1+ (1 — 1) Q.
From Proposition 1.24 we know that the associated smoothing operators &, and
Fitmy where DFQ, =1 — %, and Q, ,Df =1 — HA, are given by
{9’;", =faST + (0 —fa) I+ (U)(Q1 — Qo)
Flm =IuT" + (1 = fu) K-
We can now apply (4.6), (4.29) and (4.30) to conclude that

(4-31) ind,(Df, D§) = [, (Fhm— 0m) — [ (873 — 1)
= fXIfm(f-f”f — ) — fxoﬂ”(fy’?; — %) _J'n £l (01— Qo)
= [ SalBT = ) — [ S — B0) — [ {00,

(Here we consider f,, to be also defined on X, by letting f, = 1 on K,.) Now the
Schwartz kernel for the operator &, = Vf,,.(Q,— Q,) is

Kfn(x, ) = (Ufp)o KU~ %(x, 9).
Since Q; = G; = G; near the diagonal we see that

|¥m(x)| = (| V)] [E()]

where as above & = G; — G,. We now choose Q'CQ as above and observe that
for all m sufficiently large (cf. (1.19) and (1.20)), we have

supp(V5,) CQ  and ||V = %

(4-30)

It follows that
f lfvf,,.-(Ql—Qo)l < E_f lfcl —0
Q m a m-—> o

by Lemma 4.28. Consequently, from (4.31) and (4.19) we see that when m — oo,
we have
i + Dy — N T Ky __ 0
ind,(Df, Df) = [ (B1 — #7%) — [ (1% — £°7)
= index(D{) — index(Dy).
This completes the proof of the index theorem. m
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The argument presented above has a number of useful generalizations. One such
generalization allows us to compare operators which agree only on some of the ends of
the manifolds where they are defined.

Suppose that D, and D, are generalized Dirac operators on complete riemannian
manifolds X, and X, and suppose that both operators are strictly positive at co, .. both
satisfy Assumption 3.1. Let K;CX, be a compact subset, and suppose that
®;, = X\K; is a union of connected components of X; —K; for j = o0, 1. If there

exists an isometry F : ®; — @, which is covered by a bundle isometry F: Sel — S,

o, 3
such that D; = FoDyo Y, we say that the operators D, and D, agree on the family of
ends

d=9, O,

(Of course if @; = X; — K; for j = o, 1, then the operators agree at infinity (cf. 4.1).)

We can define a relative index in this situation by proceeding very much as we did
above. We chop off X, and X, along a compact hypersurface HC® which separates
off the infinite part of ®. (To be specific, there should be a constant ¢ so that every point
of ® —H is a distance £ ¢ from K, or cannot be connected to K, by a pathin X; — H.)
We now deform the metric and the operator in a small neighborhood of H in ® so that
the metric becomes a product metricon H X (— ¢, €) and so that the operator D, ~ D,
is “ constant >’ along the lines {x} X (— ¢, €). (This is not hard to do.) The isometry
(x,t) — (x, —t) is then covered by an operator equivalence.

Let X and X denote the chopped-off manifolds, and attach X to X along H
to give a complete riemannian manifold '

X = X] ug X;.
From the above, the operators D, and D, naturally join to give a generalized Dirac
operator D on X which is strictly positive at infinity. We now assume that X, and X,
are even-dimensional and oriented, and that the isometry F:®, — @, is orientation-

preserving. The manifold X is given the orientation which agrees with that of X, (and
disagrees with that of X,). We then define the ®-relative index of Df and Df to be

(4.32) ind(Df , Df |®) = index(D™).
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Since the index of D* is invariant under deformations of D* on compact subsets, the
above definition is independent of the details of our construction near H. Furthermore,
we have the following.

PROPOSITION 4.33. — The ®-relative index of Dy and D is independent of the choice of
the hypersurface H.

Proor. — Let @ denote the bounded component of Q — H and note that we have
the double D(®’) = @ U (— ®’) contained in X. The “flip ” isometry ¢ of D(®’)
is covered by a bundle isometry that carries Dt to D™ = the adjoint of D*. Thus we
can construct a local parametrix 2 for D* with smoothing operators &+ and &~ so
that for any given c-invariant compact domain 2 Cinterior(D(®’)), we have

[,@ =) =o.

Suppose we had chosen two different hypersurfaces H and H in @ with resulting mani-
folds X and X. We can choose 2CX and 9CX as above so that X — @ ~ X _— 9.
Since the parametrices 2 and 9 can be constructed locally out of the operators, we can
assume that ¥ = 7' B.nd ¥ =t in X—2~X— . Itisnow clear that the
topological index ind, (D%, D+)~= 0. (See Proposition 4.6.) Hence, by the Relative
Index Theorem, we have ind(D*) = ind(D™*) as desired. m

A similar application of the Relative Index Theorem proves the following.

ProrosITioN 4.34. — Let HC® be a compact hypersurface as above, and assume that
H = 0Y where Y is a compact oriented manifold. Let Xj = Xiug Y be the manifold obtained
by attaching Y to the chopped-off manifold X; along H. Let Dy and D, represent simultaneous
extensions of Dy and D, over the compact piece Y. Then

ind(D;, DF |®) = index(Dj) — index (D).

We now come to our next major result. It is, of course, a strict generalization
of the Relative Index Theorem.

THueOREM 4.35 (The ®-relative index theorem).
ind(Df, D | ®) = index(D{) — index(Dy).

Proor. — Let X = X, uy X, be a manifold used to define the ®-relative index.
Let Q,, Q, and Q denote semi-local parametrices for Df, D and D*, obtained by
cutting off the Schwartzian kernels of the respective Green operators in a small neigh-
borhood of the diagonal. Let &%*, &% and &* be the associated smoothing operators
(as, for example, in 4.6). Then the ®-relative index of D and Dy is given by

(4.36) index(D*) = [_ (¥ — ¥7).

340



POSITIVE SCALAR CURVATURE AND THE DIRAC OPERATOR 129

Furthermore, standard arguments show that this formula continues to hold if we modify Q
on a compact subset (z.e. if we replace Q by another semi-local parametrix for Dt which
agrees with Q) outside a compact subset).

The arguments used to prove the Relative Index Theorem apply directly to prove
the following:

(4-37) index(Df) — index(Dy) = fxl # — ¢ — fx., (#75 _ 155

where .;i are the smoothing operators associated to semi-local parametrices Qj obtained
from Q; by splicing on the same semi-local parametrix in a neighborhood of oo in ®.
(Consequently #7¢ = ¥ near infinity in ® and the integral is well defined.) We
may assume that Qo and Q , agree in a neighborhood containing H and all points beyond
(t.e. in all unbounded components of ® — H). Arguments similar to those presented
in 4.6 now show that the integrals in (4.37) can be replaced by

(4.38) index(D}) — index(Df) = [ (#" — )
where &* are the smoothing operators associated to a semi-local parametrix Q which
agrees with Qd Q;) near infinity in the X/ piece of X for j =0 and 1.

It remains to show that the integrals in (4.36) and (4.38) coincide. To see this,
choose a family of functions (f,,)_, as in (1.18) and set

Qn=,a0+ 1 —f Q.
T = a0 —f) S+ (VB —-Q)
—fu P+ (1 —f) FF

denote the associated smoothing operators. Since Q,, differs from Q) only on a compact
subset, we have that

(4-39) index(D*) = [_(#% — #7)
= fxfm(fy» —_ fy—) -I—fx (1 —fm) (f-S;'+ _ f‘;;_) __fx fo,,,.(Qx—Qo)

For exactly the same reasons as above (cf. 4.30 forward), the third integral in (4.39)
goes to zero as m — . Consequently, in the limit we have

index(D*) = [ (¢ — %)

Let

which, when combined with (4.38), completes the proof. m

We now make some immediate applications of Theorem 4.35 to the invariants
defined at the end of § 3. Let g,, g; and g, be metrics of positive scalar curvature on a
compact, odd-dimensional spin manifold X, and let i(g;, g;) be the index defined in (3.13).
It is obvious from the definition that

(4-40) (& gj) = — i(gj, &)-
Furthermore, we have the following.
341
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THEOREM 4.41.

(80> &1) + (g1, &) + (g2, &) = o.

Proor. — Let X, =X X R have metric gy + dt® for t<o0 and g, + di?
for tz 1. Let X; =X X R have metric g, + df? for t<0 and g, + di? for ¢ 2 1.
Apply the ®-relative Index Theorem to the end ® = X X (1, 00).

COROLLARY 4.42. — The index i(g,, g,) depends only on the homotopy classes of the metrics g,
and g, in the space P(X) of positive scalar curvature metrics on X.

Proor. — This corollary is a direct consequence of Theorems 4.41 and 2.11 and
the following proposition proved in [GL,, Lemma 3].

PROPOSITION 4.43. — Suppose g, and g, can be joined by a family g, 0 <t <1, of
metrics of positive scalar curvature on X.  Then there exists a metric g on X X R of positive scalar
curvature which agrees with g, + dt* for t < o and with g, 4 dt* for ¢ > o. In particular,

(&> &) = O.

Note that i(g,, g;) = 0 not only if g, and g, are homotopic in #(X), but even if
they are ¢ concordant > by a metric of positive scalar curvature.

Suppose now that X bounds a compact spin manifold X, and let i(g, X) be the
index defined in (3.14). Then arguing as above proves the following.

THEOREM 4.44.
(g0, X) + i(g0, 81) = (g1, X).
COROLLARY 4.45. — The index i(g, }Ni) depends only on the homotopy class of g in P(X).

A thorough study of these related invariants will be made in another paper. How-
ever, before leaving the subject here we should at least demonstrate that these indices
are non-trivial. To do this we consider the 4-dimensional real vector bundles over S%
Each such bundle E will be given a riemannian inner product <-, -), and we will denote
by Xg and Zj = 0Xy the unit disk bundle and the unit sphere bundles of E res-
pectively.

Using the standard metric on the base, an orthogonal connection in E, and a rota-
tionally invariant metric g, in the fibres, we construct a riemannian metric on the total
space of E in the standard way (cf. [LY] or [GL,]). The fibres will be totally geodesic.
The metric g, we choose on them is the “ torpedo * metric: a smoothing of the S* hemisphe-
rical metric attached along the equator to the cylindrical metric on S3 X R. We can
multiply g, by a small constant €> o to guarantee that the scalar curvature (on the total
space of E) is everywhere positive.

Observe that outside the tubular neighborhood Xy, of the zero section, this metric
is a riemannian product gz + d? on E — Xy ~ 0X; X R = 23 X R, The metric gg
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on Xy = 09Xy has positive scalar curvature, and since it extends over Xg with positive
scalar curvature (so that it is a product metric near the boundary), we have that

(4-46) i(gg, Xg) = o.

Recall now that oriented 4-plane bundles over S* are classified by two integer
invariants: the Euler number y and the Pontrjagin number p,. It is an elementary
calculation to show that X is a homotopy sphere if and only if yz = + 1. It is a classical
result of Milnor [M,] that 2 is diffeomorphic to the standard S if 2 = 4 (mod 8¢g6).
Thus we have constructed above a sequence { g, }5- , of metrics of positive scalar curvature
on S7. The metric g, was constructed using E, with x(E,) = 1 and p,(E,)% = 4 + 896%.

Let g, .(~g,) denote the canonical constant curvature metric on 7, and set
% = 1(&, Zean)- Then by Theorem 4.44 and 4.46 above we see that

{(Xis Zoan) = 1K, &) + 1 =14
where X, = Xg,. On the other hand, by the Relative Index Theorem, we see that
1(Xys Zoan) = A(X,) where X, =X, Uy D? is the compact 8-manifold obtained by
attaching and 8-disk along the boundary S§?. Thus, for all 2 we have that

i, = AX).
However, following Milnor [M,, page 57] we compute that A(X,) = (2 — 4)/896 = k.
This gives the following result.

THEOREM 4.47. — For metrics g of positive scalar curvature on S7, the invariant 1(g, guen)
takes on infinitely many distinct integer values. In particular, the space of positive scalar curvature
metrics on S7 has infinitely many connected components.

We should note the second part of Theorem 4.47 can be proved using only the
elementary constructions above, that is, without using the Relative Index Theorem.

We now observe that the index #(g, g’) behaves nicely with respect to the group of
diffeomorphisms. Fix any metric ¢ on the compact spin manifold X, and for each
element F e Diff*(X), set

i\(F) = i(g, F"g).
THEOREM 4.48. — For each positive-scalar-curvature metric g on X, the map
i, Diff*(X) - Z
is a group homomorphism.

.

Proor. — Choose F,, F, e Diff*(X). Then by Theorem 4.41 we have that
1,(Fp 0 Fy) =i(g, FiF3¢)
= i(g, Fig) + i(Fig, FiF3g)
= 1,(Fy) + 7,(Fy)
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where we have used the obvious fact that for any diffeomorphism F,
1(Fgo, F'21) = 1(20, &1)- W

Since i, is constant on connected components of Diff*(X), we conclude the fol-
lowing.

COROLLARY 4.49. — Each g of positive scalar curvature gives a homomorphism
i,: I'X) > Z

[
where T'(X) = Diff*(X) /Diff?(X) s the component group of the group of diffeomorphisms
of X.

If I'(X) is finite, then 7, must be zero for all g. Consequently the invariant i(g, g..;,)
on S*+3 s always a function on the space of diffeomorphism-equivalent metrics.

Note that Theorem 4.47 applies equally well to exotic Milnor 7-spheres. (Let
Zoan b€ any metric with k> 0.) The construction above can be greatly generalized
using Browder-Novikov Theory. Similar construction detecting higher homotopy groups
of the space of positive scalar curvature metrics can also be made. These results are
related to work of N. Hitchin [H].
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5. HYPERSPHERICAL AND ENLARGEABLE MANIFOLDS

The results of the previous section were specifically developed to study certain
large and interesting classes of manifolds. For the remainder of this paper we will be
concerned with defining these classes, examining their properties, and applying the
index theorem to establish the non-existence of complete, positive scalar curvature
metrics.

One of our fundamental concepts is the following. Let S" denote the euclidean
n-sphere of curvature 1, and assume from this point on that all manifolds are connected.

DEerFINITION 5.1. — A complete oriented (connected) riemannian n-manifold X is
said to be e-hyperspherical if there exists an e-contracting map f:X — S" which is cons-
tant outside a compact set and is of non-zero degree. The manifold is simply called
hyperspherical if it is e-hyperspherical for all €> o.

Note. — A map f between riemannian manifolds is said to be e-contracting if
[|AV]] £ || V]| for all tangent vectors V. If fis constant at co, the notion of * degree ”’
is the usual one, e.g.

(5-2) deg(f) = X sign(detf),

pEfq)

where ¢ is a regular value of f.
Note that the euclidean space is hyperspherical. To see this, choose a map

(5-3) F: R">§"

of degree 1 which sends everything outside the unit ball to the ¢ south pole > of S*. This
map will have bounded dilation, that is, it will satisfy ||F, V|| = ¢ || V|| for some ¢>o.
Then for each positive ¢, the map F,(x) = F((¢/c) x) will be e-contracting.

Similarly, any complete, simply-connected manifold X with sectional curvatures < o is
hyperspherical. To see this recall the standard fact that at any point p € X, the map
exp,': X - T,X is 1-contracting. Hence, F,oexp,' is e-contracting for all > o.

Note that products of hyperspherical manifolds are hyperspherical. To see this, fix a
degree 1 map S" x S™ —» S"*t™,

The property of being hyperspherical depends only on the quasi-isometry class
of X. That is, if we change the metric by a uniformly bounded amount, the manifold
remains hyperspherical. More generally, we have the following. We say that a C! map
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between riemannian manifolds is bounded if it is c-contracting for some (possibly large)
¢>o0. A proper map between oriented n-manifolds has a well-defined degree given by
formula (5.2) for any regular value ¢. (That this definition is independent of the choice
of ¢ follows as in [M,].)

PRrROPOSITION 5.4. — Let X and Y be complete oriented riemannian n-manifolds, and suppose
there exists a bounded proper map of non-zero degree from X to Y. Then of Y is hyperspherical,
X s also hyperstherical.

Proor. — Suppose g: X — Y is c-contracting and proper, and that f:Y —§"
is e-contracting and constant at co. Then fog:X — 8" is ec-contracting, constant
at oo, and of degree = deg(f).deg(g). m

Thus, given a hyperspherical manifold X, we have tremendous freedom to
‘“ enlarge > the manifold while preserving this property. For example let {Dg},c, be
a family of disjointly embedded disks in X with the property that there is a bounded
proper map f: X — X of degree 1 such that f(D}) = {x,} for each «. (That is, each
disk is shrunk to a point.) Then we may alter the manifold X any way we please on
the union: l;lD:. In particular, we can take connected sum in each D} with a compact

connected manifold M?, and extend the metric arbitrarily. The resulting manifold X
is again hyperspherical since f determines a bounded proper map f: X >X, of
degree 1.

Suppose now that X is a compact manifold and X - X is some covering mani-
fold of X. Then each riemannian metric on X can be lifted to X, and the quasi-isometry
class of this lifted metric is clearly independent of the choice of metric on X.

We now introduce a notion which strictly generalizes the one given in [GL,].

DEFINITION 5.5. — A compact riemannian manifold X is said to be enlargeable
if for each € > o, there exists an oriented covering manifold X — X which is spin and
e-hyperspherical.

Clearly if some covering space of X is spin and hyperspherical, then X is enlargeable.
Thus by considering the universal covering, we see that any compact manifold of non-
positive sectional curvature is enlargeable.

ProrosrTION 5.6. — Enlargeability is an invariant of the homotopy type of a manifold.
Products of enlargeable manifolds are enlargeable. The connected sum of any spin manifold with
an enlargeable manifold is again enlargeable.

Proor. — We begin with the following. Recall that a map F:X — Y between
manifolds is said to be spin if either X is spin or F*w,(Y) = w,(X), where w, denotes
the second Stiefel-Whitney class.
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ProposITION 5.7. — Let X and Y be compact oriented riemannian n-manifolds, and suppose
there exists a spin map F:X — Y of non-zero degree. Then if Y is enlargeable, X is also
enlargeable.

Proor. — The map F is bounded, i.e. c-contracting for some ¢. Furthermore,
suppose Y — Y is a covering space, and let X — X be the covering corresponding to
the subgroup F, 1(7r1?'{'). Then F lifts to a proper map F:X > Y which is of course,
still ¢-<contracting. Thus if ¥ admits an e-contracting map f: ¥ — S™ which is cons-
tant at co and of non-zero degree, then fo Fis ec-contracting, constant at oo and also
of non-zero degree. W

Suppose now that F: X — X’ is a homotopy equivalence of compact n-manifolds.
Then (after possibly passing to the orientable 2-fold covering manifolds), F is of degree 1.
This proves the first statement of 5.6. The remainder of the Proposition is straight-
forward. m

We recall that it was proved in [GL,] that compact solvmanifolds, and sufficiently
large compact 3-manifolds with residually finite fundamental group, are enlargeable.

We now come to the principal result of this section.

TueoreM 5.8. — A (compact) enlargeable manifold cannot carry a riemannian metric of
posttive scalar curvature. In fact, any metric with non-negative scalar curvature on an enlargeable
manifold must be flat.

This has the following immediate consequence (announced in [GL,]). Recall
from above that any compact manifold of non-positive curvature is enlargeable.

COROLLARY 5.9. — Any compact manifold X which carries a metric with sectional curva-
tures < 0, cannot carry a metric with scalar curvature x> o. Moreover, any metric with ¥ = o
on X s flat.

Recall from Proposition 5.6 that if X is enlargeable and Y is spin, then the
connected sum X # Y 1is again enlargeable. Thus, it follows also that no compact
manifold of the form X # Y, where Y is spin and X admits non-positive sectional cur-
vature, can carry a metric with positive scalar curvature.

Proor oF THEOREM 5.8. — Suppose X is enlargeable and carries a metric with
scalar curvature x> o0. Asshown in [GL,], if X is not flat then by results of J. P. Bour-
guignon [KW] and Cheeger-Gromoll [CG] we can modify the metric so that

(5.10) K2 Ky>> O

where x, is a constant. We may also assume that the dimension of X is even, since
if it is not, we can replace X by X x 8! (with the product metric). Note that S1is enlar-
geable and therefore by 5.6, so is X X S%.
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Let 2m = dim(X), and choose a complex vector bundle E, over S$*" such that
¢m(Eo) # 0. This is always possible since, under the Chern character, the groups IN{(Sz"‘)
and F(S*; Z) are isomorphic (cf. [AH]). Fix a unitary connection V° in E, and
denote the corresponding curvature tensor by RO,

The proof now proceeds very much like the arguments given in [GL,, § 3].
Roughly, the idea is as follows. Choose a covering space X with an e-contracting map
S X —>S™ and set E = f*E,. If ¢ is sufficiently small, the curvature of E becomes
uniformly small, and the Dirac operator on spinors with coefficients in E becomes strictly
positive by (5.10). Comparing this operator with the untwisted Dirac operator and
applying the Relative Index Theorem leads to a contradiction. This is because the
relative topological index of these operators is, by construction, not zero, whereas the
relative analytic index, by vanishing theorems, must be zero. The details are as follows.

Let €¢> o begiven. Since X is enlargeable, there exists a covering space X — X
and (with the metric lifted from X) an e-contracting map f: X — S which is constant
outside a compact subset K C X and is of non-zero degree. Let E = Sf*E, be the pull-
back of E, by f and let V = f*V® be the induced connection. For tangent vectors V,
WeT,X, the curvature of V is given by

(5-11) Ryw = Riy, w

where R is considered as an endomorphism of E, = (Ey);,. It follows immediately
that

(5.12) R=o in X—K.
Furthermore, if ¢, ..., ¢, is any orthonormal basis of T,i, then
639)  IRIE= IRyl = 1RGP
< LA ne) RO
where ||R°||* =sup {||R°||2: peS>}. In particular, since f is e-contracting, we have
(5-14) IR, = ||R]

for all xe X.

Let S be the canonical complex spin bundle over X and let
D,: I'(S®E) >T'(S®E)

be the generalized Dirac operator constructed as in 1.8 and 1.9. Let #%®E be the term
appearing in the generalized Bochner-Lichnerowicz-Weitzenbock formula 2.6 for D,.
Then, as noted in (2.15)-(2.17), we can write

(5-15) .@sm’:ix—l—.@E
where %" satisfies the pointwise inequality

”'@E”:cé k2m HR”z
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for a constant Z,, depending only on m. It therefore follows directly from (5.12) and
(5.14) that

(5.16)

#=0 in X—K
|| %] < *ky, ||R°]]  in K.

Suppose now that €* is chosen smaller than «,/k,,||R?||. Then from (5.16),
(5-15) and from our assumption (5.10) on the scalar curvature, we see that #Z5®E>o
in X and, in fact, #5®F 2 k,/4 in X — K. It follows immediately from the vanishing
theorem 2.11, that the operator Dj : I'(§t* ® E) - I'(S™ ® E) obtained by restriction
of D, has
(5-17) ind(Dff) = o.

Recall now that the map f: X —$™ is constant outside the compact set K.
Choosing a basis for T,S*", where ¢ = f (X — K), gives a trivialization
E|, ~CF
X-K
which is, of course, compatible with the flat connection induced on E in X — K. Hence,
if we let Dy: I'(S®CF) -~ T'(S®C*) denote k-copies of the canonical Dirac operator,
then we have that D ~ D} in X — K. This is exactly the case of Example 4.3.
From the classical Lichnerowicz formula (2.14) we have that 20 > Kol4
on i, and so
ind(Df) = o.
Combined with (5.17) and the Relative Index Theorem 4.18, this implies that
(5.18) ind,(D}, DY) = ind(D{) — ind(Dg) = o.
It was shown in 4. 14 that this topological index can be computed in terms of the reduced
Chern character:
chE = ch'E + ... 4 ch"E
= f*(ch'Ey + ... + ch™E,)
I

— L (R,

(m —1)!

where c,,,(E,) is considered as a differential 2m-form on S*". Thus, our conclusion (5.18)
together with Proposition 4.14 imply that

0 =f~ A E.AK)
X

I *
= m fi J*m(Eo)

= oy e [ (B

(m
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This contradicts the assumptions that ¢,(E,) + o and deg(f) #+ o, and completes the
proof. m

Note that if X is enlargeable and Y is spin with A(Y) # o, then neither X nor Y
can carry a metric of positive scalar curvature, but it is still unclear whether the pro-
duct X XY can carry such a metric. The results above can be suitably genera-
lized to cover this case. The generalization follows essentially from observing that the
arguments already given actually prove much more than has thus far been claimed.
We need only modify our definitions.

DEFINITION 5.19. — A complete oriented connected riemannian manifold X is
said to be e-hyperspherical in dimension n (where o < n < dim X) if there exists an e-con-
tracting map f: X — S" which is constant outside a compact set and is of non-zero
A-degree.

The A-degree of f is defined, as in [GL,], to be A(f~1(g)) where ¢ is any regular
value of . Note that the oriented cobordism class of f~*(g) is independent of the choice
of regular value ¢ (cf. [M;]).

A manifold which is e-hyperspherical in dimension z for all € > o, is simply called
hyperspherical in dimension n.

The property of being hyperspherical depends only on the quasi-isometry class
of the metric and is induced by any bounded proper map of non-zero A-degree (cf. Pro-
position 5.4).

In analogy with earlier discussion we make the following.

DEFINITION 5.20. — A compact riemannian manifold is said to be enlargeable in
dimension n if for each > o0, there exists an oriented covering manifold X — X which
is spin and e-hyperspherical in dimension z.

This property is an invariant of the homotopy type of the manifold, and it is stable
under products. That is, if X is enlargeable in dimension n and Y is enlargeable in dimension m,
then X X Y is enlargeable in dimension n + m. A compact spin manifold Y with A(Y) # o
is enlargeable in dimension o. Thus Y X X, where X is an enlargeable #-manifold,
is enlargeable in dimension n.

The main result is the following.

THEOREM 5.2X. — A compact manifold X whick is enlargeable in some dimension n Z o,
cannot carry a metric of positive scalar curvature. In fact, any metric with non-negative scalar cur-
vature on X must be flat.

COROLLARY 5.22. — Let X be a compact manifold which admits a spin map of non-zero
A-degree onto a manifold X, of non-negative sectional curvature. Then X carries no metric of
positive scalar curvature.
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In particular, the product Xy X Y, where Y is any compact spin manifold with
A(Y) # o, carries no metric of positive scalar curvature.

Of course, Corollary 5.22 remains true if X, is any enlargeable manifold, for
example a solvmanifold, a sufficiently large 3-manifold, or any product of such manifolds.

Proor or THEOREM 5.21. — We proceed exactly as in the proof Theorem 5.8.
We assume x = ko> 0 and that n = 2m is even. For given £>o0, we pass to the
covering space X where there exists an e-contracting map f:X —S" of non-zero
A-degree which is constant outside a compact set KCX. We fix a bundle E, with
connection over S" and consider the induced bundle E = f*E, which is trivialized
in X — K. This gives us two generalized Dirac operators

Dy : T(S*®CH - I'(S~ ® C¥)
D} : I'(S+®E) —»I'(S~ ®F)

which are positive at infinity and agree outside the compact set K. For ¢ sufficiently
small, the index of both operators is zero. Hence, by Relative Index Theorem and
Proposition 4.4 we have the following. Write ¢,(E,) =c¢.©» where ¢+0 and
denotes the normalized volume form of S*. Set 4%k = dim(X) — 2m. Then

0 :ﬁ A EAR) =f~cﬁ(f-Eo).£(>~()
~ [ (g eae) - A = gy [y - A0
= )/ oy o) AR = = J (@) A

¢ [

- mfsm Ao @ (m — 1) (A-deg) (/)

in contradiction to the fact that f had non-zero A-degree. m
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6. MANIFOLDS WHICH ADMIT NO COMPLETE METRICS
OF POSITIVE SCALAR CURVATURE

In this section we refine somewhat the arguments presented in the preceding sec-
tion. Our main observation is that all arguments of § 5 remain valid if the notion of
being e-contracting on tangent vectors is replaced with the strictly weaker hypothesis
of being e-contracting on 2-forms. Together with a new construction, this will allow
us to establish a large class of non-compact manifolds which admit no complete metrics
with positive scalar curvature. In fact any manifold of the form X X R, where X is
enlargeable, has this property. So does the manifold T" — {pt.}.

It should perhaps be emphasized that here the scalar curvature is not assumed
to be bounded away from zero. These manifolds carry no complete metrics with k> o
even if x — o rapidly at infinity. In fact, by recent results of J. Kazdan [K], any
complete metric with k = o which is not Ricci flat, can be deformed to a complete
metric with x>o. Consequently, by applying results of Cheeger-Gromoll, we can
assert that for certain classes of non-compact manifolds, there exist no complete metrics
with x 2 0, and, in somewhat larger classes, any complete metric with x = o 1is flat.

We begin with the following basic notion. Recall that the comass norm of a 2-form ¢
on a riemannian manifold is given by setting || ¢|| = sup |@(e; Aey)|, where ¢; and e,
range over all unit tangent vectors. This norm is, of course, uniformly equivalent to
the standard pointwise norm on 2-forms.

DEeFmNiTION 6.1. — A Cl-map f:X —Y between riemannian manifolds is said
to be e-contracting on 2-forms, or simply (e, A%)-contracting, if || f*¢|| < || @|| for all 2-forms ¢
on Y. This just means that for all xeX, the map f*:A’T;, Y > A’T;X is e-con-
tracting in the comass norm.

Note that an e- (or “ (s, Al)-"’) contracting map is always (e, A?)-contracting
(for e<1). In fact, if f: X - Y is e-contracting and if ¢ is any 2-form on Y, then

(6.2) [(f*e)(ane)| = |e(finafiee]| = [l [[Larll [ fieall S €]l o]l

and so f is e?-contracting on 2-forms. This suggests a useful class of mappings which
are (e, A?%)-contracting, namely those which are bounded and, at each point, are e-con-
tracting on some tangent hyperplane. More specifically, we have the following.

ProrosiTioN 6.3. — Let f: X —>Y be a c-contracting map between riemannian
manifolds, and suppose that at each point xe€ X, all but possibly ome of the eigenvalues of
(ff),: T,X — T,X are smaller than . Then f is ec contracting on 2-forms.
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Proor. — Fix xe€X and let HCT,X be a hyperplane with the property that
[|fzell £ <]||e|| for ee H. Given a unit simple 2-vector e; Ae,, we may assume by a
change of basis that ¢, e H. The proposition now follows directly as in (6.2). m

Our first observation is that the arguments of § 5 only require maps to be e-con-
tracting on 2-forms (cf. (5.13)). Consequently, we are led to modify Definitions 5.1
and 5.19 by replacing the term ¢ e-contracting > with the term (e, A%)-contracting. ”
We shall designate the resulting notions in the obvious way by the terms: (e, A2)-kyper-
spherical (in dimension n) and A2-hyperspherical (in dimension n).

All the results of the previous section remain true under these weaker hypotheses.

We shall now substantially expand the class of manifolds we are considering, by
introducing the following concept.

DEeFINITION 6.4. — A connected (not necessarily compact) manifold X is said to
be A2-enlargeable if given any riemannian metric on X and any e>>o0, there exists a
covering manifold X - X which is spin and (e, A%)-hyperspherical in the lifted metric.
The concept of A2-enlargeability in dimension n is defined analogously.

Clearly any enlargeable manifold is A%-enlargeable. Furthermore, the product of
an enlargeable manifold with a A2enlargeable manifold is A2-enlargeable. In fact,
if X is enlargeable in dimension 7z and if Y is enlargeable in dimension m, then X X Y
is A%enlargeable in dimension 7z 4+ m. Thus, for example, if X is A2-enlargeable in
dimension 7 and if Y is a compact spin manifold with A(Y) o0, then X x Y is also
AZ2-enlargeable in dimension 7.

The property of being A2-enlargeable depends on the ‘ proper homotopy type
of the manifold. In fact, we have the following.

PrOPOSITION 6.5. — Let X and Y be connected oriented manifolds, and suppose there exists
a proper spin mapping f: X —Y of non-zero A-degree. Then if Y is A2-enlargeable in dimen-
ston n, so is X.

ProoFr. — Suppose we are given a riemannian metric gon X. We choose a metric /
on Y so that the mapping f: X —Y is bounded (say 1-contracting). The argument
now proceeds as in the proof of Proposition 5.7. ®

As a particular consequence of this, suppose dim(X) = dim(Y) and that f: X —»Y
is a proper map of non-zero degree. Then if Y is A%-enlargeable, X is also A%-enlargeable.
It follows that the connected sum of any compact spin manifold with a A%-enlargeable
manifold is again A2-enlargeable.

The next result is an easy and illuminating consequence of the definitions.

ProrosITION 6.6. — Let X be a connected spin manifold. If X contains an open, A-enlar-
geable submanifold U CX such that the homomorphism w, U — =, X 1is injective, then X 1s
AZ%-enlargeable.
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Proor. — Let X be given any riemannian metric, and fix an €>o0. Since U is
A?-enlargeable, there exists a covering U of U which admits an (e, A2)-contracting map
f: T —> 8" which is constant outside a compact subset and of non-zero degree. (Here
U carries the induced metric.) Since w; U — ;X is injective, the covering U-vu
is the restriction of a covering X —>X. Since the map f is constant outside a compact
subset of U it extends trivially (as a constant) to a map f: X —S" This extended map
is obviously also (e, A%)-contracting and of non-zero degree. m

It seems an appropriate time to demonstrate that there exist many interesting
non-compact manifolds which are AZ-enlargeable.

ProrositioN 6.7. — Let X, be any (compact) enlargeable manifold. Then the product
X = X, X R is A2-enlargeable.

Proor. — Fix a metric on X and choose £>o0. Fix a “ degree-one >’ mapping
g: R — 8! such that g(R — (— 1, 1)) ={point}, and consider the product mapping
Id.xg

Xo X R — X, x SL

If we introduce on X, X S! a riemannian product metric dsz + d6% then the map
Id. X ¢ will be bounded, i.e. ¢c-contracting for some ¢>o. Since X, is enlargeable,
there exists a spin covering manifold io — X, with a map f: X, — S*, which is e-con-
tracting with respect to the lifted metric d5;, and which is also constant outside a compact
set and of non-zero degree. By Proposition 6.3, the composition

~ 0]
K, x St g St 87 St St

is (¢’e, A?)-contracting for some ¢’ independent of e. It follows easily that the composition
K, x RIS gn gt s gntt

is (cc’s, A%)-contracting with respect to the metric lifted from X, X R. This compo-
sition map is constant outside a compact set and is of non-zero degree. Hence, X, X R
is A2-enlargeable. m

CoRrROLLARY 6.8. — Suppose X is a connected manifold. If there exists a compact enlar-
geable hypersurface XoCX such that the induced map w,(Xy) — w0 (X) is injective, then X is
A2-enlargeable.

Proor. — Take a tubular neighborhood of X, in X and apply Propositions 6.6
and 6.7. (If the normal line bundle to X, in X is not trivial, first pass to the appropriate
2-sheeted covering of the pair.) m

This corollary gives us the following.

ExampLE 6.9. — Let T*CT" denote a linear subtorus of the n-torus for
02 k<n and 7= 2. Then the manifold X = T" — T* is A-enlargeable. To see this
observe that there exists an (n — 1)-torus T"~'CX such that =, T"~' - =, X is injec-
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tive. (Choose a linear Tj~! with TFCT7~'CT", and translate T7~?! slightly in the
normal direction.)

In fact, it is clear that any manifold of the form X = T" — K, where K is any
compact subset of T" — T"~' is A%enlargeable. These examples generalize.

ExampLE 6.10. — Let X be a compact manifold of non-positive sectional curvature
which carries a connected totally geodesic hypersurface X,CX. Let K be an arbitrary
compact subset of X — X,. Then the manifold X — K is A2-enlargeable. This follows
immediately from Corollary 6.7, since X, is enlargeable and m,(X,) — m;(X) is
injective.

ExampLE 6.xx. — Any hyperbolic manifold X of finite volume is A%-enlargeable. (Proof:
If X is not compact, it has an end of the form X, x Rt where X, is a compact infranil-
manifold, and ,(X,) — =,(X) isinjective. But X, is enlargeable by [GL,, Thm. 4.5].)
Here “ hyperbolic ” means complete with curvature bounded between two negative
constants.

By now the reader can easily see that Corollary 6.7 provides an enormous class of
non-compact manifolds which are A2%enlargeable. This makes the following result
quite interesting.

THEOREM 6.12. — A manifold X which is A2-enlargeable in any dimension, cannot carry
a complete metric of positive scalar curvature. In fact, any metric of non-negative scalar curvature
on X must be Ricci flat.

COROLLARY 6.x3. — There exists no complete metric of positive scalar curvature on mani-

Solds of the form:

(1) Xo X R where X, is enlargeable (e.g., where X, carries sectional curvature < o or where
Xo 5 a compact solvmanifold);

(2) described in Corollary 6.8; (See the examples above.)

(3) X where X carries a hyperbolic metric of finite volume;

(4) X XY where X is as in (1) (2) or (3), and where Y is a compact spin manifold with
A(Y) + o. (This includes the manifold R x Y.)

Proor oF THEOREM 6.12. — We first observe that the proof of Theorem 5.21 given
in the previous section carries over immediately to this case provided we assume that the
metric in question has scalar curvature x = x, for some constant x,> o.

To handle the more general case, we must multiply our manifold by a large eucli-
dean sphere S2(R). This guarantees that x = k,. However, the radius R must be
chosen large enough so that the vanishing arguments still work.

For clarity of exposition we shall first treat the basic case where X = X, X R for
some (compact) enlargeable manifold X,. Suppose X, carries a complete metric with
scalar curvature x> o, and note that x = x,, for some k,> 0, on the compact subset
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Xy X [—1,1]. We may assume, by multiplying with a circle if necessary, that the
dimension of X is even, say, 2m.

We showed in the proof of Proposition 6.7 that for any €>> o, there is a covering
space )'Zo — X, and an (e, A%(-contracting map f: }N(O X R — §*" which is constant
outside the subset X, X (— 1, 1). We now consider the composition

\Ve 2 fx(%) 2 2 2m+ 2
X x S%(R) —— S x §? — S+

which we denote by F. The second map in this composition is given by a fixed ¢ sma-
shing ” S x §? — S A §? ~ S*™+2 From the definition of the smash product we
see that the map F is constant outside the subset io X (— 1, 1) X S?(R). On this subset
the scalar curvature of X x S3(R) is k¥ 4+ (1/R%) >k = x,. Of course, the scalar cur-
vature of X x S%(R) is everywhere = (1/R2).

Note that if R is chosen sufficiently large (of the order of ¢~ 12), then F will be (¢, A%-
contracting.

We choose a complex vector bundle E, over S*"*2 with non-trivial Chern character
and we equip E, with a fixed unitary connection V°. We have shown that for every € > o
we can find a covering X — X and an (e, A%-contracting map F: X x S¥(R) — §¥+2
for appropriate R, which is constant outside a compact subset and has non-zero degree.
The manifolds X x S2(R) are complete and have strictly positive scalar curvature.
Hence, the Relative Index Theorem applies, and considering the Dirac operators
D:I'(S*) >I'(S7) and Dy:I'(S*®E) - T'(S"®E), where E = F*E,, leads to
a contradiction exactly as in the proof of Theorem §5.8.

We consider now the case where X is any A%-enlargeable 2m-manifold. We assume
that X is provided with a complete metric ds? with strictly positive scalar curvature func-
tion k. We equip X with a second (not necessary complete) metric

dsy = xds®.

Now for any ¢> o, there exists by definition a spin covering X — X and a mapping
f:X — 8 which is constant outside a compact subset and of non-zero degree, and
which is (e, A®)-contracting for the metric ds3.
Consider, as above, the composition F of the maps

~ rx(3

X x S2(R) (R) gom ¢ 2 N Sem+2
and fix a vector bundle E, with connection over $*"+% Set E = F*E, and consider
the Dirac operator Dy for the twisted spin bundle S® E. (The metric used here on

the X-factor is, of course, the lift of ds2.) The zero-order term in the Bochner-Lich-
nerowicz-Weitzenbock formula is of the form

1
-R+ A
% +
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where ® = x + (1/R2?) and where ||#%|| < &, ||R®||. The mapping f is supported
in a compact subset K of X and is pointwise (ex, A2)-contracting with respect to the metric ds2.
Set ¢ =sup || f,||- Now the mapping F is constant outside the set K x S2(R) and is
pointwise (max(c¢/R, ex), A?)-contracting (with perhaps a small uniform adjustment for
the fixed smashing map S x §* —S$*"+2), If ¢ is chosen smaller than %,,, and
if c(R™! is chosen smaller than min {ex(x) : x € K}, then the zero-order term in the
Bochner-Lichnerowicz-Weitzenbock formula will be everywhere positive on X x S2(R).
The argument now proceeds as before.

The general case of manifolds which are A2-enlargeable in some dimension 7 fol-
lows trivially by replacing the word ¢ degree” with ‘ A-degree” in the arguments
above, and by using in the end the relative index calculation given in the proof of
Theorem 5.21. W
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7. MANIFOLDS WHICH ADMIT NO COMPLETE METRIC
OF UNIFORMLY POSITIVE SCALAR CURVATURE
(INTRODUCTION OF SOME FUNDAMENTAL TECHNIQUES)

In the previous section we proved that if X, is enlargeable, then the manifold
Xo X R carries no complete metric with scalar curvature x> o. This statement is
false in general for the manifold X, X R2 (Consider, for example, the riemannian
product of a flat torus and a paraboloid of revolution.) Nevertheless, we shall prove
here that essentially the manifold X, X R? cannot carry a complete metric with uniformly
positive scalar curvature, z.e. with k = x, for some positive constant k.

The results of this section will apply to manifolds considerably more general than
Xo X R? (X, enlargeable). There are particularly interesting applications to 3-mani-
folds. It will be shown in § 8 that no compact 3-manifold which contains a K (=, 1)-factor in
its prime decomposition can carry a metric of positive scalar curvature. (In fact any k = o metric
is flat.) There are, in fact, quite strong results for non-compact g-manifolds.

We begin our discussion by refining somewhat the ideas of the previous sections.
It will be useful here to narrow the notion of enlargeability from the manifold to a class
of metrics on a manifold.

DEeFINITION %7.1. — A riemannian metric on a connected manifold X is said to be
A2-enlargeable if given any €>> o, there exists a covering manifold X — X which is spin
and (e, A%)-hyperspherical in the lifted metric. (The notion of being AZ2-enlargeable in
dimension n is defined similarly.)

A A2-enlargeable manifold is one for which every riemannian metric is A%-enlar-
geable.

The property of being A2-enlargeable (in any dimension) depends only on the quasi-
isometry class of the metric. In fact, the arguments of Proposition 5.7 prove the fol-
lowing.

ProposITION 7.2. — Let X and Y be connected riemannian manifolds and suppose there
exists a bounded proper spin map f:X —Y of non-zero degree. Then if the metric on Y s
A2enlargeable, so is the metric on X.

Note that a compact manifold which admits a A%enlargeable metric is A%enlar-
geable (in any metric). '
The following result is an immediate consequence of the methods of section 5.
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THEOREM 7.3. — No complete riemannian metric which is A*-enlargeable can have uniformly
posttive scalar curvature.

It is the key observation of this section that if X is enlargeable, then most complete
metrics on X, X R? are A%enlargeable. (Not every complete metric is A2-enlargeable,
however. A riemannian product metric where area(R2?) < oo, does not have this
property.) The basic constructions have important generalizations. To state these we
focus on the following concept.

DEeFINITION 7.4. — Let X be a connected oriented manifold and X,CX a compact
oriented submanifold of codimension 2. A transversal to X, is a properly embedded,
oriented surface X CX which meets X, transversely and with non-zero intersec-
tion number. (Thus, for any compact domain with boundary QCX such that
X,Cint(Q), the surface X N Q pairs non-trivially with X, under Lefschetz duality:
H,(Q, 0Q) ~ H"%(Q).)

The following theorem constitutes the main result of this section. There are three
distinct statements in the theorem, and each statement is proved by a different technique.
These methods of proof have a fairly broad applicability to the study of positive scalar

curvature, and we would like to emphasize the methods as much as the particular results
established here.

THEOREM 7.5. — Let X be a connected n-dimensional manifold, and suppose there exists a
(compact) enlargeable (n — 2)-manifold X, embedded in X with trivial normal bundle. Further-
more, suppose that the inclusion

(7.6) X, X Sles X — X,

obtained by taking the boundary of a small tubular neighborhood of X,, is a homotopy equivalence.
Then a complete riemannian metric on X having any one of the following properties:

(A) there is an inverse homotopy equivalence H : X — X, — Xo X S which is bounded outside
a compact subset of X,

(B) there are mo transversals to X, of finite area,

(C) the Ricci curvature is uniformly bounded from below,

cannot have uniformly positive scalar curvature.

REMARK %7.%7. — The mildest of these properties is (B) which is close to being both
necessary and sufficient for our method of proof to work. The failure of this condition
is equivalent to the existence of complete proper minimal surfaces of finite area (trans-
versal to X;). When dim(X) = g, these surfaces are regular and stable (of positive
second variation), and we find a relationship between our approach and that of
Schoen-Yau [SY, ,].

Note that properties (A) and (B) always hold when the geometry of X is bounded.
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Proor or THEOREM 7.6. — We suppose X carries a complete riemannian metric
with scalar curvature k = x, where x, is a positive constant. We shall show that none
of the properties (A), (B) or (C) can hold.

Let 8:X — R* be a smooth approximation to the distance function
d(x) = dist(x, X;). We can assume that

(7.8) |V3]| < 2

and, furthermore, that d = § near X;, so that for all g,> o sufficiently small, the
manifold

(7-9) X, = 371(ap) = Xp x S8

has (by hypothesis) the property that the inclusion X, CX — X, is a homotopy equi-
valence.

We fix now an inverse homotopy equivalence
(7.10) H: X -X, >X,x8

and make the following observation. (We may assume without loss of generality that
X, 1is oriented.)

LemMmA 7.1x. — Let b > a> o be regular values of 3, and consider the compact manifold
X[a,b] = 8—1([‘17 b])

with boundary 0X, = X, — X,. Then the mapping
(7.12) Koy — Xo X S X [4, 5]

is a degree-1 map of manifolds with boundary.

Proor. — Choose a,> o sufficiently small in order that (77.9) hold, and let ¢> o
be any regular value of 8. Then the manifold X, = 8 !(¢) is homologous to X, in S.
Consequently, the map H: X, - X, X S (given by restriction) has the same degree
as the map H: X, — X, x S1. This latter map is just H composed with the inclusion
X,CX — X,, and so by hypothesis it is homotopic to the identity. Hence, the map
H: X, - X, X St has degree 1 for any regular value ¢ of 3.

Suppose now that (x, ) € (Xy X S!) X (4, b) is a regular value of the map H X 3.
By Sard’s Theorem we may choose (x, f) so that ¢ is also a regular value of the map 3.
The degree of H X § is equal to the number of points in the inverse image of (x, )
counted with a sign depending as usual on whether H X § is locally orientation-
preserving or reversing. Now the point x is a regular value of the map H : X, - X, x S

Furthermore, at each point of the inverse image of x, the map H| is orientation pre-
&t

serving if and only if the map H X 3§ is. (To see this choose an oriented basis ¢, ..., ¢,
of T,X with ¢, ...,¢,_, tangent to X, and with 8,6, = 9/ot.) It follows that this
weighted sum must equal the degree of the map H:X, - X, x S, that is, it must
be1. m
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Case (A). Suppose now that the metric has property (A), that is, we assume that
the map H can be chosen to have bounded Jacobian near infinity in X (i.e. in the set
where 3 = 1). We shall show that the metric is then A2-enlargeable, in contradiction
to Theorem 7.3.

We want to show that for a given ¢> o, there exists a covering X — X and an
(e, A?)-contracting map X — S™ which is constant outside a compact set and of non-zero
degree.

Note that since X is complete and not compact, the function §: X - R* is onto.
Furthermore, by (7.8) we see that § is 2-contracting. Thus, if we fix regular values a
and b with &> a + (2/¢), the composition

(713) X[a,b] 'i) [a: b] '; [0: I]>

where A(f) = (¢t — a)/(b — a), is onto and e-contracting.

We now fix a metric on X, and observe that by compactness the mapping
H: X, 5 = Xo X S' onto the riemannian product is bounded, i.. ¢-contracting for
some ¢ = 1. In fact, by hypothesis (A) this constant ¢ is independent of the choice of b.
Since X, is enlargeable, there exists a covering space w, : }~(0 — X, and an (g/c)-contrac-
ting map f: X, - S$"*2? which is constant outside a compact subset and of non-zero
degree.

The inclusion X,CX is easily seen to be a homotopy equivalence, and therefore
there exists a unique (connected) covering m: X->X extending the covering =,.
Furthermore, there is a commutative diagram

X%, 5 X, xst

£ 7o X 1d

X — X, —» X, x St

where the lifting H of H is again a homotopy equivalence. We now restrict attention to
the compact manifold X, ,;CX — X, and the corresponding covering space
)’\(‘[G,b] ="YX y) = Bom) ([, b]). This gives a commutative diagram:

~ ﬁ ~
X[a.b] _— Xo X S1

e X Id

H
X[a,b] _ XO X Sl

Since H is proper on X, ;, the lifting H is proper on (the fibre product) i[a,b]. Of
course, the map H continues to be ¢-contracting.

361



150 MIKHAEL GROMOV AND H. BLAINE LAWSON, JR.

We now consider the composition

fxIdx A
_—

(7.14) Koy —— Xy X S' X [4, 6] $"=2 % S x [o, 1]

which we denote by £ This map is e-contracting onto the S"~2 X [o, 1]-factor and ¢-con-
tracting onto the S-factor. In particular (since ¢ 2 1), the map fis (ce, A%)-contracting.

We now choose a degree-1 mapping
(7.15) S"—2 x S x [0, 1] —> S""2A S'A St~ S"

which is constant near the boundary. This map remains unchanged throughout the
proof. It has given dilation, z.e. it is y-bounded for some fixed constant y > o, which
for simplicity we set equal 1.

Consider the composition cof: )N('[“,,,] — S:. Since this map is constant near
the boundary, it extends trivially to a map F:X — 8" Recall that the map f, was
constant outside a compact set and of non-zero degree, and that the map Hxs was
proper. It follows easily that F is constant outside a compact subset and is of non-zero
degree. Furthermore, F is (ce, A%)-contracting. Since ¢ is independent of &, we have
proved that the given metric is A2-enlargeable, as claimed. This completes the proof
for case (A).

Case (B) [TEcBNIQUE: “ Push-down and extend ’]. Observe that in the general
case the argument above breaks down because the bound ¢ for H depends on the
X a, b’
choice of @ and b which depend in turn on e. However, the above ax['gliment does prove
the following. Suppose > o is given and fix regular values ¢ and b =a + 1 of 3.
Then there exists a covering space X — X which restricts to a covering )N('[a‘ a1~ KXo a+1]
and for which there exists a mapping

axBx8

(716) i[a,a+1] — 8" X St X [O> I]

with the following properties:

(i) « X B 1is constant outside a compact subset and « X 8 X § maps boundary to
boundary;

(ii) « X B X 3 has non-zero degree;

(iii) « is e-contracting, § is 1-contracting, and B is ¢-contracting where the constant ¢
depends only on a.

Observe that if we could pass to coverings of )A('[M +1 in the “ S'-direction ”, we
could assume that the above map was also e-contracting on the S!-factor. The compo-
sition with ¢ would then be e-contracting on 2-forms and we would be in business. The
difficulty is that these coverings do not extend to (regular) coverings of X.
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x[a, a+1]

X

Nevertheless, suppose we do pass to a finite covering over the Sl-factor; that is,
suppose we consider the N-fold cyclic covering of X, ,, 4 induced as the fibre product:

axExy
—_—

Xiaat1] §* x S X [o, 1]

(7.17) 1 x 2N x 1d

Y
aXBXY

Kiarg —> S"x St x [o, 1].

Then for N sufficiently large we can proceed as before to construct an (g, A%)-contracting
map

ﬁzco(ax%xb‘): i[a,a+1]—>S”

which is constant at infinity and at the boundary. Via this map we pull back a fixed
bundle E, with connection from S". This induced bundle E has curvature uniformly
less than y'e (for some fixed y’) and is canonically trivialized outside a compact subset
[ . o g . . ~ & ~ .

K Cinterior(X(, ,.4). That is, in the complement U = X[ ,.;;— K there is a
connection-preserving equivalence with the (flat) product

(7.18) E| ~Uxc
U

(This is because, over the region U, the bundle E is induced by the constant map.)
We now push the bundle E forward to )A('[a' s+1- That is, we consider the
bundle = E (with connection) whose fibre at a point x is
(mE), = @ E;.

TETY(z)
Now from (7.18) we see that this bundle is almost trivialized at infinity and along
the Eoundary of X441 Consider K = n(ﬁ) C interior(}"('[a’a +1), and set
U = X}, 4+1 — K. Then over U, the bundle = E can be written in the form
(7.19) mE| 2 UxCo...0C
U
N
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where N is the degree of the covering =, and where the ordering of the factors is defined
up to a cyclic permutation. The push-forward connection is flat and compatible with
this local trivialization. However, the connection has holonomy ~ Zy generated by a
cyclic permutation of the factors. This holonomy is carried by cycles which map onto
the ¢« Sl-factor ”, i.e. on which B, is not zero. (See (7.16) and (7.17).)

We now rewrite the locally flat splitting (7.19) as a direct sum of flat (holonomy-
invariant) line bundles. We first rewrite C*® ... ® C* (N-times) as C¥® ... ®C¥
(k-times), by collecting together all of the j* components for j = 1, ...,k The holo-
nomy on each C¥ is then generated by a cyclic permutation

8(2y, ooy 2y) = (Zn5 %15 ++ o5 ZN—1)

of the coordinates. The eigenvalues of this transformation are just the distinct N* roots

of unity. Consequently, the bundle m E| can be written as a direct sum of flat complex
line bundles v

(7.20) mE| =4,0... &l
U

where the holonomy group of each ¢; is generated by scalar multiplication by «; = &=/
for some integer m;, o <m; <N. In fact, each 4 can be considered to be induced
by B:U —S! from the flat line bundle A= St x4, G whose holonomy is generated
by multiplication by ©;.

The idea now is to extend the bundle m E to all of X D)A(’[a’a +1) while keeping the
curvature uniformly small (< ¢). Note that there is no topological obstruction to exten-
ding = E since each of the line bundles #; over U is topologically trivial. Furthermore,
the bundle = E extends naturally to the  outside piece 5('[“ +1,0) Of X since the cove-
ring (7.7) extend to this domain. In this outside piece the bundle has the same pro-
perties that it has in U, z.e. it will be flat with non-trivial holonomy.

The difficulty is to extend = E over the ¢ inside piece )h('[o,a] of X where the cove-
ring (7.17) cannot be continued. The cycles carrying the holonomy of the flat connec-
tion are homologous to zero in this region. The idea is to extend the connection while
keeping the curvature small. We do this via the Hahn-Banach Theorem.

For simplicity we shall focus on just one of the line bundles in (7.20). Suppose ¢
is such a line bundle with holonomy generated by multiplication by « = ¢™N(m < N).
We can assume that ¢ is defined in the closed regular neighborhood C= }N([a__ 1,q(@ > 1)
of the boundary 6}~([0, g+ In fact as stated above, we can assume that ¢ is the pull-
back B*A of the flat bundle A over S! with holonomy generated by a 2nm/N-rotation.
Moreover, examination of the definitions shows that B factors through the covering pro-
jection i[o, a > Xo,q- S0, for convenience, we can work downstairs on our original
manifold. Here we have the bundle, which we continue to denote by ¢ = B*A, defined
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on the compact neighborhood X,_, , of the boundary. With this representation we
can explicitly construct a connection 1-form ¢ in ¢ by setting

(7.21) P = B‘(%a’@).

Of course, dp = o on the closed set C. We want to extend ¢ to a smooth 1-form on the
entire manifold X, ; so that

(7.22) ||de|| £  pointwise.

(Note that ¢ can be considered the connection 1-form of a topologically trivial extension
of the line bundle ¢, and as such de is its curvature 2-form.)

There is an obstruction to finding such an extension; for if there did exist an exten-
sion of ¢ satisfying (7.22), then for any compact surface LCX, , with 9ZCC, we
would have by Stokes’ Theorem that

Uazq" < e Area(X).

In fact, for a 2-dimensional current T on X, , such that supp(dT)CC, we would
have that

(7-23) | 9T ()| = eM(T)

where M(T) denotes the mass of the current T. (Definitions are given below.) We
shall now show that this condition (7.22) is both necessary and sufficient for finding the
desired extension.

We begin by setting some notation. Let Y denote the compact manifold (with
boundary) X, ,;, and let C denote the closed tubular neighborhood of the boundary,
as above. Let &7(Y) and &?(C) denote the spaces of C® p-forms on Y and C respecti-
vely. By this we mean the germs on Y (or C) of smooth p-forms defined in a neigh-
borhood. More explicitly, embed Y in an open manifold Y and let {U,}. be a system
of open neighborhoods of Y such that N U, =Y. For U,CU, there is a restriction
map 7,4: §(Up) - €P(U,) on smooth p-forms. Give &7(U,) the usual G*-topology.
Then &7(Y) = lim &*(U,) with the limit topology. The definition of &?(C) is
similar.

The topological dual spaces &,(Y) (and &,(C)) of &7(Y) (and &?(C) respectively)
are called the spaces of p-dimensional currents with support in Y (and C). The adjoint of
exterior differentiation on forms gives a continuous boundary map 9:&,(Y) - &,_,(Y)
with 92 = 0. The support of a current T e &,(Y), denoted supp(T), is the smallest
closed set KCY such that T(¢) = o for any form ¢ which vanishes along K. We set

&,(Y,C) = {Te&(Y): supp(¢T)CC}
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and observe that there is a commutative square of continuous linear maps

&(0) < &(Y)
(7.24) 2 2

6(Y, C) — &(Y)

where 7:C <Y denotes the inclusion.

Given a differential p-form ¢ on a riemannian manifold Y, we define its comass
to be || @||, = sup{e(€) : € is a unit simple p-vector on Y}. (This is equivalent to the
sup-norm given by any other uniformly equivalent norm in the fibres of APT*Y.) The
mass of a current T e &,(Y) is

M(T) = sup{T(9): || ¢|le S 1}

One can easily see that: M(T; + T,) < M(T,) + M(T,); M(T) = |¢|M(T) for
teR; and M([Z]) = Area(X) when [Z] is the current given by integration over a
compact oriented p-dimensional submanifold X of Y.

We can now state and prove our basic extension theorem.

ProrosiTION 7.25. — Suppose ¢ € &(C) is a smooth d-closed 1-form (germed) on C
with the property that

(7.26) [(9T) () | = eM(T)

Jorall T eé&y(Y, C). Then there exists an extension of ¢ to all of Y, that is, there exists ¢ € E(Y)
such that ©*Q = o, with the property that

(7-27) [|d9||o < &

Proor. — Consider the (closed) subspaces
B =06(Y) and %HBy=ZnE(C)=0ab,(Y, Q)

of the space &,(Y) (cf. (7.24)). Now %,C# and we have defined on # the conti-
nuous semi-norm
(7.28) p(S) =inf{M(T): Tedy(Y) and T =S}
Our hypothesis is that ¢, considered as a linear functional on %,, satisfies the condition
(7-29) ¢(S) = (S)
for all Se %#,. By the Hahn-Banach Theorem (cf. [Sc], p. 49) there exists a continuous

extension of ¢ to all of & so that (7.29) continues to hold. Thus, as a linear functional,

we have extended ¢| to all of #. This generates an extension to the subspace
ED

# + 6,(C) C&(Y). A second application of the Hahn-Banach Theorem gives a fur-
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ther continuous extension to all of &(Y). Since &(Y)' = YY) (i.e. £Y(Y) is reflexive)
this extension is a smooth 1-form § such that § = ¢ on C. Furthermore, the fact that
(7-29) continues to hold for § immediately implies that ||d¢ ||, < e. Tosee this, simply
choose T to be the ¢ Dirac > current associated to a simple 2-vector £ at some point.
Then (9T)(9) =T(d$) = (dF)(E) < eM(T) = e. Since this holds for all £, we have
||de || < e. This completes the proof of Proposition 7.25. W

We now return to the mainstream of our argument. We were given a closed

1-form ¢ = @* (% dﬂ) on C =X, ,,, and we want to extend ¢ to X, , subject

to the condition (7.21) that ||de||, <e. Since o <m <N, we can drop the linear

factor and assume that ¢ = @*(d0). By Proposition 7 .25 this will be possible if and only
if (0T)(¢) = <M(T) for all currents T on X, ,; with supp(éT) CC. This

X[a-1,al

X[o,al]

leads to the following ‘‘ Plateau Problem ” in X, ,;. Consider for each @, the number
(7-30) ¢(a) = inf{M(T) : Te&(Xp,q; Xp-1,q) and (IT)(¢) =1}

As a function of a, ¢(a) is monotone non-decreasing. To see this recall that ¢ = B*(d0)
where 8 is the restriction to X, ,, of the S!’-component B:X — X, —S! of the
homotopy equivalence H. It follows that for any T e &(X, X{,_; ) we canreplace T
with yT where y is the characteristic function of X, ;. Then M(xT) < M(T)
and since ¢ = B*(d0) is defined and closed in all of X , ), we have that
(8T) () — 0(xT)(9) = ((1 — x) T)(dp) = o. It follows immediately that

e(a) = inf{M(T): Te&(X, Xy 1) and (IT)(¢) =1}

The monotonicity of ¢(a) is now evident.
We now claim that

(7.31) lim e(a) = co.

Suppose not, i.e. suppose lim ¢(a) <oco. Then by general compactness theorems it is
a —>

not difficult to prove that there exists a current T e &(X) with M(T) < o such that
T(¢) = 1. Approximation by rational polyhedral chains leads to a transversal surface =

with Area(X) < oo and fz ¢ >o0.

We have assumed there are no transversals of finite mass. Hence, (7.31) must
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hold. It then follows that for any given £>o0, there exists a corresponding a>o
such that e(a) > (1/e). Therefore, given ¢>>o0, there exists an a>o0 such that the
hypothesis (7.26) of Proposition 7.25 is satisfied for X, ;.

Let us now return to the main construction. We have £>o0 given, and we can
suppose that @> o0 has been chosen as in the paragraph above. We then consider the
manifold )’Z[M“] with the bundle ™ E. This bundle has a canonical flat structure at
infinity and~in a neighborhood of 09X, ;; ;- There is a canonical flat extension of; this
bundle to X, .. Furthermore, we have now shown that mE extends over X, ,
with small curvature. In fact, after decomposing =, E| into flat line bundles (cf. (7.20)),

we can extend each line bundle with a connection of curvature pointwise < e.

We now consider the Dirac operator on spinors 8 ® (m E) with coefficients in =, E.
Since the scalar curvature is 2 x,, we have that for 0<e < k,, the zero-order term #
in the Bochner-Weitzenbock formula will be uniformly positive over X. To see this easily,
note that everything is operating ‘slotwise” with respect to the decomposition
mESEE@®E® ... ®E. That is, the formula downstairs is simply a direct sum of
several copies of the formula from upstairs where we had arranged positivity to hold.
This decomposition principle also applies over )’Z[o, q Where m E decomposes into a direct
sum of line bundles with connection. Consequently we conclude that the analytic
index of D*: I'(S* ® ;E) - I'(S™ ® mE) is zero.

We now compare this operator with the  trivial ” Dirac operator, i.e. the Dirac
operator Dy on S®F where F is the bundle wfl:’ich agrees with = E over i[o, q and
which carries the extended flat connection on X o) Thus F=mE (and, hence
D = D,) outside of the compact subset K of X. Now F is a direct sum of line bundles
with connection, each of which has curvature pointwise <e. For the same reasons as
above the operator D, is uniformly positive on X and so the analytic index of Dy is zero.

The Relative Index Theorem now applies to show that the topological
index ind,(D*, D{) is zero. However,

ind,(D*, DF) = [ ch(mE).AX)
= [3ch(E).A(X) + o,
as in sections 5 and 6. This contradiction completes the proof of Case (B). m

REMARK 7.32. — When X has dimension 8, and X, = S! admits transversals of
finite area (,,ILIE, ¢(a) <), then the known compactness and regularity theorems of

Almgren-Federer-Fleming (cf. [F]) prove that there exists a regular properly embedded minimal
surface X of finite area transversal to X,. This surface X can be chosen to be of least
area in its cohomology class, in fact, we can find T with

Area(Z) = ,,IHE, e(a).
(This is not possible in general when dim(X) > 3.)
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Case (C) [TeceNIQUE: ¢ The inflating balloon *’]. — The following is the simplest
of the three tricks and will have interesting applications to the study of metrics with

certain asymptotic behavior. For all this we will need a basic calculation of the scalar
curvature of warped products.

ProrosiTiON 7.33. — Let X and Y be riemanniar manifolds with metrics ds% and ds3
and with scalar curvature functions xyx and xy respectively. Let f:X —R™* be a C-function,
and consider on X X Y the  warped product > metric

(7.34) dst = dsk + f2dst.

Then the scalar curvature x of this metric is given by the formula

(7.35) x=xx+f%xy—ﬁ@?fﬂ|IVf||2—?Af

where Af = 2V, . f is the (negative) Laplace-Beltrami operator on X, and where n = dim(Y).

Proor. — The proof is a straightforward exercise which we shall leave to the plea-
sure of the reader. m

This formula has the following important consequence.

THEOREM %7.36. — Let X be a complete, non-compact riemannian manifold which admits
a smooth exhaustion function F :X —R™ satisfying pointwise inequalities:
(7-37) [[VF[|]£C and AF=C

Jfor some constant C. Suppose further that the scalar curvature is uniformly positive outside some
compact subset of X. Then given any R > o, there exists a complete metric on X X S? which

has uniformly positive scalar curvature and which, outside a compact subset K CX, is the riemannian
product

(X — K) x S%R)
of the given metric on X — K with the standard metric of curvature 1/R2 on S2.
Proor. — Choose 7, > o so that k¥ = k, outside the compactset X(r) = {F < 7,}.

Choose x; so that

K; > sup | x|
X(re)

Choose a smooth function ¢ : R —R* with the following properties:
o(r) =x7® forr<r,

o(r) =R for r = 7y + 2R.

02 ¢ =1

lo”| =1

(7-38)
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Choose ¢ with 0 < ¢< 1, and consider the function
Je(¥) = o(cF(x)).
Direct calculation using (7.37) and (7.38) shows that
(7-39) [|VA]|2< e2C?  and Af, < 2C2 4 <C.
We now take the warped product of X with S2 = S2(1) using this function f,. Since
e<1, we see that f, = constant = x7*® on X(r,). Hence, from formula (7.35) we

see that the scalar curvature x, of this metric is positive on X(r). The formula also
shows that on the complement of this region,

2

(7.40) a=x+ﬂU—HWW—#N%

Applying (7.39) shows that in this region

(7.41) g;%+%p—e@—gwm+£n
;%+%p—am—m£u+£n
Z ¥

if ¢ is chosen sufficiently small. Thus, for e small, this metric has uniformly positive

scalar curvature and is isometric to the product X X S%(R) at infinity. This completes
the proof. m

REMARK 7.42. — Note that we have actually proved the following. If the metric

on X has k 2 x, at infinity, then the metric constructed on X x S%(R) in Theorem 7.36
can also be made to have x 2 x, everywhere.

We are now in a position to prove part (C). Suppose X DX, is as hypothesized
in 7.5, and suppose X carries a metric with k = k¥, and Ric > G, for constants k, > 0
and G,. Under this assumption on Ric, there exists a smooth exhaustion function
Fo: X —> Rt satisfying (7.97). This is obtained by taking an appropriate approxima-
tion to the distance function to a point, and then applying Chern comparison and tech-
niques in, say, [CY].

Remove now a small tubular neighborhood of X, in X and double the resulting
manifold along the boundary. This gives a new manifold Y which is homotopy equi-
valent to X, x S'. It is elementary to construct a smooth riemannian metric on Y
which agrees with the old one outside a compact neighborhood of the ““seam . It

is also easy to see that there is a smooth exhaustion function F: Y — R which agrees
with (the double of) F, outside
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XoxS'= Xe
Y (the "seam™) X

[a, a+1]

a compact subset. This function will satisfy condition (7.87) for some constant C.

We now choose &> o appropriately small with respect to the constant x,. We
then fix R> 1/e and apply Theorem 7.36 (and Remark 7.42) to construct a metric
on Y which has k¥ = x, and which is isometric to the product Y X S2(R) at infinity,
i.e. outside a compact subset K X S2CY x S2

Now choose a> o sufficiently large in order that the subdomain X, ,, of X
defined above (cf. 7.11) be contained in Y — K. Since the inclusion X, x SICY is
a homotopy equivalence and X, be enlargeable, the arguments given for Cases (A) and (B)
show the following. There is a covering = : ¥ >Y and an (¢, A?%)-contracting map
f: ¥ —>S* with compact support in Xy ;.4 = 7 (X 441), with non-zero degree
and with ||f,|| £ 1. Lift the metric just constructed to ¥ X S? and consider the
composition

fxId

(7-43) ?XS2——>S”><82A>S”A S2 — §n+2,

From the property of the smash product A, this map is constant outside

supp(f) X S2CC X, 5,4 X S

Therefore, since the S2 factor is contracted by 1/R < e in this set, the map is (e, A2)-
contracting.

We now proceed as before, via the Relative Index Theorem, to reach a contradic-
tion. This completes the proof of Theorem 7.5. m

We shall now make some useful observations concerning the arguments presented
above. Our first remark is that the hypotheses concerning X in Theorem 7.5 can be
relaxed somewhat. All we really required was the existence of the enlargeable hyper-
surface X, X S1CX and a map H:X, — X, X S! of a non-compact component X,
of X — (X, % S') with the property that the composition X, x StCX, L4 Xy X S
be of non-zero degree. The arguments given above actually prove the following.

THEOREM 7.44. — Let X be a connected spin manifold whick contains a compact hypersur-
Sace Z with the following properties:

() Z ~ Xy X St where X is enlargeable and the map w,(X,) — m,(X) is injective;

(B) There is a non-compact component X, of X — Z and a map X, — Z such that the compo-
sition Z — X, —7Z has non-zero degree.
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Then a complete metric on X satisfying one of the conditions:

(A) The map X, —Z is bounded,
(B) X, has no transversal of finite area,

cannot have uniformly positive scalar curvature.

Furthermore, suppose X has a complete metric satisfying (A) or (B). Then any complete
riemannian spin manifold X* which admits a bounded proper map of non-zero A-degree onto X
cannot have uniformly positive scalar curvature.

Proor. — The first conclusion is an immediate consequence of the arguments given
above. For the second conclusion, we suppose f:X* — X is the hypothesized map.
Then for any ¢> o, the arguments above produce a covering X > X and a bundle E
over X with ||R|| £ ¢ and with certain topological properties (compact support, etc.).
We then consider the induced covering X* — X* with a lifting to a proper map
f: X* - X of non-zero A-degree. Using the bundle ]?':E with induced connection as
before leads to a contradiction. m

The method for Case (C) (the inflating balloon) has a number of interesting appli-
cations. To begin we note that the argument given above actually proves much more
than claimed. To give a clear statement we introduce the following notion.

DEFINITION 7.45. — A connected manifold X is said to have a bad end if there exists
a (compact, oriented) enlargeable hypersurface Z CX and a non-compact component X,
of X —Z with a map X, —Z whose restriction to ZCX, has non-zero degree.
(The set X is, of course, the “ bad end ”.)

Note that the property of having a bad end persists after making arbitrary modi-
fications of the manifold away from the end.

Remark. — The map X, —Z in Definition 7.45 could be replaced by a map
to any enlargeable manifold.

THEOREM 7.46. — Let X be a connected spin manifold with a bad end X, . Then any
complete metric on X whick has Ric bounded from below on X cannot have uniformly positive scalar
curvature. In fact such a metric cannot even have uniformly positive scalar curvature at infinity on
the one end X (i.e. cannot have x 2 xo>0 on X, — K for K compact in X).

Furthermore, let X* be a connected spin manifold which admits a proper map f:X* - X
of non-zero A-degree. Then any complete metric on X* with Ric = — C2, cannot have uniformly
positive scalar curvature. In fact, such a metric cannot have « = x, at infinity in f~4(X,).

Proor. — The first statement follows as in the proof of 7.5 (C) by doubling the
end and slowly blowing-up a balloon.

For the second statement we first deform f on a compact set so that it becomes
transversal to the hypersurface Z. Then f~'(Z) determines an end X? with a proper
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map f: X} — X, which is a fibration at the boundary. We now double X* and X,
to give manifolds Y* and Y with the same metrics outside a compact set and with the
““ doubled ” map f:Y* —Y. The proof now proceeds as in the basic case. Fix an
exhaustion F:Y*—> R with [|[VF|| and AF < constant. Given ¢> o0, choose
R > (1/e) and construct a warped product on Y* which has k = k, and which is a pro-
duct Y* X S?(R) outside a compact subset K x S2CY*x S2 Fix a> o so that
Xia+n NS(K) = 2. Here, X, i_’I]CXCY is constructed as above. Let ¢ be the
bound for f and pass to a covering Y — Y for which there exists an (e/¢, A%)-contracting
map to S" with compact support in )Ai[a,a_,_l] and non-zero degree. Let ¥ > ¥ be
the corresponding covering with a lifting of f to a proper map f~ ¥ >¥. The
composition

?‘XSZ—)S”X82—>S"+Z

defined as in (7.43), is e-contracting on 2-forms, and the proof proceeds as before. m
The results above have the following corollary which is of particular interest in low
dimensions.

THEOREM 7.47. — Let X be a compact K(w, 1)-manifold, and suppose X contains an
enlargeable K (w0, 1)-submanifold X, of codimension-2 such that the homomorphism m, Xy — m; X
is injective. Suppose also that the boundary Z of a tubular neighborhood of X, in X is an enlar-
geable manifold. Then X carries no metric of positive scalar curvature. In fact, any metric with
K2 o s flat.

THEOREM 7.48. — There are no (non-flat) metrics with x Z o on a compact manifold X’
if
(1) X' X # Y where Y is spin, and X s as in Theorem 7.47.
(2) X' =X xY where Y is spin with A(Y) + o, and X is as in part (1).

RemARKk 7.49. — The hypothesis that Z be enlargeable may always be satisfied.
It is related to the following question, which appears not to be trivial. Suppose some
covering of a manifold is hyperspherical, is the universal covering hyperspherical?

Of course, if Z ~ X, X S!, i.e. if the normal bundle is trivial, then Z is enlargeable.
Also, whenever dim X, = 1 or 2, the manifold Z is enlargeable. When dim(X,) = 2,
this follows from the fact that the universal cover 5(,0 of X, is hyperspherical in any lifted
metric, and that the lift of Z to X, is trivial, i.e. Z » X, x St

ProOF OF 7.47. — Let X — X be the covering space corresponding to the sub-
group m;(X,) Cmy(X). The embedding X,CX lifts to an embedding X,CX which,
since X and X, are K (=, 1)-manifolds, is a homotopy equivalence. Consider now the
inclusion

(7-50) zcX —X,
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where Z denotes the boundary of a tubular neighborhood of X;. It is an easy conse-
quence of the Mayer-Vietoris sequence that the map (7.50) induces an isomorphism
on homology groups.

Let g:X —X, denote the (inverse) homotopy equivalence, and consider the

problem of lifting the map g| = to Z. Restricted to Z, this map has a lifting of degree 1.
X-X,

The manifold Z is a circle bundle over X, which we may assume to be principal (by
having passed to a 2-sheeted covering space if necessary). Consequently, the only obstruc-
tion to lifting is a class in Hz(i — Xg, Z), which is zero because (7.50) is a homology
equivalence. Hence there exists a map §: X — X, —>Z

St

Xo

which when restricted to Z has degree 1. The manifold Z is enlargeable since it is a
circle bundle over an enlargeable manifold (see [GL,]). Therefore, we have shown
that the unbounded component X of X — X, is a bad end.

Any metric on X satisfies Ric = constant since X is compact. Hence,
Theorem 7.46 applies to complete the proof. m

Proor oF THEOREM %.48. — This follows directly from 7.47 and the second part
of 7.46. m
Note that any 1-manifold and any 2-manifold other than S? and P?(R), is enlar-

geable and of K (=, 1)-type. Hence, the above results are particularly useful in dimen-
sions g and 4.
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8. RESULTS FOR 3-MANIFOLDS

In this section we shall study the existence of complete, positive scalar curvature
metrics on 3-manifolds. We begin with a discussion of the compact case. (These results
were announced in [GL,].) There are even more striking results, however, for non-
compact manifolds. We have already seen in § 6 that there are no complete metrics
with positive scalar curvature on % X R for any compact surface X with X(Z) < o.
We shall now prove that there exists no metric of uniformly positive scalar curvature
on S! x R2 It follows that there is no metric of uniformly positive scalar curvature
on X X R for any non-compact surface X. Results for more general non-compact
g-manifolds are formulated below.

Suppose, to begin, that X is a compact 3-manifold, and by passing to a 2-sheeted
covering if necessary, assume that X is oriented. According to Milnor [M,], X can be
decomposed uniquely into prime 3-manifolds:

(8.0) X=X # ... X, #(S!xS)# ... #(S!'xSH)#K; ... K

m factors

n

where 7,(X;) is finite for j = 1, ...,/ and where each K; is a K(=, 1)-manifold.

Consider first the simple case where X is a K(=, 1)-manifold. Then there exists
an embedded circle X, = S1CX representing an element of infinite order in =,(X).
Theorem 7.47 applies immediately to X. Hence Theorem 7.48 applies immediately

to any X of the form (8.0) with # > 1. This gives us the following.

THEOREM 8.1. — Let X be a compact (oriented) 3-manifold which has a K (=, 1)-factor
in its prime decomposition (8.0). Then X carries no metric of positive scalar curvature. In fact
any metric with x 2 o0 on X is flat.

It was shown in [GL,] that any g-manifold of the form
X=X # ... % X, # (ST x 82 # ... # (St xS?

does carry x> o, provided that each X; is diffeomorphic to S?/T; for some I';CO(4)
acting standardly on S3.

We now consider the non-compact case. To state the results concisely we need
some definitions.

DEeFINITION 8.2. — An incompressible surface in a manifold X is a compact embedded
surface ZCX such that |m; 2| = oo and the induced map =, 2 — =, X is injective.
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DEeFniTION 8.3. — A taut surface in a manifold X is a properly embedded surface
2CX such that |n; 3| = o and the induced map m,; % - n; X is injective.

An incompressible surface is always taut. The surface = X {0}CE x R (for
2 compact) is incompressible. The surface S! x RCS! x R? is taut.

THEOREM 8.4. — A 3-manifold which contains a taut surface, cannot carry a complete metric
of uniformly positive scalar curvature.

A g-manifold which contains an incompressible surface carries no complete, non-flat metrics
with scalar curvature = o.

REmARK 8.5. — It is obvious that in Theorem 8.4 the hypothesis that the mani-
fold contains a taut (or incompressible) surface could be changed to read: ¢ some covering
of the manifold contains a taut (resp., incompressible) surface ”. It is also evident that
if X satisfies either hypothesis of Theorem 8.4, then so does the manifold X # Y for
any 3-manifold Y.

The first part of Theorem 8.4 has a stronger (although perhaps equivalent)
formulation.

DeriniTION 8.6. — Let X be a g-manifold. We say that a smoothly embedded
circle yCX is small if it has infinite order in H; X and if the normal circle to y has
infinite order in H,(X — vy).

TueEOREM 8.7. — Let X be an open 3-manifold with H,(X) finitely generated. If X
contains a small circle, then X carries no complete metric of uniformly positive scalar curvature.

Note. — The hypothesis on H,(X) can be dropped, as we shall see in § 10.

Observe that the circle y = St X {pt.}CS! x R? is small. In fact this is true of
any curve y<> X3 whose inclusion is a homotopy equivalence. Thus we conclude
that any g-manifold which is homotopy equivalent to a circle cannot carry a complete metric of uni-
Sormly positive scalar curvature.

On the other hand, the methods of [GL,] show that the manifold

X, = St x S? —{pt.}

does carry a metric of uniformly positive scalar curvature (which is the product metric
S2 X [0, o0) at infinity). No circle in X,, or in any covering of X, is small.

The hypothesis of smallness persists under connected sums. That is, if yCX
is small, then y remains small in the connected sum X # Y of Y with any 3-manifold Y.
On the other hand, the connected sum of g-manifolds with complete metrics of uniformly
positive scalar curvature again carries such a metric.

We remark that Theorem 8.7 implies Theorem 8.1 as a special case. To see this,
note first that any compact K (=, 1)-manifold admits a covering space which is homotopy
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equivalent to a circle. Thus, no such g-manifold can carry positive scalar curvature.
The full theorem follows easily by taking connected sums.

Proor oF THEOREM 8.4. — Suppose X contains a taut surface X, which we may
assume to be orientable. Let yCX be an embedded circle which is not homotopic
to zero in X (and therefore in X). Let X > X be the covering space corresponding
to the subgroup of =; X generated by y. Let £ — 3 be the induced covering. Since
7, 2 <> 1y X, there is a lifting of y:

cxC

=<

M <— M
Mo R

cXC

<2

inducing isomorphisms ¥ & nlf ~ n,X. Since £ is orientable and ™ ¥ Z we
have that £ is homeomorphic to S! x R. Furthermore, this surface &~ S! x R is
properly embedded in X. Hence, X is non-compact.

We now claim that ¥ is a small circle in X. Clearly ¥ has infinite order in X,
so we need only to show that any small normal circle ¢ about y has infinite order
in (X —%). Note that the surface & —5 ~ S X (R2 —{0}) has two connected
components each of which is properly embedded in X —7¥. Considering one of these
components as an element in Hl()h(' —7%;Z) (via intersection) and evaluating on the
normal circle ¢ gives the value 1. Hence, ¢ must have infinite order in nl(i -7),
and ¥ is a small circle in X, as claimed.

The first statement of Theorem 8.4 now follows from Theorem 8.7.

Since any compact surface  with |n; 3| = oo isenlargeable, the second statement
follows immediately from Theorem 6.12 (2). m

Proor or THEOREM 8.7. — Let v be a small circle in X and let Z ~ St X S! be
the boundary of a small tubular neighborhood of y in X. (If traversing vy reverses orien-
tation, then we replace y by 2y.) We observe that the inclusion homomorphism

t,: HHiZ>H (X —v)
is injective. Indeed, the generator of the kernel of the composition
H,Z->-H,(X—vy)>HX

is exactly the subgroup generated by the normal circle, which, by assumption, has infinite
order in H;(X — v).

Since H,(X — y) is finitely generated, there exists a homomorphism
i HX—-—y)>HZ2Z0Z
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such that the composition f, o3, : H;Z —H,Z is injective. Since Z is a K(=, 1)-space,
there exists a mapping f: X — y—Z which induces the homomorphism f,. Since
the homomorphism £, o 7, is injective, the composition

z&HX —y bz

is of non-zero degree. Consequently, X and Z satisfy the hypotheses of Theorem 7.44.

We conclude that X contains transversals to vy of finite area. In fact, there must
exist a regular, properly embedded, non-compact minimal surface XCX which has
finite area and is stable. (By * stable ” we mean that the second variation of area with
respect to compactly supported variations of X is = o.)

The existence of this minimal surface X is a consequence of the work of Federer, Fle-
ming and Almgren. We see this as follows. We first note that in codimension-one it
suffices to test on integral currents when applying the Hahn-Banach techniques of § 7.
More specifically, by [F,] we know that the function ¢(a) defined in (7.30) remains
unchanged if in this definition we restrict T to the integral 2-currents. By
standard compactness theorems (cf. [FF]), we can solve the relative Plateau problem
in (Xpg, 5, 90X, q) for each a. We then extract a sequence of minimizing 2-currents 2,
(where a, - ) which converges on each compact subset to a minimizing integral
2-current % without boundary. The homology condition insures that every %, must
meet ¥, and standard monotonicity results then imply that the limit must be non-zero.
The minimizing property of the %, ’s implies that % is homologically minimizing. The
regularity theory for minimizing surfaces in riemannian 3-manifolds, which follows from
Fleming [FI] and Almgren [Al], proves that the limit X is a regularly embedded smooth
orientable minimal surface. This surface is non-compact and stable. Furthermore, by
lower semi-continuity of mass and the uniform bound on Area(Z,), we know that
Area(2) < oco.

We conclude the proof Theorem 8.7 by showing that in contradiction to the above
one must have Area(X) = co. This will follow immediately from the central result,
Theorem 10.1 of the tenth section. m

We offer below a more delicate area estimate in the case of 3-manifolds with « > o.
In what follows all surfaces are assumed orientable.

TueoREM 8.8. — Let X be a riemannian 3-manifold of positive scalar curvature. Then
any complete stable minimal surface of finite area in X is homeomorphic to S®.  (In particular, no
such surface can be mon-compact.)

Proor. — Let £CX be a complete stable minimal surface. The stability of =
is equivalent to the fact that for all ¢ € CP(Z) we have the inequality

(8-9) [ {iver+ Ko =L+ 1AM ¢ 2
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where « denotes the scalar curvature function of X and where K and A denote the Gaus-
sian curvature and the second fundamental form of X respectively (cf. [SY,]). Note in
particular that for k¥ > o, stability implies that

(8.10) f2{|V<p|2—}—K<p2}>0
for all ¢ € GP(2). If X is compact, we can choose ¢ = 1 and conclude that Z »~ S2.
If X is not compact, we apply the following result (in the special case « = 1). m

THEOREM 8.1x. — Let X be a complete non-compact riemannian surface with the property

that, for some fixed o> é,

(8.12) L(9) = [L{|Ve[* + aKoe?} 2 0

Jor all ¢ e CY(Z). Then Area(X) = oo.

Proor. — We may assume without loss of generality that X is connected. We
take a compact domain QCZX with piecewise smooth boundary y = 9Q, and consider
the family of “ concentric > domains

Q(s) = {x € 2 : dist(x, Q) < s}.

These are the sublevel sets of the compact exhaustion function s(x) = dist(x,Q). By C®
approximation of the originally given Q and the metric on X, we may assume that the
boundaries vy(s) = 0Q(s) are piecewise smooth. We then set

L(s) = length(y(s))
K(s) = L(a)K(c) ds (6 = arc length on ¥(s))

Euler characteristic of Q(s)

=X
IO
mom

total geodesic curvature of y(s)

where by ¢ total geodesic curvature ” we mean the integral of geodesic curvature over
the regular set of y(s) plus the sum of exterior angles at vertices. By Gauss-Bonnet applied
to the region Q(s,) — Q(s;) we have that

(8.13) [ K () ds = 2m(x(sa) — 2(s2)) — (T(s2) — T(sy).
That is,
(8.14) K(s) = [2mx(s) + T'(s)]’

in the distributional sense.
We shall now apply the inequality (8.12) with a function ¢ of the form
¢(x) = @(s(x)). (It is clearly permissible to pass to Lipschitz functions ¢ with com-
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pact support on X.) We shall choose ®(s) so that ®(o) > o, ® decreases to zero on an
interval [o, p], and ®(s) = o for s p. The inequality (8.12) then takes the form:

(8.15) 0= [7(®'(s))2L(s)ds + af Ko2dA.

We shall estimate the second term on the right. Using (8.14) and Gauss-Bonnet, we
see that

(8.16) f%) Ko2dA = fmo) 9?KdA + Kg2dA

Q(p)—0(0)

= @%(0) {2my(0) — T'(0)} + [T K(s) @%(s) ds
= [P{T(s) — 2mp ()} (@%(s)) " ds.

Now for curves y(s) with positive exterior angles, one has that L’(s) = I'(s). In the
general case, where there also exist negative exterior angles (or ‘ concave ”
we only have the inequality

L'(s) < T'(s).

vertices),

Since (®2%)’ < o, we conclude that
(8.17) [2 () (@2(s))"ds < [T L (5) (@2(s)) s
= — 2L(0) ®(0) ®’'(0) — f: L(s) (®2(s))"" ds.

Combining (8.15), (8.16) and (8.17) we get the following inequality:
LeEmMA 8.18. — For all ® = ®(s) as described above, we have
(4
0= — zf {(DCD" + (1 — i)(cp')z}Lds

0 20

e
— 2L(0) ®(0) ®’(0) — 47rf DD’ ds.

0

We now choose ®(s) = p — 5. In this case 8.18 becomes

(8.19) 05— (x - 5) Area(@(e) — 2(0)) + oL(o) + 25 [ 1(6)(p — ) .
If we assume y(s) <o for se[o,p], then (8.19) implies
(8.20) Area(Q(p) — Q(0)) < (;—il) L(o) ¢.

Let us choose our domain Q as follows. Fix a point x,e€X and consider the
family of concentric “balls” B(R) ={xe X : dist(x, ;) < R}. For a given R, the
complement X — B(R) may contain some components, say D,(R), Dy(R), ... which
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are bounded in . We set B(R) = B(R) u UD,(R), and for fixed R,>R,>0 we
define Q to be the difference "

Q =B(R) — BRy)".
We now observe that on each component Q, of Q we have that
(8.21) ™1(Qa) & (2 — {%})

is injective. Indeed, let ¥ be a closed curve embedded in Q, which bounds a disk
DCXZ —{x,}. Then DCZXZ — B(R,)? since otherwise there would be an interior point
nearest to x,. Furthermore, we have DCZX — ﬁ(R1)° since if D meets a bounded
component of X — B(R,), then D contains the closure of that component contrary to
the assumption on y. Observe now that D n (2 — B(R,)) consists of bounded com-
ponents of = — B(R,), that is, we have DCB(R,). Thus, DCB(R,) — B(R,) = Q,
and by connectedness, DCQ, as claimed. This proves (8.21). Note that, clearly,
m,(Q,) + o for any «.

For each s <R,, consider now the domain Q(s) as above. Each component Q,(s)
of Q(s) contains a component Q. of Q, and so from the factoring

0+ m(Qy) = 7 (Qy(s)) > 7 (Z —{%}),
and by (8.21), m=,(Q,(s)) + 0, and so x(Q,(s)) 0. We conclude that
x(s) = x(Q(s)) S o.
Thus, (8.20) holds for all p = R;.
Recall now that the term L(o) in (8.20) is
L(o) = length(0Q)
= length(6B(R,)) + length(dB(R,))
< length(dB(R,)) + length(éB(R,)).
Assuming that Area(X) <o, we have

(8.22) l%m_}i;lf length(9B(R,)) = o.

We now let R, > o0 and let p - R;. Then (8.20) becomes

20

Area(B(R)) = length(8B(R)).R.

200 — 1
Setting a(R) = Area(B(R)), this implies that

20
200 — I

a(R) = a(R)R
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which in turn implies that
1

(8.23) a(R) 2 a(1) R 2=,

This completes the proof. m
We note that we have also proved the following.

THEOREM 8.24. — Suppose T satisfies the hypotheses of Theorem 8.11. Then for all
R>o

-1

Area(B(R)) 2 (R *

where ¢ = Area(}~3(1)).
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9. RESULTS FOR 4-MANIFOLDS

The results of section 7 have interesting applications also to 4-manifolds. This is
basically because any compact surface £ with y(2) < o, is enlargeable. The same is
true of any circle bundle over . Thus we have immediately the following result.

DEeFINITION 9. 1. — We say that a compact embedded submanifold X C X is incom-
pressible if |7, Z| = oo and if the homomorphism =, X — =, X is injective.

THEOREM 9.2. — A compact K (=, 1) 4-manifold which carries an incompressible surface

cannot carry a metric of positive scalar curvature. In fact any metric with x = o on such a mani-
JSold must be flat.

Proor. — This follows immediately from 7.47. ®

It seems that one should be able to substantially strengthen this result. One
expects the conclusion to hold for any compact K(x, 1)-manifold, at least in dimen-
sion 4. ,

On the other hand the existence of an incompressible surface is independently quite
strong, and we have the following generalization of 9.2 above.

DEFINITION 9. 3. — A compact incompressible surface = embedded in a 4-manifold X
is called small, if |7, X/m, 2| = o and if the normal circle about X has infinite order

~

in H;(X — =), where X is the covering of X with =, X & =, Z.

THEOREM 9.4. — A compact spin 4-manifold which admits a small incompressible surface
cannot carry a meiric of positive scalar curvature. In fact, any meiric with « 2 o must be Ricci

[lat.

Note. — The hypothesis of Theorem 9.4 persists after taking connected sum with
an arbitrary (spin) 4-manifold.

Proor. — The proof of Theorem 7.4.7% carries through.

Since on a compact oriented 4-manifold every class in H?(X; Z) is represented by
an embedded surface, it seems that Theorem 9.4 should be capable of further
strengthening.
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10. SOME FUNDAMENTAL THEOREMS
FOR INCOMPLETE 3-MANIFOLDS

(Applications of the stability inequality)

This section concerns the global geometry of a g-manifolds X whose scalar cur-
vature satisfies

(r0.1) K= K,
for some constant x, (usually assumed to be positive). We shall study X by examining
the properties of a stable minimal surface £C X. Neither X nor X will be assumed to

be complete, but both will be assumed to be oriented.
For a compact set QCXZ and p = o, we define as in § 8

Qp) = {x e Z: distg(x, Q) < p}.
Our first main result is the following.
THEOREM 10.2. — Let 3 be a compact stable minimal surface in a 3-manifold with scalar

curvature = xo> 0. Let QCZ be a compact connected domain, and let o> o be a number
such that

(1) Q(p) does not meet OX.
(2) Image[H,(Q) - H,(Q(e))] # o.

Then

1
(r0.3) p < .
V¥

Proofs of theorems will be given at the end of the section.

Note that hypothesis (2) always holds if the inclusion H,(Q) — H,(X) is % o.

REMARK 10.4. — This result also holds when Q is not connected, provided that
hypothesis (2) is changed to read:  Image[H,(Q,) — H,(Q(p))] + 0o for each com-
ponent Q, of Q.”

REMARK 10.5. — For (not necessarily connected) Q, hypothesis (2) can also be
replaced by the statement:

Euler characteristic(Q(s)) < o
for all s € [o, p].

384



POSITIVE SCALAR CURVATURE AND THE DIRAC OPERATOR 173

ReMARk 10.6. — The inequality (10.3) is nearly sharp. To see this, consider
the stable minimal surface = = {pt.} x SCS* x S?, where S!Xx $? is a riemannian
product of standard unit spheres. Here x, = 2. Hence, by letting Q be a thin neigh-
borhood of the equator in X, we see that the hypotheses of the theorem can be fulfilled
for all values of p < w/2. Hence, the best possible conclusion for Theorem 10.2 would
be: p < m/4/2K,.

As a major consequence we have the following.

THEOREM 10.7. — Let X be a compact 3-manifold with a (possibly empty) boundary,
and suppose X is equipped with a metric of scalar curvature > 1. Then any closed curve yCX
such that

(1) [y] =0 i Hy(X, 8X),
(2) dist(y, 0X) > 2n

must already bound in its 2m-neighborhood, U, (y) = {x e X : dist(x, y) < 2n}. That is,
[y] = o in H,(U,.(y)) (and in particular, in H (X)).

If X (as in (10.7%)) is also complete and contractible, then every y bounds in its
2n-neighborhood. In the language of [G],

Fill Radius(yC X) < eor.

It follows that X contains no * line ”°, 7.e. doubly infinite, minimizing geodesic.

Theorem 10.7 is a powerful geometric estimate. It gives the following immediate
corollaries.

COROLLARY 10.8. — Let X be a 3-manifold which is diffeomorphic to the interior of a com-
pact 3-manifold X with H,(0X) # o. Then X carries no complete metric of uniformly positive
scalar curvature.

Proor. — Take a curve yC X such that [y] + o in H;(X), and push yinto X. m
An example of course is X = S! X R2  We shall easily retrieve Theorems 8.8
and, in fact, 8.1 as Corollaries. We also have the following

COROLLARY 10.9. — A4 complete 3-manifold of uniformly positive scalar curvature and with
finitely generated fundamental group is simply-connected at infinity.

Proor. — Let X be a complete 3-manifold with « = 1 and choose an exhaus-
tion K,CK,C...CX of X by compact domains with smooth boundaries. Set
Q, =X — K;, so that Q,2Q,D... is a neighborhood system of infinity. We may
assume that dist(9Q;, Q,,,) > 2= for each 1.

Consider now a circle yCQ; — €; for some j> i, and suppose y is homotopic
to a curve Y CQy — Q, where "> j. We now alter the metric far away from the
curves I' =y uU ¥y’ in the region Q; , so that we can apply the classical theorem
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of C. B. Morrey [Mor]. This theorem asserts that if [y] +£0 in =;(Q;_,), then
there is a minimizing annulus A in Q,_, joining y to y. Let X = A n X where
Xp = Q;_, —Q,, carries the original (unaltered) metric of scalar curvature x = 1,
Then X is a stable minimal surface in X with 92 = T' (mod ¢X). Since the distance
from each component of I' (y and y’), to the other and to dXy, is > 2=, we conclude
as in the proof of 10.7 that X cannot exist. Hence [y] = o in =;(Q;_,). This com-
pletes the proof. m

CoOROLLARY 10.10. — Let X be a compact 3-manifold with boundary and let v be a circle
tn 0X such that [y] #+ o in Hy(X). Then for any riemannian metric with scalar curvature = 1
on X (there exist many!) and any curve v' CX which is homologous to v, we have that

dist(y', 0X) £ 2m.

Proor. — This is obvious.
The following Corollary is a consequence of arguments in [G,].

COROLLARY 10.xX. — Let X be a closed 3-manifold of scalar curvature = 1. Then

there exists a distance decreasing map f: X —T' onto a metric graph (a linear graph in RY, say),
so that, for each p €T,

diameter( f~(p)) £ 127,
Note. — This means that g-manifolds with k« = 1 and diameter > 1 are * long

and thin ”. Of course, arbitrarily long and complicated manifolds of this type can be
constructed by taking connected sums (as in [GL,]) of copies of S! X S% and S3.

Proor. — We may assume X to be connected. We fix a point x, € X and define
the function d(x) = dist(x, x,). Consider now the quotient I' = X/~ where the rela-
tion “ ~ > is defined by setting x ~ ' if x and x’ lie in the same arc component of a
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level set of d. Then (at least after approximation of d), I" will be a finite metric graph
and the projection map f: X —I' will be distance-non-increasing.

Suppose now that x, and x, are points with f(x;) = f(x,). We shall show that
dist(x;, x,) < 12%. To begin we join x, to x, by a curve y on which 4 is constant. We
then join x, and ¥, to x, by minimizing geodesics vy, and v, respectively. These geodesics
may be chosen so that the triangle T = y;yy, is null-homotopicin X. By Theorem 10.7,
the closed curve T bounds a disk D in its 2n-neighborhood.

Note that if d(x,)(= d(x,)) < 6n, we are done. Hence, we assume d(x,) = 6n
and consider the curves y, = {x e D:d(x) = d(r,) — 2w — ¢} joining vy, to y,. Each
such curve, for €> o small, has a point x, which lies at a distance < 2n from both vy,
and y,. That is there are points xe+y; with dist(x,, x)) < 2n. Of course,
|d(x,) — d(x;)| £ 2=, and so dist(x;, x{) S 47 + ¢ for each i. Hence, dist(x,, x,) < 127
as claimed. m

X4

X2

COROLLARY 10.12. — A complete stable minimal surface in a 3-manifold of uniformly
positive scalar curvature is a 2-sphere.

Recall that all manifolds are assumed to be orientable.

ProorF. — Let X be the stable minimal surface. If X is compact, the stability ine-
quality applied to f = 1 shows that %(Z) > o and so X ~ S%. If X is not compact,

— —~
fix a point x, € X consider the curve y, = {x € Z: distg(x, X)) = p} where dist is a
smooth approximation to the distance function in ¥ and where p > o is a regular value.
Some component ¥, of y, does not bound in ¥ —{x,}. Let Q be a thin tubular
neighborhood of ¥, in £. Then Z = H,(Q) - H,;(Z —{#,}) is injective, and so
H,(Q) - H,(Q(s)) is non-zero for all s< p. Choosing p sufficiently large (> m/4/x,)
we get a contradiction to Theorem 10.2. B

Recall from § 8 that a circle y embedded in a 3-manifold X is called small if y has
infinite order in H,(X) and if the normal circle to y has infinite order in H (X — ¥).

COROLLARY 10.13. — An open 3-manifold whick contains a small circle cannot carry a
complete metric of uniformly positive scalar curvature.
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Proor. — Suppose X carries such a metric, and let yCX be a small circle. For
each p>o, set X, ={xeX:8,(x) = p} where 5,(-) is a smooth approximation to
disty (-, y). Assume p is a regular value of 3,. Since [y] has infinite order in H,(X),
we see that there exists a class u € Hy(X,, 0X,) = HY(X,) so that (u,vy) 0. Let
(%, 0Z,) C(X,, 0X,) be a surface of least area in u. (Z,is a regular embedded stable
minimal surface.) By a slight deformation we make y transversal to Z,.

We now observe that any component of X, which meets y with non-zero intersec-
tion number must also meet X, (such a component exists since y.X = o), for otherwise
some non-zero multiple of the normal circle would be homologous to zero in X — 1.
Choosing  sufficiently large and applying Theorem 10.2 as we did in the previous corol-
lary, leads to a contradiction. (Alternatively, one could take a limit X, - X as
p > and apply Corollary 10.12 directly.) m

Suppose now that y is a non-contractible curve in a closed K(=, 1) g-manifold X.
Let X > X be the covering space corresponding to the cyclic subgroup of =; X gene-
rated by y. Then any ¥ C X, obtained by lifting v, is small. This observation remains
true if we take the connected sum of X with any other g-manifold. Hence we conclude
(cf. Theorem 8.1):

COROLLARY 10. 14. — A compact 3-manifold (without boundary) which contains a K (=, 1)-
Sactor in its prime decomposition, cannot carry a metric of positive scalar curvature.

CoOROLLARY 10.15. — Suppose S' X R2 is equipped with a complete riemannian metric.
Fix a circle vy = S* X {o} and for each R >o, set

k(R) = inf{x(x) : xe Ug(y)}.

Then k(R) = i}Rl: .

Proor. — Choose a circle 6CX — U,p(y) which links y once. Let Z be the clas-
sical Douglas-Morrey solution to the Plateau problem for 6. Then X is an immersed
disk which must meet y in some point, say x,. Fix R; and R, with 0o <R; <R, <R,
and let Q be an appropriate component of the region {xeX:R; < distg(x, x,) £ R,}.
Assuming x(R; + R,) >0, we conclude from Theorem 10.2 that

1t2

KRy + Ry) < 1

Letting R; and R, approach R/2 gives the result. m

THEOREM 10.16. — Let X be a complete 3-manifold with
kK= — 1.
Let ZCX be a complete (connected) stable minimal surface. Fix xoe X and let
B(R) ={xeX: distg(x, x) < R}.
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For each R>o0 let
«(R) = rank{image(H,(B(R)) - H,(Z))} — 1.

Then Area(B(R))

v

4w
T Gy

In particular, if %(Z) < o, then
Area(Z) = 4m |y (2)].

PROOF THAT 10.2 IMPLIES 10.%7. — Let X be the surface of least area which spans y
modulo 9X. (This is given by taking the integral current of least mass.) This surface
may have boundary points on 90X, butin X — 9X itis a regular, oriented stable minimal
surface with boundary y. (This follows from the basic regularity results of Almgren [Al],
Fleming [F1], and Hardt-Simon [HS].)

Suppose X is not contained in the 2n-neighborhood of y. Then it is not contained
in the 2p-neighborhood for some p > . Basically, the idea now is this. Let vy, be the
p-level curve in X, i.e.,

Y, ={xeX: distg(x, y) = p}.

Since y is homologous to vy, and y does not bound in U, (y) (its 2p-neighborhood in X),
we know that some component ¢ of vy, does not bound in U, (y). In particular, ¢ does
not bound in o(p), its p-neighborhood on X.

S~—

)
4 >,

We now let Q be a very thin tubular neighborhood of 6. (To avoid mess, we
assume Q = ¢.) By the above, we have that H,(Q) - H;(Q(p)) is injective. Fur-
thermore, if we choose p (which is > =) very close to =, then Q(p)° will not meet 9X.
To see this note that: distg(Q, 9Z) = distg(o, 9Z) = min{p, disty(c, = N 0X)}. How-
ever, disty(o, T N 9X) = distg(y, Z N 0X) — p = disty(y, 9X) — p, and we have
assumed that disty(y, 0X) > 2n. Consequently, Q satisfies the hypotheses of
Theorem 10.3.

We conclude that 2p < 2w, contrary to assumption.

To make the above argument rigorous, we need only to approximate the func-
tion distg(x, v) by a smooth function 3(x). The curve ¢ is then an appropriate connected
component of §7!(p) where p is a regular value of 8 with p as above. This completes
the proof of 10.7. ®
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Proor oF THEOREM 10.2. — The stability of the minimal surface CX implies
that for any fe Gy°(Z) = {smooth functions with compact support in & — 82}, we have

(10.17) fz<[Vf|2—l—Kj2—§K0f2}dAgo.

(See (8.9).) Here K is the Gaussian curvature of £ and «x, is a lower bound for the
scalar curvature of X. This inequality continues to hold for f in the L'?-closure of G (Z).

We apply this inequality as we did in 8.11. Let s(x) = distg(x, Q) and assume
by analytic approximation of Q and the metric that s(x) has piecewise smooth level sets
up to the value p (cf. [Fia] (})). For each constant s, we see that Q(s,) = {x:5(x) = 50}
We then set

Y(s) = 9Q(s)
L(s) = length(y(s))

K@:{MK@MG (¢ = arc length on y(s))
and we write

LMKM=mmg—ng=mmn—mm+ﬁmmw
where x(s) = The Euler characteristic of Q(s),

I'(s) = The total geodesic curvature of ¥(s).

(Recall that I'(s) includes ¢ angle ” contributions.) Again we note that in the distri-
bution sense

(10.18) mg:%@W@—rm}

We now choose a positive decreasing function ¢(s) on [o, p] with ¢(p) = 0, and
define a function

0 if x¢ Q(p)
Sis) =) if xeQ(p) — Q
o(0) if xe Q.
Then, after setting
A(s) = Area(Q(s))
() For a detailed analysis of the functions s, L and L in the analytic case, see the paper of Fiala [Fia]. Relevant
discussion can also be found in [BZ, §§ 2 and 3 of Ch. I], [Ha], [O], [CF], and [I].
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the stability inequality (10.17) on f becomes

(10.19) [} @)L ds + ¢20) amate) — P01 + [ K(s) 929 o
2 2 %[ 90) AG) + [ %) L(9) &)-
From (10.18) we have that
(r0.20) 9*(0) [2mx(0) — T'(0)] + [7 K (s) 9*(s) ds

= — [T L2mx(s) — T(9)1(92(s))’ ds.
As pointed out in § 8 we have the basic inequality (cf. [Fia])
L'(s) = I'(s).

(In the absence of ¢ concave ” corners the equality holds.) This last inequality, together
with the fact that (¢?)’ < o, implies

[ET(s) (0%(9)) ds < [T L (5) (2(5)) " ds
= — 2L(0) 9(0) ¢'(0) — [*L(5) (¢*(s))" ds
Combining with (10.19) and (10.20) gives the following fundamental result.

INEQUALITY X0.2I.

— 4L(0) o (0) —4 [T L ) ds — 8 |7 x(s o' (s) ds
z%Au <>+mﬁ20 <a+2f $))2L(s) ds.
COROLLARY 10.22. — Setting ¢(s) = cos(As) where
A= T
2p
gives
(10.23) (422 — ) f: cos?(rs) L(s) ds + 4mA f:x(s) sin(2s) ds 2 k,A(0).

Our second hypothesis guarantees that yx(s) <o for all s. To see this note that
since Q is connected, Q(s) is also connected for each s. The map H,(Q) — H,(Q(p))
factors through H,(Q(s)). Consequently, H,(Q(s)) & o, and so x(Q(s)) £o0, for all
se[o,p]. (Recall that everything is oriented.)

We conclude immediately from (10.23) that

(r0.24) (42 — xy) f: cos?(xs) L(s) ds = x,A(0) > o
and in particular, that 22> 1/4x,. This completes the proof. m
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Returning to (10.21) we also obtain:
COROLLARY 10.25. — Setting ¢(s) = p — s n (10.21) gives
(0.26) 4L(0) p + 8r [Cx(s)(p — 5) ds
2 kA(0) 0% + % [ (o — 5)2L(s) ds + 2(A(p) — A(0)).

In particular, if kg =1 and y(s) £ o0, then

(x0.27) 40L(0) 2 [ (o — s(x))?dx
and, in particular,
(10.28) 4L(0) = A(0) ¢.

REMARK 10.29. — It should be noted that (10.21), (10.22) and (10.26) hold also
for x, < 0. We shall now make use of this fact.
Suppose that X is a connected non-compact minimal surface in a g-manifold X with
k2= — 1. Let Qbe a compact connected domain in ¥ — 9%, and fix a number p > o.
Then for all se[o, p], the Euler characteristic of Q(s) is written as x(s) = 1 — b,(s)
where
by(s) 2 rank[Hy(@) - Hy(Q(p))] = 1 + o(e).

It follows that

(x0.30) — x(s) 2 a(p) for all se [o, p].

We now assume that Q(p) is compactly contained in X — 9X. Then the stability
inequality (10.23) applies (with xy = — 1), and we conclude by using (10.30), that

(4% + 1)(A(p) — A(0)) + A(0) 2 — 47 [ x(s) sin(2)s) ds
2 4ma(p).
In particular, we have
4w
. Alp) 2 ———— ~ .

(r0.31) (o) 2 — (ﬂ/p)za(p) o A7)

Proor oF THEOREM 10.16. — The argument above proves the first statement.

The second follows from the fact that if y(Z) £ o, then liI{n a(R) 2 [x(Z)].- m
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11. APPLICATIONS TO THE TOPOLOGY
OF MINIMAL HYPERSURFACES

Any theorem concerning the topology of complete manifolds of positive scalar cur-
vature has several immediate applications to the theory of minimal varieties. These
applications concern both the topology of the variety itself, and the placement of the
variety in the ambient manifold. There are also applications to the structure of singu-
larities.

The first main result is the following.

THEOREM 1x.X. — Let M be a complete stable minimal hypersurface in a manifold with
scalar curvature = x> 0. Let g and A denote the first and second fundamental forms of M res-
pectively.  Then there exists a positive function f on M so that the (complete) warped-product metric
§=g+f2d0% on M XS' has scalar curvature

(xx.2) K=x+ ||A]]2

This means that stable (minimal) hypersurfaces in spaces with k =k, = o, are
<« stably » also of k = kg = 0. The results of §§ 6, 7, 8, ... above can then be applied.
For example, we have the following (cf. [SY,]).

COROLLARY 1X.3. — A complete stable hypersurface in R" cannot be A2-enlargeable. In
particular, it cannot be homeomorphic to X X R where X is a compact manifold of non-positive
curvature (e.g. a torus T"™2),

The same result holds with R" replaced by any manifold of non-negative scalar curvature.

THEOREM 11.4. — Let F:R* >R be a global solution to the minimal surface equation

(n= 8), and let A be the second fundamental form of the graph of f, TrCR*+1,  Set
a(R) = inf_ ||A]|%
llzll <R

Then there is a constant c, depending only on dimension so that

Cn
a(R) < iié .

Our next result applies to the structure of singularities on any codimension-one
minimizing current in a riemannian manifold. This was observed previously by

R. Schoen [S].

393



182 MIKHAEL GROMOV AND H. BLAINE LAWSON, JR.

THEOREM 11.5. — Let M CS" be a compact (minimal) hypersurface such that the cone
CM) ={txeR'*':xeM and t= o}

is a stable variety in R**'. (That is, the second variation of area is > o on compact subdomains
of G(M) —{o0}.) Then M carries a metric of positive scalar curvature.

This gives the first known restrictions on the topology of stable cones in dimen-
sions = 8. For example, note that there are infinitely many isotopy classes of embed-
dings of T"~! into S" for any n> 2.

COROLLARY 1X.6. — If the cone on M"~*CS™ is stable in R"*1, then M"~* cannot
be enlargeable. In particular, it cannot be homeomorphic to a torus (or any other manifold admit-
ting a metric of sectional curvature < o.)

We now take up the ““ placement > question for (not necessarily stable) minimal
hypersurfaces.

THEOREM 11.7. — Let M be a compact minimal hypersurface in a compact manifold X of
positive scalar curvature. Suppose the normal bundle of M is trivial (i.e. M is  two-sided ),
and let X be the compact manifold with boundary formed by  separating > X along M. (Note
that X may or may not be connected.) Then the double of each component of X carries a metric of
positive scalar curvature.

This has very strong implications for the possible placement of M in X. For
example, we have the following generalization of results in [L,].

CoroLLARY 11.8. — Let X CS3 be a compact minimal surface for some metric on S3
having positive scalar curvature. Then X is isotopic to a standard embedding (as the boundary of
a * pretzel ). ‘

To get the flavor of this result note that taking the boundary of a tubular neigh-
borhood of a knot S! < 83, gives a ¢ knotted ”” embedding T2« S3. Now (S3 — T?)"~
has two components, one of which is St X D2 Here the double is S! X S? which car-
ries kx > o. The double of the other component is easily seen to contain a small circle,
and therefore cannot carry k> o.

Corollary 11.8 is also found in a series of beautiful results recently proved by
Meeks, Simon and Yau [MSY].

The implications in higher dimensions are currently being examined by Sebastido
de Carneiro Almeida.

The doubling trick above can be replaced by the following. Let MCX be as
in Theorem 11.7. Then since M has mean curvature = o, it acts as a barrier for solving
the Plateau problem (in codimension-one) in each component of X. This gives, for
example, the following.
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THEOREM 11.9. — Let X be a compact riemannian n-manifold (n < 7) with x> o
and with boundary 09X of mean curvature = o with respect to the interior. Suppose 0X is an enlar-

geable K (w, 1)-manifold or, more generally, suppose that 0X admits a map of non-zero degree onto
such a manifold. Then

70, (0X) — 7, (X)

is not injective.

For example, let » = g and suppose ¢X is connected and of genus > o. Then
the hypotheses are automatically satisfied, and we retrieve the unknottedness results
above.

Another example comes by considering the ¢ interesting’ component of a
knotted T"~2 in S".

Theorem 11.9 can be generalized. For example, suppose K is the enlargeable
K(w, 1)-manifold such that 9X maps onto K with non-zero degree. Then it is not pos-
sible that the map =,(9X) — =;(K) factor through =,(X).

Our methods here are based on the following three basic results. We say that an
elliptic differential operator L. on an open manifold X is positive (L > o), if for every
compact domain QCCX, the first eigenvalue of L on Q is =2 0. This means that

ffL .

A

where f ranges over smooth functions on Q with f = 0 on Q. The following is a direct
consequence of the second variational formula (cf. [SY,]).

M(Q) =

ProrosITION 11.10. — Let X be a stable minimal hypersurface in a manifold with scalar
curvature = xo. Then

(xx.xx) L=-—-V24- (K——KO—HA||2)>O

where A and x denote the second fundamental form and the scalar curvature of X respectively.

If L > o, then on any compact domain QCC X, there exists f> o with L(f) = o.
It is proved in [FC-S] that if L > o and X is complete, then there exists f> o with
L(f) =0 on X.

ProrosiTiON 11.12 (cf. [KW]). — Let (X, ds?) be a riemannian n-manifold with scalar
curvature x. Then for any f >|0, the scalar curvature of the metric

dse = f4/(n—2) ds®
is given by

(ra3) R =f‘"“”‘2_")[_ T |
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In particular, if X is compact and if — tV2 4+ x> o for some ¢ < g4(n — 1)/(n — 2), then X
carries a metric of positive scalar curvature.

ProrosITION 1X.14. — (See 7.33 above.) Let (X, ds?) be a riemannian n-manifold
with scalar curvature x. Then for any f> o, the metric
ds? = ds? + f2d02
on X X S has scalar curvature
2 y2 f.

S

In particular, if X is complete and if — tV? + x = x, for some t < 2, then X X S' carries
a complete metric with scalar curvature = x,.

(xx.15) K=x—

We can now enter into the proofs of the theorems above.

Proor or THEOREM 11.1. — By formula (11.11) and completeness we have a posi-
tive function f with — V2f 4 éxf = % (ko + |[|A][?) f. The result now follows imme-

diately from Proposition 11.14. B

Proor oF THEOREM 11.4. — It is a well known fact (cf. [F,], [L,]) that any co-
dimension-one minimal graph TRCR"*! is stable. (It is actually area-minimizing.)
Clearly the projection map =:R"*! - R" chosen so that =(x, F(x)) = x, gives a
distance-decreasing homeomorphism

Iy —> R

By Theorem 11.1, there is a warped product metric on I'y X S! with scalar curvature

(11.16) R= 1A=

N |-

We now return to our primary methods involving the Dirac operator. Fix a
degree-one map £:R" — S"(1) which is constant outside the unit disk. This map can
be chosen to be 2n-bounded. Then for each R > o consider the composition:

W=

ki1

3

I, —> R" =5 R* -5 §7(1).

This map is 2rR~! contracting. Passing to a sufficiently high-order covering of I'y X S1,
we can now construct a 4nwR~-contracting map Iy x S' —S"t! = S"A S' which is
constant outside Qp = 7 !(D"(R)) x S' and of degree 1. Applying the methods of
§ 5 ff. we see that there is a constant ¢,, depending only on dimension, such that

(xx.17) %1fﬁ< ¢, R72

(Otherwise, the vanishing theorem applies, and one uses the Relative Index Theorem.)
Combining (11.16) and (11.17) completes the proof. m

396



POSITIVE SCALAR CURVATURE AND THE DIRAC OPERATOR 185

Proor or THEOREM 11.5. — It is a direct consequence of the calculations in
Simons [Si], that if the cone on M? is stable (p =n — 1), then

—vi— -0 -9z - (E)"

2

It follows that

(xx.x8) —Vz—{—xgi([)—l)(gp—}—l).
In particular, Proposition 11.12 applies. m

Proor oF THEOREM 11.%7. — This follows immediately from the result (see Almeida,
Ph.D. Thesis, Stony Brook, 1982) that if a compact manifold X carries a metric with
k2 1 and such that the mean curvature of 9X, with respect to the interior normal,
is 2 o, then the double D(X) carries a metric with x> 0. ®

Proor oF THEOREM 11.9. — Pass to the covering XX corresponding to the sub-

group 1,7, (0X)Cny(X). Then there is an embedding iroxcX covering the boun-
dary below. Let K be the enlargeable K(=, 1)-manifold for which there is a map

F: 90X — K of non-zero degree. Since i induces an isomorphism of fundamental groups,
this map F extends to X, i.e. we have a commutative diagram:

X < ¥

N oA
K

~

It follows that [0X] # o in H,_,(X). Since the boundary of X has non-negative mean
curvature, and since X is a riemannian covering of a compact space, we can solve for a
current of least mass in this homology class [0X]. By regularity theory, the support of
this current is a regular stable hypersurface ZCX. Since F.[6X] + 0, one easily sees
that F must map some component of = onto K with non-zero degree. This component
is therefore enlargeable. However, stability (and k> o on )~() implies that this com-
ponent carries positive scalar curvature. This contradicts our basic results above (§ 5). m
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12 THEOREMS FOR INCOMPLETE MANIFOLDS
OF DIMENSION =< 7

By combining minimal surface techniques with certain warped-product construc-
tions we are able to extend some of the results of section 10 to all dimensions < 7. The

methods here were inspired in part by the beautiful results in [FCS] and [SY, ;]. The
main result is as follows. Set

n I

TuEOREM 12.X. — Let X be a compact oriented riemannian n-manifold, n < 4, with
scalar curvature = 1. (Here X need not be spin.) Then there exists no e,-contracting map
(X, 0X) — (S", ), of non-zero degree.

Note. — The scalar curvature k in this theorem is, as always, unnormalized. If
we assume the normalized scalar curvature k¥ = (1/n(n — 1)) x 2 1, then ¢, will be
replaced in theorem 12.1 by

~ n
g, =

" otgm

Norte. — Schoen and Yau have recently succeeded in establishing similar results in
general dimensions by handling the difficulties posed by singularities on minimal hyper-
surfaces.

It is an immediate consequence of Theorem r12.1 that the results of our previous
paper [GL,] hold without the spin assumption in dimensions £ 7. For example, it is a

corollary that there exists no positive scalar curvature metric on the connected sum
T* # P%(C).

Proor. — Fix > 0 and suppose f: (X, 0X) — (5" *) is an e-contracting map
of non-zero degree. We shall show that ¢ must be greater than ¢,.

To begin, choose a geodesic subsphere S*~"2CS" and a geodesic hemisphere D*~!
such that 8D"~* = S"~2 and * ¢ D"~'. By a close C! approximation rel(6X), make f
transversal to S"~2 and to D"~1. Set B"~? = f~!(S*"~?), and note that B*~2 is the
boundary of the submanifold 2j~'=f~4D"!) in X.

We now solve the oriented Plateau problem for B"~% in (X, 6X). That is, we
let "~ be the current of least mass among all integral currents which are homologous
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to 25! modulo dX (i.e. Z"~! minimizes mass among all integral currents ?~! such
that Z7~!' — Z2~! is a boundary in (X, 0X)). The existence of ="~! is guaranteed
by general compactness theorems [FF]. Since zn <7, the regularity theory for minimal
hypersurfaces asserts that 2"~ ! is a regular embedded submanifold with boundary B"—2
(mod. 0X). Furthermore, by the minimizing property we see that "~ is stable.

The solution X"~! may not be regular at points of ="~! n 9X. However, by
moving the boundary X in slightly, we can overcome this difficulty. By * moving in ”
we mean the following. Choose a small regular value ¢ of the function disty(., 8X)
restricted to X"~! Then shave off the f-collar of 9X.

Consider now the spherical  crushing ” map p:S"—D"~! given by setting

P(x1s o s Xpyyq) = (xl, cees X1 \/xrzl + x72;+1)

for points x = (x;, ...,%,,,) with |[x]]=1. Let UCD""! be a “ finger-like
set which connects p(*) to éD""' = S""2 andlet ¢: D"~ ' S""! be a map defined
by collapsing U u ¢D"~! to a point, which we again denote by . It is not difficult
to see that the composition ¢op:S"— S"~! can be chosen to be approximately 2-con-
tracting, that is, it can be chosen to be (2 + 8)-contracting for any given 8> o. (To
accomplish this, S""2CS" must be chosen close to *.)

Consider now the composition f; = copof. We make the following claim: The
map

fir (B 9E) > (ST %)

is approximately 2e-contracting and of non-zero degree. 'The first point is clear since f'is approxi-
mately e-contracting and c¢op is approximately 2-contracting. To prove that f; has

non-zero degree, it suffices to show that f; has non-zero degree, since X3~!is homo-
-1

logous to ="~ !in (X, 90X U %), and since the map f; is constant on 90X U 9X. Choose
now a regular value of f;: Z3~!—S"~1 This can be considered as a regular value of
the map f:33~'—D""!CS" and, as such, it is in fact a regular value of f: X — S".
(Recall that 22~ = f~}(D"~!) and f is transversal to D"~') Summing over the pre-
image points of such a regular value shows that these two maps have the same degree.
That is, deg(f) = def( f;) #+ 0, as claimed.

We now apply the stability condition, and from Propositions 11.10 and 11.14
we obtain a function ¢ >0 on Z"~! — 95"~ ! 5o that the warped-product metric

(12.2) ds? + ¢2d?

on Z"~!x S!' has k2 1. By shaving off a collar of 9Z, we can assume ¢ >0 on (all
of) =r—1,

We have now replaced our original manifold X" with « 2 1, by a warped-product
Ir—1 % St also with x 2 1. The e-contracting map f: (X", dX") — (S", #) has given
rise to an approximately 2e-contracting map f;: ("%, 95"~ 1) - (S"~%, x). Note that
rotations of the S'-factor are isometries of the warped-product metric (12.2).
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We now continue this process as follows. Fix a geodesic sphere
Sn——3 — aDn-—2C Sn—l

and construct a boundary B"~3 = f~1(S"~3%) as before. We now solve the Plateau
problem, as we did above, for the boundary

B3 x StCcxn—1x St

We claim that the solution must be SO,-invariant (where SO, acts by rotations of the
Si-factor). Indeed, it is a basic result of Gao [Gao] that for any solution T and any
2€850,, either gT =T, or ¢T and T are disjoint away from the boundary. If the
latter case occurs for any g, the vector field generating the action must be everywhere
transversal to T (at interior points). In particular, the inner product of this vector
field with the field of unit normals to T cannot change sign. It follows that the inter-
section number of T with any orbit of the action is non-zero. That is, if we consider T
as a class in HY(Z x S%, 02 x S' U B x §'), then the intersection pairing T-S!+ o.
However, T was chosen in the homology class of =372 x S' where Xp~2CZ"~! and
o33~2 = B"3 It is easy to see that T-S' must be o. Consequently, the solution T
must be SO,-invariant, that is, it must be of the form

Zn—z X Sl

with the induced warped-product metric. As before, the first eigen-function of the sta-
bility operator can be used to construct a warped-product metric on (Z"~% x S') x St
with k = 1. Furthermore, this function can be assumed to be SO,-invariant, since if
it is not, it can be averaged over the group. (The stability operator is invariant and
the function is positive.) Consequently, the induced metric on X"~2 x S§'x S! is
doubly warped over "2,

The same argument as before shows that there exists an approximately 4e-contrac-
ting map

Sar (BP72 02 2) — (8772 *)

of non-zero degree.

Continuing inductively, we eventually construct a warped-product metric on a
manifold 2! X T"~! with k¥ 2 1 and with the property that there exists an approxima-
tely 2"~ 'e-contracting map

fooy: (B, 05 — (S, *)

of non-zero degree. This means, in particular, that we have a warped-product metric
of the form

(12.3) d® = di* + g3(t) O + ... + oi(t) 462

on the manifold [o, 27 "*1e™!] x T"~! (where dt denotes the usual arc-length on the
interval [0, 27"*1c~!]) with k2 1. By a straightforward computation we find that
the scalar curvature of the metric (12.3) is given by the formula
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(12.4) k=—23% o3 %%
L i<ji P 9

" "2 N2
=_225’i+>:(ﬂ) _(zﬁ)
L ¢ \P L

_ .,y (<P£’@P.- - (<P.f)2) _y (35)2 B
$ Ps AN

Setting F = log(¢, ... ¢,), we have that

(2 ?i)z.
P9

\2
(x2.5) k= —2F — (F)2—3 (%) .

From the inequality (Z¢;/q;)? < (n — 1) Z(¢//¢;)* and the fact that x = 1, we conclude
that

(12.6) — oF" — (F)2z 1.

n—1
Setting
L

n—1I

U =

we can rewrite the inequality (12.6) as

(12.7) 1 [
7 1 +u2”- o2Nap—1

which integrates to give

(12.8) tan~1(u(t)) — tan~*(u(0)) < — iJ ®

2 'n—1

This immediately implies that

I n
—mE— - t
2 n—1I

for all ¢ in the interval, and in particular that

as claimed. m
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13. MANIFOLDS WHICH REPRESENT HOMOLOGY CLASSES
IN COMPACT SPACES
OF NON-POSITIVE SECTIONAL CURVATURE

This chapter is based on the idea that a manifold which represents a non-trivial
homology class in a compact K (=, 1)-manifold, should not carry positive scalar curva-
ture. If the K(x, 1)-manifold is a torus, this is true (since any such submanifold is easily
seen to be enlargeable). In this section we show that the statement is, in fact, true for
any K (=, 1)-manifold of non-positive curvature. We shall present two arguments. The
first argument uses the Relative Index Theorem for Families, proved in the thesis of
Zhiyong Gao at Stony Brook. The second argument, given at the end of this section,
uses only the Relative Index Theorem proved here. A comparison of the two arguments
is illuminating.

The fundamental construction is as follows. Let K be a compact riemannian
manifold of non-positive sectional curvature, and consider a compact oriented n-mani-
fold X which represents a non-zero class in H,(K; Q). That is, we assume there is a
(smooth) map f: X —K so that f[X]+ o in H,(K; Q). By taking a product of K
with a torus of sufficiently high dimension, we can assume f:X < K is an embedding.

We now pass to the universal covering =:K —~K and set X =="1(X). Note
that X is a properly embedded submanifold of K which is invariant under the deck
group I' = =, (K).

Since K carries non-positive curvature, the exponential map exp,: TyK K is
a diffecomorphism at each point ye K. Furthermore, exp,, oYy, = yoexp, for all
ye I, since I' acts by isometries. We now construct a family of maps K—>s¥ (where
N = dim K) as follows. To begin, we shall assume that there exists a I'-invariant
framing o of TK. At each point ye K, the frame o, can be considered as an isomor-
phism o, : Tyﬁ — RN, We now fix a degree-one map

d: RN SV

which is constant outside the unit disk and, say, 2n-bounded, and we fix ¢> o. Then
for each ye K we consider the map

@y K—>s¥
given by setting
(x3.1) ¢, (%) = ®(o,(c.exp, *(x)).
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Observe that for any yeI' we have

Pyy(1%) = @(0y,(e. expy!(v)))
oy (Y. € €xp; (%))
o, (e exp; !(x)))
= ¢,(#).

o

Hence the family of maps ¢ : K x K — S¥ is invariant under the diagonal action of T.

= @(
= @

Door,

sN
‘ e

\%97

_ We now restrict this family of maps to the invariant subset KxXcR xK and
divide by I'. The resulting space

(x3.2) Y=Kx:X

is the total space of a bundle

(x3.3) p: YK

over K/I'> K, whose fibre is X. The above construction gives a map -
(13.4) e: Y—>S¥ '

which has compact support on each fibre. This map has the following basic property
whose proof we postpone.

LemMa 13.5. — Let o = ¢*(vol) e HY (Y, R) be the compactly supported cohomology
class obtained by pulling back the fundamental cohomology class of SN via ¢. Let

p.: HY.(Y; R) > HY"(K; R)
denote “ integration over the fibre . Then
p.o F 0.

Note. — This cohomology class p, & is essentially (a multiple of) the Poincaré dual
of [X]eH,(K;R).
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We now suppose that X carries a metric of positive scalar curvature, and we lift
this metric to a ([-invariant) metric on X. We observe now that there is a constant ¢> o
(independent of <) so that for each ye K the restricted map @,: X—>8¥ is ec-contracting with
respect to this new metric. Indeed, it was 2en-contracting with respect to the old (induced)
metric; and the two metrics are finitely related since they are both lifted from metrics
on X.

We now assume N even (as before) and fix a complex vector bundle E, over S¥
with ¢y(Ey) + 0. We fix also a unitary connection in E;,. We then lift E to the family Y
via the map ¢; i.e. we set E = ¢'E, with the induced connection.

This gives us a family of vector bundles on the fibres of the family Y — K. Each
vector bundle has curvature whose norm is uniformly < ¢’¢ for some constant ¢’. Fur-
thermore, since ¢ is constant at infinity, the bundle E is trivialized outside a compact
subset.

We now consider two families of Dirac operators. Let D be the family of canoni-
cal Dirac operators on spinors in the fibres (= }’Z) of the family. Set

Dy = D®C*
D; =D®E

where k£ = dimgE (cf. § 5).

For e sufficiently small, both operators will be pointwise strictly positive and the
analytic indices of Dy and Dg will be zero. However, by the Relative Index Theorem
for Families ([Gao]), the relative topological index ind,(Dg, Dg) must be zero, and this
index is given by the following formula:

(13.6) ind,(Dgt, Dg) = p,{ch E.A(Y/K)} e H'(K, Q)

where X(Y/K) denotes the total A-class of the tangent bundle to the fibres of p:Y — K,
chE = ch E—% denotes the reduced Chern character, and p,: Hg,(Y; Q)—H'(K;Q)

denotes integration over the fibres.
Since E = ¢'E, and since cyx(E,) + o in H¥(S¥), we see that

¢chE = Cp‘(CTl E;) = ¢* [(T\I—I——I)' CN(Eo)]
= ¢*(k vol) = ko

for some non-zero number k. Since A(Y/K) =1+ ..., we see that the non-zero
term of lowest degree in formula (13.6) is 2p,(w), which is not zero by Lemma 13.5.
This is a contradiction to the existence of positive scalar curvature on X.

In the argument above we assumed the existence of a [-invariant framing of TK.
This amounts to assuming K is parallelizable, or just stably parallelizable since we can
multiply K by S1.. This assumption can be avoided by enhancing the family Y to include
all oriented tangent frames to K. That is, at each point y e K, and for each oriented
orthonormal tangent frame o at y, we define the map ¢ = ®(a(c-exp~*(-))) asin (13.1)
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above. The group I acts naturally on the oriented frame bundle P(K) and ¢ is invariant

under the diagonal action on P(K) x K. Restricting to P(IN{) X X and taking a quo-
tient by I' gives a family

(x3.7) p: Z—->K
where Z = P(K) Xp X and where the fibre at yeK is
X x{0.0.n.frames at y} ~ X x SOy .

The map ¢ again descends to a map ¢:Z —S¥, and Lemma 13.5 continues to hold.
This gives us the following result.

THEOREM 13.8. — Let X be a compact spin manifold which represents a non-trivial rational
homology class in some compact manifold of non-positive sectional curvature. Then X cannot carry
a metric of positive scalar curvature.

Note that as a special case (when dim X = dim K) we retrieve the result that
compact manifolds which admit maps of non-zero degree onto manifolds of non-positive
curvature cannot carry > O.

REMARK 13.9. — When =, X (or, in fact, =, K) is residually finite, the above theorem
can be proved by using the usual Atiyah-Singer Index Theorem for families.

Proor or LEMmA 13.5. — By Poincaré duality and the work of Thom we know that
there exists a compact oriented manifold X* of dimension N — #, and a map X* —K
so that the homology intersection

X*-X % o.

We can assume the map is smooth and transversal to X.

Consider the covering space X* - X* induced by the universal covering K > K.
There is a natural lifting X* > K, and we consider the I'-equivariant map:
X' x X - K x X. Dividing by this (diagonal) action of I' gives us the commutative
diagram of maps:

Xexp X — Kxp X 5 Y
(x3.10) )

Xt — K

The family X* x, X —X* is just the X-bundle over X* induced from the family
Y =K %X > K. The map ¢ has compact support in each fibre.

Recall that by its construction, ¢ is a map ¢:K x K — RY/(RY — DY) =S¥,
and the preimage of o under ¢ is the diagonal in K x K. Furthermore, note that o,
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when restricted to X* x X, is a map between oriented N-dimensional manifolds, and
the set ¢~ !(0) is just the set of intersection points of X+ with X, ie. it is the set
7 }(X* n X)CK. Since these intersections are all transversal, o is a regular value of ¢,
and this remains true when we push ¢ down to the quotient X* X X. On this quotient
we see that ¢ '(0) @ n7{(X* N X)/T'~ X* "X, and we conclude that

deg(p) = X*-X.

Furthermore, if o = ¢*wy € H;pt(f(" xp X) denotes the pull-back of the fundamental
cohomology class of SN, then « = deg(¢) w, where «, is the fundamental class of
X Xy X. It follows immediately that

p(0) = (X*-X) o

where o' is the fundamental cohomology class of X*. In particular p,(w)[X*] # o, and
so p,(w) # o in HY""(K) as asserted. m

RemARk 3.11. — This Lemma also holds in the general case where K is replaced
by the oriented frame bundle P(K). Essentially the same argument applies; one must
integrate over the family of frames at the appropriate time.

Using the constructions in the proof of this Lemma, it is possible to give a proof
of Theorem 13.8 without using the Index Theorem for Families. Again for simplicity
we remain in the case where there exists an invariant framing.

SecoND Proor oF THEOREM 13.8. — Let X* — K be the dual manifold considered
in the proof of Lemma 13.5, and let W = X* x X be the family constructed there.
Recall that

w5 xe
is a fibre bundle with fibre X, and that for each ¢> o,
p: W >SN

is a map which is constant at infinity and of non-zero degree.

Suppose now that X carries a metric with k = 1. Choose an arbitrary metric g*
on X* and lift the product metric to X* X X. This lifted metric is I'-invariant and
descends to a metric on W.

Assume that > o is given. Replace g* by ¢g* where ¢> 1 is a constant chosen
. . I
sufficiently large, so that the product metric on X* X X has scalar curvature = 2 and

the map ¢ is 2en-contracting. For ¢ sufficiently small we get a contradiction by applying
the Relative Index Theorem as usual. m
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