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Preface

The purpose of these notes is twofold. In the first instance, it is to acquaint the
specialist in relativity theory with some modern global techniques for the treatment
of space-times. It is hoped that the detail given here will be sufficient to enable him
to use these techniques when needed and perhaps to incorporate them into his
way of thinking. Secondly, it is intended that the notes may provide the pure
mathematician, who has some knowledge of differential geometry, with a way
into the subject of general relativity, so that he may be able directly, and without
detailed physical knowledge, to employ his mathematical understanding and
special insights in a field which does have a deep interest for physics.

The scope of the notes will be the mathematical background necessary for a
detailed comprehension of the proofs of the so-called “‘singularity theorems”
associated primarily with the name of S. W. Hawking. Also some of the related
body of knowledge which has grown up in association with these results will be
covered (see [1]-[11], [18], [21]-[32], [34]).

The standard of rigor adopted will, I hope, be adequate. Where arguments are
not spelled out in complete detail, it should be fairly obvious how these details
may be supplied. But on the whole, I have gone into rather more detail here than
is to be found in other works on this topic. Some of the basic results have had
something of the status of ‘‘folklore theorems,” the proofs of which had not,
to my knowledge, been spelled out before. It is my hope that these notes may be
able to remedy this situation to some considerable extent.!

A basic knowledge of point set topology will be assumed ; also the essentials of
(intrinsic) differential geometry, according to either a “modern” or a “classical”
point of view, will be needed. The notation used, if not always totally conventional,
will, it is hoped, be tolerably acceptable to both classes of reader. In the occasional
places where a tensor formula needs to be employed, I shall normally give a
parallel treatment using both the “modern index-free”” and “classical kernel-
index” notations. This will enable familiarity to be gained by those at ease with
only one of these notations—and will emphasize that the difference is essentially
only a notational one. In fact, if desired, the “kernel-index’’ expressions can always
be read in accordance with certain conventions whereby indices are to be inter-
preted as abstract labels and indexed symbols are interpreted in an abstract
coordinate-free manner [9].

! There is, in addition, a forthcoming book by Hawking and Ellis to be published by the Cambridge
University Press. This will also cover more of the same sort of material from a slightly different view-
point.

vii



v PREFACE

Although we shall be concerned primarily with the case of a four-dimensional
space-time (hyperbolic normal signature +, —, —, —) the entire discussion
applies equally well to “‘space-times” with any positive number of space-dimen-
sions? and one time-dimension (that is to say, to any time-oriented hyperbolic
normal pseudo-Riemannian manifold of dimension two or more). Indeed, many
of the illustrative examples will be two- (or three-) dimensional. It is possible,
therefore, that the ideas discussed here may find application in contexts other
than those primarily intended, for example, to the general theory of partial
differential equations.

ROGER PENROSE

% The discussion of conjugate points on null geodesics becomes vacuous, however, unless there are
at least two space-dimensions (cf. Section 7).



SECTION 1

Preliminaries

1.1. DEFINITION. A space-time M is to be a real, four-dimensional! connected
C* Hausdorff manifold with a globally defined C* (or C? would do) tensor field g
of type (0, 2), which is nondegenerate and Lorentzian.? By Lorentzian (or hyperbolic
normal) is meant that for any x € M there is a basis in Z" = Z"(M ) (the tangent

space to M at x) relative to which g has the matrix diag (1, — 1, — 1, —1).

1.2. DEFINITION. Let M be a space-time, with® x € M. Then any tangent vector
X e T is said to be: timelike, spacelike, or null according as g(X, X) (=g,,X°X")

is positive, negative or zero. The null cone at x is the set of null vectors in T. The
X

null cone disconnects the timelike vectors into two separate components.

1.3. DEFINITION. A space-time M is said to be time-orientable if it is possible
to make a consistent continuous choice all over M, of one component of the set
of timelike vectors at each point of M. To label the timelike vectors so chosen
Sfuture-pointing and the remaining ones past-pointing is to make the space-time M
time-oriented. In this case, the nonzero null vectors are termed future-pointing or
past-pointing according as they are limits of future-pointing or past-pointing
timelike vectors.

1.4. Remark. A space-time is clearly time-orientable if there exists a nowhere
vanishing timelike vector field. The converse is also true. This follows from general
theorems on the existence of cross-sections of fibre bundles (the fibre consisting of
future-pointing timelike vectors at a point being ‘‘solid”; cf. Steenrod [12]).
Alternatively, we can construct a nowhere vanishing timelike vector field on a
time-oriented space-time M by using the fact that M can be given a positive
definite Riemannian metric h. Choose the vector field V as the unique future-
pointing unit eigenvector with positive eigenvalue 4, of g with respect to h. (That is,
(8a5 — Ah)VP =0, h, VeVt =1; ie., g(V,W) =AWV, W), (V,V) =1 for all
vector fields W.)*

1.5. Side remark. For a given abstract manifold, the condition that it admit a
time-orientable Lorentz metric is the same as the condition that it just admit a

! As stated in the introduction, although explicitly the arguments refer only to four-dimensional
space-times the results will all extend in an obvious way to a space-time of n-dimensions, n = 2.

2 Such a manifold is necessarily paracompact (see Geroch [10]).

3 1 adopt the usual slight abuse of notation here.

* We can also adopt the notation gV for the covariant vector field (1-form) which maps W to g(V, W),
i.e., whose index expression is g, V® (= V,). Similarly, if 4 is a covariant vector field, then g~ !4 has the
index expression g4, (= A°. Thus we can write the above condition gV’ = AhV, i(V, V) = 1.

1



2 SECTION 1

Lorentz metric, namely, that it should admit some nowhere vanishing vector field
(Euler characteristic vanishing; cf. Markus [13]).

1.6. Remark. If a space-time M is not time-orientable, there always exists a
time-orientable space-time M’ which is a twofold covering of M (see Markus [13]).
This is not hard to see (for example, construct M’ by choosing each point to
represent a half-cone of timelike vectors at a point of M). The result of such a
procedure is illustrated in Fig. 1.

once

—_—
), (1-2) -

gcorrespondence

7
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B

F1G. 1. The space-time on the left is not time-orientable, but its twofold covering, depicted on the right, is.
(The light cones are here drawn as three-dimensional, for descriptive purposes, even though the
space-times are only two-dimensional ; ¢f. also Fig. 21.)

Many theorems about time-orientable space-times will be applicable also to
non-time-orientable space-times, since the theorem may be referred to the time-
orientable double coverings. In view of this fact, and also from the standpoints of
“physical reasonableness” and mathematical convenience, 1 shall henceforth
restrict all considerations to space-times which are time-oriented. (This restriction
is often made in the definition of a space-time in any case.) The symbol M will,
in fact, always denote a time-oriented space-time in these notes.

1.7. DEFINITION. A path is a continuous map u:X — M, where X is a connected
subset of R containing more than one point. This is a smooth path if u is smooth
with nonvanishing derivative du (the degree of smoothness being C® unless
otherwise stated). Thus, a path carries a parameter, the parameter range X being
the path domain. (R denotes the field of real numbers.)

The term (smooth) curve will be used either for the image of such a map or
(more correctly) for an equivalence class of paths equivalent under (smooth)
parameter change (i.e., homeomorphisms or diffeomorphisms of the path domains};
an oriented curve arises if the parameter change is required to be monotonic.
A smooth path is called timelike if its tangent vector is timelike at every point;
such a path is future-oriented if its tangent vector is future-pointing at every point.
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We may also speak of smooth causal paths and future-oriented smooth causal
paths, where the tangent vectors are allowed to be null as well as timelike. However,
we shall be concerned later with such paths primarily when the path is not
restricted to be smooth, in which case a somewhat different definition will be
required.

A timelike curve is a curve defined by a smooth timelike path. The time-
orientation of M assigns a canonical (future) orientation to any timelike curve,
namely, that defined when the path is future-oriented. For this reason, and also
owing to the fact that locally (and globally if M contains no closed timelike curves)
the image in M of a smooth timelike path u determines the equivalence class of u
under parameter change, it becomes generally unimportant to distinguish between
the above alternative possibilities for the definition of a curve, when the curve is
timelike. Thus, I shall use shorthand notations such as y — M, when y is a timelike
curve, even when the equivalence class definition may be more appropriate.’
(The same will apply to a causal curve.)

1.8. DerINITION. To define an endpoint of a path p, or of its associated curve,
let ¥ be the domain of u and let a-=infX, b = sup £ (possibly a = — w0 or
b = o). Then x € M is an endpoint if for all sequences {u;} € X, u; > a implies
u(u;) - x or u; — b implies p(u) — x. If p is timelike (or causal) and future-
oriented, then in the first case x is a past endpoint and in the second case a future
endpoint.

For convenience [ shall require all timelike or causal curves to contain their
endpoints. (So, for a curve with two endpoints, £ must be a closed interval.) This
has the implication, for example, that the situations depicted in Fig. 2 are excluded ;

F1G. 2. Such cases as these are to be excluded as smooth timelike curves because the future endpoints
are required to be part of the curves. Our timelike curves must be smooth and timelike at their
endpoints. (The convention employed here is the standard one that “time” proceeds from the
bottom of the page to the top, with null lines depicted at 45°. Except when explicitly indicated
otherwise, this standard convention will also be used in all other figures.)

a timelike curve has to be smooth and strictly timelike at its endpoints. Hence it
must be extendible as a timelike curve at any endpoint. A timelike curve (or path)
without a future endpoint must extend indefinitely into the future; such a curve
(or path) is called future-endless. Similarly a timelike curve (or path) without past

® The set inclusion symbol < used here is reflexive, thatistosay, 4 = Aisalways valid. The boundary
of a set A4 is denoted by 84, its closure by 4 and its complement in M by ~ A. The difference of two
sets is denoted by A — B (= A4 n (~ B)). The set of all x with property p is denoted by {x|p(x)}.
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endpoint is called past-endless ; if it has neither future nor past endpoint it is called,
simply, endless.®

As a point set in M, a timelike curve will usually be a closed set (since any
endpoints must be included), but not always, if no global causality restrictions on
M are made, since situations such as that depicted in Fig. 3 may arise. Here a

AN
77
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!
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F1G. 3. A timelike curve winds around endlessly within a compact set. This curve has no future endpoint
and is an example of a future-endless timelike curve

future-endless timelike curve is depicted which winds around endlessly within a
compact region. (Other somewhat similar situations can also arise in which a
timelike curve is not eventually contained within a compact region, but nevertheless
keeps re-entering such a region.)

1.9. DEerINITION. The symbol V will be used to denote the unique torsion-free
connection on M under which g is covariantly constant (equivalently: under
which the scalar product defined by g is preserved under parallel transport along
any curve). An affinely parameterized geodesic, abbreviated a. p. geodesic is a
path with tangent vector T satisfying V;T = 0 (i.e., T°V,T® = 0) at every point
of the curve. The term geodesic will here refer to the curve associated with a path
which is an a. p. geodesic. A geodesic is timelike, null, spacelike or causal according
as T is timelike, null, spacelike, or either timelike or null. This holds at every
point of the curve if it holds at any one of its points (trivially, since V preserves
scalar products between parallelly propagated vectors, and in particular it
preserves g(T, T) = T,T?). A degenerate geodesic occurs when T = 0 (so the
curve lies all at one point). Unless otherwise stated, all geodesics will be assumed
to be nondegenerate. (In any case, a degenerate geodesic is not a smooth curve,
according to 1.7, since du = 0.) ,

1.10. DerNiTiON. To proceed further we shall need some simple properties of
the exponential map. For any a € M, this is smooth (C®) map, denoted exp, from
some open subset of the tangent space T, into M. If Ve T, we define exp,(V)

to be the point p of M (if such exists) such that the affinely parameterized geodesic
with tangent vector V at a and parameter value 0 at a acquires the parameter
value 1 at p. If V has components (¢, x, y, z) with respect to some basis for T, then

t, X, y, z are called (Riemannian) normal coordinates of the point p. I shall often
use such coordinates in the particular case when the null cone in T is given by

¢ The term “‘inextendible” in place of “‘endless’ has been used in some articles [6], [9].
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12 — x2 —y2 —z2 =0 and 0/0t is future-pointing. These I call Minkowski
normal coordinates.

The condition that exp, map the whole of T into M for every choice of ae M
is that M be geodesically complete ; that is to say, every affinely parameterized
geodesic in M extends to arbitrarily large parameter values. But whether or not
the whole of T is mapped, it may well be that several different elements of T are

mapped to the same point of M, or that the map is badly behaved for certam
elements of T (because its Jacobian vanishes) so that the normal coordinate

a
system breaks down at the corresponding point p of M. These situations are
illustrated in Figs. 4, 5 and 6. We shall return to this question when we consider

domain
of expy

F1G. 4. The Riemannian 2-space M is the surface of a finite cylinder. Here, exp, maps a stripin T onto M,

wrapping it around M infinitely many times. The point p e M is the image of infinitely many
points in T, in particular, of v and of v’

FIG. 5. Here M is a unit sphere (a positive definite Riemannian 2-space). The circles of radius m, 2,
3m, - - - with centers at the origin of T each map to a single point on M under exp,
a

conjugate points in 7.10. For the present we require the fact that for each ae M
there is some star-shaped’ neighborhood Q of the origin in T such that exp,,

restricted to @, is a diffeomorphism (i.e., (¢, x, y, z) form an allowable coordinate
system for exp, Q). Then exp, @ is called a normal neighborhood of a [14]. We
can, in fact, always choose a normal neighborhood N of any ae M such that N
is also a normal neighborhood of any other point be N. Such an N is called
simply convex. The characteristic property [14] of a simply convex neighborhood
N is that N « M is open and that there is precisely one geodesic lying within N

7 The rather nondescriptive term “‘star-shaped” simply means that if Ve Q, then AV e Q for all
4€[0, 13; that is to say, all the rays through the origin are connected in Q.
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caustic

FIG. 6. Again M is a positive definite Riemannian 2-space, but a little more general in shape than before.
The map exp, is still badly behaved in certain regions, having vanishing Jacobian on a curve on
M referred to as a caustic. The caustic is the envelope of geodesics on M through a (i.e., roughly
speaking, the locus of points where consecutive geodesics intersect)

connecting each pair of points in N. It will be convenient to consider such sets
frequently in this work. But since it will be convenient also to demand a few more
properties, let me define a simple region N to be a simply convex open subset of
the space-time M such that N is compact and is contained in a simply convex
open set. Then we have the following properties (cf. [14], [35]).

1.11. ProposITION. If N is a simple region, any two points p, q of N can be
connected by a unique geodesic in N, denoted by pq. The geodesic pq is a continuous
function of (p, e N x N.

1.12. PROPOSITION. The boundary 0N of any simple region N is compact; any
closed subset of N is compact.

1.13. PROPOSITION. The space-time M can be covered by a locally finite system
of simple regions; any compact subset of M can be covered by a finite number of
simple regions.

1.14. Remark. Unlike the situation for positive definite Riemannian spaces,
it is not true that every compact space-time is geodesically complete [15]. Nor is
it necessarily true [16] for a geodesically complete space-time that exp, maps to
the whole of M. A counterexample is provided by anti-deSitter space (Fig. 7).

1.15. DeFiNiTION. Although the main applications will come considerably
later (cf. 7.10) it will also be convenient at this point to digress a little and introduce
the concept of a Jacobi field [14], [17], defined along an a. p. geodesic y. A Jacobi
field may be thought of as defining a ‘““vector in the space of a.p. geodesics,”
that is to say (roughly speaking}, it describes the relation between an a. p. geodesic
and another one which lies infinitesimally close to it.

More precisely, let y belong to a smooth 1-parameter system of a. p. geodesics.
This can be described by a smooth map u from a strip {(t,v)to <t < t,,
—& < v < ¢} into M, where each path defined by setting v = const. is an a. p.
geodesic, parameterized by ¢, and 7y is given by v = 0 (we can allow —¢, or ¢, to be
oo if necessary) (see Fig. 8). Denote the “coordinate vectors” on M by T = /ot
and V = d/0v. (Strictly this should be T = p,(0/0t) and V = pu,(6/0v), but I shall
allow myself this sort of abuse of notation.) We can write (cf. 1.9): T = TV,
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N

F1G. 7. Anti-deSitter space (2-dimensional case). M is conformal to the strip —n/2 < x < n/2 of

Minkowski 2-space, the metric of M being given by sec® x(dt* — dx?). Alternatively M may be

expressed as the universal covering space of the “sphere” T? + W2 — X? = 1 in the Minkowski

3-space ds? = dT? + dW? — dX? (where tan x = X, tant = T/W).

All timelike geodesics through ae M are focused again at the “‘antipodal’ point b, and again

at ¢, d, e,---. Spacelike and null geodesics through a *“‘go off to infinity” and never reach

« bresd—- | so exp, maps to the dotted region only, even though the space-time is geodesically
complete [16]. The generalization to four dimensions is straightforward

At
T
M

| _

T

Iy

1

K _ X

-€ 0 € v

FIG. 8. The map of the strip in the (¢, v)-plane into M is smooth even though the image (and the inverse map)
may be singular. The image of each line v = const. is a geodesic in M (affinely parameterized
by t). The vectors V = 0/0v define a Jacobi field along the geodesic y, which “point” from y to

a neighboring geodesic 7'

V = V°,, when the V, operators act on scalars; otherwise, we write T°V, =V,
T

V¢V, = V. For convenience, set
1 4

(1) D=T%, (=Tor Y)
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to denote propagation derivative along y. Since T and V are coordinate vectors
we have [T, V] = 0, so

@) YV =VT, ic,DV*=V'V,T".

Since we have a. p. geodesics, we have DT® = 0 (VT = 0). Hence, differentiating
{(2) we arrive at: !

(3) D*v® = R%, - T'V°T?,

which is the familiar Jacobi equation (equivalently written D*V = R(V, T)T), or
equation of geodesicdeviation. (The Riemann tensor sign is here taken consistent with
(V.Vy — V.V IV = R, VY equivalently {zg -~ gz - [UVV]}W = —R(U, )W)

Any field of vectors V defined along y and satisfying (3) is called a Jacobi field.
Intuitively, the vectors V connect points of y to corresponding points of some
neighboring a. p. geodesic y". The solutions of (3) for V (given y) form an 8-dimen-
sional vector space (2n-dimensional, for an n-dimensional manifold), since (3) is
linear in V. Any such solution is defined by knowledge of ¥V and DV (which can
be assigned arbitrarily) at any point of y. This corresponds to the freedom in
location or direction or scaling for a neighboring a. p. geodesic 7’ to 7.

1.16. ProposiTION. If T,T® is the same for each geodesic of the 1-parameter
system, then T,V*® is constant along y.

Proof.

D(T,V%) = T,DV® = T,V*V,T*

= WVV(T,T%) = 0
(or we can write this Tg(T, V) = g(T, YV) = ¢(T, gT) = %zg(T, T) = 0.}

1.17. Remark. If y is timelike we can choose T,T* = 1 (if spacelike, T,T* = —1).
With the scaling freedom for " eliminated, the allowable Jacobi fields along y
now form a 7-dimensional vector space. We can further insist that ¥ is orthogonal
to T all along y (by 1.16) and we get a 6-dimensional space. (This is simply a
question of suitably fixing the parameter origin for y") A situation of this type
arises if we consider timelike {or spacelike) a. p. geodesics with unit tangent vector,
starting from a fixed p. This is because ¥V =0 at p, so certainly T,V* = 0. (It is
important to note the fact that the map u of the strip is still smooth at p, even
though the image is a singular surface at p.)

If v is null, the situation is slightly different. Here T,7* = 0, so neighboring null
a. p. geodesics have 7 degrees of freedom. The scaling of the affine parameter on
a null geodesic cannot be fixed in a natural way, so freedom in the parameter
scaling still exists in addition to the freedom in origin of parameterization. The
condition T,V* = 0 is now nothing to do with the origin of parameterization but
states a geometrical relation between y and }' (namely, that they could be
“neighboring generators of a null hypersurface™). As an example where T,V* = 0
is satisfied, consider null a. p. geodesics through a fixed point p. Then y and y’
become neighboring generators of the light cone of p.



PRELIMINARIES 9

1.18. DerINITION. If V is a Jacobi field defined on y and V vanishes at two
distinct points p, g € y, while not vanishing at all points of y, then p and q are
called a pair of conjugate points on y. This concept will have great importance
later (cf. 7.10). Roughly speaking, a pair of conjugate points occurs where two
neighboring geodesics meet in two points. This arises when geodesics through p
encounter a caustic at q, showing that we must expect the Riemannian normal
coordinates defined by exp, to break down as a coordinate system, at g, the
Jacobian vanishing there (see Fig. 6). In fact the caustic could, in this context, be
defined as the set of points of M conjugate to p on geodesics through p.






SECTION 2

Causality and Chronology

2.1. DEFINITION. A trip is a curve which is piecewise a future-oriented timelike
geodesic. A trip from x to y is a trip with past endpoint x and future endpoint y.
We write x « y (read x chronologically precedes y) if and only if there exists a trip
from x to y. Thus, the relation x « y states the existence of points x¢, X, -+ - , X,
with n = 1, a timelike geodesic called a segment having past endpoint x;_; and
future endpoint x;, for each i = 1,---,n, where we set x, = x, x, = y. Note
that since the curves defined here are required to contain all their endpoints, the
situation depicted in Fig. 9 (a “‘bad trip”’) in which the segments accumulate at a
point p cannot occur.’

F1G. 9. A “‘bad trip” has an infinite number of *‘joints” accumulating at p

2.2. Remark. We shall see in 2.23 that timelike curves could equally well have
been used in place of trips to define «, which would perhaps have been more
physical, but trips turn out to be easier to handle mathematically. Compare [18§].

Observe that in the above we could always choose n = 1 for x « yin Minkowski
space. On the other hand, space-times exist for which it is necessary for n to be
allowed to be indefinitely large. An example (a “mutilated Minkowski space”) is
given in Fig. 10. A less artificial example, which shows that we need to allow
n = 2, is afforded by the anti-deSitter space (Fig. 7; see also Fig. 11).

2.3. DEFINITION. A causal trip is defined in the same way as a trip except that
causal geodesics, possibly degenerate, replace the timelike geodesics of 2.1. We
write x < y (read x causally precedes y) if and only if there is a causal trip from
x to y. See [18].

2.4. Remark. Note that x < x for all x € M, since degenerate causal geodesics
are allowed. On the other hand, x « x signifies the existence of a closed trip in M,
that is, a trip whose past and future endpoints are identical. (Minkowski space,
for example, possesses no closed trips.) A closed nondegenerate causal trip is
signified by the existence of a pair of distinct points x, y such that x < yand y < x.

! A trip with infinitely many segments is allowable of course, provided it is future- or past-endless.
11
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AU IO

777D y=xn

xn_1 iz i
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727 . —

FI1G. 10. From Minkowski 2-space the half-lines t = k, (—1)*x = 0 are removed. To express the relation
X <« y, trips with arbitrarily large numbers of segments are required

N 14
AN H
\ R 7’
AN 7’
% ’
H //
PN i
PN
¢ a
X

FIG. 11. The space-time M is Minkowski space with one point removed. The set J*(a) is not closed since
the null geodesic beyond the removed point, which extends that from a, is not part of J*(a),

whereas it is part of 3J *(a). (Small open circles in diagrams always denote removed points.)

2.5. PROPOSITION.
a<x b implies a<b;
axb, b«c implies a<c;

a<b, b<c implies a<c.

2.6. DEFINITION. The set I*(x) = {ye M|x « y} is called the chronological
(or open) future of x; I™(x) = {ye M|y « x} is the chronological past of x;
JT(x) = {ye M|x < y} is the causal future of x; J™(x) = {ye M|y < x} is the
causal past of x. The chronological or causal future of a set S = M is defined by
I7[S) = U I (%), JT[S] = U J"(x), respectively, and similarly for the pasts of

xeS xeS

S. (In general there will be a self-evident “duality”” obtained by interchanging
past and future in any result. The dual version of result will not normally be
stated explicitly in what follows.) The slight abuse of notation I *[y], etc., where y
is a trip, etc., will also be used.

2.7. Remark. In Minkowski space with the usual coordinates (¢, x,y, z), if
a=(0,0,0,0), then I*(a) = {(t,x, y, 2)t > (x* + y* + z%)!?}. Also J¥(a) is the
same but with > replacing “>.”” Here I*(a) is an open set and J *(a) a closed



CAUSALITY AND CHRONOLOGY 13

set. In fact, every chronological future is open (cf. 2.9) but not all causal futures are
closed. As an example of this, obtain the causal future J*(a) in Fig. 11,

2.8. PRrROPOSITION. I ¥ (a) is open for any ae M.

Proof. Let x € I"(a); then there is a trip y from a to x. Let N 3 x be a simple
region and let y be a point in N, other than x, on the terminal segment of y. Now
the vector exp; !(x) is timelike and future-pointing (being a tangent to the terminal
segment at y), and so belongs to the open set Q of timelike future-pointing vectors
in exp, '[N]. Since exp, is a homeomorphism in this neighborhood, it follows
that exp, Q is an open set in M (containing x) which lies in I (y) and therefore
in I"(a) (by 2.5), thus proving the result.

2.9. CoROLLARY. I*[S] is open, for any S = M.

2.10. PROPOSITION. x € I7(y) if and only if ye I (x); xeJ*(y) if and only if
velJ (x).

2.11. ProrosiTION. I1[S] = I*[S].

Proof. If y » x, x € §, then y » z, ze S since I (y) is open.

2.12. PROPOSITION. IT[S] = IT[I*[S]] = J¥[S] = JY[J*[S]].

Proof. This follows from 2.5, from the fact that a « b implies the existence of ¢
with @ « ¢ « b and from the corresponding statement for a < b.

2.13. DerFINITION. Let N be a simple region and define [36], [19] the world-
function ®:N x N - R by ®(x,y) = glexp; (v), exp; }(y)); in other words,
®(x, y) is the squared length of the geodesic xy. Clearly ®(x, y) = @(y, x) and is
positive, negative or zero according as xy is timelike, spacelike or null.

2.14. PROPOSITION. ®(x, y) is a continuous function of (x,y) in N x N.

Proof. See 1.11, [36],[19].

2.15. LemMA. The point pe N being kept fixed, the hypersurfaces H, g
= {x|®(p, x) = K} are smooth in N (except at x = p) and are spacelike, timelike
or null according as the constant K is positive, negative or zero. Furthermore, the
geodesic px is normal to H,  at x.

Proof. The smoothness follows from the fact that exp, is well-behaved in N,
the equation of H,, x in Minkowski normal coordinates being 1> — x> — y* — z?
= K, which is smooth (except at the origin, when K = 0). A smooth hyper-
surface is said to be spacelike, timelike, or null according as its normal vectors are
timelike, spacelike, or null. Let g be a point of H, ¢ and V a tangent vector to
H, g at q. Allowing q to vary on H, ¢ along a curve with tangent vector V, so that
pq describes a 1-parameter system of a. p. geodesics of squared length K, we see
that I belongs to a Jacobi field vanishing at p. Hence, by 1.16, V must be orthog-
onal, at ¢, to the direction of pgq. The result follows.

2.16. LEMMA. Let N be a simple region. Suppose a,b,ce N are such that ab
and bc are both future-causal, having distinct directions at b if both are null, or
suppose a timelike curve or trip y exists in N from a to c. Then ac is future-timelike.

Proof. Consider ®(x) = ®(a, x), as x varies from a to ¢ along § = ab U bc
or along y. As x proceeds in a future-causal direction defined by the vector T,
the rate of change of ® is measured by T'V,® (= T(®) = dT) = g(g~ ' d®, T))
= gijTiVj(D. This, by 2.15, is nonnegative whenever ax is future-causal (V®, or
g~ ' d® being normal to ® = const., i.e., to H, o) and strictly positive unless ax



14 SECTION 2

is null and T tangent to ax. (The scalar product of two future-causal vectors is
nonnegative, being zero only if both are null and proportional.) Hence ®(c)
= ®(a, ¢) > 0 and ac must be future-timelike, since exp, 'x never leaves the future
component of the timelike vectors at a.

2.17. Remark. The proof of the lemma in 2.16 is based on 2.15 for causal
ax (K =z 0). Alternatively, the argument could equally well have been given using
the result only for null ax (K = 0). Essentially we require only the fact that the
light cone H, ,, being a null hypersurface (except at a) cannot be crossed from
the inside to the outside by § or 7.

It is of some interest to note that the lemma in 2.16 is false for a V with torsion
(but with Vg = 0 still holding). This is illustrated in Fig. 12. The light cone with
respect to V is a timelike surface, being generated by null curves which are geodesics
with respect to V, but curl into the inside of the light cone with respect to V. Thus,
B or y can escape from inside to outside the light cone.

timelike curve light cone with

respect to

light cone with
respect tov

spacelike geodesic
with respect to ¥

F1G. 12. If we replace the Riemannian connection V by another connection V which still preserves the
metric (Vg = 0) but which possesses torsion, then 2.16 becomes untrue. We have a timelike
curve connecting a to b, but the geodesic ab (according to V) is spacelike

2.18. PROPOSITION.
a<b, b<c implies a<«c;

a<b, b«c implies a<«c.

Proof. Without loss of generality, suppose a « b and b < ¢. Let a be a trip
from a to b and y a causal trip from b to c. Then y (being compact)? can be covered
by a finite number of simple regions N, ---, N,. (It is clear that we can assume
that y has no closed-loop parts, since redundant portions can be deleted.) Set
xo = be N, , say. Let x, be the future endpoint of the connected component of
y N N;, from x,. Choose y; € N, on the final segment of a, with y; # x, (see
Fig. 13). Then by the lemma in 2.16, y,x, is future-timelike. Now, either x, = ¢,
in which case the result is established, or x; ¢ N, , whence x, € N, , say. In the
latter case, let x, be the future endpoint of the connected component of y N N,
from x, and choose y, € N;, on y;x; with y, # x;. Then either x, = ¢, in which
case we are finished, or we can repeat the argument. The process must eventually

terminate, since there are a finite number of connected components of the y n N;;.

2CtL13.
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F1G. 13. Construction for 218, to show that the trip a from a to b together with the causal trip y from
b to ¢ can be replaced by a single trip from ato ¢

2.19. PROPOSITION. If o is a null geodesic from a to b, and B is a null geodesic
from b to c, then either a « c or else a U B constitutes a single null geodesic from
atoc.

Proof. If o U B fails to constitute a single geodesic, this is because the future
direction of a at b does not agree with that of g at b (a “joint™). By 2.16, if x
on o and y on f are sufficiently close to (but distinct from) b, then there is a timelike
geodesic from x to y. Thus a < x « y < ¢, whence a « ¢ by 2.18.

2.20. PrROPOSITION. If a < b but a « b, then there is a null geodesic from a to b.

Proof. Let y be a causal trip from a to b. If y contains a timelike segment, then
repeated application of 2.18 yields a « b. If all segments of y are null, then repeated
application of 2.19 yields a « b unless y is a null geodesic.

2.21. Remark. The relation: “a < b but a « b”; is sometimes written a — b
(or a /" b) and is termed horismos [18], but I shall not concern myself with it
explicitly here. The concepts of <, « and — can refer to sets M more general
than space-times, e.g.,, to a causal space (see Kronheimer and Penrose [18]),
defined by relations <, « on a set M subject to 2.5 and 2.18, and, in addition,
to the requirements that a « a hold for no a and that a < b, b < a hold for no
distinct pair a, b (stating the exclusion of “closed trips’” or “closed causal trips™).

2.22. Remark. The converse of 2.20 is false. (In the example illustrated in
Fig. 14, there is a null geodesic from a to b, but a « b.) Observe, also, that we
can have two distinct null geodesics from a to ¢ and not have a « ¢ (cf. Fig. 14),
but it is a consequence of 2.19 that any point x on the continuation of either
geodesic beyond ¢ must satisfy a « x.

2.23. PROPOSITION. a < b if and only if there is a timelike curve y from a to b.

Proof. Suppose y exists. Cover y with a finite number of simple regions N;.
Let xo = a€ N, and let x; be the future endpoint of the connected component
of y n N,,, from x,. Then by 2.16, x,x, is future-timelike. Either x, = b, in which
case a « b as required, or else x; ¢ N;, so x, € N, , say. Let x, be the future end-
point of the connected component of y n N, , from x,;. Then x,x, is future-

12
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/11//
/
AN
N

FIG. 14. A two-dimensional “Einstein Universe” constructed by identifying (—1,t) with (1,¢t) in the
strip —1 2t £ 1 of Minkowski 2-space. Here a is (0,0), b is (0,2) and ¢ is (1,1). We have
a <« b even though b lies on a null geodesic through a

timelike. Either x, = b, whencea « b, orelse x, ¢ N; so x, € N;, and the argument
can be repeated. This terminates since there are a finite number of connected
components of the y N N,.

Conversely suppose a « b and let a be a trip from a to b. I shall show that the
“joints” of & can be smoothed so as to yield a timelike curve. Let 4 and 4 be
consecutive segments of . Let g be a point which is the future endpoint of the
timelike geodesic A and the past endpoint of the timelike geodesic u. Consider
exp, ' in some simple region N 5 g and choose standard Minkowski coordinates
(t,x,y,2) in Z“ so that the points of exp, ' u and exp, ' 1 have coordinates of

the form (r,7tan x, 0,0) and (—1, 7 tan y, 0, 0), respectively, where t varies over
nonnegative values and where y is fixed and satisfies 0 < y < n/4. Choosing
To > 0, connect (—1g,Totany,0,0) to (14,75tany,0,0) by a C* curve 5 in
T which joins on to exp; ' 4 and exp, ! u smoothly (C*) and which is everywhere
timelike according to the Minkowski metric (dt? — dx* — dy? — dz?) in T

q

For example, we could take # to be given by

on , . | O -t
— —_ 1
Rcos(7t — 2X) exp(R sin (n — 2X) ) ,

where ¢t = 7,Rsin 9, x = 1,Rcos 0 and |R| £ 1, 10| £ =/2. Measuring “‘angles”

according to a ‘“‘standard Fuclidean metric” dt? + dx? + dy? + dz?, we see that

the slope of # is bounded away from the nuil cone in T, by an angle ¢ (> 0), say,
q

where ¢ depends on y but need not depend on 7,. By choosing a small enough
neighborhood of ¢ in M we can ensure that the “error’ in the slopes of the images
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of the null cones in M under exp, ! is less than e. Hence, choosing 7, small enough,
we ensure that exp, 7 is timelike in M, thus achieving the required smoothing
of the “joint” in 4 L p

2.24. Remark. Although 2.23 has some intrinsic interest in showing that trips
and timelike curves are equivalent for defining the relation «, it will not in fact
be required for any of the later results. All arguments can be carried out directly
in terms of trips without any mention of smooth timelike curves.®> On the other
hand, the systematic use of timelike curves would be a little more awkward to
handle since ‘“‘smoothing arguments” would be required at various places
(cf. 2.18 for example).

There is a similar result to 2.23 for causal trips (trivially, since by 2.20 and 2.23
a null geodesic or a timelike curve connects any two points for which a < b).
However, I shall not restrict myself just to smooth causal curves here, since the
rote of a causal curve will be as a limit of timelike curves (or trips). A limit of a
sequence of smooth curves need not be smooth. Let us therefore make the following
definition which admits, under the term ‘“‘causal curve,” all such appropriate
limits (cf. [21], [22], [6]).

2.25. DEFINITION. A curve y is a causal curve if and only if for all a, be y and
for every open set Q containing the portion* of y from a to b, there is a causal trip
from a to b (or from b to a) lying entirely in Q.

2.26. Remark. Although a causal curve y need not be smooth, there is a restric-
tion on its “degree of wildness’” imposed by the fact that it satisfies a Lipschitzian
type of condition. As a consequence, y must possess a tangent almost everywhere
(remark due to R. P. Geroch), even though examples can be concocted in which y
fails to have a tangent at a set of points dense on 7.

* Except, strictly speaking, that given for 8.8.

* If the reader is concerned about a slight illogicality here, in the confusion of two notions of “curve,’
he may care to rephrase the statement (i.e., “the portion of y from a to b” refers to the equivalence
class of paths under parameter change, whereas to be contained in @ it must be a point set). This kind
of looseness of terminology is also to be found in many other places in these notes.

»






SECTION 3

Properties of Pasts and Futures

3.1. DEFINITION. A set F < M is called a future set if F = I*[S] for some
S < M (cf. 2.6). Clearly F is a future set ifand only if F = I*[F] (cf. 2.12). A future
set F therefore has the property (shared by certain other sets, cf. 3.5) that: if
x e F and x « y, then y € F. Any future set is open, by 2.9.

Similarly P is called a past set if P = I7[S§] for some § < M ; equivalently,
if P = I"[P]. Any past set is likewise open. Many of the results which follow
will have counterparts (‘‘duals”) for which “past’” and “‘future” are interchanged.
These dual results will be taken as understood and not normally stated explicitly.

3.2. Side remark.® A past set which is not the union of two past sets unless one
contains the other, is called an irreducible past (abbreviated IP). A past set P is
an IP if and only if it is of the form P = I~ [y], where v is a trip (or timelike or
causal curve). Any set I~ (p) with pe M is an IP. An IP which is not of this form
is called a terminal IP (abbreviated TIP). Any TIP has the form I~ [y], where
v is a future-endless trip. IF’s and TIF’s can be defined dually. Provided M satisfies
suitable causality requirements (cf. 4.2), the TIP’s and TIF’s provide a convenient
means of defining boundary points (“points at infinity”” or “singularities”) for
a space-time M. These matters will not be entered into here, however.

3.3. PRrOPOSITION. If F is a future set, F = {x|I*(x) < F}.

Proof. Suppose I*(x) < F. Then any trip from x contains points arbitrarily
closeto x lyingin F,so x € F. Conversely, suppose x € F. Let ye I *(x),so x e I'*(y).
But I7(y) is open, so it contains some point z€ F. Thus z « y, implying ye F as
required.

3.4. ProPOsSITION. Let F be a future set. Then:

F=~I"[~F],

OF = {x]I*(x) = F and x ¢ F}
— (~F) A (~ 7 [~F]),

F=1"[F].

Proof. Exercise.

! See [23] for a full discussion.
19
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3.5. PROPOSITION. Let Q = M. Then the following are equivalent:
I'igl=Q,
I"[~Q] = ~Q,
r'oinI [~Q] = &,
intQ = I"[Q],
0Q = (~I"[@) N (~17[~Q)).
Proof. Exercise. The proofs are facilitated if we bear in mind that the conditions
on Q negate the possibility of havingae Q,be ~Q and a « b.
3.6. ProposITION. If I*[Q] < Q and Q is open, then Q is a future set.
Proof. The result is immediate from 3.5: Q = int Q = I*[Q].
3.7. PROPOSITION. The union of any system of future sets is a future set; the

intersection of two future sets is a future set.
Proof. Clearly \JI7[S;] = I"[\_ S;], where i indexes the system. For the

second part, observe that 1710] le and I*[R] < R together imply I*[Q n R]
< Q n R. The result then follows from 3.6.

3.8. PROPOSITION. If p < g, then 1*(p) > I*(qg).

Proof. Immediate from 2.18.

3.9. ProposITION. J*[S] = I7[S].

Proof. If ye J*[S], then x < y for some x € S, so the resuit follows from 3.8
and 3.3.

3.10. Remark. The converse of the proposition in 3.8 is false in many space-
times (e.g., Minkowski space with the origin removed, where p and g have co-
ordinates (—1, —1,0,0) and (1, 1, 0, 0) respectively), but it turns out to be true
if M is any globally hyperbolic space-time (cf. 5.24), e.g., Minkowski space.
Furthermore, space-times exist for which I*(p) > I*(g) but not I"(p) = I (g)
(e.g., p, q as above and M as Minkowski space less the half-plane t < 0, x = 0).

3.11. DErFINITION. A set S « M is called achronal if no two points of S are
chronologically related (ie., if x, ye S, then x « y). (The term ‘‘semispacelike”
has been used for the same concept [8],[9].)

3.12. Remark. A set can be locally spacelike without being achronal. Various
examples are indicated in Figs. 15, 16 and 17. An achronal set can be null and

—

S

F1G. 15. This curve in Minkowski space is locally spacelike, but it is not an achronal set since it contains
pairs of points with a timelike separation. (This example incidentally shows that no useful concept
of spacelike separation between points can be obtained from the condition that a spacelike curve
connects them. Any pair of points in any space-time, of more than two dimensions, can be con-
nected by a smooth spacelike curve.)
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>
FIG. 16. Even a smooth spacelike hypersurface in Minkowski space need not be achronal (although it
would need to possess an ‘‘edge™)

a 7

FI1G. 17. In this space-time (a portion of Minkowski 2-space with two identifications) there are no closed
causal trips, but there is a smooth spacelike hypersurface S which is compact (and with no “‘edge”)
but which is still not an achronal set. The example can readily be made four-dimensional. It has
relevance to 8.3

it need not be smooth. Simple examples in Minkowski space are: the future
light cone t = (x* + y? + z%)*/2, the null hyperplane t = z, the null line t — z
= x = y = 0, the spacelike plane t = 0, etc.

3.13. DEFINITION. A set B < M is called an achronal boundary if it is the boundary
of a future set, i.e., B = 8I*[S]. Clearly no two points on the boundary of a future
set F can be chronologically related (I*[F] n 6F = @).> Thus any achronal
boundary must in fact be an achronal set. (The term “‘semispacelike boundary”
or “SSB”” has sometimes been used in place of “achronal boundary”; cf. [8], [9].)
The concept is actually time-symmetric as follows from the next proposition.

3.14. PROPOSITION. B is an achronal boundary if and only if B = 8I~[T] for
some T < M.

Proof. Suppose B is an achronal boundary, i.e., B = 0F, where F is some future
set. Then T = ~ F will do. This follows because I~ (x) < I"[~F] if and only if
x¢F,and x¢ I [~F] if and only if I*(x) = F (cf. 3.4). The converse in 3.14 is
just the time-reverse of this.

3.15. PrROPOSITION. If B (# ) is an achronal boundary, then there is a unique
future set F and a unique past set P such that F, P and B are disjoint with M

2By 3.4.
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= PUBUF. Then B = 0F = 0P. Furthermore, any trip or timelike curve from a
point of P to a point of F must meet B in a unique point.

Proof. By 3.13 and the construction in 3.14, a future set F and past set P exist
satisfying B = 0F = 0P, where P =1 [~F] = ~(FuUB) (cf. 34), BNhF = (.
Thus M is the union of the disjoint sets P, F and B as required. Before establishing
uniqueness, let us examine the final part. Assume M is the union of disjoint sets
B,P = I"[Pland F = I*[F]. Let y be a trip or timelike curve fromae PtobeF.
The sets y n(~F) and y n (~ P) are both closed and together they exhaust y.
Therefore they are not disjoint, so y meets B in a point, unique since B is achronal.

Suppose, now that M is also the union of disjoint sets B, P’ = I~[P’],
F' = I'"[F']. If this decomposition is distinct from the earlier one, either P n F'
or F n P’ must be nonempty. Suppose x € P n F’ (the case x € F n P’ is exactly
similar) and that y e B. Since M 1s connected (and therefore arcwise connected),
a curve { exists on M connecting x to y. It is clear that { can be taken to consist
of a sequence of trips zig-zagging (if necessary) backwards and forwards in time.
Buy { cannot leave P without crossing B in a future direction and therefore entering
F'. Similarly, { cannot leave F’ without crossing B in a past direction, therefore
entering P. Thus { must remain in P n F’. But we have y¢ P n F’. This contradic-
tion establishes the result.

3.16. Remark. In Minkowski space it always turns out that the F and P of 3.15
are given by F = I*[B], P = I7[B]. However, for many space-times this need
not hold. See, for example, the space-time illustrated in Fig. 18, which consists of

T——A= 3K

F1G. 18. This M consists of that part of Minkowski space for which 0 < t < 1. Here B is an achronal
boundary for which P # I~ [B] (P as in 3.15), that is to say, B # 01 "[B)], and for which B is a
proper subset of another achronal boundary, namely 01 "[B]. Also, A is an achronal set which
is a boundary, but A is not an achronal boundary

a “‘horizontal” strip of Minkowski space. This example also shows that not every
achronal boundary is a maximal achronal set. It also illustrates another pertinent
fact: not every achronal set, which is the boundary of some other set, need be an
“achronal boundary” as defined above. The trouble, here, arises from the fact
that the two parts of the achronal set A = éK have, in an appropriate sense,
opposite orientation with respect to future directions. If the orientations are
properly taken into account, then it is not hard to establish that every achronal
set which is properly the boundary of another set is indeed an achronal boundary.

Achronal boundaries need not be smooth. Nevertheless they are quite “reason-
able” sets as the next result shows.
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3.17. LEMMA. Any achronal boundary B is a topological (i.e., C°) 3-manifold
(that is, a continuous imbedded hypersurface).

Proof. We have to establish that B is locally homeomorphic to E*. Let P and F
be asin 3.15 and choose a € B. Let N 5 a be a simple region and consider exp, in N.
Choose standard Minkowski coordinates in T as normal coordinates for N.

Let 0 — N be a region defined by |f] < p, x2 + y? + z% < p? for some suitable
p > 0. Choose p sufficiently small that curves in exp; *[Q], which are “causal”
with respect to the modified Minkowski metric idt? — dx* — dy* — dz?, map
under exp, to timelike curves in Q. In particular, exp, will map each coordinate
line x, y, z = const. to a timelike curve 77, , , in Q. Now the points in Q with normal
coordinates (—p, X, y, z) and (p, X, y, z) must lie in I~ (a) and I (a), respectively
(since the geodesics connecting them to a are timelike). Hence, they must lie in
P and F, respectively. Thus by 3.15, ., . meets B in a unique point b(x, y, ).
This establishes a one-to-one mapping (an injection) between B @ and the
interior of a sphere of radius 1p in R3. It remains to show that this mapping is
continuous. But this follows because if b(x, y,z) and b(x + x4,y + Yo, 2 + Z¢)
have a t-coordinate differing by more than 2(x3 + y3 + z3)'/?, then these points
must be chronologically related, the relevant curve described by (t + 2e(x3
+ yo + z)Y% x + exy, Y + €Yo, Z + €2,) as ¢ varies from 0 to 1 being necessarily
timelike (since it is causal with respect to idt? — dx* — dy? — dz?). Since B
is achronal, the t-coordinate difference must thus tend to zero as (xq, Vo, Zo)
—(0,0,0).

3.18. Remark. Certain types of achronal boundary of particular interest turn
out to be (in a certain well-defined sense) null hypersurfaces. Let me illustrate the
situation with a few examples. Set B = dI*[S] and take M to be Minkowski
space. If S = {a} for some ae M, then B is the light cone of 4 and is a smooth
null hypersurface except at a. If S = y, where y is the timelike curve x = (1 + t%)/?,
y = z = 0, then B is the hyperplane ¢ + x = 0 which is smooth and null every-
where (see Fig. 19). Finally, if S is the spacelike 2-sphere t = 0 = x* + y? + z2 — 1,
the hypersurface B fails to be smooth and null on S, and also at the point p with

FI1G. 19. The curve y is the world-line of a uniformly accelerating particle in Minkowski space. Then
B = 8I*[y] is smooth and null everywhere (being a null hyperplane)
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coordinates (1, 0, 0, 0). (See Fig. 20 for the analogue of this when M is 3-dimensional
Minkowski space.) Notice, however, that in this example (as in the previous ones)
every point g of B which is not on § (=S5), including q = p, has the property that
some null geodesic on B has g as its future endpoint. This property is, in fact,
quite general, and is a consequence of the next lemma and its corollary.

n

FIG. 20. In three-dimensional Minkowski space, the null hypersurface B = 01*[n] is singular at p, this
point lying away from the spacelike circle n given by t = 0 = x* + y*> — 1, at which B is also
singular as a hypersurface

3.19. LEMMA. Let F be a future set with B = OF. Let x € B and suppose an open
set Q 3 x exists such that:

(@) for any ye Q n F thereis a trip y from a point ze F — Q to y;
or, equivalently:

(b) F = I*[F - Q].

Then B contains a null geodesic with future endpoint x.

Proof. Let us first establish that (a) and (b) are in fact equivalent. That (b) implies
(a) is obvious. Conversely, suppose (a) holds. We must show that y € F implies the
existence of ze F — Q such that z « y. But since F is a future set there certainly
exists we F with w« y. If we F — Q, we take z = w; if we F n Q, we invoke
(a) to obtain ze F — Q and z « w « y. Thus (b) holds.

To establish the lemma, let N — Q be a simple region containing x.
Let y,,y,,---e NnF be a sequence converging on x. (Clearly xe NN F,
since x€ F and N s x is open.) Each y; is the future endpoint of a trip y; from
somez;e F — Q « F — N. Letv,e F n N be the past endpoint of the connected
component of y; n N which terminates at y;. By 2.16, the geodesic v,y; is timelike.
Since dN is compact (cf. 1.12), an accumulation point v of the {v;} must exist,
with ve F n N (so v # x). Since the v,y; are all timelike, and y; — x, vx must be
timelike or null. For, by 2.14, ®(v;, y;,) = ®(v, x); so (v, x) = 0 follows from
.(D(vi, yl) g 0.

But vx cannot be timelike since ve F, IT[F] = F (cf. 3.4) and x « F. Thus vx
is a null geodesic #. Furthermore, no point of # can lie in F (sincewe Fand w < x
would imply some u e F with u « w < x so u « x whence x € F), whereas every
point of each v,y lies in F. Hence n < B, as required.

3.20. THEOREM. Let S « M and set B = 0I*[S]. Then if xe B — §, there
exists a null geodesic n < B with future endpoint x and which is either past-endless
or has a past endpoint on S.
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Proof. Since S is closed and x ¢ S, we can choose an open set Q 5 x not meeting S.
Condition (a) of 3.19 is clearly satisfied, so a null geodesic exists on B with future
endpoint x. Define # to be the maximal extension of this geodesic into the past
on B. Then if  is not past-endless it has a past endpoint y on B (since B is a closed
set). If y ¢ S we can apply 3.19 again to obtain another geodesic { on B with future
endpoint y and which does not continue #. But by 2.19 this would lead to chrono-
logically related points on B, contradicting the achronality of B.

3.21. Remark. Observe that the two possibilities for the null geodesic in 3.20
have been illustrated in our examples: in Fig. 19, a past endless null geodesic
exists on B; whereas in Fig. 20, all null geodesics which are maximally extended
on B, have past endpoints on § = 5 (=S). Note also that in Fig. 20, the only place
away from # at which two different null geodesics of B intersect, namely the point p,
is a place at which a geodesic on B, if extended further, would have to leave the
boundary B and enter the interior set I7[S]. That this illustrates a general feature
of achronal boundaries will be shown by the next proposition. There is also a
version of the result for which the two intersecting null geodesics become ““in-
finitesimally neighboring” geodesics on B. This result, which will have some
importance to us later, will be given in Section 7 (cf. 7.27) after the concept of
conjugate points has been discussed in detail.

3.22. PROPOSITION. Let B = dI*[S]. Suppose x€ B — § is an endpoint of two
null geodesics on B. Then:

(@) if x is a past endpoint of one or both geodesics, then their union is a null geo-
desic on B;

(b) if x is a future endpoint of both geodesics, then unless one is contained in the
other, every extension of either geodesic into the future beyond x must leave B and
enter I'*[S].

Proof. To prove (a), suppose first that x is the past endpoint of one geodesic
and the future endpoint of the other. Then, by 2.19 and the achronality of B, it
follows that the union of the two null geodesics must be a single null geodesic as
required. On the other hand, suppose x is the past endpoint of both null geodesics.
By 3.20, another null geodesic having x as its future endpoint must exist on B.
This must continue both geodesics, by the above remarks, so the union of all three
is a single geodesic. To establish (b), suppose one of the geodesics to be extended,
on B, into the future beyond x. By (a) the union of this extension { with the other
geodesic must constitute a single null geodesic. This is impossible unless one of
the two original geodesics contained the other. Excepting this situation, the
geodesic extension { cannot lie on B, as required. On the other hand, since
{ < J*(x), it follows from 3.9 that { — {x} = I*[S].
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Global Causality Conditions

4.1. Remark. In 1.7 and 2.21, attention was drawn to the possibility that a
space-time might possess closed trips (x « x) or closed causal trips (x <y,
y < x,x # y). It is customary to dismiss such space-times, as models of the uni-
verse, on the grounds that they are unphysical, such gross causality violations
leading to severe interpretive difficulties. The physical or philosophical reasons
for ruling out such space-times are impressive. But perhaps they are not completely
conclusive. In any case, it is often convenient to study space-times possessing
causality violations, as part of a program of comprehending the global structure
of space-time models in general. Thus, it is not necessary that all the models
studied should necessarily be totally realistic in physical terms for them to have
some indirect physical value. Also there are other types of causality violations
possible, weaker than the existence of closed trips or closed causal trips. It is
worthwhile to study some of these in conjunction with the ones just mentioned.

4.2, DEFINITION. A space-time M is future-distinguishing at p e M if and only if
I*(p) # I''(q) for each g€ M with q # p; M is future-distinguishing if and only if
it is future-distinguishing at every point. This property of being future-distinguish-
ing is called future-distinction. The concept of past-distinction is defined similarly
[18].

4.3. Remark. It is clear from 3.8 that no space-time containing closed causal
trips can be either past- or future-distinguishing. However, in Fig. 21 a two-
dimensional space-time is depicted which is future-distinguishing but not past-
distinguishing and hence contains no closed causal trips.

4.4. DEFINITION. An open set Q < M is causally convex if and only if Q intersects
no trip in a disconnected set.' Let pe M. Then M is strongly causal at p if and only
if p has arbitrarily small causally convex neighborhoods. The space-time M is
strongly causal if and only if it is strongly causal at every point [4].

4.5. Remark. *Arbitrarily small,” in 4.4, means that such a neighborhood Q
of p can be found inside any open set containing p (i.e., such Q’s form a neighbor-
hood base at p). Without the qualification “arbitrarily small,” 4.4 would become
vacuous since Q = M is causally convex for any M. Observe, on the other hand,
that for any M there are many arbitrarily small neighborhoods Q of p which are
not causally convex. The “hour-glass” or even “spherelike” examples of Fig. 22
each illustrate this fact. However, such “local” violations of causal convexity

! Equivalently, the open set @ is causally convex if and only if for every x, ye @, x « z « y implies
ze.
27
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FIG. 21. Consider the metric form ds* = dt dx + t dx?, with 8/3t future-pointing, on the strip |x| < 1
of the (t, x)-plane. Identifying (t, — 1) with (t, 1) for each t, we obtain a space-time M with a
closed causal trip (the null geodesic t = 0). Removal of the point (0, 0) leaves us with a space-time
M’ with no closed causal trips, but which is neither future- nor past-distinguishing. (Take p, q
ont = 0, then I*(p) = 1%(q).) If we remove the future-endless null geodesic t = 0, x = 0 from
M, we obtain a space-time M" which is future-distinguishing but not past-distinguishing [18]

Ok

F1G. 22. The two neighborhoods on the left are not causally convex, trips which intersect each in a
disconnected set are depicted. Assuming no global connections not shown, the two neighborhoods

on the right are causally convex

are easily avoided, as the final two examples of neighborhoods depicted in Fig. 22
show. (This is made more explicit in 4.8.) Thus, a space-time M which violates
strong causality at a point p must do so by virtue of its global structure. Roughly
speaking, strong causality violation at p means that trips can leave the vicinity
of p and then return to it, even though an actual closed trip or closed causal trip
need not be the result. We shall see in 4.18 that a space-time which is strongly
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causal at p must be both future- and past-distinguishing at p. On the other hand,
in Fig. 23, an example is given in which strong causality is violated even though
the space-time is both future- and past-distinguishing.

F1G. 23. This identified subset of Minkowski 2-space is future- and past-distinguishing but strong
causality fails all along the endless null geodesic through p and q. The Alexandrov topology is
T, but not Hausdorff

4.6. DEFINITION. Let Q be an open subset of M and let x, y € 0. Then we write
x « 4y if and only if a trip lying in Q exists from x to y, and x <,, y if and only
if a causal trip in Q exists from x to y. Since Q is open it is a space-time manifold
in its own right—or, if Q is not connected (and assuming Q # ), it is a disjoint
union of space-time manifolds. Hence all the properties in 2.5 and 2.18 hold equally
well for «gand <, as they do for « and <.

Define:

X,y = {2x €gz <y ¥}

and write

<x’y> = <x7y>M

so that {x,y> = I7(x) n [7(y).

4.7. PROPOSITION. The sets {(x, y) are open: so are the sets {x,y), if Q is open
(with x, ye Q).

Proof. By 2.8, I"(x) n I (y) = {x,y) is open in M. Thus, correspondingly,
{X,y), must be open in the space-time Q (or union of space-times Q). But Q is
open in M, so {x, y), is also open in M.

4.8. PROPOSITION. If N is a simple region and x, y€ N, then the set {x, y)y has
the property that no trip (or causal trip) lying in N can intersect (x,y)y in a dis-
connected set.

Proof. Assume xy is future-timelike (otherwise {(x,y)>y = ¢J, by 2.16). Let
n < N be a trip containing points u, v € {x, y)y with u preceding v along 5. The
portion of # from u to v, together with the timelike geodesics xu and vy (cf. 2.16)
constitutes a trip from x to y which must (by the definition of {x, y),) be contained
in {x, y>y.This applies to any u, v € N {x, ¥y, 507 N X, y>, must be connected.
The modification required if % is a causal trip is left as an exercise.
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4.9. PROPOSITION. If N is a simple region, Q an open set contained in N and
peQ, then there exist u,v € Q such that pe (u,v)y < Q.

Proof. Choose Minkowski normal coordinates for N with origin at p. Choose
¢ > 0 small enough that the whole of the normal coordinate ball B, given by
t* + x? + y? + z? £ ¢% is contained in Q and small enough that any timelike
curve in B is also “timelike” with respect to the “flattened” Minkowski metric
4di* — dx* — dy? — dz*. Take u at (—2¢,0,0,0) and v at (3¢,0,0,0). Then any
timelike geodesic y from u extends into the future in N until it meets the “hemi-
sphere’” defined by t? + x2 + y? + z2 = ¢%, t > 0. It must therefore cross the
light cone of null geodesics with future endpoint v, since these describe a continuous
hypersurface and extend into the past in B until they meet the opposite hemisphere
defined by t2 + x? + y? + z2 = ¢, t £ 0. If q is the intersection point of y with
this cone, then gv is future-null so no point r to the future of g on y (or its extension
in N} can have rv future-timelike (since gr w rv would otherwise constitute a
trip so, by 2.16, gv would have to have been future-timelike). Now suppose
we (u,v)y. Then the geodesics uw and wv are future-timelike. Denoting uw (or
its extension) by 7, we see by the above argument that w cannot lie to the future of
q on vy, whence we B. Thus {u,v)y « B < Q.

4.10. PROPOSITION. Ary simple region, if regarded as a space-time manifold
in its own right, must be strongly causal.

Proof. This follows at once from 4.8, 4.9 and the definition in 4.4.

4.11. DerINITION [4],[6]. A local causality neighborhood is a causally convex
open set whose closure is contained in a simple region in M.

4.12. PROPOSITION. M is strongly causal at p if and only if p is contained in some
local causality neighborhood.

Proof. If M is strongly causal at p, choose a simple region N 3 p and an open
set 0 > p whose closure lies in N. A causally convex open set containing p exists in Q
and is a local causality neighborhood as required. Conversely, suppose p belongs
to a local causality neighborhood L contained in some simple region N. By 4.9,
we can find arbitrarily small sets (u, v)y < L containing p. If a trip y in M were to
intersect (u, vy, in a disconnected set, then by 4.8, y & N. In fact, y would clearly
have to leave and re-enter N, indeed, to leave and re-enter L. But this would
contradict the causal convexity of L. Hence {u,v)y is causally convex, so M is
strongly causal.

4.13. PROPOSITION. The set of points at which M is strongly causal is open.

Proof. Immediate from 4.12.

4.14. PROPOSITION. Let A = M and suppose that strong causality holds at every
point of A. Then A can be covered by a locally finite (countable) system of local
causality neighborhoods. If A is compact, then a finite number of such neighborhoods
will suffice.

Proof. This follows from 4.12 and the paracompactness of M [35].

4.15. PROPOSITION. No local causality neighborhood can contain a future- or
past-endless causal trip.

Proof. Suppose a local causality neighborhood L contains a future-endless
causal trip y. Let p,, p,, p5, --- be a sequence of points proceeding indefinitely
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along y (ie., if g€y, then some p, lies to the future of g on y). Then since L has
compact closure, L being contained in a simple region N (cf. 1.12), there must be
an accumulation point p € L of the {p;}. We have L = N, so pe N. Now p is not
a future endpoint of y. Thus, there exists a neighborhood Q of p such that there
are points arbitrarily far into the future along y not contained in Q (cf. 1.8). Choose
u,veQ so that pe (u,v)y < Q (cf. 4.9). Then {u,v), contains infinitely many
point p; on y but also fails to contain infinitely many points on y between p;’s. This
contradicts 4.8.

4.16. LEMMA [18]. Let pe M. Then strong causality fails at p if and only if there
exists g < p, with q # p, such that: x « p and q < y together imply x < y for all
X, y.

Proof. Suppose strong causality fails at p. Let N be a simple region containing
p and let Q, = (u;, v;>y be a nested sequence of neighborhoods of p converging
onp:Q,20,20;> -, ()0, ={p}. We may take Q; = N; then each Q,

must fail to be causally convex since it would otherwise be a local causality neigh-
borhood, violating 4.12. Let y, intersect @, in a disconnected set. By 4.8, y, ¢ N.
We can take y, to have a past endpoint g; in Q; and to exit N first at b, € N, finally
to re-enter N at ¢; € dN and to terminate with future endpoint d, € Q, (see Fig. 24).

—

FiG. 24. Diagram for the proof of 4.16

(Possibly y; could have other portions in common with N as well.) Let ce N be
an accumulation point of {c¢;} (6N is compact). The geodesics cd; are future-
timelike. Hence (cf. 2.14) cp must be future-causal. Choose g between ¢ and p
on cp. Now suppose x « pand g « y. Since pe I'*(x) and I*(x) is open, it follows
that Q; = I*(x) for large enough i, so that a,e I'*(x).

Furthermore, ¢ < ¢ « y implies ce I (y) (cf. 2.18), whereas I (y) is open so
c;€ I (y) for infinitely many values of i. Then we have, for some large enough
i, X € a; < b; « ¢; € y, 50 x « y as required.

For the converse, assume g < p and that x « p and g « y together imply
x « y. Let P> p and Q5 g be disjoint open sets. I shall show that P cannot be
causally convex no matter how small it is chosen. Take xe Pn I (p) and
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yeQ NIt (qyn I (2), where ze P I*(p). (Clearly P I*(p) # &. We have
g<p<«zsogel (z). But I (z)is open,so Q N I*(g) N I (z) # & also.) Choose
a trip from x to z via the point y. (We have x « y and y « z.) This trip clearly
meets P in a disconnected set.

4.17. Remark. The time-reverse of 4.16 also holds, so we have another condition
equivalent to strong causality failure at p (strong causality being a time-symmetric
condition). Note that 4.16 (and its time-reverse) imply that strong causality cannot
just fail at only a single point of M ; for if strong causality fails at p, then it must
fail at ¢ also. (This point is elaborated in 4.31.) The condition in 4.16 can also be
rephrased in numerous other ways. For example, strong causality fails at p if and
only if there exists a point g € J ~(p) — {p} such that I*(x) > I *(g)forall xe I~ (p).
(It is worth examining these various aspects of 4.16 in relation to Fig. 23.) Note
that if ¢ « pin 4.16, then there are closed trips through p (exercise) .

4.18. ProprosITION. If M is strongly causal at p, then M is future-distinguishing
at p.

Proof. Suppose I*(p) = I"(q) for some g # p. As in the final argument in the
proof of 4.16, let P2p and Q3 q be disjoint and open. Choose xeI*(p) N P.
Then g « x. Choose y in Q with g « y « x. Then p « y. Thus there is a trip from
p to x via y ¢ P, which intersects P in a disconnected set. This holds for arbitrarily
small P, so strong causality must fail at p. (The result can also be proved rather
rapidly using 3.19 and 4.16. This is left as an exercise for the reader.)

4.19. Remark. We have seen that various degrees of causality restriction on a
space-time are possible (e.g., in order of decreasing restrictiveness : strong causality,
future- and past-distinction, future-distinction, absence of closed causal trips,
absence of closed trips). Each of these restrictions may be regarded as “‘reasonable”
from the physical point of view since if any one of the conditions is violated for a
space-time M, it is possible to modify the metric of M, in some compact region,
by an arbitrarily small amount, so as to produce a space-time with closed trips.
However, there are many other causality restrictions also with this property.
A number of inequivalent conditions, each more restrictive than strong causality,
have been suggested by Carter [24]. For example, given an integer n = 2, we may
require that for any selection of n distinct points p,, p,, -+, p, € M there should
exist arbitrarily small neighborhoods Q;3 p;,i = 1, - - -, n,such that it is impossible
to find n trips y,,y,, -+, 7, for which the past endpoint of y, lies in Q; and the
future endpoint of 7, lies in Q;,, if i # n and in Q, if i = n. Examples (due to
Carter) can be constructed which violate this condition for one value of n but
satisfy it for all smaller values of n. One such can be obtained by taking the n-fold
covering space of the space-time of Fig. 23. (For another example see Fig. 25.)

In the face of this, it is fortunate that a “maximally restrictive” causality con-
dition exists which is acceptable on physical grounds. This is Hawking’s notion
of stable causality [25]. A space-time is stably causal if it cannot be made to
contain closed trips by arbitrarily small perturbations of the metric. The precise
formulation of this is best carried out in terms of the bundle of metrics over a
manifold, but I shall not enter into this here. I merely remark that Hawking has
shown that the condition of stable causality is equivalent to the existence of a
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FIG. 25. Delete the linest = 2k — 1,(—1)x + 12 0,k = 1,2,---,n, and the regions t < Oand t = 2n
Jfrom Minkowski 2-space. Identify (0, x) with (2n,(—1)"x). The resulting space-time violates
Carter’s causality condition for the value n, but satisfies it for (n — 1) (if n 2 2)

global time function on M, that is to say, a scalar field ¢ on M whose gradient
Vit (i.e., g~ ! dt) is everywhere timelike and future-pointing [25].

4.20. PROPOSITION. If p « q and p < r, then there exists a point w such that
WL g, wxrandp < w.

Proof. If p « g and p « r, then pe I (q) ~ I (r), which is open. Hence there is
a point win I (q) n I~ (r) lying just to the future of p on some trip from p.

4.21. PROPOSITION. If x, p, q, r, s€ M are such that x €{p,q) N {r,s), then there
exist u,ve M such that xe (u,v> < {p,q)> N {r,s>.

Proof. We have x « ¢, x « s, so by 4.20 there is a point v with x < v, v < ¢,
v « s. Similarly, using the time-reverse of 4.20 we obtain a point u with u « x,
pPLU, Fr<u

4.22 DEerFINITION. The property of 4.21, together with the fact that any pe M
is contained in some set {u, v), shows that the sets of the form {u, v) constitute
a base for a topology on M. This is called the Alexandrov topology. (That is to say,
an open set in the Alexandrov topology is a union of sets of the form {u, v).)

4.23. Remark. This topology is sometimes called the interval topology of the
space-time (cf. Pimenov [26]). The terminology I am adopting here follows
that of Kronheimer and Penrose [18]. A. D. Alexandrov appears to have been
the first to suggest basing the topological properties of a space-time solely on its
causality structure [27]. The necessary property of 4.20, together with its
time-reverse, and the fact that each point has a chronological successor and
predecessor, is called fullness in the context of causal space theory (cf. 2.21)
[18].

Clearly the Alexandrov topology agrees with the manifold topology in the case
of Minkowski space. It is also clear that the two topologies must differ for any
space-time with closed trips. (For example, if M is the portion 0 £t £ 1 of
Minkowski space, where (0, x, y, z) is identified with (1, x, y, z), then every set
{u, v is the whole of M.) The next theorem gives the complete condition that the
two topologies should agree {18].
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4.24. THEOREM. The following three restrictions on a space-time M are equivalent :

(a) M is strongly causal;

(b) the Alexandrov topology agrees with the manifold topology ;

(€) the Alexandrov topology is Hausdorff.

Progf. First, (a) implies (b). To show this, we need only establish that by virtue
of (a), every open set in the manifold topology is open in the Alexandrov topology.
(The fact that Alexandrov open sets are open in the manifold topology is obvious
by 4.7.) Now suppose strong causality holds at p and P is an open set (in the
manifold topology) containing p. We have to show that an Alexandrov neighbor-
hood containing p exists in P. Let N be a simple region in P containing p and let
Q2 p be a causally convex open set contained in N (which exists because of the
strong causality). By 4.9 we have u, ve Q such that pe {u,v)y = Q. Butif {u, v),
# <u, v) this can only be because of the existence of a trip from u to v which leaves
and re-enters N. Thus it would have to leave and re-enter Q also, violating the
causal convexity of Q. Thus, pe (u,v) = Q < P as required.

The fact that (b) implies (c) is obvious, since M was assumed to be Hausdorff in
its manifold topology. It remains to show that (c) implies (a). Suppose that (a)
is false and strong causality is violated at p. Let ¢ < pbe asin 4.16. I shall show that
any Alexandrov neighborhood of p must intersect every Alexandrov neighborhood
of g, so that the Alexandrov topology fails to be Hausdorff, as required. Let pe
{x,u) and ge (v,w). We have g < p « u, so ge I (u). Choose y just to the
future of g, giving ¢ < y, ye I (u) and ye{v,w). By 4.16 we have x « y, so
ye<{x,uy also. Thus {x,ud> N {v,w> # .

4.25. Remark. It is worthwhile to examine Fig. 23 again to see how the failure
of the Hausdorff condition for the Alexandrov topology arises here. In fact the
example in Fig. 23 illustrates the fact that it is the Hausdorff condition (i.e., distinct
points have disjoint neighborhoods) rather than, say, the weaker T, condition
(i.e., for every pair of distinct points, a neighborhood of each exists which does
not contain the other) which is relevant. Actually, the Alexandrov topology of
Fig. 23 is T; (but not Hausdorff), as is not hard to verify. An example whose
Alexandrov topology is not T, (and therefore also not Hausdorff) but for which
the space-time is still both future- and past-distinguishing is illustrated in Fig. 26.

Notice that in each of Figs. 21, 23, 26 there is a null geodesic along which strong
causality fails. This is actually one aspect of a general result concerning the region
of strong causality failure in a space-time (cf. 4.31). I shall devote the remainder
of this section to certain properties relating to the structure of this region.

4.26. DEFINITION. A point pe M, through which passes a closed trip, is called
vicious (Carter [24]). Denote the set of all vicious points of M by the letter V.
We clearly have

V=) {x,x).

xeM

Each (x, x) is open, by 4.7, so V is open.
4.27. PROPOSITION {24]. If {x, x> N {y,¥) # &, then {x,x> =y, y). Hence,
V is a union of disjoint open sets of the form {x, x).
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N

FIG. 26. This example is both future- and past-distinguishing but its Alexandrov topology is not T,.
For, any Alexandrov neighborhood of p contains r. The Alexandrov topology is therefore not
Hausdorff either, the space-time being not strongly causal

Proof. Suppose ze<{x,x> N {y,y>. Then if wey,y), we have x xz « y
KWKy« zgx,s0we{x,xy. Thus {y, y> = (x,x). Similarly {x, x> < {y,y>,
$0 (X, x) =<y, ).

4.28. PROPOSITION. 0V = ) 0{x,x).

xeV

Proof. This follows since the {x, x)’s are open and disjoint.

4.29. PROPOSITION. Strong causality fails at each point of dV.

Proof. Obvious from the definition in 4.4.

4.30. PRrROPOSITION. If future-distinction fails at p ¢ V, then p lies on a past-endless
null geodesic y = ~V along which future-distinction fails (so 1*(q) = I*[y] for
each gevy).

Proof. Suppose M is not future-distinguishing at p (¢V) and consider oI*(p).
Since p¢ 1 (p) (p ¢ V)and I*(p) = 1*(p) we have, by 3.4, pe dI*(p). Furthermore,
I*(p) = I*(q) for some q # p. We can apply 3.19 to B=dI*(p) = dl*(q) to
obtain a null geodesic y on dI*(p) which extends indefinitely into the past from
its future endpoint p. (We can clearly choose the Q of 3.19 to avoid one or other
of p,q.) Now if rey we have r < p, so I17(r) > I'*(p); also we have re dI*(p) so
I*(r) < I*(p) (and r¢I*(p)). Thus I*(r) = I*(p), so future-distinction fails at
each point of y. Furthermore r¢ I*(p) = I*(r), so r ¢ V, whence y = ~V.

4.31. THEOREM. Suppose strong causality fails at p. Then at least one of the
Jollowing holds:

(@) there are closed trips through p (i.e., pe V);

(b) p lies on a past-endless null geodesic on 0V, at every point of which future-
distinction fails ;

(c) p lies on a future-endless null geodesic on 3V, at every point of which past-
distinction fails ;

(d) p lies on both a past-endless null geodesic on 8V along which future-distinction
fails and a future-endless null geodesic on 0V along which past-distinction fails,
except that at p itself M may be both past- and future-distinguishing ;
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(e) an endless null geodesic y through p exists, at every point of which strong
causality fails, such that if u and v are any two points of y with u < v, u # v, then
u < x and y < v together imply y « x.

Proof. Let N be a simple region containing p and let Q; = <u;, v,>y be a nested
sequence of neighborhoods of p converging on p. Then (as in the proof of the
lemma in 4.16, cf. Fig. 24) for each i (=1,2,3, ---) there exists a trip y; from a
point g; € Q,, which first exits N at a point b, € N, which re-enters N for the last
time at a point ¢; € dN, and which terminates with future endpoint d;€ Q,. Let
the pair (b, ¢) be an accumulation point of (b;, ¢;) on 6N x 0N (which is compact).
Then pb and cp must be future-causal (since pb; and c,p are all future-timelike).
Now, various possibilities can occur. Suppose first that each of pb and cp is time-
like. Then, for some i, b;e I *(p) and c;€ I (p), s0 p « b; « ¢; « p. This is case (a).
Secondly, suppose instead that pb is timelike but cp is null. Let x € (p, b>y. Then
¢ « x, s0 for some large enough i we have ¢; « x together with x « b;. But b, « ¢;,
so x e V. This yields {(p,b)>y = V, whence pe V. Assume p ¢ V, since the other
possibility has been already considered. Then p e 0V. Now any y € {c, x) satisfies
p < x « b; « ¢; « y for some large enough i, whence I*(c) = I*(p). But ¢ <p
implies I7(c) o I*(p), so I*(c) = I*(p) and past-distinction fails at p. Further-
more, the y of 4.30 may be chosen to be the maximal extension of pc into the
past. We have y = ~ V, by 4.30. But gey implies I*(q) = I*(p), so any point
ze {g,x) must lie on a trip from p, giving x' « z for some x" € {p, b) . It is clear
from 4.27 that every point of {p, b) lies in the same set {x, x)>,$0 z « X € X’ « z,
giving z € V. Thus {q, x> < V, whence g € 8V as required for (b).

Thirdly we can suppose that pb is null but ¢p is timelike. This is the time-reverse
of the previous case, so we obtain (c) (or (a)). Fourthly, suppose that both c¢p and pb
are null, but that their directions differ, so that ¢b is timelike. Any point x € {c, b>y
satisfies x « b; « ¢; « x, for some i, showing that {¢,b)y = V. Thus
pe{c,byy = V. We may suppose p ¢ V, otherwise we have (a) again. Thus pe dV.
Choose any point r on pb (with p # r 3 b). Consider the possibility r € V. In this
case some closed trip from r to r exits from N first at w, say. Then rw is future-
timelike and so is pw. It is clear from 4.27 that every point of {c, b>y belongs to
the same set {x, x>, so there are trips from w to points arbitrarily close to b.
It follows that we are in the situation leading to case (b) above, where w takes
over the role of b. Similarly, if a point of ¢p lies in V, then we have case (c). So
we may suppose that cp and pb each lie on V. Then any point p’ between ¢ and p
on cp, if used in place of p, will satisfy the conditions leading to case (b) above, p'b
being future-timelike. Similarly if p” lics between p and b we get case (c) above with
p” in place of p. It follows that we are in situation (d) for the point p.

Finally, suppose that cp and pb are both null, being portions of a single endless
null geodesic y. Extend each of ¢, d; maximally as a timelike geodesic #;, where the
portion from ¢; in N terminates at ¢;€ dN. Similarly extend a,b, maximally as a
timelike geodesic {;, with portion fb;in N, where f,€ dN. We have f; « b, « ¢; < ¢;
showing that strong causality fails at b and ¢ and at every point between b and ¢
on bc also. We can repeat the construction with b in place of p and p in place of ¢
to obtain a new point b’ in place of b. If b’ ¢ y we have p « b’ and we could have
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chosen some point b” € N on the trip from p to b’ in our original construction,
in place of b. (We would have b’ e I*(b") so I *(b”) would contain infinitely many
of the b!.) This would give us case (b) again. Thus we may take b’ € y. Repeating the
construction indefinitely in the future and past we see that strong causality failure
may be assumed at every point of y and examining the construction, we see that
for large enough i the timelike geodesics #,and {; can be used to supply the required
points in the neighborhoods of points of y. That is to say, if u, ve y (taking u < v
and u # v) and if U and W are neighborhoods of u and v, respectively, then n,
has a point m; in U and {; has a point n; in W, such that n, <« m;. If u « x and
y < v, choose U c I (x) and W< I*(y). Then y <« n, « m; < x.

4.32, Remark. The theorem in 4.31 yields only a part of the information which
can be inferred concerning the structure of the region of strong causality violation
(cf. Carter [24]). But let me leave it at that, save to illustrate the situation with a
number of examples. In Fig. 27 each of the situations (a), (b), (¢), (d) is illustrated

-

(d)

FIG. 27. For points situated as indicated, different parts of 4.31 are illustrated

in a simple example. (Case (¢) has already been illustrated in Figs. 21, 23, 26.)
In Fig. 28, p satisfies (d) twice over, but not (e) since the last part is not satisfied.

F1G. 28. Here p illustrates part (d) in 4.31 twice over, but not (¢), despite the existence of two endless null
geodesics of strong causality failure through p

Figure 29 is apparently similar but now both (d) and (e) hold (each twice over).
Here, V consists of a single {x, x) whereas in the previous example V was the
union of two such sets. In Fig. 30 p satisfies (b), (c) and (d), but not (¢). An example
which shows that not every point of ¥ need satisfy (b), (¢), or (d) is given by the
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F1G. 29. Apparently similar to Fig. 28, but now (¢) holds at p as well as (d) (each twice over)

F1G. 30. Here p illustrates all of (b), (¢), (d) in 4.31, but not ()

following. Let M be the portion of Minkowski space given by || < 1 where we
delete (x + a)? + y* + 22 £ (1 + a? t=1and (x — a)?® + y*> + 22 < (1 — a)?,
t = —1 and where we identify (1,x,y,z) with (—1, —x, y,z)} whenever these
inequalities on x, y and z are not satisfied. If a > 0, then the portion of the null
geodesic t — x = y = z = 0O for which |t| £ a, consists of points of dV for which
() holds but not (c) or (d). On this geodesic we have (b) holding if t < —a and (c)
holding if t > a.

The following example, due to Carter [24], shows that the region of strong
causality violation can be compact even though there are no closed causal trips.
Here M is described by coordinates (t, y, z) of unrestricted range but with (¢, y, 2)
identified with (¢, y + m, z + an) for each pair of integers (m, n). This gives M the
topology R! x §! x S!. The metric is taken to be

ds* = (cosht — 1)*(dt* — dy?) + dtdy — dz*.

Strong causality failure occurs on the torus t = 0. In fact M is neither future-
nor past-distinguishing on ¢ = 0, although this fact is by no means self-evident.
It is not possible for a space-time to be compact without possessing closed trips,
as the following proposition shows (cf. also [26], [28], [29]).

4.33. ProPOSITION. If M is compact it contains closed trips.

Proof {18],[5]. Since every Alexandrov neighborhood {x, y> is open in the
manifold topology, it suffices to show that compactness in the Alexandrov topology
implies the existence of closed trips. Assume that M can be covered by a finite
number of sets {x;, y;>. Then for each y; there is a j such that y,e {x;,y;>, so
y; < y;. Thus we have an infinite succession: y, « y;, « y;, < ---. Since there
are only a finite number of y;’s, there must be repetitions in the list and therefore
closed trips in M.
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Domains of Dependence

5.1. DEFINITION. Let S be an achronal subset of M. Define the future and past
domains of dependence of S and the total domain of dependence of S, respectively,

as follows:
D*(S) = {x|every past-endless trip containing x meets S},
D~(S) = {xlevery future-endless trip containing x meets S},
D(S) = {x|every endless trip containing x meets S}.

Clearly D(S) = D*(S)w D (S).

5.2, Remark. A number of examples illustrating domains of dependence are
given in Figs. 31-34. The significance of this notion from the point of view of
physics is, roughly speaking, that D(S) represents the region of space-time through-
out which the physical situation would be expected to be determined, given suitable
initial data on an achronal set S. This is assuming that the local physical laws are
of a suitable “‘deterministic” and “causal” nature (being locally *“Lorentz co-
variant,” so that the bicharacteristics of the partial differential equations involved
should be null geodesics in the space-time). One can envisage that physical

D(S)4

F1G. 31. The domains of dependence of an achronal set S

FIG. 32. The effect on D*(S) of removing a point from the manifold M
39
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D*(S)

S

FIG. 33. If one point is removed fron the achronal set S, the effect on D*(S) is similar to that which would
have been obtained by removing the point from the manifold M

FIG. 34. If S is the (geodesically complete) spacelike hypersurface t = —(x* + y* + 2> + 1)*/* in
Minkowski space, then D¥(S)is (x*> + y* + 2?2 < — 1 S (X + 2 + 22 4+ 2

information can be carried along timelike curves. Thus if a past-endless timelike
curve, not meeting S, can terminate at a point p (€I 7[S]), then we can imagine
that information can be carried in from infinity along y to influence the physics
at p, this information being not taken account of by the data on S. This is essentially
the situation which is prevented from occurring if pe D*(S). These statements
are all somewhat vague. But the physical significance of D*(S) is not really what
will concern us here. These sets are useful as mathematical constructs quite
independently of their interpretation.

We may ask whether a definition of domain of dependence given in terms of
timelike curves rather than trips would be equivalent to the one given in 5.1. For
an achronal (or closed) S the definitions are in fact equivalent (proof: exercise),
but not if we do not restrict § in some such way (cf. Fig. 35). It does not appear
to be generally useful to define D*(S) when § is not achronal (and the physical

"D'(S)' ) ::D‘o(s)- )
using timelike using trips

F1G. 35. If S is neither achronal nor closed, it can make a difference whether trips or timelike curves are
used in the definition of D*(S)



DOMAINS OF DEPENDENCE 41

motivation largely disappears in such cases). For simplicity, one may also normally
restrict attention to the case when S is closed. (One could argue that physical
initial data should be continuous, so its value on an achronal set should define
its value on the closure of the set, but this would rule out the use of Dirac é-functions
as initial data, so the issue is not clear.)

One could also use causal trips (or causal curves) to define domains of
dependence (and there would be some “physical” justification for this). This would
lead to certain minor differences from the theory described here. Some other
authors have preferred this alternative choice (cf. Hawking [2]-[5]). My restriction
of attention to trips rather than causal trips in 5.1 has the effect of keeping the
theory relatively simple since D*(S) is then always closed provided § is closed
(cf. 5.5(a)). As a general rule, properties based on trips are easier to handle than
those based on causal trips.

I shall tend not to go into quite so much detail henceforth, as in the earlier
sections. (In fact, a readable account by Geroch [30] of much of the material of
this section already exists in the literature.) It is hoped that the reader will by
now have gained some facility with the basic techniques, so less detail may be
necessary than before.

5.3. DerFiniTION. The future, past, or total Cauchy horizon of an achronal
closed set S is defined as (respectively):

H*(8) = {x|]xe D*(S) but I'*(x) n D*(S) = &},
H™(S) = {x]xe D™ (S) but I (x) n D~(S) = &},
H(S) = H*(S)u H™(S).
The definitions of H*(S) can be restated as:
H*(S) = D*(S) — IF[D*(8)].

5.4. Remark. The future Cauchy horizon of S may be described as the future
boundary of the future domain of dependence of S. In the example of Fig. 34,
H*(S)isthesett = —(x2 + y? + z%)/? and H~(S) is empty. If § is the hyperplane
t = 0 in Minkowski space, then both of H*(S) are empty. In these cases H(S) has
no point in common with S. However it is often the case that H(S) and S do have
points in common. An example is given when S is the past light cone t = —(x?
+y* + z%)Y2 in Minkowski space. Then H*(S) =S and H™ ()= . If S is
the null hyperplane t = x, then H*(S) = S = H™(S). If S is the ball x? + y?
+2z2<1, t=0, then HES) is (x> + y* + 292 + t = 1,0 £ 41, its inter-
section with S being the sphere x> + y?> + 22 =1, t = 0.

5.5. PROPOSITION. Let S « M be achronal and closed. Then:

(@) D*(8) is closed,

H*(S) is achronal and closed,

S <= D*(S),

x e D*(S) implies I~ (x) n J*[S] = D*(S),
aD*(S) = H*(S)uUS,

— N

(b
(c
(d
(

[§

~—
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(f) oD(S) = H(S),

(&) I'[H*(S)] = I*[S] — D*(§),

(h) int D*(S) = I*[S1~I7[D*(S)].

Proof. Exercise. Second exercise: which of (a), (b), ---, (h) do not require S
to be closed? Find “‘corrected”’ versions of 5.5 for the remaining cases, when S is
not closed, in terms of the following concept.

5.6. DerINITION. Let S be achronal. The edge of S is defined by:

edge S = {x|every neighborhood Q of x contains points
y and z and two trips from y to z just one of
which meets S}.

Clearly § — § < edge § < §, so if we require S to be closed, we have edge S < S.
Ifedge S = J we call S edgeless. If S is edgeless it must be closed.

F1G. 36. An achronal closed set S and its Cauchy horizon H*(S), with the intersection between the two
indicated

5.7. Remark. In the case when S is closed, a slightly different formulation of
the definition has been given elsewhere [6], namely: xeedge S if and only if
xe S and if y is a trip from y to z containing x, then every neighborhood of y
contains trips from y to z not meeting S. The equivalence of this to 5.6 (S closed
and achronal) is evident. (The definition in 5.6 is a corrected version of that given
in [9]: a relation r « p « q on page 191 of that reference should be pe (r,q),.
Otherwise difficulty arises with examples such as Fig. 23. If S is the line along which
strong causality is violated, then, in this example, S should be edgeless.)

The intuitive meaning of edge S is illustrated in Fig. 37. As another example,
if § is any spacelike straight line in Minkowski space, then edge § = S. In fact,

R

f- \edge s /

FIG. 37. An example of an achronal set and its edge, in Minkowski 2-space (here S is not closed)

edge S is the set of limit points of S not in S, together with the set of points in
whose vicinity S fails to be a topological 3-manifold. This is made somewhat
more precise in the next proposition, taken in conjunction with 3.17.
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5.8. PROPOSITION. Let S < M be achronal. Then p ¢ edge S if and only if there
is a (connected) open set Q, containing p, such that S n Q is an achronal boundary
in the space-time manifold Q (where (5 is regarded as an achronal boundary in Q).

Proof. It is clear from the definition in 5.6 and from 3.15, that if S~ Q is an
achronal boundary in the space-time Q, then p € Q implies p ¢ edge S. Conversely,
suppose p ¢ edge S. Then there exists a neighborhood P of p such that if y < P
is a trip from a point y € P to a point z € P, then any other trip in P from y to z
must meet S if and only if y does. Choose a simple region N, in P, containing p.
Choose y and z in N so that pe (y, z)y, (cf. 4.9) and set @ = <y, z>,. Then either
every trip in N from y to z meets S between y and z, or else every trip in N from
y to z misses S N Q. In the latter case S N Q = J and the required condition is
satisfied. In the former case set

FQ = U <q7Z>N'

qeSnQ

This is clearly a future-set in the space-time Q. Furthermore, any point xe Q
lies on the boundary, in Q, of F, if and only if it lies on § (as follows from the
achronality of S, by consideration of trips from y to z via x). Thus S » Q is an
achronal boundary in the space-time Q.

5.9. COROLLARY. Any achronal boundary in M is edgeless.

5.10. PROPOSITION. If S is achronal, edge S is closed.

Proof. Immediate from 5.8.

5.11. PropoOSITION. If S is achronal, then:

(a) I*[edge S} D*(5) = @,

(b) edge S = edge H*(S).

Proof. Exercise.

5.12. THeEOREM [4], [9]. Let S be achronal. Then every point of H™(S) — edge S
is the future endpoint of a null geodesic on H*(S) which is either past-endless or
else has past endpoint on edge S.

Proof. The idea is to use 3.19. For this we need a suitable future set. Define
W = I1*[S] — D*(S). In fact we have W = I*[H*(S)] by 5.5(g) (which actually
does not require S to be closed) showing that W is a future set. However, it will be
better to think of W in a different way. We have: xe W if and only if there is
both a past-endless trip « terminating at x and not meeting S and another trip
B from a point of § to x (see Fig. 38). It is readily seen from this that W is open
and that I *[W] < W, S being achronal, so by 3.6, W is a future set: [ '[W] = W.
Now H*(S) is a part of the achronal boundary oW. (Actually H*(S) = oW
n D*(S).) The remaining part of ¢W is 8I*[S] — S. In fact, since OW N W = &
it must be that for x e W either the a-trip or the f-trip defined above fails to
exist. If x € 3 *[S] — S, then the a-trip exists but not the g-trip. If xe H*(S) — S,
the f-trip exists but not the a-trip. If x € S, the f-trip becomes degenerate and the
a-trip fails to exist.

Now suppose pe H*(S) — edge S. We can choose a simple region Q3 p so
that dI*[S1NnQ =S Q. If pe H*(S) — S, we do this by choosing Q inside the
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F1G. 38. The future set W consists of all points which lie both on a past-endless trip not meeting the
achronal set S and also on a trip with past endpoint on S. The achronal boundary oW consists
partly of 01" [S] — S and partly of H*(S)

future of a B-trip from a point of S to p. If pe S — edge S, we do this by taking 0
within a set {y, z)y (cf. proof of the proposition in 5.8), inside which every trip
from y to z meets S. The implication is that every point of § n I'*[S] is the future
endpoint of a possibly degenerate f-trip. But any x € I *(p) must lie in W and so
is the future endpoint of an a-trip which must meet éQ ~ I*[S] in some point q.
Now g is the future endpoint of a S-trip also, so ge Wn dQ <« W — Q. Thus
3.19 is satisfied and we have p as the future endpoint of a null geodesic 7 on H*(S).
We could repeat the argument at any past endpoint of #. So (by the achronality
of H*(S)) we can extend # into the past along ¢0H *(S) either indefinitely or until
it meets edge S.

5.13. DerFINiTION. A Cauchy hypersurface for M (sometimes called a global
Cauchy hypersurface) is an achronal set S for which D(S) = M.

5.14. PROPOSITION [9]. If S is achronal and intersects every endless null geodesic
in M in a nonempty compact set, then S is a Cauchy hypersurface for M.

Proof. If D(S) # M, then (by 5.5(f)) either H*(S) or H™ (S) must be nonempty.
Suppose H*(S) # (. Then there is a null geodesic on H*(S) whose maximal
extension y must, by hypothesis, intersect S in a nonempty compact set. We can
follow y m S into the past along y until we reach edge S (since y N S is compact).
We obtain the desired contradiction by showing that edge S must be empty.
This will follow from 5.9 if we can show that S = éI*[S]. Now S < 8I*[S] since
S is achronal. Suppose pe dI *[S] but p¢S. Choose an endless null geodesic ¢
through p. Since n n S is closed (being compact), a point g exists on n between
p and n.n S and we must have g€ dI*[S]. Any null geodesic { through g with
a different direction from that of # can meet 61" [S] only at g. But this contradicts
the hypothesis, since g ¢ S.

5.15. Remark.If Sis both achronal and closed, then we can replace the condition
“in a nonempty compact set’” in 5.14 by some weaker condition. But if S is not
assumed to be closed, this condition, or something like it, is necessary. For example,
if S is the union of the regions t = 1,x2 + y? +z2>1and 0 <t < 1, 2 — x2
—y? — z2 = 0 of Minkowski space, then every endless null geodesic meets S,
but not every endless trip. Hence D(S) # M. On the other hand, if § is smooth and
spacelike everywhere, then we need not assume it is closed in order to deduce
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that it is a Cauchy hypersurface merely from the fact that it meets every endless
null geodesic (exercise).

5.16. PROPOSITION. If S is achronal and x € D*(S) — H*(S), then every past-
endless causal trip with future endpoint x must intersect S — H*(S) — edge S
and must contain a point in 17[S].

Proof. If xe S the conclusion is trivial. So assume xeint D*(S) = D*(S)
~ H*(S) — S (cf. 5.5(¢); but S need not be closed here). Then there is a point
y, €I (x) n D*(S). Let 7 be a past-endless causal trip with future endpoint x.
Cover y by a locally finite system of simple regions N, N,, ---. Refer, now,
to Fig. 39. We have x = x, € N;, for some i,, and we can choose y, to be in N;,.

F1G. 39. Diagram for the proof of 5.16

Let x, be the past endpoint of the connected component of y N N;, to x,, so
X, € ON; withx, < x;. Thus x, « y,. We have x, € N;, for some i, # i,. Choose
y2 € N, with x, « y, « y;. Let x3€ 0N, be the past endpoint of the connected
component of y 0 N;, to x,. Then x5 € N;, for some i5 # i,. Continuing indefi-
nitely in this way we obtain - - « y; « y, < y, with y, € D*(S) and with y,, ,y,
future-timelike in N,, r = 1,2, --- . Since no single segment of the causal trip y
can enter and leave one N; more than once, and since the {N,} is a locally finite
system, it follows that the x;’s must proceed indefinitely into the past along y
(i.e., with no point x’ € y preceding all of the x;’s). Hence the y;’s must lie in infi-
nitely many of the N/s. It follows that --- U y,y3 U y3y, U ¥,y; constitutes
a genuine past-endless trip # (and not a *“‘bad trip,” cf. 2.1). Since y, € D7 (S),
n must meet S at z, say, with z on the segment y,y,_,, say. We have x, « z, so
X, ¢ D*(S). Thus some point w of y lieson D™ (S). The casesw € H*(S)or we edge S
cannot occur, since, by 5.11(a), w < x would imply we H*(S) u ~D*(S). (See 5.5
and its extension when § is not closed.) Thus we S — H*(S) — edge S. Also,
x, e l7[S].

5.17. PROPOSITION. Let S be achronal. If yeint D*(S), then J~(y) n I*[S]
=J () nint D (S) and J~(y) N J*[S] = J ()~ D*(S).

Proof. Exercise.
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5.18. ProposITION [4]. If S = M is achronal and peint D*(S), then M is
strongly causal at p.

Proof. Suppose, first, that some point of D*(S) lies on a closed trip 5. Such an
n is past-endless and so must meet S in some point w. But this gives w « w con-
tradicting the achronality of S. Thus D*(S)~ V = ¢ (c¢f. 4.26), so int D¥(S)
NV = . Now suppose strong causality fails at some point p € int D*(S). By
4.31 there must be an endless null geodesic y through p with the property that if
gey with g < p, q # p, then every xeI*(q) and ye I (p) must satisfy y « x.
(This is because all cases (a), (b), (¢), (d) of 4.31 require p e V, leaving us only with
case (e).) By 5.16, y must contain some point g € I "[S]. Since I7[S] and int D*(S)
are both open, we can find xelI* ()~ I7[S] and yelI(p)nint D*(S). Then
y « x. But also a trip exists from a point of S to y (y € D*(S)) and another trip
exists from x to a point of S (x € I "[S]). The resulting violation of the achronality
of § yields the required contradiction.

5.19. Remark. Examples can be constructed in which strong causality fails on
dint D*(S). In Fig. 40 strong causality fails on a part of §; in Fig. 41 it fails on a
part of H*(S). In each case the space-time is the same as that of Fig. 23.

F16. 40. Strong causality can fail at some points in S (<@ int D*(S) here)

N

7

FIG. 41. Strong causality can fail at some points in H*(S) (< 0 int D*(S) here)
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5.20. PRrOPOSITION [4]. If S is achronal and x € int D*(S), then J~(x) n J*[S]

is compact.
Proof. Set A = J~(x) n J*[S], with x eint D*(S). Suppose 4 is not compact.
Then there is a sequence of points ag, a,, 4,, - - - € A with no accumulation point

in A. The idea is to use this sequence to construct a past-endless trip y with future
endpoint in D*(S) but which does not meet S, thus supplying a contradiction.
Cover A with a locally finite system of simple regions {N;}. Refer, now, to Fig. 42.
Suppose x = x4 € N;,. We can choose y,eI*(x) n D*(S) n N;,. Now a;€ J7(x),

F1G. 42. Diagram for the proof of 5.20

so causal trips exist from each a; to x,. Infinitely many of the g; do not lie in N, ,
so these causal trips finally meet N  in a set of points which have an accumulation
point z,€ dN;,. We have zyx, future-causal, so z,y, is future-timelike. Now
zo¢ N;,, s0 zo€ N;, for some i; # i;. Choose x, and y, on the portion of zyy,
in N;, with zy < x; < y; « yo. Infinitely many of the a;’s must lie in I~ (x,)
(since I ~(x,) is open), so again there must be a point z, € dN;, which is an accumu-
lation point of final intersections of causal trips from a;’s to x,. We have z,x,
future-causal, so z, y, is future-timelike. Proceeding exactly as before we construct
X,,ypwithz; « x, « y, « y, and then x5, y;, etc. This yields a sequence of points
Yo» Y1s Va2, - With -+ <y, « y; € yo. The union of segments:--- U y3y,
U Y,V U ¥y, constitutes a genuine past-endless trip y since (by the locally
finite nature of {N,}) the y;’s cannot accumulate in a single N; to produce a “‘bad
trip.” Now y cannot meet S since otherwise we should have some y;eI"[S]
which would be inconsistent with a; « y; and a;e J*[S] (whence y,eI*[S))

because S is achronal.
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5.21. ProposITION. If S is achronal and yeint D*(S), then I (y)u D*(S)
= J7(y) " D*(S).

Proof. We have I"(3)) n D*(S) = J (y) n D*(S) = I"(y) n D*(S). But J(y)
N D*(8)=J (y)nJ*[S], which is compact (by 5.20) and therefore closed.
The result follows.

5.22. PROPOSITION. If S is achronal, then strong causality holds throughout
int D(S).

Proof. Exercise.

5.23. PROPOSITION. If S is achronal and u,veint D(S), then J*(u)n J (v) is
compact.

Proof. Exercise.

5.24. DEFINITION. A space-time M is said to be globally hyperbolic if and only
if M is strongly causal and every set J*(u) n J~(v), with u,ve M, is compact.
(A slightly different, but equivalent definition is more usual, stating the compact-
ness of the space of causal curves connecting u to v; see 6.8.)

5.25. THEOREM [30]. M is globally hyperbolic if and only if a Cauchy hypersurface
exists for M.

Proof. If M = D(S) for some achronal S, then D(S) = int D(S), so global hyper-
bolicity follows from 5.22 and 5.23. For the converse, see Geroch [30].

5.26. THEOREM [30]. If a Cauchy hypersurface S exists for M, then M is homeo-
morphic to R x S. Furthermore, if f: R x S — M is the homeomorphism, we can
arrange it so that f(t, S) is a Cauchy hypersurface for each t and f(R, s) is a timelike
curve for each s € S.

Proof. See Geroch [30].
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The Space of Causal Curves

6.1. DEFINITION. Let K denote the subset of M consisting of all points at which
M is strongly causal. By 4.13, K is open. Let € denote the set of all causal curves
lying in K (cf. 2.25). Let A denote the set of all causal trips in K and .7 denote
the set of all trips in K. We have

T X ¥
Let C be a subset of K and let A and B be subsets of C. Define

% (A, B) = {y|yis a causal curve in C from a point of 4 to a point of B}.

The notation %(A4, B) will also be used for the above, but with *““in C” deleted
(i.e., with K replacing C).

I shall be interested in these sets particularly when C is compact and when
A and B are closed. The idea then will be to topologize € in a natural way, so
that any such %.(4, B) becomes compact. A length function !:%4.(A4,B)— R
(“proper time”) will be defined and shown to be upper semicontinuous. Thus
the compactness will imply that [ attains a maximum® value on 4(4, B). Under
suitable circumstances this maximum is attained by a geodesic without conjugate
points (cf. 1.18). This fact forms the basis of most of the “singularity theorems”
referred to in the introduction.

6.2. DEFINITION. We topologize € by taking as a base for open sets in € the
sets of the form %R(P, Q) where P, Q and R are open sets in N with P,Q < R. It
is clear that the sets ¥x(P, Q) do form a base for a topology since if y e €x(P, Q)
and ye€%g(P’, Q'), then ye%x(P", Q") < Gx(P, Q) N Gx(P,Q), where R” = R
NR,PP=PnP,Q"=0nQ.

6.3. Remark. This simple definition of a topology on % has been used by
Geroch [30]. It agrees with an intuitive notion of *“C°-topology” on curves,
whereby no heed is paid to smoothness or to the directions of tangents (cf. Fig. 43).
This is necessary if, for example, we desire causal curves to arise as limits of trips
or of causal trips, and so that % can be locally compact [35]. However we are
only at liberty to use this definition because we have excluded the region of strong

! A feature of hyperbolic normal manifolds is that lengths (for timelike curves) are locally maximized
by geodesics rather than minimized (which is the familiar situation for positive definite spaces). This is
related to the familiar “‘clock paradox”: accelerated observers generally experience shorter time
intervals than unaccelerated ones.

49
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F1G. 43. The topology assigned to 6 allows smooth curves to arise, for example, as a limit of a sequence of
(causal) trips. The direction of the tangent vectors is of no consequence and need not approach
a limit

causality failure (or at least the region of closed causal trips) from our considera-
tion. If we had not done so, a slightly more sophisticated definition would have
been required [20].

6.4. PROPOSITION. A~ is dense in € and F is dense in A.

Proof. Let ye ¥ and let # = %x(P, Q) be a neighborhood of y in € (P, 0, R
being open in M). We can cover y by simple regions contained in R and use these
to obtain a causal trip # contained in £ (cf. the definition in 2.25 of a causal curve).
The construction is indicated in Fig. 44 and is straightforward. If y e 4" and
R = 6x(P’,Q’) is a neighborhood of y', we can obtain a trip #'€ &' as follows.

F1G. 44. How to approximate a causal curve by a causal trip, as required for 6.4

Let y" have past endpoint p and future endpoint g. Choose re Q' with g <. r.
We have p <y ¢, whence p <, r, so we can take # from p to rin Q'

6.5. THEOREM. If C is a compact subset of K and A and B are closed subsets of C,
then 6.(A, B) is compact.

Proof. 1 do not have a nice simple argument, but I feel sure that one must
exist (exercise: find one!). The argument I do have is rather untidy so I give it
somewhat informally. The idea is to show that any infinite sequence of causal
curves y; € 4-(A4, B) has an accumulation curve y € 4.(A, B). Since A is compact,
an accumulation point p of the past endpoints of the y,’s exists in A. Select a
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subsequence of the y;’s whose past endpoints converge on p. B is compact so an
accumulation future endpoint g exists. Select a subsequence with future endpoints
converging on this also. Cover C with a finite number of local causality neigh-
borhoods. One of these, N, contains p = p,. Select a subsequence of the resulting
y;’s converging also on an accumulation point p, € N, of points at which the
y/’s leave Ny. Then p; lies in another member of the covering, say N,. Repeat
the argument to obtain p,, p;, etc. We end up with a finite sequence p = pg, p;,
P2.P3, > Px = q of limit points of points on our resulting subsequence of
ys, with p,_; < p;, i = 1,2, ---, k, each consecutive pair lying in the closure of a
local causality neighborhood N;_,. To construct a causal curve from p;_, to p;
we now proceed as follows. We may suppose that N, has been chosen small
enough so that the hypersurfaces r = const.,, in a Minkowski normal coordinate
system with origin p,, are spacelike. Let the value of the t-coordinate of p, be &
Consider the intersection of the y;, subsequence with the hypersurface t = 3e.
We obtain an accumulation point r, ; and a new subsequence of y,’s converging
on this also. Repeat, with p, in place of p, and p,; in place of p, to obtain r, ,
between p, and p, and a new subsequence converging on this also. Repeat for
P3,Pa, -+ » Px = ¢- Then return to N, and repeat the construction with ¢ = }e
and then with t = 3¢, to obtain ry 4, and rg ,,, respectively. And so on. The
construction gives us a point r, for each real number between 0 and k whose
binary expansion « terminates. We have r, <r; if « < . (The r,’s constitute a
causal chain [18].) Each r, is an accumulation point of the curves of some
subsequence of the y;’s and hence of the curves of the original sequence. The
closure ) {r,} is the desired accumulation causal curve.
a

6.6. COROLLARY. Let S be achronal and suppose strong causality holds at each
point of S. Let x eint D*(S) and y, ze int D(S). Then (S, {x}) and €({y}, {z}) are
compact.

Proof. Result follows from 5.18, 5.20, 5.22, 5.23.

6.7. Remark. If we replace “int D*(S)” by “D*(S),” or “int D(S)” by “D(S),”
the result becomes untrue. (Exercise: find counterexamples.)

6.8. Remark. By virtue of 6.6, we see (cf. 5.24, 5.25) that in any globally hyper-
bolic space-time:

€({x},{y}) iscompactforall x,yeM.

In fact, had we given a suitable definition of the topology of € for regions of M
where there are closed causal trips, this property gives essentially Leray’s original
formulation of global hyperbolicity [20].
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Geodesics as Maximal Curves

7.1. DEFINITION. Let y be a causal trip. Define the length (ic., “proper time”)
of v to be:

k
ly) = Z {(D(Pi—npi)}l/z,

where successive segments of y are pop,, PiP2> - ** » Di— 1Pk (€ach segment p;_ p;
for definiteness, lying within a simple region N;) and where ® is the world function
defined in 2.13. (We have ®(p;_,, p;) = 0 since p,_,p; is causal) This definition
simply assigns the obvious meaning of length, according to the space-time metric,
to any causal trip. Clearly I(y) > 0 unless y consists entirely of null segments.

7.2. PROPOSITION. Let N be a simple region and let p,qe N with pq future-
causal. Then if n is the causal trip pq and n' is any other causal trip in N from
p to g, we have l(n) > l(n).

Proof. If pq is null, the result is obvious (and vacuous) from 2.19. Let pg be
timelike and choose Minkowski normal coordinates (¢, x, y, z) for N, with origin
at some point r, in N, lying to the past of p along the extension of pg. Choose

new coordinates for the region N given by t > (x? + y? + z%)/? as follows:
T = (62 — x2 — y? — )12,
xr=X x2.Y x3_Z
t’ t t

Since the curves X!, X2, X* = const. are timelike geodesics through r, and
T = const. are spacelike hypersurfaces orthogonal to these (cf. 2.15), where
T (= {®(r, )}'*) measures the length (i.e., proper time) on the geodesic from r,
we have what is known as a synchronous coordinate system for N (i.e., a Gaussian
normal coordinate system in which the geodesics are timelike, being orthogonal
to a system of spacelike coordinate hypersurfaces). The metric therefore has the
form

ds? = dT? — y,,dX*dXP?, a,$=1,2,3,
where at each point of N, (74p) 18 a positive definite matrix. Since
s dx* dx#\ 12
) = 1 — Yog———=]| 4T,
) Lo ( KFTy dT)
53
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where T, and T, are the T-coordinates of p and g, respectively, it is clear that the
maximum is uniquely attained when the X*-coordinates are constant, this giving
the geodesic .

7.3. Remark. Clearly the proof in 7.2 would work equally well for any
“rectifiable’ causal curve n’ (in the sense that the length integral exists) from p to q.
However, every causal curve is “rectifiable” as the following definition shows.

7.4. DEFINITION. Let p < g and let y be a causal curve from p to g. Let & = {x;}
denote a finite sequence of points along y, beginning at p = x, and terminating
at g = x,, such that any consecutive pair x;, x;,,; are contained in a simple
region N; which also contains the portion of y from x; to x;, ;. We have x; < x;,
sO x;X;,, is future-causal. The symbol p, denotes the causal trip xyx; U x,x,
U ---U X, _X,. Let Z be the set of all such allowable sequences . The notations
&« & and U & = £ have their obvious meanings. Clearly

lye) 2 ly) if S8

by repeated application of 7.2. Also, given ¢, £’ € E we have
I(yz) < min{l(y2), Ky),
where £” = ¢ U ¢ Finally, define 1: 4({p}, {q}) — R by
Iy) = i€n=f {l2)}.

The infimum clearly exists since i(y) = 0 and so assigns a meaning to the concept
of the length of any causal curve with two endpoints. This definition also extends
tothe whole of 4, i.e., to past- or future-endless causal curves if we allow the value oo
for I(y). Thus, I:4 - R U {oo}. I shall only be concerned with causal curves
having both past and future endpoints, however. Then we can regard [ as a map
1:6(A,B) > R, forany A= C,B= C,C = K.

7.5. THEOREM. The map |:6-(A, B) — R is upper semi-continuous.

Proof. We have to show that /™! applied to any set in R of the form (— co, a)
is open in 6(A4, B) (cf. [35]). This will follow if we can show that given any causal
curve y = C, from pe 4 to qe B, satisfying l(y) < a, there is a neighborhood £
of 7 in € such that any y’ € # also satisfies l(y') < a. Suppose i{y) = b < a. Choose
¢eZ (cf. 7.4) such that [y,) < b + 3(a — b). Suppose that the x; are chosen
close enough to cach other along y so that each consecutive pair x;,x,,,,
i=0,---,k— 1is contained in some local causality neighborhood L;, L; = N;
(cf. 4.11) and, furthermore, so that L; intersects L; only if j = i + 1 (see Fig. 45).
Since the length of a geodesic in N, is a continuous function of its endpoints
(cf. 2.14) it follows that we can choose a local causality neighborhood U, of each
x; with Uy, e L, U;,, = L,,i=0,1,---, k — 1) small enough that any causal
geodesic from a point of U, to a point of U, , ; must differ in length from I(x;x; )
by less than |a — b|/2k.

Set

Vi=U .2,

yeU;
zeUita
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‘\"/-iﬂ

Fi1G. 45. Diagram for the proof of 1.5

Then V; < L;, by the causal convexity of L; (cf. 4.4), whence V; intersects V; only if

j=i+ 1l
Define P=V,, Q =V,., and R =\ V,. Suppose y €%(P,Q). Then y’

threads through the ¥ consecutively. Furthermore, y* must pass through each U,.
This follows from the causal convexity of U, since y’ meets V;_, n V; in a point
which must (from the definition of the ¥’s) lie in some p, g with p, g € U,. Thus,
y’ contains points xp, X}, - -+, x; with x; e U;, so that the causal trip n = xx
U X[ X5U -+ -UX, _ X, satisfies ) < b + 4(a — b) + kx(2k)”'(a — b) = a. Hence
I(y") < a as required.

7.6. Remark. Though upper semi-continuous, the map [ cannot be continuous.
The illustration in Fig. 43 makes this clear. In an extreme case we could envisage
a timelike curve of well-defined nonzero length (e.g., a timelike geodesic) arising
as a limit of a sequence of causal trips each of whose segments 1s null so that the
total length of each is zero.

7.7. COROLLARY.! If A and B are closed subsets of a compact set C, throughout
which strong causality holds, then there is a causal curve in C from a point of A to
a point of B which maximizes the lengths of such curves.

Proof. This follows at once from 6.5 and 7.5 (cf. [35]).

7.8. PROPOSITION. Let A, B and C be as in 7.7 and let y € €.(A, B) maximize
l(y). Then y < int C implies that y is a causal geodesic (possibly degenerate).

Proof. If y < int C, we can cover y with a system of simple regions contained
in C. The fact that the intersection of y with each simple region must be a geodesic,
follows from 7.2 and 7.4. Hence y itself must be a geodesic.

! The use of trips in the various developments leading up to and establishing this result arose from
a discussion with Robert Geroch.



56 SECTION 7

7.9. Remark. We have seen in 7.2 that a causal geodesic is locally a curve of
maximum length; also that under suitable circumstances a curve of maximal
length is a causal geodesic. However, it is not always true that a given causal
geodesic from p to ¢ is the curve of maximal length from p to g, or even that such
a maximal curve exists in all cases. For example, we can refer to Fig. 7 (“anti-
deSitter space”) in which two points a and x satisfy a « x, but no geodesic
connects them. A timelike geodesic connects ¢ to b, on the other hand, but one
can see that this does not actually maximize the length of causal curves from
¢ to b. For there are many geodesics from a to b. If we choose one of these which
does not continue our choice of geodesic from ¢ to a, we obtain a trip from ¢ to b
with a “joint” at a. By “cutting the corner” at the joint, to produce a trip with
three segments, we clearly obtain a trip of greater length than that of the original
geodesic from ¢ to b. The crucial fact here is that this geodesic from ¢ to b contains
pairs of conjugate points.* This concept was briefly introduced in 1.18: if y is a
geodesic and V is a nontrivial Jacobi field defined on y which vanishes at two
distinct points p and g on y, then p and q are called conjugate points on y.

A rough intuitive picture of why a causal geodesic is not maximal if it contains
a pair of conjugate points (not at its endpoints) is obtainable from Fig. 46. Here
the conjugate points p and g occur between aand b on y. We can crudely imagine a

conjugate
points

F1G. 46. A pair of conjugate points on a (causal) geodesic y may be thought of as a pair of intersection
points of y with a ‘‘neighboring geodesic” y' to y

2 A discussion of the physical significance of conjugate points on a timelike geodesic in relation to
the “clock paradox™ has been given by Boyer [34]. For example, the world-line of the earth as it
revolves once around the sun, from one event p to a later event g, with the same spatial location as
p, is a geodesic. Nevertheless the time-interval experienced on the earth is less than that which it would
have been, had the earth remained at the same spatial location from p to g, this being not a geodesic
from p to g. The reason for this is that the earth in orbit encounters a conjugate point to p when it is
half way from p to g (at the far side of the sun). The maximum time from p to ¢ is in fact attained by a
geodesic (without conjugate points) representing the free-fall outwards from p, returning inwards
towards the sun to g.
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“neighboring geodesic’’ y’ to connect p to g, having length essentially the same
as that of the portion of y from p to ¢. Then if we proceed from a to p along y,
from p to q along 7/, and finally from q to b along y, we obtain a causal trip from
a to b whose length is essentially the same as that of y. But this causal trip has
two “joints,” so we can “‘cut the corners” to obtain a new trip from a to b of
length greater than that of y. However, this argument is very crude as it stands
(and is even fallacious to some extent). It is not easy to make it rigorous by
“putting in ¢&’s.” In Fig. 47 the situation is given in a little more detail near g,

o
] 02;‘_
| : J.
__|_.__ —
q __ O3
conjugate

geodesic
segments of
equal length

FIG. 47. The points p and q are conjugate on y; p is kept fixed and y varied to a location y' nearby, such
that pq’ and pq have equal length. The orders of separation are as indicated, with O, standing
Sor O(")

for the reader who wishes to pursue this line of argument further. A rather different
(and more satisfactory) way of approaching the problem will be given in 7.27. But
before considering this, it will be useful to introduce the following slightly more
general concept.

7.10. DerFINITION. Let y be a timelike geodesic meeting, a smooth spacelike
hypersurface T orthogonally at the point p. Then a point g is said to be conjugate
to X on vy if and only if a nontrivial Jacobi field exists on y which vanishes at p
but not everywhere along y, and which arises from a 1-parameter system of a. p.
geodesics which are all orthogonal to X at their intersections with X (see Fig. 48).

7.11. Remark. If y had been a spacelike geodesic, the situation would have been
essentially the same, but with X a timelike hypersurface. However, for a null
geodesic y the situation is rather different. This is because if a null geodesic y
meets a null hypersurface £ orthogonally at one point p, then £ has to contain y
—or at least some finite portion of 7 in the neighborhood of p, in case y extends
beyond the boundary (“edge”) of Z. (This is a familiar property of null hyper-
surfaces, which we shall return to in 7.13. We can choose X to be one of a family
of null hypersurfaces, defined by u = const., with u a scalar field on M. We have
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caustic —»

point conjugate
to Z on ¥

FIG. 48. A point conjugate to a spacelike hypersurface X on a timelike geodesic y orthogonal to X. The
locus of such conjugate points as y varies is called a caustic

T°T, = 0, where the vector T, = V,u is null and normal to the hypersurfaces;
therefore also tangent to the hypersurfaces: T°V,u = 0. The T’s are tangent to
null geodesics lying on these hypersurfaces since T°V,T, = T°V,V,u = T*V,V,u
= T°V,T, = iV(T*T,) = 0. Exercise: write this simple calculation out using the
index-free notation!) Thus it becomes somewhat confusing to talk about a point
of y being conjugate to the hypersurface X since the conjugate points would have
to lie on X itself or on ¥ extended. Actually the conjugate points would all be
singular points of X (extended), constituting a cuspidal 2-surface (an (n — 2)-
surface if M is n-dimensional) called the caustic of Z (see Fig. 49).

We can regain the usefulness of the conjugate point-to-surface concept for a
null geodesic y if instead of referring to a hypersurface L we use a spacelike
2-surface of “cross-section” of X. (This would be an (n — 2)-surface if M were
n-dimensional.) Null geodesics orthogonal to spacelike 2-surfaces constitute a
situation which it is often useful to consider in relativity theory. The null geodesic
generators of a null hypersurface X are, for example, orthogonal to any spacelike
“cross-section” of X. Also, if an achronal set S happens to be a smooth spacelike
hypersurface, it may well be that edge S is a smooth spacelike 2-surface, the union
Suwedge S = S constituting a manifold with boundary embedded in M. (For
example, let S be t =0, x? + y*> + z? < 1 in Minkowski space, edge S being
t =0, x> + y? + z? = 1) Then, in the neighborhood of edge S, the hypersurface
(with boundary) 81 *[S] ~ S is smooth and null, being generated by null geodesics
which meet edge S orthogonally (since edge S is locally a smooth spacelike “cross-
section” of I *[S]). (In the above example, I7[S] — S is t = 0, x? + y? + 22
=(t + 1)®, being generated by null lines Ix + my +nz —1=¢t=0,x:y:z
= l:m:n, where [, m,n are constant with /> + m? + n?> = 1.) A related situation
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FiG. 49. The null hypersurface X is generated by null geodesics one of which isy ; A is a spacelike 2-surface,
being a cross-section of X, so v is orthogonal both to X and to A. A point on y conjugate to A lies
on the caustic, at which T becomes locally singular

It is worthwhile to examine B = 0I*[A} in this example. Only the lowermost “‘spike™ of the
caustic can lie in B. The rest of the caustic lies in I1*[A). The part of X which is contained in
B consists of that up to and including the cross-over region, but not beyond it

is that arising from an achronal set S which happens itself to be a smooth spacelike
2-surface (e.g, t = 0,x? + y* + z2 = 1 in Minkowski space). Then S (=edge S)
is locally the intersection of two null hypersurfaces, these being, near S, portions
of 8I*[S]. (In this second example these are x2+y2+22 =@+ 1% t=0and
x2 4+ y? 4+ 22 =(t — 1)) 1 = t = 0.) In fact, these two null hypersurfaces (extend-
ed) are simply the hypersurfaces traced out by the null geodesics which meet S
orthogonally.

7.12. DEFINITION. Let y be a null geodesic meeting a smooth spacelike 2-surface
A orthogonally at the point p. Then a point g e y is said to be conjugate to A on y
if and only if a nontrivial Jacobi field exists on y which vanishes at p but not
everywhere along 7y, and which arises from a l-parameter system of a. p. null
geodesics which are all orthogonal to A at their intersections with A.

7.13. DerFINITION. There is an alternative way of thinking about conjugate
points which is useful in some contexts. Suppose, that y, is a timelike geodesic
orthogonal to a spacelike hypersurface X. We consider the congruence of timelike
geodesics (y) which meet ¥ orthogonally. We are concerned only with those
members of the congruence which lie in some neighborhood Q of y4 in M. Then
provided y, does not extend too far away from X, we can choose 0 small enough
that the unit future-pointing tangent vectors to the geodesics (y) constitute a
smooth vector field T in Q. Since unit tangent vectors to geodesics are parallelly
propagated along the geodesics we have T°V,T? = 0 (that is, V;T = 0); further-
more, the rotation of (y) vanishes: V,T, — V,T, = 0 (i.e, d(gT) = 0). This last
property follows from the fact that we can set T, = V,t(gT = dt), where the scalar
field ¢t measures the distance (i.e., “time”’) along y from X, this being a consequence
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of the fact that the connecting vectors from points of y to points of neighboring y’s
(each parameterized by ¢) must be orthogonal to T all along y, by 1.16, since they
are orthogonal at X. Other quantities of interest concerning the congruence are
the divergence § = V,T° (0 = div T) and the shear V,T, + V,T, — 20(g,, — T.T;),
(e, 2sym VT — 36(g — gT ® gT). We shall be concerned with the divergence
particularly, later.

The parameter ¢ can be used as a time coordinate in a synchronous coordinate
system (cf. the proof in 7.2), the metric taking the form

ds® = dt* — q,; dx* dx?, a,f=1,2,3,

where the components g,, constitute a symmetric positive definite (3 x 3)-matrix
(of functions of t,x!, x2, x). To set up this coordinate system, we let x!, x?, x>
be arbitrary coordinates on X, which we label ¢t ="0. Then the coordinates in the
rest of Q are defined by taking x* constant along each y and ¢ to measure distance
from X along 7. Each hypersurface t = const. will be orthogonal to each y. The
construction given in the proof of 7.2 is really a limiting case of this in which the
hypersurface T degenerates into a point p, the congruence (y) now consisting of
timelike geodesics through p. The region in which the synchronous coordinate
system is valid must now exclude the point p. The significance of all this, as we shall
seein 7.26,is that the synchronous coordinate system is always valid, near vy, until
a conjugate point to X, or p, is reached.

When y, is a null geodesic, orthogonal to a spacelike 2-surface Ay, we must
proceed somewhat differently. We can choose a null hypersurface Q, to be
generated by null geodesics (y) orthogonal to A, (and belonging to the system
continuous with y,), contained in some neighborhood @ of y, in M. The fact that
the hypersurface Q, constructed in this way is null (provided y, does not extend too
far beyond A,) follows from considerations similar to those described above. (All
connecting vectors are orthogonal to the tangent vectors to y, these being null, so
the normal vectors to £, must be null.) We can construct a suitable congruence of
null geodesics by allowing A, to vary smoothly in some 1-parameter family (A),
parameter u, with u = 0 giving A,. (We must move A in a direction not contained
in Q,, i.e., not orthogonal to (y)). This gives us a 1-parameter family of null hyper-
surfaces (Q), and we extend the system of null geodesics (y) to the congruence of
null geodesics in Q which generate (). We can choose our tangent vectors to ()
to constitute the null vector field T, given by T, = V,u (gT = du), regarding the
parameter u as a scalar field on M, defined in Q, where u = const. gives the hyper-
surfaces (). The tangent vectors T are then parallelly propagated along (y):
T°V,T® =0 (VT =0), cf. 7.11; and they are rotation-free: V,T, — V, T, = 0,
(d(gT) = 0). The divergence of (y) is given by 6 = V, T = div T.

An analogue of a synchronous coordinate system gives the metric in Q in the
form ds* = 2du(dv + Jadu + b, dx*) — r,, dx* dx*, A,pu=2,3.
Here, v is chosen so that v = 0, u = const. give the surfaces (A) (withv =0 =u
giving Ay) and v is the affine parameter on y corresponding to T. The remaining
coordinates x!, x? are chosen so that each geodesic y is given by u, x!, x? = const.
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This leads us to a metric in the above form, where the b, and r,, are functions of
u,v,x', x, the r;, constituting a symmetric positive definite (2 x 2)-matrix. A
coordinate system of the above type will be called a null coordinate system. A
particular case is obtained if we allow the surfaces (A) to degenerate into points.
Again, as we shall see in 7.26, the significance of all this is that the coordinate
system remains valid in the neighborhood of y, until a conjugate point to A, is
reached.

7.14. PROPOSITION. With the notation of 7.13, the divergence 6 = V,T* satisfies
DA = 0A, where D = T°V, (= V) and where A is proportional to an element of
volume on Z if y is timelike, or an element of surface area on A if y is null, A being
traced out by the geodesics (y) (€., Lie propagated along y) as Z or A varies.

Proof. If y is timelike, set up a synchronous coordinate system as in 7.13, and
put Xo =T = 0/dt, X, = 0/0x*, a = 1,2,3. If y is null use a null coordinate
system as in 7.13 and put X, =T = 8/dv, X, = 8/ou, X, = 0/0x*, A =2,3.
The 4-volume spanned by the coordinate vectors X,,---, X, is given by
(detg,)'* = A,, where g, are the components of the metric tensor. In the two
cases this matrix is

1 -000 01 0 0
0 1 a b, b,
or s
0 —qy 0 b,
—-r
0 0 by g

respectively, so setting A = (—det q,;)"> or A =(—detr,,)"?, in accordance
with the conditions of the proposition, we clearly have A, = A in each case.
Finally, the formula DA, = #A, may be seen in various ways, for example, by
calling upon the well-known classical formula

{ . } = %(a/axa) logl det gKII .
po

7.15. Remark. It should be observed that the concept of the T field, in the
neighborhood of the causal geodesic y, can still make sense even beyond a region
of breakdown of the synchronous or null coordinate system. All the vectors
Xy, -+, X5 introduced in the proof in 7.14 can be defined everywhere along y,,
even beyond conjugate points, since the X are just particular Jacobi fields. Thus
we can define A all along 7 (since the g, are just the scalar products: g,, = g(X,,
X.)). We have to be careful about differentiating further, however, to obtain 6,
say, as the next result shows.

7.16. PROPOSITION. With the notation of 7.13 and 7.14, a point w is conjugate to
T or Ayony,if and only if A = 0 at w. Furthermore, 0 exists and is continuous at all
points of yo at which A # 0, while 6 becomes unbounded near any point w at which
A = 0, with 8 large and positive just to the future of w, and large and negative just
to the past of w on v,.
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Proof. A conjugate point w to Z, or A, is given when a nontrivial Jacobi field
Y on y, vanishes at wand connects y, toa “‘neighboring geodesic” y also orthogonal
toX,or A,. Clearlysucha Y'must beanontriviallinear combinationof X, - - -, X5.
Thus, the vectors X, - -+, X; must be linearly dependent at the point w, and this
fact actually characterizes w as a conjugate point. The linear dependence can be
expressed as A = 0, so the first part of 7.16 is established. The second part follows
from the relation D log A = 6 of 7.14.

7.17. Remark. It is clear that we can allow Z, or A, to degenerate to a point, p,
in 7.16 and the result remains true. Note that at p itself each of X, and X; vanishes
and, if y is timelike, X, also vanishes at p. Wherever X, = 0 we must have
DX; #0 (with D =V, = T°,), because otherwise we should have X,=0
along y, (cf. 1.15). It follows that A ~ > at p if y, is timelike and A ~ v? at pif y,
1s null.

7.18. Remark. By the same token we have A ~ (t — t,)" or (v — v,)" at any
point at which r linearly independent combinations of the X ; vanish (i.e., at which
there are 4-r linearly independent X ’s). Such a point is said to have conjugate
degree r (with respect to Z,, A,, or p). Notice also that conjugate points (to Z,,
A, or p) on y, must be isolated, that is, they cannot accumulate at any point
(conjugate or otherwise) of y,. At worst, we can have r conjugate points coincident
atonepoint of y, (r < 3ifyis timelike, r < 2ifyisnull). Thisis the intuitive meaning
of the conjugate degree.

7.19. PROPOSITION. If v, is timelike, then, with notation as in 7.13, 7.14, taking
A > 0 for simplicity, we have

D2A1/3 g %RabTaTbAlﬂ,
while if v, is null, we have

D?A'? < 1R, T*T*A'2.
(The Ricct tensor is defined by R, = R®,,

Proof. Ricei identities applied to T°V,V,T? — T°V,V,T" give Raychaudhuri’s
equation [31], [32], [9]):
DO = R, T*T® — V,T"V,T*
=R, T'T" — (V,T)(V'T")

(using T°V,T® = 0,V,T° = 0,V,T, = V,T; cf. 7.13). Suppose T is timelike. Then
express Raychaudhuri’s equation thus:

Do — %92 = RabT“Tb — SabS“b,
where
Sab = Sba = VaTl; - %B(gab - I;TI;)’

is the shear tensor. From the fact (S,,T* = 0, S,,T® = 0) that S, has all its com-
ponents in the (negative definite) spacelike hyperplane orthogonal to T, we
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obtain S,,5* = 0. Furthermore, by 7.14, D?A'® = D(6A!?) = JA'3(D8 — 16%)
so the result for timelike y, follows. Now suppose T is null and rewrite Raychaud-
huri’s equation :
D§ — 36 = R, T°T® — 0,0,

where

Ogp = Opg = Va’];? - %eyaw
with y,, (= y,,) defining the negative definite intrinsic 2-metric of A,, that is,

8ab = T:JNb + Na’II; + Vabs

where T and N are null vectors orthogonal to y, normalized so that T°N, = 1.
We have y,,y® = 2, y*V,T, = 6. We have

aaboab = GCdUabgcagdb
= O-Cdoabyca))db g 0’

by the negative definiteness of the 2-metric, so the required result for the null case
follows similarly to the timelike case above.

7.20. Remark. In an n-dimensional space-time the result of 7.19 would be still
valid, with 1/(n — 1) replacing 4 and 1/(n — 2) replacing 4. The proof is essentially
unaffected.

7.21. Remark. In a ‘“‘physically reasonable” space-time subject to Einstein’s
equations it is normally supposed that R, T°T® < 0, since this inequality repre-
sents a very reasonable restriction on the energy-momentum density of the
matter. This is called the energy condition (or the strong energy condition if the
inequality is required to hold for all timelike Tand called the weak energy condition
if the inequality is required merely for all null T). Then 7.19 can be strengthened
to D*A'”? < 0 along timelike geodesics and D2A'? < 0 along null geodesics,
provided A > 0. This has the effect, of prime importance for the singularity
theorems, that once the geodesics of the congruence (y) start to converge, then
they must, within a fintte value of the affine parameter, inevitably converge to a
caustic (A = 0)—assuming that y, is a complete geodesic (see Fig. 50). This is
called the Raychaudhuri {31] (or Raychaudhuri-Komar [32]) effect within the

\ A% orat

torv

——

(affine parameter)

conjugate )
point here

F1G. 50. The Raychaudhuri effect
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context of relativity theory. For manifolds with a positive definite metric, essen-
tially the same effect had been studied earlier by Myers [33]. Even in the absence of
an energy condition an effect of this type persists, as the next proposition shows.

7.22. PROPOSITION. Let a = % if y, is timelike and a = 5 if y,, is null (with notation
as in 7.13, 7.14) and let A* = A, DA® = — B, at some point a on Y. Suppose that
aR T°T* < k?* throughout the segment ab of y,, where the parameter value (t or v)
at b, on y,, is greater than that at a by at least the amount k™' tanh ™~ '(Ak/B). Then
A = 0 somewhere on ab.

Proof. We compare the equation D*A* < k?A* with the explicit solution of the
equation D?x = k%x for which x = A, Dx = — B at a. Then the result is straight-
forward.

7.23. Remark. The result 7.22 shows that, on a complete geodesic y,, if we can
be sure that B > Ak (taking A4, k = 0), then y, encounters a caustic somewhere to
the future of a.

7.24. PROPOSITION. Let y be a causal geodesic from p to q. Suppose that either

(a) g is conjugate to p on y,
or

(b) y is orthogonal at p to a smooth spacelike hypersurface T (y timelike) or

2-surface (y null) and q is conjugate to X on .

Then there is a first (i.e., pastmost) point ¢, to the future of p on y, with property (a)
or (b), respectively, and which varies continuously with p and y (Z being kept fixed in
case (b), for simplicity).

Proof. The existence of a first conjugate point ¢’ is a consequence of the fact
(cf. 7.18) that conjugate points are isolated. Now we saw, in 1.15, that a Jacobi
field on y is a solution of the equation D*V* = R4, ,T°V*T". The solutions of this
equation are continuous functions of the initial data for V, namely of the values
of Vand DV at any one point of y. Furthermore, if we allow R%,,; to vary, then the
solutions will vary continuously as functions of R%, , also. Allowing y to vary has
the same effect as this. What we have to show is that this implies that conjugate
points vary continuously also.

Let r be a point of y = y, which lies on the caustic of a congruence (y) containing
0. With the notation of 7.13, 7.14 we have A = 0 at r. By 7.18, A3 ~ (¢t — t,)'3
or(t — t,)**ort — t,,ifyyis timelike,and A2 ~ (v — v,)"?* orv — v, if yis null.
In every case the power is not greater than unity. Thus we can invoke 7.22 to show
that for any sufficiently small interval of y, about r we can choose points a and b
in the interval and ensure that A = 0 somewhere between a and b, for any con-
gruence (7) which differs sufficiently little from (y) and for any R®,,; which differs
sufficiently little from R%;. To supply all the details for this argument would be
rather tedious (exercise).

7.25. Remark. The essential feature of 7.24 is the fact that conjugate points on a
causal geodesic cannot annihilate one another as the circumstances vary con-
tinuously. For this reason, 7.22 was invoked. The quantity A cannot approach
zero too closely, so to speak, without actually becoming zero. It is curious that the
argument as given depends onan inequality resulting from the negative definiteness
of the appropriate orthogonal subspace. It would be interesting to know whether
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the result for spacelike geodesics is even true. That is, can conjugate points on a
spacelike geodesic annihilate one another?

7.26. PROPOSITION. With notation as in 7.13, if y, contains no conjugate point
(to 4, Ay, or p), then there is a synchronous coordinate system if y, is timelike, or a
null coordinate system if y, is null, which is valid in some neighborhood of v,, or,
in the case of geodesics through p, in some neighborhood of the portion of y, to the
future of p.

Proof. By 7.24 we are assured of the existence of a neighborhood @ of y, which
does not intersect the caustic of () (except at p, in the case of geodesics through p)
and indeed throughout which the congruence is actually defined (and one-
valued). 1t should be clear that the construction given in 7.13 then actually yields
coordinate systems of the required type. (Exercise: supply the details!)

7.27. THEOREM (4], [9]. Let y be a causal geodesic from p to q.

(a) If y contains an internal point which is conjugate to p (or to q), then thereis a
causal trip from p to q of length strictly greater than that of pq (so if y is null, then
P < g).

(b) Let £ be a hypersurface if y is timelike, or a 2-surface if vy is null, which is
spacelike and contains p, such that either y is not orthogonal to X at p, or else it is
orthogonal and there is a conjugate point to  between p and q on y. Then there is a
causal trip from a point of X to q, of length strictly greater than that of pq (so if y is
null, then g e I*[Z)).

Proof. Let r be the first conjugate point to Z, or to p, beyond X. Suppose, first,
that y is timelike and (in the case (b)) orthogonal to Z. Then by 7.26 we canset up a
synchronous coordinate system & valid in some neighborhood of the portion of y
between p and r; and valid also at p, in case (b). In each case the t coordinate
measures distance from p (case (a)) or X (case (b)) along timelike geodesics through
p (case (a)) or orthogonal to X (case {b)). Choose a point w on ¥, to the future of
r, which is close enough to r that the segment rw contains no pair of conjugate
points. Then if ' precedes r on y and is close enough to r, the point r’ will not be
conjugate to w either. Thus, the segment r'w is covered (except for w) by another
synchronous coordinate system & whose ¢ coordinate measures minus the
distance to w. The vectors T% = V“ are future-pointing unit timelike vectors,
with T = T along y = y,. (T* = V°t; ie, T =g 'dt = d/6t) Now since r is
conjugate to p or to Z, there is a nontrivial Jacobi field X on y = y, which vanishes
at r and arises from a 1-parameter subfamily, containing y,, of the congruence (y)
of time-lines of €. We have DX # 0 = X at r. So X has the form X = (¢, — 1)Y,
where t, is the t-value at r (i.e., the distance I(pr)). Y is a smooth vector field defined
along y, which is orthogonal to y, and which is nonvanishing at r, so Yis spacelike
atr: Y°Y, < 0. Now

Y'YV, V,t = Y'YV, T,
=(t, — )7 'Y’XV,T,
= (to — )7'Y’DX, = (t, — 7' Y*D{(t, — )Y}
= —(to — 97" V*Y, + ¥'DY,
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near r, this being large and positive just to the past of r on y,. Thus, at a point '
sufficiently close to r, just before r on y, we shall have

YUYV v (t — 8 > 0
since V,V,i is well-behaved