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Abstract

A unified formalism for considering ‘"several types of
ihitial value problems in general relativity is presented
v;based on the use of conformal two-geometries to carry the two
degrees of freedom of the gravitational field. A four-
dimensional region of space-time is foliated and fibrated by
a two-parameter family of rigged spacelike two-surfaces
gotten by dragging a single two-surface along the integral
curves of two commuting vector fields. The full Riemannian
four-geometry at each point of the region <can be
reconstructed from the intrinsic and extrinsic geometries of
the two-surfaces and of the rigging'planes orthogonal to
them. The Einstein field equations, projected into the
surface and rigging plane, are derived from a Palatini
variational principle. The rigging projections of the field
equations determine the conformal factor everywhere from data
given on a single two-surface. The traceless part of the
surface projection becomes a pair of wave equations for the
componénts of the conformal two-metric. The remaining.
equations, together with certain kinematical conditions on
the foliation and fibration, determine the geometry of the

rigging space. A generic initial value problem is considered
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using an initial hypersurface that results from dragging a
single two—surface'alohg'the trajectories of one of the
vector fields. For a spacelike vector field, the field
equations that determine the evolution of the three-geometry
of the resulting space-like initial hypersurface are the
well-known constraint equatibns. For a null vector field,
they are the subsidiary equations of the characteristic
initial value problem. The solution of the linearized version
of the field equations is considered. A decoupling gauge is
found in which the wave equation for the linearized conformal
two-structure decouples ffom the other components. It is
shown that sufficient data can be giveﬁ on a single two-
surface to formally prolong a solution>to the field equations
into a four-dimensional neighborhood of the surface. The most
important part of the two-surface data consists of a
denumerably infinite set of totally symmetric traceless

tensors which determine the conformal two-structure.
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CHAPTER I -
INITIAL VALUE PROBLEMS IN GENERAL RELATIVITY
1.1 Introduction

A theory admits an initial wvalue formulation if it 1is
possible to uniquely predict its dynamical evolution, within
an equivalence class of physically indistinguishable
solutions, from specified initial data given on some
hypersurface or pair of intersécting hypersurfaces in the
space of independent variables of the theory. The Initial
Value Problem fdr a theory consists of finding such a set of
initial data on a given hypersurface or hypersurfaces. As
originally conceived, General Relativity is a classical
theory and it seems reasonable to expect that, like other
classical theories, it has such a formulation. Initial value
problems for the Einstein equations have been discussed on
space-like, null and time-like hypersurfaces or combinations
of such surfaces!l. '

There are important physical reasons for investigating the
initial wvalue problem for the gfavitational field. Foremost
among these is the problem of identifying the true degrees of
freedom. of the gravitational field. The true degrees of
freedom represent the radiatiqn modes of thé field and their

excitation signifies the presence of gravitational radiation.

1) Theories, like general relativity, involving hyperbolic partial
differential equations possess real characteristic (or null)
surfaces. No amount of data, given on a single null hypersurface
can predict the evolution of the fields off of such a
hypersurface. Data must be specified on the null hypersurface plus
some other intersecting hypersurface, which may be null,
space-like or time-like. However, Penrose [1963] has shown how to

specify data on a null cone, including the vertex.



The true degrees of freedom are important for defining the
energy of the field and in  attempting to construct
observablesl. Quantization of general relativity should
involve commutation relations between quantities representing
the true degrees of freedomn.

A more recent motivation for studying the initial value
problem is to obtain numerical solutions, using computers,
that might, for example, model the gravitational radiation
emitted by binary stellar systems (see, for example, Smarr
[1979] and d'Inverno [1980]). |

A problem related to the initial value problem is this:
Suppose wevperturb the initial data slightly. Then, we
expect the dynamical evolution of the theory to be only
slightly perturbed from its original evolution. This
requirement, called the stability property, is an intuitively
reasonable physical restriction and it can be stated
precisely mathematically. An initial value problem is said to
be well-posed if a unique and stable solution can be shown to
exist correspondingvto the set of initial data.

The well-known difficulty in solving the general
relativistic initial value problem stems from two related
aspects of the theory: First, the non-linearity of the field
équations; physically interpreted, this means that the
gravitational field is self—interacting. Second, the theory's
invariance under a gauge group consisting of the set of
diffeomorphisms of Space-time. This aspect expresses the
requirement that the theory be generally covariant. These
properties of the field equations follow from the desire to
formulate a covariant theory solely from the metric tensor

and its first and second derivatives. Einstein's theory is

1) In the Hamiltonian sense, the observables are constants of the
motion; they commute with the Hamiltonian and, in general
relativity, are invariant under coordinate transformations.

See, for example, Bergmann [1961].



the simplest generally covariant field theory meeting these
conditions. General covariance 1leads to two important
consequences. The first is that the eﬁolution of some of the
field variables of the theory are not determined by the field
equations. The second is that the initial data for the
remaining determinate elements are not freely specifiable,
but are subject to four differential éonstraint equations. A
;éimilar situation holds for Maxwell's electromagnetic theory;
but-here, the non-linearity of the field equations makes an
explicit identification of the gravitational degrees of
freedom a difficult problem.

The similarities between Einstein's and Maxwell's
.equations arise from the fact that the gauge groups of both
theories are function groups: i.e., groups whose elements are
“arbitrary functions of a set of s parameters. One of
Noether's theorems [Trautman, 1964] .shows that the field
equations obey a set of s differential identities, called the
Generalized Bianchi identities. These identities imply that
the field equations are not independent, and this poses some
difficulty in formulating a Cauchy problem. One cannot simply
solve for the highest-order derivatives appearing in all of
the equations. A Cauchy problem can be formulated only when
it is possible to calculate all partial derivatives of the
field at all points of the initial hypersurface given all
partial derivatives'up to some finite order. If m is the
érder of the highest derivative appearing in the field
equations, then, on the initial surface, one has to prescribe
all partial derivatives up to order m-1, as Cauchy data. By
repeated differentiation of the field equations, all other
partial derivatives are calculable. (When the field equations
have analytic coefficients and the Cauchy data is analytic,
then we can construct an analytic solutions from the
knowledge of all partial derivatives). If one cannot solve
for some of the derivatives, then the Cauchy data 1is

insufficient. A system of equations in which it is possible



to solve for the highest order derivatives of all. the
dependent variables is said to be in Cauchy-Kovalevsky form.
The Einstein equations, like Maxwell's equations, are not in
Cauchy-Kovalevsky form. This is basically because of the four
differéntial constraints from the Bianchi identities,
diséﬁssed in the previous paragraphl.

Since there are components of the gravitational field
whose solution is not determined by the field equations in a
given coordinate System, they must be specified off of the
initial hypersurface before the field equations can be
solved. Their choice is exactly analogous to -the gauge
freedom in Maxwell's theory. .

' There is no unique way to determine which quantities are
truly dynamical and which ones are pure gauge quantities. In
general relativity, gauge conditions are called coordinate
conditions. One such gauge choice imposes harmonic coordinate
‘conditions in which each of the coordinates satisfies the
covariant wave equation. Most oflthe work on existence proofs
for the space-like gravitational initial value problem (the
Cauchy Problem) has been carried out in harmonic coordinates.

On the other hand, most of the analyses of the geometric
content of the Einstein fields equations and its initial
value problem are done in the (3+1)-formulation of the field
equations. The (3+1)-formalism decomposes space-time into a
ifamily of space-like three-surfaces [Stachel, 1962,1969].
Such a family, called a foliation in the language of
differential geometry, 1is threaded or fibrated by the
trajectories of a time-like vector field. The evolution of
the initial data, given on a single member of the foliation,
is governed by egquations written in terms of the Lie
derivatives with respect to the'time—like vector. field. The

(3+1)-formulation has been generalized by O'Murchadha [1973]

~ 1) An excellent discussion of these points is found in Trautman

[1964].



to anholonomic hypersurface elements orthogonal to a unit
time—like vector field and by Stachel [1980] to arbitrary
b.orthogonal vector fields. While the (3+1)-formalism does not
imply any coordinate conditions, it facilitates a particular
class of gauge conditions imposed on the so-called 'lapse’

-function and 'shift' vector which in adapted coordinates are

closely related to the 9po and g,; components, respectively,

of the metric tensor.

The question of determining the number of degrees of
- freedom of the gravitational field, that is the number of
independent components of the field, can be stated in terms
of an initial value problem. For the Cauchy prdblem, the
number of degrees of freedom is one-half the number of freely
specifiable initial data functions set on the hypersurface.
. The number of degrees of freedom in the gravitational case
turns out to be two since, as we shall show in Section 1.2,
one has to give four arbitrary functions per point on the
hypersurface. This number agrees with the number suggested,
for instance, by Fourier mode counting in the 1linearized
‘approximation of éeneral relativity.

The cases in which data is set on a portion of a null
hypersurface (plus a portion of another intersecting
hypersurface) are called éharacteristic initial wvalue
problems. More important (for us) than the well-posedness of
this type of problem! is the geometric interpretation of the
initial data_in these cases. In the double null formulation,
discussed in Section 1.3, the initial null hypersurfaces are
foliated by one-parameter families of space-like two-surfaces
(a2 2+1-decomposition). The full four-geometry induces on each
member of the foliation a positive-definite two-metric so
that each initial surface carries a one-parameter family of

Riemannian two-surfaces with positive definite metric. The

1) See Miiller zum Hagen and Siefert [1977] for a discussion of the

well-posedness of characteristic initial value problems.
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two-metric of each two-surface may be decomposed into a
conformal two-metric, with determinant unity, and a conformal
factor. The set of conformal two-metrics given on the family
of two-surfaces on each null hypersurface is the freely
specifiable initial data for the characteristic initial value
problem. (Note that one has to give two functions per point
on the two initial hypersurfaces, rather than the four
functions per p01nt on one hypersurface as in the Cauchy
problem.) These results motivated D'Inverno and Stachel
[1978] to see if a similar analysis were possible for the
Cauchy problem. After foliating the initial Cauchy surface by
a one-parameter family of two-surfaces, they showed that the
constraint equations imposed no restrictions on the
conformally-invariant part of the two-metric on these
two-surfaces, or on its Lie derivative with respect to the
normal direction. This Suggests that a conformally-invariant
family of two-metrics together with its corresponding Lie
derivatives in the direction normal to the Cauchy surface
might serve as the freely- spec1f1able initial data for the
Cauchy problem as well. They designated any one-parameter
family of conformally-invariant two-metrics a "conformal
two-structure”.

The aim of this dissertation is to extend. the work of
D'Inverno and Stachel by presenting a formalism in which, for
all types of initial wvalue problems, the .gravitational
degrees of freedom are carried by the conformal
two-structure. This is done by using the {2+2}-formalism
first introduced by D'Inverno and Stachel [1978] and
developed extensively by Smallwood [1980] and d'Inverno and

Smallwood [1980]. By (2+2)-formalism we mean the breakup of {

various quantities with respect to a foliation of space-time f
H

by a two-parameter family of space-like two- surfaces and 1ts§

fibration by a pair of commuting vector fields which span a
family of transvecting time-like two- -planes. (Stachel [1984a]

has considered the general n+m breakup) .

|
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We proceed as follows. 1In Chapter One, we discuss the
concept of degrees of freedom, using various physical fields
as examples, and relate it to the initial value problem. Then
we will 1look at -the' initial value problem of general
relativity for analytic initial data and solutions. The
simplest (and earliest) existence and unigueness theorems
were proved for this case (Darmois [1927]). After this, we
turn to the Cauchy problem in harmonic coordinates and state
the standard existence and uniqueness theorems. Next, the
(3+1) ~decomposition of the field equations is discussed. The
geometrical interpretation of the dynamical variables and the
constraint equations becomes clear. We use the
(3+1)—formulation to count the number of degrees of freedom
of the gravitational field. Last, we contrast two methods of
dealing with the constraint egquations and isolating the true
degrees of freedom of the gravitational field. The first
method, due to D'Inverno and Stachel [1978], develops the
formalism of conformal two-structures on Cauchy surfaces; its
generalization to the full four-dimensional geometry forms
the body of this thesis. The second method, due to York and
‘others, ﬁses conformal techniques on space-like 3-geometries.

Chapter Two provides a general discussion of the
geometrical underpinning of our formalism, the theory of
imbedding and rigging of submanifolds. The essentially new
. features of this thesis aré presented in Chapter Three. After
deriving the field equations using a Palatini variational
principle, we write them as equations gOVErﬁing the evolution
of the geometry of two-surfaces along a pair of commuting
vector fields, and analyze what initial data must be given on
a 51ngle initial two-surface in order that the grav1tatlonal
field in a four-dimensional region be wuniquely defined.
Several examples from the linearized version of the Two+two
formalism are considered in Chapter 4. We show, using
examples, that to completely determine the gravitational

field in a four-dimensional region, one has to specify the



following quahtities on an initial space-like two-surface: a
scalar field (and two independent derivatives off the
two-surface) representing the conformal scale factor of the
two-surface; a two-dimensional vector field, and a
denumerably-infinite set of Symmetric traceless two-tensors
thch is formally equivalent to the linearized conformal
two-structure. Chapter Five considers the double-null initial
value prdblem in the two+two formallsm We show that
essentially the same initial data is needed for the exact
case on a single two-surface as- was required in its
lineafized counterpart. While the two+two formalism has not
been investigated for the existence of solutions other than
analytic ones, it helps us understand why the initial data in
the space-like initial value problem differs from that in the
characterlstlc case and how the conformal two-structure can
represent the gravitational degrees of freedom in both cases.

Regarding conventions and notation, we choose 'the
signatﬁre of out space-time metric to be (-+++4). Furthermore,
we adopt Schouten's [(1954] convention for defining the

Riemann ‘and Ricci tensors. Lower case Greek letters (e.qg.,

L,V = 0,3) will serve as 1indices for four-dimensional
space-time quantities. Lower case Roman letters (a,i = 1,2,3)
will be used for quantities defined on a three- surface. while
upper-case Roman letters (A=2,3) will be used for quantities
defined on a two-dimensional surfaces. Lower-case Roman bold
letters will serve as rigging indices and run from e.qg.
x;y = 0,1. V



1.2 The Cauchy Problem and the Degrees of Freedom of

the Gravitational Field

The purpose of this section is to outline the treatment of
the Einstein equations of general relativityAas a system of
partial differential equations that has a well-posed Cauchy
-problem, if the initial data is correctly set. Such a system
of equations, describing the time evolution of a physical
system, is usually either of hyperbolic or parabolic type. It
is not obvious that the Cauchy problem is an appropriate
initial value problem for the Einstein equations because, at
first sight, they do not fall into either class. However,
when the field equations are expressed in a harmonic
coordinate system?, they take the form of hyperbolic
equations for the components of the metric tensor; and for
such equations, the Cauchy problem is appropriate. As we
shall see, any solution of the Einstein equations is
equivalent, under some member of the pseudo-group ' of
coordinate transformations, to a solution satisfying the
field equations in harmonic coordinates. In this sense, the
Einstein equations have a well—posed Cauchy problem.

We mentioned in Section 1.1 that the number of degrees of
freedom per point of the gravitational field is one-half the
number of functions that are freely specifiable as initial
data in the Cauchy problem. The concept of degrees of freedom
of a field directly generalizes that for systems with a
finite number of degrees of freedon. Consider a
non-relativistic system of N (uncharged) point particles
which interact with each other and are also acted upon by
external forces which depend only on position and velocity.

Such structureless particles are completely characterized by

their mass m, position x and velocity x. The degrees of free-

1) Harmonic coordinates satisfy VuVuxV = 0.



dom-of this system are a set of quantities which can serve to
distinguish different physical trajectories of the system
compatible with the equations of motion. One such
representation of the degrees of freedom is the set of
positions and velocities of all the particles at one moment
of time. Another representetion is given by certain
collective motions of the system, termed normal modes -- the
degrees of freedom being the amplitude and phase of each
mode. For simplicity, let us allow only interactions between
- the particles which depend upon nothing but the relative
distances. The most general equations of motion are then

;= ijij (x5 = x5 + £, (x,) [1.2-1]

Furthermore, if all the forces are derivable from a

potential, we have

If some assumptions of smoothness are put on the potential

functions Qi. and ¢ xt’ then by the fundamental existence
theorems for systems of ordinary dlfferentlal equations [see,
for example, Lefschetz, 1927], a wunique solution {xi(t)}
exists and depends continuously on 6N numbers: the initial
positions {x;(ty)} and velocities {i-(t )} of the particles

of the system Because there is a one-to-one correspondence
-between the set of initial data and the set of solutions,
each solution is distinguished by its initial data set. We
say the initial data embodies the degrees of freedom of the
system. The number of degrees of freedom is defined to be
3N = 6N/2, half the number of freely specifiable initial

_10_



conditions.

Many classical mechanics textbooks introduce continuous
fields by deriving the equations of motion of a string from a
co-linear array of point particles connected by massless
springs by passing to a 1limit in which the number of
particles become infinite while the distance between them
vanishes. The positions and velocities of the particles go
over to the displacement from equilibrium and the
instantaneous velocity of each point of the strihg. The
masses go over to the density of the string, and the spring
forces to the tension of the string. The equations of motion
of the point particles go over to the one-dimensional wave
equation for the string. Existence and uniqueness proofs for
-the one-dimensional wave equation are discussed in, for
example, Bers, John and Schecter [1964]. We generalize the
céncept of the number of degrees of freedom to this
continuous system by calling it the number of degrees of
freedom per point of the string. Because two numbers need to
be given for each point of the string, there is one degree of
freedom per point. For the three-dimensional scalar wave
equation in Minkowski space, the existence and uniqueness of
solutions is most easily proved using the Leray theory of
.solutions bf hyperbolic equations (see Wald [1985]). The set
of initial data needed to completely specify a solution is
the field and its first normal (timelike) derivative on a
single (space-like) hypersurface. This means, similarly, that
there is one degree of freedom per point of the hypersurface.

The next physical system that we shall analyze in terms of.
its initial value problem is Maxwell's equations for the
electromagnetic field potentials in Minkowski space. We shall

show that when written in a Minkowski coordinate system! and

1) The Minkowski metric in Minkowski coordinates is the diagonal

metric ”uv =[-1 1 1 1]



an appropriate gauge, they possess a well-posed Cauchy
problem. The data needed to uniquely determine a solution of
the equations consists of four arbitrary numbers per point of
an initial space-like hypersurface which corresponds to an
initial time.. Thus Maxwell's equations have two degrees of
freedom. -

The electromagnetic field is described covariantly by a

second-rank anti-symmetric tensor field FuV' The components

of Fuv in the inertial frame corresponding to the adopted

Minkowski coordinate system are the electric field and the

magnetic induction:

[ 0 Ey Ez ]
I -E, Bj 0 -B; l
l e, -8, B o |

The field equations with sources break up into two sets

(see, for example, Jackson [1975]):

auF“V = 5V ' [1.2-3]

duFyay = O [1.2-4]

j¥ is the source current 4-vector for the Maxwell field. It

is a conserved quantity
’u — N —_— :
9,3 0. [1.2-5]

The conservation of the current 4-vector 1s an integrability
condition of the first set of field equations [1.2-3], due to

the antisymmetry of the field:

- 12 -



2,0, FW = 3,3 = 0 [1.2-6]

We will analyze the Cauchy initial value problem in a
(3+1) -formalism with respect to an inertial frame, i.e., a

family of flat space-like hypersurfaces which foliate

Minkowski space. The -hypersurfaces S, given by

t = x0 = constant in a Minkowski coordinate system form such

a family. We take S, as our initial hypersurface. The

covariant normal to any hypersurface S is the unit vector

n, = 9x%/3x¥ = &, [1.2-7]
Its contravariant form is
ot = n = n% = -8, | [1.2-8]

The second set of Maxwell's equations [1.2-4] implies the
existence (at least locally) of a four-vector potential Au

related to the electromagnetic field by

Fuv = OvAy - O,A, [1.2-9]

In terms of these potentials, equation 1.2-3 becomes:
v V o
9,085 - 959,2Y = i, [1.2-10)

which 1s set of four coupled -second-order partial

differential equations for the potentials B

In order to write the field equations in (3+1)-form, all
four-dimensional quantities are decomposed into a part normal

and a part tangent to each member of the family of

_13_



hypersurfaces {S¢}. The projection operator into the normal

direction is nunv. Quantities which arise by projecting into

the hypersurface are termed spatial quantities. The normal
part of the 4-vector potential is the scalar field

® = Bt = -n4 ; - [1.2-11)
The tangential component of Au is the three-vector given by

The current 4-vector j'u can similarly be decomposed:

p = junu - j0

3= 5% 3738 | [1.2-13]
'S0 that the four-vector conservation law for JH becomes
op + V5 =0 [1.2-14)]

In terms of the potentials, the electric and magnetic

field vectors are

t=1
I

-Vo - atA [1.2-15]

B = Vxa A [1.2-16]

We shall project the field equation 1.2-10 into the normal
and tangential directions to the hypersurfaces. The normal

projection of equation 1.2-10 is:

Vi + 3 (V-a) = p [1.2-17]

- 14 -



The spatial projection is:
VA - 2 a - V@O ® + Va) = 3 [1.2-18]

The set of equations 1.2-17 and 1.2-18 is not in Cauchy-

Kovalevsky form because the highest-order time derivative of
D ‘(the first time derivative) cannot be solved for
explicitly in terms of all the other derivatives.

The definition of Fuv in terms of the four-vector potential
shows that the gradient of a scalar function can be added to
As; without changing the physically meaningful fields. This is
the well-known gauge transformation

Ay = By + 3 | [1.2-19]

All four-vector potentials which are connected by a gauge
transformation form an equivalence class which defines the
same physical state. '

In (3+1)-form, the gauge transformation is:

® -+ & =0 - 3y [1.2-20]

>

A - = A+ Vy [1.2=21]

We can choose X so that it vanishes together with its time
derivatives up to any finite order on the 1initial
hypersurface, but has non-zero higher derivatives. Two
different sets of potentials belonging to the same physical
equivalence class will then agree on the initial hypersurface

up to that order but will differ in higher-order derivatives.

- 15 -



This shows that, unless one singles out a particular member
of an equivalence class, there can be no well-posed Cauchy
problem for Maxwell's equations written in terms of the
potentials. We single out a member of the equivalence class
. by imposing some gauge condition. One example 1is the

transverse or Coulomb gauge:

va = o0 [1.2=22]

This gauge condition transforms equation [1.2-17] into an

equation for the scalar potential alone:

V20 = p [1.2-23]

-while equation [1.2-18] becomes
VA - 22 A - V(O,®) = 3 [1.2-24]

We now apply the Helmholtz decomposition! to the vector
potential

A = Atr 4 plong ‘ [1.2-25]
Since A satisfies the 'gauge condition VA = 0, we have

valong = g, a longitudinal vector satisfying this condition

1) Any three-vector G obeying certain boundary conditions at infinity
can be decomposed into transverse and longitudinal parts:
G = Gtr + Glong
where
V.Gtr = ¢
Vxglong = ¢
The Helmholtz decomposition of a vector field is discussed, for

example, in Jackson [1975].

- 16 -



is necessarily constant. We may without loss of generality
set this constant to zero, hence Al°"9 = 0 and A = ate,

One can show that the third term on the left-hand side of
equation 1.2-24 is -jl°%9 so that equation 1.2-24 may be
written entirely in terms of transverse fields and currentsl:

V2Atr - 32 atr - jtr [1.2-26]

Equation 1.2-26 has a unique solution provided that we
specify {At?ﬁkatr}-on %0 = 0. However, this alone would not
guarantee that the vector potential obeys the constraint

everywhere. We prove that this is so. On the initial

hypersurface, we choose initial data that satisfies

VA = 0 and V9,A = 0 _ ' [1.2-27]
Taking the divergence of equation 1.2-26 yields

VZA = 32.A = 0 [1.2-28]
with A = V-A. With the set of initial data, equation 1.2-28
has the unique solution A = 0 everywhere; hence, the gauge
condition is maintained during thé evolution of the initial

data.

Using spherical coordinates, one can show that, in .the

1) We decompose j = jtr 4+ jlong, Since the —conservation
equation [1.2-14] involves only the longitudinal part of the

current vector
o.p + V-jlong = o
and since V2@ = p, we have
V- (0, V® + jlong) = ¢
By definition, the quantity f = . Vo + jl°“9 also satisfies

VxE =0
so we may set £ = 0 and we hence

3,V = -jlong

- 17 -



Coulomb gauge, Ay and Ap serve as the freely specifiable

initial data for the radiative parf of the Maxwell field.
They and their time derlvatlves are the data that can be
given at an initial time in order to determine a unique

solution to the field equations. 1In. addition, some

lower-dimensional data, A_ and atAr, need to be given on a

single two-surface imbedded in the initial time surfacel which
encloses the source of the field. Boundary conditions for @

also need to be given; for instance, ® prescribed on a
timelike tube r = constant. The fact that four numbers per
point need to be given on the initial hypersurface means that
the Maxwell field has two degrees of freedom. The additional
degree of freedom is the remnant of the gauge invariance of
. the theory and of the longitudinal coupling to the charge

We now turn to the Cauchy problem for the vacuum Einstein

equations:

Gy = Ry = 1/2g,, R = 0 [1.2-29]

where Guv and Ruv are the Einstéin and Ricci tensors of the
space-time and where
R = gu%ﬁw ' [1.2-30)

These constitute a set of 10 coupled second-order,

quasilinear partial differential equations for the ten com-

1) The initial data constraints in spherical coordinates are
r29,.(r?a.) + (sinB) "1 95 (sinBag) + a¢<sige Ag) =0
r'zar(rzAr,t) + (s5inB) ~1dg(sinb Ag,.) + aw(sine Agrg) =0
They determine A, and A, on the initial-time hypersurface Sy from

their values on a single two-surface contained within it and the

freely specifiable initial data on Sp.
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ponents of the metric tensor Iuy- We shall consider only

solutions having a Lorentzian metric of signature -+++. We
also assume that tHe manifold on which the equations are set
is orientable and time-orientablel. The smoothness of the
manifold must be at least piecewise C2, so that the Riemann
tensor may be defined.

In Section 1.1 it was stated that the Einstein field
equations are not in Cauchy-Kovalevsky form, so that the
Cauchy data alone is insufficient to extend the components of
the metric field uniquely off the initial surface. To
understand why, suppose we have a solution to the field
equations in some region R of a space-time. On a space-like
hypersurface in %, the metric and its normal derivative can
be computed. Any coordinate transformation which, together
with a finitevnumber of its derivatives, reduces to the
identity on the hypersurface will preserve the metric and
this number of its normal derivatives on the hypersurface,
bﬁt change the higher-order normal derivatives of the metric.
Hehce, no finite set of Cauchy data, on the hypersurface, can
determine a solution of the field equations 1f general
covariance is maintained. However, all such formally
different solutions, connected to each other via coordinate

transformation, are physically equivalent to one another. Two

metrics g; and g, are physically equivalent if there exists a
- diffeomorphism @:M — M which takes g; into g,:

?x9;, = g5.
The solutions of the field equations are unique only up to

such a diffeomorphism? (see Hawking and Ellis [1973] or Sachs

1) See Appendix A. ,
2) This diffeomorphism is sometimes referred to as an isometry,

a concept distinct from isometries defined by Killing vectors.
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and Wu [1977]). Following Sachs and Wu, we define a gravita-
tional field as an equivalence class of Space-times, where
the equivalence of the space-times is defined by the
existence of an orientation- and time-orientation preserving
diffeomorphism. As noted previously, we may recover formal
determinism by working in some gauge such as the harmonic
gauge. _ _

The simplest analysis of the Einstein field equations is
performed by adapting a particular coordinate system to the
initial'hypersurface. Suppose S is a spacelike hypersurface
and we use a coordinate system in which 8 is defined by
x0 = 0 (at least locally). The remaining three coordinates
(x¥) then form a coordinate system for S. Our goal is to
determine the metric off of S as a function of the metric on
S. In the adapted coordinate system, the metrical relations

between points on 8§ is given by the 9ij4 components of the
metric tensor. We shall fequire that 93 5 be positive
definite. Of the ten field equations, the four given by
G0u=0, do not contain any second derivatives with respect to

time. The remaining field equations, G,

ij = 0, contain second

time derivatives only of the'gij. With the coordinate freedom
at our disposal, we may contruct a coordinate . system in such
a way as to specify o both on and off the initial
hypersurface, consistent with the coordinate conditions we
have already adapted to S. It follows that the gOu are

non-dynamical variables, and merely represent coordinate

information.

For instance, we may set g5, = -1 and 9pg; = 0 on s. A
coordinate system in which these conditions hold can be
extended into a finite neighborhood of the initial surface by
dragging the three spatial coodinates along the geodesic

curves which pass normally through each point of § with the
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geodesic length parameter serves as the remaining (time)

coordinate (being chosen equal to xp on S). These coordinates

are called geodesic normal coordinates. The transformation to

geodesic normal coordinates preserves the initial values of
gj4 and 9i4r0-
With this choice of coordinates, the six equations Gij=0
may be put into Cauchy-Kovalevsky form:
gij,OO = F(gijr gij,O’ gij,k’ gij,km) [1.2-31]
In this form, it is clear that the Cauchy data for this

system are gij and gij;o-

| The four equations G°u=0 now involve only Jijr 9i4,0 and
their spatial derivatives since all other metric components
are fixed by the coordinate conditions. The equations G°u=0

are functions of the Cauchy data only and hence are
constraints upon this data.

Properly prescribed Cauchy data satisfying the constraint
equations ﬁust determine the subsequent evolution of the
field. It follows that the evolved field must automatically
satisfy the constraint equations. The proof follows from four
differential identities satisfied by the field equations,

called the contracted Bianchi identities:

'VHGHV =0 [1.2-32]

In our adapted coordinate system, the Bianchi identities

(assuming the evolution equations Gij = 0 hold everywhere)
become

0,60 + xM 60 ; + ¥9,6% = 0 [1.2-33]

where the functions X and Y are built up from the metric
tensor and its first derivatives. Equations 1.2-33 are a

system of first-order partial differential equations which
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possesses a unique solution provided that GOc are prescribed
on x% = 0 and that the coefficients are continuous (which is
true by hypothesis). In particular, G% = 0 is the only

_solution of these equations for Go0 =0 on x0 = 0. Thus, the

constraint equations continue to be satisfied off § if they

are satisfied on S and Gij = 0 are satisfied off S.

The earliest solutions to the Cauchy problem considered
were analytic. In this case, we can apply the standard
Cauchy-Kovalevsky .theorem for analytic solutions evolving
from analytic data which proves 1local existence and
uniqueness (see Courant and Hilbert [1962]). For analytic
data, we note that successive time derivatives of equation
1.2-31 can be taken. For each iteration, the term on the
left-hand-side can be set equal to a term on the
right-hand-side which contains time derivatives of one lower
order. An analytic function of n-variables is uniquely
defined in a neighborhood of a point if all of its partial

derivatives with respect to the n-variables are given at that

point. In our case n=4 and the 915 and 9iy,0 @re specified in

a neighborhood within § of p € S. But since the g;4 are

analytic, all the partial derivatives of 93 5 and 933, 0 with
respect to the spatial coordinates are also known at p. As is
easily seen, the field equations- allow us to compute all
possible time derivatives of 9iy to all orders. They also
allow us compute all mixed derivatives of time order >2. Thus

all possible partial derivatives are known at p. The partial

derivatives may be used to construct a Taylor series

expansion of 95 about p which is a solution of the field

equations. We are ensured that the solution exists within
some radius of convergence around p. The uniqueness of the

solution follows from the uniqueness theorems for analytic
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functions. Analyticity also insures that, if this
construction were performed at a neighborihg point, the
solutions would be identical in the region of overlap of
their respective domains of convergehce.

There are, however, fundamental limitations to the
analytic case. Solutions with discontinuities are necessafily
globally non-analytic and hyperbolic equations always possess
such solutions. This observation is somewhat mitigated by the
recognition that a sequénce of analytic functions can
arbitrarily closely approximate such .solutions (see
Choquet-Bruhat, de-Witt-Morette, and Dillard—Bieick, [1977]
- or Courant and Hilbert [1962]). A more important problem with
analytic functions concerns their domain of dependence.
Consider a region % of the initial hypersurface. The set of
points of M which can be reached via time-like or null curves

only from points within ¥ is called the domain of dependence
of ¥ and written D(%). Physical intuition Suggests that
initial data set on ¥ should completely determine the fields
only within D(9) . The condition of analyticity is so strong
that the fields within ¥ determine the fields outside D (%) as
well.

For the non-analytic case, existence and uniqueness proofé
for the Cauchy problem for the Einstein Equations have been
obtained using harmonic coordinates (cf. footnote, p.9) (See,
for example, Fischer and Marsden [1979] or Chogquet and York
[1980]). Harmonic coordinate systems also éatisfy the

conditions
T(x) = g"™I*, (x) =0, or (v/-g g®™),, =0 [1.2-34]
Any initial value problem can be reduced locally to one in

a harmonic coodinate system. To see this, let (U,9) be a

coordinate system (in the wusual notation, U is an open

neighborhood and ¢: U - R? is a mapping from p € U into the
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set of four numbers {yV}) such that a space-like hypersurface

-8 is given by y° = 0 on 8. The values of yY on S are (O,yi)

and those of YV,O are SVO. Using these as initial conditions,

the harmonic coordinate condition may be solved in some

region R for four scalar fields {xV} which will satisfy:

xV = y¥ and xV 5 = yV o ©on S and

such that |dxY/dy*| = 0 [l.2—35j

The {xY} may be used as coordinates and x¥(y*) can be

considered a coordinate transformation. In the new coordinate
system, the values of %u,and 9uv,0 are the same as they were

in the old coordinate system. (The imposition of the harmonic
coordinate condition still leaves available some gauge
freedom, namely the transformation to other harmonic
coordinate systems).

For vacuum fields the vanishing of the Einstein tensor is
equivalent to the vanishing of the Ricci tensor, which can be

written in the form:

Ry = —1/2 gaBguv,aB +1/2 g T, + 172 Iyl + B [1.2-36]

where Huv is a polynomial function of Iuv and v, -

Hence, 1in harmonic coordinate systems, the Einstein
equations are equivalent to the so-called reduced Einstein

equations:
RMy = ~1/2 g%gy 05 + By, [1.2-37]

which are a strictly hyperbolic set of quasilinear partial
differential equations with identical characteristics for

each component of the metric. Proofs of the existence and
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uniqueness of solutions of this set of equations are
discussed in, for example, Wald [1985], using the Leray
theory, and in Fischer and Marsden [1979], using the theory
of linear semi-groups. Both of these approaches require that
the metric tensor belong to the Sobolev space! HS (s 2 3) of
functions.

The advantage of using harmonic coordinates is that it is

sufficient to solve the Cauchy problem for R(h“w = 0. A

solution Ipv to the reduced Einsteins equation is a solution

of Einstein's equations only if I'* = 0 in the region in which

the solution exists. This will be true if: (1) T = 0 on s
and (ii) the <constraint equations hold on S (see
Choquet-Bruhat [1952]). Condition (ii) is assumed to hold by

virtue of the field equations. Condition (i) can always be
satisfied, as we have seen above. The constraint equations of
the original theory thus become initial conditions to be
satisfied in order that the harmonic gauge condition
propagate of S. This also proves "physical uniqueness" of the
solution, since any two metrics with the same initial data
can be transformed to harmonic coordinates in which formal
uniqueness holds. We refer the reader to Fischer and Marsden
[1979] for the proof of the local theorem of existence and
unigqueness for Einstein's equations for non-analytic
solutions. Discussing the initial value problem in a
particular coordinate system obscures much of its geometrical
content, as well as the geometrical significanqe of the
dynamical quantities. We seek a formulation which is

independent of particular coordinate systems. To do this, we

1) Sobolev spaces are vector spaces of functions which satisfy certain
differentiability conditions. We have no need for a technical
discussion except to say that functions of class C* form a dense

subset of the Sobolev space H3.
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view the initial value problem in terms of the evolution of
the metric of an abstract three-manifold, invoking the
language of foliations and fibrations. In this formulation,
an arbitrary three-manifold with positive definite metric
generalizes the notion of the "state of the system at an
initial time". "Evolution in time" is replaced. by a
one-parameter family of imbeddings that map the
three-manifold into the four—dimensiohal space-time. We
replacé time derivative (a coordinate-dependent concept) with
the Lie derivative with respect to a time-like vector fleld

which not only is a covariant concept but is 1ndependent of
any metrical structure on the manifold. One gains more
geometrical insight into the constraint equations, since they
can be written as geometrical relations between the first and
second fundamental forms of the initial hypersurface.

The method of ‘analysis we are about to describe is not
suited to proving existence or unigqueness theorems, which are
best handled in particular coordinate systems, making them
more amenable to the standard tools of analys1s Our limited
task is to specify and geometrically interpret a set of
initial data which serves to physically characterize distinct
solutions. We can do this by assuming that we are given a
solution, and determining which data are needed to define
that solution uniquely.

The Cauchy problem may be presented abstractly and more

geometrically in the following way. An jinitial data set is a

triplet J=(5, ¥'g,h) where S is a three-dimensional manifold,
g is a three-dimensional positive-definite Riemannian
metric on S, and h a covariant symmetric two-tensor on S. A

development of J is a space-time (M,g) such that there exists

an imbedding map B:S — M which satisfies the condition that
the pullback of g from B(S) to S and the pullback of ﬁhe

second fundamental form (these terms are defined below) on
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B(S) to S agree with g and with h respectively. We shall
denote by S the set B(S) of image points of S under B. Since
the metric determines the space-time structure, one does not
know in advance what the domain ofvdependence of the iﬁitial
surface will be. It is for this reason that the solution
~consists of the pair (M,g) rather than g aloné. The Cauchy
problem is that of finding a development of J such that g
satisfies the Einstein equations in M. Provided the initial
data satisfy certain constraints, there will exist a maximal
development of S, such that it is an extension of any other
development of S. This theorem is due to Choquet-Bruhat
[1952] and is also presented in Fischer and Marsden [1979].

We will now consider globally  hyperbolic space-times

(M, q) . Ohly here does a global Cauchy problem make sense. In
this case, there exists a space-like hypersurface having a

domain of dependence that is the whole manifold (the topology

of the space-time is RXS, S being the topology of the Cauchy
surface; see Choquet-Bruhat and York, 1979). Many space-.
times, such as the Reissner-Nordstrom solutions, do not admit
a Cauchy surface; but even then, we can always work in small
enough regions so that the Cauéhy problem is meaningful. The

topological assumptions imply that the initial Cauchy surface

belongs to a l-parameter family of Cauchy Surfaces (8¢ with

Sy = 8) which foliates the space-time. A foliation is a
parametrized family of surfaces such that every point of the
manifold lies on one and only one member of the family. The
‘parameter L can be considered as a global time function. For
an extensive treatise on the theory of foliations, see
Reinhart [1983].

The global topology also implies that there exists a
globally-defined (but non-unique) vector field VY satisfying
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V”Vvt = 1. This vector field defines a fibration, a one-

parameter family of diffeomorphisms which carries the

initial hypersurface into any member of the family

dnz Sy = S,

- We Can think of 'V as deforming the initial surface by
pulling or dragging each of its points along the integral
curves of V, creating the foliation. The four-dimensional
metric induces a three-dimensional positive definite metric
on each member of the foliation. The induced metric and
extrinsic curvature evolve -in time as we go through the
members of the foliation.

Before analyzing the field equations, we discuss in detail
the geometry of imbedded three-surfaces. As we mentioned, the

initial hypersurface § = S, can be regarded as the image,

under an imbedding map B, of an abstract manifold S:

B: § 5 M (a sufficiently smooth map),
so that B(S) = S;.

In a coordinate system, the imbedding map is expressed as
xH = BH(y3) [1.2-38]

where {y®} and {x*} form local coordinate systems on S and M,
respectively.

B defines another map B*, the so-called pull-back map,
which maps covectors belonging to the cotangent space of any
point on B(S) into the cotangent space of its image on S:

* * *
BY: TgpM = TS [1.2-39]

where T*pj and T*BQMM are the cotangent spaces of S and M at

p and B(p), respectively.

In coordinates, the pull-back map is written as
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BH,= 9, BH(yP) - [1.2-40]
and for a pulled-back covéctor, we have

m, = Bh,m, | [1.2-41]

where m is a covector in M on S. Considered as a matrix, the

pull-back map is of rank three.

B also defines the push-forward or differential map, By,

which carries vectors from the tangent space of a point of §

into the tangent space of its image in M.

Byx: TS - Tg(p)M | : [1.2-42]-
where Tp$ and TB“”M are the tangent spaces of S§ and M at o)
and B(p), respectively. '

The coordinate expression for B* is also B“a, so for any

vector v@ in S, we have
vH = B @ " [1.2-43]

A positive-definite three-metric is induced on S by the

pull-back of g:

g = B*g or in coordinates Clgp = B“a"bguv [1.2-44)

using the notation BM,Y, = BH,BY, . The induced metric has

inverse defined by

(3) gab w)gbc = 82, [1.2-45]

- 29 -



-and an induced metrical connection given by the Christoffel
symbols constructed from g,
Because it is of rank three, the imbedding map defines a

timelike covariant vector field w on S, satisfying B“a“l= 0.

W, is only defined up to a scalar factor at each point on §
and can be completely defined by fixing its magnitude on §:

P72 = = g(w,w) ' | [1.2-46)

Locally, w is proportional to the gradient of a scalar
field. (We refer the reader to Appendix A for the complete

statement of this result)

w = sdy or w o= s%ﬂy. [1.2-47)

With out loss of phyiscal significance, we can choose ﬁ to be
the gradient of a scalar field which we take to be the time
parameter t, simplifying_the later analysis.

Another tensor field on S can be defined by pulling back

the covariant derivative of w
_ ,
h = -B”" (Vw) or ‘hy = —B“;% VPWV [1.2-48]

This tensor describes the bending of S within M and is called

the extrinsic curvature or second fundamental form of S.

While the covariant derivative appears to involve derivatives
in arbitrary directions, h is in fact independent of the
prolongation of w off the hypersurface. The extrinsic

curvature is usually defined using the unit normal n, where

n, = pw,. Our choice is just p_1 times the usual second

fundamental form (the extrinsic curvature, as we have defined
it, exists in affine spaces for which orthogonality is not

defined). Equation 1.2-47 implies that h is symmetric with
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respect to its indices.

The maps Bx and B” cannot be inverted since they are of

rank three. To carry covariant quantities from S to S and
contravariant guantities from S to S, we must rig the

hypersurface. A rigged hypersurface is defined as one that
has a contravariant vector defined at each point of the

hypersurface, which is nowhere tangent to it. The rigging

vector r must hence satisfy ruﬁli 0.

Because of the way W, the surface one-form, and V, the

deformation vector, are defined they satisfy:
Vi = 1 | [1.2-49]

We could use V to rig the initial hypersurface. but, in a
metrical space, a preferred rigging direction exists which is
orthogonal to the hypersurface. Let N be any vector
orthogonal to S:

NHBY g9,y = 0 [1.2-50]
which we can also normalize via

N”wu= 1 [1.2-51)

"Then the vector field V satisfies

V=N+o0 ~ ' [1.2-52]

where O is a vector field tangent to S i.e. N”Gu== 0. The

interpretation of eguation 1.2-52 is that the motion from one
hypersurface to the next can be decomposed into a motion

perpendicular to the surface and a shift parallel to the

surface, given by the so-called shift vector G.



The' magnitudes of N and w can be related since their
covariant components are proportional, as follows from the

fact that B, annhilates both. One can easily show that

N, = —pzwu and hence g(N,N) = —p2 = [1.2=53]

Equation 1.2-53 justifies calling p the lapse function
because it gives the metrical distance between

'infinitesimally close members of {S¢} along an orthogonal

vector field connecting them.
The projection operator CH,E N“wv projects any vector into

the rigging (normal) direction, while BH, = &, - cH, projects

into the hypersurface. Any arbitrary vector A can be

decomposed into
At = BLAY + cHav = rpH 4 maM [1.2-54]

(In the future, the prime (') will indicate a quantity lying
in the hypersurface while the double prime (") will indicate
a quantity parallel to the rigging.)

Likewise, any arbitrary covector z can be decomposed into:

= RrY : \% S | " -
zu B uzv + C uzv zu-+ zu [1.2-55]

These projection operators can operate on quantities of
higher rank. For example, an arbitrary covariant tensor of

rank two will have four projections

Ap.A = BvuKl x ¥t BquKlAvx t CquKlAvx ¥ CvuKlAvx [1.2-56)

The metric tensor has only two projections because of the
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orthogonality of the rigging to the three-space S:

G = "Gt "y [1:2=57)
The contravariant metric tensor can be built up from
quantities that we have previously defined
gHV = (1gabph v p=2yiiyv [1.2-58]
[1.2-59]

- (3)gabBuavb _ p-2 (V“ _ 0"‘1) (VV _ O'V)

Thus the metric tensor is equivalent to the ten quantities

gab

and deformation vector field,

, p and 6%. In a coordinate system adapted to the surface

one can show

p2 = g00 [1.2-60]
a _ 2 a0
= p“g [1.2-61)

relating the lapse- function and shift vector to some

components of the metric tensor.
Since w is a gradient, and using equation 1.2-51 andthe

fact that O’uwu = 0, we have
Egw = 0 and £ow = 0 and tyw = 0 [1.2-62]
One can also show that
[1.2-63]

_ -2
N“vau = -p va

We can now compute all the projections of the covariant

derivative of w



wau - BaKBuVaWB 3 Bawccﬁuvawﬁ + CaKBBuVuwB+ CaxBuVaWB [1.2-64)

The first term is the extrinsic curvature modulo sign. The

other terms are:

BaKCBuVaWB = -B%w, pIVp= -wp TtV p - CaKBBuVawﬁ [1.2-65]

OB Vowg = - wap IV p = - W P END [1.2-66)
Thus:

Vi = =B = 2070w 'V p - e p e [1.2-67)

The Lie derivatives of objects lying in $§ with respect to
vector fields pointing out of S are defined, as in Schouten

[1954], by carrying them over to M using the connecting
quantities, acting on them with the Lie derivative, and

projecting back into S. For the induced three-metric tensor

in particular we have:

in' Jap = BuaYb£NBpacb ' gpc

= Buavb£N(guv - Mguy) = Buavb£Nguv

= 2LV, V )

— _9n2
= -2p B“éVkauwv)

2

= 2p°n,, [1.2-68]

In a similar way, a covariant derivative on S can be
induced from the covariant derivative on M: let TabC be an

arbitrary geometrical object on S. Using the appropriate
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connecting quantities, carry this object over to S. Then take

covariant derivatives of this 4-geometrical object in
directions lying within S, using the projector Bvu. Finally,

carry the derivative back to S wusing the connecting
quantities. As examples, the covariant derivatives of a

vector and covector v and z of § are defined by

; — v v ' - '
D_vP = B ;%_V; vt where 'vt = Bt v2 [1.2-69)

D 2z, = BV;% Vv'zu where 'zu = Bapza [1.2-70]
It is not hard to show that the covariant derivative induced
in this way is identical to the covariant derivative defined
from the induced metric via its Christoffel symbols if and
only if the rigging is orthogonal to S. With the metric and
covariant derivative defined, the full intrinsic geometry of
S is known. The Riemann tensor on S and all of - its
contractions can now be calculated. v

The Riemann tensor on S is related to the Riemann tensor

on M by Gauss's equation (see Schouten, [1954], p. 237):

(3) - rkK o _ 2 -
Rabcd =B aubvchRmv 2p h[adhb]c [1.2-71]
Another relation between the geometry of S and the geometry

of M is given by Codazzi's equation (see Schouten [1954])

' - rkK el -1 -
2D[ahb]c-Baubvcwo'R1qJ.v +p "hyD,p - p ByDp [1.2-72]

Together, the Gauss and Codazzi equations are the
integrability conditions for the local isometric imbedding of
a Riemannian manifold into a Riemannian manifold of one
higher dimension.

After these preliminaries, we turn to the field equations.
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- The Einstein equations break up into two sets. The first set,
termed the evolution equations, are given by the projection

of the RlCCl tensor totally into the hypersurface
= K c G _ o
B”chRuv = Y WoN Ry + BHY X 6 vV =0 [1.2-73]

-The first term on the right hand side can be gotten from the

calculation of the Lie derivative of h

fnhap = - BRIV E (BP0 Vp -

-2
- Buavb£N(Bpucvp pro)

= h £xp 2 + pT2BHV bENV Wy + BHO, pT (_pro) LyBP,

-2 G
+ BPaVb p wac £4B° [1.2-74)
The last two terms on the right vanish because:
c _ _ o - _ O, = _NO = =
£4BY, = ENCYy = —£4N Wy = “N°Eew, = 0 [1.2-75]

To evaluate the second term on the right, we use an identity

1nvolv1ng the commutator of the Lie and covariant derlvatlve

£0V, Wy, = Vit - (V,VNE + NOR . K)w [1.2-76]

T ouv

The first term vanishes, giving finally

-2 -2
£xhap = b £8P - p H VoW, V VN - p” B“aVbN Rcuv

[1.2~77]

So the twice-normal-twice-surface projection of the Riemann

tensor is given by



BH,VpNOR g, K p2£Nhab - 2p7 n, £p - BM, KVp.VvNK

[1.2-78]

The last term on the right hand side of eguation 1.2-78 can

be rewritten, after some algebra,
MoV V, VNS = p™D,Dp - hpplegp + pZh, hyc [1.2-79]

Thus the first term on the right-hand side of equation 1.2-73

becomes

= a2 -1 -1 2
BHasNRouy" Wi = ~PExhap ~ hapP T ENP = PTDLDpP~ PPhyhyC
| [1.2-80]

The second term of equation 1.2-73 can be evaluated from the

contraction of Gauss's equation [1.2-71]

= (3) d_- pgkpuvd O _ 252p. d -
PRap = PRy = BX MY oRiqrv 2p“h 4%,y [1.2-81]
yielding
X G . (3) 2 = 2 -
B¥ 1Y dGR]ql" = "Ry, + phy®h,, = p°h,%hy, [1.2-82]

When 1.2-80 and 1.2-82 are substituted into equation 1.2-73
we finally get

2 -1 -1 2
P Egbap - hop,P "£xp - P DDpp - p hachbc +'(3)Rab

2 2
+ p“hyhy - p“hdhy = 0 [1.2-83]

Equations 1.2-68 and 1.2-83 form a first order system of
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partial differential egquations for ©G'g and h, which we may
express in terms of the Lie derivative with respect to V

using

£ = £y - £ [1.2-84]

They propagate the three-metric and extrinsic curvatures
along the vector field V.

The second set of field equations, the remaining four
equations GHVNV= 0, contain no second- (or higher-)order Lie

derivatives of any quantities. They are constraint equation
on the initial data. We shall now proceed to write them in
covariant form in the 3+1 breakup.

Calculating the Ricéi scalar in the 3+1 bfeakup gives:
2p—2N”NkRuK + Rl= 'gul'gKVRnﬂh,; [1.2-85]
which can be rewritten as
2p~ntwte = 'grgoR [1.2-86]

Making use of the contracted Gauss's equation [1.2-82] and

the field equations, we have the first constraint equation:
2p7nMbG, = (IR 4 pZh2 - pZpabp o g [1.2-87]

The second set of constraint equations 1is gotten from the

surface-normal projection of the field equations
v -
NYBH,G,, = 0

- Y - NV o ~bc
N BuaGuv N BuaKb <9 Raqwa
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Using Codazzi's equation 1.2-72 we get

= p2gb - 3ln 2 e
NYBH, Gy = p“gP° (2D hy ;. - 2p hy(DayPl = 0 [1.2=89]
or

gD P Thy o = 0 - [1.2-90]

The constraint equations are usually interpreted as
conditions which the initial data 3'g and h must satisfy.
Strictly speaking, the initial data for the set of partial

differential equations which form the Einstein equations is g

and £.,g. It is when we prescribe the relation between 1,9

and h by choosing values for P and 0 that constraints are
placed on the initial data. One can alternatively choose g

and £,g arbitrarily and use the constraint equations to

determine p and ©. The geometrical interpretation of this

viewpoint is that the 3-geometry on two neigboring surfaces
is given arbitrarily; the lapse and shift functions complete
the determination of the 4-geometry between the two surfaces
by determining the unit normal vector n to the initial
surface. An example of this approach is the maximal slicing
condition, discussed by York [1979] and others. Here, all the

3-geometries of the foliation are chosen to satisfy the

condition c_:;bah.ba = 0. When this condition is substituted into

the constraint equations, a set of elliptical differential
equations results for p and G.

Having identified the constraint equations above
[1.2-87,1.2-89], we now indicate one way to solve them, if

only in a formal sense, following d'Inverno and Stachel
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[1978]. Let S again denote the initial Cauchy surface. Just
as we foliated the four-dimensional Space-time with a

one-parameter family of three-surfaces, we foliate S with a

one-parameter family of space-like two-surfaces Q(xi) = p,

where p is a parameter distinguishing members of the
foliation (see Figure 1-1) (for the remainder of this

section, the components of the three-metric on § will be

written as 953 rather than Glg Let us adapt coordinates to

iy) -
the foliation so that its members are given by x! = p and the
remaining two coordinates on 8§, A=2,3, are coordinates of the

two-surfaces. In this coordinate system, the covariant normal
dp is given by:

- - 8l -
In this coordinate system, the connecting quantity is
given by BiA = SiA. It induces a positive definite two-metric
~9ap ©On each two-surface, whose components in adapted

coordinates, are the (A, B) -components of the three-metric.
We can fibrate the foliation using a vector field u
tangent to S satisfying
uks, =1 [1.2-92]
This”enables us.to identify points on different members of
the foliation. We can extend the coordinates of any single

two-surface to the entire foliation by holding them fixed on

the trajectories of the fibrating vector field. In these
coordinates, u takes the form uk = 5k1.
Letting et denote the determinant of gpp, define a

conformally related quantity

~

9ar

= eM2g o [1.2-93]

Since the determinant of 9ap 1s unity, there are only two
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independent components of 9ap- There now exists a
one-parameter family of conformal two-metrics on the
foliation EAB(XA,XI). The trace of the derivative of gag With

respect to x! vanishes.

o~

9*® Gaprq = lgpglsg = 0 [1.2-94]

Such a family is called a conformal two-structure by

D'Inverno and Stachel, and may be used to represent the true
degrees of freedom of the gravitational field, as will be

shown.

1
Figure 1-1 Foliation of the Cauchy Surface By a
One-Parameter Family of Two-Surfaces-

We can rig the foliation by using a vector field z,
orthogonal to the two-surfaces of the foliation, and tangent
to S. Z is uniquely defined if we adopt the normality
condition:

zis, =1 [1.2-95]

Using the rigging vector, we can now define the projection

operators



Clj = lej (1.2-96]

i _ i
By = &

into the rigging direction and two-surfaces, respectively.

ey -
5 = By [1.2-97)

In analogy with the 3+1 breakup, the fibrating vector
field can be uniquely decomposed

ul = 2% 4 i, [1.2-98]
where Bi is tangent. to the two-surfaces ¢(x) = p, that is

ﬁisi = 0, which in adapted coordinates implies Bl = 0. Using

this decomposition, and the coordinate conditions, we can

write the projection Ooperators in the adapted coordinate
System »

i i i, <1

clj = (511 _.Bl)s 3 [1.2-99]

i, - si

B*; = 3

Then, in adapted coordinates, the three-metric isg

5 - (8% - phsly | [1.2-100]

equivalent to the four sets of functions:

915 @ Iap(xhxY), AP, xl), o (xB, 1), R (x, x1)
since we can use the projection operators to decompose the
three-metric into

g;5dxtdxd = a?(dx1)2 4 eM2G, 0 (ax® + BAaxl) (axB + BBdx1)
[1.2-101)

2

where @ = g ulud = g | [1.2-102]

0 and BA are the lapse function and shift vectors of the
fibrating vector field u. '
The extrinsic curvature hab' a tensor field on S can also

be decomposed into the parts:

hap = Bidphis = 1/2p72 Inm [1.2-103]



hCe = gPBh,, = 1/2 p2g [1.2-104)

EAB = exp(-1/2A) (hpg - 1/2gABhCC) = 1‘/2p'2£N‘§AB
[1.2-105]
= P09 -2, 2
e = hijzl_zi = 1/2p “f0 [1.2-106]
= ni o3 : ' -2 '
hy = B*a2lh;, @ h® = 1/2p7%¢ pP [1.2-107)

so that, assuming p = 1 and ol = 0, we have:

h, + @sisj

[1.2-108)

h,. = 4BAiBjexp(1/27\.) EAB + 1/2BAingABhCC +ZBA(iS

19 3)

Putting this decomposition, and the corresponding one for the
three-dimensional metric [1.2-101] into the .constraint
equations [1.2-87 and 1.2-89], d'Inverno and Stachel arrive

at the following equations:

* the constraint GuVN“NV = 0 becomes:
£25h+ 3/8(£,0 - @ (£,0) (£,0) - ofexp (-1/24) ) R
+ exp (-1/2A) [1/2 a?V2A+2aV20+ qzexp(l/zk) FB)ZAB < 2hAhA
- a’exp(-1/2) hR®h, ] + 20h, + 1/20%nB,0B, = 0 [1.2-109)
e the »constraint equations GuVN“'BVb = 0 become
£ghPat (1/40%, - 0720)£,0 — xR,y |
- o texp(-1/24) V(an?) = 0 . [1.2-110]

£5(07h) + 1/207Mh,2,M +exp (-1/24) V, [ exp (1/2)) B3, ]

- (@'®),, - 172072 (@ thBy), , = 0 [1.2-111]
where R = '—1/2(7.—2£Z§AB; VA denotes covariant differentiation
with respect to the two-surface metric; V2 = EABgAﬁB; and
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all tilded quantities are built out of gag and its inverse

ghB.
Several possible integration schemes for this set of
equations are discussed by D'Inverno and Stachel [1978]. 1If

we take the conformal two-structure as the gravitational

degrees of freedom, then the quantities EAB and h,p are the

ffeely—specifiable initial data. The lapse function a and

t

shift vector BA merely define the family of two-surfaces and

are not truly dynamical; they may be conveniently set to
@ =1 and B* = 0. This leaves five functions yet to be

determined on S: A, ©, h® and h®,. We have the freedom to

éhoose one function that will specify the initial surface,
leaving four wunknowns and four constraint equations.
Formally, they then solve the constraint equations by
specifying sufficient initial data for these four equations
on one initial two-surface. They conclude that the conformal
two-structure can represent the true degrees of freedom of
the gravitational field, which are specified by four
independent quantities per space-time point of the
hypersurface, and that all other components of the initial
three-metric and its velocity are either determined by the
constraint equations or represent the choice of an initial
hypersurface itself.

In a series of papers, O'Murchada and York [1974] present
an alternative method for solving the constraint equations.
It is based upon the recognition that the conformal geometry
of a space-like hypersurface can be taken as the dynamical
degrees of freedom of the gravitational field. In the
Hamiltonian formulation of general relativity (see Dirac
[1958] and Arnowitt, Deser and Misner [1962]), the

canonically conjugate dynamical variables are the
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three-metric g, and three-tensor density m@ constructed from
the extrinsic curvature:

e = /g (kg2 - kab) _ [1.2-112]
where we use the symbol K2P instead of hePb to denote the
extrinsic curvature constructed using the unit covariant
normal instead of an arbitrary covariant normal as we did
above. Note that g is the determinant of the surface
three-metric.

We may write the vacuum constraint equations 1.2-87 and

1.2-89 in terms of 9.p and, for convenience, the momentum

tensor pab-related to the momentum tensor density rab by

mab — \/g—pab [1.2-113)
The constraint equations are now the Momentum constraints
V.p2b =0 [1.2-114]
and H@miltgnian Constraint
pPp,, - 1/2 p2 - (IR = 0, [1.2-115]

so named because it determines the evolution of g,y and p2P

via the canonical equations of motion.

The momentum tensor can be orthogonally and covariantly
decomposed into transverse-traceless and longitudinal parts
analogous to the Helmholtz decomposition discussed above for
the electromagnetic potential. Since the transverse-traceless
part, by definition, satisfies the equation 1.2-114, the
momentum constraint is only on the longitudinal part of the
momentum.

In order to solve the Hamiltonian constraint, they
conformally rescale the three-metric gap ©On S to a
conformally-related metric and show that the Hamiltonian
constraint determines the conformal scaling factor.

Together, the momentum and Hamiltonian constraints form a

coupled set of quasilinear elliptic equations for determining
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the conformal scale factor and longitudinal parts of the
momentum. O'Murchada [1980] has examined the conditions under
which the system decouples and has solved the Hamiltonian
constraint for some cases. The freely-specifiable initial

-1/

data is the conformally-invariant metric 9ap = 9 3gab and

the transverse-traceless part of the momentum. Now g,p has

five independent components and since we are free to do
coordinate transformations on S, we are free to choose three
of the remaining components of the three-metric as coordinate
conditions. This leaves two components of the three-metric
comprising part of the dynamical information. There are also
only two independent components of the transverse-traceless
momentum. Hence, four functions can be prescribed on S to
determine the dynamical evolution. This again shows that
there are two degrees of freedom for the gravitational field.

It is important to note that conformal three-geometry
techniques are not applicable to null surfaces since the null
three-geometry is degenerate. On the other hand, the
conformal two-structure technique, discussed previously, is
applicable to null surfaces, as we shall see in the next
section. For this reason, it is a useful formalism for
unifying all possible initial value problems. The reader will
recall that the constraint equations for the electromagnetic
field, similar to the momentum constaints for gravity, could
be solved by using spherical coordinates on the Cauchy
surface. Geometrically, this amounts to foliating the Cauchy
surface using a one-parameter family of two-spheres. The
freely-specifiable Cauchy data is a two-vector field, and its
normal derivatives, on the members of the foliation; this is
the electromagnetic analog of the conformal two-structure. An
analogous treatment may possibly be devised to link the
conformal three-geometry approach to the conformal

two-structure method for the Cauchy problem.
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1.3 The Characteristic Initial Value Problem in

General Relativity

In order to bypass the problem of sblving the cbnstraint
equations which ariée in the Cauchy problem, one may consider
the initial value problem on null.hypersurfaéesl. As we
remarked in Section 1.1, it is not possible to set initial
data on a single null hypersurface leading to a unique
solution of the initial value problem; data must also be
given on an additional hypersurface - null, timelike or
spacelike. An exception to this statement is that the problem
may be posed on a complete null cone with vertex (see Penrose
'Il963] and Penrose and Rindler [1984]). In this section we
shall considervthe double null initial value problem, in
which initial data is given on two intersecting null
hypersurfaces. It was originally consider by Sachs [1962] and
is the only characteristic initial value problem for which
existence and uniqueness theorems have been proved for
non-analytic solutions (see Miiller zum Hagen and Seifert
[1977]). We review Sachs' approachAhére.

The initial data is set on two null hypersurfaces, U and
v, which intersect on a two-dimensional space-like surface Y.
We construct two distinct families of null hypersurfaces, one
containing U as a member and the other containing 9. The
evolution of the initial data is to be given with respect to
two vector fields which are tahgent to the null hypersurfaces
(see Figure 1-2), as we shall show below.

We start by considering one of the initial null hyper-

1) See, for example, Sachs [1962], Bondi, van der Burg and Metzner
[1962] and Gambini and Restuccia [1978], Tamburino and Winocur
[1966] and Aragone and Chela-Flores [1975]. Recent work has been
done on defining a Hamiltonian on null hypersurfaces (Nagarajan

and Goldberg [1985] and Goldberg [1984]).
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surfaces U, which can be described by some function

u(xt) = 0. The vector field k" defined on ¢ by
Kkt = ghvy, [1.3-1]
is a null vector field since

kMK, = g*vu, u,, = 0 [1.3-2]

and is tangent to ¢ itself. On U, the vector field k is

tangent to a family of integral curves parametrized by *v.

Through éach point of ¢ passes one and only one such curvé.

Given u(xM), the parametrization is unique up to an additive

constant, so we choose *v = 0 on X.

Integrate
R1A= 0 :
Ri1= 0

= 0 Initial Null
§gO= 0 Hypersurfaces Integrate
A Rll = 0
Ria= 0

Figure_l—Z The Double Null Initial Value Problem

Similarly, the_hypersurface YV is defined by a function
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v(xt) = 0 and gives rise to a null vector field 1M tangent to

V. Again, there is a family of integral curves parametrized

by *u which is tangent to 1 on ¥ and we choose *u = 0 on X.
Since we will use *v and *u to define the families of null
hypersurfaces mentioned above, we will identify *v = v and
*u = u. '

The functions u(x") and v(x*) are not unique, and we can

use this freedom to fix_k and 1 so that
k“lu = -1 on X . ' [1.3-3]

We shall foliate U by a one-parameter family of
two-surfaces ({X }. A member of this family is defined by
dragginé all the points of X a fixed parameter distanceAx
along the integral_curves of k. The hypersurface ¥ can be
foliated in the same way using 1 and X, giving risé'to

another one-parameter family of two-surfaces {Zu}.

At any two-surface Zv on U, there is a unique null

hypersurface, other than U, which intersect U. We denote

this hypersurface by %,. At any two-surface Eu on ¥, there is

also an intersecting null hypersurface U,- The initial

hypersurface ¥ corresponds to %6 while U corresponds to Uy .

By this construction, we have extended the definitions of

u(x“) and v(xu) into a four-dimensional region and have

defined two families of null hypersurfaces {U,} and {¥,} with

U= Uy and ¥ = ¢6. This also gives rise to a two-parameter

family of space-like two-surfaces {Euv} defined by the

intersection of . the U, and %@ null hypersurfaces; X
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corresponds to 260; The two-parameter family of two-surfaces

{Zﬂv} is called a foliation of co-dimension-two. The vector

fields k and 1 are now defined in a four-dimensional region

and are tangent to congruences of null geodesics. They are

also orthogonal to each two-surface Euv, since u and v are

constant on X and we can rig Zu using k and 1. 2a

uv v

projection operator into the rigging directions is given by
CHy = [kP1171 1Mk, + 1Mk,) [1.3-4]

while a projection operator into the two-surface is

BH = &

v~ cH

Y [1.3-5]

The induced metric on the members of the family of

two-surfaces is defined using the projection operator B”v

acting on v -
The vector fields k and l, defined as the tangent vector

fields to the {U,} and {V,} families of null hypersurfaces,

are unique, which is also true of the two-parameter family of

two-surfaces {Euv}. However, the vector fields k and 1 do

not, in general, commute. The geometrical interpretation of

this is the following: we drag all the points of X a

parameter distance v along k to define Zv on U and then drag
points of Ev @ parameter distance u along 1 to define Zvu on
V,. Alternatively, we can drag all the points of I a

parameter distance u along 1 to define Eu on ¥ and then drag

points of Zu along k to define the same two-surface Zvu on -

U,. While the two two-surfaces defined this way are the same,

- Bl =~



we end up at different points on the surface. To arrive at
the same point, we must use a pair of commuting vector fields
which are tangent to the null hypersurfaces. We can, without
loss of generality, choose one of them to be k itself. Then,

the most general vector field z, commuting with k and tangent

to the members of the family {%,}, has the form
zH = a1k + cH [1.3-6]

where CH is tangent to each two-surface Z .- @ and CH are the

lapse function and shift vector of the foliation of V,. If we

choose the parametrization of z to be the u-value of the

member of {Euv} it intersects, then =z satisfies the

normalization condition

z_“u,u = -1 | [1.3-7]

Without loss of generality, we can take & = 1 and C = 0 on v,
i.e. z =1 on 7.

Following Sachs, we work in a a coordinate system adapted
to the families of null hypersurfaces by choosing x% = u and

1 =

X v. Then, since the surfaces x9 = constant and

x! = constant are null hypersurfaces, the metric components

g% and gl vanish.

The remaining two coordinates are defined in a

four-dimensional region by taking the coordinates on X to be

constant along the trajectories of the vector fields k and z.

The condition that the coordinates of I be constant along the

trajectories of k is
kuxA’u =0 [1.3"8]

In the adapted coordinates, this becomes
- g% = ' [1.3-9]

Similarly, z”xA,u = 0 implies
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oagl® + cA = ¢ [1.3-10]

From 1.3-7, we have

agfl = -1 : [1.3-11)

Equations 1.3-10 and 1.3-11 relate the lapse function @ and
the shift vector C® of the foliation of {¢;} to components of

the metric tensor in the adapted coordinate system.

On v, where z = 1, we thus have

In the adapted coordinate System, the projection operator

CH, takes the form

0 1
cH, = &,8°%, + & 81, _ [1.3-13]
One can easily show that the induced metric on a two-surface
is given by the gag~components of the four-dimensional metric
tensor.
The metrical line element takes the form,
ds? = -e™®ddudv + e2g, (dx® + CAdu) (dxB + CBau) [1.3-14]
where h is defined by e4h = det[gAB]L det[EAB] = 1 and the

function g is defined by e729 = =gg1 = al. we follow Sachs'

notation for the conformal scale factor rather than use A as
in Section 1.2.

The quantities g, 5;5, h aﬁd c® constitute six independent
functions of four coordinates. From the way the coordinate
system is constructed, q = 0 on U and YV and C® = 0 on ¥.

Sachs divides the source-free field equations into four

groups
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Rpg = 0 Propagation Equations  [1.3-15]

Rjp =0 ) (1.3-16)
| Hypersurface Equations

Ryp =0 J | [1.3-17]

Rgg = 0 ) [1.3-18]

Roa =0 J° ~[1.3-19)

Rg; = O . Irivial i  [1.3-20]

Using the Bianchi identities, he proves that, if the

propagation and hypersurface equations hold in a neighborhood

W of ¥ bounded from below by U and ¥ and if the subsidiary
equations hold on %, then the subsidiary equations and the
trivial equation hold automatically in W.
The subsidiéry equation Ry, = 0 [1.3-18] on W’takes the
_ form
' [1.3-21)
If gpg is given on ¥ and h and h,, are given on X, then
equation 1.3-21 can be used to solve for h on all of %.
The remaining subsidiary equations Rop = 0 determine Carq
everywhere on % in terms of Car, on X, where X,q = 0X/0v.
Cargr * F1Cprq + Fp = 0. ~ [1.3-22]
F, and F, are functions of 9ap and h on ¥. Summarizing,

equations 1.3-21 and 1.3-22 determine h and Carp on v in

terms of h, h,, Carq on X and EAB on Y.
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The hypersurface equation Ri; = 0 [1.3-16] on U takes the
form

Brpp *+ 2hqary = (hy9)% - 172 g®B, g, =0 [1.3-23]

Since g = 0 on U, equation 1.3-23 can be used to solve for h

on U in terms of h and h,, on X and gag On U.
The two remaining hypersurface equations Rip = 0 take the
form on U

where F3 and F4 are functions of h, gpp and q on U. Thus, one

can solve for C, on U using equation 1.3-24 in terms of h,

EAB and g on U and Carq on 2 (On any other hypersurface, U,
equation 1.3-23 will be used to solve for g instead of h

(provided h,1 # 0). To do this, we must know h and QAB on 1%.
Equation 1.3-24 can still be used for Cp if h, 5;3 and q are
known on Z%).

To summarize, we have the means to solve for h, gq and CA

on U and ¥ in terms of h, h,o, h'l' q and CA,1 on X and &AB

on U and V. Note that gapg 1s defined independently on U and
YV but must match on X. We may use the 1local conformal
flatness of any two-geometry to let us choose the coordinate

system (x%) on I such that

9ap = O,p [1.3-25]

The components of g,g (that is, e2h§AB) are propagated off

U and ¥ using equation 1.3-15 which takes the form



9agro1 * Fs9aprg * Fg = O _ [1.3-26]

Fg and F; are known on any hypersurface e if q, n, EAE, Cx
are known there.

Thus gpp,q is known on U if 9agro 1s given on ¥ which is
the case. Knowledge of 9aprg 1s equivalent to knowing gag ©On
the first neighboring hypersurface U,. We can then use
R;; = 0 to solve for q on TU; and then use Rip = 0 to solve
for C, on U,. This procedure can be formally repeated to give
gap On all hypersurfaces within é neighborhood of U in terms

of the initial data

Car1 + hy, hy and h; on X

-~

gag ©On U and ¥
and the coordinaté_conditions, q =0 on U and 7, and Ch =0

on VY. The coordinate conditions merely describe how the

coordinate systems on the two initial hypersurfaces are to be
layed out, and have no dynamical content. What is important
is that the initial data to be supplied on each of the pair

of null hypersurfaces is the conformal two-structure. All

- other data is to be given on a single two-surface as in the

Cauchy problem.

As we mentioned above, an existence and uniqueness theorem
for the double-null initial value problem was proved by
Miller zum Hagen and Seifert [1977}. Leaving aside the

details, if EAB are of Sobolev class H?5%2 »n 9 and U; if h
and C,,; are of class H%5*! on ¥ and if hy and h; are of class

H2S on Z, then there exists a region W in which we have a
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metric of class HS satisfying'the vacuum Einstein equations
and which is maximal and unique up to isometries. . The
differentiability properties of the solution is an important
difference between the Cauchy and double null initial value
problems. We stated in Section 1.2 that if the initial data
for the Cauchy problem belonged to Sobolev class HS, then so
did the solution. In the double-null initial value problem,
the Sobolev class of the initial data needs to be H25%2 fop
the solution to be HS.

The double-null initial value problem also differs from
the Cauchy problem in that two functions of three parameters
. need to be given on two hypersurfaces, rather than four
functions of three-parameters on a single hypersurface.
Unlike the Cauchy problem, the functions do not involve
derivatives of the field off the surface but only values of
the field on the surface. This halving of initial data is
typical of the characteristic initial value problem and is
discussed, for example, in Bers, John and Schecter [1964].
For characteristic initial value problems, the number of
degrees of freedom is equal to the number of independent
functions which must be given on each of the initial

hypersurfaces; in this case it is two.
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CHAPTER II
THE TWO + TWO FORMALISM

2.1 The Geometry of Rigged Two-Surfaces

We have seen how formal unification of the Cauchy and
characteristic initial value problems for the gravitational
field can be achieved by utilizing one-parameter families of
space-like two-surfaces to foliate the hypersurface or
hypersurfaces on which the initial data is set. For the
Cauchy Problem, the freely-specifiable initial data consists
of the conformally-invariant two-metric and its Lie-
derivative with respect to a hypersurface-orthogonal vector
field given on each member of the foliation of the initial
space-like hypersurface. While we did not consider the
evolution of the initial data in this formalism, it is not
hard to see that each subsequent space-like hypersurface can
also be foliated by a one-parameter family of space-like two
surfaces. Thus, one can consider the problem to be one of
determining the evolution of the conformal two-structures as
we travel from hypersurface to hypersurface. A similar result
holds for the double null characteristic initial valﬁe
problem, where we did, in fact, consider the problem of
evolution.

The hypersurfaces considered in Sections 1.2 and ‘1.3 are
special cases of a more general formalism. The foliation of
the initial hypersurface arises from dragging a single
two-surface along a transvecting vector field. That is, by
moving all the points of the initial two-surface the same
parameter distance along the integral curves of the vector
field, we create a one-parameter family of two-surfaces. We
refer to the dragging of a surface as a deformation of that
surface. Each two-surface of the first foliated surface is

now dragged by a second vector field, filling up a
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four-dimensional region of space-time. As we shall show, the
two vector fields must commute in order that the two-surface
passing through a point of space-time be unique. A foliation
that dependx-g on two parameters is called a foliation of
co-dimension two. Since families of space-like two-surfaces
play a fundamental role in the two+two analysis, we shall
devote this chapter to stud&ng their geometric properties

A space-like two-surface can be represented geometrlcally

by the imbedding of an abstract two- dlmen51onal manifold %

with positive-definite metric into a space-time manifold M.
A will -serve as the initial two-surface £g;eh is to be
deformed. We can carry over directly the definitions that
were used in Section 1.2 for the imbedding of a .
three-dimensional space—like manifold. In the two+two case,
an imbedding of a two- dlmens10nal manifold Wfln M is a set

(B, A, M) where B is a mapping:

B: NN>M qgeN — peM = B(q) [2.1-1]

In local coordinates the imbedding map is represented by the

set of four functions of two-parameters

xH = BH(yB) [2.1-2]

v W Ut \f‘

where {xM;p=0,1,2,3} is a local coordinate system oﬂ”ﬁ that
contains p and {y®;a=2, 3} is a local coordinate system on*ﬂ(
that contains g. The set of points B[A] which constitutes
the image of A under B forms a two-surface in M and is
denoted by N. We want N to be a smooth surface in M, which
will be the case if B is a smooth bijection of A onto N (see

Choquet et al, [1977]). This way of representing a surface is

sometimes called the parametrized representation. The

definitions of the pull-back and differential maps in this
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case are straighforward generalizations of the 3+1l-case.
Because N is a two-dimensional manifold, the Jacobian

matrix of the imbedding map B [2.1-2] has rank two, implying

that there exists a two-dimensional subspace of the cotangent

tht
space at each p01nt N whieh is annhilated by B* (see Appendix

A). We denote this space by T°. Any covector my, of T°

satisfies

BHgm, = 0 [2.1-3]
* . "
A basis for 7 1is given by any two linearly-independent

covectors wxu (x = 0,1) which satisfy equation 2.1-3. The

basis covectors wxu are defined only up to a nonsingular

linear transformation

w xu = A"wau ; det[Axy] = 0 - (2.1-4)]

The n@mbeis'of the set {wxu} are called pseudo-normal

covectors to the surface. The word pseudo—normal is used to
emphasize that this is not really a netrlcal concept. A

necessary and sufficient condition that a set of quantities

wY p satisfying 2.1-3 be pseudo-normals to a surface is

BHAYpwYp v = 0 | [2.1=5]

It is not hard to show the necessity of 2.1-5; it follows
directly from 2.1-2 and 2.1-3. Its sufficiency is the content
of Frobenius' Theorem, which is stated in Appendik A and

discussed below.
Ri i

At each point of the imbedded surface, there is a subset

of the tangent space consisting of vectors tangent to the
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surface. Given an arbitrary vector of M, it is possible to
tell whether it is tangent to the surface: find a vector in %

whose push-forward agrees with the original vector. A simpler
test for a vector rM tangent to N is if r”wxu = 0. It is not

possible, however, to take an arbitrary vector at a point of
N and decompose it uniquely into a part which is tangent to N
and a part which is not. In order to do this, one must rig
the surface, a technique applicable to non-metrical spaces as
well as metrical spaces. We used this method in the 3+1
breakup in Section 1.2. There ;a contravariant vector,
orthogonal to S (but not normalized to unity), was used to
rig the three-surface. We follow a similar procedure in the
2+2 analysis. A complete discussion of rigged spaces is given
by Schouten [1954].

A two-surface N is rigged by giving a two-dimensional
subspace 7 of the tangent spacéﬁgé each of its points, which
contains no vector tangent to N. Operationally, one gives a

pair of linearly independent basis vectors t, Mt which span 7

(i.e., which are not tangent to N). They may be normalized by

requiring

t v, = 8¥ [2.1-6]

Then one can define the operator

CH, = t Hw%, [2.1-7] -

which is independent of the choice of basis vectors, provided

the normality condition 2.1-6 holds. The operator C“v, acting

on an arbitrary vector v, defines two vectors:

who= (H, - oK) [2.1-8]



gl = cuvvu A [2.1=9]
such that? 7 ,
N | ' (2.1-10)
Given a rigging, this decomposition of v is unique.
It is not hard to show, from equations 2.1-7 and 2.1-8
that 'vH is tangent to N since 'v“wxu = 0. This lead us to de-
fine

BH, = 8¢

Y v ch

o (2.1-11]
as the projection operator into the surface. The vector "vH
belongs to 7 because it is a linear combination of the
rigging vectors: |

"vh o= ch M = t M (wE,vY) - [2.1-12]

One can readily see that B”v and C“V are projection operators

satisfying:
' BY,BH, = BY, (2.1-13]
CVuC“p = ch [2.1-14]
BVuC“p =0 [2.1-15]
cVyBH, = 0 ' [2.1-16]

These projection operators can be applied in a
straightforward manner to geometrical objects which may
involve terms with one index in one space and another index
in the other. For example, the decomposition of the metric

tensor is given by:

o g (¢}

v = (BF’.u + cpu) (8%, + %, Ipo
1) As in Section 1.2 we use the prime (') prefix to denote an object
tangent to the surface and a double prime (") prefix to denote an

object tangent to the rigging space.
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- (¢} (e g o
= BF’u vIps * BPuc vips * cPuB vIps * cPu vIpo

= "9p + BPUChaps + CPLBO gpg + "gpg [2.1-17)
(using the notation BPMCV = BpuBcv introduced in Section 1.2).

Under coordinate transformations of M, the connecting
quantities B”A transform as contravariant vectors, while
under coordinate transformations on A they transform as

covariant vectors. Therefore, txu and B“A comprise a set of

0%

basis vectors {em“} spanning the fnll tangent spacé kfor this

section, roman indices run from 0 to (). There exists a dual[3

basis {@";} defined by

e Ho" = &, \ [2.1-18]

The wxu are already members of this dual basis due to
equation 2.1-6. The other two dual covectors, which we denote

B%, are defined by
BAit ! = 0 and BRBH, = &% [2.1-19]

Under N-coordinate transformations, BAu transforms as a

contravariant vector.

Any contravariant vector vH defined on N, when acted upon

by B%,, is mapped into a contravariant vector v® in A, The BAu

are connecting quantities whose abstract representation is
B le: T\M o T, N [2.1-20]

For example, v® = BAuvLl is a vector field on 4.
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The same connecting quantity carries covariant vectors

from AL to M, hence we have

*

B 1% "N — T*M [2.1-21]

s’u = BAusA is a covariant vector field on N.

The action of both of these méps on arbitrary tensors is.
defined in the usual Way.

In general, the 7 spaces do not fit together to form
two-surfaces so we must treat them as anholonomic surface
elements with the rigging vectors serving as an anholonomic
basis for 7. From this viewpoint, connecting quantities are
defined between 7 and M just as they were between N and M.

Only here, since there is no surface, the connecting

quantities are just the rigging vectors and their duals. We
define a set of connecting quantities CH and Cxu by

CH =t and c¥, = wx [2.1-22]

u

They are analogous to the B,H and B2 and transform
A K

tensorially under rigging transformations of the form 2.1-4.

It follows from the above results that we can expand Qﬁ in

terms of the projections operators

&3 = g% ki d%

= BMR + C M [2.1-23]

We shall use this expression frequently.
One of the requirements for a truly covariant 2+2
formalism is that.all equations transform tensorially with
respect to 7T-indices as well as A~indices. This means that

all relations should depend only upon the rigging space and
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re O T-indd Indices is—means that
all—rela%ieas—eheﬁ%d—éepend_Qnl¥_npoa—£he—4iggiag-spaee and
not upon the basis which spans the space. This is the reason
we have introduced the connecting quantitiés rather than
analyzing components of a quantity with respect to a given
rigging basis.

To proceed further, we assume that N belongs to a
two-parameter family of two-surfaces that fills up a
four-dimensional region of space-time. The exact specifi-
cation of this family will be determined below, but for now
we only need to know that all conﬁecting quantities are

smooth fields defined in a four-dimensional region. The
tetrad {B,H,C.H} and its dual {BAu,Cxu} form an anholonomic

coordinate system for the Space-time although the subset
{Ba*} is holonomic by itself.

A very important set of quantities, the so-called obijects
©f anholonomicity, are defined by:

Q%4 = et 9 ok | [2.1-24]

where the e”i and mkl are generic connecting quantities

standing for BpH,C H and BAu,Cxu. The objects of

anholonomicity can also be expressed in terms of the Lie

Bracket of the basis vectors

j]u _ [2.1-25]

The objects of anholonomicity divide up into six sets:

Q%5 = ~1/2 @ le;, e

(2) Q% = BH2 459 (4B [2:1—26a]
(B) Q% = BHA9,,0%, = BMAR3 [ w %y [2.1-26b]
(C) Q%% = C 8409 ,B%  [2.1-26c]
(D) Q¥ = cquKBa[ucxl] = CqulBa[qul] [2.1-26d]
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(E) Q. = CHA O BM) = CHC M B ) [2.1-26e]

(F) Qy = ch Ao c%) = CHC D Wy [2.1-26£)

The objects .in set (A) vanish because we are using a
coordinate basis on A(. The objects in set (B) vanish by

virtue of equation 2.1-5: i.e., the pseudo-normals are

surface-forming. It is a consequence of Frobenius' theorem,

presented in Appendix B3, that the vanishing of QxAB is the

necessary and sufficient condition that the connecting

quantities are surface-forming. .Another consequence of this
theorem is that the basis covectors Cxu are linear

combinations of gradients of functions. In fact, according to
the theorem there exists a set of basis vectors defined in a
four-dimensional region which are equal to the gradients of a
pair of scalar fields! (as we saw in the double-null case)

x(X

cX, *= au(p V) (x = 0,1) [2.1-26)

All points which lie on a single two-surface satisfy the
relations
0*(xY) = constant = oX [2.1-27]

These relations provide an alternative means of specifying a

family of imbedded surfaces. This represention of a surface

is sometimes referred to as the null formalism (which has
nothing to do with the metrical concept of 'null'). It is
equivalent to the parametrized representation, as we explain
in Appendix A. The objects in set (B) transform tensorially
with respect to surface and rigging transformation.

The objects in case (C) and (D) vanish only when one of

the rigging vectors together with a surface vector are

surface-forming. 1In general this is not the case. The QCxB

1) The notation '*=' denotes equality in a particular coordinate system

or basis.



(set (C)) do not transform tensorially with respect to
surface surface indices but do so with respect to rigging
‘indices. Similarly, the Q¥:5 (set (D)) do not transform

tensorially with respect to rigging indices but do so with
respect to surface indices.

As we mentioned before, the spaces T spanned by the

rigging vectors {CLH} at each point do not mesh to form a

smooth two-surface. Hence the objects in sets (E) Efzw.do not

in general vanish. This is equivalent to the failure to close

of the Lie bracket of the basis vectors of the rigging space:
[CorCiIHBR 20 & QP = 0 [2.1-28]

Set (E) objects, Q€ r transform tensorially with respect to
xy Y

surface and rigging transformations. The objects in set (F)

szy do not transform tensorially at all, and do not vanish
for arbitrary rigging bases.

'The anholonomic obijects play a role in defining the Lie
derivative for the spaces N and 7. We adopt a general
procedure for defining Lie derivatives (and covariant
derivatives, as we shall seé in Section 2.2). We carry
quantities from A or T over to M, perform the required
differentiation, when possible, in M, and then carry the
result back to N or 7, again using the connecting quantities.
For example, for two vectors m® and z2® of N, the Lie
derivative of m® with respect to z® is defined by:

£

gm? = BAu£z'mu = BAH['zvav'm” - 'm¥9,'zM)

— Vo mB — V) Ay _ 1,V A _ 4V A
= ['z¥0,m m avz ] mHr 2z d,B 0 m z“@vB m



= [zBBBmA - mBaBzA] - ‘m”'z"[avBAu - avBAu]

= [ZBBBmA - mBaBzA] - 2mCzBQABC

= [2B3;m® - mB3 23] [2.1-29]

Since QABC = 0, this is the usual definition of the Lie

derivative defined intrinsically on A Likewise, for a

covariant vector we have
£sz = [zBaBpA<+ pBaAzB] [2.1-30]

For rigging space vectors p* and s*, the Lie derivative is
defined by:

£gp* = C¥£."pH = CXy["s% "pH - "p99," sH]
= ["s%9%zp* - "p% s*] - ["pH"SGBchu - "p”"soaucxo]
= [s%d,p* - p®d,s*] -
[PYs*C HC,%9,C%, ~ pY¥s zczucycaccxu]

= [s%d,p* - p%d,s*] - 2stzCzHCy°a[6Cqu

= [s%d,p* - pZd,s*] - ZSzszpr [2.1-31]

where we define ax = Cx“%l. This expression is formally 1like

the usual expression for the Lie derivative, except for the
presence of an extra term on the right-hand side. This term
is due to the anholonomic property of the rigging vectors and
serves to make the expression on the right-hand side
transform tensorially. Similarly we can define the Lie

derivative of T

£50x = [5%0,q, + q,0,5%] + 250 xq, [2.1-32]
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Mixed Lie derivatives can be defined as well. Suppose that
s is a surface vector while r%® is a rigging vector. Define

the Lie derivative by

£.8% = BAu£r'su = BAu("rvav'su -'sv9,"rH)
= (" rvavsA —nyVa S[.lav BA‘.L + ks svav BAu)
= A _ c A _ A
= r¥d s? -r¥s (CxYBcHo, B, ~ C_HB VO, B N

= +X) A _ x.COHA
= y¥d g 2r%s~Q8, -

= r¥ s® + 2r¥QP . sC [2.1-33]

For a covariant two-surface vector the Lie derivative is

£2P, = rxapr - ZrXQCAxpC [2.1-34]

The Lie derivatives of rigging vectors and covectors with

respect to surface vectors are given by

VB, r® + 2vAQ%, rZ [2,1-35]

viy = vPdu_ - 2vAQF u, -[2.1-36]

What 1is interesting about these Lie derivatives is that
they are covariant, but do not depend on either an affine
connection,- as does the ordinary covariant derivative or on
the derivative of the vector field; as would the regular Lie
derivative. Using these relations as a starting point,
Schouten [1954] introduces a new set of derivatives which are
covariant with respect to rigging and surface

transformations. They are

D s® = 9,s® + 208 _sC [2.1-37]

D,p, = 0,p, - 2Q pepc [2.1-38]



DArx aArx + 2szArz [2.1-39]

Dyuy, = dyu, - 2Q%,r, [2.1-40)

x

Then the Lie derivatives 2.1-33 - 2.1-36 can be written as

£.5% = £*D_sP [2.1-41]
£.Pp = r?Dpr [2.1—42]
£,r* = vAD, r* [2.1-43)
£ou, = VD, u | [2.1-44]

The D-derivatives can be extended to arbitrary objects since
the latter can be written as sums of exterior products of

covariant and contravariant vectors. If g is a scalar density

on N of weight w, the Dx—derivative of ¢ is
D,q = 9,9 - 2wQCq [2.1-45]

Finally, we define the Lie derivative of surface quantities

of AL with respect to an arbitrary vector field z of M. For a

vector pB and covector dg we have

= BBz, 'pH [2.1-46]

£295 = BlgL;'qy | [2.1-47)

Note that the quantities £z'pu and £z'qu are not tangent to

N; their projections Cxu£z'p“'and C”xiz'qu do not in general

vanish.

Deformation of a Surface

We shall now construct two-parameter families of two-

surfaces by the process of deformation of a single
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two-surface. A deformation of a Ssubspace results from the
displacement of its points. We show how to make this notion
more precise. Note that displacement is defined for general
geometrical objects on manifolds, with displacements of
subspaces as a special case. Our discussibn follows Schouten
[1954]. Displacements arise from transporting, in some manner
to be determined, a geometrical object along a vector field
on the manifold, whose integral curves generateéi a
one-parameter family of point transformations. The
parametrization of the integral curves is uniquely defined

up to an additive constant. We shall call this vector field

the deformation vector field VM.

Let us start off with a single two-dimensional Submanifold
N which arises, as we discussed above, by imbedding an
abstract two-manifold N in M. Define a vector field Vv in

some four-dimensional region of M. This vector field is

assumed to transvect N, i.e. it is nowhere tangent to N. A

displacement or deformation of a subspace results from the
dragging of the points of the Subspace along the streamlines
of the deformation. vector field. Each point on the surface is
carried an equal parameter distance along the integral curves
of the vector field (see Figure 2-1). 7o put this more
mathematically, a vector field defines a one-parameter family
of diffeomorphisms of the manifold into itself, given by
mapping each point of M into ‘a pointv a fixed parameter

distance along the integral curves
O.:M -5 M [2.1-48)

A deformation of a surface 1is equivalent to a

one-parameter family of imbedding maps B, constructed by

composing 0. and B:

B, = (O, o B): N—> M [2.1-49]



The set of points belonging to seme member of the family of
two-surfaces (S8 = {LQBt[ﬂﬂ:Vt}) forms a three-dimensional

submanifold of M.

Integral
Curves of
Deformation
Vector FieldV

Rigging Vectors

Figure 2-1 Deformation of a Two-surface by a Vector Field

Now take another vector field U which is 1linearly
independent of V and such that U transvects S. It also
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defines a family of integral curves and a one-parameter

family of diffeomorphisms
HotM - M ' ' [2.1-50]

Each two-surface belonging to the family which makes up S can
be dragged along by U. In this way we fill up a
four-dimensional region of M with two-surfaces. In general,:
if we drag a two-surface by a vector field V and then byé
another vector field U, we will end up with a differenti
two-surface than if we did the dragging in reverse order. Ing
order to insure that the final two-surface be independent off
the order of dragging, we require that the composite mapsf

commute
Orollg = Hgo0p [2.1f51]
The necessary and sufficient condition for this to hold is

that the vector fields commute (the commuting vector fields

are themselves tangent to a family of integral manifolds).
[(U,V] = 0. [2.1-52]

(see, for example, Abraham, Marsden and Ratiu [1983]).

The set of map

Bt,S = (p.soo'toB) :N——) M [2.1‘53]

defines a two-parameter family of a two-surfaces. Each member
of the family has a unique pair of parameters (s,t) which are
necessarily constant on the set of points belonging to that

member. Hence each two-surface belonging to the family can be

represented by the pair of functions t (x*) = constant and

s (x) '= constant, which correspond to the surfaces @*(xH)

defined above

¢° = s(x*) = constant

t (xH) constant [2.1-54)]

S
Il
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The gradients of the functions @ (xM) span T  and bring us

back to the null representation of a surface, defining a

foliation of codimension-two of M. The deformation vector

fields are then said to fibrate the foliation. The fibration

establishes a one-to-one correspondance between points on
different members of a foliation induced by the integral
" curves of the vector fields definihg the foliation.

Earlier, we defined the Lie derivative of an arbitrary

surface quantity of A with respect to an arbitrary vector
field z of M. For a vector pB and covector gg we had
£,p° = B8, "pH [2.1-55]
£,95 = Bfpt,'qy [2.1-56]
The quantities £z’pu and £z'qu are not tangent to N: their
projections Cxp£z'pu and C“x£z'qu do not in general vani;h.

However, when z is one of the two deformation vectors, these
quantities do vanish. To show this, consider what happens

when we drag the points of N along the integral curves of the

deformation vector fields. Any vector Yu tangent to the

surface ('yu = 'Y”) will remain tangent to the deformed

surface. A sufficient condition for this is that the tangent
vector is Lie dragged along the curves:
£y =0 [2.1-57]

But we could have a transformation of 'yl within the surface

itself, so a necessary and sufficient condition is
CX iy = 0 [2.1-58]
Since 'YW is arbitrary and o= YAB“A, we have

CREVY'BY, = YiCTEuBl, = 0, [2.1-59]
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which implies that
| CX fyBH, = 0 [2.1-60]
Writing this equation out gives
C¥uEyBH, = C¥y (VPO BH, - BP0, VM)
= -BP o,V + VquAapru + C¥,vPo BH,
= —0,V* - 2VHBP,9 ,C

- B
= -0,VX + 2V BPpHpd [xCoyl + 2VEBPLC M3,

pC¥ul
= _éAvx - 2VEQR,, + 2VBQR,,
=._DAVx + 2VBQ¥, 4
= _DAvf =0 [2.1-81)
since Q¥,p = 0 for a surface. The condition that V is a
deformation vector field is thus
DAVx =0 [2.1-62]

This ‘is the basic deformation equation and is actually the

covariant generalization of equation 1.2-49.

On the other hand, for a general vector field, and for Vv
in particular, one has

B - rB = B v o
BRufyBHy = BBV, £yBH, = -BB YV, £uCH = 0 [2.1-63)
Combining 2.1-60 and 2.1-63, we obtain
£yBH, = 0 [(2.1-64]

which 1is completely equivalent to 2.1-62. Another way of
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seeing this is that ByH is defined everywhere from its values
on N by propagating it, using the push-forward map associated
with (G, o B). From the definition of the Lie derivative of

contravariant vector given in Appendix A, this is the same as
saying that its Lie derivative vanishes.

A simple consequence of equation 2.1-60 is that

BHAEyCTy = 0 [2.1-65]

There is no corresponding equation for C“Y£viu because under

rigging transformations of the form 2.1-4, it does not behave
like a tensor. For some choice of rigging basis it can be
made to vanish, but not for every choice.

Another important result that we shall now prove is that
the Lie derivatives of the rigging -projection of the
deformation &ectors vanish. If U and V are the two

‘deformation vectors, then

- " — ' B L 2%
EgVF = CHufy"VH = —C¥y2p VM = - ey(BH W)

= -VCTEyBH, = -VVCE £ (BL,A,)

-VWCXBHEuBA, = 0 [2.1-66]
since £UB”A = 0 and Cqu“A== 0.

Similarly, one has
EgU* = £4VX = £,0% = 0 [2.1-67]

(No similar relation £4Vv® = 0 holds.) From equation 2.1-62

and these relations, it follows that
£"va = £110Ux = £||va = £anx =0 ‘ [21‘68]

as well. This completes the discussion of the deformation of
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surfaces. _

For later work, it is convenient to obtain expressions for
= some of the anholonomic objects in terms of components of
the deformation vector fields. This can be done quite easily
by expanding the commutator of the deformation vectors in
terms of the rigging basis vectors. |

From the vanishing of the commutator of the deformation

vectors, [U,V]H = 0, we get

(U, vik =0 = [uXc_ + URB,, VYC, + VOB, IH

[U*Cy, VIC,IH + [UXC,, VCB K

+ [URB,, V¥C M + [URB,,VCB K

= URV¥[Cy, C I + U*CHO, VY

VYCxllaYU" + UxyC [er Bc] H

t UTBHOLVE - VOC MU - vEUC[C,, B 1K

VX c
VXBHI,UC + vEC M9 Ux

+

URBHILVE - VBB M3, UC = 0 [2.1-69]

Projecting this equation into the surface gives,
—2U%VYQBR  —2UuxvCQB,
+ U%, VB + 2vEUCQE_.
- VE,UP + UR9,vB - vA3 B = o | '
or
~2U%V¥YQP, o+ U*D, V- vED _UP + UP9,vB - vA3 uB = ¢ [2.1-70]
Because ff;y is antisymmetric, it has the form

Q°,, = o | [2.1-71]



where QP = 1/2e"YQBxY is a two-vector with respect to surface

coordinate transformations, but behaves like a scalar density

of weight +1 with respect to rigging transformations. We can
explicitly solve 2.1-70 for QBxy. First, write

2UVYQE, 20 v.eny 2LQ [2.1-72)
where we define a two-dimensional cross-product of U and V

= X -
(=u erxy [2.1-73)

Then equation 2.1-70 has the following equivalent forms:

Q% = (20) "1 (U*D_ VB - vED_UB + URJ,VE - VA3,UB), [2.1-74)
= (20) 71 (U*D, VB - v=D_UB + £.,VB) [2.1-75]
= —(20) "t (gyUB - UXD_vB) | [2.1-76]
= (20)"L(gyv® - vED_uB) | | | [2.1-77]

The projection of the commutator of the deformation vectors
into the rigging space gives
z z
—2UFVQ y + UTO,VE - VYO U -2U0TVEQE,
= VELUF + 2vEUCQF . + UCQ.VE = o, [2.1-78]

or equivalently

—20FVYQ T,y + UTOVE - V¥ UT + UCD VZ - VD U* = o, [2.1-79]

which we can explicitly solve for Q%gy- Since,
DCUz = DCVz = O,-equation 2.1-79 becomes

—2U%VYQ5,, + UTO,VE - VY9 U% = 0 [2.1-80]
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which is just the vanishing of the commutator of the rigging

projections of the deformation vectors: something we have
already proved. Again, one can readily show that (Y;y has the
form

Q% = Epy (20) TH(UMBVE ~ V¥, U%) [2.1-81]

In a metrical space, a preferred rigging exists given by

vectors which are orthogonal to N. We will use only this type

of rigging. The requirement that C,H be orthogonal to N is
‘given by
CxuguyBAV =0 | [2.1-82]
which is equivalent to
c = =
BP,C%gps = O [2.1-83]
Since the manifold A is spacelike, the rigging basis vectors

span a timelike two-plane. For orthogonal riggings, the

decomposition of the metric (equation 2.1-17) simplifies to
Ipo = 'Ips * "Ipo [2.1-84]

We can define the following quantities:

9a = BMa's gpy : [2.1-85]
Ixy = CxM'yVopy [2.1-86]

Then we can write
v = TasBhy + g CRY [2.1-87]

The quantity gag 18 the pull-back of the metric tensor of M,
via the map B, to A. We shall interpret this in Section 2.2
as the metric tensor of N. The quantity Ixy is the dyad

components of the metric tensor with respect to the rigging

vectors. We shall also interpret the quantities as

components of the metric tensor of T with respect to the

anholonomic basis.



2.2 The Intrinsic Geometrv of N and T

An imbedded two-manifold A has an intrinsic geometry that
is inherited from the geometry of the space-time. This
intrinsic geometry, which defines distances between points of
N, is completely determined by pulling-back the metric tensor
of M to A using the imbedding map. Let two infinitesimally
close points on A be labelled y® and v o+ dyA,-respectively.
Under the imbedding map, these points are mapped into
xH = BH(y2) and xH + dxMH = BH(yR) + BH,dy®. The distance

between the image points, as points of M, is given by:

ds? = guvdx”dxv = guvBuAdyABVdeB
£= (B“AdyA) (BVdeB) g}J.V - (BuAng_uv) dyAdyB
= g,pdy®dy?, [2.2-1]
where
9as = BH2Vsauy | [2.2~31

is the pull-back of Ipv (written B*g in coordinate-free

notation). The quantity gap 1s the metric tensor of Al Its
tensorial character follows from the transformation

properties of the connecting quantities B“A as described in

Section 2.1: under N-coordinate transformations, 9ag

transforms like a covariant tensor of order two. Since the

conformal two-structure is built up from families of

space-like two-surfaces, we assume that AN is everywhere
space-like and g,p is a rank-two positive-definite tensor
field on A/ with signature (F) .

The metric tensor ggz. has a unique inverse ?’g2B, defined



by
and also defines a covariant derivative operation Q’VA:

(Z)VA(Z)gBC = (Z)VAgBC =0 : [22"4]

The unique symmetric affine connection which satisfies this

equation is given by the Christoffel symbols

Q’FABC = 1/2Q’gAD{-gBC,D + 9pg,c * 9op, ! [2.2-5]

The Riemann curvature tensor of the. affine connection is
defined by the commutator of the covariant derivatives. We

have
V[AVB]pD = 1fa BB~ p€ [2.2-6]

for any arbitrary vector pc'belonging to AL Explicitly, the

Riemann curvature tensor is given in terms of the Christoffel

connection as

1 = D D E
Rapc® = 20T g)c + 29T (5 g, AT ¢ [(2.2-7]

The rigging played no part in the above analysis; the entire
intrinsic geometry of A can be defined solely in terms of the
imbedding pull-back map and the metrical geometry of M.

When N is rigged, the contravariant metric tensor gtV can

also be pulled-back to Al defining a symmetric second-rank



contravariant tensor on A:

g™® = BB gV [2:2~8]

The contravariant AN-tensor g®B® and the contravariant
N-tensor ‘2 gPB defined above are identical precisely because

the rigging we have chosen is orthogonal to N. To prove this,

consider

AB = pA B _lIVRo - pA G v
9% 9pc = BYSVgHVBOP, Jop = BuoVPcat 9op

BRPc (8% - %) gMgq,

= BAM”C - BAprVguv'(gO‘poCCxc) [2.2-9]

For orthogonal rigging spaces, the last term on the right

vanishes. Hence
gPPgpe = BAM, = 8% [2.2-10]

proving that, in our case, the induced contravariant metric

is the same as the inverse of the induced covariant metric

ghB = m)gAB [2.2-11]

This gives an unambiguous means of raising and lowering
surface indices. Henceforth, we shall drop the super-prefix
((2)) on gAB

With an orthogonal rigging, the connecting quantities B“A

and BBu are metrically related



B% = g™%g,BY, [(2.2-12)

‘The proof follows easily by showing that the left-hand side
of equation 2.2-12 satisfies the same duality conditions that
defined BB in Section 2.1.

Another way to define an affine connection on a rigged
surface is .to induce one from an existing connection on M.
This procedure is applicable to non-metric affine spaces. We

do this by showing how to define the covariant derivative of

a covariant vector field pg ©on AN, similar to the way we
defined Lie derivatives in Section 2.1. Using BB, carry Pg

over to N creating a vector field ', = BBVpB. Then,

arbitrarily prolonging 'py ©off N, the covariant derivative on
M of this vector field is defined. Pulling back the covariant

derivative to A using BuA defines the covariant derivative

Dppg on N. Thus

DpPgp = BHA\’BVH'pV [2.2-13)

Since the right-hand side of equation 2.2-13 involves
derivatives only in directions tangent to N, the left-hand
side is independent of the prolongation. Exapanding the

right-hand side of eqguation 2.2-13, we get
DaPp = BuAVB(au'pv+ rpuv'pp)

= - 1 \% r '

= 0,Pp pouAauB B T BHAVBrpuv Pp

_ _ c v c
= 0aPg ~ DB Wad BYg + BH,VEIP uvPcBp

= aApB * 'FCAB Pc [Z2.2-14]



The last term on the right-hand side of equation 2.2-14 is

the induced affine connection on N

' _ S0 _ o v
I = B VeI BS, - B WadBYg

- c -
= =B RV BS, [2.2-15]

The symmetry of 'f?AB with respect to (A,B) is evident if we

write 2.2-15 as
e ® g€ _ pC.3 pv
ap = BRVRIP\BS, - BG9,BYy

= B“,AVBI‘F’WBCp = B, 0x" [2.2-16]
where both terms on the right-hand side of equation 2.2-16
are symmetric with respect to thise indices.

We shall prove below that, in a metric space with
orthogonal rigging, the induced affine connection and the
Christoffel connection on N are the same. However, we will
maintain the conceptual distinction between the two types of
connections (and use different symbols) because many of the
results we shall prove on extrinsic curvatures (defined in
the next section) can be expressed in terms of the affine
geometry alone.

The covariant derivative of a contravariant vector rB of N

is defined in the same manner:
D,rB = BHAY, Y, [2.2-17]

with

The extension of the covariant derivative to tensors with

a general number of indices is straightforward since any



tensor can be written as the sum of exterior products of
contravariant and covariant vectors.
Because we have rigged N orthogonally, the covariant

derivative with respect to the induced affine connection of

the two-metric tensor ggc vanishes:

Dp9gc = BuAVBKcVu'gw = -I'I‘PA"E“CVH"g\,,c =0 [2.2-18]

Because there is only one symmetric connection satisfying
equation 2.2-18, the induced covariant derivative is the same

as that defined by the Christoffel connection above. We have

Dy = @V, [2,2-19]

The cohtravariant Levi-=Civita symbol €®® on N is defined

by

23 32 1

g2 = ¢33 - ¢ [2.2-20]

It transforms as a totally antisymmetric tensor density of

weight +1 under A~coordinate transformations. The covariant

Levi-Civita symbol €xp is an antisymmetric tensor density of

weight -1. We can use the Levi-Civita tensor densities to

construct the determinant of the two-metric gpy of A

Y = detlgyyl = 922933 = 92393 = 1/26™%Pq, g (2.2-21]

making 72 a scalar density of weight +2. Its square root ¥y is

@ scalar density of weight +1. The contravariant and

covariant metric tensors are related by



-2_AB_CD

gh¢ = y %P Pg (2
and
9ac = 725ABSCDgBD | _ (2
Some relations involving the Levi-Civita symbols are
EAB€CD = SACSBD = SADSBC = SACBD [2
AB _ sA
e, = 8¢ (2
AB _
€ GAB—-2 [2
One can readily show that
- BC _ _ BC _
Dpfpe = Dpg”" = D g, = D_e°° =0 (1
We introduce the quantity EAB defined by
- |
9a = Y "9Iap [2

d=22]

«2—~23]

.2-24)

.2-25]}

.2-26]

2—27)

.2~28]

which transforms like a tensor density of weight -1 under

A-coordinate transformations. Its determinant being unity,

~

gap 1s dinvariant under conformal rescaling of the metric

tensor; i.e., when 9ap undergoes the transformation

gap = Q% [2.2-29]

~

gag remains unchanged

~ ~

9aB ™ 9am [2.2-30]

The inverse gquantity
AB

g

is a tensor density of weight +1 and is-

= yghB , [2.2-31]

also



conformally-invariant. We denote by SAB‘the conformal metric
tensor of A.

The rigging space has its own metric Ixy defined by

Ixy = CVaMyTvyr [2.2-32]

as well as a contravariant metric
g = cX ¥ g' | [2.2-33]

Ty and g*¥ transform as covariant and contravariant tensors,

respectively, under rigging transformations given by 2.1-4.
They define the magnitudes of objects belonging to the

rigging space 7. They are inverses of each other because the

rigging is orthogonal to A and can be used to raise and lower
rigging indices.

One can easily show that

C¥ = g'Mg,,C¥y [2.2-34]

'A‘Levi—Civita or alternating symbol can be defined on 7

just as it was on A. Define €% and By by:

e =¢ " =¢..=¢€..=0 [2.2-35]

¥ is a tensor density of weight +1 while Sxy is a tensor

density of weight -1 under rigging transformations. The

determinant of Ixy is. a tensor density of weight +2 under



rigging transformations. If we introduce the scalar density
of weight +2 by

ey Tzw [2.2-36]

then p2 is positive because the rigging two-plane is
timelike. Relations analogous to 2.2-24, 25 and 26 hold for
these Levi-Civita symbols.

We also have

Ixy = -ngxz €I [2.2-37]
and

xz — _A2 zx -

€ Ixy = p nyg [2.2-39]

In the rigging space, an induced anholonomic covariant
derivative exists. Let g" be a vector field tangent to the

rigging space, so that

gt = g*C,
Define the covariant derivative of a¥ by:
Dyq¥ = CY, ¥V ot [2.2-40]

Then

Dyq¥ = CYC¥,V,a# = 9,q¥ - (C.VC, MV c¥))q® [2.2-41]

Introducing the induced connection on T

-vI‘sz = — Cx"cz”VvCY [2.2-42]

T



we get
Dpq¥ = d ¥ + "TY_, g% [2.2-43]

This covariant derivative is compatible with the induced

metric as can be seen by the fact that:

D,g*¥ = szuxcyvv"guv = - szllxo'yvv'guv = 0 [2.2-44]

Similarly

D,3xy = O [2.2-45]

The affine connection "r‘yz on T is not torsion-free, but

contains terms -attributible to the anholonomicity of the

rigging space

"ny;-_ = 1/2 gXW{_gyz'w + gwy,z + gzw,y} + gxwg

{ywz }
[2.2-46]
where we defihe
Q{YWZ} = Qywz B szy * szw ) [2.2_47]
with
- > of
Qyzw = Q yz9rw [2.2-48]

where (Y}z is the anholonomic object defined in Section 2.1.

The antisymmetric part of "I'Y., is minus the object of

- anholonomicity

"TY (2] = -QY,, | [2.2-49]

but the anholonomic object also enters into the symmetric
part.

It is not as straightforward to define a Riemann tensor on



T as it is on AL The commutator of two covariant derivatives

has a more complicated expression due to the anholonomicity

of the space. We have
Dnypz = ax(aypz +““Fzywp') + "r*x,(ayp' + "fﬁ&sps)
=" "TH A DT ¥ BIE 5%
= axaypz + "Fzywaxp' + "szwayp" - "F"xy =
+ @ TPy P¥ + T2 "T¥yep® - "I "TZ, oo

[2.2-50]

When this equation is antisymmetrized over x and Y, the

second and third terms on the right-hand side cancel, giving
z _ Z _ uTW¥W z nT"Z
t T 2181 "To1w = "I (xy) "T gl p™ (2.2-51]
Unlike the holonomic case, the term on the right-hand side
cannot be defined as the Riemann tensor since it depends on
derivatives of pZ%. We follow Schouten in modifying the

equation so as to define the proper Riemann tensor. First

note that one can show

(x93 P* = - Q%9,p% - Q¥ 3, p* [2.2-52]

and, since

"T g1 = = Q¥ , [2.2-53]

equation 2.5-51 can be rewritten to
z _ _ A z
DxDy1P* = = Q%% 0,p

+ {a[x"rzy]w + "rz[xlslnrsy]w _ "Fs[xy] ,,rzsw}pw

[2.2-54]



Using the "covariant" D-derivative, we can write equation

2.2-54 in the form
A _ nT"Z
DxDy1P* + Qzy Dp® = (9" Ty
) " " " " . A :
i I‘z[xls! FB.Y]W B rs[x:{'] Iawp™ +2Q nyzwpr

[2.2=55]

The right-hand side of equation 2.2-55 provides the correct
definition of the Riemann tensor of the anholonomic rigging

space.

" — nT"Z nTZ nTS
nywz _za[x ry]w + 2nm [x|8] 1Fﬁ,’y’]"

= 2T TP + 4Q% Q% [2.2-56]



2.3 The Extrinsic Geometrv of W’and T

Whereas the intrinsic geometry, given by the metric tensor
and induced connection, defines 'distance' and 'parallelism'
within the surface, the extrinsic geometry describes the
bending of the surface in the imbedding manifold. Bendlng is
a concept that is easy to visualize in a metric space: the
normel vector to the surface changes direction as one moves
from point to point on the surface. However, the concept
generalizes to affine spaces as well, and the first part of
this section is devoted to describing extrinsic geometry in
affine spaces. Later on, we shall specialize the results to

metric spaces. ‘

Consider a contravariant A-vector z® at a point qg e «XN.

Parallel transport z® to a neighboring point d; € N along a
path in A. Denote by sB the tangent vector to the path which

is parametrized by A. z® may also be considered a vector in

M, zH = 22B;H, defined at B(g). The path is also a path in M
‘and its tangent vector is
s¥ = g® BY, [2.3-1)

For an infinitesimal displacement svdl, the components of the

parallel transported vector zH at g, are given by

*2V(qy) = zV(q) - [Vypz sP dh [2.3-2]

Since C"u is a field on N, its components at g, are



Cxp(ql) = Cx“,(q) + Cxu,c(q)scdl [2.3-3]

Then we have at d,, the rigging projection of the parallel

transported vector

V(@) Chy(ay) = 2Y(@Cx (@) + z¥(q)CX,, (q) sCdA

- cxu(q)r“mzxspdk [2.3-4)

The first term on the right-hand side vanishes at g because

zV(q) is tangent to the surface there. We have

*

Vg C®y(qy) = zY(q) C*y, o (q) s%ar - Cxu(q)f‘”,(pz‘(spd}.
= VC%2zVs%A = z2sB(BY,0V oCv) dA

= -z2sB(C%,B%,V_BY,)dA [2.3-5]

The term in parenthesis on the last line of equation 2.3-5
has a simple interpretation. If it vanishes, then the vector

z® remains tangent to AL as it is parallel transported. If it

doesn't vanish, then z2 begins to point out of the surface as

it is parallel transported. The term in parenthesis, related

to the extrinsic curvature of the surface, is denoted Hyp®.

It is the projection into the rigging of a surface basis
vector parallel-transported alohg another surface basis
vector.

In a similar manner, a vector that belongs to the rigging
space at g can be parallel-transported along the same curve.
In general, it will start to bend over into the surface. How

much it does is determined by projections of covariant
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derivatives of the rigging basis vectors. A systematic study
of the extrinsic geometry of a surface in an affinely
connected manifold can be done by looking at such projections
of the covariant derivatives of both the surface and rigging
basis vectors. Weyl [1927] performed just such an analysis
(the projections of the covariant derivatives of the basis
vectors define the connection coefficients or Ricci rotation
coefficients in the adapted basis). For the moment, we do not
assume a metric tensor exists, but do assume the existenée of
an affine connection. Without a metric tensor, the rigging
vectors cannot be assumed orthogonal to the surface since
orthogonality is not defined.

We have the follow projections; with the éymbols we shall
use for them

L) Surface basis vector BVA transported along a surface

basis vector Bvé
BY;V, BY, projected onto surface: B5CuV, B, =T,  [2.3-6)

projected onto rigging: C*BYEV B, =B, *  [2.3-7]
II) Surface basis vector BVA transported along a rigging

basis vector CV_
Cv,V, BY projected onto surface: BCuCVxVVB”A =Y [2.3-8]

projected onto rigging: CquVnyBuAE-*LyxA
[2.3=-9]
III)Rigging basis vector CVx transported along a rigging
basis vector CVY

v n . . RC @~V =%y C
8 vaC ¢ Projected onto surface: B uC va CH, = Hox

[2:3=10]



projected onto rigging: CZHC"YVVC“x = "Fx&z
| [2.3-11]

IV) Rigging basis vector C"x transported along a surface

basis vector BYy

BY;V, CH, projected onto surface: BS, B V, ot ==1.8,

[2.3-12]

projected onto rigging: C%; BV, V cH = YoZx

[Z2.3—13]

Using the definition of the anholonomic ob'ject in Section .

2.1, one can relate the L's and the Y's.

*

Y%y = - LyFa + 2Q%, [2.3-14]
Y2 = -Lghy + 2Q%, [2.3-15)
The projections 'FCAB and "nyz, discussed in Section 2.2,

are Jjust the induced affine connections on N and T
respectively.
The quantities H and L have two indices in N and one

index in 7 while the quantities “H and *L have one index in

i . i x A * -\ *
N and two indices in 4. Hpp*, Lg®x, ny and Le¥n,
transform as tensors under coordinate or basis

transformations of AN and 7. Just as we interpreted Hp ¥
earlier, we can see that LBAx determines how much a rigging
vectbr, parallel-transported along a curve in N begins to

bend over into Al Similar interpretations hold for *nyA and

L.



The symmetric part of E%Ax is called the extrinsic
Qg;vaturg tensor of the surface, while the symmetric part of

*nyA is the extrinsic curvature of the rigging space.
The antisymmetric parts of H[AB]x and *H[xy]A are

essentially the anholonomic objects

H[AB]x = '—Q X [2.3"16]

A-_Q A : [2.3-17]

(In our work, we are assuming that H[AB]x = 0.)

Schouten [1954], on the other hand, defines the extrinsic

curvatures of the surface and rigging spaces directly in

terms of the covariant derivatives of the projectors B”v and

Ty
Using the fact that
VuB“v=‘VuC”v _ [2.3-18]
he introduces (following Schouten [1954]) the three-index

curvature tensors i

B = BauB;).VaBVB =-8%P v ¥ [2.3-19]
Lo = B% gV BPg = -B% gV, CB [2.3-20]
"Hye' =CO PV cVy= %PV BV [2.3-21)
Ty = UV b = =g YoV Bh [2.3-22]



The covariant derivatives of BﬁG and CBc can be written in

terms of these quantities
VaBBO’ == VaCBcr: Hach + Lch - *HacB - *Lch (2.3-23]

The two sets of quantities are clearly related. In terms of

projections onto N and T, H(mB and LQBG become

- x vV — _ vV _
Hpp* = BHO5C%H,5Y = BuAGchVVuC o = = BH%V,C%s
= = chB“AVuBUB [2.3-24)]
L By = B“ABVCxULuVO. = - phBie @ Vuc"0 =- BuABVVquV
[2.3~25]

while for *HacB and *LQBG, we have

A _ o RA vV _  _ A ~Q v
*Ho* = cH O BA *m - ch, o BA,C uBO'V(xB B
- _ O A _ ~O0 oA -
= - c%AV B = coBRV cB [2.3-26]
: e g v = (o}
*L¥a = CH¥\BO,*L Vo = - CH ¥.B aC%"3VBPs
= w g VvV _ — — i
= -CcH ¥B a¥B's = CuvaVuBVA = c“xBVAVucYV [2.3-27])

which are the same quantities defined by equations 2.3-7,
2.3-9, 2.3-10 and 2.3-12.

We can interpret the Y's as follows. The projections fgx
define A-covariant derivative for objects with indices in the
rigging space 7. For a contravariant rigging-space vector s*

it is defined by



Dps™ = BuACxVVu"SV
= dps* - sYB”ACyVVquV
- 3 <X
= dps® + sYCxVB“AVuCYV

= 0ps® + 7, X sY [2.3~28]

Using the relation between YAZY and *LY‘A, equation 2'3'14' we

get

aAs" - sY*LyxA + 2sYQ"YA

= D,s* - sYLx, | [2.3-29]

Similarly, a covariant derivative of rigging-space

covectors is defined by

D

Y "
29x BuAC x Vu qv

= BuAvaVu"qv = dpqy - quuACYVVquV
= aAqx - qy'YAYx [2.3-30]
Again we have

Dady = Dpax + "L¥aq [2.3-31]

In a completely parallel manner, a covariant derivative of

surface quantities with respect to the rigging index can be

defined. For a vector z2® belonging to A/, we have:

Dyz® = BA,CY,V 'oH - [2.8-32]

which can be written in the form:



A _ 2 B A
Doz~ = Gpz® - 2 B“BCxprB

b =

d

A A B
% Z +’Ysz

D 2® - L2, 2P [2.3~33]

For covariant vectors we have
— _ B
DySp = OxSp = Yo "aSp .
= stA +-LABst [2.3-34)

A covariant derivative of space-time objects can also be

defined. For a vector in the four-dimensional manifold define

vV _
DpsY = BH

_ 1 o0 A% [ e} n0O A% n
—B%%zls +B%C0Vus +IW;0Vus +B”ACGVMS0

= DpsPBYy + sPHpp*CY, - s¥L,B.BY, + e o oL
[2.3-35]

The action of the D-derivatives can be extended to objects
belonging to the same space as the index by requiring that it

be equal to the regular covariant derivative, i.e.,

szY = D z¥

Dr._=npD.r [2.3-36]



D,qc = Dyqc [2.3-37]

The action of D on mixed objects follows from the fact that

both Dx and DA obey Leibniz' rule. We can determine the

effect of Dx'on a mixed tensor by considering the outer

product m,s*. We then have

D (mys¥) = s¥D_m, + m,D_s¥
D, (mys¥) = s¥(dm, - 2QB,my) + my (9,sY + "I¥,,.s7%)
D, (mys¥) = 0, (msY) ~ 208, (mgsY)  + "I¥,, (s%m,)

[2.3-38]

For an arbitrary mixed tensor, such as T¥,5, this gives the

expression

~HC "
DxTYAB axTYAB - ZQ XBTYAC - ZQXATYCB + ryszzAB
[2.3-39]
and
[2.3-40]

The Lie derivatives can be expanded in terms of covariant

D-derivatives. For example,

oxr



£"zTY = ZwD"TyAx + TYA xZ' = T'AxD'ZY [2.3‘42]

The Ricci tensor is defined by .

L a _
Riv = Rogy [2.3-43]
and its independent projections are:
- a _
Rap = BY3VpRoyy® = Rppp™ + Risnss® [2.3-44]
- v a _ a
Ren = C,.HB ARgpyv. = Rpxa® + Rog,C [2.3-45]
_ a _ _
Rey = Cxty"Rouy™ = Rexy” *+ Rexy® [2.3-46)

‘We shall consider the Ricci tensor later in Chapter 3; we
are now only interested in the progectlons of the Riemann
tensor which appear in equations 2.3-44, 2.3-45 and 2.3-46.
We shall relate these to the intrinsic and extrinsic
geometries of the surface and/or rigging space by the Gauss

and Codazzi eguations, and another relation which involves

D-derivatives of the extrinsic curvature. We shall now
investigate these equations.

The Riemann tensor of N was defined in equatlon [2.2-7] in
terms of the commutator of surface covariant derivatives.
However, because the Covariant derivatives are pulled-back
from M, the Riemann tensor can also be written in terms of
projections of the commutator of the covariant derivatives of

M. This brings in the Riemann tensor of M and leads to a

relation between the Riemann tensors of A and M known as

"Reop = LyAgHE g - LCAxHx pE + Ryep? [2.3-47)

where 'RDCBA is the Riemann tensor of N. Gauss' equation is
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proved in Appendix B. The last term on the right-hand side of
equation 2.3-47 is the term need in equation 2.3-44.
Another set of equations which relate A-quantities to

projections of the four-dimensional Riemann tensor is

Codazzi's eqguations, also derived in Appendix B,

= R., X [2.3-48)

2D CAB

tcHays™

There are corresponding Gauss and Codazzi equations for
the rigging spaces. These are somewhat more complicated as
the rigging spaces are not holonomic. (We refer the reader to

Schouten for a complete discussion). They are Gauss' equation
for 7

" . _a% * *
By = =2 Mg & Ly1™a + 2QxyA LA + Ryyp™
[2.3-49]
and Codazzi's equations for T
* A — _ * -
2D [y Hyy A = -2 Hixy1PLlgPz + R et 2 .8—50]

where "nyi' is the Riemann tensor of T.

The remaining projections of the Riemann tensor which play

an important role in the analysis of the field equations and

need to be evaluated are Reap¥ andARAxyA. In Appendix B, we

'show that

: _ * * *
DyHpg¥ = "Lp%a"L,¥p - D "L ¥y + LACxHCBY. + RpnpY [2.3-51]

We can express this in terms of the D-derivatives if we use

the relations:

* * & * * *
D, L¥s = D"LY¥p - "L¥p*L 7, +

o L 2p"L, Y, [2.3-52]
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and

D HppY = D_H,pY - Hep¥YLpCx = Hpo¥LpCu: [2.3=53]

yielding

Dotiap¥ = -D, "L ¥y + "L 7,*L v, - Hpc¥LgCx + Rypp¥  [2.3-54]

For the rigging extrinsic curvature
D He P = {DxLCDY + LCEYLEDZ - *szD*LyzC * R b [2.3-55]

C "xy Cxy

These equations are also derived in Appendix B.

Metric Spaces

In a metric space, LABx and H, * are related:

HxAB = '_BHAVBVquV = _BHAVBngVu(ngCyp)

I

= 9pc 9VL,C [2.3-56]

Likewise, for the rigging extrinsic curvatures we have

*

nyA = gABgyz*szB ‘ [2.3~57]

Since, in a metric space, Hpp* and L,B, (*nyA and *LXXA)

are related to each other by simply raising and lowering

indices with the induced metric tensors, we drop any
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distinction between them and use the symbol H exclusively.

One can also define the mean extrinsic curvature HX of N

as the trace of H¥,g:

B* = o"Pu%, [2.3-58)

The mean extrinsic curvature *HR of 7 is the trace of H*pp:

HE = g%, A | [2.3-59]

Just as the ordinary covariant derivatives of the induced

metric tensors vanish, the mixed covariant derivatives of the

metric tensors vanish. Since "G = 'gyx we have, from

vk ~

the definition of the mixed covariant derivative

= Vv " e v
DAgxy = BHAC xKy Vu vk = BuAC xKy Vu'gVK
— K vV o _
= BH,CK, Iy VpC'x = O [2.3-60]
Simlarly, one can show that
Dag™ = D.gpp = D,g?® = 0 _ [2.3-61]

Applying equation 2.3-34 to the metric tensor itself, one

gets a relation the between D-derivative of the metric tensor

and the extrinsic curvature tensor

Dx9ap = Dy9an *+ HyCx 9cp + HCx gpe = O [2.3-62]
and thus
D,9as = - Hp®x 9cp - HCx 9ac
= = Hugy = Hpay = = 2Happ = - 2H,, [2.3-63)

The D-derivative of the contravariant metric tensor is

related to the raised extrinsic curvature by
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AB _ ABy ' _
ng 2gxyH [2.3-64]
For the rigging space, we have

*
= ~2 Hizgg)a
and
Xy - »*y(xy) -
g%¥ = 2% A [2.3-65]
The action of Dx on the conformal two-geometry will now be
considered. Since the D-derivatives of the Levi-Civita tensor

densities wvanish, we can calculate the action of Dx on the

conformal scale factor:

Dx‘YZ = EABECDgACDx gBD = ’ngBD ngBD = _272gBD gxy-HBDy

= -2Pg | [2.3-66]
DY = -y Y [2.3-67]
Dyt = Y g, Y [2.3-68)

This relates the D-derivative of the conformal scale factor

to the mean extrinsic curvature of the two-surface.

The action of Dx on QAB 18
D.g,. =D Y 1g..) =y 1D .+ D -1
x°AB x AB x9aB Iast Y
_1 -
= —2Y7'g,, (Hue¥ -1/2 g, HY)
~2y g AC,D 5y
'Y gxyA A B*'cD

= —ZY"lgxyHCDY'
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= Y 'A%PED, gap [2.3-69]
where ASD; = 55,57, ~ 1/29,59°P  is the trace-removing operator

on two-surface quantities and Hop¥ = ACADBHCDY is the

traceless.part of H.pY.
Sometimes it is more convenient to use the tensor density

~

HY,; = Y—I(HABY -1/2 gpgHY) = Y_;ACADB Hep¥

= v 1H ¥ | ' | [2.3-70]
which yields

DyIap = ~29xy HppY [2.3-71]

 The traceless tensor density HY,p is related to the conformal

two-metric in the same way that the extrinsic curvature is

~

related to the regular two-metric. We call HY,g the conformal

extrinsic curvature tensor.

Defining the raised conformal metric

ghB = yghB | | | [2.3-72]
we have
D, 28 = 2Yg,, (HPBY - 1/2gRBpy) [2.3-73]
= zgxyﬁhBY, |
where HYAB - YAR-B, HCDY [2.3-74)

- The mean extrinsic curvature of the rigging space is
related to the determinant of the rigging metric by

*

n

Hy = -1/(2p%)D,p?

~(1/p)D,p [2.3-75]
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We turn to equation 2.3-54, to consider how it looks in a

metric space. Operate on both sides with Ixy to get
(recalling Dngy = 0)

D.H

* * *
fasy = = 9yzD, He's + THLZTH

zya ~ HacyHplx + RxaBy
[2.3-76]

Substituting Hppy = -l/ZnygAB we get

* * *
“1/2D.Dygas = Rany — 9yD, "My + tH M, - HacyHs"x
[2.3-77]

or

s oy * - % % g
RxABy = 1/2DnygAB + gyzDA Hy® Hye®p szA + HACyHB =

' [2.3~78]
which is the desired result.
In the next chapter, we shall use the expressions for the

projections derived in this section to write out the Two+Two

formulation of the Einstein Field equations.
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CHAPTER III
THE EINSTEIN FIELD EQUATIONS

3.1 Measurability of the Conformal Two-Metric

The conformal two-metric is a directly measurable
quantity. Consider a small object of known size and shape and
an observer at a distance from the object and consider a
bundle of 1light rays from the object that are view by the
observer. The measured shape is the projection .on a
two-dimensional screen in the instantaneous rest—frame of the
observer and orthogonal to the trajectories of the bundle of
rays. We now relate the measured shape to the conformal
two-metric at the object's location.

We proceed by constructing an appropriate coordinate

system based upon the trajectory of the observer xH (1) . For
simpplicity, we take the tangent vector u to the observer's

trajectory

ut = dxM/ar [3.1-1]
to be a future-pointing unit time-1like geodesic. Thus

u”uu_= -1 [3.1-2]

u“VuuV = 0 [3.1-3)

Then we can take I to be the proper time along the observer's

trajectory. At any instant of the observer's time,  say Tor

the image of the object consists of the endpoints of a bundle
of null geodesics which intercept the trajectory of the
observer at the event x“(to) and therefore lie on the past
null cone of that event. We can then define a function w

which is constant on the null cone and whose value is given

by T, i.e. w = 1. A set of null cones, each emanating from the
trajectory of the observer, can be used to define a local
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coordinate w.

Two more coordinates are defined in the following manner.
Let {u,leﬁ i=1,3} represent an orthogonal tetrad which is

parallel propagated along the world line of the observer. The

spacelike triad {lei} is orthogonal to u and maintains this

relation due to the parallel propagation, defining a
non-rotating reference frame. (The assumption of a geodesic
trajectory makes the propagation of the non-rotating frame

simple; otherwise we would have to resort to Fermi-Walker

transport). At each instant of proper time, we can use {iei}

to define a sphérical coordinate system - (6,¢). Each null
geodesic can be labelled by the measured value of (6,¢) as it

strikes the observer. The (6,¢)—coordinate system can be
extended along the null geodesics by defining them to be
constant along the null geodesics. This can be done at every
instant of proper time.

A fourth and final coordinate Y is needed and there are
many ways in which it can be defined. A simple choice is the
preferred affine parameter v of the null geodesics normalized

in such a way as to be zero at the observer's position and

also satisfying u“wu = -l. A second way is to use  the

so-called area or luminosity distance r. Another way is to
use either one of these prescriptions on the initial null

cone but-define y off the null surface in some other way. The

final form of the coordinate system (xM) is

1

x* = w, xt =y, x2 = 8, x3 = ¢

In the coordinate system so described, the metric tensor

has the general form
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- a B v, vy 3
0 0 0
v = [3.1-4]
Vo 0 g5 g5
| V3 0 923 933 |
The submatrix
dpz " 933 _
928 = ' [3.1-5]
: 923 933

is just the induced two-metric on the family of two-surfaces

given by w = constant and Y = constant and its determinant is

72

The conformal two-metric, gagsr 1s defined as in Section 2.1

I

det [gapl = 95,933 = (g,3)?2 | [3.1-6)

SAB = gAB/Y (A,B = 2,3) [3.1-7]
such that
det[g,y) = 1 [3.1-8]

In this coordinate system,
d12 = g5 (wo, v, 0y, 0,) dxPdxB [3.1-9]

is the distance between two infinitesimally close points on

an object of known size and shape, called a "standard

figure", observed at proper time Tor and at a distance y down

the null geodesicvin the direction (60,¢O). dlzlrepresents a

known quantity; But dx? represents the observed angular

displacements which are measurable at ‘the observer's

location. 9ap C€an thus be calculated from a sufficient number

of measurements of dxA, using the known values of di12.

‘The area distance r is defined as the ratio of the

cross-sectional area of the object dS;, at the source to the

Observed solid angle dQ at the observer
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ds, = r?dQ, ' - [3.1-10)

and is readily measurable. From this definition, one can show

that r satisfies
r4sin?0 = §° [3.1-11)

and, therefore, Y is measurable as well.

The image suffers some distortion as it propagates along

the light path. The measure of distortion is given by the
difference between gAB/r2 (= sinB SAB/Y) and the metric of the

unit sphere. Hence, by calculating this distortion, gap 1is

directly measurable. Such an interpretation of the conformal
two-metric has been given by Ellis et al [1985] in
considering the maximum amount of information about the
structure of the wuniverse that can be obtained from
astronomical observations.

The arguments presented above can be modified to measure
the conformal two-structure on a null hypersurface, such as
the one used in Section 1.3. Here, we consider a null
hypersurface filled up with standard figures. At any point on
a two-dimensional cross-section of the null hypersurface (a
large screen!), there will appear a one-parameter family of
distorted images (the parameter being r, the area distance to
the source). The collection of images over the whole

two-surface is equivalent to the conformal two-structure.
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3.2 The Derivation of the Einstein Field Equations Using a

Palatini Variational Principle

It is well-known that Einstein's field equations can be
derived from a variational pPrinciple. The Hilbert action for

the gravitational field is

T = J‘\/-g (R + Lg)d%x [3.2-1]

= J( -9 g™Ry, + -9 L) d [3.2-2]

where Ruv and R are the Ricci tensor and Ricci scalar of

space-time and -g Ly is the source Lagrangian density. We

shall ~use a Palatini-type variational principle, where the
Ricci tensor is constructed from an affine connection which
is varied independently of the metric tensor (see, for

example, Misner, Thorne and Wheeler [1973], p.492). By
varying Iyy we derive the field equations. The variation of

the affine connection gives not only the relations between
the induced metric tensors and induced affine connections on
both A and 7 (proved in Section 2.2) but also the
relationships between the extrinsic curvature tensors and the
induced metrics (proved in Section 2.3). We assume minimal

coupling between the sources and the gravitational field,

i.e. +/-g LF depends only on v and not on its derivatives

nor on the affine connection.

We consider an arbitrary four-dimensional region of
space-time. The fields are varied in the interior of the
region but not on its boundary. The total variation, due to

the variations of the metric and the affine connection, 1is
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81 = [(8y/-g g + V=985 R, d%x +
[(8/-g Ly + /~g(BL,/8gmY) Bghv gy

+ [V/~g gHV8R,,,, (T) dx [3.2-3]

It is not hard to show that

8/-g = -1/2 /=g 943898 [3.2-4]

so that equation 3.2-3 becomes

81 = j(V"g(Ruv - 1/2g,R + 8L,/8gHV - 1/2g,,Lg ) 8gHVax

+ Iy/-g gHVeR,, (I a%x [5.2=5]

If we define the canonical stress-energy tensor by

Ty = 8Lo/8g" - 1/2g,1,

then the variation in the action can be written

81 = J(v/~g(G, - T 8gHafx + [\/~gghVeR (1) atx [3.2-6]

Using the decomposition of the metric tensor and the

definition of the conformal two-metric developed in Section

2.2, we can write the metric tensor in the form

gtV = g2B ylpuv gIYC MV [3.2-7]

The variation &gHY can be expressed in terms of variations
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of g2B, v, g=¥ and CH. B“A is not varied since we leave the-

families of two-surfaces unchanged during the variations.

The variation of the connecting quantities has the general

form
dH, =0 [3.2=8]
e~ o b+ Bc M [3.2-9)]
C¥y — CX + dc%y [3.2-10]
B — BE, + D [3.2-11]

The fact that the varied connecting gquantities must maintain
the same non-metrical duality relations (see Section 2.1) as

the original quantities gives us 16 conditions that need to

be satisfied by the 24 variations 5BAM, SC‘u, and SCXP.

The first duality condition is

BH, (C%, + 8C%y) = 0 [3.2-12]

‘which implies that chu belongs to the rigging plane. We

therefore define a set of four infinitesimal quantities cxy

by

c"‘y = 8c‘uc“y [3.2-13]

so that we can express

X —_ X
oC W= c Yclfu [3.2-14]

The second duality condition is

BH, (BB, + 8BB)) = §,B [3.2-15]
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which implies that SBBu also belongs to the rigging space; so
we define four more infinitesimal quantities
A _ B -
b v CYHSB u [3.2-16]
so that

A _ A : s
5Bu—byCYu [3.2-17]

Third duality condition yields nothing new, while the last

one gives

SCYH = - B”AbAy - cxycxu [3.2-18)

Summarizing, the variation of the connecting quantities is

determined by the eight quantities, cxy and bAy whereby

6cY, = c¥ CX, [3.2-19]
6BA, = beCxu [3.2-20]
Scyu - _ BuAbAy - nycxp, | ‘ [3 . 2‘21]

We also assume that under the variation, the rigging vectors

maintain their orthogonality to the two-surfaces.

We have thus shown that the variation 8gH*V takes the form
- -1 -2
Ot = 8g%8 yTIBLY, - GygRBy2pnv Sg™YC KV

tOgEYBC MY + gECMEC Y [3.2-22]

Inserting this form into the first variational term in the

integrand of equation 3.2-5, we get
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(Guy = Ty dghY = SEABY_I(GAB = Tap) = 8V(Gpy - Tpp) 977

- ngY(ny = Tyy) - 297¥(BHpbR, + cZ.C M) e (B = Ty

= 83y (Gap — Tap) - &Y(Gyp - Tpy) g?®

+ ngy(ny - Tx&’ - ZbAing(GAy = Tay)

- 2czngY(ny - Txy) [3.2"23]

To the first term on the right hand side of equation
3.2-23 we can add the term

—1/25gABgABgCD (GCD - TCD) Y-lr

since this term is identically zero because SgABgAB is

proportional to 5(det[§AB]), which vanishes. Equation 3.2=23

then becomes:
(Guy = Ty ) 8gHY = 8g*B [y (Gyp - 1/29,59PG,)
- Y N (T - 1/29,59PTcp)]
2B
~ Y(Gpg - Tap)g

_ Zbe(GAx — TAx) + [ngy = 2ny] (ny - T..) [3.2-24]

xy

The variation of the following quantities gives rise to
the corresponding field equations:

~g ~ o~
dg ?  Gpg = Tap [3.2-25]

&y P Gupg™® = T, 0R° [3.2-26])



[8g7Y - 2c(x¥)] =2 oy = T [3.2-27]

A - -
b ¥ Gy%® = T [3.2-28]
(Note that the variation of the rigging metric is not
independent of the variation of the rigging vectors).

We now investigate the variation in the action due to the

variation'of I'. The contributiQn of this to the action is

8Ip = JV/-g gM8r,, (I a'x | [3.2-29]

The Riemann tensor in a holonomic coordinate‘system takes the

form
K _> K K _
Ry = 20T,y + 2T o1 Py [3.2-30]
and the Ricci tensor is
— A A _
Ry = 2%\1‘ wiv + 200 TP [3.2-31]

Hiv
The variation in the Ricci tensor due to the variation in T
is

_ A ST A
OR,y = 20381,y + 28T Ap TPy + 2T p9Puyy  [3.2-32)

The wvariation Sr%uv is a tensor since the difference

between two affine connections is a tensor. It is immediately

Seen that

- V. STA A
R, = V,8I w V0%, | [3.2~-33]
The variational integral thus becomes

81 = J-\/—_g' gt [V, 80 - V8, ax [3.2-34]

Integrating by parts to bring the metric tensor inside the
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covariant derivative,

81 = J’{ [VX(SI“XW V-9 ") - Vu(Sl‘l}N,/-g gtV

[Srkuvvl (V=g g*) - 51*7*,~\,Vu (V-9 g™)1}a%x
' [3.2-35]

The first and second terms of this equation vanish, because
they are divergences; and, by Gauss's theorem, can be written
as boundary variations, which vanish by assumption.

Equation 3.2-35 can thus be written as

81 = —J‘[Sl"‘ka (V=g g*) = 8%, V, (V-3 g") 1 }atx
[3.2-36]

After some index manipulation, this becomes

8Ip = 'J‘Sﬁuv (V) (V-9 g*) - aligﬂvvp(\/:?gpv)]}d‘lx

[3.2-37]

The vanishing of the action leads to the vanishing of the

coefficient of the variation SFﬁN i.e.,

Va (Vg g™ - 8V (/=g glPIV)) = 0 [3.2-38]

The unique solution of this equation is the vanishing of

V,g®v =0 13.2-39]

This is the wusual result of the Palatini variational
principle for Einstein's equations: the four-dimensional
affine connection is the Christoffel symbol of the

four-dimensional metric tensor. We shall not use this result
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directly, but we shall use the fact that the Riemann tensor
now has all the algebraic symmetries it has in a metric
space.

Our approach is to consider all projections of 3.2-39 into

the surface and rigging directions. The complete set of
projections of 3.2-39 is

1. BRYE%eVyave = By eV Cgve + gy

= BuAvBKCVu 'Gyk = Dagpc = 0 [3.2-40]

This proves that the induced connection of N is the

metric connection, as we showed directly in Section
2.2.

2. BuAVBCxKVu vk = BFAVBCxKVu ("Gyg + " Iyx)
S - " \4
= BM's gwcv Cx® = BHRC.K gVKVuB B

= ~BH,C, IpcVCx™ - BH,CY. vIxyV, B = O

La%x9pc ~ Hpp¥9xy = 0 [3.2-41]

This proves that the H's and L's are related as we
show directly in Section 2.3.

3.84,CY 7 Vug\,K = BuAchYK Vu ("G + gyl

= BE, GV F V "Gyk = DpJxy = 0 [3.2-42)]
which implies, as we also saw in Section 2.3, that
* .
DAgxy = =2 Hypp [3.2-43]

== 118 -



The following results will only be stated since their
proofs are almost identical to those for equations
3.2-40 through 3.2-43.

- 0 ' [3.2-44)

x v zvp vk = Dx9yz
* *
- CH VB V9= Lyadpy - HyyP9py = O [3.2-45]
.CuxBAVBKV“gVK' = Dygpg = O [3.2-46)
which implies
D _gas = —2Hpp, [3.2-47)

Using the results just proved, we can proceed to develop

the 2+2 decomposition of the field equations. As we saw in

Section 2.3, the independent projections of the Ricci tensor

can. be written in terms of two+two projections of the Riemann

tensor:

Rop = B“AVBROW‘! = Rosp™ # Baxol [3.2-48]
Rea = C.MBY, Rauv = Ropn® + Bpga® [3.2-49]
Ryo = cxuyVRaw = Rggy® + RnyC [3.2-50]
The Ricci scalar becomes:
R = g”VRuv = gPBR,, + ngny
= gPBR 5% + g®BR.,5C + ngszyz + ngRnyc [3.2-51]
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The first set of field equations to consider is the

totally surface-projected field equations. The surface-
projection of the Einstein tensor is
[3.2-52]

Gag = Rpp = 1/2 gpgR

which, in terms of the projections of the Riemann tensor,

becomes
s c
Cas = Rxap™ * Reap |
_ CD CD E
1/2 9as (9 RxCDx t g RI:‘.CD o gxszxyz ¥ gxy Rnyc)
[3.2-53]

The traceless part of equation 3.2-53 forms the left-hand

t

side of the field equation 3.2-25
= A CPGop = A CpP(Rpp® + Recpt) = Tpp [3.2-54]

Gapg =
while the trace part of 3.2-53 is the left-hand side of

equation 3.2-26
CDrp [3.2-55]

—gX = =
g szxyz g*¥ RnyC =~ 9 CD

G = g6,
The second term

We consider the traceless equation first.
of equation 3.2-54 <vanishes

on the left-hand side
identically.
fProof:

ApBPRecp® = (8,C 8.0 - 1/29,,9CP) gBF Recepp [3.2-56]

Because of the symmetries of the Riemann tensor we can write

Reepr in the form:
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R = EECEDFf’ A [3.2=57]

EépF
giving

_ _EF.. _ CD -EF o
ApCePReco® = gFFe €. f - 1/2g,,0%gEFe_e £ [3.2-58]

A

Using equations 2.2-22 and 2.2-23, equation 3.2-58 becomes
A CePRypE = <Y 2g,pf + Y 2g, f = 0] [3.2-59]
Thus, the traceless field equation takes the form
Gpag = AACBD Recp®™ = Tag - [3.2-60]

In® Section 2.3, we developed an expression (equation

2.3-54) for RxABY in terms of the extrinsic curvature

tensors. Contracting over the-rigging indices, we get
Ryap™ = D Hpp* + D, *H ®p - *H Z*H_ X, + Hy o®H Cp [3.2-61])

Inserting this equation into.the left-hand side of equation

3.2-60 yields

~

GAB = AACBD[DxHCDx 4 Dc*HxxD - *szD*Hsz + HCExLDEx] = TAB

[3.2-62]
Using equation 3.2-47, we can rewrite equation 3.2-62 as

~

Gap = —l/ZAACBD[ngDnygCD + D *H, %

- *szD*Hsz & HCExHDEx] . E:AB [3.2-63]
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We can bring the trace-removing operator inside the

derivative

—l/ZQXYDx(AACBDDYQCD) + 1/29’_‘YDngDDx(AACBD)

= 1/2A,CgP (D *H,¥, - *H_Z *H ¥, + HopVH Byl = T,
[3.2-64]

We saw in Section 2.3 that A,Cy I)ng can be written in

terms of the conformal metric. The details are developed in
Appendix B, but the final result is that the traceless

surface-projected field equation has the form

~

_ _ - _ Ap * _ % *
Scp = ~1/2Y9¥D, D g, - ARB, [D,*Hy HYZ5"H, o]

+ YHSHp, + YHogTH B, + 1/2YgpHapXHAB [3.2-65]

The trace of the surface-projection of the field equations
[3.2-55] can be evaluated by using equations 2.3-49 and
2.3-55 which express the desired projections of the Riemann
tensor. The last term on the left-hand side of 3.2-55 is
obtained from the fully contracted form of equation 2.3-55,
We have, from the first contracted Gauss equation, the Ricci

tensor of the rigging space

= = ~*y Aax g A*
Ryz - P‘xyzx - Hyz nyA * Hyz HxxA

+2Q, BAH,E, 4 Byrg™ [3.2-66)

and the Ricci scalar



+ ZngQxyA*HzxA G R s ™ [8.2-67]
Thus the required projection is
. * * * * ..
gyzp\xyzx = g¥% szé. nyA - gyz HyzA HxxA
- 29¥*Q P'H %, + 'R [3.2-68] .

The first term on fhe right-hand side of 3.2-55 can be
obtained from contracting equation 2.3-56

C-=DHaC. - HERHC *y_ c* *y C -
Rexy D HCy - HByHRCx + "H,CTH %o + D Hyy [3.2-69]

and
x C = ~X C  _ 4% E % c*
g yRny = g*¥D <Hc Y g yHC yHEcx + g*¥ _sz HyzC

+ g=ID *m, C [3.2-70]

Inserting 3.2-68 and 3.2-70 into 3.2-55 gives

CcD
g6 v

- - z* A% z* A%
cp = ~29¥% H A H E + g¥ Hy A Hy®a
vz A*g x _ "p _ 4% C xXyy E »g C
+ 29 Qxy H"a R - g™D H S + g™¥H EyHCy
- gX¥YD *y C = 4CD
g DC Hey® = 97°Tp

*

- — A*zx A*
= =2 H ;)2 H® ) + "H'H,
A*pyx _ "p _ 4X C xyy E g C
+ 2Qxy HY®, R - g*¥D _H.C, + g*¥YHEH. Cp
- D_*HC + *nyCDngY ©[3.2-71)

The first and last terms cancel to give

”n

= *ygA* A*
G= 'H HA+2QxY HY*, - R
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- 9D HCy + gVH,, HAB, - D _*HC [3.2-72]

Using QAxy = EnyA, equation 3.2-72 can be written

G = "EA'H, + 9p720RQ - "R
+7eID. Dy -1/27 2D 4Dy + TV, HAE,
- g*2D, (p7ID_p) [3.2-73]

This equation has a second-order operator acting on ¥y, but
also implicitly contains second-order derivatives inside the
Ricci scalar of T. We shall discuss it further in Chapters 4
and 5.

Consider next the mixed surface-rigging projections of the
Einstein field equations. This projection of the Einstein

tensor involves just the Ricci tensor because there are no

cross terms in the metric:

Gxa = Rya = Rppa® + Regn® = Tgpp [3.2-74]

The Riemann tensor projections on the left-hand side of
equation 3.2-74 appear in the Codazzi equations for AN and 7
(equations 2.3-48 and 2.3-50)

D[CHA]Bx = 1/2Rppp™ ' | [3.2-75]
* _ ‘ B . .
Diu Hepy® = 1/2Ry, 2 + Q uxHp?y [3.2-76)

Working first with equation 3.2-76, which we write in the

form

Ruxy” = 2Dy "Hyy® = 2Q5,, B2, [3.2-77]
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*nyA can be written

A X A

- _0OA % A

= -Q xy t H(xy

= -QPe_ + *H(W)A [3.2-78]

. xy
The first term on the right—handeside of 3.2-77 becomes

* A _ £T8p *m A
2D [y HeyyP = €, 87D "Hy

rs * A _ A
€ux€ Dz (H(gy, Q%)

]
™m
™

H
®
=
%
™
M
)
H
)
™
)
@)
w

rs. x A A .
€uxE Dp H(gy)® + €,,D [3.2-79]

Equation 3.2-77 becomes
RuxyA = euxe“’Dr*H(sy)A + eux(DyQA - ZQBHBAY)
= Euuf Dy H(gy)® + £,9”C(D,Q. - 2Q.HE)
= B ETOD TH (g B+ eungC(Dyﬂc ~ CLE-B.) [3.2-80])

Using the symmetries of the Riemann tensor, equation 3.2-80

can be written
_ rs * .
Ryax' = 9 "€, E7°D.7H (gyya + g""exw(DyQA - QHBy)  [3.2-81]
Contracting over the rigging indices yields '

Ryns¥ = gY"exwe“Dr*H(w)A ~ 9Y"€xw(DyQA - QoHBy) [3.2-82)

The second term on the left-hand side of 3.2-74 comes from

the contracted form of 3.2-75

Reax® = 1/2(DjHy - DCH,LC,) [3.2-83]
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Substituting equations 3.2-82 and 3. 2 -83 into equation 3.2-74

gives

8. * - B
gy"Ewa Dr H(SY)A + gywexw(DyQA QBHA y)

t 1/2(DpHy = DoHCp) = Ty [3.2-84]
Contract both sides of this equation with Efuguz to give

rs * xu
D.Q, - QB + e™p, Hsz)a + 1/2 € Juz (Paly = DcH,Cy)

= gx“guzTAx [3.2-85]
This is the desired result.

The last set of field equations we derive are the totally

rigging-projected ones given by equation 3.2-26. We have

G = R

A u
zZwW AzZw + Ruzw

- 1/292w(gABRCABC ki g-ABI"xABx * g RAX}'A ¥ gxyR“xyu)
= T

ZwW

[3.2-86]

A Xy -AB - AB =
RAzw Izw9 Yg RxABy + Azxwyp\lxyu 1/29‘2,,9’ RCABC - Tzw

[2.2-87]

Using arguments analogous to those used in the proof of
equation 3.2-19, we can drop the third term on the left-hand
side to obtain:

Razw” = 92uI¥9™Reppy ~ 1/29,,0%R ;. C = T, [3.2-88]

The first two terms on the left-hand side can be combined
as

g zygyxRAwa - 9. ngyRAxyA

= gzrgyxRAst(Sryss" - Ssysrv) = gzrgyxRAsterse



Incorporating this expression into 3.2-88, we get

) rs _ AB _ _
gzrngRAstS Eyw 1/2gz'g RCABc - Tzv [3.2 89]

Contract with €*® and €"° to obtain

If we lower the rigging indices on both sides, we obtain

=2
Raxy™ * /29249 ReapC = p%g,,9,,£% 7T, [3.2-91]

The first term on the left-hand becomes, after substituting

in the expression for Raxy 7

AB AB _ % AB AB c
D_H + g DA*nyB *gUH R Hyon + g HacyHpCx

AB _
Reapy = 97 D Hppy

g

= AB = AB AB — AB
= D, (9" Hpg,) HapyD,9™° + g Dp*Heyp = *9 Hy®s*Hyyn

AB c
t g Hpo HpTx

= s AB AB
= D H 2Hpp H*¢ + gPPD *H

AB
<ty - *g szB*Hz

xyB YA

i gABHACyHch
— =1 _ AB AB _ AB
= =D Dyy) Hap %2 + g DA*nyB_ X H Tp*H

= —'y'leDy'y + y'sz‘{Dyy - HABYHAfo + gAEDA*nyB

- *gABszB*szA [3.2-92]

The second term on the left-hand side comes from Gauss's
equation
ABp

-H,H* + HPB HZ,, + 'R [3.2-93]

C =
9" Rean
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Putting equations 3.2-92 and 3.2-83 into 3.2-01 gives the
final form of ‘the totally rigging-projected Einstein
equations
' ~1 ~2 _ AB AB
-y Dnyy + Y nyDyy HppyH™z + gh DA*nyB
- gAB*szB*szA § 1/2gxy[—HzHz + HABZHZAB + 'R] =
-2
=P Ixy Ty T,
[3.2-94)
To finish this section, we shall write out the two+two

form of the Bianchi identities. They are developed in

Appendix B. It is convenient to define the tensor

Sw = Guy =~ Ty [3.2-95]

Then the Bianchi identities are (from equations B-39 and
B-40) '

YD (ysZ,) + pPTID, (psP,) + SAgH,B, = 0 [3.2-96]

YID_(ys%,) + pTID, (psB,) - sz *m x, =0 [3.2-97]

z
In the following sections we éhall use the forms of the

Einstein equations developed above to evaluate particular

initial value problems.
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3.3 The Field Equations as Deformation Equations

We presented thé two+two decomposition of the Einstein field
equations in the last section with only minimal discussion of
what quantities they determine and what initial data should
be specified for their solution. This section, and the
following chapters, will address these questions more fully.
In addition, we shall discuss how certain qualitative
features of the initiél data depend on the particular initial
hypersurface or hypersurfaces.

In the two+two formalism, the quantity that carries the
dynamics of the field is the conformal two-geometry of a
two-parameter family of spacelike two-surfaces. The set of

equations that govern the evolution of this conformal

~ -~

two-metric, G,g = Tpgr has a wave-operator as its principle

part, i.e., the part which contains the highest-order
derivatives. We shall refer to these equations as the
dynamical equations. The interpretation of these equations as
wave equations for the conformal two-metric is justified when
the linearized version of the two+two formalism is discussed
in the next section. We shall see that these equations reduce
to a linear wave equation for the perturbations of the
conformal two-metric. The appropriate initial data for these
linear wave equations depends on the initial hypersurface (s):
for the Cauchy problem, it is the field and its normal
derivative on a single surface; for the characteristic
initial value problem, it is the field on two-intersecting
null hypersurfaces. We expect this behaviour to extend to the
exact equations. .

The remaining part of the two-metric, the conformal scale

factor, appears in the principle parts of four equations,
ny = Txy and GABgAB = TABQAB, although the latter equation
also contains the Ricci scalar of the rigging space, and thus

implicitly contains second derivatives of the rigging metric.
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In this section, we shall show that the conformal scale
factor is completely determined by the ny = ij equations in

a four-dimensional region if it and its first derivatives are

given on a single two-surface. The equation gABg Gag = ghBT.

will be used to determine one of the components of the

rigging metric. The four equations Gpg = Tpxr a@s we shall

see, are involved in the determination of *nyA.
In Section 2.2, we showed that the four-metric decomposes
into mutually orthogonal parts with respect to an

orthogonally rigged two-surface
guv = 'guv + "guv [3-3-]-]

'guv is determined by g,5 and BA p Since

'"Iuv = IapBY i B [3.3-2]
while the rigging geometry is defined by
'guv = gxycxuyv [3.3-3]

Both BAu and Cxu are uniquely determined by CH, once B,H is

fixed by the duality conditions. Hence, the quantities that

determine the ‘full four-metric are the intrinsic surface

geometry g,., the rigging geometry g__, and C_M, Clearly these
AB xy x )

14 quantities are not independent; we can fix four of the

gxy's and Cg H's because of the freedom to perform an

arbitrary non- singular linear transformation at each point of
the surface. This gives us ten ;ndependent quantities as we
might expect.

. There are also four available degrees of coordinate

(gauge) freedom and we can use them to fix four more of the

gxy's and C/M's. Thus, of the eleven quantities, Ixy and C.H,
only three should be determined by the field equations.
Since the conformal metric on space-like two- surface can

carry the dynamics of the gravitational field, it is
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important to look at the evolution of the geometry of a
two-surface and how it relates to the field equations. An
appropriate way to look at this evolution is by considering
deformations of a two-surfaces which were defined in Section
2.1. A deformation of a general geometrical object 1is its
variation due to a displacement. The geometrical quantity may
be displaced itself or may be a functional of something which
is displaced. In Section 2.1, the displaced quantitiesvwere
two-surfaces. Quantities such as the metric or extrinsic
curvature of the two-surface change because of their
functional dependence on the two-surface. Consider a given
four-dimensional manifold with metric in which a two-surface
is imbedded. A metric on the two-surface is indﬁced from the
'four—metric_by the pull-back of the imbedding map. As the
surface is displaced, the two-metric changes solely due to
the change in the imbedding. Thus the surface metric is a
functional of a quantity which is displaced: the two-surface.
The rigging space also evolves but in such a way as to
preserve its orthogonality to the surface. Of course, we can
reverse this argument and build up the four—-geometry from the

changing surface and rigging geometries.

Deformation of the Surface Two-Metric

We study the evolution of the two-metric off an initial
two—surface by computing the Lie derivatives of the
two-surface metric and extrinsic curvature in an arbitrary
direction. This is analogous to that used in the 3+l-approach
of Stachel [1962] and others. The essential idea of that
method is to use the field equations to express the second
order Lie derivative of the three-metric in terms of lower
order Lie derivatives, which form part of the Cauchy data.
This method is thus analogous to the Newtonian formulation of
dynamics. Each higher drder Lie derivative can then be
expressed, using the equations of motion and their

derivatives, in terms of lower order Lie deriatives: so Lie
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derivatives to all orders are known ,and an analytic solution
is possible. In the 2+2 case, the idea works for the
conformal scale factor, but not for the conformal two-metric.

Data specified on a single two-surface is sufficient to

propagate YZ throughout a four-dimensional region of

space-time. The field equations for the conformal scale

factor derive from the rigging projections of the Einstein

tensor ny.

However, we shall find the Newtonian approach useful when
later we specify initial data for the dynamical equation on a
single two-surface, rather than on a hypersurface or pair of
hypersurfaces. In that case, an infinite number of functions
must be specified on the initial two-surface. This method
will be discussed in Chapters 4 and 5. .

We begin by deriving an equation which determines the
evolution of the conformal metric of an initial two-surface N
in a direction defined by one of the deformation vector
fields, U or V. These are two commuting vector fields used to
foliate a four-dimensional region of space-time, as discussed
earlier. The three-surfaces created by dragging N along the
integral curves of the deformation vectors will serve as
initial hypersurfaces of - the evolution equations. The
deformation equation for the two-metric is obtained by
calculating the Lie derivative of the two-metric with respect
to V. In the beginning of this section, V will be a "generic"
deformafion vector, so identical equations will hold for U,

It will simplify matters if we decompose the deformation
vector into its surface and rigging projections:

V= oyl e [3.3-4)

The Lie derivative of the two-surface metric is

£VgAB = £lngB + £"VgAB

|
N
o
s
<
i
+
=
=}
3



= 2D 3Vgy - 2VEH,p | [3.3-5]

Similarly, for the iaised metric
£ygPB = -2p(AyB) 4 pyxyAB_ : [3.3-6]

Hence, the Lie derivative of the conformal scale factor is

related to the mean extrinsic curvature:

EyY = 27 (DRVA - vEH) [3.3-7]
Now consider the Lie derivative of Hppy- We have

£VHABX = £'VHABX + £anABx [3.3’8]

Again, we compute the Lie derivative with respect to the

surface component first:

LiyHapgy = VD Hpp, +  HepDaVe +  Hy  DLVE [3.3-9]

ACx

The second term on the right-hand side of equation 3.3-8 is:
s z
LuyHppy = VED_Hup . + Hpp,D VZ [3.3-10]

We can use equation 2.3-76 to express VzDzHABx in terms of

projections of the Riemann tensor:

z o z * z* * ’
VED _Hyp, = IxyVZD, "H, ¥y + VETH,Y, Hyxp

- v + VZRgapy [3.3-11]

C
CBxHA z

Combining equations 3.3-8, 3.3-9 and 3.3-11 yields the Lie

derivative of Hppy With respect to any deformation vector

- _uZz c _ z z* *
£VHABx = -V HACxHB z HABszV + vV szA nyB
- z * z C

InyVD, "H ¥p + VER ,p +V D Hypy

+  HepgDpVC +  Hpo DpVe [3.3-12]

Contract equation 3.3-11 which another generic deformation
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vector U which commutes with v (U may be the same as Vv or
different)
* *
U*eyHapy = - U*VZH, g H5Cp - U™Hpp D VE + UXyZ Hp¥n Hyrp
X17Z * Xy,Z X
T 9xyUTVED,TH, Yy + URVER,,. + U VED Hppy

t UTHepDaVve + UTH, DoVC [3.3-13]
Recallihg 2.1-62 and 2.1-66, this becomes

X\ . _ 11Xv,Z C _ nx z X,z % *
£V(HABxU ) = usv HACxHB z U HABszV + UV szA nyB

= IeyDa (UXVE*H ¥p) + U*V*Roapx + VD, (Hyp UX)
t UTHpDaVE + URH, D vC [3.3-14]
We canibring Ixy into the D—derivative, oo get
fv (HapxU%) = - U*vEH,  HC, - U HppDeV® + Usz*HZyA*HYXB
- D, (Uv='H, ) - 20%VEH YR H

X\,Z C
+ USVER ap + V D (Hpp, UX)
X
t UPHepeDpVe +  URH, D_VC [3.3-15)
Equation 3.3-15 is of considerable interest. No explicit
reference was made in its derivation to the dimension of the

subspace which is deformed, nor of the Space in which it is

imbedded. For the 3+1 decomposition, the dimension of the

Space which carries the 9ap 1s three and the dimension of the
rigging space is one, so R,ag* has only one rigging
component, ROABO. But the field €quations allow us to replace

this term by RCABC which, by Gauss's equation, can be written

entirely in terms of the three-metric and the extrinsic

curvature. This enables us to solve for Lie derivatives of

9ag ©f second and al} higher orders, and forms the basis for

an iterative solution of the field eéquations. In the 242
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case, this procedure is not possible.

Equations governing the evolution of Y can be derived by

taking the trace of 3.3-15 with respect to gpg and bringing

gag into the Lie derivative

Ly (HyU®) = UXVEH, HRC, - U™H,D.VE + UVE"H ¥ *H A
- xyz* Ay _ rxyz* A*

D, (U*v¥"H, B) - UXVE'HY Hyva

- yXyz*y yA* ABpyXyZ x

USVETH YA Ho on + 9PPUTVAR,pp, + VED (B, UT)

[3.3-16]

Next use the field equation 3.2-91 to solve for UszchngCD

X1;Z CD _ 1XyZa—2 ru . wWv.,  _ x ; A~CD
UtV RzCng = U7V IxvTzut € Trw 1/20 VxRI\.CD g

[3.3-17]"

-and insert the contracted Gauss's equation into this equation

to obtain

- ~CD _ -2 ru_wv
UszRzCng - vazp IxvIzu€ € Trw

- 1/2 UV, ['R + Hp ZHAC, - HZH_] [3.3-18]

Finally, putting equation 3.3-18 into the right-hand side of

equation 3.3-16 gives the desired result
x — zZrx* Ay _ wvzpx* A*
£y (UFHy) = -D (VFUX'H, ») - VEUR'HY Hyyn
& x . x z X7Z AC
+ v,DC(U Hy) H,U*D_V* + U*VZH,. HAC,
_ x AC _ pyzy 1
1/2 URV 'R + HpoPHAC, - H7H,]

tURIp g g, ETUE"T [3.3-19]
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Up to now, V and U have been generic commuting deformation
vector fields, which may or may not be the same. When the two
deformation vectors are the Same one can insert 3.3-7 into

the left-hand side of 3.3-19 giving

“1/283 (Y 22977) = - £4(D,VR) - D, (v=vZ*H__3)
- .VzV"*HzxA*waA + VCD_ (HTV,)

: X17Z AC _ z X
+ V&V HACzH x HxV DzV

I

x AC z
1/2VxV ['R + HACZH z - H Hz]

+

-2 .
L - o o © [3.3-20]

which is an equation for the propagation of ¥y along the

integral curves of V.

Equations similar to 3.3-19 and 3.3-20 exist for
£y (V¥H,) = -D, (UZvE*H__2) - Usz*Hz.’x'A*Hx?A
+ UD (V®H,) - H,vED_UZ + VXUZH, ., HAC_

= 1/2 UV 'R + Hp ?HAC, - meg )
tvEuEpTig g, ET e T | (3.3-21]
~1/2£U§y‘2£uur2) - £y (DaU%) - D, (UXUZ*H,__3)
= UTUMTHERH, L, + UCD (m%u)

Xr1Z AC _ z x
+ U*U HACzH x HxU DzU

1/20.U%['R + H, ZHAC, - HZy )

+

UXUEp g, g, T T, [3.3-22)

The quantity Vsz*Hsz, which appears on the left-hand

side of 3.3-19, can be written in the form
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VEVETR, L = -1/2_VszDBQ;x = -1/2D_ (v=vig_,)

vXvz can be interpreted as the lapse function of the

Jzx

family of two-surfaces along the deformation vector field V.

Likewise UXU%g can be interpreted as the lapse function of
zX

the family of two-surfaces along the deformation vector field
U. The lapse function gives the distance between surfaces of

a foliation in a direction orthdgonal to the surface. The

interpretation of VXyZ is not obvious. The quantities U2

Jzx

and V2 are the shift vectors, defining motions within the

two-surfaces.

Equations 3.3-7 (plus a corresponding one for £U72),

3.3-19, 3.3-20, 3.3-71 and 3.3-2% constitute a coupled system

of equations for determining 72, U*H_ and V*H, along the
integral curves of either of the deformation . vector fields V
or U which intersect N. If we consider these, for the moment,
as Jjust differential equations for 72, U*H, and VXH_ (i.e. if

we assume that all other quantities which appear in the
equation are known at all points along the integral curves of

U and V), then the initial data for this set of equations is

just 72, UxHx and VxHx on N. It is easy to show formally that

72 and UxHx can be propagated along V by taking iterated Lie

derivatives of both sides of equations 3.3-63 and 3.3-64 with
respect to V, and by recognizing that the right-hand side of
the resulting equations can be obtained from the previous
iteration provided the aforementioned initial data is given.
Now, at any point along the integral curve of V, one can

start going along the integral curve of the U. The initial

data for the second deformation is the set of quantities’f,

and UxHx which have already been propagated. This shows that
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72, U*H and V*H_ on N determine 72 everywhere in a

four-dimensional region. Despite the fact that, in general,
this system comprises four equations, only three independent
field equations are involved, as one can show by a somewhat
lengthy calculation.

An interesting point can be made about these equations.
The next-to-last term on the right-hand side contains the
scalar product of the rigging components of the deformation

vectors: either UXU %7 VxV or UxV . When, for example, the

hypersurface dragged out by the V deformation vector is null,
the term V‘V vanishes and the entire next-to-last term on
the right-hand side disappears. The effect of this is that

the Ricci .scalar 'R of the two-surfaces, which contains

surface-derivatives of Y, is no longer present. What was once
a partial differential equation for Yr now is reduced to an

ordinary differential equation for ¥, precisely what we

encountered in‘the'analysis of the double-null initial value

problem in Section 1.3.

For completeness we recall the dynamical equations for SED

which can be solved in a four dimensional region when
appropriate data is given on the. initial hypersurfacess. The
initial data for this equation will be discussed in Chapters
4 and 5.

~

- _ ~ _ A * _ % *
Gep = 1/27ngDnyg-CD ATCEy (D, *Hy HYZ5"H, a1l
+ yH® HCDx + YHCE HD x + 1/2YgopHpp*HAB

= T, . = | [3.3-23]

Evolution of the Rigaging Geometrv

To complete our calculation of the four-dimensional metric
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tensor, the rigging basis vectors C,¥ and the rigging metric

tensor must be determined at each space-time point.

Because the vectors {CxV,BuA} form a tetrad basis at each

space-time point, the components of the deformation vectors,

V and U, can be expanded in terms of this basis
vV _ X~ V AnV
u¥ = uxc,V + uhpY,

Vo AnV -
-V —vxcx\’ + VABY, [3.3-24)

Rewriting these as matrix equations:

A 0 1
Uk - uPBH, v’ Ut | Cot

A L 0 1
v - Rl ve v c,*

[3.3~25]

shows that knowledge of U2 and v2 determines the two-plane to
which the rigging basis vectors belong, and no more.
Knowledge of U* and V*, in addition, (assuming the matrix (U=
V*] is invertible) determines the rigging vectors completely.
The evolution of the rigging basis vectors is therefore
defined by the evolution of the eight quantities u*, v=; pi

and VA. Clearly there are far more unknowns than equations.

Besides the three components of the two-surface metric 9aps
there are the three components of the rigging metric Ixy and

the eight components of the deformation vector fields: %,
vX, U2 and V2. Four of these functions can be determined by
using the four available degrees of coordinate freedom. We

shall use this freedom to restrict some of the gquantities in

the set {gxy, VX, VA UX and UR }. 1In addition, we have the

freedom to perform a 2 X 2 non-singular linear transformation

(see equation 2.1-4) on the rigging basis vectors.

We shall show that the determination of the geometry of

the rigging plane follows from the Gax = Tpx field equations.

As before, we shall write these as deformation equations.
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They arise from contracting equation 3.2-85 with VZ and UX

- B, - gFSyyp * A
£y8, = VDQ, + QD,VC + VYQ H®,, - €75V¥D_ H (sy)

+ p2v¥e wy (DcHA®Y = DpHY) + pZEWTA"VY [3.3-26]

C : C - B _ pIrs * A
£5Q UDQ, + Q.D,UC + UYQ %,y - €™®u¥D_ H(sy)

A

+ pPU¥e,  (DGH,CY - D.EY) + P, TAY  [3.3-27)

When one of the equivalent expressions for §f3(2.1—74 through
2.1-77) 1is inserted into equations 3.3-26 and 3.3-27, one
finds that the left-hand side contains the highest-order
(second-order) derivatives of UR or vA off the surface while
the right- hand side contains at most first- —order derivatives
off the surface. Equations 3.3-26 and 3.3-27 are not
sufficient for solving for both UR or vA everywhere; two
coordinate conditionsneed. to be imposed as we shall see 1in

the examples in the next section.
The last equation we consider is Gagd® = T

"

=R+ "HMH, + 4p720Rq

+ VgD, D Y ~1/272GVD 4Dy + ¥V, HAB_

- g**D, (pT'D_p) = T, g"B [3.3-28]
The Ricci scalar contains second derivatives off the surface
of both Ixy and U, and Vg- This equation‘cannot be written in
Cauchy-Kovalevsky form for all these quantities since it is
one equation for seven unknowns. Both the four degrees of
rotation freedom and two degrees of gauge freedom must be
used to reduce the number of unknowns to one.

Although other choices are possible, we shall discuss two

important ways to use the linear transformation freedom to

reduce the number of unknowns.
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Case 1

The linear 2 X 2 transformation may used to simplify the

relationship between the deformation vectors and the rigging
vectors. For example, we could take

Ut = cok + UBB,H | [3.3-29]

vH

C;H + VA, M [3.3-30]

U* and V* are then constants, and therefore some of the

objects of anholom1c1ty vanish, namely Q% = 0 and Qz 0.
The gxy S are variables and need to be determined, in part by
the field equations or coordinate conditions. The rigging
extrinsic curvature now takes the simple form *nyA =
—1/2gxy,A. The Ricci scalar of the rigging space involves

only second-derivatives of the three components of the

rigging metric. Two coordinate conditions must then be

imposed on the Ixyr SO that equation 3.3-28 can be solved fox

the remaining component.

Case 2
By applying the 1linear transformation 2.1-4, the

components of gxy are made to take some standard form, such

as
-1 0 |
(B) gy, = [ 0 1 ] [3.3-31)
or - |
A 0 -1
(B) g, = .[—1 5 ] [3.3-32]

Then Ixyrz = Ixyra = 0. This amounts to choosing the rigging

basis vectors to be an orthonormal dyad (in case (A)) or a

null dyad (case (B)). There is still the freedom of
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performing a Aone—parameter two-dimensional "Lorentz"
transformation on the basis vectors which preserves the form
bf 3.3-31 and 3.3-32. We shall use this freedom to
arbitrarily specify one of the four U*'s or VWW's. Two more
coordinate conditions may then be imposed on the three
remaining UX and V=,

N _
For the H(xy)A, we have

* y z z
Hiyppa = —ZL/ZDAg,:y = -1/2{-2Q x295y —2Q% g, )
= QL Q- 20, [3.3-33)
where we define QxAy = Qzﬂgzy.

In Case 2, the rigging connection takes the form (from

equation 2.2-46)

"TX,, = Q. - szy Q. [3.3-34]
It follows that ‘

n[X . = -20%,, : [3.3-35]

"TX,. =0 [3:3=36]

gyz"erz - 2gszY&z [3.3-37]

Thus, the Ricci tensor of the rigging space is
..R=4gxwaxsz' + 4gwaynyst - gy"rxsyrsxw

+ 4gYQA, 0%, [3.3-38]

which contains second derivatives off the surface of UX and
vx (using 2.1-81 for Qx&y) but obviously no derivatives of
Ixy - When the appropriate gauge conditions are applied, the

Ricci scalar is a second-order differential operator acting
on the one remaining dynamical UX or A%

In the next section, we shall develop examples using the
linearized version of the field equations presented in this

section.
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CHAPTER IV
LINEARIZED GRAVITY IN THE TWO+TWO FORMALISM

4.1 The Linearized Field Equations

A simple way of understanding the geometrical content of
the field equations developed in the preceding section is to
study their linearized versions. This will help us see more
clearly which geometrical-quantities are determined by each
equatioﬁ and what initial data must be specified for their
solution. The linearized theory is constructed by perturbing
each of the metric coefficients by an infinitesimal amount
from a known exact solution; in our case, the exact solution
is Minkowski space. We pick a background foliation and
fibration of Minkowksi space to which to refer the
perturbations. All the geometric quantities which we have
defined: two-metric, rigging metric, extrinsic curvature
tensors, rigging vectors, anholonomic objects and components
of the deformation vectors, need to be evaluated in the
background. The field equations will govern the perturbations
of these quantities, which are considered as fields on the
background space-time.

Our first task is to pick an appropriate foliation for
Minkowski space-time and a pair of deformation vectors. There
are many ways to foliate flat Minkowski space-time into a
two-parameter faﬁily of two-surfaces, for example, a family
of flat two-surfaces, or of two-spheres; still another way is
to use a'family of two-surfaces with no special metrical
properties at all. Our choice will be based solely upon the
simplicity of the resulting field equations. We then analyze
the perturbation of the rigging vectors, connecting
quantities and anholonomic objects. Next, perturbations for
the metric tensor projections, extrinsic curvature tensors

and curvature scalars will be developed. This will actually
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be done for a general background space. Then, the linearized
field equations are obtained by omitting those terms in the
exact equations which are quadratic or higher in the
perturbation terms. At this point we shali introduce the
simplifying asshmption of a flat foliation: all zeroth-order
terms vanish in the field equations.

Three examples will be considered in the following
sections: the .double-null initial value problem worked out in
two different gauges, and the Cauchy problem. The first
double-null problem we investigate is the linearized version
.0f Sachs' problem discussed in Section 1.3 with the
linearized version of his coordinate conditions. This
formulation leads to simple equations for the conformal scale
factor and rigging anholonomic object but the dynamical
eduations are coupled to the other parts of the field. In the
second version of the double-null problem, the gauge
conditions chosen decouple the dynamical equations from the
rest of the field equations, but the remaining equations
become somewhat more cdmplicated. The third example considers
the Cauchy problem using gauge conditions similar to those of
the first example.

The simplest foliations to use in Minkowski space have
high symmetry. We shall consider a two-parameter family of
two-surfaces which are surfaces of transitivity of a pair of
Killing vectors X and Y. Examples of foliations obeying this
condition are families of flat two-planes, two-spheres and
two-cylinders. The projections of the Killing equationsfor

the two vector fields are

DxxB = nyB = 0 [4.1-2)
A* _ VA* _
X 'H(gyya = Y Higpya = O [4.1-3]
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Equation 4.1-1 shows that Xp and Yy are Killing vectors

with respect to the two-geometry of the imbedded
two-surfaces. Equation 4.1-3 implies that “

“Hizy)a = O [4.1-4)

This means that the rigging spaces are totally geodesic.

In Minkowski space, it is possible to pick the deformation
vector fields, U and V, to be a pair of commuting Killing
vector fields orthogonal to the members of the background

foliation
= 1B = = vB _ -
Ug = U° =vy =VB =0 [4.1-5]
We need only pick them orthogonal to a single member of the
family of two-surfaces; commutativity and Killing vector

conditions insure that they remain orthogonal. Then the

rigging planes are holonomic surfaces and we have

*
Hixyia =

0 [4.1-6]

Of the possible families of two-surfaces to use, we pick
flat two-planes, since the extrinsic curvature of each
two-plane vanishes which considerably simplifies the

linearized field equations to be developed
Hppy = 0 _ [4.1-7]

We take equations 4.1-4,4.1-5 and 4.1-6" as the basic
conditions on the unperturbed foliation.

For families of flat two-surfaces, we can further require
that the pair of deformation vector fields be translations
with respect to the flat space-time. A translation U

satisfies

Vu =0 - [4.1-8)



and is automatically a Killing vector. Two translations U and

V necessarily commute since

vtV vy, - ViV U, = 0 [4.1-9]

[N.B.: A carat (*) above a quantity will denote a quantity
belonging to the perturbed space-time while a quantity
without a carat will refer to the background Minkowski
space-time]. '

In terms of the 2+2 breakup, the translation property

becomes

DU, = 0 [4.1-10]
= 0, [4.1-11]
Qith a similar set of equations holding for V. Due to the
high degree of symmetry we have imposed, the rigging

components of the deformation vectors are constants.

We assume the usual form of the Minkowski metric

n diagonal (-1,1,1,1) [4.1-12)

*—_
pv
Letting C_H and BpH be the connecting quantities for the

background foliation, we define the unperturbed rigging

metric

- \% -
Mey = M Coty [4.1-13)

and two-surface metric

Mag = M BaMs” [4.1-14]

The perturbations of the connecting quantities can be
considered first independently of the metric perturbation.
For any rigging perturbation which preserves the family of

two-surfaces, we have

BH, = BH, [4.1-15]
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Coft = CH - o ¥CH - pAp 0 : 4 - [4.1-16)

X
C¥y = C%, + oy %y, [4.1-17]
BA, = BA, + bA.CX, _ [4.1-18]

They have the same form as the variations in Section 3.2.
Below, we shall relate these quantities to the metric
pefturbation by the simple requirement that the perturbed
rigging vectors in the perturbed space-time be orthogonal to
each two-surface just as the>unperturbed rigging vectors were
in the unperturbed space-time.

Because the rigging vectors are changed, any quantity

which depends on them is changed. For an arbitrary

four-vector sH, we have

-~

S¥ = Cx ol = 5% 4 = sY [4.1-19]

s® = BA sH = s® + pA % [4.1-20]
For a covector, we have

Wy = Ctwy = wp - c¥u - bRow, ' [4.1-21)

wp = BpHwy = w, [4.1-22]

For the original metric tensor in the "perturbed basis, we

have
= = 5‘;;3’\,11”\' =1 + 2¢c=W | [4.1-23)
ﬁxy = Ex“yvnuv = Nyy = 2€ayj [4.1-24]
where Cxy = czynxz and c*¥ = X n¥*
fxA = gxu BANMY = pAx | [4.1-25]
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Tag

Cxu BAvnuv = ~b,, . (4

In addition,

i -

* 7~
T] =

where —nz

ﬁAqunuv= nA8 ' [4

Bafe" My = Mpp (4
n? (4

*n? - 20%, (4.

.1-26]
.1-27]

.1-28]

.1-29]

1-30])

*x_ 2 .
and - M° are the determinants of Map and Li [N

respectively. (*T]2 corresponds to p2 defined in Section 2.2)

The perturbations of the anholonomic objects follows from

the perturbations of the basis vectors. One can show, after
some calculation, that
Q% =0 [4.1-31]
Q%p =0 [4.1-32)
ﬁxyA = Q% - cF Q% + cx‘,.waA - 1/2aAcxy
= Q% - 172D, %, | [4.1-33]
QR = 02 chQABy + bAQY, + 1/29,b2, [4.1-34]
Oryy = QP - cTyQPy, - c%0R . 4 1/2D bR [4.1-35]
Q% = Q% - (0B Q%5 - DBQ% 1)
- (cySszs - cstzys) - 1/2[axczy ~ ayczx]
[4.1-36]

The changes in the D-

B_w,

= waA - chTDywA - DA(
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(w }
5 )

= Dyvy = c¥D,w, = D, (wybBy) [4.1-38]

D,s* = D,s* - cyD,s¥ + sPD_ bR,

- b, DsP - D_(bA,s%) [4.1-39]
D, s2 = D s* + D_(b,2sY) - c YD s?

+ sPDyb. A - b BD_s? [4.1-40]

The perturbation of the rigging components of the
deformation vectors follows from equations 4.1-19 and 4.1-20.
If,

UX = UX + uX o [4.1-41)

VE = vE 4 X, [4.1-42)

where u* and v* represent the first-order perturbation terms,
then '

uw¥ = X uY [4.1-43)

vY = X yY [4.1-44)

(We shall adopt the notational convention that most
quantities will be represented by uppgig@ag letters and their
perturbations by their Jlowercase equivalents. We do not apply
this rule to the metric tensor, its projections or
perturbations.)

For the surface component of the rigging vector,
UA = A 4+ A | [4.1-45]
VA = VA 4 B, [4.1-46]
where u®* and v are given by
uh = pA oY [4.1-47]
vA

bAva : [4.1-48)
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In our case, by assumption, U2 = yA = 0, then U® and V2 are

entirely first-order in the perturbation.
The perturbation of the Space-time metric has the general

form
guv = nuv + xuv [4.1-49)

v - g, . [4.1-50]

ghv
with the field xuvbeing the infinitesimal perturbation of the

Minkowski metric tensor.
We now consider what happens to various geometrical

quantities as a result of the metric perturbation.

The rigging projections of the perturbed metric in the

perturbed basis becomes
Ixy = T]xy - 2c(xy) i Xxy (4.1-51]

%xy = N*Y 4+ oc(xy) _ =Y [4.1-52]

“Requiring that the perturbed rigging vectors remain

orthogonal to the two-surfaces relates Xax to bag:

-~

Iax (T‘HV * XHV)BMA(CxV + (SCXV)

= My BH,8C.V + Xaxe = O

= M, BHa(-bBBY) + Xag = O [4.1-53)
so that
Xax = Mapb®x = b, [4.1-54]
Similarly, '
x** = pAx [4.1-55]
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These results show that the perturbed shift vectors are

related to the perturbed metric projections, so we may write

A

u XAxe

vA

]

y A o [4.1-56]
The surface projection of the perturbed metric is

-~

9aB

1

Bas' (Myy + L) = Tap + Xpp [4.1-57)

gRB = mAB _ B [4.1-58]

The perturbation of the conformal scale factor is given by

P = | gl = /26" €™ Mo+ x,0] Mgy + Xy

_ AC_.BD AC_BD AC_.BD
= /28T Ny o 1/28 ey, N + 1/2eR% Maplen

2 2.A _.BD
n

= t1/2N%ee 0y, + 1/2n%,CeBPy
=72 + 1/2nPnPBy, L 1/2n°n Py,
- n2(1 + o) [4.1-59]
where 3 = NPy
Y2 =121 -y - [4.1-60]

We also have for the determinant of the perturbed rigging
metric

- 2c%, + *y . [4.1-61]
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The perturbation of the conformal two-metric is

-~

s = ML - 1/20) My + x, ) = N7 Myg + 2oy = 17271,

[4.1-62)

(For typographic reasons, we omit the carat over the

perturbed conformal two-metric)

If we define the traceless two-tensor density

EAB = Tl'l(xAB - 1/2xM,5) [4.1-63]
satisfying gABiAB = 0, then the perturbation of the

conformal two-metric can be written

~

Ia5 = M Mg + Zpg ' [4.1-64]

The perturbed Christoffel symbols of the two-surfaces are
given by '

D _ SDE,_~ o g
[ = 1/29 {=9pcrE + gggic + Ice B!

= g + LR O Xgp:c * Xcg:g! (4.1-65]

where TDBC denotes the affine connection of the background

two-metric and the colon (":") denotes covariant derivative

with respect to the background metric.

The perturbed Ricci scalar of the two-surface takes the
form

'R = (1-x) 'R - T Eary ¥ T eam [4.1-66]
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In terms of the conformal perturbation, the perturbed Ricci

scalar is

-~

'Ro= (1) R -1y o+ 3RS [4.1-67)

The determination of the perturbed affine connection and
Ricci scalar of the rigging space is far more complicated
since the perturbation changes the orientation of the rigging
spéce as well as its intrinsic metric. The details have been
worked out by Smallwood [1980] in the context of a

variational principle. We use his results

Py = T v, -
'+ (wa - C"Y)x:z _+ (xzu - Czw);y} : (4.1-68]
"Ro= (1-"0 R - ¥y 4y
1xy . T ixy

+ 20P (DX'H, - DX'uE,)

+ 2(D* (DA, H, - bA *HZ,) _ [4.1-69]

The perturbed extrinsic curvature is obtained by applying the

perturbed D-derivative to gdpg- We have thus

D, gu = Dyn,, + Dy, - cx'DNyp = 2D by, [(4.1-70]

which, when the definition of the extrinsic curvature is

used, becomes

Hapx = Hppy - 172Dy, + 1/2c,¥D M,y + D abg)x

Hppe = H [4.1-71]

ABx * h(AE)::’
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where

Diapyx = - 1/2D_x, + 1/2chDynAB + D ,bgy. [4.1-72)

The perturbed mean extrinsic curvature is defined by

He = 9 Hpp, = M*® - ¢ ) (Hapy + hppy)
= PHp. - xPPE, + n*%h, . [4.1-73)
= = F Hy, + 0, [4.1-74)

Inserting hppy from equation 4.1-72, we obtain

o AB AB
Hy = Hy = X Hpp + 7 (172D x5 + 1/2¢ YD N,y + D xbg)x)

Hy -= 1/2D_x + 1/2c,¥B, + D bA_
[4.1-75]

where

g
]

A
- 1/2D_x + 1/2¢c,¥H, + D, bR, [4.1-76)

From the definition of the conformal extrinsic curvature,

~

LHAB)X, from Section 2.3, we have its linearized form as

-1-
hppe = 1/27 XnpHy

~

Hapx = M1I1 - 1/2y] Hppy + M1

-1/4n7tn, xH_, [4.1-77]

where the bar over a quantity denotes removal of its trace

with respect to the background metric. wWe then have

l
l
l

T
I
oot
4
=g

ABx

where

l

= 5
n

=1 -1 o =y =1
aBx = M “"hapy - M 172y Hape — 1/27 XapHx — 1747 Ny ety
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[4.1-78]
The traceless quantity r”AB)x is given by

= _ Co . Cpo Co
Diapyx = = 1/2A%3PgD _x . + 1/2c YA™y BDynCD + Ay BD(CbD)x

- _ c _ — Cp -
- 1/2A ADBDxxCD' nyHABy + A A BD (CbD)x

- : c - €D
172D % + 1/2XpD A"nPg Cx¥Hppy + A"APED  bp)
= ' cD
== 1/2D_X,5 + 1/2xHpp, - s T O W (R
=) €
~ Cx¥Hppy + ATPED by [4.1-79]

Inserting this into 4.1-78, gives, after some calculation,

-~

3 L aieml= =5 -1
hppx = -1/2D_y,. - 1/27 XepH " xNpap = 174N "XHM, o

Tr =1,C
= cx¥Hupy + MNTIASDED by [4.1-80]

For the rigging space, the perturbed extrinsic curvature

tensor is
*H = -1/2D, 9. = *m - 1/2D
(xy)a = 712D, 90 = Higyyp - 1/ akxy

* *
T 1/2c,* H(zy)A - l/2cyz H(xz)A

= "H(gpa * Hypar [4.1-81]
. _ * *
where “h,, = - 1/2D Xy 1/20,7 Hizgya = 1/2¢,%7H 1,1
[4.1-82]
and
% > _ » ) D *
Hy = "Hp - 1/2 s
- *HA + *hA, [4.1-83]
* - _ *
where "h, = 1/2D, %y

For the antisymmetric part of " H we have, from equation

xyA’
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4.1“35,

= -0 - _ A
H[xY]A = QxyA (QxYA 0 gy)
where'
A = A A
Oy = = cFQ%, - c%.Q zy * 1/2D[bey] [4.1-84)

We introduce the vector density o? by

A _ A A _ XV A
xy Exym where " = 1/2e xy

[Note we violate our notation convention and represent the

w [4.1-85]

symmetric part of the perturbation of the rigging extrinsic

curvatures by *h using w&yA for the antisymmetric part].

xyA’

In order to obtain the linearized field equations, we just
omit those terms in the exact field equations in Section 3.3
which are quadratic or higher in the perturbation. The
resulting equatlons are particularly simple if all the zero
order extrinsic curvature terms vanish, which is true 1f the

foliation consists of flat two-surfaces. In that case we have

Hapx = Dapy = ~1/2D %, + D by, [4.1-86]
He= hy = - 172D _x + D, b2, [4.1-87]
Hape = hpp. = ;1/2DfoB + 7ACDD b [4.1-88]
"Hipa = "heon = 172D, [4.1-89]
“Hy, = *h, = -1/2D, %y [4.1-90]
G2y = 0Py = 1/2D bR, [4.1-91]
'R = —1/2n™By o+ xR g [4.1-92]
"R = MV Yyt XYy [4.1-93]

When these exXpressions are inserted into the linearized

field equations, we arrive at (using the Stress-energy tensor
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'I'“V defined with respect to the background metric and assumed

to be of first order in the perturbation.).

The rigging-projected field equations:

1) £y (Ueh®) = =D, (U0 h,®) ~ 1/20%0, (-1/20®By_,_ + 7*2,,m)
Xr1Z ITu . wv _'
+ UTUEn, N, ETUENT [4.1-94)
- * AB ~AB
II)  £4(Veh™) = -D, (VXvZ'h, _2) - 1/72VEV (-1/2n™Px o+ x™E.ap)
Xt7Z Iru.wv _
+ vEE oM, ETVEVT (4.1 95.1
. — . .
ITII) £y (Ugh®) = -D, (U*vZ7h, 2 + Ui, 2)
- '1/2U=‘vx(—1/211ABX:M3 + P8 p) + vEusn, n_ e eTT
[4.1-96]
with the auxilliary equations
£yX = 2(DyvP - vEn,) ' [4.1-97]
£y = 2(Dyu® - U%h [4.1-98]
The surface-rigging projected field equations ‘are
_ rs *
V) fy®, = -€7°0¥D "hg . + U¥e, ., (Dch® - DyhY)
+ ", T 0¥ [4.1-99]
- s * :
V) Ey0, = —€7°V¥D "hgpn + V¥e, (Dch® — DyhY)
* 2
+ N a*yTA'VY [(4.1-100]
together with the auxilliary equations
x B _ yx B _ x B
U*D_v vVED_u 2U%VY0
Zu=y Ey® = 28w [4.1-101]
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where & = UxVﬁ%w

which is obtained by contracting 4.1-91 with U* and V¥ and
using equations 4.1-47 and 4.1-48.
Equation 4.1-101 may also be written

£qvB - £,uB =  2E@EB [4.1-102)
U v

The trace of the surface-projected field equations is
_ xy — mBBny *p _ .2 - 2B _
VI) 1/4m Dnyx n DA by R = Tppg [4.1-103)

The traceless surface-projection of the field equations

VII) —1/2n"YDny§CD + 1/2n™¥D_AR B.D (aPe)y = A%CELD, *hy

= T, - [4.1-104]
With our choice of foliation, Dx and DA commute (see Schouten
[1954])) and since DxAﬁbBD = 0, we can write this equation as

- A % .
—1/2anDnyxCD * 1/2A%CPD (D by X - A cBpD,"hy = 0
(4.1-105]

[N.B. When we propose integration .schemes for the field

equations, we shall refer to them by Roman numerals. ]

The gaugeAgroup of the linearized field equations is the

set of linear coordinate transformations

xuv —a#xw = xuv + ZK(M:V), [(4.1-106]

where Kﬁ is an arbitrary infinitesimal vector field.

Next we consider various possible integration schemes. The

quantities for which the field €quations are to be solved are

Xapr X1 Cxyr Xgyr and bh_.
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4.2 The Linearized Sachs' Double-Null Initial Value Problem

We consider first the linearized version of the wvacuum
double-null initial value problem. In this example, the two
deformation vectors U and V are chosen to be null vectors

with respect to the Minkowski metric and are.brthogonal to an

initial space-like two-surface N, which is flat. The initial

Figure 4-1 Linearized Double-Null
Initial Value Problem

null hypersurfaces on which data is to be set are created by
dragging N, along U and vV, respectively. The two
hypersurfaces thus formed are labelled %% and ‘UO,

respectively (see Figure 4-1). If we parametrize the vector

fields U and Vv by v and v, respectively, then the

hypersurface given by u=0 corresponds to ‘UO and the
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hypersurface given by v=0 to %%. Zﬂl and ‘VV represent

surfaces of constant u and vV, respectively. The null

deformation vectors satisfy (recalling that U2 = VA = 0)

vtlu, = UXy_ = ¢ [4.2-1]
vy = vEy_ = [4.2-2]

and without loss of generality, we can set

vhv, = UTv, = -1 [4.2-3)

We choose the rigging basis Cxu so that nxy is a constant

matrix of the form given by equation 3.3-32.

Sihce, as we saw in Section 3.3, we are free to pe:form
any non-singular linear transformation on the rigging
vecto?s, we shall perturb the rigging vectors in such a way
as to preserve their metrical properties. i.e, the perturbed
rigging metric shall alsq be of the form 3.3-32. Then, from
equation 4.1-51, we have the following relation between the

perturbed metric tensor and the Y

Cxy * Cyx = 2c(xy) = xxy [4.2-4)]
and for the trace of the rigging perturbation

*A = 2%, [4.2-5]
Condition 4.2-4 fixes three of the four components of Cxy- It

represents no restriction on the Space-time metric but only
on the choice of basis vectors spanning the rigging space.
We still have the freedom to perform a one-dimensional

"Lorentz" transformation, i.e., a transformation which

preserves the form of 1 Letting ny be such an

xy"
infinitesimal Lorentz transformation

_ X
ny =6 s F exy [4.2-6]
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where exy is an arbitrary infinitesimal quantity which

satisfies

exy + Cyx = 0 [4.2-7]

There 1is only one free-parameter in Cxy- Under such a

transformation, cxy transforms as

cxy - X, + X [4.2-8)

e_xY can be chosen to arbitrarily fix the fourth cxy.

Y Y

At this point, we need to establish several identities
which are easily proved and are useful in subsequent
calculations. They rely on the fact that VX and UX span the

rigging space. They are

Y — oy (xyy) (4,55

U"sxy = —in _ A [4.2-10]

Ve = &V | | [4.2-11]

U = Enfuy , [4.2-12]

VY = —Endvy | [4.2-13]
and

Xay = XuwUxly * 2V (xVy) + XygVaVy (4.2-14)
where V V

Xgy = XgyU0¥

Ty = Xy VY

Xoy = xny‘vY

We shall use the gauge freedom to impose the conditions:
that the surfaces to which U and V are tangent remain null

surfaces with respect to the perturbed metric. This can be
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expressed in terms of the perturbed metric components by

Xgu = 0 and Xyv = O:
0X0Yq | = = (UX zZ.Xx Yy VoY ) - ==
Uru¥g,. 0 (UT + U=cX,) (UY + Uc ,)(nxy Cxy Cyx * xxy)
= (UXUY + UYUZCX, + UvacY')(nxy - ny T Cyx t Xxy)
= (UFUY + uYyuZcx, + UxU"cY.,)T]xy
X - -
+ UXUY ( Cxy Cyx ¥ xxy)
= x y — = 4 . .
U*u xxy Xou 07 [4.2-15]
Similarly,
V"vl\’gxy = vxvaxy = Yoy = 0 [4.2-16]

To show that condition may 4.2-15 may be imposed, project
the gauge transformation equations 4.1-106 into the rigging

direction and contract with U*uY. we seek a transformation

such that UxUY#Xxy vanishes
Xy uxpy# - - yXyy + UXgyY .2-17
vroYy,, — UTuvty 0 = U0V, + UTOYD [4.2-17)
Since D,UY = 0, equation 4.2-122 takes the form

Xp_(U¥K ) = -UuXg¥y = _
U*D, (0¥ ) UTOYY, pan

or
fy(K,) = . ' [4.2-18]
where Ky = UYKy. A solution to 4.2-18 is given by
Ky = -wadu t Fo(v,x%), ' [4.2-19]
where Fo(v,xA) is an arbitrary function of the parameter v

and the two-surface coordinates. With KU of the form 4.2-19,
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the gauge condition 4.2-15 holds.

Similarly, if we choose
Ky = U, = =[x ,dv + Fp(u,xB) [4.2-20)

where is an arbitrary function of three-parameters, then the
gauge condition 4.2-16 holds.
Equations 4.2-15 and 4.2-16 also imply that

USUY h, o, = =1/2D, (UTu¥y_) = 0 [4.2-21)

xyy* E = XY - -
UL - W 1/2D, (v*v ey 0 [4.2-22]
The two arbitrary functions of three-variables Fy and Fy

can be picked to set

Xyy = vayxxy = 0 on ‘UO and ’VO, [4.2-23]
which also implies that
USV¥*h, A = 0 on ¥ and ¥ - [4.2-24)
The remaining two- four-dimensional coordinate conditions
can be used to require that one of the deformation vectors,
say U, remain orthogonal to the members of the family of
two-surfaces, i.e. that the perturbation u® vanish. Hence

~

Up = UMBRYgy, = 0 = ukB,v My + X)) = Xpy = Vb, [4.2-25]

where XAQ = Uy
It is not hard to show that egquation 4.2-25, together with
the other gauge conditions on UX and VX, implies that b, has
the form
by = Tng = =pli [4.2-26]
This equation relates the shift vectors to the metric

perturbation.

The coordinate condition 4.2-25 can be imposed by using

the remaining gauge transformation freedom in choosing Ky
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Hy UY = o - Y -
xAyUY—> xAyU 0 xAyU + 2UYD(AKy) [4.2-27]

which can be expressed as

Y = - Y - Y
u¥D K, XayU¥ - Dy (K, UY)

or, since the =zeroth-order extrinsic curvature tensors

vanish, as a Lie derivative

fuka = Xay - Dal(Ky) . : [4.2-28]
Equation 4.2-28 has the solution
Ky = - f[XAU - DA(KU)]du + FA(v,xB) [4.2-29]

where F, are an arbitrary pair of functions of three

parameters, which can be chosen so that

v

Summarizing the gauge conditions, they are

Xyy = O

Xvy
Up = Xpy = O

Xgy = 0 on U, and Vor

Va = Xay = 0 on U,

These gauge conditions are equivalent to the coordinate
conditions imposed by Sachs in his formulation of the
double-null initial value problem discussed in Section 1.3.

We can now compute the linearized Ricci scalar of the
rigging space. Imposing the gauge conditions on equation

4.2-14, gives
Xey = 2XgvU (xVy) [4.2-31]

*

1 = —ZXUV [4.2-32]
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and if this is used in equation 4.1-93, we obtain

nA — xY (x )
R 2n xUV:xy + 2U0VY xUV:xy

= 4UTDL (VD) = 4Lyiydy [4.2-33]

After incorporating the coordinate conditions, the

rigging-projections of the field equations become

I)  £y(Uh%) = §%n Ty, where Ty, = T, UX0¥ [4.2-34)
with
£yxX = -2U%h_ - [4.2-35]

which implies

£25x = -2 i, [4.2-36)
II) 2y (Vgh®) = §°n 1,y where Ty, = Ty VEVY [4.2-37]
£yX = 2(DpvA - v ) [4.2-38]

which implies

20X = 2£4(DpvP) = -282n 4t [4.2-39)

and

III)  £y(Ugh®™) = -D, (V¥U="n 2 + v=uZe_2)
- 1/2Vxe(-1/21"|ABX:AB + iAB;AB) == §2T1 4TVUI

where Tyy = TxyvaY; [4.2-40]

which takes the form

£y (Ueh®™) = -1/2D,D% =+ D, o?

AB ~AB 4
TH/2VEUL (1™ o+ xR e - £ty [4.2-41]
or equivalently
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~AB

VI (-1 B L) + 282 e [4.2-42]

The su;faggizigging projections are:

V) (28) g (eyvP) = ~€"0¥D_*h, A + U¥e, . (DchC¥ — pApw)
+ &nr,, ' [4.2-43]
with T,,; = T, U
V) (28) Tty (£yvP) = —e”vYDr*h;yA * Ve, (DchAY - pApw)
- En’ry, | [4.2-44]

- x
where TAv = TAxV

where we have used the gaudge conditions to put equation
4.1-101 in the form

o = (28) "1 (gyv), [4.2-45]
and substituted thie into 4.1-99 and 4.1-100. ‘

Using the identities 4.1-10 through 4.2-13 and 4.2-31, the
right-hand sides of equations 4.2-43 and 4.2-44 can be

Simplified. For example, because DrUy = 0 and DAUy = 0, in

€quation 4.2-43 we can bring UY¥ into the covariant

derivatives to get
=1 = rs,y* AC - nA
(28) ey (£gvh) = -p_(eTSyy h P+ D¢ (U¥e, ™) - p (U¥e, h")

[4.2-46)

After some further manipulations, we obtain

IV)  (28) lg2yvA = UTD DAy .+ D (U™a2C,) - D2 (U%h,)

+ Enr,, [4.2-47]

and

V) (28) e = ~VD DAy~ D (VWhAC,) | DA (V¥h )
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- €077y [4.2-48)

The trace of the surface-projection of the field equations

becomes

VI)  -1/2£hEqg) - nABDADBxUV + AEgEyX s = TupgtB [4.2-49]

The traceless surface-projection or dynamical field equations

becomes
~ ” A
| [4.2-50]

We can now outline an integration scheme for this system

of equations with the following initial data:
* Three guantities on an initial two-surface No: Xrhy
* A two-vector on Nj: o® = fyvh
* A one-parameter family of symmetric traceless
two—tensofsi%B on ﬂo.which is the linear form of

the conformal to structure on 1%.

¢ A one-parameter family of symmetric traceless
two-tensors Xag ©n Y, which is the linear form of

the conformal two-structure on V-

* The three- and four-dimensional gauge conditions
which we discussed above.

The integration scheme proceeds as follows:

1) Integrate equation (II) for X on U, in terms of [x]o

and [V*h_], = -1/2d,X on N,. This has the general

solution
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2)

3)

6)

X = [vxhx]ovA+ [x]0 [4.2-51)

Integrate equation (V) on Uy for o® = 1/2£UvA in terms

of X on Uy, (which is known from the previous step) and

EAB on U,, which represents specifiable initial data,
and the initial wvalue [mA]O on N,. Note that ) -

vanishes on Uy. The solution has the general form

gyvP = f&[DC(£v§AC> - DR (eyx) Jav + [BeuvPl,  (4.2-52)

Integrate (III) on Uy for U*h, ==1/2%yX interms of

~AC

£UVA, p 4 and ¥ on U, (which are known from Steps 1

and 2) and [(U*h,], on Ny (Xyy vanishes on U,). The
solution has the form
BE= = f[&DA(mA) + 1/4n%By, a5 ~1/2x*® \5ldv + [Ugh%],
[4.2-53]
Integrate (1I) along the trajectories of U for X
everywhere in terms of X and U_h* on U, (which are
known from steps 1 and 3).
X = [U"h,lou + (%], [4.2-54]
Integrate (VI) for Xyyr Since X is now known every-
where. The initial data for this null wave equation is

Xyy on U, and Yy which is zero by virtue of the gauge

freedom.

Integrate (IV) and (VII) together since they are

coupled. This can be done iteratively, using (VII) to

- 168 -



calculate £vigc‘on the next infinitesimally close null

hypersurface ; assuming £gv® is known on U,, which is

true from step 2. With £V§AC now knoﬁn on U, EAC is
determined on U, from its values on $6 which are part
of the specifiable data. Equation (IV) then gives £ﬁvA
on U, and the first iteration is complete. These steps
may be repeated.as many times as necessary to propagate

igc and £UVA (and hence v®).
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4.3 The TLinearized Double-Null 7Ipitial Value Problem

in the Decoupling Gauge

The gauge conditions used in the previous example were the
linearized counterpart of those used by Sachs in the exact
double-null initial value problem (Section 1.3). In this
section, we show that gauge conditions may be chosen SO as to
decouple the dynamics of the linearized conformal two-metric
from the remaining components of the metric field. This
enables one to solve the dynamical equations.

The gauge conditions we shall adopt are

*,x — anxxy = 0 [43—1]
Xgy = UF0¥x,, = 0 [4.3-2]
D _xA, = o [4.3-3]

We shall show how they are implemented below. Condition 4.3-2

has the same interpretation it did in the previous example:

the hypersurfaces {1@} tangent to the vector field U are null
surfaces. This is no longer true of the hypersurfaces iU}

tangent to Vv except for U,. This example deserves to be

called "double-null" by virtue of the null character of both
initial-hypersurfaces, this condition is not maintained for

the {U,}-family.

Since the null rigging metric still has the form 4.2-9,

the gauge condition 4.3-1 can be re-written
— X —
Xgv = 20 VYxxy =0 [4.3-4]
Instead of the form given by equation 4,2-31, xxy now takes
the form

u*uy - [4.3~-5]



The four quantities c,, are fixed the same way they were in

‘the prévious example.
Also using the form 4.2-9 of the rigging metric tensor,

the gauge condition 4.3-3 can be rewritten as
£gvP + £4ud = 0 - [4.3-6]

We now proceed to show how these coordinate conditions can

be implemented. Since coordinate condition 4.3-2 is the same
as one adopted in the previous example, we pick a function Ky
such that

K, = K&Ux = —jiUUdu + Fo(v,xA) [4.3-7)

with Fo(v,xA) an arbitrary function of three parameters.

The condition 4.3-4 is imposed by solving
Xy = fuk, + EyKy + gy = O , [4.3-8]
which has the general solution
K, = =fx,du - I[£vfxwdu]du' + [egFy (v, xB) du + Fy(v,x2),
[4.3-9]
with Fl(v,xA) another arbitrary function of three parameters.

Under these gauge transformations induced by K.r the value of
Xyyr the remaining projection of xxy, changes by 2£VKV. We
can use the arbitrariness of Fy and F, to set

Xov = £uXyy = O on 7, [4.3-10]

The last of the gauge conditions (4.3-3) can be imposed by
projecting 4.1-106 into both the rigging and surface, '‘giving

ax = Xax * Dyx_ + DyK, = 0 [4:3=11]
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Taking the divergence this equation and re- arranglng terms,

we get

M*¥D,D.X, = - DX, X - D ADxK

and using the form of the metric tensor in terms of U* and v=x

2EpiyK, = - D, (D) - D x,x [4.3-12]

which is the two-dimensional inhomogeneous wave equation for

K, and can hence be solved uniquely up to an arbitrary

solution of the homogeneous equation. wWe can use this

remaining freedom to set v® = 0 on U, and u = 0 on %6.

With these gauge conditions, the perturbed Riemann tensor

of the rigging space takes the form

"R = £2gy o [4.3-13]

The rigging-projections of the' vacuum fleld equations in

this gauge become

I) £5(Uh%) = 0 [4.3-14]
with
£9X = 2(DauP - UZh,) [4.3~15)
I £4(Veh®) = 1/2D,D [4.3-16]
with
£yX = 2(Dpv® - vZn_) _ , [4.3-17]
III) £y(Uh®) = 1/2D,0> + 1/2(-1/2n%8 o+ ¥ BB )
| [4.3-18]

For mB, we have
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£gvB - £4uB = 2E®; [4.3-19]
but the gauge condition
EgvB + fguB = 0 [4.3-20)
lets us solve for P as
B

@® = EleyvB = E7leuB [4.3-178]

The auxfagg;zigging projected field equations become

V) £°gv, = 2D, (h,Cxy ) - 2D, (hXU_) [4.3-20]

V) Evigva = ~VID Dy = 2D (hpCxv.) - 2D, (h*v,)

[4.3-21]

The trace of the surface-projection equations becomes

VI)  2£%gx . - fyfyX = O | [4.3-22]

The dynamical equation or fraceless-surface-proiection

equations is simply

VII) fyfyX,; = O [4.3-23]

We now consider an integration scheme for this set of
equations using the same set of initial data that was used in
the Sach's double null initial value problem. The scheme

proceeds as follows:

- 1) Integrate the null wave equations (VII) for EAB in a

four-dimensional region in terms of Xag ©n U, and Y-

In this gauge, the linearized conformal two-structure,
the dynamical part of the field, is propagated
independently of the other parts. The most general
éolution to (VII) has the form
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Xap = Gap(u,x®) + y, (v, xB)
where CAB(u,xA) and WAB(v,xA) are arbitrary functions.
2) Solve (II) on ﬂo for ¥ in terms of [x]O and [V"hx]O on

N, recalling that v® and Xyy vanish on .

3) Solve (V) on Uy for £gv® in terms of Xyy (which
vanishes), EAB (part of the specifiable initial data)
and X (from step 2) on Uy and [£5vP], on N,.

4)  Solve (III) for U*h,_ on U, in terms of ¥, EAB and o
on U,, and [UxthO on Nj.

5) Solve the coupled system (I), (IV), and (VI), wusing
the gauge equation
£VuB = = £UVB ’

iteratively for X, Xyy and vA everywhere in terms of

X Uxhx, Xyy (which vanishes), £vav (which vanishes),

v® (which vanishes) and £yv® on U, and uP on Vy s

Generalized Conformal Two-structure.

Only EAB is specified on U, and %6 while the rest of the

initial data is given on N,. One may wonder whether it is

possible to specify all the initial data on a single

two-surface. We now outline how this can be done for EAB.
Knowledge of Xag On U, is formally equivalent to knowledge of
the Lie derivatives to all orders of Xap With respect to Vv on

No; XAB on ﬂo can then be written in a Taylor series
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expansion.

Now the Lie derivative of Xag ©n Uy can be written

£y%as = VD, Xos [4.3-24]

The 2094 order Lie derivative is
£2y7 = V"’Vx2Dx,Dx255AB ' [4.3-25]

For the nth—order Lie derivative we have

xnXan [4.3-26)

. i — uXiuX Xn
£NXap = V¥IVE2 v DX1D_x2...D

The nth—Lle derlvatlve with respect to V can thus be written

entirely in terms of the projection of the totally symmetric
part D(x1Dx2‘ ) .Dx“)xAB 1ntg the Vv direction. However, because
the dynamical field equation takes the form

n"YDnyiAB =0 - [4.3-27)

all the D(foxz"'Dxm)iAB must be completely traceless (with

respect to the rigging indices) in order to generate a

solution to the field equations.

Similarly, to prescribe on 1%, one needs the

XAB

projectionv of the completely traceless part (also with
respect to the rigging indices) of D(foxz"'Dxm)zAB in the U©

direction. Thus, formally at least, the initial data for the
dynamical equations consists of a denumerably infinite set of

covariant totally-symmetric traceless tensor fields on NO,

each with a pair of indices on NO, and all the remaining

indices in the rigging space. We denote by generalized

conformal two-structure, the specification of such a set.
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For a pair of null deformation vector fields, the only

non-vanishing projections of D(x1Dx2' ..D are

Xn) XAB

X X Xn
u*iug*¥2, .U D(xsz...D

1 Xn) XAB

X1v7X Xn 54
v¥ivXe v D(x1Dx2...Dm)xAB

Any mixed projections will necessarily vanish because U (XyY)

is proportional to M*Y.

We show at the end of Chapter 5 that, ' to any order, a
totally symmetric traceless tensor in a two-dimensional space
has only two independent components; thus each component of
the geé;alized conformal two-structure has two independent

rigging components and two independent surface components.
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4.4 The Linearized Cauchv Problem

The deformation vectors are U and V, but now U is a unit
time-like vector and V is a unit space-like vector with
respect to the ‘Minkowski metric. They are orthogonal to each

other and to members of our family of flat two-surfaces. The

initial space-like hypersurface Sy, for the Cauchy problem
arises by dragging the initial two-surface N, along the

space-like vector field V.

Figure 4-2 The Linearized Cauchy Problem

The deformation vectors U and Vv thus satisfy

UA = vA = g [4.4-1)
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uMfu, = UXU. = -1 [4.4-2)

1 x
Uby, = U=V, = 0 [4.4-3]
vy, = VXV, = 1 : [4.4-4]

The wunperturbed rigging basis consists of a pair of

orthogonal vectors CH such that nxy takes the form 3.3-31.

Under the perturbation, we assume the rigging vectors
maintain the same orthogonality conditions as the unperturbed
ones. This, plus the freedom of the "Lorentz" transformation,

determines Cxy S in the double-null case.

Just as in the double-null case we adopt gauge condition
on U and V, this time that U remains a unit timelike vector
field orthogonal to the family of three-surfaces to which v

is tangent. These conditions can be expressed as

GXGYZ;XY = -1 [4.4-5]
GxGYc}xy =0 [4.4-6]
UA = 0 [4.4-7]

It is straightforward to show, as we have done in Section

4.2, that these conditions are, in terms of the metric

perturbation
U"UYxxy = Yy = O [4.4-8]
X = =
U vaxy = Xgy = O [4.4-9)]
XaxU= = Xy = O , _ o [4.4-10)

This set of gauge conditions is the linear analogue of

geodesic normal coordinates ds? = dt2 - gijdxidxj.

Equations 4.4-8 and 4.4-9 also imply that
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—1/2DAxUU

UXg¥*h

I
o

XYyA

I
(@]

*
USV¥ heyn = -1/2D,%,,

[4.4-11)

[4.4-12)

The unperturbed metric can be written in the form

Y = —uXpY + yxyy
while % can be written in terms of

Xxy = XVVVxVy

*

X = Xy

[4.4-13]

[4.4-14]

[4.4-15]

The following relations can be easily shown to hold

Uxexy = gv&
vxsxy = E_,Uy
UL = -En?v,
V€Y = ~Eny,

[4.4-16)
[4.4-17]
[4.4-18]

[4.4-19]

The proofs of how the gauge conditions are implemented are

'similar to those developed in earier sections and are left to

the reader. The remaining three-dimensional gauge conditions

are
Xyv = 0 on s,

£vav = 0 on Sy

vh = A VX = 0 on S,

Using the above gauge conditions,

(with sources) are as follows:
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Rigging Projections

I Eg(U%hy) = 12(-1/2n% o+ ¥ ) + Enr,, [4.4-23]

which together with

£yX = -2U%h_, . [4.4-24)
yields
gy — /2Py = -y 2B . - vl [4.4-25]
~ 4
ID) 2y (Veh™) = —1/2(-1/20™%y  + ¥®B .} + E2q Tyyr  [4.4-26]
and
£yX = —2D,vA - 2vEn_, [4.4-27]

which implies that
IT)  £2yx + 1/2n™By = —£Dp v 4 yBB 28T, [4.4-28)

which is an elliptic equation for Y. This shows clearly how

the conformal scale factor is coupled to the energy of the

source of the field.
_ 2.4
IID)  £yfgx = - £n°Tyy [4.4-29]
The surface-rigging projections of the field equations are

2 _ r8yn *
V)  1/2£%gvh = —eT%u¥p_ Byt

2
# UYEW(DChAC" - D®hY) - Encrh, [4.4-30]
A -1 *
v 2
+ erw(DChAC" - D*nY) - E&n?rd [4.4-31]

which become
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IV)  1/2£2gvh = D (VERAC ) - DA (V*h,) - En?TA, [4.4-32)

Vi 1/2yigvR = 1/20*P0%D, Dy + D (UThAC,)

- DA (U%h,) - En?TA, [4.4-33)

Since Xyy vanishes on Sor this last equation can be readily
solved for £yv® in terms of £gv® on Ny and U*h®C_  ang UFh,_

on 8;, which are already known.

One can show that the linearized rigging-space Ricci
scalar for the Cauchy problem is

n o

R = &g - [4.4-34)
The trace of the Surface-projection of the field eguations
becomes
VI)  -£2yx + £2gy - N*®D, D%y + £20Xgy = Tapg?P [4.4-35)

The traceless surface-projection or dynamical field

equations becomes

2 2% 5

= ASWPeDDLXy = Tam | [4.4-36]

We can now work out an integration scheme for these

equations in vacuum with the following initial data:

* A scalar quantity on a closed two-surface on Sp: X

which is formally equivalent to knowing Y% and VXh,

on two infinitesimally neighboring two-surfaces in

SO-
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1)

2)

3)

4)

Another quantity on the initial two-surface Nj: U*h,

* A two-vector on N,: o® = £yvh

* The linearized conformal two-structure and its

velocity; i.e. the families of symmetric traceless

two-tensors on Sy Xage £UXAB'

Integrate the elliptic equation (II) for ¥ on Sy in

terms of X on a closed three-surface such as one that

might be sandwiched between two two-planes N, and N,.

This is formally equivalent to knowing x-and V’xhx on a
single two—surface N,. Note that this equation is one
of the usual constraint eéquations: % cannot be given

arbitrarily on the initial surface.

Integrate (II) on S, for Uxhx on S, in terms Uxhx on
Ny. This is another of one of the constraint equations:

Uxhx cannot be specified arbitrarily on the Cauchy

surface.
Integrate (V) on S, for o® in terms of w® on Ny, Ly

on S, (which vanishes due to the three-dimensional
gauge condition) and tyX on S, (which is obtained from

Step 2 above) and £UE?B on S, [which represents freely

specifiable initial data]. This set comprises two
equations which are also constraint equations.

Iteratively solve equations (I), (IV), (VI) and (VII)

for %; v&, Xy and iAC:

- 182 -



* Given X, U*H,, v&, Xyy @s well as i;B and £UXAB on
Sor solve (I) and (VII) for £2yy and £25%*® on S,
which is>equivalent to knowing g, £yX: x*® and

£1J§AB on the next infinitesimally close

space-like hypersurface S;.

¢ Given vA, £gv?, X and %2C on Sy solve (IV) for

£2yv®, on Sy- This gives us v2 and £yv® on §;.
¢ Given Xyyr £vav (which vanish) and £yX on Sor
solve (VI) for £2vav on S,;. This is equivalent

to knowing Xyv and £yXiy on-S§,.

All quéntities which are needed to repeat the sequence

of steps are now known on S; and can be used to push
the solution on to S, and so forth.

In the Cauchy case one can also formally specify all

‘initial data on a single two-surface. Knowledge of Xag ©On S

is obtained in a formal sense if the Lie derivatives of Xap
with respect to V are known on Nj,. Again, the nth-order Lie

derivative of Xap With respect to V can be written in the

form

Ny - uXjuXs. . .oXn
£ Xpg = VEIVE2- . .y DX1Dx2_ D

.. PxnXan [4.4-37]

and is written out entirely in terms of the projection of the
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totally symmetric part D( D into the V

X1 Xg. . .DXn) XAB
direction.

Similarly, knowledge of £U§AB on S, is obtained in a

formal sense if the Lie derivatives to all orders of £UXAB
with respect to V are known on N,.
To first order, we have
¥ e uX
fyfgXag = V¥UYD DyxAB

To 2nd-order, one can show

2 o — uXijuX
LvEyXag = VEIVX2 UYD D DyxAB
To nth-order
- = vXiuyXs...uX 1 P V _
i Aag = VEIVX2- - -y “UYD,quL ) .DXnDyxAB [4.4-38])

We can symmetrize this expression with respect to the

derivative indicés since the commutator of two D-derivatives
is of one 1lower order and is therefore known from the

expression for the next previous derivative. Thus, the

th_rie derivative of £yXag Can be written out entirely in

terms of the projection of the totally Symmetric part
D D DXn)xAB once into the U direction and n-1 times

into the V direction. Again, because the dynamic field

equations take the form

n‘!DnyieD = 0 on s,.

only the completely traceless part of D(qux2 DXn)iAB is

non-vanishing for a solution to the field equations. Thus, as
in the double null case, specification of the initial data

for the dynamical parts of the gravitational field can be
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accomplished by specifying a denumerably infinite set of

traceless symmetric tensors (traceless with respect to the
rigging space) on Ny, which also are traceless and symmetric

with respect to their two-surface indices, the generalized
conformal two-structure. By this procedure we have formally

unified the characteristic and Cauchy initial value problems:
all initial data can be given on a single two-surface and are

the same sets of quantities for both problems.
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CHAPTER 5
THE CHARACTERISTIC INITIAL VALUE PROBLEM

In this chapter, we shall develop the field equations for
the two+two covariant formulation of the double-null problem
presented in Section 1.3, whose linearized version was
discussed in Section 4.2. Data will be set on a pair of null

surfaces just as in that case, but the exact field equations

will be written out. The initial hypersurfaces, Uy, and ,,

upon which data will be set are gotten from dragging a single

two-surface N, along the two-deformation vector fields V and

U, respectively. Again the rigging basis vectors are chosen
so that the rigging metric takes the null dyad form given in
3.3-32, ‘

As in the linearized case, conditions are to be imposed on
the deformation vectors everywhere which make them tangent to

null surfaces, i.e.

gnyxUY 0 . [5-1]

gxnyVY =0 [5-2]
everywhere. These conditions correspond to equations 4.2-15
and 4.2-16 of the linearized case. A three dimensional

coordinate condition
gnyxVy = -1 [5-3]
will be adopted on U, and 1%. If we define the scalar
quantity g by
ed = —gnyxVy [5-4]
then g = 0 on U, .and V-
As in the linearized case, we adopt the two conditions
which say that U is orthogonal to the members of the family
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of two-surfaces which foliate a region of space-time. Another
three-dimensional condition to be imposed is

VR =0 onw. ~ [5-6)
A useful expression for 9xy Can be found in terms of the

deformation vector fields
gX¥ = -2e-qy(xyy) [5-7]
We now consider the exact vacuum field equations, given in

Section 3.3.

The rigging projections of the field equations are

I) -1/28y(Y %eyy?) = —'UZU"*HzxA*HwLA + U*U%H, ., HAC,
+ HXUZD,U_ [5-8]
I ~1/284 (F%2yY) = ~£,(D,vR) + VeD, (m=v,

= VEVY TR EA*R .+ VEVER,  mAC_ HXVZD,V,_
[5-9]
We first show that the terms UzU"*HzxA*Hw;A in ‘equation 5-8
and VzV"*HZXA*H'xA in 5-9 .vanish. In terms of unknown
coefficienﬁs 2% and B3, Uz*HzxA takes the general form
UZ'H, XA = pAyx 4 pAyx [5-10]
and since U* is null, we have ‘ A
UZUTH, 2 = BAVEU_ [5-11]
Only the symmetric part of *HzxA enters 5-11 so we can write
the left-hand side of 5-11 as
Uzu=p2

By = —ZBAVxUx [5-12]

Using the pProperties of deformation vectors
(DAUz = D,U% = 0), we see that UX can be brought inside the

derivative, giving

A -0 = A '
D*(u%u=g,,) = 0 = -2B VXU, [5-13]
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which vanishes due to the adopted condition 5-1. Equation
5-13 implies that B® = 0 and hence

UZ'H, XA = pByX ‘ [5-14]
The exact form of A% is not reeded since equation 5-14 shows

that UzU'*HzxA*H is proportional to U*U*g,,., which

WXA

vanishes. A similar argument holds for VzV"*HzxA*waA.

The field equations 5-8 and 5-9 become

1) -1/28y(Y %tyY) = URUZH,  HRC, + HXUZD_U_ [5-15]
II)  -1/28y (Y2yg?) = = £y(Duv) + VoD (HEV,)
+ VEVEHp o HAC, + HEVED,V, 4 [5-16]

Hpe, implicitly contains derivatives of both Y and gp~, which

makes equations 5-15 and 5-16 non-linear in Y.
The quantity vay*nyA appears frequently in later
analysis, so we will rework this expression:

xyy* = UEyY* xyy*
USV¥ Hyon USVI"H (yy)a + UZV - S

= -1/2D, (U*V,) - UTVYQ_ A

= 1/2quAq - &QA‘ [5-17]
(we recall the definition of the scalar density & =.UxVqu)
Similarly, noting *nyA is not symmetric,
*
UXVYTH = 1/2e9D,g + £Q, [5-18])

YXA
The last term on the right hand side of equation 5-15

contains the term DYUx which we can also evaluate further.

Expanding it in the form

DyUx = AUny + BUxVy + CUny + DVxVy, [5-19]
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and then contracting 5-19 with UX gives

UDyUy = 0 = CU,(UXV,) + DV, (UTV,) [5-20]

which implies that C = D = 0. Hence

DyUx = AULUy + BU,V, ' - [5-21]

Contracting 5-21 with V¥ gives
VyDyUx = AUny [5-22]

Since the Lie derivatives with respect to each other of
the rigging components of the two deformation vectors vanish
(see Section 2.1), we can write the left-hand side of 5-22 as

UyDny = AUxUy | _ [5-23]
Contracting this with VX makes the left-hand side vanish, so

we have A = 0. Thus,

DyUx = BUxVy [5-24]
We can finally solve for R:
- ux - x X z
B = v¥u¥p U,/U,v% = [V¥D, (V¥U,) - UU¥D V¥ / (U, V)
= V¥D,(V¥U,) / (U, V%) = £yq [5-25]
Thus,
DyUx = £pa UV, [5-26]
Similarly,
DyVy = £yq VeUy [5-27]

Two results that easily follow from equations 5-26 and 5-27
are

V¥D U, = 0 [5-28]
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U¥D Vv, = 0 [5-29)

When all the above results are taken. into account, the

rigging projections of the field equations become

1) -1/28g(V28yY) = URUH, RS, + U_H¥fq [5-30]
1D -1/28y(-1/2Y %54Y) = - £4(D,vR) + VD (w¥y,)
+ VEVZH, HAC, + V HXEuq, [5-31)
with
UHy = -1/2y 247 ©[5-32]
and
VEHy = DvR - 1/2 v 2eyy [5-33]

On %,, field equation 5-30 becomes
~1/2£y (Y ?£yY") = UXUZH,  HAC, [5-34]
while on i%, equation 5-31 becomes

~1/2£4 (Y 2£y%) = vEvEE, _HAC [5-35]
The last rigging projection equation is
IID) £y (UgH%) = - D, (UXVE'H, B - vEg¥*p =a*y
x Xy\;Z AC x
+ VoD, (H®U,) + UVZH, . _HAC, + H VD, U,
~1/2 UVE['R + H, ZHRC, - HZH_] [5-36]

which can be rewritten using 5-17 as

£(UHY) = 1/2D,D* v, - D, EQP) - VIR, R

x x z AC Xy,Z
+ VD (HXU,) + URVYA x"yHac B x + HXVED,U_ -

=1/2 ULVX['R - HTH,] , [5-37]
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The last term on the second line of this equation vanishes

due to equation 5-28. Since gX¥ ig proportional to U(xy¥),
UXVYAZ " H, HAC, is also zero.

The term VZU'*HzxA*waA can be re-written, using 5-17,

as:

ZrWX xa*
VU Hz waA

A A
(-1/2D%(U%V,) + EQY) (-1/2D, (UZv,) - £Q,) / (u?v,)

I

[1/4D? (U=v,) D, (U=v_) - £2QrQ, 1/ (uv,) [5-38]

Equation 5-37 thus becomes

£y (Ugh™) = 1/2D,D*uTv,)- D, (EQ?)
- [1/4D% UV D, (U%V,) - E2QPQ,)/ (uPv,)
+ VEDL(HRUL) - 1/2U,VE['R - H7H_) [5-39]
Since . ‘
H?H, = —2e_qU(xVY)HxHy = —e"9(UTH,) (V¥R),

we can re-write 5-39 as:
: A A
III) £y (U HY) = 1/2D D (u=v_) - D, (£Q%
- [1/4DR (U, D, (URv,) - E2QRQ 1/ (u%v.)
x A x A z
+ VD (H®U,) - 1/2U_VE['R + e (UTH,) (V¥H,) ]
[5-40]
On U,, where q = 0 and V2 = 0, equation 5-40 reduces to
£y (U HS) = -D_ (EQP) - §2QRQ, + 1/2['R + (U™H,) (V¥H) ]

_ [5-41]
The Surface-rigging projections of the field equations are
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— B _ grs 2 _
V) £yQd, = UYQEB, - € UYD H (gy)n + P UYEW(DCHAC" B, ")

A
[5-42]
V) £yQ, =v°D.Q, + Q.D,vE + VYQ HB, - ersvl(D:_.H(sy)A
+ VYE_(DH,OY ~ D,HY), [5~43]
with
£gVvR = 2vaYQAxy = 2UXVY ExyﬂA= BEQR,
or

After some manipulation, equations 5-42 and 5-43 become

V) £9Q, = UYQHB,, - 1/20¥D Dy (UXV,) + D (UZH,C,)

= Dp (U*H,) [5-45])
V) EyQ, = VCDCQA + QD V¢ + VYQHB, o +1/2vaYDA(vax)

= Do (V¥H,Cp) + D, (V¥H) [5-46]

On Uy, equation 5-46 becomes

V) iy = VYQUER,. - DL (VRH,C,) + D, (VXH,) [5-47]

The trace of the surface-projection equation is

VI) —1/2ngDnylny - D,*#® + H, xHEC_ _ wg 4 4QAQA = 0

[5-48])
The principle part of the rigging Ricci scalar on the

right-hand side can be shown to be

"R = -4fyiyed

- 192 -



The dynamical equation is

VID Gy = -1/2 YD, D g, - ARCB, (D, *H, - *HYZg*H, ]

~ ~

~YH*Hepy + YHog®HpEy + 1/2YgepHppHAB,
[5-49)]

We can now present a formal integration scheme for this
set of equations, whiech is essentially the same as that
provided in Section 4.2 for the Sach's double-null initial

value problem. The initial data will be:
A
* Y Hyr Q° on N,.

* Jep on Uy and ¥,.
The integration scheme is as follows:

1) The initial data implies that VxHAéx and U®H,p, are

known on U, and .‘VO, respectively_.

2) Integrate (II) on “UO for Y in terms of ECD on U, and
the constants of integration [Y] and [V¥H ], on Nj.

3) Integrate (V) on ’Ué for Q, in terms of ¥, ECD, and VA
on U, which are known from either: previous steps ),
initial data (SCD) or gaugeAconditions (V®) and the
integration constant [QA]O on N,.

4) Integrate (III) on U, for U"Hx in terms of v, ECD’ and

VA on U, and the integration constant [U*H,], on N,.

5) At this point, Y, UxHx, QP are known on U,. We must

propagate them, as well as 9ep @nd g, off the surface.

* The principle part of (VII) 1is
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~1/2Y¥eyiy 9¢p
so that knowledge of ‘ECD on U, determines
£V §cD on the next infinitesimally close

hypersurface U,. It also determines Ly 9ep ©on

~

Up. gop itself can be determined on U, since

~

Jep is known on .

Use (VI) on U, to give fyiva onvﬂo if which is
equivalent to knowing fyg on U,.as well as
fygq on U,. Then q is known on U, from g given
on 1.

Use (I) on U, to give Y and U*H_ on U, -

Use the coupled system (IV) and the expression
QF = (28) "1e4yv® to give QP and VA on ity s

Now all quantities are known on U, and the

process can be repeated.

In order to formally replace the hypersurface initial data

on U, and ¢@-by initial data on N,, we proceed by expanding

-~

gap ©on U, in a Taylor series as we did for the linearized

version. The Taylor series involves Lie derivatives of 9ap

to all orders. We have on Uy, using

£y 9am

£2y 9an

= VXD_g,p [5-50]
= VED, (V®D,_gpp) = VEVED D _g,, + D, 9,5V*D V=
= VXVZD D, g,p [5-51)



since the last term on the right-hand side vanishes on Uy, .

To all orders, we have

-~

£0ygay = VY1 V¥2--- VynDY1Dy2Dy3"'Dyn 8 [5-521]

Again, the right-hand side involves only the completely

symmetric part of D (Y1Dy2Dy3' . .Dyﬂ) 9ap:

n -~ e . e o a =
£0y g,y = VY1 v¥2 v¥nD (Y1DY2DY3' : .DYn) Ian [5=53]

Furthermore, all trace-terms on the right-hand side of

5-53 are determined in terms of lower order D-derivatives by
using the field equations, which are assumed to hold in a

four-dimensional neighbbrhood of N,. Simlar arguments hold

for the initial data on %6. Thus, the two-dimensional initial

data are the totally symmetric traceless parts (traceless

with respect to .the rigging indices) of the set of

D-derivatives
D(y#Dx)gAB

D <Y1DY2DX) Ins

D Dy, Dy Dy T [5-54]

etc.

We have just shown that defining the conformal
two-structure on a pair of null hypersurface is formally
equivalent to prescribing a denumerably infinite set of
covariant totally-symmetric traceless tensors (traceless and
symmetric with respect to the rigging indices) on a single
two-surface. Just as in the linearized case, we denote by

generalized conformal ftwo-structure, such a set of tensors.

We now show that( for any order m, there are only two

independent totally symmetric traceless tensors: they span a
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two-dimensional space.

Proof: For any totally symmetric tensor of order m in a
two-dimensional space, there are m+l independent components
(we disregérd any N-indices for the time being). Thus the

set of totally symmetric tensors spans a space of dimension
mt+l. A totally traceless tensor, for example Zx1x2. st

satisfies m—-1 relations

gXiijx1x2. . .Xixj. . .xm = O [5-55]

leaving just two independent components. ¢
The initial data set on a single two-surface N, to formally
define a solution to the double-null initial value problem
is: A

* The conformal scale factor Y, the mean extrinsic

'curvatures Hy, and the anholonomic object Q2
* The infinite set of totally-symmetric traceless
tensors (m=1, o)

z (m) ‘o
X1Xp2. . .XiXj. . .XmAB

which forms the generalized conformal two-structure.
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CHAPTER VI
CONCLUSIONS

The main result of this dissertation has been to develop a
covariant two+two formalism for thevgravitational field and
apply it to various initial value problems. Space-time was
foliated by a two-parameter family of two—surfaceé which
arises byAdragging a single space-like two-surface along a
pair of commuting vector fields., Then, each member of the
family was orthogonally rigged by a pair of vectors spanning
a time-like plane. All geometrical quantities, including the
field equations themselves, were orthogonally decomposed by
projecting them along surface and rigging directions.

The field equations, derived using a Palatini variational
principle, break up into several sets. The first set consists
of the three field equations projected into the rigging
space. These equations involve all second-order Lie
derivatives of the conformal scale factor with respect to the
deformation vector fields. From an analysis of various
initial value problems, it was shown that these equations
completely determine the conformal scale factor 1in a
four-dimensional region when its wvalue on a single
two-surface is given along with the mean extrinsic curvature
of the surface. This is the origin of two of the contraint
equations that arise in the Cauchy problem. Starting from an
initial two-surface, one can use the field equations to
propagate the scale faétor and meanAcurvatures-along one of
the deformation vector fields,'thus defining it on a single
hypersurface. These quantities would be overspecified if we
prescribed them arbitrarily on the hypersurface.

The second set consists of four mixed surface-rigging
projections of the field equations. They can be interpreted
as determining the evolution of the anholonomic object formed

by the rigging vectors projected into the two-surface. Two of
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the mixed projection equations determine the anholonomic
object on a single hypersurface when its value on a single
two-surface is given. The solution of this equation would
also be overdetermined if we tried to prescribe it everywhere
and thus is the origin of the remaining two constraint
equations.

The third set of equations is the trace of the surface
projections of the field equations and determines the Ricci
scalar of the rigging plane. When the gauge conditions are
imposed, the Ricci scalar becomes a second-order partial
differential equation for the one remaining component of the
rigging metric or the one remaining rigging component of the
deformation vector fields as discussed in Section 3.3.

The fourth sét, the dynamical equations, determines the
conformal two-metric, which, in our formalism, carries the
dynamics of‘the field. The form of the dynamical equations
resembles a wave equation, and indeed, in the linearized case
reduces to a wave equation in Minkowski space. A gauge was
found which decouples the linearized dynamical equation from
the remaining field equations.

An appealling feature of this formalism is that
kinematical conditions on the deformation vector fields can
be introduced naturally in a covariant form. This lets us see
clearly the geometric meaning of various coordinate
conditions which arise when a coordinate system is adapted to
these vector fields. ' '

We indicated how to interpret the conformal scale factor
as the cross-sectional area of a bundle of light rays. The
conformal two-metric was interpreted in terms of the
distortion of the shape of such a bundle.

A new feature of this work is the specification of initial
data on a single two-surface, such that the Einstein field
equations propagate them into a four-dimensional region. From
an analysis of the linearized theory, one sees that this

initial data can be used to generate the data for both Cauchy
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and characteristic initial wvalue problems. Besides the
conformal scale factor and mean extrinsic curvatures of the
two-surface and the rigging anholonomic object, one has to
specify the generalized conformal two-structure: a
denumerably-infinite set of totally-symmetric tensor fields
that are traceless with respect to rigging indices. Each
member of the set also has a pair of surface indices with
respect to which it is traceless and symmetric.

The well-posedness of such an initial value problem, with
all initial data set on a single two-surface needs, to be
addressed. Existence and uniqueness are easily proved for
analytic solutions for analytic ‘initial - data. For
characteristic initial value problems, we can use the results
of Miller zum Hagen and Seifert [1977], which apply more
generally, to show stébility as well. Thus, when the
generalized conformal two- structure is projected along null
directions, the problem is well-posed for analytic solutions
and initial data. Can this result be extended to the case
when the two deformation vector fields are space-like and
time-like, respectively, i.e., the Cauchy problem, or even
for generic vector fields’

Much of the interpretation of the field equatlons came out
of analyzing the linearized field equations and work remains
to be done in that case A more interesting linearized case
would use spherical two- surfaces, rather than flat ones, in
the background space-time. This would allow us a simpler
analysis of the field surrounding a bounded source. Is there
still a gauge analogous to the decoupling gauge. Furthermore,
what is the counterpart of the decoupling gauge in the exact
theory?

A possible application of the two+two formalism would be
to consider space-times with Symmetries. At least two
interesting classes of such space-times can be identified:
the first is where there exists a Killing vector field

tangent to the members of the family of two-surfaces. One
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example is the family of axisymmetric solutions (with one
Killing vector), with the special case of cylindrical
solutions (with two Killing vectors). Another important
example is space-times which have a time-like Killing vector
field (stationary solutions).

The conformal two-structure approach may be helpful in
quantizing the gravitational field. Stachel [1984a] has
considered the quantization of the Klein-Gordon scalar field
in Minkowski space from a two+two point of view. He shows
how the covariant commutation relations between the field
operators at two points generate an infinite set of
commutation relations between the derivatives of the field
operators on a single two-surface. These commutation
relations involve an infinite set of totally-symmetric
traceless field operators on the two-surface. Since the
generalized conformal two-structure may be given without
constraints and since the dynamical equations for them look
very much like a wave equation, one should investigate
- whether the quantization of general relativity can preceed
along these lines, interpreting the generalized conformal
two-structure as a set of field operators on two-surfaces

obeying appropriate commutation relations between themselves.
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APPENDIX A

MANIFOLDS AND GEOMETRY

This appendix is meant as a brief review of the
differential geometry of manifolds particularly those aspécts
pertaining to the imbedding of manifolds in higher
dimensional manifolds. Most of the definitions can be found
in works which develop the mathematlcal foundations of
general relativity such as Hawking and Ellis [1973].

A manifold is essentially a topological space that is
locally Euclidean meaning each point has a neighborhood that
can be mapped 1:1 into an open neighborhood of Rn Such a map
is called a coordinate system. This ‘permits the process of
differentiation to be defined but does not single out any
particular coordinatization as preferred. These ideas will be
made more precise below.

euclidean spaces

Let R" denote the Euclidean space of n-dimensions which
consists of the set of all n-tuples x = (x1,x2, ... , x2)

where -—oo < x1 < oo, The set of open balls

By (yh) = (x[Z_ (xi - y§)2 ¢ 42,

forms a basis for the usual topology on RP by which the
continuity of mappings from R® into RM can be defined.

A map

-~

P:0 -5 0

(where O, O are open sets of R®, R™, respectivelY), is of

~

differentiability class CF if (;1,x2;..t,§m) and all their

derivatives up to and including the rtP-order are continuous

functions of (xl,xz,...,xn).

- 205 -



har n 1
Let S be a subset of M. A chart (¥, ®) on M is an open
set ¥ of M together with a homeomorphism @ from a subset

Y € S8 into an open set O c RB, A chart is a 1local

coordinate neighborhood for each of its points. The point of
RT which is the image of a point x € M is called the
coordinate of x. An atlas 4 is a denumerable family of charts
{(ﬂé,dﬁ) } with the following properties:

a. S8 is contained in the union of all charts belonging to
the family. '

S C U.V.
1 1
b. When two charts overlap, i.e. ?&k = ﬂ@f\%& # '@, the
composite map

Qip = Q0@ 7L @ (V) - Q. (V)

is a bijection and ®,, and @ik‘l are CT¥. This is the

requirement that Qik be a diffeomorphism. The 1local

coordinates of a point in %.

ik are C* functions of any other

coordinate systems in the same atlas.

differentiable structures

Two atlases A, and A, are equivalent if’.ﬂllJ A, is an

atlas. All atlases which are equivalent form an equivalence
class. A differentiable structure, denoted D, 1is an

equivalence class of atlases on S. There may be more than one

differentiable structure on S. The union of all atlases forms
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the complete or maximal atlas.

A differential manifold M is a pair (S,D) where S is a

set and D is a differentiable structure.

Qrigntable manifolds

When two charts belonging to an atlas overlap, the
Jacobian of the coordinate transformation is either positive
or negative. If there is a subatlas of the atlas, such that
the Jacobian is positive in every overlap, then the manifold

is said to be orientable.

time-orientable manifolds

If it is possible to make a continuous distinction between
"past" and "future" pointing spacelike vectors over M, then M

is said to be time orientable [this presupposes a metrical or

at least a conformal structure on M]. If M 1is time
orientable, then there exists a non-unique, smooth, nowhere
‘vanishing time-like vector field ¢ on M (see, for example,
Wald [1984]).

tangent vectors and spaces

A tangent vector to a differentiable manifold M at a point

X€EM is a linear function from the spacé of functions defined
and differentiable on some neighborhood of'x, which satisfies
Leibnitz rule. The space T,M of tangent vectors at a point x
forms a linear vector space called the tangent space. The set
of all pairs (x,V) where x is a point of M and V is a vector

of T,M can be given a fibre bundle structure. The resulting

bundle is the tangent bundle.
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vector fields

A vector field is a continuous assignment of a member of

T,M to each point x e M.

cotangent spaces and covariant vectors

The dual space v* of a vector space V is the collection of

all linear, real-valued functions on V. When the V is the

tangent space at a point x € M, V is called the cotangent
space and is denoted T*XM. The members T*XM of are called

covariant vectors at x. A covariant vector field is the

continuous assignment of a member of T*XM at each point

X € M.

maps between manifolds and diffeomorphisms

Let N-and M be two differentiable manifolds of dimension n

and m, m 2 n, respectively and let f be a map from N into M.

f: N 5 M
f is differentiable if its representation in terms of

coordinates is differentiable. That is, if (U, ¢) and (7, V)

are local charts of N and M respectively, then uhfow'l

represents f in local charts:
Yofoy l: RP — R

If this map is differentiable (the coordinates of M are
differentiable functions of the coordinates of N), then f is
differentiable. When, in addition, f is a bijection and f~!
is differentiable, f is a diffeomorphism. This defines
diffeomorphism of a mapping in terms of diffeomorphism of

coordinate transformations.
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pull-back of functions

If g is a function on M (g: M - R), the pull-back of g to

N by f is denoted by f*g and is defined by f*g(x) = gof(x) =

g(f(x)) where x € N.

bush-forward mappings

In a natural way, the manifold map carries along the

tangent vectors from N into M, If v is a tangent vector at

the point p € N, i.e. v e TpN, then f,v is a tangent vector

at the point x=f(p) € M defined by

(fxv)h = v (hof)

where h:N — R is a smooth function. We can extend the
action of this map to arbitrary contravariant tensors on N
because any such tensor can be written as the sum of exterior

products of contravariant vectors.

pull-back mappinas _
The pull-back map carries covariant vectors from M back to

N. We define the map

* * *
£7: T )M = TN

by requiring for all v e TpN and for all covectors
. *-
we T f(p)M

(£'W)v = w(f,v)

We can likewise extend the action of this map to arbitrary

covariant tensors.
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curves
An example of a manifold mapping is a curve. A curve Y is

a differentiable map from an open portion of the real line R

into M
Y: I - M

where I = (a,b) C R.

fangent vector to g curve

Denote by 7., the tangent vector to a curve at s.

integral curves of vector fields

A curve is an integral curve of a vector field v if its

tangent vector at each point equals the vector field

Y*s = vY (s)
Or

dy(s)/ds = v (y(s))
The local existence of integral curves is guaranteed by
existence theorems for solutions of systems of ordinéry
differential equations (see Greenspan [1960], p.85). The
parametrization of the curve is defined up to a choice of

origin.

vector fields as generators of infinitesimal mappings

A smooth vector field v and its integral curves Y define a

one-parameter family of diffeomorphism
C.: M- M
S

gotten by mapping each point p of M into another point which

is located a parameter distance s along the integral curve of
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v péssing through p. An inverse map ¢!

s: M =5 M also exists.

‘e deri ;

Let v and x be vector fields on M and 8 be a covector

field on M. The Lie derivatives of X and w can be defined in

terms of the push-forward and pull back maps of GS.

[Eyxlp = limpo 087 (671 )uix(0 _(p))] - x(p)]

[£ywlp = limpo_,0ys7 (0,) " [w(6 _(p))] - w(p)]

submanifolds
For a detailed treatment, see Choquet-Bruhat et al [1977,

P.228]. Let S be a subset of M, S C M. If every point g € §
belongs to some chart (%,®) of M such that:

®:9NS — RP x A™P by @ (x) = (x},x2,...,xP,al, ..., ab"P)

[That is, in such charts, (n-m)-coordinates are fixed. The

set of charts {(v.,,®.)} where ;i='Vi N S8 and ai(x) =

(x1,x2%,...,%xP) form an atlas on N of the same class as the

atlas of M.] then N is a p-dimensional submanifold of M. The

co-dimension of N is dimM - dimN = n - pP-

Theorem: Submanifolds Defined By A System of Eguations

Let a subset Z of M be defined by a system of r equations
(p < n).

Z2={xeM| ¢"x) =0, x=1,...,r)

such that ¢*(x) are differentiable functions and such that
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the mapping from M into RP defined by x 4(¢1(x),¢2(x),...,

®"(x)) is of rank r for all x € Z. ' Then Z is a submanifold
of M of dimension n - r.
immersions

Let S be a differentiable manifold of dimension p and let
M be a diffefentiable manifold of dimension n (p < n). If the

differentiable mapping

B:S - M

is of rank p for every point y € S then B is called an
immersion. An immersion is not in general injective. The
induced mapping on the tangent bundle B, is, however,
injective. The image of S under the immersion B is denoted

S = BI[S].

inibadds
The pair (B,S) where B 1is injective is called an

imbedding. A manifold structure on S can be carried over from

S in the following manner: Let { (ﬂi,Wi) } be an atlas on S,

and let B; be the surjective map:

B,: § > s

Then the collection {(By(Up) Yy, B,"1)} forms an atlas on S
and one can show that it induces a differentiable manifold
structure on B[S]. This induced manifold structure may not be

equivalent to a submanifold structure on S given by M. When
they are equivalent, the imbedding is said to be regular. If

B is a regular imbedding, then S is a submaﬁifold of M.
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foliations and distributions
[See Reinhart [1983] for. a detailed treatment of

foliations.] A map which assigns to each x e€ M a

p-dimensional subspace Ex © TyM is called a p-dimensional

distribution or plane-field on M. The set E = UEy, C TM is a

sub-bundle of the tangent bundle of M. E is a vector bundle
over M and is a sub-manifold of TM. E is involutive if for

any two vector fields X and Y belonging to E defined on an

open set UCM, their Lie Bracket [X,Y¥] belongs to E.

integrable distributions

A distribution E is integrable if for any X € M there is a

locally defined submanifold S, called an integral manifold of

E, at x such that its tangent bundle is E (restricted to

points of 8§).

Frobenius' Theorem

A p-distribution E has an integral manifold if and only if
it is involutive. In an open set U where E is involutive,
there passes through»each point only one integral manifold of
a distribution. No point belongs to more than one integral

manifold. Such a system of integral manifolds is called a

foliation of U.

exterior Svstems

Given a p-distribution Plane E, at any point X, there
. exists at each point a n-p-dimensional set of forms ¥ such

that ¥ annhilates each vector belonging to Ey (¥ (z) = 0 for

each z € Ey). The p-distribution E defines such a set at
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each point called a Pfaff svstem of differential forms or

exterior system. The set of forms at each point form a
co-distribution field Dy of dimension n-p which forms a
sub-bundle D of the cotangent bundle T*M. Conversely, a
co-distribution D determines a distribution E. We may ask
what conditions on D insures the existence of integral
manifolds of E. The answer, called the dual version of
Frobenius' Theorem is that the closure of D defines the same

distribution as D itself. The closure of D is the set of

2-forms dw¥ at each point. This means that
do¥ = T, A ©F

where T is a one-form.

Definition: A Pfaffian system of rank r =n - p is completely
integrable if there exists a set of r differentiable
functions ¢x(x) whose exterior deriviatives define the same
co-distribution as D. Then obviously, each point x belongs to
a submanifold of M defined by the system of equations ¢1(X) =

et, ¢2(X) = c2, etc.
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APPENDIX B

TWO + TWO PROJECTION OF THE RIEMANN AND RICCI
TENSORS IN AFFINE AND METRIC SPACES

Gauss' FEquation in an Affine Space

The proof here is for a general anholonomic subspace XN

imbedded in an affine space M. From the definition of the
induced covariant derivatives defined in Section 2.2, we have

for a vector p® of %«

' X
Dip Deyp® = BHYeAc' V'V, p

_ B”DVCAKV[ 18P,V 0}

= BMDVCAKV (BP ]KA}V pr + BH VAV V|p|P7'pr]K7L

= BH VCAXV {pr] }Vppl ¥ Bp'DVCAKV {BKIM }Bp"']_vppl
+ BuDchKV[va]px

= - BH '“xv[u{c ]}Vp -}zs“DVC'?’*KV7m{C“,M}Bp\,]Vpp1

B
+ 1/2 Bl Ve BA;‘RHVK}‘p
= —-BH VCAXC Py LLC VJV p
—B”DVCAchmeCxKBPv] \Y p + 1/2BH CKBAXRWKKpB

(B-1]

The first term on the right-hand side contains H* pcy) and

vanishes for holonomic surfaces although we include it here

for generality. Then
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A = A _ A
Dip Deyp™ = E¥(pc)Dyp B VMY [, CMBP VP

+ 1/2 Rieplp®

= HX[pc Dyp® + B“DVCAKp)‘V[quKBpV]Vprk
+ 1/2 Ry.Ap®

A
H¥[pc)DyP?® + L p® |z BXc;pp?
+ 1/2 RpogPp®? [B-2]

where 1is the projection of the Riemann tensor of M into the
surface.

The Riemann tensor of an anholonomic two-surface element
has a more complicated expression in terms of the commutator

of the covariant derivatives than it does in a holonomic
space. According to Schouten [1954], the Riemann tensor"R.DCBA
of an anholonomic surface element is defined by
A - x A A-B
2D(p Dcyp™ = 2H¥[po;D,p® + 'RygPp (B-3]
where

: _ A A E E A A
Rpcg™ = 29 p1¢yp + 2T 15 g Ty - 2% e Tes + 2Q%pcQ% 5

[B-4]
Combining equations B-2 and B-3 gives
. A 1 B _ . i
B ocDyp® + 1/2 'Rycp® pP = HX(peiDyp? + LA HE o ppP
+ 1/2 RpogPpB | [B-5]

Recalling the relation betwéen l)pr and Dpr, defined in
Section 2.3, we get

. B _ C B
1/2'Rpeg®p® = -H¥[pojLoPyepC  + Lp® x/H® 8P
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+ 1/2 RpcgPp®
yielding Gauss' equation

_ B _ -
"Rpcg™ = Rpeg®P® = 2H®[peiLcPy + 2LpR 5 H s [(B-6]

Rearranging terms, we have the total-surface projection of

the Riemann tensor of M
A _ A x A _ A x -
Rpes™ = 'Rpeg™ + 2HY[pc)LcPx = 2L p* 5 H )8 [B=7]
When A is a holonomic surface, the second term on the
right-hand side vanishes giving the well-known form of

Gauss's equation

A A
DCB RDCB

Contracting indices gives an expression for the Ricci tensor

of AL in the holonomic case

acs™ = 'Rep - Lpi:H%cp + LcP<H*ap LB=3]

Codazzi's Equation in an Affine Space

Codazzi's equation for an anholonomic two-surface N can be

derived by- expanding D[CHA]Bx

DicHays™ = BHeVa"sC%pV By
= - (04
= = BIACRV ), (8%, BV CPp)

= - BHV X X a
R A sC®pV (B, P) V Py
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+ B“CVABBCXPB e (Vu] Vacpﬁ)

- o
- BuchchxpV[u(B ) BﬁxVanB

«
+ BHCVAKBCxpB [vVu] BBK(VanB)

+ BhY,BexBe (V,,VoCPp) [B-10]

Since the second term on the right hand side of equation B-10

vanishes, we arrive at
= o
DicHajs™ = ~Hica)¥*Ly%s + BHY,Bicx B | (V,,;VoCPg)

= - - H v x
Hica)¥ *Ly% — B, ABBC pV[ qu] CPB

= “Hiea)Y *Ly®s *+ 1/2 Repp® - (B-11)
or
= 2H)¥ AL %y + 2D (K, X [B-12]

x
CAB

This is Codazzi's equation for N. The first term on the

right-hand side vanishes when N is holonomic and then we get

Reas™ = 2D(cHp 5% | [B-13]

R ap¥_Projection of the Riemann Tensor in an Affine Space

=xAB
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Another set of projections of the Riemann tensor that play

an important role in the analysis of the field equations is

Reap¥. This set will be obtained by writing out DyHpp¥ in

four-dimensional form

o
o]
<
]

Mo CprBB“A;‘BVpHMB = - CprBBuA}‘BVp(B“u'YkVaCBY)

- a - (04
CPYpBH RV (BY) V CP) — P ygr A v o (B V P,

- CPYpB% Y,V P, [B-14]

Using the fact that the triple B- or C-projection of VpB‘]‘u

one can show that the second term on
right-hand side of the last line of B-14 vanishes giving

is
identically zero,

DxHABy = *szA*Lzyé - CpxyﬁBaA‘YBVQVPCB'Y

- CpxyﬁBaAYBV[PVa] CBY

= L %% Yy = CpxyBBaA‘YBVanC_By“ CprBBaAYBRpaKBCKYA
+ CP_¥gB® Y R _OcB [B-15]
x B aA'BRpay “o

The third term on the right hand side of B-15 vanishes

because of the contraction of BYB and CKY so that
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a
D HapY *Le®a*L,¥g - CprBB AYBVanCB7+ Ryap¥

= *szA*I_'zyB - CvxyBBaAcha(CpVBYGVpCB'Y)

+ CV ¥gB%, 0.V (P BY ) Vo ePy + Rga¥

' v a '
*szA*LzyB - DALxYB +C xYBB ACBVQ(CpVB‘YO') VpCB'}’
+ RxABY
% * 04
= Ix®a"Lg¥s = Dpl¥g + CP¥gB 2%V (B V B,
v o ' _
+ CVIpBO RV (P V B+ R,y [B-16)

Finally, one can show that the third term on right hand
side of the last line of B-16 vanishes. Thus
* * *
D H,pY¥ = L %a LYy - Dp L ¥p + LACXHCBY L .
[B-17]
We can express the left-hand side of equation B-17 in

terms of the D—derivatives if we recall the relation between

the D- and D-derivatives developed in Section 2.3. We have
D, *L,Ys = D*L Yy - *Lp¥p*Lg®a + *L Zg*L, Y, [B-18]

= - c_ - ' "
D, Hpp¥ = D.H,.¥ Hep¥LaCx = Hpo YL Cy [B-19]

Hence
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D Hpp¥ = -D,*L,¥p + *L Zp*L, Y, - Hp¥YLCp + Rp,.¥ [B-20]
- and the desired expression for the Riemann tensor is

Reap¥ = D Hpp¥ + D, *L ¥y — *L_Zp*L Y, + H, YL.C, [B-21]

Equations B-7, B-12 and B-21 have their counterparts for

the rigging space 7. The results are stated without proof but
are most simply obtained by swapping A-indices for 7-indices

and vice versa.

' E ion
- xR _ a* A
szy"‘ = 'szy" + 2°H ['zx]Ly'A 2 L[zwlAlH xly
[B=22]
- ;
B e o By A * A =
Rigons 2"Hzy1PLePz + 2D [ "H [B-23]
RnyD Proi ion E ion
D = % D D - B D * D* -
Regy Dc ny + DxLC v LoByLpPx + "Hyy, Ly"'c [B-24)

Results in Metric SDaée

When a metric exists on the manifold and the rigging
vectors are chosen orthogonal to the two-surfaces, the
tensors H and L are related. The same holds for ‘H and *L.

This was proved in Section 2.4. We have

LaPx = 9., 9°CHY ;¢ [B-25]

* *
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We regard them as being related by_the process of raising
and lowering indices using the induced.métrics. For this
reason, we drop the L-symbol and_alWays'use H in a metric
space.

All the equations we have developed so far remain the same
in a metric space but we replace the L's .with H's. We can,

'however, develop equation B-21 somewhat further.-

Since ngzY = D,g®¥ = 0, we can rewrite equation B=21 as

= C*gozo c
RxABy - DxHABy * gyzDA szB *szB*szA & HAC,yﬂB x

[B=-27]
In Section 2.3 we derived
Hppy = —1/2 DygAB ' [B-28)
and if we substite this into equation B-27, we get
-_— 2z * . _
RxABy - l/ZDnygAB ® gyzDA He®p *szB*szA * HACYHBCX
[B-29]

We can derive an equation similar to B-29, but involving

the conformal two-metric. Operate on both sides of B—29‘with

the trace-removing operator AACBD. The first term on the

right-hand side becomes

= 1/2AACBDDnygAB = —1/2Dx (AACBDDygAB) +l/2Dx (AACBD) DygAB

[B-30]
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We can use equation 2.3-69 to write this as

~1/2A%By DD gpp = -1/2D_ (D Gcp) + 172D (APBp) D g,y

= -1/2D_(W_gp) - 1/4 D, (*%95) D gy [B-31]

Then the N—ﬁraceless form of equation B-29 is

A - A
A CBDRZABY = —l/ZDx(’YDngD) + A CBD [gYZDA*szB

- *H Tg*Hpn + HAEYHBEx] - 1/4 Dx(qAEgCD)DygmB :

~ A

_1/2Dx('YDngD) + A CBD[gyzDA*szB - *szB*szA]

1 E AB  _ -
* HopgHp®x + 1/2gcpHyp HAB, HoHepy [B-32]
This equation can be further reduced to
A g B -
A”CPp RxABy = -1/2 YDnygCD

A

+ A CBD[gyzDA*szB - *szB*szA]

. . -
+ B YHDEX + 1/2gCDHABYH x = HyHopy - 1/2nyDngD

’ [B-33]
and
A _ ~ A ,

A CBDRxABy = -1/2 'nyDngD + A CBD[gyzDA*szB - fozB*szA]

+ H E .+ 1/2g..H AB. - H_p

CEy'D x dopHapyH x — HyHepy
A
- Hf\ CBDHABy
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~ A :
= -1/2 '}'DnygCD + A CBD[gyzDA*szB - *H Tp*H o)
+ H Ex + 1/2gcpHpp A8, - HH
CEyHD x CDH'AB: x Cbhx

= HyHepy

[B-34]

where Hepy is the traceless extrinsic curvature tensor

introduced in Section 2.4:.
The right-hand side can be written entirely in terms of

HCD:,(
AR B_R o DD
C D xABy /2y x ngD

A .
+ AR [gyzDA*szB - *szB*szAJ

_ " E
1/2 [HyHep, + HyHepo] + Hop HiEy

+ 1/2gcpHpp HAE,
[B-35]

~

or in terms of the traceless extrinsic curvature density HCDy
-1,A B - _ -
Y TATCPpRyeany = 1/2DnygCD

—1AA
+ Y TATCE, [gyzDA*szB - *szB*szA]

~ ~

- 1/2[HYHCDx + HyHepyl + HCEYHDEx

+ 1/2gcpHpp BB [B-36]

 When a metric exists, the symmetry properties of the

Riemann tensor imply that

Raxys = ReaBy
so there is no need to develop a separate equation for the

'RAxyB projection.
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. hi Id it |
We shall now develop the two+two formulation of the
Bianchi identities. Using the conservation law of the

stress-energy tensor, we shall write them in the form

V(G - 1) _ g

il
or

Vs = @ , [B-37]
where

SHY = -GIJV - THV

We can write equation B-37 as

v (T v T
BuVVsp + cuVVsp

v ul v u" v 1 v l.l
B quS o+ B qus p t cqus” p + c“VvsPl o

— Vv ul _ ll" \Y _ uv v \V) l»l"
Bqus o S vaBu S vacu+¢uVVs o

Vv ~LT TR N B v 3 "

= BV L' _ oz _ oB *p v v
Buvvs o S*p H, spHB+cqus”p-o
[B-38]

We first project equation B-38 into the rigging space to get

Vv u' _ z _ B % \V) L]
CxPB' V\sH'p — s%.H_ - sB, Hy + cPcY v, st 0

= v u' v ' _ z _ B *
CPB" V sH'y, + ¢, PB uVySH pn = sT.H_ - sB_ Hy

tCPCY VU sH 4 CxPCY, VY, SH" pu

-225 -



I

A * b
D,SP; + S%H.B, - s H, - SB. L -

z _ oz _* B
+ Dsz SB'sz

D,sP; + SPgH,By - STH_ - SB."H, + D _s%
= p7ID, (pshy) + SPpHB, + YD, (¥5%) = O [B-39]

We next project equation B-38 into the surface to get

\Y ' _ az _ gB_* \Y L
BAPBY Vst - s%H, - S5 "Hy + ByPC uYySH o

v - VYVl . _ ez _ gB *
BaPBY V,SH o1 + BaPBY Vst o — s%H, - S%3"Hy

+ BaPCY, VS o0 + B,PCY, Y SH o

= B A ) B_*

=+ DxSxA - Szx*HzxA

DBSBA + DxSxA - SzAHz - SBA*I{B

- QZ *pr x
ST H ) ®p

pTID, (pSBa) + Y ID_(Y5%,) - S%UH %, = 0 [B-40]
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APPENDIX C
TOTALLY SYMMETRIC TRACELESS TENSORS IN TWO-DIMENSIONS

We show how to construct arbitrary totally symmetric
traceless tensors in two-dimension from arbitrary totally
symmetric tensors. 1It isinot hard to guess at what the

- traceless operator would look like for order three:

Y1 Y2 Y3 = 8§Y1 Y2 ¥3 _ (Y1¥y28Y3)
A 1) xy xg 3/4g (Y1¥2§

X1 X3 x3 x [C-1]

x39x1x,

For the case when there are four indices, the operétor must
have ‘terms which have the single trace of the symmetric
-tensor and terms which have the double trace. For indices,

‘the general traceless Symmetric tensor would be

Tx1x2...xm = Tx1x2...xm

e (x1x9 Tx;5. . .XxXm) Y1y2gY1YZ

. 7 gY1Y24Y3y4
249 (xyxpx3xy Txs. . -Xm) Y1¥2y3y49” " 49 *
' [C-2]
Tx1x2...xm
" " ~ ‘
= Z k=0 (-1) 32k9 (x1xy. . . Ixox-1x2k Txonsa. . -Xm) ¥1¥7. . . yk-1lyk
® g¥1¥2  gvk-1yk [C-3]

where J is the largest integer less than m/2.

If we take the trace of T with Téspect to, say g*1%2, some
of the contractions in the kth—order term will involve taking
an additional trace of T which can only be cancelled by terms

of (k+l)th—order. This gives rise to a recursion relation
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between a,, and a,,,,, - We need only consider

~

k 2k-1y2k
(-1) [aZkg(;1...g12k—1x2ka2k+l...xm)y1..fyzk—1y2kg¥1y?_,.gy ¥

-~

Txox+3...xm)yy. .. y2kely2ke2 -

82 (k+1) 9 (x1. . . Ixok+1x2 (k+1)

® gY1y2-..gy2k+ly2k+l] : ’ (C-4]

The first term in the brackets is comprised Bf“m! terms.
After contraction with g*1*2, there are (m-2)! (m-2k) (m-2k-1)
of these terms which involve an additioﬁal ébﬁtfactiéﬁ of T.
Of the terms which make up the second_éymmetrized.term:in the
brackets, some will involve a contraction where: x1- and xj

belong to the same g. There are (m-2)!(2k+2) of these. But
the contraction of g involves an additional factor of 2. Some
terms will involve a contraction of indices on different g's.

There are (m=2)!(2k+2) (2k) of these.- Finally, there will be
contractions involving one index on g and one on 5. There are

2(m-2) ! (m-2k-2) (2k+2) of these. We thus require that

ay, (m=2) ! (m-2k) (m-2k-1) =

85 (ke1) (M=2) 1 [2 (2k+2) +(2k+2) (2K) +2 (m-2k-2) (2k+2) ]

[C-5]
‘and
asy (m=2k) (m-2k-1)
= 85 (k41) 2(2k+2) [1 + k + (m—2k—2)]7
= &, (x41) 2(2k+2) (m - k -1) ’
and |
3y (k+1) = [(m-2k)(m—2k—l)]/[4(k+l)(m — k -1) Jayy, [C-6]
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Taking ay = 1, then

3, = m(m-1)/4 (m-1) = m/4
a4 = (m=2) (m-3)/4(2) (m-2) 82 = (m=3)/8 a, = (m-3)m/8-4
ag = (m-4)(m—5)/4(3)(m—3) 84 = (m-4) (m-5)m/12-8-4

[€=1]
and so forth.

For various values of m we have:

=2 we have a, = 1/2;

m=3 we have a, = 3/4.

=4 ‘we have a, 1 and a, = 1/8.

[

m=5 we have a, 5/4 and a, = 5/16.

=6 we have a, = 3/2, a, = 9/16 and ag = 1/32,
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