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Abstract The geodesic equation of the Alcubierre warp spacetime is converted into
its non-affinely parametrized form for a detailed discussion of the motion of particles
and the visual effects as observed by a traveller inside the warp bubble or a person
looking from outside. To include gravitational lensing for point-like light sources, we
present a practical approach using the Jacobi equation and the Sachs bases. Addition-
ally, we consider the dragging and geodesic precession of particles due to the warp
bubble.

Keywords Alcubierre warp spacetime · Non-affinely parametrized geodesics ·
Relativistic visualization

1 Introduction

Spacetimes associated with exotic matter like the Morris-Thorne [1] wormhole and the
Alcubierre warp metric [2] offer a rich field for studying geodesics in extreme appli-
cation cases of general relativity. While geodesics in the Morris–Thorne wormhole
can be handled numerically in a quite straightforward manner, the time-dependent
Alcubierre spacetime yields numerically unstable integration of the geodesic equa-
tion, the equation for the parallel transport of vectors along timelike geodesics, and
the equations to determine the gravitational lensing effect caused by the warp bubble
if those equations are used in their standard parameterization.
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510 T. Müller, D. Weiskopf

This paper deals with the warp metric of Alcubierre. We study in detail the influence
of the warp bubble on null and timelike geodesics. For that, we first transform all
the relevant equations mentioned above into their non-affinely parametrized form.
Here, we use the coordinate time as non-affine parameter. This makes the equa-
tions numerically more practical and more robust than their affinely parametrized
form, especially in the neighborhood of the warp bubble’s rim. Beside the paths
of light rays, we also discuss the frequency shift and the effect on a bundle of
light rays resulting in gravitational lensing of point-like objects. Furthermore, we
explain what an observer would actually see inside or outside the warp bubble using
four-dimensional ray tracing. By means of the parallel-transport equation, we show
how particles initially at rest will be carried along and undergo geodesic preces-
sion.

A detailed discussion of the paths of null geodesics and their frequency shift as
observed from inside the Alcubierre warp bubble, in particular the emergence of an
apparent horizon behind the warp bubble, was given by Clark et al. [3]. The influ-
ence of a warp bubble passing between the observer and a distant object onto the
visual distortion was studied by Weiskopf [4] using four-dimensional raytracing. In
our paper, we will pick up the ideas by Clark et al. and Weiskopf making them numer-
ically more robust and adding the gravitational lensing aspect and the motion of par-
ticles.

There are several papers that discuss the physical nature of warp drive spacetimes,
and we can give only a few references [5–8]. To study geodesics in detail, we refer
the reader to the interactive visualization tool GeodesicViewer [9].

The structure of this paper is as follows. In Sect. 2, we briefly review the Alcubi-
erre warp metric and present the local reference frames of a comoving and a static
observer. In Sect. 3, we study the trajectories of light rays and how they influence the
view of an observer that either co-moves with the warp bubble or stays static in the
outside. We also discuss the frequency shift and the lensing effect caused by the warp
bubble.

Finally, we investigate the influence of the warp bubble on particle trajectories in
Sect. 4. The technical details of the conversion and the integration of the non-affinely
parametrized equations are relegated to the Appendix.

An accompanying Java application that shows the view of the stellar sky from
inside the warp bubble, high-resolution images of this article, as well as some movies
that show the visual distortion of the warp bubble or the motion of particles can be
downloaded from http://www.vis.uni-stuttgart.de/relativity.

2 Warp metric and local reference frames

The Warp metric developed by Miguel Alcubierre [2] can be described by the line
element

ds2 = −c2dt2 + [dx − v f (r)dt]2 + dy2 + dz2, (1)
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Detailed study of null and timelike geodesics 511

where c is the speed of light, v = dx(t)/dt ,

r(t) =
√
(x − x(t))2 + y2 + z2, f (r) = tanh(σ (r + R))− tanh(σ (r − R))

2 tanh(σ R)
,

(2)

and x(t) is the worldline of the center of the warp bubble. The parameters R > 0 and
σ > 0 in the shape function f (r) define the radius and the thickness of the bubble.
The Christoffel symbols are listed in “Appendix A”.

For the warp metric, we can define two natural local tetrads e(i) = eμ(i)∂μ that
represent the local reference frames of either a comoving or a static observer. The
comoving tetrad is defined by

e(0) = 1

c
(∂t + v f ∂x ), e(1) = ∂x , e(2) = ∂y, e(3) = ∂z, (3)

and the static local tetrad reads

ê(0) = 1√
c2 − v2 f 2

∂t , ê(1) = − v f

c
√

c2 − v2 f 2
∂t +

√
c2 − v2 f 2

c
∂x , ê(2) = ∂y,

ê(3) = ∂z . (4)

It is obvious that the comoving tetrad is valid everywhere, whereas the static tetrad is
defined only in the region of the spacetime where v2 f 2 < c2. Both tetrads fulfill the
orthonormality condition gμνeμ(i)e

ν
( j) = η(i)( j) with η(i)( j) = diag(−1, 1, 1, 1), which

means that these tetrads locally define a Minkowski system.
Throughout the paper we consider a warp bubble that moves with constant velocity.

Thus, the center of the warp bubble follows the worldline x(t) = vt . Furthermore, we
set {c} = 1 for numerical examples. Then, times and distances are given in seconds
and light-seconds or years and light-years, respectively.

3 Null geodesics

In this section, we will discuss the influence of the warp bubble on the propagation
of light for several different situations. For the numerical integration of the geode-
sic equation in the warp metric, an integrator with step-size control is indispensable.
Otherwise, the step-size would have to be inefficiently tiny. However, irrespective of
the numerical integrator, direct integration of the geodesic equation leads to numerical
problems at the rim of the bubble for certain initial values because of the inappropri-
ate affine parameter. Although the spacetime coordinates (t, x, y, z) are smooth, the
step-size of the affine parameter becomes extremely small. Thus, an integrator with
step-size control will get stuck and the constraint equation will be violated. To avoid
the numerical difficulties, we use the non-affinely parametrized geodesic as described
in “Appendix B”. Additionally, the resulting equations are numerically much more
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accurate than the ones that follow from the affinely parametrized geodesic equation.
Here, we use the coordinate time t as non-affine parameter.

The gravitational frequency shift z f between the emitted, ωsrc, and the observed,
ωobs, light frequencies is obtained by

1 + z f = ωsrc

ωobs
= gμνuμkν

∣∣
src

gμνuμkν
∣∣
obs

, kμ = dxμ

dλ
, (5)

see e.g., Wald [10]. If −1 < z f < 0, we call it a blueshift, and if z f > 0, it is a
redshift.

To determine the lensing effect caused by the warp bubble, we study the behavior
of the spacetime curvature on a bundle of light rays that is described by two Jacobian
fields Yi = Yμi ∂μ. The change of the Jacobian fields along the central light ray with
tangent k = kμ∂μ is determined by the Jacobian equation

D2Yμi
dλ2 = Rμνρσ kνkρY σi . (6)

The cross section of the light bundle follows from the projection of the Jacobian fields
onto the parallel-transported Sachs vectors si = sμi ∂μ that are perpendicular to the
light ray k. The resulting Jacobi matrix

Ji j = gμνYμi sνj (7)

describes how the shape of the initially circular bundle of light rays transforms into
an ellipse with major and minor axes a± along the central light ray. Fortunately, we
can calculate the matrix by first integrating from the observer to the source and then
inverting this matrix to obtain the behavior of a light bundle from the source to the
observer. The result of this calculation is the magnification factorμmag = λ2/(a+a−).
A practical approach to the calculation of the lensing effect in the context of the non-
affinely parametrized equations can be found in “Appendix C”. A thorough discussion
of gravitational lensing, however, is out of the scope of this article and we refer the
reader to the standard literature [11].

3.1 View from the bridge

The bending of light as well as the frequency shift for an observer at the center of
the warp bubble (view from the bridge) was already discussed in detail by Clark et
al. [3]. What is not known so far is how the warp bubble influences the lensing of
point-like objects. Hence, we first reconstruct the results of Clark et al. for the sake of
completeness and then calculate the lensing effect.

The local reference frame of the bridge is given by the comoving tetrad of Eq. (3).
Because of the axial symmetry, we can restrict to geodesics in the xy-plane. Then,
an incident light ray with angle ξ with respect to the local reference frame can be
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Detailed study of null and timelike geodesics 513

Fig. 1 View from the bridge at t = 0 in the direction of motion for velocities v = 0.01c (a), v = c (b),
v = 2c (c) and a panorama camera with 180◦ × 60◦ field of view. Here, only the geometric distortion is
shown. The Milky Way background is represented by a sphere with radius rmax = 200 [12]

described by the four vector

k = ω
(−e(0) + cos ξe(1) + sin ξe(2)

) = kμ∂μ. (8)

Here, we use the minus sign in front of the timelike tetrad vector e(0) because we
integrate geodesics back in time. If we are only interested in the paths of the light rays,
we can set the frequency ω = 1.

Figure 1 shows the view from the bridge of an observer moving with different warp
speeds when passing the origin x = y = 0 at t = 0. To visualize distortion effects
close to the warp bubble, we use two checkered balls of radius rball = 0.5. The green
ball is located at x = 10, y = 0 whereas the red ball is located at x = 0, y = 3. Similar
to the special relativistic motion in flat Minkowski spacetime, there is an aberration in
the direction of motion that is stronger the faster the warp bubble moves. In contrast to
the special relativistic motion, however, the aberration here is only due to the curved
spacetime.

As already found by Clark et al. [3] there is no aberration for ξ = 90◦. Hence, light
rays that originate precisely at 90◦ to the direction of motion of the warp bubble will
be seen by an observer at the bridge at an angle ξ = 90◦ (see also “Appendix D”).
Furthermore, the observer on the bridge cannot see the whole spacetime. If we trace
light rays from the bridge with initial angles ξ back in time until they hit a sphere in the
asymptotic background, r = rmax, cf. Fig. 2, we find that there is an apparent horizon
opposite to the direction of motion, where the size of the apparent horizon depends
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Fig. 2 Angle ϕ at rmax = 5 × 104 with respect to the incident angle ξ for velocities v/c = {0.5, 1, 2, 9}
and warp parameters R = 2, σ = 1. The angle ξ = 0◦ corresponds to the direction of motion. For the
observer with v = 9c, the region with ϕ ≈ 96◦ . . . 180◦ is not visible

Fig. 3 Frequency shift 1 + z f between rmax = 5 × 104 and the bridge with respect to the incident angle
ξ for velocities v/c = {0.5, 1, 2, 9} and warp parameters R = 2, σ = 1. The angle ξ = 0◦ corresponds to
the direction of motion

on the velocity of the warp bubble. However, the observer will not see a black region
because for any direction ξ some region of the asymptotic background will be visible.

To determine the frequency shift and the lensing caused by the warp bubble, we use
the asymptotic sphere as the place where there are everywhere point-like light sources
with unit frequency ωsrc = 1. Then, the observer at the bridge will detect frequency
shifts as shown in Fig. 3. Irrespective of the velocity, there is no frequency shift for
ξ = 90◦. In the direction of motion, ξ < 90◦, we have a slight blueshift, whereas in
the opposite direction the redshift is quite strong.

The lensing of point-like sources caused by the warp bubble is shown in Fig. 4.
In the direction of motion, we have a slight magnification, whereas in the opposite
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Detailed study of null and timelike geodesics 515

Fig. 4 Lensing μmag between rmax = 5 × 104 and the bridge with respect to the incident angle ξ for
velocities v/c = {0.5, 1, 2, 9} and warp parameters R = 2, σ = 1. The angle ξ = 0◦ corresponds to the
direction of motion

direction, the light of point-like sources are strongly dimmed. Hence, even though
the horizon does not produce a black region, the strong redshift together with the
magnification let the region ξ > 90◦ appear dark for high velocities.

The ‘view from the bridge’ for a special-relativistically moving observer is well-
known from standard literature. The aberration and Doppler-shift can be derived from
the representation of an initial direction k with respect to either the moving reference
frame

ē(0) = γ

c
(∂t + vsr∂x ), ē(1) = γ

(vsr

c2 ∂t + ∂x

)
, ē(2) = ∂y, ē(3) = ∂z, (9)

as in Eq. (8), or the standard Minkowski frame. Here, vsr is the special-relativistic
velocity of the moving observer. Thus, we obtain the aberration formula

cos ξ ′ = γ

D

(
cos ξ̄ − vsr/c

)
(10)

and the Doppler-shift

1 + z f = D, (11)

where D = γ [1 − (vsr/c) cos ξ̄ ] is the Doppler-factor and γ = 1/
√

1 − v2
sr/c

2. Here,
the primed angle is with respect to the flat Minkowski spacetime and the barred angle
is with respect to the special-relativistic reference frame. The magnification factor is
given by

μmag = D−2, (12)
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Fig. 5 View of a static observer located at x = 10, y = 0 in the negative x-direction towards the approach-
ing warp bubble that moves with velocity v = 2c and that crosses the origin x = y = 0 at t = 0. The
panorama camera has 180◦ × 60◦ field of view. The observation times are t = {0, 3.5, 3.98} when the
bubble is at xb = {0, 7, 7.96}. The red ball is located at x = 0, y = 3. Here, only the geometric distortion
is shown. The Milky Way background is represented by a sphere with radius rmax = 200 [12]

see Weiskopf et al. [13] for a detailed discussion. For velocities vsr close to the speed of
light, we have very strong blueshift and huge magnification in the direction of motion.

While the direction of no frequency shift, z f = 0, in the Warp metric is fixed by
ξ = 90◦, this borderline is defined by D = 1 in the special-relativistic case, which also
gives the borderline of no-magnification, μmag = 1. The corresponding angle reads
ξ = arccos

[
(γ − 1)/(γ vsr/c)

]
, where ξ < 90◦ for vsr > 0. Hence, for velocities

close to the speed of light, a special-relativistic traveller will only see a small bright
spot in contrast to a traveller inside a warp bubble.

3.2 Warp bubble approaching a static observer

Consider a static observer located at x = 10, y = 0 and a warp bubble with R = 2 and
σ = 1 that approaches the static observer with v = 2c. At t = 0, the bubble crosses
the origin x = 0, y = 0. The observer, however, that looks towards the approach-
ing warp bubble, will not recognize any significant image distortion, see Fig. 5a. At
t = 3.5 (Fig. 5b), the warp bubble is located at xb = 7 and, thus, is already quite close
to the observer that will see that some portion of the sky apparently shrinks in the
direction of view. However, in the next few instances the view of the observer changes
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Detailed study of null and timelike geodesics 517

Fig. 6 Incoming light rays for a static observer at (t = 3.98, x = 10, y = 0) and warp parameters
R = 2, σ = 1, and v = 2c

Fig. 7 Angle ϕ at rmax = 5×104 with respect to the incident angle ξ for a static observer at x = 10, y = 0
and t = {0, 3.5, 3.98}. The warp parameters read R = 2, σ = 1, and v = 2c. The angle ξ = 180◦ corre-
sponds to the direction of the approaching warp bubble

dramatically. Some parts of the sky in the direction of view disappear as a result of an
apparent horizon like in the bridge observer example, see also Figs. 6 and 7.

The corresponding frequency shift and lensing diagrams are shown in Figs. 8 and 9.
Here, ξ = 180◦ represents the direction to the approaching warp bubble. For t = 0,
there is no significant frequency shift or magnification in any direction. For t = 3.98
the warp bubble is located at xb = 7.96, however, the approaching warp bubble leads
to a strong blueshift in the direction of the warp bubble and a redshift in the opposite
direction. The lensing effect lets stars appear brighter especially in the direction of the
approaching warp bubble.

3.3 Warp bubble passing the observer

Consider a static observer located at x = 0, y = −4 and a warp bubble with parame-
ters R = 2, σ = 1 that passes the observer with v = 2c. At t = 0, the bubble crosses
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Fig. 8 Frequency shift 1 + z f between rmax = 5 × 104 and a static observer at x = 10, y = 0 and
t = {0, 3.5, 3.98}. The warp parameters read R = 2, σ = 1, and v = 2c. Here, ξ = 180◦ represents the
direction to the approaching warp bubble

Fig. 9 Lensingμmag between rmax = 5×104 and a static observer at x = 10, y = 0 and t = {0, 3.5, 3.98}.
The warp parameters read R = 2, σ = 1, and v = 2c. Here, ξ = 180◦ represents the direction to the
approaching warp bubble

the origin x = 0, y = 0. Figure 10 shows several representing light rays that reach the
static observer at times t = 3 and t = 6 with incident angles ξ = {0◦, 10◦, . . . , 180◦}.
The corresponding views for a panorama camera with 180◦×60◦ field of view heading
towards the origin are shown in Fig. 11. Here, the Milky Way background is repre-
sented by a sphere with radius rmax = 200, and the checkered ball of radius rball = 0.5
is located at x = 0, y = 3.

The three phantom images of the ball (Fig. 11c) follow from light rays with incident
angles ξ ≈ {28.8◦, 45◦, 83.2◦}. The distortion of the Milky Way background can be
understood by means of the relation between the intersection angles ϕ of the light ray
with the background sphere and the incident angles ξ , see Fig. 12. The discontinuities
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Fig. 10 Incoming light rays for a static observer located at (x = 0, y = −4) with incident angles ξ ={
0◦, 10◦, . . . , 180◦}

. The warp parameters read R = 2, σ = 1, and v = 2c. The colored lines are only for
better distinguishability. The observation times are t = 3 (left) and t = 6 (right)

Fig. 11 View of a static observer located at x = 0, y = −4 in the positive y-direction for t = 0 (a), t = 3
(b), t = 6 (c), and t = 9 (d). The warp parameters read R = 2, σ = 1, and v = 2c. The panorama camera
has 180◦ × 60◦ field of view. The ball is located at x = 0, y = 3. Here, only the geometric distortion is
shown. The Milky Way background is represented by a sphere with radius rbg = 200
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Fig. 12 Angle ϕ at rmax = 200 with respect to incident angle ξ for t = {0, 3, 6, 9} and an observer located
at x = 0, y = −4. The warp parameters read R = 2, σ = 1, and v = 2c

reflect the apparent horizons at ξhor ≈ {171.3◦, 102.8◦, 153.6◦, 164.8◦} for the cor-
responding observation times t = {0, 3, 6, 9}. Since the mapping ϕ �→ ξ is non-
injective, some parts of the sky appears more than once. For example, the point (r =
rmax, ϕ = 50◦) appears three times at observation time t = 9 under the incident angles
ξ ≈ {10.82◦, 30.83◦, 67.85◦}.

What can also be read from Fig. 12 is that, after the warp bubble has passed the
observer, there is another distortion region that apparently moves in the negative
x-direction. This secondary distortion region can be easily understood. Due to the
finite speed of light, light rays that have already traversed the warp bubble region at
earlier times now reach the observer. Thus, by increasing time, the observer receives
ever earlier light rays.

Figure 13 shows the frequency shift for the observation times t = {0, 3, 6, 9}. At
t = 0, the frequency shift is negligible. However, when the warp bubble has passed the
origin, there is some blue- and redshift from the primary distortion region (ξ < 90◦),
whereas in the secondary region there is a strong redshift close to the apparent horizon
directions.

Figure 14 shows the lensing effect for the observation times t = {0, 3, 6, 9}. Similar
to the frequency shift, the magnification at t = 0 is negligible. However, when the
warp bubble passes the observer, there are strong magnifications at both sides of each
bubble rim. In between, stars would appear dimmed. In the regions where the redshift
is dominant, the lensing effect fades out the star light.

4 Timelike geodesics

Similar to null geodesics, the trajectories of timelike geodesics are strongly influenced
by the warp bubble. Specific to timelike geodesics, particles can now be dragged by the
warp bubble and they undergo a geodesic precession. As with null geodesics, we use
the non-affinely parametrized geodesic equation with coordinate time as parameter.
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Fig. 13 Frequency shift 1 + z f between rmax = 200 and the observer located at x = 0, y = −4 with
respect to incident angle ξ for t = {0, 3, 6, 9}. The warp parameters read R = 2, σ = 1, and v = 2c

Fig. 14 Magnification μmag between rmax = 200 and the observer located at x = 0, y = −4 with respect
to incident angle ξ for t = {0, 3, 6, 9}. The warp parameters read R = 2, σ = 1, and v = 2c

4.1 Particles from the bridge

A particle at the center of the warp bubble with zero initial velocity will stay there
for ever irrespective of the worldline x(t) of the bubble. So, let us consider particles
with initial local velocity vpart with respect to the comoving reference frame and the
corresponding four-velocity

u = cγ
[
e(0) + β

(
cos ξe(1) + sin ξe(2)

)] = uμ∂μ, (13)

where β = vpart/c and γ = 1/
√

1 − β2. Figure 15 shows particles that were emit-
ted radially from the bridge with initial local velocity vpart = 0.5c. Each solid line
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Fig. 15 Particles emitted radially from the bridge with initial local velocity vpart = 0.5c after t =
{1.0, 1.5, . . . , 6.0} (solid curves). The dashed lines correspond to particle trajectories for initial directions
ξ = {

30◦, . . . , 150◦}
. The warp parameters read R = 2, σ = 1, v = 2c

Fig. 16 Particle velocities vpart(t = 1,000)/c far outside the bubble’s sphere of influence after t that
were emitted radially from the bridge with initial local velocity vpart(τ = 0) = 0.5c and initial angles ξ .
Particles with initial angles ξ � 5◦ are still in the sphere of influence of the warp bubble

represents all particles that have travelled a specific coordinate time t . The dashed
lines represent particle trajectories for a few initial directions ξ . In the first few sec-
onds, the particles still move within the warp bubble and are carried along with it.
Depending on their initial direction ξ , they can leave the warp bubble after some time
t . To measure the current velocity of a particle during this period, we can use only a
valid observer, which is an observer represented by a comoving local tetrad. Such an
observer will always measure a velocity less than the speed of light.

Figure 16 shows the velocities of the particles after t = 1,000 when all of them
are far away from the sphere of influence of the warp bubble. Similar to null geodesics,
a particle with initial direction ξ = 90◦ is only displaced by the warp bubble and the
velocity keeps unchanged. All other particles have either a higher or a lower velocity
depending on the initial angle ξ .
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Fig. 17 The solid lines represent particles that start with β = 0.5 from the position (t = −6, x =
0, y = −4). The lines are separated by t = 0.5. The thick solid line indicates t = 0. The warp param-
eters read R = 2, σ = 1, v = 2c. The dashed lines correspond to timelike geodesics with initial angles
ξ = 0◦, 30◦, . . . , 180◦

Fig. 18 The same situation as in Fig. 17 but with initial position (t = −4, x = 0, y = −4)

4.2 Particles injected from outside

Consider a static observer located at x = 0, y = −4 that emits particles with local
velocity vpart = 0.5c in the directions ξ ∈ [0◦, 180◦] at coordinate time t . The corre-
sponding four-velocity u with respect to the static reference frame reads

u = cγ
[
ê(0) + β

(
cos ξ ê(1) + sin ξ ê(2)

)] = uμ∂μ, (14)

where β = vpart/c and γ = 1/
√

1 − β2. The solid lines of Figs. 17 and 18 show par-
ticles that were emitted at coordinate times t = −6 or t = −4, respectively, and that
have travelled some time t . The thick solid lines correspond to t = 0. The dashed
lines represent particle trajectories for a few initial directions ξ .

Depending on the emission time, the particles reach the sphere of influence of
the warp bubble under different impact angles. Hence, they will be deflected, carried
along, and accelerated or decelerated in different ways.
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4.3 Particle field initially at rest

Consider a field of 5 × 6 = 30 particles represented by tiny balls that are initially
at rest with axes in the positive x direction. The initial position of particle (i, j) is
given by xi = −3 + i, y j = −4 + j . At the beginning of the simulation, t = −3, the
warp bubble with parameters R = 2, σ = 1, v = 2c is located at x = −6, y = 0.
To determine the influence of the warp bubble on this particle field, we calculate the
parallel transport of each particle. For that, we have to integrate the geodesic equation
with initial conditions xμ

∣∣
τ=0 = (−3, xi , yi , 0) , dxμ/dτ

∣∣
τ=0 = cê(0) together with

the parallel-transport equation

dpμ

dτ
+ �μνρ

dxν

dτ
pρ = 0, (15)

where the four-vector pμ
∣∣
τ=0 = (0, 1, 0, 0) describes the orientation of the parti-

cle. Like the geodesic equation, we first convert the parallel-transport equation into
its non-affinely parametrized form (compare the parallel transport of the Sachs basis
vectors explained in “Appendix C”).

When the warp bubble approaches the particle field, the particles will be carried
along for some time depending on the distance to the center of the warp bubble, see
Fig. 19.

Additionally, the particles undergo a geodesic precession away from the x-axis
while they are in the sphere of influence of the warp bubble. The final orientation
angle α of a particle axis with respect to the direction of motion is larger the closer
the particle is to the x-axis. In the limit y → 0, the maximum change of alpha is
α → 180◦. Particles at y = z = 0, however, keep their orientation.

Figure 20 shows the geodesic precession for particles that initially (t = −3) have
zero velocity and are located at x = 0, y = {1, 2, 3}. When the particles leave the
sphere of influence, they no longer undergo geodesic precession and there is no remain-
ing angular momentum.

5 Geodesics restricted to the x-axis

If we restrict geodesic motion of light rays or particles to the x-axis, the corresponding
Lagrangian simplifies to L = −c2 ṫ2 + (ẋ − v f ṫ)2 = κc2. In the case of null geode-
sics, the Euler-Lagrangian equations for ṫ and ẋ together with the relative coordinate
r = x − vt , which defines the distance to the center of the warp bubble, Eq. (2), yield

dr

dt
= ṙ

ṫ
= v ( f − 1)± c = v

1 − cosh2(σr)

cosh2(σr)+ sinh2(σ R)
± c. (16)

For a future-directed light ray in the positive x direction, we have to use the positive
sign. Then, provided that the warp bubble has a velocity v > 1 and the initial emission
point is at r(t = 0) = 0, r approaches r0 in the limit t → ∞ where the right hand
side of Eq. (16) is zero,
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Fig. 19 Parallel transport of tiny balls that are initially (t = −3) at rest. The dashes within the balls indicate
their orientation. The parameters of the warp metric read R = 2, σ = 1, v = 2c

Fig. 20 The orientation α of parallel-transported balls change while they are in the warp bubble’s sphere
of influence. Here, the initial positions of the balls at t = −3 read: x = 0 and y = 1 (solid line), y = 2
(dotted line), y = 3 (dashed line). The angle α is measured with respect to a comoving observer, Eq. (3),
at the current position of the ball
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r0 = 1

σ
arcosh

⎛
⎝

√
c sinh2(σ R)+ v

v − c

⎞
⎠ , f (r0) = 1 − c

v
. (17)

As expected, the light ray gets stuck within the warp bubble, because light cannot
escape from the warp bubble in the direction of motion.

For timelike geodesics, we use the coordinate time t and the relative coordinate r as
independent variables. Then, the Lagrangian reads L = −c2 ṫ2 + (ṙ + vṫ − v f ṫ)2 =
−c2, where now f is independent of t . From the Euler-Lagrangian equations, we
obtain the constant of motion k = [v2(1 − f )2 − c2]ṫ + v(1 − f )ṙ . Thus, the orbital
equation reads

dr

dt
= ṙ

ṫ
= ±

[
v2(1 − f )2 − c2

] √
k2/c2 + v2(1 − f )2 − c2

k ∓ v(1 − f )
√

k2/c2 + v2(1 − f )2 − c2
.

(18)

For a particle in the direction of motion that has initial four-velocity u = cγ (e(0)+
βe(1)) with respect to an observer at the center of the warp bubble, we have to use the
upper sign in Eq. (18) and k = −γ c2. In the limit t → ∞, the term v2(1 − f )2 − c2

dominates the behavior of Eqs. (18) as in (16) and, thus, the particle approaches the
same point r0, Eq. (17), as a light ray irrespective of its initial velocity β > 0.

Another interesting situation is a particle on the x-axis that is initially at rest with
respect to the static local tetrad, Eq. (4), and that will be catched up by an approching
warp bubble, compare Sect. 4.3. To determine the particle’s velocity βb with respect
to the local reference frame of the bridge, we can use the aforementioned constant
of motion k. The warp bubble has velocity v = 2c and crosses the origin x = 0
at t = 0. The particle has initial position xi at coordinate time ti . Then its velocity

βb = −
√

1 − 1/γ 2
b follows from

γb = c2 + v2 fi − f 2
i

c
√

c2 − v2 f 2
i

, (19)

where fi = f (ri ) = f (xi − vti ). Hence, the ball with xi = 2, yi = 0, ti = −3 of
Fig. 19 will hit the observer at the bridge with βb = −0.00714, but this is only because
the ball was already in the bubble’s sphere of influence. For a ball that is initially far
from that sphere (r 
 R), fi → 0 and thus βb → 0. Hence, such a ball approaches
the observer on the bridge only asymptotically and does not traverse the warp bubble.

6 Summary

The Alcubierre warp spacetime offers a rich field for studying geodesics in an extreme
application case of general relativity. For a robust and accurate numerical integration
of the geodesic equation, the parallel transport, and the Jacobian equation, we have
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converted these equations into their non-affinely parametrized form, where we’ve used
coordinate time as non-affine parameter.

To a certain degree, the view of an observer comoving with the warp bubble is
distorted similarly to the special relativistic aberration. In the direction of motion,
however, the distortion is much softer than the special relativistic aberration. Addi-
tionally, for velocities larger than the speed of light, there is an apparent horizon behind
the warp bubble. However, there is no black region as in the case of the event horizon
in the Schwarzschild spacetime. Nevertheless, the strong redshift as well as the large
attenuation let the rear side appear extremely dark.

The view of a static observer outside the warp bubble heavily depends on their
location and observation time. Light rays are strongly deflected by the warp bubbles
and multiple images might appear. Particularly interesting is the purely optical warp
bubble that apparently ‘moves’ contrarily to the actual warp bubble as seen by an
outside observer.

Particles that start from inside the warp bubble, will be ‘decelerated’ or ‘accelerated’
depending on their initial angle to the warp bubble’s direction of motion. Additionally,
particles will be dragged and they will undergo geodesic precession while they are in
the sphere of influence of the warp bubble.

In this article, we considered only incoming light rays to study the view of an
observer for several different situations. A topic of a future publication could be the
investigation of outgoing light rays and resulting caustics within either the Alcubierre
or, for example, the Van den Broeck [7] Warp metric.

Acknowledgments This work was partially funded by Deutsche Forschungsgemeinschaft (DFG) as part
of the Collaborative Research Centre SFB 716 and the DFG project “Astrographik”.

Appendix A: Christoffel symbols

The Christoffel symbols of the Alcubierre metric (1) read

�t
t t = f 2 fxv

3

c2 , �
y
tt = − f fyv

2, �z
tt = − f fzv

2,

(20a)

�x
tt = f 3 fxv

4

c2 − f fxv
2 − ftv − f ∂tv,

�t
t x = − f fxv

2

c2 , �x
tx = − f 2 fxv

3

c2 , �
y
tx = fyv

2
, �z

t x = fzv

2
, (20b)

�t
t y = − f fyv

2

2c2 , �x
ty = − f 2 fyv

3 + c2 fyv

2c2 , �t
t z = − f fzv

2

2c2 ,

(20c)

�x
tz = − f 2 fzv

3 + c2 fzv

2c2 ,

�t
xx = fxv

c2 , �
x
xx = f fxv

2

c2 , �t
xy = fyv

2c2 , �x
xy = f fyv

2

2c2 , (20d)

�t
xz = fzv

2c2 , �
x
xz = f fzv

2

2c2 , (20e)
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with derivatives

ft = d f (r)

dt
= −v (x − xs(t))

r

d f (r)

dr
, fx = d f (r)

dx
= x − xs(t)

r

d f (r)

dr
,

(21a)

fy = d f (r)

dy
= y

r

d f (r)

dr
, fz = d f (r)

dz
= z

r

d f (r)

dr
, (21b)

and

d f (r)

dr
= σ

[
sech2 (σ (r + R))− sech2 (σ (r − R))

]

2 tanh(σ R)
. (22)

Appendix B: Geodesic equation

The non-affinely parametrized geodesic equation reads [14]

d2xμ

dσ 2 + �μνρ
dxν

dσ

dxρ

dσ
= − 1

ζ(σ )

dζ(σ )

dσ

dxμ

dσ
, (23)

where σ is an arbitrary (non-affine) parameter and ζ is a function of σ . The affine
parameter λ then follows from

λ =
σ∫

σ0

a

ζ(σ )
dσ, (24)

with

dσ

dλ
= ζ(σ )

a
,

d2σ

dλ2 = 1

a

dζ

dσ

dσ

dλ
, (25)

and an arbitrary but constant factor a. The relation between the affinely and the non-
affinely parametrized geodesic equations can be derived by means of the chain rule

dxμ

dλ
= dxμ

dσ

dσ

dλ
,

d2xμ

dλ2 = d2xμ

dσ 2

(
dσ

dλ

)2

+ dxμ

dσ

d2σ

dλ2 . (26)

If we replace the non-affine parameter σ by the coordinate time t , Eq. (23) with x0 = t
yields

�0
νρ

dxν

dt

dxρ

dt
= − 1

ζ(t)

dζ(t)

dt
. (27)
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Thus, the geodesic equation (23) can be written as

d2xi

dt2 + �i
νρ

dxν

dt

dxρ

dt
= �0

νρ

dxν

dt

dxρ

dt

dxi

dt
, (28)

which simplifies to

0 = d2xi

dt2 − dxi

dt

(
�0

00 + 2�0
0 j

dx j

dt
+ �0

jk
dx j

dt

dxk

dt

)
+ �i

00 + 2�i
0 j

dx j

dt

+ �i
jk

dx j

dt

dxk

dt
, (29)

where i = 1, 2, 3 and summation indices j, k go from 1 to 3. The generalization of
the constraint equation, gμν(dxμ/dλ)(dxν/dλ) = κc2 with κ = 0 for lightlike and
κ = −1 for timelike geodesics, reads

(
dt

dλ

)2 (
g00 + 2g0i

dxi

dt
+ gi j

dxi

dt

dx j

dt

)
= κc2. (30)

The function ζ follows from Eq. (27):

ζ(t) = ζ0 exp

⎡
⎣−

t∫

t0

�0
00 + �0

0i
dxi

dt ′
+ �0

i j
dxi

dt ′
dx j

dt ′
dt ′

⎤
⎦ . (31)

Details about the numerical implementation are given in “Appendix E”.

Appendix C: Parallel transport of Sachs basis and Jacobi equation

The parallel transport equation for the Sachs basis vector s = sμ∂μ can be cast into
the form

0 = dsμ

dt
+

(
�
μ
0ν + �

μ
iν

dxi

dt

)
sν . (32)

The Jacobian equation for the Jacobian field Y = Yμ∂μ reads

0 = d2Yμ

dt2 − dYμ

dt

(
�0

00 + 2�0
0 j

dx j

dt
+ �0

jk
dx j

dt

dxk

dt

)
(33)

+ 2

(
�
μ
0ν + �

μ
iν

dxi

dt

)
dY ν

dt
+

(
�
μ
00,ν + 2�μ0i,ν

dxi

dt
+ �

μ
i j,ν

dxi

dt

dx j

dt

)
Y ν .
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The initial Sachs basis vectors are perpendicular to the initial light direction k =
−e(0) + cos ξe(1) + sin ξe(2), thus

s1 = − sin ξe(1) + cos ξe(2) and s2 = e(3). (34)

The initial values for the two Jacobian fields read Yμ1,2
∣∣
t=0 = 0 and dYμ1,2/dt

∣∣
t=0 =

sμ1,2. Details about the numerical implementation are given in “Appendix E”.

Appendix D: Euler-Lagrange equations

The Euler-Lagrange [15] equations for geodesics in the z = const hyperplane with
Lagrangian

L = −c2 ṫ2 + (
ẋ − v f ṫ

)2 + ẏ2 (35)

and v = const yield

0 = d

dλ

[
c2 ṫ + v f

(
ẋ − v f ṫ

)] − (
ẋ − v f ṫ

)
ṫv ft , (36a)

0 = d

dλ

[
ẋ − v f ṫ

] + (
ẋ − v f ṫ

)
vṫ fx , (36b)

0 = ÿ + (
ẋ − v f ṫ

)
vṫ f y, (36c)

where a dot means differentiation with respect to the affine parameter λ. It is obvious
that these equations are automatically fulfilled for

ṫ = k1, ẋ = v f k1, ẏ = k2, (37)

with constants of motion k1 and k2. These initial values correspond to a null or timelike
geodesic that starts perpendicular to the direction of motion with respect to the comov-
ing reference frame of the center of the bubble. Because y grows linearly, the shape
function f tends to zero and, thus, x is limited. Hence, such a geodesic approaches a
line orthogonal to the x-axis.

In case of a null geodesic, the initial direction reads k = ω
(±e(0) + e(2)

)
, which

yields k1 = ±ω/c and k2 = ω. Thus, there is no frequency shift. A timelike geo-
desic with initial local velocity vpart and four-velocity u = cγ (e(0) + βe(2)), where

β = vpart/c and γ = 1/
√

1 − β2, has constants of motion k1 = γ and k2 = γβc.

Appendix E: Numerical integration

The integration of the non-affinely parametrized geodesic equation avoids the problem
of the inadequate affine parameter. However, we still need the affine parameter for the
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calculation of the magnification factor. From Eqs. (24) and (27) we can expand the set
of ordinary differential equations for λ to

dλ

dt
= a

ζ
,

dζ

dt
=

(
−�0

00 − 2�0
0i

dxi

dt
− �0

i j
dxi

dt

dx j

dt

)
ζ. (38)

Since ζ grows exponentially, which results in numerical problems, we substitute ζ =
exp(ψ) in (38) and obtain

dψ

dt
= −�0

00 − 2�0
0i

dxi

dt
− �0

i j
dxi

dt

dx j

dt
. (39)

Here, we set a = 1. Numerical problems due to exponential grow of the Sachs
vectors and the Jacobi functions make the following substitutions necessary: sμ =
sinh(pμ), Yμ = sinh(uμ). The parallel transport of the Sachs vectors then reads

dpμ

dt
= −

(
�
μ
0σ + �

μ
iσ

dxi

dt

)
sinh(pσ )

cosh(pμ)
. (40)

Note that there is no summation over the indexμ in the right hand side of this equation.
For the integration of the Jacobian equation (33), we obtain

duμ

dt
= wμ, (41a)

dwμ

dt
= − tanh(uμ)

(
wμ

)2 +
(
�0

00 + 2�0
0 j

dx j

dt
+ �0

jk
dx j

dt

dxk

dt

)
wμ

− 2

(
�
μ
0ν + �

μ
iν

dxi

dt

)
cosh(uν)

cosh(uμ)
wμ

−
(
�
μ
00,ν + 2�μ0i,ν

dxi

dt
+ �

μ
i j,ν

dxi

dt

dx j

dt

)
sinh(uν)

cosh(uμ)
. (41b)

As before, there is no summation over the index μ.
To apply numerical libraries like, for example, the GNU Scientific Library [16] or

the Numerical Recipes [17], we have to map the above equations to a one-dimensional
array as follows:

y[n] = xn+1, y[n + 3] = dxn+1

dt
, y[m + 6] = pm

1 ,y[m + 10] = pm
2 , (42a)

y[m + 14] = Y m
1 , y[m + 18] = dY m

1
dt

, y[m + 22] = Y m
1 , y[m + 26] = dY m

1
dt

,

(42b)

y[30] = ψ, y[31] = λ. (42c)

Here, n = 0, 1, 2 and m = 0, 1, 2, 3.
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A light ray with initial direction k = ±e(0) + cos ξe(1) + sin ξe(2)yields ṫ =
±1/c, ẋ = ±v f/c + cos ξ , and ẏ = sin ξ . Thus y[3] = ẋ/ṫ = v f ± c cos ξ,y[4] =
±c sin ξ , and y[5] = 0. The corresponding Sachs vectors (34) give y[6] = y[9] =
0,y[7] = arsinh(− sin ξ), y[8] = arsinh(cos ξ),y[10] = y[11] = y[12] = 0, and
y[13] = arsinh(−1). The initial values for the Jacobi vector fields are obvious. For the
integration of the affine parameter λ with λ(0) = 0, we have ζ(0) = 1 and ψ(0) = 0.
Hence, y[30] = y[31] = 0.

For the numerical integration of timelike geodesics, we can reduce the system (42)
to only eight equations. The array elementsy[] can then be deduced from the following
equations. Particles from the bridge have initial directions

dt

dλ
= γ,

dx

dt
= v f + cβ cos ξ,

dy

dt
= cβ sin ξ, (43)

whereas particles injected from a static outside observer are described by

dt

dλ
= cγ√

c2 − v2 f 2
(1 − βv f cos ξ),

dx

dt
= γβ

√
c2 − v2 f 2 cos ξ,

dy

dt
= cγβ sin ξ. (44)

In both cases, we have ψ(0) = ln γ .
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