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Abstract. Warp drives are interesting configurations that, at least theoretically, provide
a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their
realization. First, a huge amount of exotic matter is required to build them. Second, the
presence of quantum fields propagating in superluminal warp-drive geometries makes
them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of parti-
cles is generated inside the warp-drive bubble, which causes an exponential growth of the
energy density measured at the front wall of the bubble by freely falling observers. More-
over, superluminal warp drives remain unstable even if the Lorentz symmetry is broken
by the introduction of regulating higher order terms in the Lagrangian of the quantum
field. If the dispersion relation of the quantum field is subluminal, a black-hole laser phe-
nomenon yields an exponential amplification of the emitted flux. If it is superluminal,
infrared effects cause a linear growth of this flux.

1 Introduction

A warp drive [1] can be defined as a bubble of spacetime moving in an asymptotically flat spacetime
at an arbitrary speed. This configuration provides both a way to travel at superluminal speeds and
an exciting ground to test our comprehension of general relativity (GR) and quantum field theory in
curved spacetimes (for instance when investigating warp-drive implications for causality [2]). Their
geometry is defined by the line element

ds2 = −c2dt2 + [dx − v(r)dt]2 + dy2 + dz2, (1)

where r ≡ √
(x − v0t)2 + y2 + z2 parametrizes the distance from the center of the bubble and v0 is the

warp-drive velocity. The function v satisfies v(0) = v0 and v(r)→ 0 for r → ∞.
When this metric is put into Einstein’s equations, it is apparent that a large amount of exotic

matter (i.e., matter that violates energy conditions, see Ref. [3] for a complete review about “exotic
spacetimes”) is required to stretch the spacetime around the warp-drive bubble. Surprisingly, exotic
matter is needed to sustain warp drives moving not only with superluminal speeds, but also with
subluminal ones [4, 5]. Furthermore, the amount of exotic matter is related to both the size of the warp-
drive bubble and the thickness of the bubble walls [6]. If the exoticity is provided by quantum fields,
satisfying therefore the so-called quantum inequalities (QI—see [7] for a review about QI applied
to exotic spacetimes), then the violations of the energy conditions must be confined to Planck-size
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regions. Accordingly, the thickness ∆ of the wall of the bubble is of Planck size [∆ ≤ 102 (v0/c) LP,
where LP is the Planck length]. Unfortunately, to support a warp-drive bubble with such thin walls,
a size of about 100 m, and propagating at v0 ≈ c, a huge amount of exotic matter is required, |E−| �
1011M�. Modified configurations with a reduced surface area but the same bubble volume [8] can
reduce the amount of negative energy (|E−| ≈ 0.3M� for a 100 m-radius bubble), although some
positive energy must be added outside the bubble (E+ ≈ 2.5M�).

Regarding the feasibility of warp-drive configurations, a parallel line of research has focused on
the study of their semiclassical stability against the introduction of quantum fields propagating on
these geometries. In Ref. [9] this issue was studied in the case of an eternal superluminal warp drive.
It was noticed that, for an observer within the warp-drive bubble, the backward and forward walls
(along the direction of motion) look like the horizon of a black hole and of a white hole, respectively.
By imposing a quantum state which is vacuum at the null infinities (that is, the analog of the Boulware
state for an eternal black hole) it was found that the renormalized stress-energy tensor (RSET) diverges
at the horizons (see Ref. [10] for a different point of view). Thus, the divergence of the RSET at the
horizons makes superluminal warp drives unstable within the context of semiclassical GR.

In a more realistic situation, a warp drive is dynamically created at a finite time tH with a very low
velocity and then accelerated to superluminal speeds. In this case the quantum state is globally fixed
by suitable boundary conditions at early times, before the formation of the warp-drive bubble. This
situation is similar to the formation of a black hole through a gravitational collapse. In the black hole
case, the globally defined quantum state that is vacuum on I − is regular on the horizon and thermal
on I +. In other words, the dynamics of a collapse end up selecting a quantum state that at late times
resembles the Unruh state defined on eternal black holes, rather than a Boulware-like state.

In this contribution we summarize the results of three works [11–13] investigating the semiclas-
sical stability properties of warp drives. In Sec. 2 we analyze the causal structure on an eternal warp
drive and of a warp drive which is dynamically created with zero velocity and then accelerated up to
superluminal speed in a finite amount of time. In this latter configuration, where a proper quantum
state can be unambiguously defined, we investigate the properties of spontaneous quantum vacuum
emission by calculating the RSET inside the warp-drive bubble (Sec. 3). In the center of the bubble
we find a thermal flux at the Hawking temperature corresponding to the surface gravity of the black
horizon. Furthermore, the RSET grows exponentially with time on the white horizon. This makes
warp drives unstable once superluminal speeds are reached.

However, this analysis rests on relativistic quantum field theory. Thus, one may wonder whether
this instability is peculiar to the assumed local Lorentz symmetry. For instance, it is known that
non-linear dispersion relations remove Cauchy horizons and regulate the fluxes emitted by white
holes [14]. To clarify this issue, in Sec. 4, this stability analysis is extended to a quantum field theory
where Lorentz invariance is broken at ultra-high energy [13]. Even if the exponential growth of the
RSET on the white hole is in fact removed, new types of instability appear, whose properties depend
on the form of the dispersion relation of the quantum field.

2 The warp-drive geometry

2.1 Causal structure

The geometrical and causal properties of warp-drive spacetimes are more conveniently investigated
by restricting to the 1 + 1 dimensional case using a new spatial coordinate r ≡ x − v0 t in the metric of
Eq. (1),

ds2 = −c2dt2 + [dr − v̄(r)dt]2 , (2)
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where v̄ = v − v0. We put v = v0 f (r), where f (r) is a smooth function with maximum f (0) = 1 and
f (r) → 0 for r → ±∞. Therefore, v̄ has a maximum in r = 0, where it vanishes, and goes to the
constant value −v0 < −c for r → ±∞. Consequently there are two positions rB and rW where |v̄| = c.
A possible choice of v̄ satisfying these conditions is plotted in Fig. 1. As seen from an observer inside
the bubble, rB and rW correspond to a black and a white hole horizons, HB and HW , respectively,
separating the spacetime in three regions: L, appearing as the interior of the black hole, C, appearing
as the exterior of both the black and the white hole, and R, appearing as the interior of the white hole
(see Fig. 1).

-1

0

rWrB
r

L RC

v̄

Figure 1. Velocity profile for a rightgoing warp
drive [see Eq.(2)]. Two superluminal asymptotic
regions L and R are separated by a black and a
white horizon from a compact internal subluminal
region C. The Killing field ∂t is space-like in L and
R, light-like on both horizons, and time-like in C.
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Figure 2. Penrose diagram of an eternal warp
drive. Lines of constant r (solid lines) and of con-
stant t (dashed lines). Future and past horizons at
r = rB,W (heavy dashed lines). The geometry can
be extended to the future of H + (formed by H +

C
and H +

R ) and to the past of H − (formed by H −
C

and H −
L ).

The Penrose diagram of a warp drive is therefore obtained by pasting together the diagrams of a
black hole, on the left, and of a white hole, on the right. Note that this diagram does not represent
the maximal analytical extension of this spacetime: The dashed lines H − (formed by H −

C and H −
L )

and H + (formed by H +
C and H +

R ) signal the locations at which the geometry can be extended. H −
C

and H +
C correspond to the past and future horizons in the Penrose diagrams of an eternal black and

white hole, respectively. While in the black hole case a maximal extension is well known for vac-
uum solutions such as the Schwarzschild or Kerr spacetimes, for a warp-drive geometry the maximal
extension cannot be uniquely determined because the distribution of matter is unknown beyond H ±,
which behave like Cauchy horizons.

Hence, because of the presence of the past Cauchy horizon H −, a quantum state with appropriate
initial conditions cannot be imposed at t → −∞. However, in a realistic situation, a warp-drive
geometry is not eternal but it is dynamically formed at some finite time tH . Before tH the causal
structure of the spacetime is Minkowskian and proper boundary conditions can be chosen.

This dynamical warp-drive geometry is described by a metric of the form of Eq. (2), by replacing
the constant velocity v̄ with a time dependent velocity v̂(t, r), satisfying v̂(t, r) → 0, for t → −∞ and
v̂(t, r) → v̄(r), for t → +∞. The corresponding Penrose diagram, obtained by interpolating between
these two behaviors, is plotted in Fig. 3. The causal structure is initially Minkowskian (v̂ = 0). Then
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it progressively changes till t = tH , when the horizon forms. After tH , the Penrose diagram coincides
with that of a stationary warp drive (Fig. 2). With respect to the eternal case, the past Cauchy horizon
H − has disappeared but the geometry can still be extended in the future, beyond the Cauchy horizons
H +

C and H +
R . There exist indeed observers moving on time-like lines that reach H +

C and H +
R in a

finite proper time.
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Figure 3. Penrose diagram of a dynamic warp
drive. Lines of constant r (solid lines) and of con-
stant t (dashed lines). The lines of constant r be-
come null at the apparent horizons (heavy dashed
lines).

r

t

Figure 4. Light rays propagating rightward (solid
lines) and leftward (dashed lines) in the plane (t, r)
in a warp-drive spacetime defined by the velocity
profile of Eq. (3). Heavy solid lines represent the
functions r(t) = ±ξ(t) = ±arccosh(t+1) used to im-
plement the dynamical formation of the warp drive.
At t < 0 the metric is Minkowskian. The horizons
at rB and rW (heavy dashed lines) appear at tH = 1.

2.2 Light-ray propagation

The presence of a black hole horizon in a superluminal warp-drive geometry suggests the possibility
that Hawking-like radiation is produced. To investigate this phenomenon, we first study how light
rays are bended by the warp-drive geometry, in particular we determine the relation U = p(u) between
past U and future u null affine coordinates [15]. This information is indeed sufficient to investigate the
properties of particle creation [16]. For illustrative purposes, in Fig. 4 we plot the rightgoing (solid
line) and leftgoing (dashed lines) null geodesics propagating in a warp-drive geometry, defined by the
following velocity profile (c = 1),

v̂(r, t) =


0 if t ≤ 0,
v̄[ξ(t)] if t > 0 and |r| ≥ ξ(t),
v̄(r) if t > 0 and |r| < ξ(t),

(3)

with
ξ(t) = arccosh(t + 1) (4)

and

v̄(r) = 2
[

1
cosh(r)

− 1
]
. (5)

As required, v̂(r, t) smoothly interpolates between a Minkowski metric (v̂ = 0) at early times (t < 0)
and a warp-drive geometry defined by v̄. The horizons appear at tH = 1.
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To determine the general relation U = p(u), we start from the differential equation for the propa-
gation of rightgoing light rays

dr
dt

= c + v̂(r, t). (6)

Since for t � tH the velocity profile v̂ = v̄ depends only on r, the late-time null coordinate u is defined
by

du = dt − dr
c + v̄(r)

. (7)

We now restrict to the central region C. Here the asymptotic form is found by integrating the above
equation in the limit r → rB,W , where the velocity v̄ is

v̄ = −c ± κB,W
(
r − rB,W

)
+ O

((
r − rB,W

)2
)

(8)

and
κB,W ≡ dv̄

dr

∣∣∣∣∣
r=rB,W

(9)

are the surface gravities of the black horizon and of the white horizon, respectively. For the sake of
simplicity, from now on we assume that they have the same value κB,W = κ, without loss of generality.
We obtain

u ' t ∓ 1
κ

ln
∣∣∣r − rB,W

∣∣∣ . (10)

The early-time null coordinate U, obtained by integrating Eq. (6) when v̂ = 0, reduces to

U(t → −∞) = t − r
c
, (11)

in the limit t → ∞. This coordinate is regular everywhere, in particular on the horizons. Consequently,
on a t slice in the late-time stationary region, U can be written as

UB,W = UB,W
(
r − rB,W

)
, (12)

where UB,W denotes the specific form of U close to the black and white horizon, respectively, and
UB,W are analytic functions. Putting Eq. (10) into the above expression,

UB,W = p(u→ ±∞) = PB,W (e∓κu), (13)

where PB,W are analytic functions. Close to the horizons u → ±∞, thus e∓κu → 0 and p can be
expanded as

U = p(u→ ±∞) = UB,W ∓ AB,We∓κu + O
(
e∓2κu

)
, (14)

where AB,W are positive constants. This asymptotic behavior of rightgoing rays is apparent from
Fig. 4 (solid lines). It yields exponential separation of null geodesic close to the black horizon and
exponential accumulation close to the white horizon.

It is worth stressing that this result is completely general. The asymptotic form of U = p(u)
does not depend on the details of v̂, but only on its early- and late-time behaviors, corresponding to a
Minkowskian spacetime at and to a stationary warp-drive spacetime, respectively.

Analogously, one can find the relation between the early- and late-times null coordinates W and
w, associated with leftgoing light rays, which are solutions of

dr
dt

= −c + v̂(r, t). (15)
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In this case, leftgoing rays can cross the horizons, propagating from I −
R to I +

L (see Figs. 3 and 4).
As a consequence, both W and w are defined in the asymptotic regions L and R outside the bubble.
For instance,

W(t → −∞) = t +
r
c
. (16)

However, in place of w, it is more convenient to use a different coordinate w̃, defined inside the bubble
in analogy with Eq. (7),

dw̃ = dt +
dr

c − v̄(r)
. (17)

It is easy to show [11] that the relation W = q(w̃) is always regular, as illustrated in Fig. 4 by the
non-singular behavior of leftgoing null geodesics (dashed lines).

3 Particle production and renormalized stress-energy tensor

In a black hole geometry an exponential relation p(U) between u and U, as in Eq. (14), allows to
conclude that Hawking radiation is emitted with temperature κ/2π. However, in the case of warp
drives, its implications for particle production are not straightforward because late-time modes labeled
by u are not standard plane waves [see Eq. (10)]. Only if κ is large enough that the typical wavelength
of the emitted radiation is much smaller than the bubble size, then a plane-wave approximation is
allowed in the center of the bubble. In this case, it is possible to conclude that standard Hawking
radiation at temperature T is emitted at late times. To obtain more significant information, also close
to the horizons, we therefore consider the behavior of the RSET.

To calculate the RSET inside the warp-drive bubble we follow the method proposed in [17]. The
metric can be written as

ds2 = −C(U,W)dUdW. (18)

or, using the null coordinates u and w̃, as

ds2 = −C̄(u, w̃)dudw̃ , C(U,W) =
C̄(u, w̃)
ṗ(u)q̇(w̃)

, (19)

where U = p(u) and W = q(w̃). Following Ref. [11], we refer to the RSET associated with a single
quantum massless scalar field. Its components are [16]:

TUU = − 1
12π

C1/2∂2
UC−1/2, (20)

TWW = − 1
12π

C1/2∂2
WC−1/2, (21)

TUW = TWU =
1

96π
C R. (22)

In the presence of other fields, the previous expressions have to be corrected only by a multiplica-
tive numerical factor. The RSET components in the stationary region inside the bubble are directly
computed by using the relationships U = p(u) and W = q(w̃), introduced in Sec. 2.2.

Significant physical information is extracted from the RSET by studying, for instance, the en-
ergy density ρ measured by a set of freely falling observers, with four velocity uµ = (1, v̄) in (t, r)
coordinates,

ρ = Tµνu
µ
c uνc, (23)
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which is conveniently expressed as the sum of three terms,

ρ = ρst + ρdyn−u + ρdyn−w̃. (24)

The first static term

ρst ≡ − 1
24π


(
v̄4 − v̄2 + 2

)
(
1 − v̄2)2 v̄′ 2 +

2v̄
1 − v̄2 v̄

′′
 (25)

depends only on the r coordinate through v̄(r) and represent vacuum polarization. The two dynamical
terms

ρdyn−u ≡ 1
48π

f (u)
(1 + v̄)2 , (26)

ρdyn−w̃ ≡ 1
48π

g(w)
(1 − v̄)2 (27)

depend also on u (w̃) and correspond to the energy carried by rightgoing (leftgoing) rays, which is
red/blue-shifted by a term depending on r. To keep the notation compact we have put c = 1 and we
have defined

f (u) ≡ 3p̈2(u) − 2ṗ(u)
...
p(u)

ṗ2(u)
, (28)

g(w̃) ≡ 3q̈2(w̃) − 2q̇(w̃)
...
q (w̃)

q̇2(w̃)
. (29)

In Fig. 5, we present the result of the calculation of ρ inside the bubble [12], for a warp-drive
geometry defined by the velocity profile introduced in Eq. (3). With this choice, the surface gravity
is κ =

√
3/2 and the horizons appear at tH = 1. The energy density ρ (thick solid line) of Eq. (23)

is plotted as a function of r at different times (t = 0.5, 1, 2, 3) and r varies between rB and rW , the
locations of HW and HB. The three terms ρst, ρdyn−u, and ρdyn−w, defined in Eqs. (25), (26), and (27),
are plotted with thin-solid, dashed, and dot-dashed lines, respectively.
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Figure 5. Energy density ρ (thick solid line), ρst (solid line), ρdyn−u (dashed line) and ρdyn−w (dot-dashed line) as
functions of r, rB < r < rW at time t = 0.5, 1, 2, 3. The horizons form at tH = 1.
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This figure shows that the dynamic term ρdyn−w (dot-dashed line) is transient and gives an impor-
tant contribution only during the process of formation of the warp-drive bubble. In fact, g(w̃) differs
from 0 only for values of w̃ corresponding to light rays crossing the bubble at t ∼ tH . At late time
instead q̇(w̃) goes to a constant and g(w̃)→ 0. Thus, ρdyn−w can be safely neglected at late times.

RSET in the center of the bubble.

In the center of the bubble (r = 0) ρst = 0, because v̄(r = 0) = v̄′(r = 0) = 0. At late times when
ρdyn−w is negligible, the only contribution to the energy density is given here by ρdyn−u. Moreover,
since u(t, 0) → +∞, ρdyn−u can be evaluated by expanding f (u) at large values of u, f (u → ∞) = κ2.
Finally ρ(r = 0) ≈ κ2/(48π). This is the energy density πT 2

H/12 of a scalar field in 1 + 1 dimensions
at the Hawking temperature TH = κ/2π. Using κ =

√
3/2, the energy density is ρ ≈ κ2/48π ≈ 0.005,

which coincides with the numerical results at late times (t = 3), shown in the bottom panel of Fig. 5.
Note that the Hawking temperature of this radiation is huge, TH ∼ κ & 10−2 TP, where TP is the

Planck temperature, about 1032 K, when QI are assumed [6, 8]. Indeed, the wall thickness for a warp
drive with v0 ≈ c would be ∆ . 102 LP, and its surface gravity κ & 10−2 t−1

P , where tP is the Planck
time. If instead the warp drive is supported by matter violating QI, such a high temperature can be
avoided. For instance, with ∆ ∼ 1 m, the temperature is about 0.003 K (corresponding to a wavelength
of 1 m).

RSET on the black, white, and Cauchy horizons.

On the horizons r = rB,W , both ρst and ρdyn−u diverge. Indeed the term (1 + v̄) in the denominators of
Eqs. (25) and (26) vanishes at r = rB,W . By expanding f (u) for u → ±∞ in ρst and ρdyn−u, one finds
that the diverging terms exactly cancel each other [11] and the total ρ does not diverge, in agreement
with the Fulling-Sweeny-Wald theorem [18]. Furthermore, the subleading terms yield

ρ
(
r ' rB,W

)
= CB,W + BB,We∓2κt + O (

r − rB,W
)
. (30)

This contribution is exponentially damped on the black horizon, on a time scale ∼ 1/κ, as shown in
Fig. 5. The same behavior characterizes the RSET on the horizon of a black hole formed through the
gravitational collapse of a star [17]. Conversely, on the white horizon the subleading term exponen-
tially grows with time. That is, moving along HW , ρ grows exponentially and diverges at the crossing
point between HW and H +

C , as shown in Fig. 5, where the value of ρ (thick solid line) at r = rW goes
towards −∞ as t → +∞.

Finally, a positive energy pulse, whose value at the peak diverges with time to +∞, approaches
rW as r − rW ∝ e−κt. Thus, ρ diverges in two different ways for r → rW and t → ∞, depending on
the order in which the two limits are taken. To understand the physical meaning of these divergences
it is convenient to consider the Penrose diagram of Fig. 3, where the location (r = rW , t = +∞)
is represented by a whole line (H +

C and H +
R ) rather than by a single point. The former negative

divergence appears by first taking the limit r → rW and afterwards moving on the white horizon
HW toward the crossing point between HW and H +

C (late-time limit). The latter positive divergence
appears instead by fixing a value of u and moving on the corresponding geodesic, which is parallel
to HB and HW in the Penrose diagram, until the Cauchy horizon H +

C is reached. Note that these
results do not contradict the Fulling-Sweeny-Wald theorem [18], since both divergences take place on
a Cauchy horizon.

Furthermore, the natures of these two divergences are quite different. The divergence at the cross-
ing point between HW and H +

C is intrinsically due to the inevitable transient disturbances produced
by the formation of the white horizon. On the contrary, the divergence on H +

C is due to the infinite
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blue-shift suffered by light rays as they approach the Cauchy horizon and it is similar to the often
claimed instability of inner horizons in Kerr-Newman black holes [19–21].

However, in both cases these effects produce an exponential growth of the RSET, whose backre-
action dooms the warp drive to be semiclassically unstable on a time scale of the order of 1/κ, the
inverse of the surface gravity of the white horizon. By QI inequalities, this timescale would be of the
order of 102 Planck times, about 10−42 s. Even violating the QI, to get a time scale of 1 s, a wall as
large as 3 × 108 m is needed. Thus, most probably, one would be able to maintain a warp drive with
superluminal speed for a very short interval of time.

4 Warp drives in Lorentz violating theories

In the previous section we showed that superluminal warp-drive geometries are quantum mechani-
cally unstable. However, that analysis rested on relativistic quantum field theory. Thus, one should
examine whether the warp-drive instability is peculiar to the assumed local Lorentz symmetry. In-
deed, it is known that non-linear dispersion relations remove Cauchy horizons and regulate the fluxes
emitted by white holes [14]. Moreover, although observations constrain to ultra high energy a pos-
sible breaking of that symmetry [22], one cannot definitely exclude ultraviolet violations of the local
Lorentz symmetry, which have been suggested by several investigations [23–25].

A stability analysis of warp-drive configurations with Lorentz violation was performed in [13] in
a 1+1 dimensional stationary system, by considering a massless scalar field with quartic dispersion
relation propagating on a geometry defined by the line element of Eq. (2). If the Lorentz symmetry is
violated, it is sufficient to consider stationary warp drives, because in this case the Cauchy horizons
are not present and the initial quantum state can be properly defined without ambiguities. In this
spacetime ∂t is therefore a globally defined Killing vector field, which is time-like within the bubble
(region C) and space-like outside (regions L and R, see Fig. 1). The action of this scalar fields is

S ± =
1
2

∫
d2x
√−g

[
gµν∂µφ∂νφ ± (hµν∂µ∂νφ)2

Λ2

]
, (31)

where hµν = gµν + uµuν is the spatial metric on a section orthogonal to some unit time-like vector field
uµ, which specifies the preferred frame used to implement the dispersion relation [26]. In the present
settings uµ should be given from the outset, while in condensed matter the preferred frame is fixed by
the fluid flow [27]. Inspired by this analogy, we choose uµ to be (1, v̄) in the (t, r) frame. This uµ flow
is geodesic and asymptotically at rest in the (t, x) frame of Eq. (1), so that stationarity is preserved.
The sign ± in Eq. (31) holds for superluminal dispersion (velocity of high momentum photons larger
than velocity c of low momentum photons) and subluminal dispersion (velocity of high momentum
photons smaller than c), respectively. With the metric of Eq. (2), the wave equation generated by the
above action is [

(∂t + ∂r v̄) (∂t + v̄∂r) − ∂2
r ±

1
Λ2 ∂

4
r

]
φ = 0. (32)

Because of stationarity, the field can be decomposed in eigenfrequency modes φ =
∫

dω e−iωtφω,
where ω is the conserved frequency (with respect to the Killing time). Correspondingly, at fixed ω the
dispersion relation reads

(ω − v̄kω)2 = k2
ω ±

k4
ω

Λ2 ≡ Ω2
±, (33)

where kω is the spatial wave vector, and Ω is the comoving frequency, measured in the proper frame
defined by the flow uµ. Equation (33) is graphically solved in Fig. 6.
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Figure 6. Graphical solution of Eq. (33) for super (top panel), and subluminal dispersion (bottom panel). In both
panels, the straight lines represent ω − v̄k for |v̄| < 1 (solid) and |v̄| > 1 (dashed). The curved lines represents
±Ω±(k). On the left, closed (open) dots refer to roots with positive (negative) Ω+ which correspond to positive
(negative) norm modes.

For superluminal dispersion (top panel) and |v̄| < 1 (solid line), that is in region C, there are two
real roots kwω and ku

ω (closed dots), describing leftgoing and rightgoing waves ϕwω and ϕu
ω, respectively,

and two complex roots k↑ω and k↓ω, describing a spatially growing and decaying mode, ϕ↑ω and ϕ↓ω,
respectively. The superscripts u and w have been chosen accordingly to the notation introduced in
Sec. 2.2. Indeed, in the relativistic limit Λ → ∞, the modes ϕu

ω and ϕwω propagate on the geodesics
of Fig. 4. For |v̄| > 1 (dashed line), that is in regions L and R, for values of ω smaller than a cut-off

frequency ωmax [14], the two complex roots turn into real ones, k(1)
ω and k(2)

ω (open dots), with negative
Ω. Correspondingly there exist two additional propagating waves ϕ(1)

−ω and ϕ(2)
−ω with negative norm.

If the dispersion relation is subluminal (bottom panel), there are instead four real-k solutions in
region C, where |v̄| < 1, and two real-k and two complex-k solutions in regions L and R, where |v̄| > 1.
Consequently, there are now two extra propagating modes which are trapped inside the warp-drive
bubble.

4.1 Superluminal dispersion relation

In this case, in each of the two infinite asymptotic external regions L and R, there are 4 propagating
modes for each ω < ωmax. Therefore 8 asymptotically bounded modes [14] can be defined. By
examining their asymptotic behaviors those modes are grouped in two bases, named in and out. Each
incoming mode φ(i),in

ω , belonging to the in basis (outgoing mode φ(i),out
ω , belonging to the out basis)

possesses a single asymptotic branch ϕ(i),L/R
ω carrying unit current and with group velocity directed

towards region C (from C to ∞). The construction of the incoming mode φ(1),in
−ω is exemplified in

Fig. 7.
When the dispersive scale and the horizon surface gravity κ are well separated (ω ∼ κ � Λ), the

leftgoing mode w does not significantly mix with the other three modes, all defined on the rightgoing
branch of Eq. (33) [28], as numerically checked in Ref. [14]. Thus, the scattering matrix relating the
in and out bases is effectively 3 × 3,

φu,in
ω(

φ(1),in
−ω

)∗(
φ(2),in
−ω

)∗
 =


αu
ω β(1)

−ω β(2)
−ω

β(1)
ω α(1)

−ω A−ω
β(2)
ω Ã−ω α(2)

−ω



φu,out
ω(

φ(1),out
−ω

)∗(
φ(2),out
−ω

)∗
 . (34)
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ϕ
(1),L
−ω

ϕ
(2),L
−ω

ϕ
(1),R
−ω

(ϕu,R
ω )∗(ϕw,L

ω )∗

Figure 7. Asymptotic decomposition in plane waves ϕ(i),L/R
ω of the incoming mode φ(1),in

−ω . Note that only ϕ(1),L
−ω

has group velocity directed toward the horizons, with wavevector k(1)
ω .

Since the norms of φ(i),in/out
−ω are negative, the coefficients of this scattering matrix satisfy anomalous

normalizations conditions, such as

|αu
ω|2 − |β(1)

ω |2 − |β(2)
ω |2 = 1. (35)

The information about spontaneous particle production is all encoded in the scattering matrix. For
instance, if the system is in a quantum state which is vacuum at early times, that is the occupation
numbers of incoming modes vanish, then the mean occupation numbers of outgoing particles is fixed
by the coefficients of this matrix:

n̄(i)
−ω = |β(i)

−ω|2, (36)

n̄u
ω = n̄(1)

−ω + n̄(2)
−ω, (37)

where n(i)
−ω are the occupation numbers of the outgoing negative frequency modes φ(i),out

−ω and nu
ω is the

occupation number of the positive frequency mode φu,out
ω , which is related to n(i)

−ω by energy conserva-
tion.

The coefficients of Eq. (34) can be computed using connection formula techniques [28] when the
surface gravity κ is much smaller than the dispersive scale Λ. We first expand the field φω in both
asymptotic regions L and R as a sum of plane waves:

φω = Lu
ω ϕ

u,L
ω + L(1)

ω (ϕ(1),L
−ω )∗ + L(2)

ω (ϕ(2),L
−ω )∗,

φω = Ru
ω ϕ

u,R
ω + R(1)

ω (ϕ(1),R
−ω )∗ + R(2)

ω (ϕ(2),R
−ω )∗,

(38)

where we have neglected the leftgoing modes ϕw,L/Rω . The coefficients appearing in this expansions
are connected by 

Ru
ω

R(1)
ω

R(2)
ω

 = UW · UWKB · U−1
B ·


Lu
ω

L(1)
ω

L(2)
ω

 , (39)

where UB and UW respectively describe the scattering on the black and white horizons [28] and
UWKB describes the WKB propagation from one horizon to the other. It contains the exponential
of iS a

ω = i
∫

dx ka
ω(x), where ka

ω is ku
ω, k↑ω or k↓ω. Note that, since k↑ has negative imaginary part, eiS ↑ω is

exponentially large, growing as eΛ(rW−rB). Analogously eiS ↓ω is exponentially small because k↓ = k↑∗.
This formalism allows to determine the coefficients of the expansion of the incoming modes on

the out basis. As an example, we illustrate how to compute the coefficients of the expansion of
φ(1),in
−ω , which form the second row of the scattering matrix of Eq. (34). As shown in Fig. 7, φ(1),in

−ω is
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constructed by imposing that the amplitude L(1)
ω of the branch ϕ(1),L

−ω equals 1 and that the amplitudes
Lu
ω and R(2)

ω of the branches ϕu,L
ω and ϕ(2),R

−ω vanish [see Eq. (38)]. Moreover, the coefficients associated
with the outgoing modes are Ru

ω = β(1)
ω , R(1)

ω = α(1)
−ω, and L(2)

ω = A−ω. The connection formula (39)
yields β

(1)
ω

α(1)
−ω
0

 = UW · UWKB · U−1
B ·

 0
1

A−ω

 . (40)

This is a system of three equations with three unknowns, whose solution is

β(1)
ω = β̃B

ω × eiS u
ω × αW

ω + O(eiS ↓ω ),

α(1)
−ω = −β̃B

ω × eiS u
ω × βW

ω + O(eiS ↓ω ),

A−ω = α̃B
ω,

(41)

where the α’s and β’s in the right-hand sides of the above expressions are the standard Bogoliubov
coefficients for black and white holes [29]. All the other coefficients of Eq. (34) are computed by
applying a similar analysis to the other two incoming modes. Surprisingly, the exponentially large
factor eΛ(rW−rB) cancels out from all the coefficients, although the non-positive-definite conservation
law of Eq. (35) does not bound them. The leading terms of these coefficients are therefore given by the
coefficients of UB and UW [28], times some phase generated by the propagation in region C. Thus, β(1)

ω

and α(1)
−ω are given by the product of a coefficient of UB, a coefficient of UW , and a propagation phase.

Indeed the semi-classical trajectories associated with the conversion of the incoming mode φ(1),in
−ω into

the outgoing modes φu,out
ω and φ(1),out

−ω , respectively, pass through both horizons. Instead, A−ω is given
by only one coefficient of UB, because the semi-classical trajectory associated with the conversion of
φ(1),in
−ω into the outgoing mode φ(2),out

−ω involves only a reflection on the black horizon.
The physical consequences of the behavior of the coefficients of the scattering matrix can be

analyzed by computing the expectation value of the stress-energy tensor

Tµν ≡ 2√−g
δS +

δgµν
= T (0)

µν + T (Λ)
µν , (42)

where T (0)
µν is the standard relativistic expression and T (Λ)

µν arises from the Lorentz violating term of
the action,

T (Λ)
µν =

1
Λ2

[
hαβ

(
φ,αβφ,µν + φ,µνφ,αβ

)
− 1

2

(
hαβφ,αβ

)2
gµν

]
. (43)

As usual, the above expression has to be renormalized. To this aim, we expand the field in the
asymptotic region on the right of the white horizon as the superposition of the two rightgoing modes
φu,out
ω and φ(1),out

−ω (see Fig. 7),

φ =

∫
dω

[
φu,out
ω âu,out

ω + φ(1),out
−ω â(1),out

−ω
]

+ h.c. (44)

In this region, the geometry is stationary and homogeneous. Hence the renormalized tensor T ren
µν is

obtained by standard normal ordering of the above creation and destruction operators of outgoing
modes. Choosing a quantum state which is vacuum at early times, 〈0in|T ren

µν |0in〉 is computed by using
Eq. (34). The final expression is an integral over ω of a sum of terms, each being the product of two
modes φu,out

ω and φ(1),out
−ω and of two coefficients of the scattering matrix.

We consider now only the asymptotic behavior of these terms in Fourier space, since this is enough
to identify possible divergences. First note that there are no ultraviolet divergent terms, because the β
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coefficients of Eq. (34) vanish and no negative frequency modes are present for ω > ωmax. Therefore
divergences can possibly appear only in the infrared domain.

In each term of T (0)
µν there are two derivatives with respect to t or r, producing two powers of ω,

k(u)
ω or k(1)

ω in Fourier space. Analogously, in T (Λ)
µν four powers of frequency and momentum appear.

In region R (see Fig. 6), in the limit ω → 0, the wavenumbers k(u)
ω , k(1)

ω go to constant opposite values
that we call k0 and −k0, respectively. For this reason, terms containing only spatial derivatives are
not suppressed when ω → 0. The leading terms in the non-dispersive component of the RSET,
〈0in|T (0), ren

µν |0in〉, are therefore proportional to

k2
0

4πΩ(k0) vg0

∫
dω

[
n̄(u)
ω + n̄(1)

−ω
]
. (45)

This expression gives the integrated occupation number of the two outgoing species and vg0 is
their asymptotic group velocity in the (t, r) frame. The leading terms in the dispersive component
of the RSET, 〈0in|T (Λ), ren

µν |0in〉, are proportional to Eq. (45) up to an extra factor of k2
0/Λ

2. Since

k0 = Λ

√
v2

0 − 1, the contribution of the (0) and (Λ) components of the RSET are typically of the same
order.

Finally, the key result comes from the fact that |β(1)
ω |2 diverges as 1/ω2 forω→ 0, being the product

of the two coefficients |βB
ω|2 ∼ 1/ω and |βW

ω |2 ∼ 1/ω of the scattering matrix of the black hole and of
the white hole, respectively (this infrared behavior has been validated by numerical analysis). Then,
if the warp drive is created at some time tH , only frequencies ω > 1/T , with T ≡ t − tH , contribute to
the emitted spectrum at time t. This provides an infrared cutoff to the integral of Eq. (45). Thus, the
emitted energy density scales as

E ∝ Λ

∫
1/T

dω
[
n̄(u)
ω + n̄(1)

−ω
]
∝ Λκ2T. (46)

That is, the infrared divergence of the spectrum leads to a linear growth of E. We now compare
this result with that of Ref. [30]. In that work, the spontaneous emission of phonons from an analog
white hole is investigated in a Bose–Einstein condensate, where the dispersion relation of phonons is
identical to the superluminal one of Eq. (33). In that system the spontaneously emitted flux diverges
logarithmically with time when the initial quantum state is vacuum, linearly when the initial state
is thermal. In a warp-drive geometry, even if the initial state is vacuum, the black hole horizon
emits thermal radiation. The white hole horizon is then stimulated by this emission as if a thermal
distribution were initially present and the emitted flux eventually grows linearly, in agreement with
Ref. [30].

Using quantum inequalities [7], the typical time scale of this linear growth is of the order of the
Planck time tP (unless Λ is very different from t−1

P ) since κ . 10−2t−1
P . Our analysis leads to the

conclusion that even in the presence of superluminal dispersion, warp drives are still unstable on a
short time scale.

4.2 Subluminal dispersion relation

If the dispersion relation is subluminal (minus sign in front of the quartic term in Eq. (33), bottom
panel of Fig. 6) there are two extra propagating norm modes which are trapped in region C. Hence
they bounce back and forth, inducing an exponential amplification of the emitted radiation. This
phenomenon is the subluminal version of the black hole laser effect [31]. As a result, the asymptotic
fluxes and therefore 〈0in|T ren

µν |0in〉 grow exponentially with time.
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This dynamical instability is described by a discrete set of complex-frequency eigenmodes that
are asymptotically bounded [32, 33]. In the original version, the analysis was performed with a
superluminal dispersion relation in a spacetime with a velocity profile similar to the warp-drive one
(Fig. 1), but where the external and internal regions are exchanged (|v| < 1 in regions L and R;
|v| > 1 in region C). However, there is a precise symmetry between the two cases [28], consisting in
changing both the sign of the dispersion relation and that of v̄ + c. This symmetry allows to infer that
the set of complex eigenfrequencies governing the laser instability share the same features in both
configurations.

Thus, also when the Lorentz violation is implemented through a subluminal dispersion relation,
superluminal warp drives are still unstable.

5 Conclusions

This contribution summarizes the semiclassical stability analysis of warp-drive spacetimes in both
Lorentz-invariant and Lorentz-violating quantum field theories, performed in Refs. [11–13]. In these
works a 1 + 1 calculation was performed. Generally in spherically symmetric spacetimes this could
be seen as an s-wave approximation to the exact results. However, this is not the case for the axisym-
metric warp-drive configuration. Nonetheless, we do expect that the salient features of those results
would be maintained in a full 3+1 calculation, given that they will still be valid in a suitable open set
of the horizons centered around the axis aligned with the direction of motion.

First, we investigated the causal properties of the superluminal warp-drive geometry in the context
of standard general relativity, constructing its Penrose diagram. As seen by an observer inside the
warp-drive bubble, the front and the rear wall of the bubble behave as a white and a black hole horizon,
respectively. In eternal warp drives a past and a future Cauchy horizons are also present. Because of
the presence of the past Cauchy horizon, the choice of a proper initial state is ambiguous. To solve this
problem, we considered a more realistic configuration of a warp drive dynamically created out of an
initially Minkowski space time. In this case the past horizon is removed and the initial quantum state
is well-defined. Then, we studied the properties of spontaneous particle production for a scalar field
living on this geometry by computing its renormalized stress energy tensor. We briefly summarize the
results of this analysis.

(1) Hawking-like radiation is generated at the rear wall of the warp-drive bubble, corresponding
to a black hole horizon. By QI [6, 8], the wall thickness is extremely small and the surface gravity is
huge. Hence, the Hawking temperature of this radiation is huge, TH ∼ κ & 10−2 TP, where TP is the
Planck temperature, about 1032 K.

(2) The formation of a white horizon produces a radiation which accumulates on the white horizon
itself. This causes the energy density ρ measured by a freely falling observer to grow unboundedly
with time on this horizon.

(3) The formation of a future Cauchy horizon gives rise to an instability, similar to the instability
of inner horizons in black holes, due to the blueshift of Hawking radiation produced by the black
horizon.

The time scale of both instabilities is of the order of the inverse of the surface gravity, about 102

Planck times, if QI are assumed. However, even without this assumption, this time scale remains very
short. Indeed, to get a time scale of 1 s, the wall should be as thick as 3 × 108 m. The semiclassical
backreaction of the RSET will make the superluminal warp drive rapidly unstable. Thus, superluminal
speed can be maintained for a very short time.

Finally, we re-examined the stability properties of warp drives taking into account possible viola-
tions of the Lorentz symmetry at high momenta. Even if in this case the Cauchy horizon is removed,
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superluminal warp drives are still unstable, but the type of instability is very different, depending on
the form of the dispersion relation.

(1) If the dispersion relation is superluminal (velocity of high momentum photons larger than
velocity c of low momentum photons), the renormalized stress-energy tensor grows linearly with time
on a short time scale.

(2) If the dispersion relation is subluminal there exists a propagating mode trapped in the interior
of the bubble. This mode bounces back and forth between the black and the white horizon, originating
the subluminal version of the black hole laser instability, which produces an exponentially growing
flux of emitted particles.

In conclusion, the analysis presented in this contribution convincingly rules out the stability of
superluminal warp drives at semiclassical level. Of course, all the aforementioned problems disappear
when the bubble remains subluminal. In that case no horizon forms, no Hawking radiation is created,
and neither high temperatures nor instabilities are found.

A suggestive interpretation of these results can be argued in connection with the so called chronol-
ogy protection conjecture [34]. In fact, a time machine could be built through a couple of superluminal
warp drives traveling in opposite directions [2]. Thus, a protection mechanism seems to act at an early
stage, forbidding the creation of a system which could be dangerous for causality. Moreover, whereas
former attempts to tackle the issue of chronology protection deeply relied on local Lorentz invari-
ance [35], the present result suggests that this conjecture may be valid also for quantum field theories
violating Lorentz invariance in the ultraviolet sector. It would be interesting to check whether all these
results are general by applying a similar stability analysis to other spacetimes allowing superluminal
travel, such as the Krasnikov tube [36, 37].
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