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Fig. 9.1 The layout of a simple
Michelson-type interferometer.

Interferometers

The idea of interferometric detection of GWs is in principle simple and |
elegant, and goes back to 1962, when it was first considered by two
Weber also |
considered it, and it was then pushed in the late 1960s by R. Forward,
In practice, however, a large GW
interferometer is an extremely complex instrument, with many degrees
of freedom that must be kept under control with extraordinary accuracy.
Thus, their development up to the present scale has required the build-
ing up of large collaborations, comparable in size to modern particle |
physics experiments, as well as more than 30 years of preparation. Fol-
lowing the general approach of this book, as outlined in the Preface, we |

Russian theorists, M. Gertsenshtein and V. I. Pustovoit.

R. Weiss, R. Drever, and others.

will not discuss the interesting history of the development of this idea

space-borne alternative, are discussed in Section 9.5.2.

9.1 A simple Michelson interferometer

A Michelson interferometer, of the type used in the classical Michelson—

Morley experiment in 1887 to show the non-existence of the ether, is an
extraordinarily accurate instrument for measuring changes in the travel
time of light in its arms. The simplest conceptual scheme (which is not
exactly the one used historically by Michelson and Morley) is shown in
Fig. 9.1. It consists of a monochromatic light source, which today is of
course a laser, whose light is sent on a beam-splitter which separates the
light, with equal probability amplitudes, into a beam traveling in one

arms and a beam traveling in a second, orthogonal, arm. At the end

of each arm we put totally reflecting mirrors. After traveling once back
and forth, the two beams recombine at the beam-splitter, and part of
the resulting beam goes to a photodetector, that measures its intensity
(while a part goes back toward the laser). We denote by wy, the frequency
of the laser (the subscript L distinguishes it from the frequency wgy of
the GWs that we want to detect), so ki, = wr,/c and A\, = 27 [ky, are

Vi
referring the reader to the Further Reading section for reviews, and we
will rather focus on the present understanding of these detectors. We
will begin in Section 9.1 with the most naive setting, a simple Michelson
interferometer, and we will then add up successive layers of complex-
ity in Sections 9.2 and 9.3. Having defined the experimental set-up, we |
will be able to discuss the principal noise sources in Section 9.4. The |
existing detectors (LIGO, VIRGO, GEO600 and TAMA) are discussed
in Section 9.5.1 while advanced ground-based detectors, as well as the
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the wavenumber and the wavelength of the laser light. It is convenient
to use a complex notation for the electromagnetic field. Thus, a given
spatial component of the electric field of the input laser light is written

EOP——ithJ,r'LkL X

(9.1)

We denote by L, and L, the length of the two arms, where we have
oriented the = and y axis as shown in Fig. 9.1. Consider a photon that
arrives at the beam-splitter, coming from the laser, at some initial time
to.} The part of the electric field that goes into the z arm bounces on
the mirror at a distance L, and arrives back at the beam-splitter at a
time t = tg + 2L /c, while the part that went through the y arm comes
back at the beam-splitter at t' = tg + 2L, /c. Thus, the beam that
finally recombines at the beam-splitter at a given observation time ¢ is
the superposition of a beam that entered the beam-splitter at a time
tgv) =t — 2L,/c, and then went through the z arm, and a beam that
entered the beam-splitter at a different time téy) =t —2Ly/c, and then
went through the y arm. Setting the beam-splitter at x = 0, the former
beam has an initial phase exp{—ith((f)} = exp{—iwrt + 2tk Ly}, and
the latter exp{—'éthéy)} = exp{—iwrt+ 2ikr,Ly}. The phase of the field
is conserved during the free propagation, while the fields acquire overall
factors from reflections and transmission at the mirrors.? So, the two
electric fields that recombine at time ¢ at the beam-splitter are given by

1

El — 7_E06*’iwL‘[;+2ikLLm

; (9.2)

and

1 ; %
L (93)

The total electric field is Eouy = F1 + Ea. Writing 2L, = (Ly + Ly) +
(Ly — Ly) and 2Ly = (Ly + Ly) — (Ly — Ly), we see that

Eou = —iEge ™1+ttt sinfky (L — La)] (9.4)
and the power measured by the photodetector is proportional to
| Eous|? = E sin®[ky(Ly — L)) . (9.5)

Therefore any variation in the length of a arm results in a correspond-
ing variation of the power at the photodetector. We now discuss how
to apply this general idea to GW detection. We saw in Section 1.3.3
that the interaction of a GW with a detector can be described in two
different languages, i.e. either using the T'T frame, or using the proper
detector frame. It is quite instructive to understand the functioning of
an interferometer in both ways, as we do in the next two subsections.

9.1.1 The interaction with GWs in the TT gauge

Recall from Section 1.3.3 that, in the T'T gauge, the coordinates are
marked by the position of freely falling objects so, even when a GW

L Observe that, until we discuss shot
noise, in Section 9.4.1, there is really
no need to introduce photons, and the
whole discussion could be done purely
classically, replacing the word “photon”
by “wave-packet”.

2As we will discuss in a more general
setting in Section 9.2.1, the reflection
oft a 50-50 beam splitter can be mod-
eled multiplying the amplitude of the
incoming electric field by a factor r =
+1/+/2 for reflection from one side and
r=-1/ /2 for reflection from the other
side, while the transmission multiplies
it by ¢ = 1/4/2, and reflection at the
perfectly reflecting mirrors at the end
of each arm multiplies the amplitude by
—1. Thus, overall one beam acquires a
factor (1/+/2) x (—=1) x (1/v2) = —1/2
and the other a factor +1/2.
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30t course, there will also be some non-
static forces, such as those due to sus-
pension thermal noise or, more gen-
erally, to the coupling with the envi-
ronment, which will provide the back-
ground noise, and that will be discussed
in Section 9.4.

4The response to GWs with arbitrary
direction and polarization will be stud-
ied in Section 9.2.3.

is passing, the coordinates of freely falling masses by definition do not, |
change. Of course, the mirrors of a ground-based interferometer are
not freely falling; rather, the Earth’s gravity is compensated by the

suspensions. However, as we already discussed in Section 1.3.3, these
forces are static, compared to the frequency of the GWs that we are
searching and, as far as the motion in the horizontal plane is concerned,
the mirrors can be taken to be in free fall, i.e. they follow the geodesics
of the time-dependent part of the gravitational field.3

Thus, in the T'T gauge description, the coordinates of the mirrors and
of the beam-splitter are not affected by the passage of the wave. We

define the origin of the coordinate system as the location of the beam-

splitter, while the position of the mirror which terminates the z arm
defines the point with coordinates (L, 0), and the position of the other
mirror defines the point with coordinates (0, L, ), and this remains true
also when a GW is present.

In the TT gauge description, the physical effect of the GW is mani-
fested in the fact that it affects the propagation of light between these

fixed points. We assume for the moment that the GW has only the plus

polarization, and comes from the z direction.? Tn the z = 0 plane of the
interferometer we therefore have

hoy(t) = ho coswgyt , (9.6)

and the space-time interval in the TT frame is given by

ds® = —c*dt* + [L + hy (£)]da? + [1 — ho (£)]dy? + d2? . (9.7)
Photons travels along null geodesics, ds* = 0, so for the light in the z
arm we have, to first order in hq,
1

dr =+edt {1 — 5]’L+(t) , (9.8)
where the plus sign holds for the travel from the beam-splitter to the
mirror and the minus sign for the return trip. Consider a photon that
leaves the beam-splitter at a time #y. It reaches the mirror, at the fixed
coordinate x = L, at a time ¢; obtained integrating eq. (9.8) with the
plus sign,

ity
L, = C<t1 - to) - —;: / dt’ fL+(t/) : (99)

ty

Then the photon is reflected and reaches again the beam-splitter at
a time tp obtained integrating eq. (9.8) with the minus sign, between
z = Ly and z = 0,

/ do = fc/ dt’ {1 - —h+(t’)} ,
J Ly 11 2

(9.10)

ie.

(9.11)

.
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.
.
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Summing eqs. (9.9) and (9.11) we get

t2
2L$+}/ At by (V).

C to

ty —to = (9.12)
For a given value of gy, the time of arrival ¢ after a round trip in the
z arm is therefore ty + 2L, /c, plus a correction of order hg. In the
upper limit of the integral on the right-hand side we can replace 5 by
to + 2L, /c, since the integrand is already O(ho) and we are anyway
neglecting terms O(h3), so we get

/, 1 to+2Lg/c
ty —ty = 2Ls + = / dt’ hg cos(wgwt')

c 2 Ji,
_2Ls | ho {sin[wgw (to + 2Lg/c)] — sinwgwto} . (9.13)
c 2Wgw

Using the identity sin(a+20) —sina = 2sin 8 cos(a+ 3), we can rewrite

this as

hoLy sin(wew Ly /c)
¢ (wgwla/c)

Observe that the difference ts —%g is a function of the time ¢y at which the

photon left the beam-splitter, because of the term cos|wgy (to + Lo /c)].
Using eq. (9.6), we can also rewrite the above result as

coslwgw (to + Ly /c)] . (9.14)

2L
1)2 - to = C:C

2L,

L, sin(wgw Ly /)
—tg = = hitg + L,/¢c) —=——-"2 9.15
ty — to + == hlto + Lz /c) (o)) (9.15)

The quantity to + L,/c which appears in the argument of h(¢) is, to
zeroth order in hg, the value of time #; at which the photon touches the
far mirror on the z arm. This result will be easily understood physically
in the next subsection, thanks to the Newtonian intuition that we can
use in the proper detector frame. The function

) wng> _ sin(wgwL/c)
sinc =
< (wewl/c)

goes to one when wgwlL/c — 0. Therefore, when the period of the

GW is large compared to L, /¢, the shift At in the travel time to — tg,

with respect to the unperturbed value 2L, /e, is simply h(t;)L,/c. If

wewLg/c > 1, At is suppressed. This is clearly understood physically:

if ngwLx /c > 1, during the travel time of the photon h(t) changes

sign many times, so it contributes sometimes positively and sometimes

negatively to At, and these contributions partially cancel out. A plot of
the function sinc(z) is shown in Fig. 9.2.

In the y arm the analysis is similar, but now the sign of 2.(¢) is reversed,
as we see from eq. (9.7), so we now have

2L,
C

(9.16)

sin(wgw Ly /€)

Ly
— — Rh(t L
c o + y/C) (wngy/C)

tg — t() = (917)
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Fig. 9.2 The function sinc(z) =
(1/z) sinz (solid line) and, for com-
parison, the function 1/z (dashed
line).
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5The superscript {x) on E(®)(¢) re-
minds us that this is the electric field of
the light that went through the z-arm,
and should not be confused with the z-
component of the electric field vector.
Here we are considering a given spatial
component of the electric field.

6Except for a small asymmetry, the
Schnupp asymmetry, that we will dis-
cuss in Section 9.3.2.

In practice we will be interested in the light that comes out of the beam.

splitter at a given value of the observation time ¢, so it is useful to
rewrite these relations holding fixed the value of the time t5 = ¢ at
which we observe the light that has recombined at the beam-splitter,
and computing the corresponding value of t5. In order to come back
at the beam-splitter at time ¢, the light that went through the z arm
must have started its round-trip travel at a time téw) obtained inverting

eq. (9.15) to first order in hg, which means that h(ty + L, /c) is replaced

by h(t —2L,/c+ Ly/c) = h(t — Ly/c), so

2Ly L

téw) =t - % h(t — Ly /c) sinc (wgwLa /), (9.18)

¢
and similarly the light that went through the y arm, in order to arrive
back at the beam-splitter at the same time ¢, must have started itg
round-trip travel at a different time t(()y) given by

4 Ty h(t — Ly/c)sinc (wgw Ly /c) .

Again, we use the fact that the phase of the field is conserved during
the free propagation. Setting the origin of the coordinate system at the
beam-splitter, and writing the electric field of the light as in eq. (9.1),
we see that the light that is at the beam splitter (x = 0) at time t(()w)
has a phase exp{ —z'th((Jm)}, The free propagation along the arm does
not change this phase, while reflections and transmission at the mirrors
give an overall factor +1/2, see Note 2 on page 471, so®

E(m)(t) — _%Eoe—iwméw)
1 ; .
L gt pne e, (9.20)
where
wilg
A, (t) = hy sinc (wgw Lz /¢) coslwew (t — Ly /c)], (9.21)

and similarly the field that went through the y arms, at time ¢ has the
form

EW (1) = +~;—Eoe*i“’”c(>y>

— +_]_‘_Eoe—iwL(t72Ly/C)+’iA(/5y<t) (922)
2 b
where
wLLy .
A¢y(t) = —ho sine (wgw Ly /) coslwew (t — Ly /)] . (9.23)

C

In general, L, and L, will be made as close as possible,® in order to
cancel many common noise in the two arms. Thus, in A¢, and Agy,
which are already of order hy, we simply replace L, and L, by L =

(9.19)

9.1 A simple Michelson interferometer 475

(Le + Ly)/2, while in the terms ¢ — 2Ly /c and t — 2Ly/c we still take
into account any small difference between L, and L,, writing 2L, =

o + (Ly — L) and 2L, = 2L — (L, — Ly). Then
E(z) (t) - *lEOe_i“-’L(’-”2L/C)+i(b0+iA¢‘z(t) ’ (924)
2
EW () = +lEoefi.wL(t—2L/c)—i¢o+iA¢.5,(t) ’ (9.25)
2
where
(;5() = kL (L:c - Ly) 5 (926)
A¢y = —Ag,, and
Ay (t) = ho ki L sinc (wgw L/ ) cos[wew (t — L/c)]
= |A¢y| cos(wgwt + @) , (9.27)

with & = —wgwL/c a phase. The total phase difference induced by GWs
in the Michelson interferometer is

Adniich = Ay — A¢y =20¢, . (9'28)
The total electric field at the output is
B (t) = E@ (1) + EW (1)

= —iEge L2/ gindg + Agy(t)] . (9.29)

The phase ¢g is a parameter that the experimenter can adjust, choos-
ing the best working point for the interferometer, as we will discuss in
Section 9.3.2, while A¢,(t) contains the effect of the GW. In the limit
wewl/c < 1, eq. (9.27) reduces to

A¢p(t) ~h(t —L/e)krL. (9.30)

Comparing with eq. (9.26) we see that, in this limit, the effect of the
GW on the phase shift is formally equivalent to a change of L, — L,

given by
A(Lz — Ly)

L
The total power P ~ |Eyo; | observed at the photodetector is modulated
by the GW signal as

~h(t—L/c). (9.31)

P = PO SinQ {¢)0 + A¢£ (t)]
:%ﬂﬂﬂm+m%m}

P,
= S {1~ cos[2g0 + Adnsien(1)]} (9.32)
Clearly, we want to have A¢mich as large as possible. For a GW of a
given frequency wgw, we see from eq. (9.27) that the dependence on L
is given by the factor (wrL/c)sinc(wewl/c) = (wi/wew)sin(wewL/c).



476  Interferometers

"More precisely, for the value of L given
ineq. (9.33), the time shift always keeps
the same sign for a photon whose time
of time of entry inside the cavity is
properly synchronized with the phase of
the GW. For larger values, there is at
least a partial cancellation, no matter
what is the relation between the phase
of the GW and the time of entry of the
photon.

8 This is correct as far as the fast-
varying part of the gravitational field
is concerned, while the static gravita-
tional field of the Earth is compensated
by the mirror suspensions, and other
effects related to the laboratory frame
(Coriolis forces, etc.) are negligible be-
cause slowly varying, see the detailed
discussion in Section 1.3.3.

Thus the optimal length of the arms is given hy wegwL/c = 7/2, ie
L = Agw/4. In terms of few = wyw/(27), this gives

L ~ 750 km <100HZ> .

JEW

(9.33

For such a value of L, the time shift induced by the GW on the light ha,
the same sign all along its round trip in a arm, so the effect adds up
For longer arms, the GW amplitude inverts its sign during the roun
trip, so past this moment it starts canceling the phase shift that the ligh
already accumulated.” Arms of hundreds of kms are impossible to obtain
in a ground-based interferometer, for practical and financial reasons. We
will see in Section 9.2 how to “fold” this optimal pathlength of the light
into an interferometers of manageable size.

It is useful to realize that the effect of the GW on the laser light is
to generate sidebands in the light propagating in each of the two arms.
Using eq. (9.27), and making use of the fact that A¢, is linear in ho, w
can expand E®) () in eq. (9.24) to order hq as

1
2
. EEOGI,/J‘ e—zth + %lAQ/}af‘ e%ae—b(wL—ngwﬂ

B (1) = -2 Boe™nt-2L/04160 [1 | i|Ag, | cos(wgut + o)

+%IA@1E e~z’ae——i(w1l+ugw)t (9.34) ’}
with 3 an irrelevant constant phase. Thus, beside the original electro-
magnetic wave at a frequency wy, (the “carrier”, in the language of radio
engineering), we have two more electromagnetic waves, at the frequen-
cies wy, & wegy, (the “sidebands”). The modulus of the amplitude of the
sidebands is O(ho) with respect to the carrier, and is given by |A¢,]|/2.

9.1.2 The interaction in the proper detector frame

It is instructive to compare the above results, obtained in the T'T frame,
with the description obtained using the language of the proper detector
frame. Recall from Section 1.3.3 that the proper detector frame is the
one implicitly used by the experimenter when he /she thinks about the .
apparatus. In particular, here coordinates are not marked by freely
falling masses, as in the TT gauge, but rather are measured with a ;
rigid ruler. We saw that in the proper detector frame the effect of the !
passage of a GW is a displacement of the test masses from their original |
position and, if these test masses are at a distance small compared to
the reduced wavelength X,,, of the GW, this displacement is determined
by the equation of the geodesic deviation (1.95). At the same time, the
space-time metric can be taken as flat, at least in a region of space small §
compared to the scale of variation of the gravitational wave, which is its j
reduced wavelength X4y .8 %
|
%
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Thus, the proper detector frame description has the advantage of being
very intuitive, since in a first approximation we can use the language of
flat space-time, and the interaction of the mirrors with GWs is described
by the equation of the geodesic deviation, i.e. in terms of Newtonian
f(l)rces, so we can use our Newtonian intuition. However it must be kept
in mind that, contrary to the TT gauge description, which is exact, the
proper-frame description is approximate, and is valid only if the test
masses are at a distance small compared to the reduced wavelength Xgy
of the GW, see eq. (1.97). Since for a Michelson interferometer the
distance between the beam-splitter and the end mirror of an arm is the
arm-length L, the proper detector frame description assumes L < Kgy,
that is,

Wew L

eV 1. (9.35)
C

Thus, we cannot expect to recover the full T'T gauge result (9.27), which
is exact, but only its limit for small values of wgy L/c.

We first perform the computation in the proper detector frame to
lowest-order in wgy L/c. In this limit the space-time metric is exactly
flat, see eq. (1.86), while the effect of the GW on the test masses is given
by the equation of the geodesic deviation, eq. (1.95). Thus, the situation
is reversed compared to the TT gauge description. In the TT gauge, the
position of the mirrors is not affected by GWs, while the propagation
of light between the mirrors is affected. In the proper detector frame,
the mirrors are affected by the GWs, while light propagation is not.
We fix the origin of the coordinate system on the beam-splitter so, by
definition, the beam-splitter does not move, and we consider as before a
GW with only the plus polarization coming from the z direction, written
as in eq. (9.6). The equation of the geodesic equation for the mirror on
the = arm, described by coordinates (¢, &,), is then®

1.
=-h T
gm 9 +£

while &, (¢) remains zero at all times if &, (0) = £,(0) = 0. Equation (9.36)
can be solved perturbatively in hg; to zeroth order we have &, = L., so
to O(hg) we get & = (1/2)hy L, which has the solution

hoL,
() =Ly + ~%—'— COS Wewl

(9.36)

(9.37)

where we choose the integration constants so that the average value of
&, over one period of the GW is equal to L, and the average value of
the velocity &, vanishes.

Since space-time is flat, a photon that starts at the beam-splitter at
time tg, moving along the positive z axis, follows the trajectory z(t) =
c(t—tp), so it reaches the mirror at a time 1 given by c(t1 —to) = & (t1).
This equation is easily solved for ¢, perturbatively in hg. To zeroth
order in hg we get the trivial result t; = ¢g + (L, /c). Inserting this into
CoSwgw! in eq. (9.37) (which is already multiplied by ho), we get

”’02% coslwgu(fo + La /)] .

c(ts — to) = Ly + (9.38)

9The fact that here appears the form
of hyy in the TT gauge, even if we are
working in the proper detector frame,
is a consequence of the fact that the
right-hand side of eq. (9.36) is really
—c2 ijO{j, see eq. (1.93). Recall from
Section 1.1 that, in linearized theory,
the Riemann tensor is invariant under
coordinate transformations, so we are
free to compute it in the frame that we
wish, and in particular we can use the
form of hyy in the TT gauge.
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07his can be shown by observing that
the geodesic equation (1.66) for a mir-
ror moving non-relativistically is simply
& = ——1’60(5)‘ Expanding it to second
order in &, with I‘éo(g =0) = 0, we get

4 j ] 1. o T
& = 810, Tho— 567€ 0,0, +O(€%),

where the derivatives of F?)o are com-
puted at £ = 0. The first term gives
the equation of motion that we already
used. For a mirror along the z arm
€' = (£,0,0), so the second term is
proportional to 81(6111(])0)‘ A plane
wave propagating along the z direction
is function only of ¢ and z, and so its
Riemann tensor, as well as (o I‘éo), is
independent of z, and &; (31F(1)0) van-
ishes.

The round-trip time is twice as large, so the photon gets back at the
beam-splitter at a time t, given by
2Ly hoLg

to — g -+
C C

cos|wew (to + Ly /c)] . (9.39)

This coincide with the result that we got in the T'T gauge, eq. (9.14), ex-

cept that the function sinc (wgwL/c) = [sin(wgwL/c)]/[wgwl/c] has been ;

replaced by one, which is the lowest-order term of its Taylor expansion.
This is as expected, since the proper-frame computation just performed
is valid only to lowest order in wgyL/c.

It is instructive to compute also the next term in the expansion in
wewL/cin the proper detector frame, and verify that we correctly recover
the next term in the expansion of sinc (wgwL/c). In principle, we have
two kinds of corrections. (1) Corrections to the equation of motion of the
mirrors, since the geodesic equation that we have used is the first term

in an expansion in L/Xyy, = wewl/c, as it is clear from the derivation ;
leading from eq. (1.66) to eq. (1.71). (2) Correction to the propagation

of the photons, since the space-time metric is no longer flat.

Actually, the former type of correction in our problem vanishes at
next-to-leading order.'® The first correction to the photon propagation
can be computed using the metric (1.87). For the propagation along a
trajectory with y = z = 0 (and therefore with dy = dz = 0), recalling
that the Riemann tensor is antisymmetric in the first and second pair
of indices, eq. (1.87) reduces to

ds® = —c2dt*(1 + Ryjo12°) + da? . (9.40)

We can compute the Riemann tensor using the form of A, in the TT
gauge (compare with Note 9) which gives, for a wave with only the plus
polarization,

1.
Ro101 = =55 hy
c
w2y
= 2i2 hg cos Wyt (9.41)

see eq. (1.94). Light propagation is obtained imposing ds? = 0 in
eq. (9.40); then, to next-to-leading order, the position x(t) of a pho-
ton propagating along the z arm is obtained integrating

2

gw

w
dr = *edt |1+ Exz(t)ho coswgwt:f , (9.42)

while the motion of the mirrors is still given by eq. (9.37).

Consider a photon that leaves the beam-splitter at time to and prop-
agates along the positive x direction. To lowest order in ho we have the
trivial result @(t) = c(t — to). Inserting this into the right-hand side of
eq. (9.42) we find the solution to order ho,

cw?, [t
x(t) = c(t — tg) + hy 4g‘w / dt' (t' = t0)? coswayt’. (9.43)

to

i

Writing

08 Wewt' = cos|wyw (t' — t0) + wewto] (9.44)

= coswaw (t' — t0)] COS Wewto — sinfwew(t — to)] sin wewto ,

the integral over ¢’ can be performed exactly. Consistently with the order
to which we are working, we then expand the exact result to the first
non-trivial order in wew (t—1%0) (which, in the final result, will correspond
to the first non-trivial order in wgwL/c), and we get

2
CWgy,

x(t) ~ c(t —to) + ho (t —t0)® cos wawto . (9.45)

The time ¢; at which the photon reaches the mirror is now obtained
solving the equation z(t1) = &(t1) iteratively in hg. This gives

2

hoL Wi
c(ty — to) = Ly + —=% cosfwgw (to + Lz/c)] — ho ﬁLi cos(wgwto) -
(9.46)
Observe that (writing € = wywla/c)
coS[wgw (to + Ly /c)] = cos(wewto) cos € — sin(wgwto) sin e (9.47)

= [1 + O(€®)] cos(wgwto) + O(e) sin(wgwto) ,

so in the last term of eq. (9.46), which is already a factor (wgwlLz/c)?
smaller than the second term, we can replace cos(wgwtg) by cos[wgw (to +
L /c)], since the difference is of higher order in wgw Ly /c. Then we finally
get

1

2
hoL s Wew Ly
ety —to) = Ly + % cos[wgw (to+ L/c)] ll -3 <%> } . (9.48)

Writing similarly the equations for the round trip we find that, to this
order in wgy Ly /c, the round-trip travel to — tg is twice t; — ¢o. In the
last bracket we recognize the first two terms of the expansion

sinx

2
=1- 2+ 0. (9.49)
x 6
We have therefore verified that the analysis in the proper detector frame
correctly reproduces the leading and the next-to-leading terms of the TT
gauge result given in eq. (9.15). It is also clear from this discussion that,
while the description in the detector proper frame is more intuitive,
since it allows us to think in terms of Newtonian forces acting on the
mirrors, and of light propagating (in a first approximation) in the flat
space-time of Newtonian physics, still the T'T gauge description is much
more powerful, since it allows us to get the exact closed form of the
dependence on wgw Ly /c. In the detector proper frame the computation
of still higher-order corrections becomes more and more involved and,
without the hindsight from the TT gauge analysis, it would be difficult
to imagine that the whole series resums to such a simple closed form.
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HFurthermore, this scheme turns out
to be quite sensitive to the problem
that some part of the light is scattered
insicde the interferometer off the nomi-
nal path, and this light interferes with
the main beam.

Fig. 9.3 The situation in which
the incoming field comes from the
denser medium.

Fig. 9.4 The situation in which the
incoming field comes from the rarer
medium.

9.2 Interferometers with Fabry—Perot'
cavities

We have seen in eq. (9.33) that, to measure GWs with frequencies of
order of a few hundreds Hz, the optimal choice would be an arm-length
L of several hundreds kms. For Earth-based interferometers this is in
practice impossible (consider, among other things, that the arms of the
interferometers must be enclosed in a very high vacuum system, as we
will see in the Section 9.4). Taking into account technological and fi-
nancial constraints, LIGO has arms of length L = 4 km and VIRGO of
3 km, while GEO600 has L = 600 m and TAMA has L = 300 m. The
idea is therefore to “fold” the optical path of light, making it bounce
back and forth many times in each arm, before recombining the two
beams. A solution that was first considered is the so-called “delay line”.
In this case, in each arm the light beam goes back and forth between

two mirrors along trajectories that do not superimpose, and which make

different spots on the mirrors. However, to reach an effective path length
of order 750 km out of arms of order 3—4 km we need O(100) bounces. In
the delay line scheme, this leads to unpractically large mirrors.'? Thus,
the solution which has been adopted in LIGO and VIRGO is that of
transforming each arm into a Fabry—Perot cavity. In the next subsec-

tion we will discuss the principles of operation of a Fabry—Perot (FP)

cavity, and in Section 9.2.2 we will discuss its interaction with a GW,
and we will see how it improves on the simple Michelson scheme.

9.2.1 Electromagnetic fields in a FP cavity
Reflection and transmission coefficients

First of all we recall from elementary electromagnetism that, at the in-
terface between two media with different index of refraction, the relation
between the incoming field Ejy,, the reflected field Fieq and the trans-
mitted field F; can be written as

Ereﬂ = TEin N Et = tEin s (950)
where r and ¢ are called the reflection and transmission coefficients;
respectively, and are in general complex numbers. We consider for the
moment the transmission and reflection across a sharp boundary. At
a sharp boundary there is no physical mechanism that can produce a
phase shift, so in this limit 7 and ¢ are real. More precisely, (r,t) are
the reflection and transmission coefficients when FEj, comes from the
first medium, say the denser (from the left in Fig. 9.3). Similarly, we
denote by r’ and t' the reflection and transmission coeflicients when
FEiy, comes from the second medium, i.e. from the right in Fig. 9.4.
Between these coefficients hold useful relations. In particular, since the
energy associated to the electric field is proportional to |E|?, and on a
sharp boundary there are no losses and r,t are real, energy conservation

requires

rtt=1, (9.51)

and '? 4% = 1.12 Between (r, t) and (', t') we have so-called reciprocity
relations, which can be obtained as follows. Consider the arrangement
shown in Fig. 9.5, in which the incoming electric field arrives from the
left, and there is a gap of width d of a less dense medium between two
layers of the more dense medium. We denote by Ec,, and E!,, respec-
tively, the right-moving and left-moving electric fields in the gap, close
to the first interface. Then, by definition of reflection and transmission
coefficients, at the first interface we have the two relations

Eeav = tEy, + ?“/Eéav ) (952)

Erep = 1B +t'El,, . (9.53)

We now take the limit d — 0. In this case E. and E. , are also the
right and left-moving fields, respectively, at the second interface. Thus,
we also have the relations

Ei =t'Feay , (9.54)
El,, =1"Ecy . (9.55)
On the other hand, if d — 0, there is no gap, and we must have
E, = Ey,, (9.56)
Eien=0. (9.57)

Combining the six relations (9.52)—(9.57) we find the two conditions

7= —r, (9.58)
t—rr' =1.

Inserting egs. (9.58) and (9.51) into eq. (9.59) we get t' = ¢. In conclu-
sion, we have

(9.60)

For a perfectly reflecting mirror, reflection from the less dense to the
more dense medium is associated to a factor » = —1, while from the
denser to the less dense medium we have r = 1.

Reflected, transmitted and interior field in a FP cavity

We can now apply the above results to the study of a Fabry—Perot
cavity. A Fabry—Perot cavity consists of two parallel mirrors, that for
the time being we assume plane and of infinite transverse extent. We
consider a component F;, of the incoming electric field. Part of the
incoming field is reflected and partly transmitted, see Fig. 9.6. The

9.2 Interferometers with Fabry—Perot cavities 481

2More precisely, the energy density is
actually proportional to E-D, where D
is the displacement vector. If we define
the coefficients 7 ¢ in terms of E, we
should then write r2 + ¢2 (ni/n2) = L
‘We can however simply reabsorb n into
the definition of E to keep the equations
in simpler forms such as eq. (9.51). In
any case, the issue is irrelevant for a sit-
uation such as that shown in Fig. 9.6,
where we are interested in the fields in
the vacuum, on both sides of the mir-
ror.

Ein E

& refl Ecav

Fig. 9.5 A gap of a less dense

medium  between two layers of

denser media.

Ein ECHV(O) ECEIV (L)

— —_— _— Et
—_—

- - -

Ereﬂ Ecay(® Ecav(L)

o

Fig. 9.6 A schematic Fabry—Perot
cavity.
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13I\/Iultiple reflections inside the sub-
strate can be suppressed by using anti-
reflection coatings, but are really elim-
inated only by giving to the exter-
nal face of the mirror a wedge-shaped
form, so after a few bounces the photon
is simply lost, rather than reentering
the main beam with a different phase
(which would result in noise). It should
however be observed that all these cou-
plings of the phase of the light to the
geometry of the optics (such as multiple
reflections, phase shifts at the coatings,
etc.) are channels from which noise can
enter.

Fig. 9.7 A symmetric mirror, with
a field A coming from the left and a
field B incoming from the right.

transmitted field Ec,., (0) propagates to the far mirror, where it is partly
reflected and partly transmitted. The reflected part goes back to the first
mirror, where again it is partly reflected and partly transmitted, and so
on. The total reflected, interior and transmitted fields are therefore
determined by the superposition of many beams, corresponding to the
multiple bounces.

The light from the laser comes from the left in Fig. 9.6. The mirrors
are set with their high-reflectivity coating on the interior of the cavity.
Before reaching the high-reflectivity coating, light enters from the left
face of the mirror and passes through the substrate, so in general it
acquires a further complex phase shift, both from the substrate and
from the coating, and can also suffer losses. A beam which enters the
cavity and, after a number of round-trips, is reflected back, traverses
once more this substrate, acquiring a further phase. The important
point, however, is that these phase shifts are the same for all beams,
independently of the number of bounces made inside the FP cavity, so

they just give an overall phase factor, independent of the length L of

the cavity, to the reflected (and transmitted) fields. This phase factor
is compensated by the experimenter, moving the position of the mirrors
until the interference pattern of the interferometer is on the desired

working point (the dark fringe, as we will see), so we can simply forget

about them.'® We can therefore simply model the two mirrors of the
FP cavity stating that, for the first mirror, we have real reflection and
transmission coefficients ry and #; when the incoming field propagates
from the interior of the mirror toward the cavity, and v = —r; and
) = t; when it is going from the cavity toward the mirror. We then
take into account the losses in the mirror writing

24t =1—p, (9.61)
where p; (typically of order of a few parts per million) represents the
losses in the first mirror. We similarly introduce coefficients (1o, t2) and
(rh, = —ry,th = to) for the second mirror, with r3 + t3 = 1 — pa, s0
again a field that propagates from the cavity toward the mirror and is
reflected back gets a factor —ra.

Other modelizations of the mirrors are possible. In particular, one
could treat the reflection and transmission from the two sides of the
mirror symmetrically so that, if a field A is coming from the left, the
reflected field is Ap = zpA and the transmitted field is Ay = z7A4,
where zp and zr are the reflection and transmission coefficients, which
now a priori can be complex because of the finite thickness of the mirror;
and which satisfy |zg|? + |27|*> = 1 — p. Similarly, if a field B is coming
from the right, the reflected field is Br = zp 5 and the transmitted field
is By = zpB, with the same zg, 27. In the presence of both a field A
coming from the left and a field B coming from the right, as in Fig. 9.7,
we have

A/ = ZRA + ZTB (962)
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B = zpA+ zpB. (9.63)

Requiring the energy balance |A'|?> +|B'|* = (1 —p)(JA]? + | B|?), we get
the condition Re (zrz}) = 0. A possible solution is zg = ir, zr = t,
where 7 and t are real and satisfy 72 +t? =1 — p.

These different modelizations of the mirrors of a cavity of length L
can however be compensated by a constant shift AL of some fraction
of wavelength. For instance, with the modelization 7 = —7r, we will
find below that a Fabry—Perot cavity resonates at 2k, L = 27n, with n
integer. Repeating the computation for zz = ir, equal for both sides,
one would rather find resonances at 2k, L = 27(n + 1/2). In practice,
the experimenter tunes the position of the mirrors until he/she finds a
resonance, and all that matters is the behavior around resonance, which
is the same in the two cases, so the modelization chosen for the mirrors
becomes irrelevant. Similarly, using zz = i and zp = ¢, instead of
eq. (9.5) one would find |Eoul|? = EF cos?[kr, (L, — Ly)], but again the
experimenter simply adjusts the lengths L, and L, until he/she finds
the desired working point, such as the dark fringe. For definiteness, we
will always use the modelization leading to eq. (9.60).

We can now compute the reflected and transmitted fields, and the
field inside the cavity, as follows. We choose the coordinates so that the
left mirror is at = 0 and the right mirror at x = L. From the laser
we send light with an electric field of the form FEgexp{—iwpt + ikpz}.
Let t = tg be the value of time at which a given wave-packet reaches the
mirror, at z = 0. Thus, the corresponding electric field is simply

Eoefztho )

(9.64)

Part of this beam will be immediately reflected back from the mirror,
with amplitude +ry, giving rise to a reflected beam with field

E{§ = riBoe™ "t (9.65)

This field will interfere with a beam that was send toward the mirror
earlier, which entered the cavity, was reflected back at the second mirror,
and then was transmitted from the first mirror, see Fig. 9.8. In order to
arrive back at the first mirror at the same time #g, it must have entered
the cavity at time to—2L/e. So, its initial amplitude when it entered the
mirror for the first time, arriving from the laser, was Ege~#wr(to—2L/c)
that is Fpe ®rtoe2hil  After transmission from the first mirror it gets
a factor £y, reflection at the second mirror gives a factor —ry and finally
transmission from the first mirror gives again ¢;. Thus, at time #g the
total reflected field gets also a contribution

B = [~3ry ¥L] Beivrto (9.66)

This beam has a relative amplitude —r9t? e2?*1X compared to the incom-
ing laser field given in eq. (9.64).1* Then, we have the field that entered
the cavity at time to —4L/c, and went twice back and forth in the cavity.
It comes out at time ty with an amplitude

EG) = [~rirdt? ethul] Byemierto (9.67)

E()--A>~—-wk —
r]EO -
2kl
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2. 2 g kL e R
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Fig. 9.8 The building up of the re-
flected field from the interference of
the directly reflected beams and of
beams that entered the cavity at
earlier times and made a number
of bounces inside the cavity. For
clarity, the various path have been
drawn as if they were spatially sep-
arated.

Mhis result is often colloquially ex-
plained stating that the field has ac-
quired a phase e?**tLl from the free
propagation, and the factors —7'2t%
from its various transmissions and re-
flection. This is misleading. Of course,
a wave does not acquire any phase fac-
tor from its free propagation. Pho-
tons in free space propagate along a
trajectory x(t) = =zo + c(t — to), so
z(t) — ¢t = zy — ctp is a constant, and
the phase factor kpz —wrt = ky, (z — ct)
is also constant along the free propa-
gation. In flat space-time, multiplica-
tive factors and phases are acquired by
the amplitude only when there is inter-
action with matter, i.e. at reflection
and transmission from the mirrors, and
in our case this gives the factor —Tgt%
The factor e2**LL relative to eq. (9.64)
is there because the beam that we are
considering entered the cavity earlier,
at a time tg — 2L/c, and spent a time
2L/c going back and forth in the cav-
ity. Thus, this second beam already
had from the start a phase different by
a factor e?**LL compared to the field
(9.64) that arrives at time tg directly
from the laser.
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More generally, the field that entered the cavity at time to — n(2L/c)
and performed n round trips comes out at time ¢y with an amplitude

(n) n—1_n42 2niky L —jwy,t
Eig = [—r{7lries el EBpemterto,

The total reflected field is therefore given by

M o]
—wr,t E —1 2niky, L
Ereﬂ — Eoe wrto ry — t% 7,711 T%Le ?’lej,]‘|
L n=1
B 00
. . PN 7 m
— E[)efzwy,t() ry— ti,,‘ZeZZ}vLL E (,’,,] 7.2627}&‘[1[/)
L m=0
) r 5 eQikLL
= Eoe—ztho ry —tirg —mm 7
i h 1 1 _ rlfr262’ll}c].,L

or, using t? = 1 — p; — 7%,

r — 7’2(1 — pl)BZikLL

—dwy,t
Eren = Foe o 57
refl 1— 7”17”2627’1%11

The transmitted field is computed similarly,

o0
Et — Eoef’itho tth E (TlT,Q)’I’LeikLL(2n+1)

n=0
titqethrl

—iwy,t
= Eye 1wy to i .
1 — 7’17”2621]*1‘L

The field inside the cavity, at the left mirror (z = 0), again at time %,

18

o
Jo (O) _ Eoefiwl_‘to t Z(Tl ,{,2)77,62nikLL
n=0

ty

1—17¢ 7’2621kLL ’

and for the field inside the cavity, at the other mirror, at time g, we have
Feav (L) = el E . (0). The same results can been obtained also in the
following way, which is maybe less vivid physically, but will be easier to
generalize to the situation in which GWs are present. We consider the
total reflected, transmitted and cavity fields as shown in Fig. 9.6. Then,
just as in egs. (9.52) and (9.53), using r{ = —r1 and | = t1, at the first

mirror we have

Ecav(o) =1 Ein - TIE/ (O) )

cav

Ereﬂ =71, + tlEéaV(O) .
Similarly, at the second mirror we have

Et - t‘ZEca\'(L) 5

E' (L) = —r3Eea(L).

cav

|

Finally, since the solution inside the cavity is given by plane waves, the
field Feay(t, ), which represent a right-moving wave, is proportional
to exp{—i(wrt — kpz)}, while E/, (¢,2), which represent a left-moving
wave, is proportional to exp{—i(wrt + kLx)}. Thus the cavity fields at
x =L and at x = 0, at equal value of time, are related by

(9.68)

Ecav (L) = eikLLEca.v (O) 5 (977)
Bla(L) = e " B, (0) . (9.78)

Then we have six equations, egs. (9.73)—(9.78), that we can solve for
the six quantities Eyen, By, Feav(0), Ecav(L), E,, (0), E.., (L), in terms of
By = Epe~*rt. With straightforward algebra we get back the solution
(9.69) found above. For instance, combining egs. (9.76), (9.77) and (9.78) we
get

E!(0) = —rpe® LB (0). (9.79)

~cav

Substituting this into eq. (9.73) we get

(9.70) Eean(0) = t1 By + riree®™ LB (0, (9.80)
from which the solution (9.72) for E..,(0) follows, and similarly we get
Fren and E.

Resonant FP cavities

We see that the reflected, transmitted and interior fields are all pro-
portional to the factor 1/[1 — riroe®™*1L]. When 2k L = 27n, with
n=0,%1,42, ..., this factor becomes 1/(1 — ryr9) and, if the reflection
coeflicients r; and 7o are close to one, this is large. We therefore have a
set of resonances. Physically this means that, for 2kp L = 27n, the var-
ious beams that bounce back and forth interfere constructively, so the
field inside the cavity raises to a very large value. Correspondingly, the
transmitted field also gets large. As for the reflected field, for assessing
its strength we must also take into account the dependence on kr L of
the numerator, which describes the interference between the field that
is reflected after having entered the cavity and made one or more round
trips, and the field that is immediately reflected. We first consider the
power Py ~ |Ey|? of the transmitted field (or, equivalently, of the inte-
rior field, Feay, since || and |Ee,y | differ just by a constant factor ).
From eq. (9.71)

(9.71)

(9.72)

b

32

(rire)? — 2ryrg cos 2k, L

2_p? 9.81
[E| 0T (9.81)

(9.73) This is plotted, as a function of 2kr,L, in Fig. 9.9. Writing kr = wr /e,
9.74) the distance between the maxima is
e
Awr, = T (9.82)

This is called the free spectral range of the cavity. Expanding the de-
nominator in eq. (9.81) to quadratic order around a resonance, we find
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n 2n 3t 4n St 6n
2k, L

Fig. 9.9 |E,|* , in units of (Eotite2)?,
as a function of 2kr, L, for 172 = 0.8.



486 Interferometers

that the full width of the peaks at half maximum is
C 1 — 7172
L friry

The finesse F of the cavity is defined as the ratio of the free spectral
range to the full width at half maximum, F = Awy,/dwy, so

F= T/T17T2

1 — T2 '

5wL = (983)

(9.84)

To understand the physical meaning of these results it is useful to com-
pute the storage time, i.e. the average time spent by a photon in-
side the cavity. For simplicity we take ro = 1, so each photon has
an amplitude probability A(n) of making n round trips, and finally

comes out from the first mirror. Recall that the number density of

photons is proportional to the modulus squared of the electric field,
so the factors —r; and —ry acquired at the reflections from the mir-
rors are the quantum-mechanical probability amplitudes, while their
squared modulus is a probability. Thus, the amplitude for perform-
ing n round-trips and then coming out from the first mirror is given by
A(n) = t3(=1)"(—r)"~! = constant x r7, since each reflection at the
far mirror has a probability amplitude —1 and at the first mirror (—ry).
Thus, if a photon enters the cavity, the probability that it comes out
after n round-trips is

7’%”

p(n) = T L an (9.85)

n=1 1
where the denominator normalizes the total probability to one. The
average number of round-trips is therefore

e}
1
= 5 . 9.8
n;np(n) e (9.86)

Since each round-trip lasts for a time 2L /¢, the storage time of the cavity,
i.e. the average time spent inside by a photon, is

21

s (9.87)

Ts

If r; is close to one we can write 1 — 7% = (1 — 7 )(1 +71) =~ 2(1 — ry),
and we can express the storage time in terms of the finesse, as
L F
Te Y — —. (9.88)
c T
We see that, in the limit of high finesse, light is trapped in the FP cavity
for a long time. If we illuminate the cavity and then we suddenly shut
off the laser at ¢t = 0, light will still continue to come out from the
cavity for a long time. According to eq. (9.85), the intensity of the light
coming out after n round trips is proportional to ri" = exp{nlogr?}.
For 7 close to one, log7? = log[l — (1 —7%)] ~ —(1 —r%). Therefore the

e

R R

-
-

intensity of light decreases with n as exp{—n(1 —7%)}. Since the light
that performs n round trips comes out at time ¢ = (2L/c)n, for r; close
to one and 9 = 1 the intensity of the reflected light decreases with time
as exp{—t(c/2L)(1 — r3)} = exp{—t/7s}, with 75 given in eq. (9.87),
confirming the interpretation of 75 as a storage time.

We consider now the reflected field. We write Eyeg = |Erenle ™! e,
and we find from eq. (9.70) that the phase ¢ can be written as ¢ =
¢1 — ¢2, where

r2(1 — p1)sin(2kL L)
o 9.89
tan g1 r1 —12(1 = p1)cos(2kLL)’ .
o s (2 L
oty ri7g sin(2kg, L) (9.90)

" 1—rirgcos(2k,L)

A plot of ¢ as a function of 2kp,L is shown in Fig. 9.10. Two aspects
of this graph are interesting. First, away from the resonances (which,
as we have seen, are at 2k, L = 2mn), ¢ is almost flat as a function of
2k, L, and is basically equal to zero (mod 27). So, here the phase of the
reflected light is insensitive to changes in the length L of the cavity or
of the frequency of the laser light. However, close to the resonances this
dependence suddenly becomes very sharp. Writing 2kr,L = 27n + € and
expanding for small ¢, eqs. (9.89) and (9.90) give (setting for simplicity
ro = 1 and p; = 0 and neglecting O(e?)) 9¢/0e¢ = (1 +r1)/(1 — 1) or,
taking 71 close to one,

96 _oF
T S T (9.91)

We can compare this with the result (9.2) for one arm of a simple Michel-
son interferometer which, in the present notation, reads ¢ = ¢. When r;
is close to one, the sensitivity of a FP cavity to changes in 2k, L is en-
hanced by the large factor (2/7)F, compared to the arm of a Michelson
interferometer.

The result for generic values of 71,79 (but still such that F > 1) can
be conveniently written observing that, for large F, eq. (9.84) can be
inverted to give

T 2
We define p from
(1 —pyry=(1-p), (9.93)

and we introduce the coupling rate o,

o= (9.94)

From the condition r? = 1 —p? — 2 < 1—p; it follows that r¥75 <1—p
and for small p (typical values in VIRGO and LIGO are p ~ 2 x 107°)
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Fig. 9.10 The phase ¢ of the re-
flected field, as a function of 2k L,
setting 1 = 0.9, 1o = 1, p» = 0.
We have defined ¢ so that it is a
continuous function of 2k, L, rather
than reporting it always to the in-
terval [0, 27].
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Bhis at first sight can be surprising.
If for instance r1 = 0.99, almost all
the incoming light is reflected back im-
mediately and is not so intuitive that
the total reflected field can be zero.
What happens is that the small amount
of light that enters the cavity eventu-
ally builds up a sufficiently strong in-
terior cavity field, and the part of it
that finally leaks back from the first
mirror has a large enough amplitude,
and the appropriate phase, to cancel
the promptly reflected field.

Fig. 9.11 The phase ¢ of the re-
flected field, as a function of ¢ =
2ky L —27n, for an overcoupled cav-
ity with ¢ = 0.05 (solid line) and
for an undercoupled cavity with o =
1.05 (dashed line).

we have r1ry <1 — (p/2). Using eq. (9.92) we then obtain

1~—7T—<1—p

= 9.
F 2 (9.95)
which, in terms of o, gives o < 2. Since of course o > 0, we have
0<o<2. (9.96)

Writing 2k, = 2mn + ¢ and expanding for small ¢, eqs. (9.89) and
(9.90) become tan ¢y = (Fe/m)/(1 — o) and tangs = —Fe/m, s0 ¢y =
—m + arctan(Fe/m). For ¢ = ¢1 — ¢po we get

) + arctan Fe 1 + arctan 7
= ar R C —.
p=m C el B p (9.97)
When o > 1 this is rewritten more conveniently as
Fe 1 Fe
= arcte —_— "cta — | . 9.9
o ncan[ﬂ_g_l}—f—alcmn{ﬂ} (9.98)

Observe from eq. (9.70) that, at the resonances, the reflected electric
field is
T — 7"2(1 -—pl)

Ereﬂ = EOG_ZthO
11— 17T

. (9.99)

In particular, if r; = ro(1 — p1), at resonance there is no reflected light
from the cavity. Physically, what happens is that the light that is im-
mediately reflected back interferes destructively with the light that is
reflected after one or more round trips in the cavity.'® This situation
is called the optimal (or critical) cavity coupling. Of course, it is op-
timal from the point of view of the transmitted field since, except for
the losses, all incident light finally leaks out from the second mirror.
For the arms of a GW interferometer, we will see that we are interested
in the reflected signal and therefore we do not want this situation. If
71 > r2(1 — p1) the cavity is undercoupled, while for r; < ro(1 —p1) the
cavity is overcoupled. In terms of the coupling rate, using the definition
(9.94) and neglecting O(72/F?) in eq. (9.92), we have

—_— 1¥ ¥1
norl-p) o-1 (9.100)

1——7”17‘2 )

so optimal coupling corresponds to ¢ = 1, while for 0 < o < 1 the
cavity is overcoupled, and for 1 < ¢ < 2 the cavity is undercoupled.
Observe that Fig. 9.10 refers to an overcoupled cavity. For undercoupled
cavities, instead, the region where the phase of the reflected field is
very sensitive to changes in 2kr,L becomes smaller and smaller, and
disappears completely when o — 2. A comparison of ¢, as a function of
€, for o <1 and for o > 1 is shown in Fig. 9.11. Clearly, the sensitivity
to a change of 2k, L is higher for an overcoupled cavity. For the arms of
VIRGO and LIGO, the losses are such that p ~ 2 x 10~° and the finesse
is F =~ 50 for VIRGO and F = 200 for LIGO, so we have o ~ 3 x 1074
for VIRGO and o ~ 1073 for LIGO. Therefore these cavities are well
overcoupled.

.
|
;
:
|
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9.2.2

Interaction of a FP cavity with GWs

We have seen that the effective storage time of light, which in the arm of
a Michelson interferometer is 2L /¢, becomes (L/c)F /m in a Fabry—Perot
cavity, i.e. is enhanced by a factor F/(2), and the sensitivity to a phase
shift is enhanced by a factor (2/7)F. Since we finally measure a phase
shift, we can expect that the same response to GWs of a Michelson in-
terferometer with arm-length of hundreds of kms, as would be optimal
for GWs with frequency fgw = O(10?) Hz, should be obtained replacing
the arms by Fabry-Perot cavities with a length of a few kms, and a fi-
nesse F = O(10%). Thus, our next approximation toward a realistic GW
interferometer is as in Fig. 9.12. In this section we study the response of
a FP interferometer to GWs, and we will see that the above expectation
is indeed correct.

We want to compute how the reflected field of a FP cavity is affected
by an incoming GW. We consider a FP cavity oriented along the z axis
and a GW with only the plus polarization propagating along z, as in
eq. (9.6). We begin with a description in the proper detector frame. As
we saw in Section 9.1.2, in this frame we can easily obtain the result
to lowest order in wgwL/c by making use of the fact that, even in the
presence of GWs, light propagates along the geodesics of flat space-
time, while the mirrors are shaken by a force exerted by GWs, so that
their motion is given in eq. (9.37). Therefore the length L of the cavity
changes as

Lh{)

This induces a change A¢, in the phase ¢, of the field reflected from
the cavity along the x arm, which is obtained from eq. (9.91), i.e. from
Ay, = (2F [7)e, setting € = 2k, AL,

4
™

2
= i k1, Lho coswgyt .
T

(9.102)
The phase shift of a FP cavity along the y arm is obtained reversing
the sign of hg (see eq. (9.7)), so the total phase shift in the Fabry-Perot
interferometer of Fig. 9.12 is A¢pp = A¢y — A¢y = 2A¢,. We write
A¢gpp(t) = |A¢pp| coswgwt, 5O
4F

|Agpp| = — kLLho. (9.103)
This is the change of phase that would be induced in a Michelson in-
terferometer with arm-length (2/7)FL. Similar to what happens in a
Michelson interferometer, we expect that, when the storage time 7, given
in eq. (9.88) becomes comparable to the period of the GW, the sensi-
tivity degrades because we are summing over contributions with both
positive and negative sign, so the above result is really the lowest order
in an expansion in wgy7s. To compute the result for wgy7s generic, we

FP cavity )

_ FP cavity

beam

Laser splitter

' photodetector

Fig. 9.12 The layout of an interfer-
ometer with Fabry—Perot cavities.
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16Recall that the superposition of car-
rier and sidebands given in egs. (9.104)
and (9.105) derives from the expansion
of a phase factor, see egs. (9.24) and
(9.34).

already know from our discussion in Section 9.1.2 that we cannot work
in the proper detector frame, and we must rather switch to a TT gauge
description.

First, it is useful to observe that, for a- FP cavity, we can repeat
without any modification the derivation done in eq. (9.34) for an arm of
a Michelson interferometer, and we again conclude that, if a GW induces
a phase shift A¢, (1) = |A¢g| coswgwt in the field reflected from a cavity
along the z axis, this produces in the reflected field sidebands with
frequencies wr, & wgw and an amplitude, relative to the carrier, whose
modulus is |A¢,|/2 in each sideband. Thus, to compute the phase shift
[A¢,| of the reflected field, to all order in wgy7s, we can compute in the
TT gauge the amplitude of the sidebands of the reflected field. This can
be done generalizing the computation of pages 483-485 as follows.

Consider the electric field coming on the first mirror of the cavity
from the laser, as in Fig. 9.8. This incoming field is monochromatic, and
oscillates as et When it enters the cavity and bounces once back and
forth, besides acquiring the usual transmission and reflection coefficients,
when a GW is present it also acquires a phase modulation, so that when
it comes back to the first mirror it consists of the carrier at frequency
wr, plus the two sidebands at wr, & weyw. These three monochromatic
fields are partly reflected, with the usual coefficient —ry, and can make
one more round trip in the cavity, and so on. So, we need to know how
a generic field with carrier plus sidebands is modified by a round trip.
We therefore consider a right-moving electromagnetic field which, at the
left mirror, has the time-dependence

; 1 i 1 . ,
Alt) = Age it 4 5hoAle—b(wL*wgw)f + 5]710142eﬂ(wmwgw)i . (9.104)

while we denote by B(t) the right-moving field at the end of the round
trip,

. 1 . 1 ,
B(t) = Bge "t 4 5/7,0316*1<w1f%w>t + ily,oBQe-“%Wgw)t . (9.105)
If we denote by t the time at which the field terminates its round-trip,

the time £y at which it started is given by (compare with eq. (9.18))

2L

L
to=1t— — — = ho coswgw (t — L/c)] sinc (wgwL/c) . (9.106)
c

Since during free propagation the phase is unchanged, we must have
(apart from the reflection coefficients at the mirrors that we will add
separately) B(t) = A(to),'% that is

. 1 . 1 :
B(t) = Aoefwm+§/7/0A16*1<%%w>50+5hOAQe—Z<wL+%w>'/O . (9.107)

Using eq. (9.106) and developing to first order in Ao,

—dwply PfiwL(t—ZL/c)

(9.108)

1 | o
+ 3 ho iky L sin (wgy L/ ¢)e!wewa) ke g=ilwn—we)t

e

1 1 (¢ 1 4
+§ho 1k, L sinc (wgVVL/c)el(zwL+“’g“')L/c e Hwntwgw)t
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Again to order hg, we can simply replace the terms hoe {wrEwawlto in

eq. (9.107) by hoe~ {wrtwe)(t=2L/¢) - Collecting terms with the same
time dependence in eq. (9.107) and comparing with eq. (9.105) we get a
matrix relation B; = X;;A; (with i =0,1,2), where

Xoo 0 0
X=[ X Xu 0 (9.109)
Xoo 0 Xp

The diagonal elements describe the free propagation of the carrier and
of the sidebands, while the X109 and Xgp term describe the fact that a
round-trip of the carrier produces further contributions to the sidebands.
Using eq. (9.108), the explicit expression of the matrix elements is

XOO _ e2in,L/c’

X1 = e2i(wL—wgw)L/c’

Xop = /Zi(wl,ﬂ—wsw)L/c )

X190 = iky, L sinc (cugwL/c)ei(‘?“’"_“g“’)L/C ,

Xoo = tky, L sinc (ngL/c)ei(Q“’L“L“&“')L/C .

(9.110)

For a Fabry-Perot cavity along the y axis the same expressions hold,
inverting the sign of hg (see eq. (9.7)) or, equivalently, inverting the sign
of X10 and of Xag.

This result allows us to generalize eq. (9.80) to the case when GWs are
present, simply replacing the factors e**-L with the matrix X. Thus,
we can write the fields B = (By, B1, Bs) inside the cavity, at = 0, in
matrix form as

B =t A, +r1mXB, (9.111)
where A;, = (Fo,0,0). The solution is
B=(1—rrX) 1A . (9.112)

This is the right-moving field at the first mirror (the equivalent of what
we denoted by Fea(0) in the absence of GWs, see Fig. 9.6). The left-
moving field (E’,,(0) in Fig. 9.6) in the absence of GWs is obtained from
By (0) using eq. (9.79). In the presence of GWs, we have seen that the
factor e?#rl ig replaced by the matrix X, acting on the vector space
of the amplitude of the carrier and of the sidebands, so the left-moving
field is now

B/ = *TQXB,

and the total reflected field, which includes also the promptly reflected
part, is given by

(9.113)

Al‘eﬂ = TlAin - tlr2XB

= [7‘1 — 7"2(1 — p1)X](1 — T'lTQX)wlAin 5 (9114)

which replaces eq. (9.70). Setting A;j, = (1,0,0), we can now compute
Avet = (Ag, A1, As). According to eq. (9.34), and taking into account
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the factor ho/2 in the definition (9.104), the phase shift [A¢,| in a single
Fabry-Perot cavity along the = axis, is given by

Ay

Ao

1

1
1A%:| = Sho (9.115)

We are interested in particular in the situation when the FP cavity is
locked on resonance, so et = 1. In this case, with straightforward
matrix algebra (easily performed with the help of any symbolic manip-
ulation program) we get

A

hAC T XlO eZ'ngwL/c

Ao

ra(1 —p) — r?ry
(2w b/e —piprg)ra(l —p) — 1]

(9.116)

ro(1— 7% —p) 1
[ra(1=p) = 1] |eiwanl/c —pypy

(
(
(1-ri-p)
(

|Ads| = hokp Lsine (wgy L/c)

= hokr Lsinc (wgwL/c)
1
L+ (r1ir2)? — 2ry7p cos(2wew L/c)]1/2

o (9.117)

If we set p = 0 and 12 = 1 (e.g. the present value for VIRCO is

ro =~ 0.99995) and we take 71 close to one, the first fraction becomes

simply 1+ r; =~ 2. So, we write
ra(l— 12 —p)
[r2(1 —p) —r1]

where, in the typical experimental situation, e(ry,ro, p) < 1. Then

=2[1+ €(r1,72,p)], (9.118)

sinc (wgwL/c)
(1 + (r172)? — 2r172 cos(2wey L/c)]1/2
(9.119)
'The dependence on wgwL/c can be simplified observing that we want
to have FL/c comparable to the wavelength of the GW, so F. wewL/c =
O(1). However, we achieve this by using a large value of F, so wewlL/cis
much smaller than one in the region where the interferometer operates.
For instance, if fgw = 100 Hz and L = 4 km, wewL/c ~ 1072, We can
therefore replace sinc (wgwl/c) ~ 1 in the numerator, and we expand
cos(2wgw L /c) in the denominator. Then we get

IAG,| = ho 2k L1+ €(r1, ra, p)]

1+e(ry,ra,p) 1
1+ (17“1%)_2 (2wgw L/ c)2] 172

—riT2

|Adpy| ~ ho 2kr,L

1 — 7172

F 1
~ ho 2kt L —
O T U (A o) 212

(9.120)

where, in the last line, we wrote the result in terms of the finesse F,
given in eq. (9.84), and of the storage time 7, of the cavity, given in
eq. (9.87), and we neglected in the numerator terms that are small when
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ro,71 — 1. The phase shift of a FP cavity along the y arm is obtained
changing the sign of hg, so A¢, = —Ad¢,, and the difference between
them is Agpp = A¢y — Ay = 2A¢,.

We rewrite the result introducing the so-called pole frequency,

£ = 1
P= G (9.121)
or, from eq. (9.88),
c
~ —, 122
I 4AFL (9.122)

For initial LIGO, L = 4 km and F ~ 200 this gives f, ~ 90 Hz. For
VIRGO, L = 3 km and F =~ 50, so f, =~ 500 Hz. The phase shift in a
Fabry—Perot interferometer can then be written as

1

VI+ Faw/Fo)?

4F
|Adpp| = ho — kL (9.123)

For few < fp we recover the result found in the proper detector frame,
eq. (9.103), as expected.'” At few > fp, eq. (9.123) shows that the
sensitivity degrades linearly with fgy. This formula holds as long as
wewL/c < 1, ie

C
Jow <507

4 km
~ 12 kH .

Above this frequency the factor sinc (wgwL/c) in eq. (9.119) can no longer
be approximated by one, and cuts the response further, reflecting the
fact that in each round-trip the GW changes sign.

In Fig. 9.13 we show the function 1/[1 + (fgw/fp)?]/?, and we com-
pare it with the function |sinc (f/ fp)|, which is the corresponding quan-
tity for a Michelson interferometer whose length Lypen = (2/7)FL is
chosen so that, in the limit fgw — 0, its response function is the same
as a FP cavity of length . and finesse F.

It is useful to write eq. (9.123) in the form

(9.124)

|A¢rp| = hoTrp(f), (9.125)
where (writing kr, = 27/\L)
8FL 1
Trp =~ s
Fp(f) N ITULTTR (9.126)

is the transfer function of an interferometer with Fabry—Perot cavities.

20007400600 800 1000 1200 1400

J (Hz)

Fig. 9.13 A plot of the function
[1+ (f/f)?]" 2, (solid line), com-
pared to the function |sinc (f/fp)]
(dashed line). We have taken f, =
90 Hz.

17Recall that eq. (9.91), and therefore
eq. (9.103), were obtained in the limit
ro = 1, p = 0 and ry close to one. If we
keep r1 generic, still setting 7o = 1 and
p =0, in eq. (9.91) the overall factor of
2 is replaced by 1 + r1, and the same
result is obtained from eq. (9.117).
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Source

Fig. 9.14 The geometry used in the
computation of the pattern func-
tions. The arms of the interferome-
ter are along the x and y axes.

¥ When comparing with the calcula-
tion for resonant bars on page 425, ob-
serve that here we define 6 as the angle
from the z axis, rather than from the z
axis.

9.2.3 Angular sensitivity and pattern functions

Until now we have restricted ourselves to a GW with plus polarization,
propagating along the z axis. We now compute the response of an
interferometer to GWs with arbitrary direction and polarization. As
discussed in Section 7.2, this is encoded in the pattern functions F (6, ¢)
and Fy(0,$). We first consider the limit wgwL/c < 1. In this case
we can use the proper detector frame, so the motion of the mirrors is
governed by the geodesic equation,

v 1e
51 = ih’ijfj . (9127)
For the mirror located at &7 = (L, 0,0), we are interested in its displace-
ment along the z direction, which is given by

§o = %h’fliflf:L'
This equation governs the change in the length of the z-arm of a Michel-
son interferometer, as well as the change in the length of a FP cavity
lying along the z axis. For the mirror located at &/ = (0, L, 0), we are
rather interested in its displacement along the y direction, which is given
by
1.

Sy = §h'ny‘

The relative phase shift between the z and y arms is therefore driven
by (1/2)(hgz — hyy). When the wave comes from the z direction we
have hyy = he and hgy = —hy, 50 (1/2)(hes — hyy) = b, but in the

(9.129)

most general situation we must replace iy by (1/2)(has — hyy) in the

computations of the phase shift in a Michelson or in a FP interferometer
performed in the previous sections. In other words, the detector tensor
(defined in eq. (7.1)) for an interferometer with arms along the X and ¥

directions is 1
Dij = 5(%i%; = ¥:9;).-

We compute hy, and hy, in terms of hy, hy for a wave coming from

(9.130)

arbitrary direction. The computation is similar to that performed for

resonant bars on page 425. The geometry is illustrated in Fig. 9.14: we
have a frame (z,y, z) such that the arms of the interferometer are along
the z and y axes. We introduce a second reference frame (', y', z') such
that the propagation direction of the GW coincides with the 2’ axis.
With respect to the (x,y, z) frame, the 2’ axis has polar angles 6 and ¢,
defined as in the figure.!8

The polarizations hy and hy are defined with respect to the (2/,y’)

axes, so in the (z',y/, 2’) frame the GW has the form

h+ ]'LX 0
hij= 1 hx —hy O (9.131)
0 0 0

j

(9.128)
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The rotation that brings the (z',y/,2’) frame onto the (z,y,z) frame
is given by a rotation by an angle # around the y axis followed by a
rotation by an angle ¢ around the z axis, i.e.

cos¢ sing 0 cosd 0 sind
R=1| —sing cos¢ 0 0 1 0 (9.132)
0 0 1 —sinf 0 cos@

The GW in the (z,y, z) frame is then given by the transformation law
of a tensor with two indices, h;; = ’RikRﬂh,kl. From this we obtain

Rz = hy(cos® @ cos® ¢ — sin® §) + 2hy cosfsin ¢ cos ¢, (9.133)
hyy = hy(cos® 6 sin® ¢ — cos® ¢) — 2hy cosfsingcosp, (9.134)

S0

1
(haw — hyy) = §h+(1 + c0s? 0) cos 2¢) + hy cos 0 sin 2, (9.135)

[N

and therefore

1
Fi(0,6) = 5(1+ cos® 8) cos 26, (9.136)
0

F.(0,¢) =cosfsin2¢p.

We see that GW interferometers have blind directions. For instance,
for a GW with plus polarization, the direction with ¢ = 7/4 is blind,
since F, = 0. This is due to the fact that this wave produces the same
displacement in the z and in the y arm, so the differential phase shift
vanishes. If we change the definition of the axes with respect to which
the polarizations hy and h are defined, rotating them by an angle ¢ in
the (2',%') plane, the pattern functions transform as in eq. (7.30).

Equation (9.136) has been obtained in the limit wgywL/c < 1. To
compute the pattern functions for wewL/c generic we must perform the
computation in the TT gauge, so we should repeat the computation
leading to eq. (9.15) for a GW coming from arbitrary direction. Consider
the arm of a simple Michelson interferometers, with the beam splitter
at x = 0 and the far mirror at z = L, (or a FP cavity with mirrors at
r=0and x = L;). Then eq. (9.9) is replaced by

'tl
Lo=clti—to)~ 5 [t hualt', ). (9.137)

to

If we denote by 1 the propagation direction of the GW, we have /., (t) =
huy cos[wew (t — x/c)], and we must evaluate x on the trajectory x(t)
of the photon, so along the z arm we have

haw(t) = hyy cOS [wgw (t — w@)} ,

- (9.138)
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which replaces eq. (9.6). To lowest order in hs, the trajectory of a
photon is just the unperturbed one, so inside the cosine we can set
z(t) = c(t — tp), while fi can be written in terms of the angles 0, ¢ as
N = (sin @ cos ¢,sinfsin ¢, cos ). Therefore, beside the dependence on
(0,¢) in hg, and hy,, that we already computed in egs. (9.133) and
(9.134), there is also an angular dependence through the term n, in
eq. (9.138), and a similar term n, for the y arm. In particular, eq. (9.137)
becomes

ty

c

Ly =c(ty —to) — = hw/ dt’ (9.139)

2 to
x cos [(1 — sin 6 cos @)wgwt’ + wewto sinb cos @] .

The return trip can be treated similarly, with the unperturbed photon

trajectory given now by z(t) = L —c(t —t1), so eq. (9.11) is replaced by

"to
Ly =c(ty —t1) — ghm/ dt’ (9.140)

ty

x cos [(1 + sin 8 cos )wewt’ — wew (t1 + L/c) sinfcos @] .

Summing the two equations we get

1 to+La/c
ty =to + 2L + —hm/ dt’ coslw_t" + o)
c 2 to
1 t()+2L:v/C )
+—/7,m/ dt’ coslwt’ — ¢o], (9.141)
2 to+La/c
where we introduced the short-hand notation
wt = wgw (1 £sinfcosg), (9.142)
¢o = wgwlo sinfcos ¢, (9.143)
by = wewts sinfcos ¢, (9.144)

and in the limits of the integral, as well as in ¢9, we can use t; = to+Ly/c
and ty = tg + 2L, /c. For the y arm we have similar expressions, with
L, replacing L, and n, = sinfsin ¢ replacing n, = sinf cos ¢.

It is now in principle straightforward to perform the integrals and
compute how £, — g depends on the propagation direction of the GW.
Carrying out the integrals, however, we see that all terms which depend
on 6, ¢ are multiplied by the factor wgy L, /c. For instance, 8 and ¢ enter
in terms such as

sinc wg;va (1 +sinfcose)| . (9.145)
c

For a FP interferometer we saw that wey L, /c is small, typically O(1072)
in LIGO and VIRGO, and therefore the function sinc in eq. (9.145) is
essentially unity, and its dependence on 6 and ¢ is negligible, at least
as long as the condition (9.124) is satisfied. Then, we can neglect the
dependence on the GW direction in the travel time 5 —t¢ and the only
angular dependence comes from hg; and hy,, as computed in egs. (9.133)
and (9.134), so for the pattern function we can use, to a very good
approximation, the expressions given in eq. (9.136).
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9.3 Toward a real GW interferometer

In this section we discuss a number of issues that are more technical,
but are important for understanding how a real interferometer works.

9.3.1 Diffraction and Gaussian beams

Until now we have considered idealized FP cavities with mirrors of infi-
nite transverse extent, so we could neglect any dependence of the electric
field on the transverse coordinates. For a cavity along the z axis, we
have then treated the interior electric field as a plane wave, with a de-
pendence on z,t of the form exp{—iw(t £ z/c)}, and no dependence
on the transverse coordinates x; = (y,2). Of course, in practice the
mirrors have a finite extent, and the beam has a profile in the transverse
direction.

A beam of finite transverse extent is subject to diffraction. If, at some
point in space, a photon of wavelength Ar, (and therefore longitudinal
momentum p = 7/X1) is localized within a transverse width Ax, =
a, by the Heisenberg principle it has an uncertainty on the transverse
momentum Apy ~ fi/a, so the beam will widen, filling a cone of angle
A8 = Ap, /p ~ Xp/a. After traveling a longitudinal distance z the
beam has become larger, in the transverse direction, by zAf ~ xXr /a.
As long as 2X,/a < @ we are in the regime of Fresnel diffraction, and
the broadening of the beam is negligible. When 2% ;, /a > a, or, in terms
of ]CL = l/jYL,

x> kra?, (9.146)

we are in the regime of Fraunhofer diffraction, and the beam has become
much broader than its original size. For interferometers such as LIGO
and VIRGO, the wavelength of the laser is typically

AL~ 1pm. (9.147)

The border between these regimes is at a = (2X)"/2 which, for z =
4 km and Ay = 1pum, gives a =~ 2.5 cm. This means that, for a laser
beam whose initial width is smaller that 2.5 cm, the broadening of the
beam becomes important already after a single one-way trip through
the cavity. Furthermore for cavities with a finesse O(100), as we need
for GW detection, the beam is supposed to perform 0O(100) round trips
and, if the mirrors were flat, at each one-way trip the beam would widen
further, as illustrated in Fig. 9.15, and would be finally dispersed on a
region of transverse size larger than the mirrors.

Thus, it is clear that diffraction effects are important, and the naive
scheme of a narrow beam (as typically obtained from a laser) bouncing
between two flat mirrors cannot work. As a first step, we must under-
stand in more detail the propagation of a beam of finite transverse extent
over large distances. The tool that we need is the parazial propagator,
that we introduce in the next subsection.

Fig. 9.15 The widening of a beam
due to diffraction as it bounces be-
tween two flat mirrors.
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The paraxial propagator

A given spatial component of the electric fleld, propagating in the vac-
uum, obeys the equation

{182

55zt vz} E(t,x) =0. (9.148)

We take a single monochromatic component, which we write in complex
notation as E(t,x) = E(x)e ™, so E(x) satisfies

[VZ 4+ k2 B(x) = 0. (9.149)

We want to compute the propagation across a long distance in the x
direction, so x is the longitudinal coordinate and x; = (y,z) are the
transverse coordinate, and we search for solutions of the form

B(x) = E(z;y, 2)etr® | (9.150)
where £(z;y, ) is a slowly varying function of x, in the sense that

0.E| < ki)E]. (9.151)

Therefore E(t,x) = E(z;y, z) exp{—iwrt +ikpz} is in a first approxima-
tion a plane wave, with a slower dependence on z, which manifests itself
only on scales = > Ap,. Plugging the ansatz (9.150) into eq. (9.149) we
get

V2 E + 2ikp0,E + 026 =0, (9.152)
where V2 = 02 4+ 02. Because of the condition (9.151), we can neglect
02& with respect to kr,0,&, so in this approximation we write

V3 E 4 2ik0.€ = 0. (9.153)

We now perform the Fourier transform with respect to the transverse
variables,

dpy dp. 5 N
5(573'»?],2):/% 2[; E(z;py, ps) ePVYTEE (9.154)

In terms of &(z;py,p-), eq. (9.153) reads
— (P2 + P2)E (@ py, p2) + 2ikL0xE (x5 py, p2) = 0. (9.155)

The z dependence can be integrated, and we get

2 2
. . Py + D :
E(x;py, p2) :5(27:0;py,pz)exp{” JQkL w} ' (9.156)

Then eq. (9.154) becomes

.p?,-&—ﬁ%

dpy dp. = ipyy+ipsz—i—t -2 x
E(I;%Z):/—2%%5<xzo;py7pz)ewyy WeET R

9.3

. g d z ol ; 7y s !

2 2

ipyy+ipz—i L e
.z

xe 2k,

= /dy’dz’g(x =0;¢,2)
p24p2

. @ @ otPy (Y=Y ) +ip. (z—2")—i
2 27w

The integrals over dp, and dp. are Fresnel integrals, that we already

met in eq. (4.365), so we finally get

where

Glmy—y,z—2) = i exp {7k_L (y—y)+(z— 2')2]}

2mx 2x

(9.159)

is called the paraxial propagator. Equations (9.158) and (9.159) allow us

to compute the field at = generic, once we have its value on a transverse

surface z = 0.

Fraunhofer diffraction

As a first application, we consider a plane wave of infinite transverse
extent that arrives on an aperture S on a plane opaque screen and
we compute the image on another screen at a large distance z, and
at transverse coordinates (y,z), see Fig. 9.16. Then, at z = 0, we
have E(z = 059/, 2') = & if (y/,2’) are inside the aperture S, and zero
otherwise, so

) L K
Bley.2) = 5ok &oce [ ay'ae’ oxp {zQ—;—[(y—y')%r(z—z')Q]}

—ikr, = . y2+22

— ,k a .

5— Eoexp {7 L [£+ 5 (9.160)
. S e, ’ / K, 12 12
x | dy'dz" exp —Px—(yy +zz)+z;(y +27%) 5.
J S

Fraunhofer diffraction is defined by the condition (9.146), where a is the
size of the aperture. In this limit, we can neglect the term ki, (y'2 +2 2) /T
in the exponential. Furthermore we observe that, if y? + 22 < z2, the
term z + (y* + 2%)/2z in the first exponential is just the first-order

Zoaks (9.157)

E(wyy, z) = / dy'dz Gy —y,z— ) E(x = 0;/,2'), | (9.158)
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Fig. 9.16 An aperture S on a
opaque screen. The plane of the
opaque screen is parametrized by co-
ordinates (y’,2’). The image is ob-
served on a screen at a distance z,
parametrized by coordinates (y, ).
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19This result was first derived by Airy
in the 19th century, and this intensity
distribution is known as the Airy pat-
tern.
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Fig. 9.17 The function 2J1(z)/z.

. . 2 1 .2\1/2 , N
expansion of the distance 7 = (22 4+ 42 + 2%)1/2 from the observation
point to the center of the aperture, since

( y2+zz>i/2
1+ 5
T

Similarly, to lowest order we can replace 1/x with 1/r in eq. (9.160).
Then we get the well-known formula for the Fraunhofer diffraction by

(a® +y° + 2912 =

(9.161)

an aperture,

E(z,y,2) = (9.162)

i ikyr
—i&oky, €™ / dy'd?’ e thu(yy'+22")
21 T S

Consider for example a circular aperture of radius a. In this case the inte-

gral can be performed exactly in terms of the Bessel function J;. Writing
. . ; Lo »

y = pcosp,z = psiny, and similarly ¢ = p' cos¢’, 2/ = p’sin¢’, we get

27
/dJ d' e thulvy'+22) / odp’ / dp! e~ ikL/m)pp’ cos(o—e")
S

~27r/ p'dp' Jo(kvpp' /1)
JO

27ra7

 kup

J

(9.163)

Ji(krpa/r).

Writing p/r = sin@ and recalling that lim, o Ji(u)/u = 1/2, we see
that the intensity of light, which is proportional to the Squared modulus
of the electric field, is distributed in the scattering angle 6 as'®

2J1 (kLasin 9)} ’

9.164
krasin ( )

I(6) = I(0) {
A plot of the function 2.J1(z)/z is shown in Fig. 9.17. I(#) has its first
zero at kpasinf ~ 3.8. Taking this as an estimate of the angular width
Af of the beam we get (for X < a) Af =~ 3.8X/a, which is consistent
with the uncertainty principle bound, but does not saturate it.

Propagation of Gaussian beams

Consider now a beam that, at = 0, has a Gaussian profile in the
transverse direction,

E(x=0;y,2) = Ege™

(w425 w (9.165)
Its profile at x generic can be computed by inserting this initial value
into egs. (9.158) and (9.159). The resulting integrals can be computed
exactly, without resorting to the Fraunhofer approximation, using

e} L T 7
/_ o~ (1+ia®)y? _ (—1—+—a\/;)T/z exp {~§ arctana} ) (9.166)
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where a is a real constant. The result, written in terms of E(z,y,z) =
zlq .’L(C/’(,L. Y, 2 )

Bla,y,2) = —— S0 o~ P40 @)
V31422 /02
, (9.167)
Y-+ z
X exp § ik, |z + Y — tarctan(z/b)
’ 2R(x) ’
where the Rayleigh range b is defined by
1 2
b= 5%1100 , (9.168)
the width w(z) is given by
w(x) = wor/1+ 22 /6%, (9.169)
and the curvature radius R(z) is
b?
R(z) =z + b (9.170)

This shows that a beam which at z = 0 has a Gaussian profile, remains
Gaussian at all 2, with a 2-dependent width given by eq. (9.169). Ob-
serve that, since wp is the initial transverse size, b given in eq. (9.168)
is the parameter that separates the Fresnel regime (at z < b) from the
Fraunhofer regime (at 2 > b), compare with eq. (9.146). In agreement
with the discussion above eq. (9.146), at |z| < b we find that there is no
appreciable widening of the beam, while at || > b the width increases
linearly, w(z) ~ wolz|/b, as demanded by the uncertainty principle. Us-
ing the definition (9.168) of the Rayleigh range b, we get

|z AL

wl@) = S0k,

(Jz] > b). (9.171)
Actually Gaussian beams saturate the uncertainty principle, i.e. they
have the minimum possible spreading.

The term arctan(z/b) in eq. (9.167) is called the Gouy phase, and is
an extra phase factor compared to the plane wave propagation. The
surfaces of constant phase are obtained requiring that

y2+22

kL [m+m

J — arctan(z/b)

be constant. For a typical GW interferometer, with Ap, = 1 ym and wq
of order of a few cm, b is of order of several hundred meters. Thus,
if we want to compute the surfaces of constant phase in a region close
to a point on the optical axis, i.e. in a region with coordinates (z =
To+0x,y = 0y, z = 0z), with dz,dy, 6z of the order of a few cm, we can

Fig. 9.18 A surface of constant in-
tensity of the Gaussian beam (solid
line) and surfaces of constant phase
(dashed lines).
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20The solution (9.167) holds also at
xz < 0; in this case both the term
krz and R(x) in the exponential change
sign, and the radius of curvature is as
shown in the figure.

(dashed

wavefront

Fig. 9.19 A
lines) that propagates toward a
spherical mirror is reflected back
and focused toward the waist. After
passing the waist it expands again
toward the other mirror.

——
beam
Laser splitter

photodetector

Fig. 9.20 The scheme of an interfer-
ometer with Fabry—Perot cavities,
with Gaussian beams and spherical
mirrors.

neglect the variation of R(z) and of the Gouy phase, so at a given xg
we simply have the condition

Sy + 022

= constant .

(9.172)

This equation describes a portion of spherical surface with radius R(zg),
as we can check immediately by expanding the equation z?+y%+22 = R?
around x = R + dx,y = 6y,z = dz. Therefore the wavefronts of a
Gaussian beam are spherical to an excellent approximation (as long as
the transverse distances are much smaller than b = O(10%) m), and
R(z) is their curvature radius. The shape of the beam is therefore as
shown in Fig. 9.18.29 The characteristic length wg, which determines the
transverse size at x = 0, is called the waist of the beam.

When the beam bounces many times between two mirrors, we want
to avoid that at each trip it widens further, as in Fig. 9.15. This can
be obtained shaping the mirrors so that their surfaces match exactly
surfaces of constant phase of the beam. For Gaussian beams we have
seen that the wavefronts are spherical, so we must use spherical mirrors.
When the expanding wavefront of a Gaussian beam reaches a spherical
mirror located at a position zg and with radius of curvature R(zg), its
direction of propagation is reversed, and the beam is focused back and
converges toward the waist at © = 0, before re-expanding again for z < 0.
If we have another spherical mirror at z = —z( the beam bounces back
and forth between them, and at each reflection its wavefronts are forced
to converge back toward the waist, as shown in Fig. 9.19, so the beam
does not increment its transverse size at each bounce.

Gaussian beams have two advantages over other shapes. First, they
have the minimum spreading compatible with the uncertainty princi-
ple. Second, their wavefronts are spherical, and mirrors with a spherical
shape are easy to manufacture. For these reasons, they are the choice
used in present GW interferometers. Thus, we can replace the scheme
given in Fig. 9.12 with the more realistic scheme of Fig. 9.20. Alter-
natively, rather than using two spherical mirrors with the waist in the
middle of the cavity, we can put a flat mirror in the position of the
waist and, at a distance L, a spherical mirror with curvature radius
R = L +b?/L. Presently, the former option is used in LIGO and the
latter in VIRGO. With the waist of the beam chosen in the middle of
the cavity, the value of w(z) at the position of the mirrors z = +1/2 is
given by

2
x; L2
wQ(iL/Q) = wg + [’2
w?

(9.173)

In order to be able to use mirrors of manageable size, we want to have
w(4L/2) small. Minimizing eq. (9.173) with respect to wg we find the
optimal value of the waist,

wgptimal _ (j(LL)l/Q i (9174)
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For arms of length L = 4 km and a wavelength of the laser light Ap, ~
1.0 pm this gives wg ~ 2.5 cm, to which corresponds a value w(L/2) =
(2XLL)Y/? ~ 3.6 cm. A suitable mirror radius for such a beam can
therefore be O(10) cm.?! Observe that, since the waist wq is much larger
than the wavelength X, the paraxial approximation that we have used
is well justified.

The Gaussian beams that we have considered are by definition solu-
tions of the paraxial evolution equation (9.153), since we obtained them
evolving an initial condition on the surface x = 0 with the paraxial prop-
agator. Of course, we can also verify this by direct substitution in the
equation. Actually, the Gaussian beam is just one of many possible so-
lutions. As can be checked by direct substitution into eq. (9.153), there
is a complete orthonormal set of solutions called the Hermite-Gauss
modes, given by

Ui (2, Y, 2) =~ o~ (2 /0 (@) g 2 22
R 1+ 22 /b2 T\ w() w(z)
2,2
X exp {ikL {:1; + UQR—_{EQ’Z)“} —i(m+n+1) arctan(:v/b)} ,
(9.175)

where ¢, are normalization constants and H,,(€) are the Hermite poly-

nomials, defined by
Hoe) = € [~ L) € 9.176

= (-] . (9.176)
In particular, Ho(£) = 1, Hi(§) = 2¢, and Hy(€) = 462 — 2. For these
modes, both the electric and magnetic fields are transverse to the propa-
gation direction, just as plane wave in free space, so they are also denoted
as TEM,,,, modes. Comparing with eq. (9.167) we see that the Gaussian
beam is just the mode TEMgp. In Figs. 9.21-9.23 we show the intensity
[ttnn]? of the modes TEMgg, TEMg; and TEM;y;. Alternatively, one
can use as a basis the so-called Laguerre—Gauss modes L.G,,,,, which are
written in terms of Laguerre polynomials. The fundamental mode LGgg
is again the Gaussian beam.

Since the Gouy phase for the mode TEM,,,,, is (m+n+1) arctan(z/b),
see eq. (9.175), the resonance condition in a FP cavity depends on (m, n).
The laser emits predominantly in the TEMgg mode, with a contamina-
tion typically less than 10% from higher modes (mostly TEMp; and
TEMjp). To eliminate these residual higher modes, which would not be
resonant and would just produce noise, before sending it to the beam
splitter the laser beam is sent into a Fabry—Perot cavity operated in
transmission, called the mode-cleaner. Since the Gouy phase for the
mode TEM,,,, depends on (m,n), we can choose the length of the mode
cleaner so that only the (0,0) mode is in resonance and is efficiently
transmitted.

2L A small spot allows us to keep down
the mirror size. However, it also re-
sults in large intensity gradients, in re-
gion of high intensity of the electro-
magnetic field, inducing thermal defor-
mations of the mirrors that must be
compensated. An alternative possibil-
ity, that has been studied for advanced
interferometers, is the use of so-called
“mesa beams”, i.e. beams with a flat
profile, which average more effectively
over these thermoelastic fluctuations,
see Bondarescu and Thorne (2006).

4

Fig. 9.21 The intensity of the mode
TEMgo as a function of the trans-
verse variables (y,z), at a given z.
(in units such that w(z) = v/2).

4

Fig. 9.22 The same as Fig. 9.21, for
the mode TEMo;.

4

Fig. 9.23 The same as Fig. 9.21, for
the mode TEM1.



504 Interferometers

1
0.8
0.6 1
0.4
0.2
2
n mo_m T om 3w
4 2 % 4 2 4

Fig. 9.24 The power P(¢)/Fy. The
naive working point is marked as 1,
and the dark fringe as 2.

9.3.2 Detection at the dark fringe
Michelson interferometer

We have seen that the passage of a GW in an interferometer, whether
of the simple Michelson type or with Fabry-Perot cavities in the arms,
produces a phase shift A¢gy (). We now ask how to extract this phase
from the output of the detector. The issue, as we will discuss in this
section, is quite non-trivial. The origin of the problem can be seen as
follows. We consider first for simplicity a Michelson interferometer. We
saw in eq. (9.32) that the power at its output is given by P(¢) = Pysin? ¢
where ¢ = ¢g + Aggw(t), and ¢ is a phase that can be adjusted at
will by the experimenter. A plot of P(¢)/Fy is shown in Fig. 9.24,
Naively, one might think from this figure that the best working point for
the interferometer is at ¢o = m/4, since there the derivative 9P/d¢q is
maximum, and the sensitivity to a small displacement ¢g — ¢o+Adgw (1)
due to the passage of a GW is highest. Unfortunately, such a strategy
would be doomed to failure. In fact, at this working point we are also
very sensitive to fluctuations in the power Py of the laser. Since all
that we measure is the power P = Pysin® ¢ at the photodetector, it
is impossible to tell whether a given variation in the measured power
is due a variation ¢o — ¢o + Adgw(t) induced by the passage of a
GW, or to a variation Py — Py + APy(t) due to a fluctuation in the
laser power. In particular, a GW with frequency fa = O(10?—10%) Hz
induces variations in the power P with a frequency f = 2fg, which
therefore must be compared with the power fluctuations of the laser in
the same frequency range. With present lasers, the latter turns out to
be much larger than the signal that we expect from GWs.

From a more general point of view, whenever we are looking for very
small effects a sound experimental strategy is to build a null instrument,
that is an instrument that, when the signal is absent, records a zero out-
put. This makes the instrument insensitive to calibration uncertainties
that would otherwise overwhelm the tiny signal that we are searching. A
prototype of a null instrument is the Dicke radiometer that we discussed
in Note 74 on page 412. At the naive operation point marked as 1 in
Fig. 9.24, the interferometer is not a null instrument. Even in the ab-
sence of a GW, the photodetector measures a large power. In this state,
small variations in the power due to GWs should be read against this
large DC contribution, and would be overwhelmed by its fluctuations.

This suggests that the best working point should be the dark fringe,
marked as the point 2 in Fig. 9.24. There the output in the absence of
GWs is zero, and we are insensitive to fluctuations in the laser power.
Unfortunately, at the dark fringe not only P = 0, but even 0P/9¢ = 0.
Since A¢gy, = O(h), this means that at the dark fringe the change in the
output power induced by GWs is AP = O(h?). Given that we expect
GWs with amplitude h at most O(1072!), an effect quadratic in A is of
course invisible. So, apparently the choice is between operation points
where the response of the interferometer is linear in h, but we have a
large DC contribution whose fluctuations overwhelm the signal, and an
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operation point where we have no DC contribution, but no sensitivity
to GWs either.

There is however a very elegant way out of this dilemma. The idea
is to apply a phase modulation to the input laser light.?? This can be
obtained by passing the incident beam through a Pockels cell, which
is a crystal or a block of dielectric material whose index of refraction
depends on an applied electric field, E.ppi = |[Eappi| €05 Qmoat. The
speed of the response that can be obtained with appropriate materials
is quite high, and the index of refraction oscillates with the frequency
fmod = Qmod/(27), for values of fioa up to tens of MHz. Passing
through a material with a time-varying index of refraction, the laser
beam acquires a time-varying phase, so the beam which reaches the
beam-splitter has the form

iy = Boe™ (AT sinnaat) (9.177)
where I' is called the modulation index, or the modulation depth. This
expression can be expanded in Fourier modes as

By, = EO[JO (I\)e-—ith s (P)e—z‘(wl,—l{z,nod)t —J (I—\)e—i(wL—Qmod)t o ] ’

(9.178)
where J,, are Bessel functions and the dots denote terms with frequencies
wr, = nmoa, with n = 2,3,.... For I' <« 1 this expression can be
simplified using Jo(I') ~ 1—(I'?/4) and J;(T') =~ I'/2. (In the limit I’ < 1
this expansion is obtained more simply expanding directly eq. (9.177)
in powers of I'). Therefore, the effect of the phase modulation is to
generate sidebands.?? For small T, higher sidebands are suppressed by
higher powers of I', so we will limit ourselves to the carrier, which has
frequency wy, and wavenumber kr, = wy, /¢, and to the first two sidebands,
with frequencies

wi = wr, & Qmod 5 (9179)
and wavenumbers
w4 1 1
ky = — =27n{ — =% . 9.180
: ¢ " (AL >\mod> ( )

Consider now what happens to the carrier and to the sidebands in a
Michelson interferometer with arms of length L, and L,. For the carrier
the incoming electric field has amplitude EyJo(T') so, from the discussion
in Section 9.1, the electric field at the output of the interferometer is
1 . .

(Eout)c — 5(7,1 e?'l}x[,[l.—n _ 7,2621A-LLy) EOJO(F)e—zth , (9.181)
where r1, 79 are the reflectivities of the two end-mirrors. Taking perfectly
reflecting mirrors, 7y = r9 = —1, we have

(Bout)e = —iFoJo(T) e~ rttiknllet L) ginlp (L, — L,)] (9.182)

= —iFoJo(I) e wttikn (LatLy) gin [27r£’£)\;1ﬁ] 7
L

22 Another possible solution would be
to control so well the laser fluctua-
tions, that a detection scheme of the
type discussed above becomes possible
(typically at a working point which is
slightly displaced from the dark fringe).
This solution is under investigation for
Advanced LIGO.

23For A, = 1pm we have wy,/(2m) =~
300 THz, while typically Qpoa/(27) ~
30 MHz, s0 Q04 <K WL-
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24Furthermore, the term O(h) is mul-
tiplied here by AL, and AL <« L.

compare with eq. (9.4). For the sidebands the calculation is the same,
but of course now ki, is replaced by ki and wy, by w4, and the amplitude
of the incident field is =J;(I')Eo. Thus, writing L, — L, = AL, the
electric field of the sidebands at the output is

(Bout)+ = FiEgJi (D) e~ TR (Latlo) gin (b AL) (9.183)
AL

= FiEyJy (D) e wttihe(Latly) gy Jon [ 22 4 AL
)\L /\mod

Now comes the crucial point. If we take L, = L,, both the carrier and
the sidebands are on the dark fringe, (Eou)e = (Eout)+ = 0. However,
instead of choosing L, = Ly, we can set L, — L, equal to an integer
number of laser wavelengths, i.e. AL =n)p. Then, as far as the carrier
is concerned, we are still on the dark fringe, while the sidebands are no
longer on the dark fringe. Rather,

(Bout)+ = —iEoJy (') e~ etk LetLo) 6in (97 AL/ Aoq) -

This choice of asymmetric arms is called the Schnupp asymmetry. Con-
sider now what happens when a GW arrives, taking for simplicity a plus
polarization with optimal direction, and wgwL/c < 1. Then eq. (9.31)
gives Ly — Ly + hl,/2 and Ly, — L, — hL, /2, so

(Lo — L) — (Lo — Ly) + LA(t), (9.185)

where L = (L + L,)/2 and, to lowest order in wgy L/c, we could replace
h(t — Ly/c) and h(t — Ly /c) by h(t). Then we see from eq. (9.182) that
the electric field of the carrier is shifted from the value (Eoys). = 0 on
the dark fringe to the value

(Eout)e = —iEoJo(D) e~ rtH2ikul g Dh(t). (9.186)

This is linear in A and, if this were the total electric field, the power
|(Eout)e|? would be quadratic in h, as we saw above. However, now we
also have the field of the sidebands, and the total electric field is

(Eout)tot - (Eout)c + (Eout)+ + (Eout)-— . (9187)
From eq. (9.184), in the absence of GW we have
(Eout)+ + (Eout)— = _QiEOJ] (F) G—ithJrzik:LL (9188)

X sin(27AL/Amod) co8(Qumoat — @),

where o = 4w L/ Apoa is a phase. In the presence of GWs this is modified
by the fact that AL — [1 + O(h)]AL. However, here we can neglect
the term O(h) because, as we will see below, it is the term O(1) that
combines with the carrier, giving a term proportional to h in ](Eout)totlg
that will encode the GW signal.?* Thus, the total electric field at the
output, in the presence of GWs, is

(Bout )tot = —iFge™ “rt 2L 10 (T kr Lh(t)
+2']1 (F) Sin(QWAL/)\mod) COS(QmOdt — O/ﬂ .

(9.189)

(9.184) :5
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When we compute |(Fout)tot|* we therefore have three terms. (1) The
squared modulus of the first term, which is O(h?), and therefore unob-
servable. (2) The squared modulus of the second, which is independent
of h, and proportional to

. 1
c0s? (Qmoat — ) = 5[1 + co8(2Qmoat — 2a)]. (9.190)

Therefore it is the sum of a DC term and a term which oscillates with a
frequency 2Qmoa. (3) Finally we have the mixed term, i.e. the beatings
between the carrier and the sidebands, which is

4E3 Jo(T)J1 (T)ky, Lh(t) sin(27 AL/ Amod) c08(Qmoat — ). (9.191)

This term is linear in h and oscillates with a frequency Qm0a.2% Therefore
in the output we have a term linear in h, even if the carrier is on the
dark fringe. This term can be extracted from the total output |(Eout )tot|?
using a mixer, which is a non-linear device which takes at its input two
voltages, and produces an output voltage proportional to the product of
the two input voltages. Then, we can multiply the voltage produced by
|(Eout)tot|? in the photodetector by a voltage Vose cos(Qmoat — ). The
time-averaged output of the mixer selects the part of |(Eout)tos|> which
oscillates as cos(Qmoat — ), while the DC part and the part oscillating
as cos(2Qmoat —2a) average to zero. The result (9.191) can be optimized
choosing AL/Apmoa = m + 1/4, with m any integer.

In this way we have an output which is linear in h, and is insensitive
to the power fluctuations of the carrier, which is on the dark fringe. In
principle, we are still sensitive to power fluctuations of the laser because
the sidebands are not on the dark fringe. However, apart from the fact
that the electric field of the sidebands is smaller since it is O(T'), the
crucial point is that now the signal has been encoded in a term which
oscillates as cos(Qmodt — @), s0 it must no longer compete with the
fluctuations of the laser at a frequency fg of the GWs that we are
searching, but rather with the fluctuations of the laser at a frequency
fmoa which is much higher, typically 30 MHz. The power fluctuations
of the laser is an example of a 1/f noise (see page 339), and at high
frequencies it is small. In conclusion, we have achieved two results with
this technique: (1) We are using the interferometer as a null instrument,
since when h = 0 the output of the mixer, i.e. the term in the output
power oscillating as cos(Qmoat — ), vanishes. (2) The signal is linear in
the GW amplitude and is encoded into a high-frequency term, so that
it must now compete with much smaller 1/f noise.

Interferometers with Fabry—Perot cavities

We now discuss how to apply this technique to an interferometer with
Fabry—Perot cavities in the arms. In this case we consider two FP cavi-
ties both with the same length L, and the Schnupp asymmetry consists
in the fact that the distances of their respective input mirrors (i.e. the
mirror first encountered by the beam) from the beam-splitter are I, and
ly respectively, with Iy # 1.

25More precisely, since h(t) is propor-
tional to coswgwt, it oscillates at fre-

quencies Qyoq £ wew.
O(10) MHz and fgw
Wgw < Ql‘nod'

Since finod =
< O(1) kHz,
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The field at the output of the photodetector can be computed using

ed. (9.70), which states that, as far as the reflected field is concerned

for light with wavenumber &k a FP cavity is equivalent to a mirror with
a reflectivity «
7y~ 7.2(1 . p1)€2iA:L
1 — ,(.17,262ikL
Again we modulate the laser light with a Pockels cell, so the light incident
on the beam-splitter is composed of a carrier at the laser frequency wy,
and two sidebands at wr, & Q0q. We choose the cavity length L so that
the carrier is resonant. The modulation frequency fmed = Qmoa /2m is
much larger than the width of the resonances of the FP cavities. For
instance, for L = 4 km and F = 200, eqs. (9.82) and (9.83) give a width
at half maximum ¢f = O(200) Hz, while the modulation frequency
is in the MHz region. Therefore, the modulation frequency Quoq can
be chosen so that the sidebands are not resonant, and fall roughly in
between resonant peaks. From egs. (9.99) and (9.100) we see that, for
an overcoupled cavity, setting 72 = 1, at the resonance R = —(1 —o0),
so the phase ¢ = arg(R) is equal to 7. In contrast, for a generic value
of 2kL far from the resonance (using ro = 1 and ¢ < 1), eq. (9.192)
gives R = 1 + O(0?), so in particular arg(R) = 0 (mod 27), as we see
also from Fig. 9.11. Thus, as far as the reflected field is concerned, a FP
cavity is equivalent to a mirror with a reflectivity R which is different
for the carrier and for the sidebands,

—(1-0) (if k= ky)
R(k) = { .
(k) { +1 (if & is not close to kr,). (9.193)

R(k) =

(9.192)

The total electric field at the photodetector is the superposition of the
field that propagates in the = arm for a length I,,, and is then reflected
by the Fabry-Perot cavity with a reflection coefficient R, and of the
field that propagates in the y arm for a length Iy, and is then reflected
by the Fabry-Perot cavity, with a reflection coefficient Ry. In the ab-
sence of GWs we have R, = R, = R, with the appropriate value of R
depending on whether we consider the carrier or the sidebands. Then.
as in eq. (9.181), the field at the output is ,

Eout — 5(73;1;62””11 _ Rye2zk1y) Eil1€7Wt (9194)
= (REe Tk gin(EAL |

Whe%'e 20 =1, +1y, Al =l — I, and (k,w) are equal to (kr,,wr,) for the
carrier and to (k+,w4) for the sidebands. Thus, for the carrier we have

(Bout)e = —i(1 — o) Eg Jo(T)e “rH2hel gin(or AL /AL, (9.195)

and for the sidebands

(Bout) s = By (1) e+ iy [zﬂ (% e ” C(9.196)
L mod

Just as we did for the Michelson interferometer, we choose as working
point the dark fringe of the carrier, that is we choose [, and ly so that

the Schnupp asymmetry Al is equal to an integer times Ar,, and also
Al/Amoa = m + 1/4 for some integer m, so that sin(2mrAl/Amea) = 1.
Thus, in the absence of GWs, (Fout ). = 0 while

(Bout) 4 + (Fowt)— = 2iEg Jy(I') e ™+ 2l eog(Q0qt — o), (9.197)

with @ = 47l/Amoa. Consider now what happens in the presence of a
GW, as usual with optimal orientation and wgwL/c < 1. The effect of
the GW is to change the reflectivities R, and R, of the Fabry—Perot
cavities. Consider first the carrier. The passage of the GW induces a
phase shift A¢, in the reflected field given in eq. (9.102), so we get (for
o< 1)

Re(kr) = —(1 — 0)ett9= (9.198)
with
2
Ay = f kyLh(t). (9.199)

For the cavity along the y arm we have an opposite phase shift, A¢, =
Ay, 50 Ry(ky) = —(1 — 0)e A% Then eq. (9.194) gives
1

(Eout)c — _5(1 _ O.)(eiA%; e%kt],l_.[ o e—iAqﬁw e2ikl,l.y)Eine—ith

— "“7/(1 o O_>E0J0(Iw)e~iw1ﬂ,+2’ik1i sin [27’(% + AQI):E} (9200)
L

On the dark fringe Al/A;, = n and sin [2#%}—1 + Aqbw] = sin(A¢,) =~
Ad¢,. Thus, in the presence of a GW the electric field of the carrier at
the photodetector shifts from the value (Eout)e = 0 to the value

o toine 1 2
(Eout)e = —i(1 — o) Eg Jo(T)e ™ wrtH2ikel 27 kr,Lh(t). (9.201)
™

As we already saw for the Michelson interferometer, the modification of
the electric field of the sidebands due to the GWs is negligible, since
it gives a corrections 1 + O(h), but it is the term O(1) which, beating
against the term O(h) in the carrier, gives a term linear in A in the
output. In conclusion, we can write the total (carrier plus sidebands)
electric field at the output as

(Eout)tot - AZiEOegiWLtﬂkszl (9202)
f
X (1 — (T)JQ (F)— kLLh(t) — Jl(F) COS(QmOdt - Ol)
w

The situation is now the same that we already discussed for a Michelson
interferometer: taking the modulus squared, the term which oscillates
as cos(2moal — @) is linear in h and is demodulated with a mixer. We
therefore have an output that is linear in A(t) even if the carrier is
on the dark fringe, and is encoded in a term which oscillates at the
frequency Qmod, so 1/f noise such as laser power fluctuations are small.
This procedure is a special case of the Pound-Drever—Hall locking, see
Section 9.3.4.
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9.3.3 Basic optical layout

We can now complete the description of a realistic GW interferome-
ter. One further improvement with respect to the scheme that we have
discussed is the power recycling. The basic observation is that, since
we have chosen as working point the dark fringe for the carrier, in the
absence of GWs no light at all emerges from the beam-splitter in the di-
rection of the photodetector, at the carrier frequency. This means that

all the light at frequency wy, that circulates in the arms is eventually

reflected by the beam-splitter back toward the laser and, in this sense,
is wasted. When we discuss the noise sources in the next section, and in
particular the shot noise, we will see that we want to have the highest

possible laser intensity circulating in the arms. However, the power of

a continuous (and very stable) laser is currently limited to O(10) watts,
which could become O(100) W in the near future. To increase the power
circulating in the interferometer, the idea is to “recycle” the light that
comes back toward the laser, placing a mirror (the power-recycling mir-
ror) that reflects the light back toward the beam-splitter. As far as the
light reflected toward the laser is concerned, we can model the whole
interferometer as an equivalent mirror, with a reflectivity that accounts
for the total reflected field. The addition of the power-recycling mir-
ror between the laser and the beam-splitter creates a new Fabry—Perot
cavity, made of the power-recycling mirror and the “equivalent inter-
ferometer mirror”. If this cavity is arranged so that it is resonant for
the input laser light, the total intensity of the light that circulates in
the interferometer is enhanced. Indeed, in this way a gain of O(100)
can be obtained (the maximum gain that can be reached is inversely
proportional to the losses inside the interferometer), so the power circu-
lating between the power-recycling mirror and the beam splitter raises
to about 1 kW. Inside the Fabry—Perot cavities in the arms, this power
increases further because it is resonant, and in initial LIGO and VIRGO
it reaches a value of order 15 kW.

A second feature of a real interferometer is an output mode cleaner.
Even if the initial beam has been accurately prepared in the TEMgyg
mode thanks to the input mode cleaner, various imperfections in the
mirrors, as well as misalignments, regenerate higher modes inside the
interferometer. These higher modes are not on the dark fringe, and
therefore simply produce a noise that lower the contrast at the output.
The output mode cleaner, placed between the beam-splitter and the
photodetectors, filters out these higher modes, enhancing the contrast
and therefore the sensitivity.

Putting together all these elements, we arrive at the optical lay-
out shown in Fig. 9.25 where, for definiteness, we have used the pa-
rameters of VIRGO. The laser, a continuous Nd:Yag with wavelength
Ar, = 1.064 pm, provides 20 W of power. The laser beam passes through
an electro-optic modulator, i.e. a Pockels cell, which generates sidebands
at Qmoa/(27) = 6.2 MHz. The beam is then passed through the input
mode cleaner. This is a long cavity with very high finesse, and a trian-
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Fig. 9.25 The basic layout of a GW interferometer. EOM = Electro-optic modulator
(Pockels cell); PR = power recycling mirror; OMC = output mode cleaner; b.s. =
beam splitter. The curvature radius R. and reflectivity » of the various mirrors are
indicated. For definiteness, we used the values for the initial VIRGO interferometer.

gular shape that forbids reflection back toward the laser. The beam that
comes out of the input mode cleaner is very nearly a TEMgy mode, both
in the carrier and in the sidebands. It is transmitted through the power
recycling mirror and enters the interferometer. The Schnupp asymme-
try is realized choosing I, ~ 6.4 m and I, ~ 5.5 m for the distances
between the beam splitter and the input mirrors of the two Fabry—Perot
cavities. After going back and forth in the Fabry—Perot cavities, with a
length of 3 km and a finesse F = 50, the beams are recombined on the
beam-splitter. Since we work on the dark fringe, at the beam-splitter
the carrier is entirely reflected back toward the laser, and then finds the
power-recycling mirror, that sends it back to the interferometer. When
the carrier is displaced from the dark fringe, for instance because of the
passage of a GW, the beating between the carrier and the sidebands
goes toward the photodetector. It first passes through the output mode
cleaner, a single crystal of 3.6 cm, where again makes a triangular path,
and then goes to an array of photodetectors, and it is finally demodu-
lated and detected.2®

9.3.4 Controls and locking

This section is slightly technical, but is meant to give at least a flavor
of the problems that must be overcome to turn the beautiful theoretical
idea of a GW interferometer into a working instrument.

The scheme that we have discussed above reaches its high sensitivity
because the laser light is resonant in the Fabry—Perot cavities. On res-
onance, a FP cavity is extremely sensitive to changes in its length L,
but as soon as we move away {rom the resonance, it becomes “dead”,
and the phase of the reflected field loses essentially any dependence on
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26Figure 9.25 is still somewhat simpli-
fied. For instance, there are also lenses
that are used to match the laser beam
into the mode cleaner. A Faraday iso-
lator is used to protect the laser from
back-tracking light from the interfer-
ometer. A mode-matching telescope
is used to blow the input laser beam,
which has an initial transverse size of
just a few millimeters, to the waist ap-
propriate for the Fabry—Perot cavities
which, as we have seen, is rather of or-
der 2-3 cm. Further mirrors are used
to pick up signals that are needed for
control purposes.
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270t course, any imperfection in the
mirrors will create noise, such as scat-
tered light in the interferometer, so
their micro-roughness cannot exceed
too much the figure O(1071%) m found
above.  The mirrors of LIGO and
VIRGO are polished so that their rms
micro-roughness is about 0.5A, that is
50 times larger than 10~1% m.

L, see Fig. 9.10. This means that the mirrors of the FP cavity must be
hold still, and in the right position, so that ki, L = #wn for some integer
n. To estimate the precision needed we observe from eq. (9.81) that
the half-width of the resonance peak, as a function of L at fixed kp,, is
reached if L shifts from the value that fulfills the resonance condition to

a value L + 0L, with
51— 2L
4F "
(Compare with egs. (9.83) and (9.84), where we computed the full width
at half maximum in wy, at fixed L.) With a finesse F = O(200) this
means that we need to keep the length L of the Fabry—Perot cavities

fixed, within a precision better than §L ~ 1073\r,. Similarly, the power-

(9.203)

recycling technique that we have discussed allows us to gain a factor

O(100) in laser power, but again the power-recycling mirror must be
located in a precise position, in order to satisfy the resonance condition in

the power-recycling cavity, i.e. in the cavity made by the power-recycling
mirror and the equivalent interferometer mirror. Again, this must hold

to a precision much smaller than Ay, Finally, our detection scheme

requires that the interferometer be on the dark fringe, again within a

small fraction of wavelength. Typically, a value 6L ~ (1076—10"%)), is
required for good performances. With Ay, = 1 um, this means that the
relative position of the mirrors must be kept fixed, at a distance L of
order a few kms, within a precision

5L ~ (1071221071 m, (9.204)
which is less than the size of an atom! Last but not least, all these lengths
are measured with respect to AL, so we also need a laser whose frequency
is stabilized to great precision. At first sight, the idea of controlling the
length of a 4-km cavity down to an accuracy of 107 m might seem
preposterous. Indeed, it is here that a large part of the complexity of
GW interferometers resides. However, by now this is routinely achieved
in the large GW interferometers, and it is quite interesting to understand
how this is possible.

First of all, one could make the possibly naive remark that a mirror
does not have a smooth surface down to 1071 m, since at this level we
resolve the individual atoms, and even more so at 1072 m; thus, one
might object that the notion of the length L of the cavity is not even
well defined down to these scales. However, we must keep in mind that
the laser beam at the mirror locations has a transverse size of a few
centimeters. This means that what the laser beams actually senses is
the position of the surface of the mirror, averaged over a macroscopic
scale, of order a few cms. Thus, the individual atomic fluctuations can-
cel out, at least to a first approximation®” and, in this averaged sense,
the notion of the length L of the cavity is well defined, even down to
such small scales. This is a simple but fundamental point to keep in
mind to understand the statement that interferometers (or, as we saw in
Chapter 8, resonant bars) are finally able to detect displacements which
are much smaller than the size of a nucleus.
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Another simple but important conceptual point is that, actually, we
do not need to know the value of the length L of a FP cavity down to
a precision 1071% m. All that we need, in order to have a FP cavity
which works properly, is that it is on one of its resonances, i.e. 2kpL =
2mn, or L = ALn/2, for some integer n. Since 2L/A;, = O(10'9), the
corresponding value of n is very large, but we do not need to know it. All
that we want is that the FP cavity be on some resonance, corresponding
to some unspecified value of n, and does not move away from it by more
than L ~ 107*Ar,. Once the two FP cavities in the arms are resonant,
we must arrange their relative position so that the interferometer is on
some dark fringe. Again, we do not need to know on which one.

So, what we need is to “trap”, or lock, each FP cavity in some of
its resonances, and to lock the interferometer on some dark fringe. The
general strategy is the one common to all feedback control systems. In
general terms, this consists of a sensor and an actuator. The sensor
detects the value of the quantity of interest and produces an error signal,
which measures the difference between the actual and the desired value.
The actuator then provides a feedback, which corrects the error, driving
the observed value closer to the desired one.

For a FP cavity, the error signal is obtained using the Pound-Drever—
Hall locking scheme. This is a widely used technique, originally invented
for stabilizing the wavelength of a laser, using as a reference the length
L of a Fabry-Perot cavity. Suppose that we have a FP cavity whose
length is fixed, to a sufficiently good precision. The wavelength of any
laser has in general fluctuations, and if we want to stabilize it a simple
idea is to shine it on a FP cavity of the appropriate length L, chosen
so that the desired value of Az is resonant, and look at the transmitted
light. As shown in Fig. 9.9, we have a series of narrow peaks as a
function of Ar,. If the wavelength of the laser has a slight mismatch with
respect to the resonant value, we are just slightly displaced from the
peak, so the transmitted intensity is lower. We could then use this as an
error signal, and correct for this error with a feedback mechanism. This
scheme however has two drawbacks. First, from the fact that the power
decreases we cannot tell in which direction the wavelength fluctuated,
and therefore we do not know the sign of the correction to be applied.
Second, we cannot disentangle wavelength fluctuations from intrinsic
power fluctuations of the laser.

The solution is to use modulated light, so the electric field entering
the FP cavity has the form (9.178), with the carrier at the resonant
frequency. Upon reflection, taking ¢ < 1, we see from eq. (9.193) that
the carrier takes a minus sign while the sidebands get a plus sign. Using
the fact that Jo(—I') = Jo(I') and J;(—I') = —J1(T), we see that this
still has the form of modulated light, with modulation index —I". Thus
the reflected power is simply |Ep|?, i.e. it contains a DC term and no
term at the modulation frequency moq. In this sense, we have a null
instrument: the signal that we use, which is the part oscillating as Qmed,
vanishes in the absence of perturbations. Suppose now that a fluctuation
changes the wavelength A, of the laser, with respect to the length L
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of the cavity. The carrier, which is on resonance, is very sensitive to
this perturbation, while the sidebands, which are far from resonance,
are completely insensitive, see Fig. 9.10. Thus the reflected field of
the carrier is multiplied by a factor exp{iA¢}, while the sidebands are
unchanged. In the power ]Ereﬁ]Q, the beating between the carrier and
the sidebands now produces a term oscillating at a frequency Qmoq and
linear in A¢, which can be demodulated with a mixer. This is a way to
obtain an error signal which, at least close to the resonance, is linear in
the deviation A¢. We can therefore use it to lock the laser wavelength
to the length L of the cavity.

If we assume for a moment that the laser frequency is already suffi-
ciently stable (we will come back below to this point) and the cavity is
not rigid, as in a GW interferometer, we can turn the argument around,
using Ap, as our standard of length, and lock the cavity length L to the
wavelength A, of the laser. We now realize that the detection scheme
on the dark fringe that we discussed in Section 9.3.2 is nothing but
a variant of this Pound-Drever—Hall locking scheme. In the original
Pound-Drever-Hall method the need for a signal linear in A¢ arises be-
cause we want to know the sign of A¢ in order to correct for it in the
proper direction, while in the detection scheme for GWs it arises first
of all from the fact that the shift A¢ is O(h), and a quantity O(h?)
would be undetectably small. Observe that, even if the interferometer
is always on the dark fringe, the information on the value of A can then
be read from the fact that we know the feedback that we had to apply
to keep it there.

For the control of the interferometer, one generally collects all the
beams that come out from it (including the little light that comes out in
transmission from the end-mirrors of the arms) and uses all the informa-
tion contained in this modulated light to perform a Pound—Drever—Hall
locking of the three FP cavities of the interferometer (the two arms and
the power-recycling cavity). Actually, if we had a laser sufficiently sta-
ble in frequency, we could use as GW detector a single arm with a IP
cavity, and the sensitivity of the detector would degrade only by a fac-
tor of two (given that, for optimal orientation, the contribution of the
GWs in the two arms is summed up). However, lasers of the required
stability do not exist. So, the above procedure can be seen as locking
first the laser to the length of the FP cavity in one arm, and then using
the laser wavelength so stabilized, to lock the second arm cavity to it,
so we are really measuring the displacement in one arm in units of the
length of the other arm. More precisely, we lock the laser to the common
mode, where the two arms move symmetrically, and we detect GWs in
the differential mode, where the two arms move anti-symmetrically.

The Pound-Drever—Hall locking ensures that all the FP cavities are
operating on resonance. Then, we must ensure that the two beams
combine at the output of the interferometer so that they are on the
dark fringe. This is done using as error signal the one generated by the
Schnupp asymmetry. We discussed it on page 506, considering the phase
shift A¢ induced by a GW, but the same argument can be repeated for

the phase shift induced by the noise. Again, using modulated light and
asymmetric arm lengths, we get a signal linear in A¢ at the frequency
Qmod, that we can use as error signal. This technique is called Schnupp
locking.

Experimentally, once the interferometer is at its working point, it is
not so difficult to keep it there for very long time. The most difficult
part is the so-called lock acquisition, i.e. bringing the instrument from
the free state down to a controlled state. In the absence of controls, the
mirrors are typically swinging with an amplitude of a few microns, there-
fore a factor O(10%) larger than what we can tolerate, and have typical
speeds of a few microns per second, so they are sweeping across many
resonances. Thus the control system must be fast enough to “grab”
a mirror when it passes close to a resonance, and keep it there, using
magnetic actuators. Moreover, we have stringent conditions on the align-
ment of the mirrors; for instance the input mirrors of the Fabry—Perot
cavities must be aligned within 66 < O(10~%) rad. Such efficient control
systems have by now been developed by the collaborations running the
large GW interferometers, and locking and correct alignment are by now
obtained quite routinely.

9.4 Noise sources

Having defined the experimental setup, we can now investigate the sen-
sitivity that can be obtained. The sensitivity at which a GW inter-
ferometer must aim, to have good chances of detection, is extremely
ambitious. We saw in Chapter 7 that the GW amplitude that can be
detected depends crucially on the kind of signal (burst, periodic, coales-
cence or stochastic) that we are searching. As a first benchmark, we can
consider a burst that releases in GWs an energy of 1072 solar masses,
taking place in the Virgo cluster of galaxies. As we saw on page 365,
this gives a GW amplitude on Earth of just hg ~ 1072, As we have
seen in this chapter, the corresponding displacement of the mirror of the
interferometer is AL = (1/2)hoL (for wgwL/c < 1), so for L = 4 km,
we have

AL ~2x107*¥m, (9.205)

which is smaller that the size of a nucleus by a factor 10®! Impressive as
it might be, this figure is however somewhat misleading because, as we
have repeatedly emphasized, we must not forget that this is a coherent
displacement of all the atoms of a macroscopic body such as a mirror. A
better figure is given by the corresponding phase shift, which for a simple
Michelson interferometer is Agnich = (47/Ar) hoL, see egs. (9.27) and
(9.28). Setting A, = 1 pm gives Adpich ~ 5 x 107 rad. We have seen
however that for an interferometer with Fabry—Perot cavities we gain a
factor 2F /7 in A¢, see eq. (9.102). For F = 200 this is a factor ~ 130,
which means that we aim at measuring a phase shift

Ag¢pp ~ 10 % rad. (9.206)

9.4 Noise sources
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In the following subsections we examine the dominant noise sources;
to see what sensitivity can be reached. The sensitivity is conveniently
expressed in terms of the strain sensitivity S}/ 2(f)7 with dimensions
Hz~ /2. From its value we can then obtain the sensitivity to all type of
signals, such as bursts, periodic signals, etc., as discussed in Chapter 7.

9.4.1 Shot noise

The first source of noise that we consider is the shot noise of the laser.
This originates from the fact that the laser light comes in discrete quanta,
the photons. Let N, be the number of photons that arrives on the pho-
todetector in an observation time 7. Then the average power measured
at the photodetector during this observation time is

P = Ny, (9.207)

When we measure the average output power, we are actually counting
the number of photons that arrived in a time 7. Whenever we count a
number of discrete independent events the set of outcomes follows the
Poisson distribution,
- 1
p(N;N) = N

where N is the average value of N. Since this is the probability distrib-
ution when we count a number of independent events, it is also known
as the counting statistics. For large N the Poisson distribution becomes
a Gaussian, with standard deviation equal to V'N. Therefore, the fluc-
tuation in the number of photons is given by

AN, = /N,. (9.209)

It is worth stressing that this is a fundamental limitation due to the
corpuscular nature of light. This produces a fluctuation in the observed
power given by

NNe=N (9.208)

1 ;
(AP)shot - T Af»i/QHWL

fuuL 1/2
—(=Lp 21
(er) (9.210)

where in the second line we eliminated NJ/ z using eq. (9.207). We want
to compare this result with the power fluctuations induced by a GW.

To make the setting simpler, we first consider a Michelson interferom-
eter, with no Fabry—Perot cavities in the arms. We neglect the modula-
tion of the laser light and for the moment we work at a generic point ¢q.
Then, according to eq. (9.32), in the absence of GWs the output power
P is related to the input power Py by P = Pysin® ¢g, so eq. (9.210)
becomes

ﬁwL 1/2
(AP)ShoL = <—? P0> }sin (boi . (9211)

On the other hand, again from eq. (9.32), the variation in power due to
a GW is N
(AP)aw = 701 sin 2¢0| (Ad)ich - (9.212)

We consider a periodic GW with frequency f, with only the plus po-
larization and coming from optimal orientation, and at first we take
for simplicity 27 fL/c < 1. According to eqgs. (9.21) and (9.28), the
amplitude of the phase shift A¢niien is then

4L
[Adwticn| = /\—ho, (9.213)
L
so the power fluctuations induced by this GW have an amplitude
P, 4dr I,
(AP)aw = | sin 20| 5—ho. (9.214)
L

The signal-to-noise ratio (defined, as in Chapter 7 to be linear in the
amplitude hg of the GW) for this periodic GW, when the only source of
noise is the shot noise, is then

S (AP)gw

N (AP)shot

PoT\Y? 4nL
ﬁwL /\]

"

ho) cos o] . (9.215)

For definiteness, we compute the shot noise at the naive working point
where cos ¢g = 1/4/2 (the point 1 in Fig. 9.24),28 so

N

S PT\Y? 4xL
<2mL> S o (9.216)

On the other hand, we see from eq. (7.129) that, for a periodic GW
of frequency f, coming from optimal direction and observed for a time
T, the signal-to-noise ratio is written in terms of the strain sensitivity

5711/2(]“) as
s OREE
= [Sn(f)] ho. (9.217)

Comparing egs. (9.216) and (9.217) we see that 7/2 and hq cancel, and
we get the strain sensitivity due to the shot noise,

1/2
_ M (2}%) , (9.218)

Sy2(f)

shot 4wl \ P,

For an interferometer with Fabry—Perot cavities, the result can be ob-
tained replacing [A¢wicn| in eq. (9.213) by |A¢gpp|. For an interfer-
ometer with power recycling, the input laser power Fy in eq. (9.220)
must be replaced with the power circulating in the recycling cavity, so
Py — CPFy, where C is the factor gained with power recycling (typically
C = 0(50—100) with present detectors, so that CPy = O(1) kW). We
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28Actua.lly, eq. (9.215) is maximized
when ¢o = 0, i.e. on the dark fringe.
Thus, even in the absence of phase
modulation, the dark fringe would be
the optimal working point, if the only
noise were the shot noise. However, this
comes out because both the GW sig-
nal and the shot noise vanish at the
dark fringe, with a finite ratio which
optimizes S/N. Since there are other
noise, such as test mass movements,
that do not vanish at the dark fringe,
in the absence of phase modulation the
dark fringe is not an acceptable working
point.
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also take into account the efficiency of the photodetector, which reduces
the effective power used to extract electrons at the photodiode by a
factor n (a typical value can be 7 = 0.93), so Py — nP;.

Furthermore, we do not want to limit ourselves to the static limit, but

we take into account the dependence on the GW frequency. Thus we

use eq. (9.123) for |A¢rp|, and eq. (9.217) is replaced by

¥ (77CPOT> T, 1 (9.219
N\ ) IR 2
and (writing wy, = 2mc/AL) eq. (9.218) becomes
1 1 (dnhde)"?
Sl - 2 9.22
" (f) shot 8FL ( 'r)Pbs > L+ (f/fp) ) ( 0)

where P,s = C'Fy is the power on the beam-splitter after recycling.

An instructive way to rephrase the above computation is as follows.
According to eq. (9.32), the variation in the output power of a Michelson
interferometer induced by a GW, choosing as working point ¢o = 7/4, is
AP = Py A¢picn/2. Since all we measure is the power at the photode-
tector, the power fluctuation eq. (9.210) has the same effect as a phase
shift Agnen induced by a GW, with
1
T
On the other hand, at ¢ = 7/4, we have P = Py/2, so Py = 2P =
2N, hwr, /T, which, inserted in eq. (9.221), gives

1 .
50 Aricn = N} hay,. (9.221)

1
VN
This is the rms value of the equivalent phase shift. To compute its

spectral density Saqs(f) we proceed as follows. Let A(¢) be any random
variable, such that

Adnticn = (9.222)

(A AE)) = Agd(t —t). (9.223)

This is the case of shot noise, since there is no correlation between the
fluctuations of photon number at different times. As we saw in eq. (7.16),
the (single-sided) spectral density Sa(f) of any quantity A is in general
defined from

ADAWY) =5 [ df Sa(Re @0 9220
When eq. (9.223) holds, we see that Sa(f) is independent of f, and
has the value S4 = 24¢ (as we already saw below eq. (8.122)). On the
other hand, setting ¢t = ¢’ in eq. (9.223), we get (A%(t)) = Ad(0) =

(1/2)S46(0). If we do not have an instantaneous resolution in time, but
rather we perform a coarse graining over an observation time 7', the
Dirac delta must be replaced by its regularized version (with unit area),
defined by §(t) = 1/T if —T/2 <t <T/2and 6(t) = 0 if |t| > T/2, so
5(0) = 1/T. Therefore

(A%(t) = %SA- (9.225)

Thus the strain sensitivity S}x/ ? can be obtained from the rms value of A,
(A2(£))Y/2 multiplying it by (27)*/2. In particular the spectral density
of the phase shift, Sag, is given by

2T
S
Ag N»y

o Qﬁw]_,
=/ 5 (9.226)

To pass from the spectral density of A¢ to the spectral density of the
noise n(t), which is the quantity to be compared with the GW signal
h(t), we use eq. (9.125), i.e. we divide by the transfer function (9.126).
(In the language explained at the beginning of Chapter 7, dividing by the
transfer function we are referring the noise to the input of the detector).
This gives back eq. (9.220).

Observe that S/ 2( f)lsnot is flat up to the pole frequency, and then
raises linearly in f. This is due to the fact that the shot noise in itself
is independent of the frequency, while the transfer function, i.e. the
sensitivity of a FP interferometer to GWs, degrades linearly with f
beyond fp,. Inserting the numerical values we get

50\ /3km) /1kW)/?
~15x 1078 H, V2 (=
shot 0 z F L Pbs

NENIA (9.227)

where we set A\r, = 1 um, and we used reference values appropriate for
the initial VIRGO. Recall that (at the initial detector stage) for VIRGO
fp = 500 Hz and for LIGO f, ~ 90 Hz.*"

Sr2(f)

9.4.2 Radiation pressure

Equation (9.220) indicates that, to beat the shot noise, we should in-
crease the power Py, either increasing the input laser power or increasing
the recycling factor C'. However, a beam of photons that impinges on
a mirror and is reflected back exerts a pressure on the mirror itself. If
this radiation pressure were constant, it could simply be compensated
by the mechanism that holds the mirrors in place. However, since the
number of photons arriving on the mirror fluctuates as in eq. (9.209), the
radiation pressure fluctuates, too, and generates a stochastic force that
shakes the mirrors. We see from eq. (9.210) that this stochastic force
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290ur discussion is simplified, since we
have not taken into account the effect of
the phase modulation of the laser light.
Numerically, this gives a strain sensitiv-
ity higher by approximately a factor of
(3/2)1/2 compared to the one obtained
in eq. (9.220), see the Further Reading
section.
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30More accurately, when a suspended
mirror oscillates there is a restoring
force due to gravity, so it should be
really treated as a harmonic oscilla-
tor, with resonance frequency wp and
dissipation coefficient ~ (defined as in
eq. (8.20)). Then the factor (27f)2 =
w? in the denominator of eq. (9.230)
must be replaced by |w? — w2 + dywol,
compare with eq. (8.23). However, the
resonance frequency wg and the dissi-
pation coefficient « are smaller than the
frequency w at which we are interested,
and in a first approximation can be ne-
glected.

31 Another way to describe the same
phenomenon is in terms of vacuum fuc-
tuations of the electromagnetic field en-
tering the interferometer from the out-
put port, see Caves (1980, 1981).

grows as v/ F,s while, from eq. (9.220), shot noise decreases as 1/+/Pp..
If, in order to beat the shot noise, we increase the power Fg, beyond
a certain limiting value the fluctuations in the radiation pressure will
become important, and will dominate over the shot noise.

'To compute the strain sensitivity due to radiation pressure we proceed
as follows. Consider a laser beam with power P that impinges perpen-
dicularly on a mirror. At reflection each photon changes its momentum
from +p to —p, so it transfers a momentum 2|p| to the mirror. Since
the photon energy is I, = |p|/c, the force that a beam of power P
exerts on the mirror is F' = 2P/c. The rms fluctuations of the force in a
time 1" are therefore related to the power fluctuations by AF = 2AP/c.
Using eq. (9.210),
hwy, P

2T
The fluctuation in the number of photons is independent of the fre-
quency, so the spectral density of the force, Sp(f), must be flat in fre-
quency and, using eq. (9.225), is given by

1/2 | 2hwy, P
’SF = 2 —‘C—Z—

This stochastic force F' acts on a mirror that, in the horizontal plane, is
otherwise free, so we have F' = M7, where M is the mass of the mirror
and z its coordinate. In Fourier space, this means F(f) = —M (2r f)%Z,
5o the spectral density of the displacement of the mirror ig3°

AF =2 (9.228)

(9.229)

2 2huwr, P
@rf? Vo e

/20y

S = 7 (9.230)
Comnsider now what happens in an interferometer. We consider first a
simple Michelson interferometer, taking the beam-splitter much heavier
than the end-mirrors (so we can neglect its recoil). When a photon
arrives on the beam-splitter, it is scattered randomly into one or the
other arm. As a result, in each arm the distribution of photons is a
Poissonian. The important point is that the distributions in the two
arms are anti-correlated. One more photon into one arm means one
less in the other. In the differential mode of the interferometer the
contributions due to radiation pressure in the two arms therefore add
up, so the radiation pressure in an interferometer is obtained multiplying
eq. (9.230) by a factor of two (while correlated fluctuations in the two
arms, such as intrinsic laser power fluctuations, cancel out).3!

To express the result in terms of the equivalent noise spectral density,
we must divide by the transfer function that relates AL to the GW
amplitude h. For a simple Michelson interferometer, at f < fp we have
AL = hL, so the transfer function is simply L, and the strain sensitivity
S/ 2( f) due to radiation pressure is

, 4 2fuor, P
1/2( ¢ — L
Sn (f) rad pres ML(QWf)Z 62 ’ <9231)

Jonsider next an interferometer with Fabry—Perot cavities. In this case
the result depends on the finesse F of the arm cavities. Physically,
this dependence can be understood observing that, in a FP cavity with
finesse F, light is performing on average N = 2F/m bounces. Then
each photon hits the mirrors O(N) times, so the rms value AL of the
length of the cavity is O(N) times larger than the value when the light
make only one bounce. Furthermore, when the cavity is at resonance,
a given value of AL produces a phase shift in the reflected light larger
by a factor Trp(f) = O(N), compared to the one-bounce case. Overall,
the total effect on the phase shift induced by the radiation pressure is
therefore O(N?). However, to compare with the effect of a GW (i.e. to
refer the noise to the detector input, in the language of Chapter 7) we
must divide by the transfer function of an interferometer with Fabry-
Perot cavities, which is again Trp(f), and we are left with a single factor
O(N).

In other words, a given displacement AZ(f) of a mirror due to radia-
tion pressure results in a phase shift A¢pp(f) which is much larger than
for the single-bounces case, since now the transfer function is Trp(f),
given in eq. (9.126), which is proportional to F or, equivalently, to the
number of bounces. However, in order to refer the noise to the detector
input, we must divide by the same transfer function, so the two effects
cancel. The fact that each photon performs O(N') bounces results in the
fact that the power inside the cavity is larger by a factor O(N) than the
power Py at the beam-splitter. Indeed, from eq. (9.72), at resonance
the power inside the cavity is

2
tl

et (9.232)

Peay = R;s

Setting for simplicity 7o = 1 and t? = 1 —r# —p; ~ 1 — 7%, this gives
Peav = Pys(1+71)/(1 — r1) which, for ry close to one, can be written as

2F
Pca\l =~ Pbs .
i

(9.233)
Therefore a fluctuation AP, of the light arriving on the input mirror
induces a fluctuation of the field inside the cavity AP, =~ APy (2F /7).
Actually, if the mirror vibrates at a frequency f, the cavity is displaced
off resonance, and the power inside the cavity is reduced by a factor
L+ (f/fp)?], as we see from eq. (9.81), together with the definitions
(9.84) and (9.122). As a result (writing wy, = 2mc/AL in eq. (9.231))

_ _16V2F
rad o A/[L(Qﬂ’f)z

B P 1

2 Ave T+ (J/F,)2

SL2(F) (9.234)

This result answers a question that might have been asked when we
realized that the response to GWs of an interferometer with Fabry—
Perot cavities, with arm-length L and finesse F, is equivalent to that
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Fig. 9.26 The strain sensitivity

S (F) (in units Hz™'/?) due to
shot noise (dashed), to radiation
pressure (dotted) and the total op-
tical read-out noise (solid line). For
definiteness, we have used numeri-
cal values of the various parameters
typical of the initial VIRGO inter-
ferometer.

32\We already met a similar situation
for resonant bars in Sections 8.3.3 and
8.3.4, where we found that, without
quantum non-demolition techniques,
the best one can do is to detect vibra-
tions in the bar corresponding to O(1)
phonon. We have seen that present bar
sensitivities are not that far from this
limit.

of a simple Michelson interferometer with arm-length (2/7)FL. Given
that very high finesse cavities are not difficult to build (e.g. the mode
cleaner has a finesse O(10%)) why bother to construct a km-sized arm,
with all the financial and technical problems that this implies (e.g. the
very high vacuum in such a long arm, see below)? We could think that
it is sufficient to build a table-top interferometer with a sufficiently large
finesse.

The answer is that the response of the detector to GWs, encoded in
the transfer function (9.126), is only one side of the issue. What really
matters is the signal-to-noise ratio, and we must also ask how the various
noise scale with A and L. For instance, shot noise is independent of A/,
When divided by the transfer function, which is O(N), the signal-to-
noise ratio therefore scales as 1/A = O(1/F). To beat down such a
noise we could in principle keep L small, as long as we use a cavity with
a sufficiently high finesse. However, we have seen that radiation pressure
noise rather scales as N?, so after dividing by the transfer function we
have a dependence proportional to A, i.e. to F. In this case a very
large finesse would be harmful. Below, we will see that displacement
noise, such as mirror thermal noise, scale as N, so after dividing by the
transfer function we get a the signal-to-noise ratio which is independent
of F (but still proportional to 1/L), so in this case a high finesse does
not help to beat it down, and we need a large arm-length L. So, in
general we still want to keep L as large as possible, compatibly with
technological and financial constraints.

9.4.3 The standard quantum limit

Consider now the combined effect of shot noise and radiation pressure,
that we denote as optical read-out noise. ITts spectral density is

Sn(f)h)pt, - Sn(fnshot + Sn(f)[rad :

A plot of this expression, and of the separate shot noise and radiation
pressure contributions, is shown in Fig. 9.26. The shot noise contribution
is proportional to P};Sl/ ? while the radiation pressure to Pbls/ . We see
here the uncertainty principle in action. The situation is conceptually
similar to the Heisenberg microscope. We are using photons to measure
the position of an object. The photons impart non-deterministically a
recoil to the object, here in the form of fluctuations of the radiation
pressure, and this recoil disturbs the measure that we are performing.
It is amazing that a quantum effect due to the uncertainty principle can
be important in the measurement of the position of a macroscopic body,
like the mirror of an interferometer, which typically weights O(20) kg.
However, for GW detection we need such an extreme accuracy in the
determination of the mirror position that, as we will see in this section,
the uncertainty principle can indeed become important.®?
Using the explicit expressions and defining

8F [ Pu

=5\ g

TF/\LCM !

(9.235)

Jo (9.236)

eq. (9.235) can be written as

L [h AW S
()pt:m\/%{(l+f_;>+ﬁl+f2/f'g |

For a given value of f we can minimize S/ % f)lopt With respect to fo.
(In particular, fo is varied changing the power P, so this amounts to
finding the optimal value of Ps.) The optimal value of fy is the one for
which the shot noise and radiation pressure contributions are equal, and
is given by ) )
7 _Jfo
1+ —=2.
o f

The corresponding optimal value of 5711/ 2( f) defines the standard quan-

tum limit (SQL),
1/ 1 [sn
Ssar(f) = 2 fL VM’

It should be stressed that Ssqu(f), even if written as a function of f,
cannot be interpreted as the minimum noise spectral density that can
be reached with this type of optical read-out. In fact, the value of fo,
i.e. of the laser power, has been optimized keeping fixed the value of f.
It therefore represents the minimum value of the spectral density which
can be obtained (as long as only optical read-out noise is concerned)
at that value of f. Once we have chosen the power so to optimize the
sensitivity at a given frequency f, at all other values of the frequency we
are not in the optimal situation, and the strain sensitivity is higher than
the standard quantum limit. So, eq. (9.239) rather gives the envelope of
the minima of the family of functions s/ 2( f5 fo)lopt, parametrized by
fo, as shown in Fig. 9.27. (For this reason, it is called a “pseudo-spectral
density”.)
It is useful to define the dimensionless quantity

8wt Pos 1
ML? w2(w§ +w?)’

SY2(F) (9.237)

(9.238)

(9.239)

K(f) = (9.240)

where w, = 27f, and w = 27 f. Then eq. (9.237) can be rewritten as*?

Sl Nops = %SSQL(]C) {L +IC(f)] . (9.241)

K(f)

We have seen that the existence of the limiting value Ssqr(f) is a man-
ifestation of the Heisenberg uncertainty principle. However the uncer-
tainty principle does not put a limit on the accuracy of measurements of
position, but only on the accuracy of simultaneous measurements of con-
jugate variables, and it is possible to go beyond the standard quantum
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Fig. 9.27 The optical read-out
strain sensitivity S/ 2( Flops  (in
units Hz~*/2) for fo = 10 Hz (dot-
ted line), fo = 50 Hz (dashed
line) and fo = 100 Hz (dot-dashed
line), compared to the SQL pseudo-
spectral density (solid line). The
other parameters are L = 3 km,
M = 20.3 kg, f, = 500 Hz.

33 This result can also be obtained with
an elegant formalism, in which radi-
ation pressure and shot noise are re-
lated to the quantum vacuum fluc-
tuations entering the interferometer
from the output port, see Kimble,
Levin, Matsko, Thorne and Vyatchanin
(2000). The quantity that we denote by
wp corresponds to + in this reference.
More precisely, v = ct% /(4L), where t;
is the transmissivity of the first mirror.
In our computation we have assumed
negligible losses, so 1% =1- 7‘%, and
71,72 close to one, so v ~ wc/(2LF).
Observe also that we have set to one the
efficiency 1 of the photodiode and we
have neglected the effect of light mod-
ulation. For instance, in the present
configuration of VIRGO, this results in
the replacement 1/K(f) — 3/[2nKC(f)]
in the first term of eq. (9.241). Differ-
ent modulation schemes can give rise to
different numerical factor for this shot
noise term.
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34 his backgrounds originates mostly
from atmospheric cyclonic systems over
the oceans. Energy is transferred from
the atmosphere to the ocean, and then
to the ocean floor. From there it is
transmitted through the crust for long
distances, O(10%) km, mostly in the
form of surface waves. Its amplitude
presents a peak corresponding to the
period of the ocean waves (12 s) and an-
other one at twice this frequency, and
decreases as a power law at higher fre-
quencies. Near the costs, there is also
a contribution from sea waves breaking
on the shore.

limit using quantum non-demolition (QND) techniques. The general
principles of QND measurements have already heen presented in Sec-
tion 8.3.4. We refer the reader to the Further Reading section for the
application of these techniques to GW interferometers. These techniques
can become important for advanced interferometers.

9.4.4 Displacement noise

The optical read-out noise discussed above is intrinsic to the way that we
use to detect the displacement of the test masses induced by GWs, using
a laser beam that bounces between them. Of course, the test masses also
move because of many other effects that have nothing to do with GWs,
We generically denote all these other effects as “displacement noise” , and
we characterize them with a strain spectral density of the displacement
S;/Q(f), that we denote simply as z(f).

Recall that the effect of a GW on the length L of a FP cavity is to
change it by the amount AL = AL (as long as weywL/c < 1, i.e. as long
as eq. (9.124) holds). Thus, if the length of the cavity changes by an
amount Az because of one of these displacement noise, the correspond-
ing equivalent GW amplitude is Az/L. So, to refer the noise at the
detector input (i.e. to compute the equivalent GW that would induce
the same phase shift), we must divide the strain sensitivity of the dis-
placement by the arm-length L. The finesse of the cavity, or equivalently
the number of bounces A performed by the laser beam inside the FP
cavity, does not enter here. This can also be understood in terms of the
phase shift A¢pp, observing that the phase shift induced by a GW and
that induced by the displacement noise of a mirror are both multiplied
by the number of bounces of the light inside the cavity, so when we refer
the noise to the detector input the factor A/ cancels.

The computation of these displacement noise depends on many tech-
nical issues such as properties of materials, details of the suspension
mechanisms, etc. and a complete discussion is beyond the scope of this
book. We limit ourselves to mentioning the most important displace-
ment noise below. Graphs showing their separate effect on the strain
sensitivity are shown in Section 9.5 below, in Fig. 9.31 for VIRGO and
in Fig. 9.32 for LIGO.

Seismic and Newtonian noise

The Earth’s ground is in continual motion, with amplitudes of order a
few microns. In the region 1-10 Hz this is mostly due to human activity
such as local traffic, trains, etc. as well as to local phenomena such as
winds. Furthermore, there is a micro-seismic background, which affects
a GW interferometer mostly in the form of surface waves that shake the
suspension mechanisms and, finally, the mirrors.3* Its strain sensitivity
has in general the form

z(f)~ A <lf}’{z> mHz /2

(9.242)

where (above about 1 Hz) the index v =~ 2 while, at a typical quiet
location, A can be of order 10~7. Dividing x(f) by the length L =
3—4 km, we are left with a noise strain sensitivity at least 10 orders of
magnitude larger than the values at which we are aiming. The seismic
noise must therefore be attenuated by a huge factor. This is in general
obtained with a set of pendulums in cascade.®® A single pendulum with
resonance frequency fg, at frequencies f > fy attenuates the strain
sensitivity z(f) by a factor f&/f?, and a multistage filter made by N
stages provides an attenuation factor (f2/f2)". Therefore one must
choose fo much smaller than the GW frequency of interest. In practice,
this means that the seismic noise can be reduced below a level interesting
for GW detection only at frequencies above, say, 10 Hz. This is the main
reason while a ground-based interferometer cannot search for GWs below
the ~ 10 Hz region.

Newtonian noise, also known as “gravity gradient noise”, is due to the
Newtonian gravitational forces of objects that are moving, which results
in a time-varying gravitational force.?® The most important Newtonian
effect is induced by micro-seismic noise, which produce mass density
fluctuations and therefore a fluctuation of the gravitational field of the
Earth, which couples directly to the test masses of the interferometer.
One can get a feeling for the extreme sensitivity of a GW interferom-
eter, when one realizes that even the changing gravitational attraction
due to atmospheric turbulence gives a non-negligible contribution to the
Newtonian noise below O(1) Hz.

While the seisiic noise can be attenuated arbitrarily (at least in prin-
ciple, if one were able to build an arbitrarily good attenuator), the New-
tonian noise cannot be eliminated, since the gravitational force cannot be
screened. In present GW interferometers the Newtonian noise is not the
dominant effect (below a few Hz it is overwhelmed by the seismic noise
and above a few Hz by the pendulum thermal noise, see Fig. 9.31). How-
ever, even if one were able to push further down the seismic and thermal
noise, which in principle can be done with technological improvements,
still one would remain with the Newtonian noise which, for a ground-
based detector, would anyway provide the ultimate limitation at low
frequencies (although some noise reduction might be possible monitor-
ing it with a complex network of accelerometers, and then subtracting
it).

Thermal noise

Thermal noise induce vibrations both in the mirrors and in the suspen-
sions. As discussed in Section 8.3.1, its effect can be computed using
the fluctuation—dissipation theorem. We saw that, for a linear system
subject to a force F', we can always write the equation of motion in the
form

Flw) = —iwZ(w)i(w), (9.243)

where Z(w) is called the impedance. The fluctuation—dissipation theo-
rem gives the spectral density of the force responsible for thermal fluc-
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35Such an attenuation system is in it-
self a remarkable technological achieve-
ment. In particular, the VIRGO su-
perattenuator, made of 8 m tall tow-
ers, is the most performing device of
this kind ever built. The construction
of these towers also present non-trivial
problems in material science. To get a
feeling for the kind of issues involved,
consider that the slippage of two grains
of steel under stress releases an energy
sufficient to shake the mirror at the
level of 10~12 m, about a million times
larger than the expected GW signal.

36Obviousiy, these are quasi-static
gravitational fields in the near region
of their sources, and are distinct from
GWs, that are time-varying gravita-
tional fields in the far region of their
sources.
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tuations, Sp(w), in terms of the real part of Z, see eq. (8.125). The
displacement spectral density is then given by eq. (8.128), that we write
as i
2(w) = ——— [4kT Re Z(w)]"? . (9.244
Z@) ;
Therefore, z(w) is known once we have Z(w). This has the great advan:
tage that we do not need to have a detailed microscopic model of the
dissipation mechanism. For a simple damped harmonic oscillator, Z (w)
is given by eq. (8.126). For a more complex extended object, the imped-
ance associated to a normal mode with frequency wy can be modeled
more generally as
im

Z = ———w—[w2 — Wi +iwip(w)], (9.245)

where the dimensionless function ¢(w) is called the loss angle. The most

important thermal noise are the following.

Suspension thermal noise. Any vibration induced in the suspension of
the test masses results in a displacement noise. In particular, we have

e Pendulum thermal fluctuations. These are thermal fluctuations
that induce a swinging motion in the suspensions, and therefore
a horizontal displacement of the mirrors. In the present detectors
this noise is the dominant one between a few Hz and O(50) Hz,
see Fig. 9.31.

o Vertical thermal fluctuations. Thermal noise induce also a vertical
motion of the suspensions. In a GW interferometer, we are only in-
terested in the horizontal distance between the mirrors. However,
because of the curvature of the Earth, the direction of the verti-
cal at the two mirror locations, which are separated by a distance
L = 3-4 km, is not the same. This results in a vertical-horizontal
coupling of the order of the angle § = L/(2Rg) ~ 2 x 104

e Violin modes. These are vibrations that can be described in terms
of fluctuations of the normal modes of the wire. They are responsi-
ble for the set of spikes between 300 Hz and a few kHz in Fig. 9.31.
The width of these resonances is however very narrow, so they af-
fect the sensitivity only in very small intervals of frequencies.

Test-mass thermal noise. These are thermal fluctuations within the test
masses themselves. We can distinguish the following effects.

e Brownian motion of the mirrors. The atoms of a mirror at tem-
perature T have a Brownian motion due to their kinetic energy,
which gives rise to mirror thermal noise. Just as with the violin
modes, its effect can be computed performing a normal-mode de-
composition. This is presently the dominant noise between a few
tens and a few hundred Hz, see Fig. 9.31.

e Thermo-elastic fluctuations. These are due to the fact that, in
a finite volume V, the temperature fluctuates, with a variance
(6T)? = kpT?/(pCy V), where Cy is the specific heat and p the
density of the material. These temperature fluctuations gener-
ate displacement noise through the expansion of the material.
Thermo-elastic fluctuations take place both in the mirror bulk and
in the mirror coatings.

e Thermo-refractive fluctuations. The refraction index of the coat-
ings is a function of the temperature. Thus, the same temperature
fluctuations responsible for the thermo-elastic noise also induce
fluctuations in the refraction index of the mirrors.

Of course, thermal noise is proportional to the dissipations present in
the system, which depend strongly on the material used, and therefore
there is an ongoing search for materials with optimal properties.

Other noise

Beside read-out and displacement noise, other noise are relevant, and
keeping them under control require advanced technologies. We mention
some of them, to give a feeling for the complexity of a GW interferom-
eter.

o The laser beam must travel in a ultra-high vacuum pipe, in order
to keep the noise induced by fluctuations in the index of refrac-
tion below the design sensitivity. For the initial interferometers
the pressure must be lower than 10~7 mbar while, for advanced
interferometers, it must be lower than 10~% mbar.3” Furthermore,
the residual gas must be free of condensable organic molecules
(hydrocarbons), in order to keep the optical surfaces clean. It is
estimated that a hydrocarbon partial pressure of 10713 mbar is
required if one wants to avoid the cumulative deposition of one
monolayer of molecules on the optical elements in 4 years.

e To limit diffuse light scattering in the interferometer, the mirrors
are polished to a rms micro-roughness of about 0.5A, over a di-
ameter of order 20 cm, and have losses of order a few parts per
million.3®

o Fluctuations of the laser in power and in frequency must be kept
under control to great accuracy.

e Other important concerns are so-called technical noise, often re-
lated to the servo loops that keep the many degrees of freedom of
an interferometer under control.

e Seismic noise can be reinjected in the detector because the enclo-
sure walls couple to the mirror magnets both directly, because of
diamagnetism, and through eddy currents.

e The suspension wires undergo creep, i.e. sudden grain-boundaries
slipping, which at this sensitivity level are so frequent that they
finally constitute a Gaussian noise.
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37 Phese vacuum tubes have a diame-
ter of about 1.2 m in order to contain
the diffraction-limited laser beam, and
a 3- or 4-km length, resulting in a total
high-vacuum volume of about 9000 m?3.
For comparison, this is much larger
than the vacuum volume of the LEP
particle accelerator, where the ring is
almost 27 kms in length, but the trans-
verse section of the vacuum pipe was an
ellipse with semiaxes of about 6 cm and
3 cm, respectively.

38Nevertheless, the remaining diffused
light still generates important noise be-
cause it can interact with the pipe
walls, thereby getting modulated by its
seismic noise, and then it can be red-
iffused back in the beam by reflection
on a mirror. Even if only a few parts
per million of the circulating light is
diffused, an unacceptably high noise
results. For this reason, in each of
the 3 km arms of VIRGO have been
mounted about 100 circular rings, ob-
tained from a conical surface, that trap
and absorb most of the residual diffused
light.
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Fig. 9.28 A view of the LIGO detec-
tor in Hanford, Washington State.
{Courtesy of the LIGO collabora-
tion.)

Fig. 9.29 A view of the VIRGO in-
terferometer in Cascina, near Pisa.
(Courtesy of the VIRGO collabora-
tion.)

e Non-Gaussian noise is also present. For instance, the release of
residual gas pockets from the tube walls can generate sudden
bursts.

So, many subtle effects can become important at the sensitivity level
at which a GW interferometer aims. In spite of the apparent simplic-
ity of the original idea, a GW interferometer is clearly a very complex
instrument.

9.5 Existing and planned detectors

9.5.1 Initial interferometers

At time of writing (2007) there are various collaborations running GW
interferometers. In the US, the LIGO collaboration runs two interfer-
ometers with arms of 4 km, one in Hanford (Washington State) and one
in Livingstone (Louisiana). The two detectors have been placed at a
large distance (the light travel time between them is about 10 ms), so
that their noise should be uncorrelated, and are used to search for coinci-
dences. In the Hanford site there is also a second smaller interferometer,
with 2 km arms, in the same vacuum system. While of course there will
be correlated noise between the shorter and the longer interferometer,
still the presence of the smaller interferometer gives a further handle
that helps discriminating real signals from spurious noise, making use of
the fact that many common noise in the two detectors are independent
of L, while the effect of the GW scales with L. A view of the Hanford
detector is shown in Fig. 9.28. The scientists collaborating to the project
are members of the LIGO Scientific Community (LSC).

The VIRGO interferometer, located near Pisa, Italy, is a collaboration
between Italy and France, and has arms of 3 km. A view of the detector
is shown in Fig. 9.29.

Beside these large GW interferometers, there are two smaller ones:
GEO600, with arms of 600 m, is located near Hannover and is a German-
British collaboration. GEO600 works in close collaboration with LIGO,
and its members are also members of the LSC. TAMA is located in
Tokyo, and has arms of 300 m. These smaller detectors are useful also
for developing techniques that will be used by LIGO and VIRGO in
their advanced stage.

In Fig. 9.30 we show a simplified model of the strain sensitivity of
these detectors, in their initial stage. The best sensitivities are reached
by the two detectors with longer arms, LIGO and VIRGO. In the low-
frequency regime, the dominant noise is the seismic. For LIGO and GEO
this results in a “seismic wall” below about 30-40 Hz. VIRGO has de-
veloped an advanced super-attenuator, so its target sensitivity is better
at low frequencies. In the intermediate region the dominant noise is the
mirror thermal noise. In this region GEO600 compensates the smaller
arm length using fused silica suspensions, an advanced technique that
reduces suspension thermal noise, and that will be adopted in advanced
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Fig. 9.30 A simplified model of the strain sensitivities of the initial interferometers.

interferometers. Then, shot noise takes over and becomes the limiting
noise at high frequencies. In this regime, the difference between the sen-
sitivities of LIGO and VIRGO is due to the fact that LIGO has longer
arms (4 km instead of 3 km for VIRGO) and a higher finesse (F = 200
for LIGO and F = 50 for VIRGO). On the one hand this means that,
at f < fpole, the shot noise of LIGO is smaller than that of VIRGO, see
eq. (9.220), which helps to give a better sensitivity in the 100 Hz region.
On the other hand, we see from eq. (9.88) that the pole frequency of
LIGO is smaller, f, >~ 90 Hz for LIGO and f, ~ 500 Hz for VIRGO.
This means that in LIGO the shot noise curve begins to raise linearly
earlier, so it finally get higher than in VIRGO.

A more accurate plot of the sensitivity, including the separate contri-
butions from the various noise sources, is shown in Fig. 9.31 for VIRGO,
while actual data from LIGO are shown in Fig. 9.32, and in Fig. 9.33
for GEQ.%®

Once we have the strain sensitivity, the signal-to-noise ratio of GW in-
terferometers for different type of signals (coalescences, bursts, periodic
signals and stochastic backgrounds) can be computed using the results
of Chapter 7, similarly to what we did in Section 8.3.5 for resonant bars.

For a broadband GW detector such as an interferometer, a useful mea-
sure of the sensitivity is given in terms of the sight distance to coalescing
binaries, that we introduced in Section 7.7.2. Inserting in eq. (7.182) the
strain sensitivity of the initial LIGO and VIRGO one finds that, for a
NS-NS binary, with NS masses my = mg = 1.4M,, initial interferome-
ters have a range

dNSfNS == 0(20) I\/IpC N (9.246)

394t time of writing (2007) initial
LIGO has reached its target sensitivity
and is completing a long science run,
termed S5, with one year of coincident
data between its detectors. As shown
in Fig. 9.32, the noise budget is very
well understood, and reproduces pre-
cisely the theoretical curves. VIRGO
is presently close to reaching its target
sensitivity, and is starting its first sci-
ence runs. VIRGO and the LSC have
signed an agreement for joint data tak-
ing and data exchange. The sensitiv-
ity of GW interferometers will proba-
bly be in rapid evolution in the near
future, with various improvements and
upgrades leading from the initial detec-
tors to advanced interferometers.
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Fig. 9.31 The predicted strain sensitivity S}/Q(f) (here denoted h(f)) of the initial
VIRGO detector, and the various noise contributions. (Courtesy of the VIRGO
collaboration.)

which barely includes the Virgo cluster of galaxies. For BH-BH binaries,
assuming a black-hole mass of 10Mg, as suggested by the observation of
typical stellar-mass galactic black holes, gives a sight distance at initial
interferometers

dpr_pu = O(100) Mpc. (9.247)

Estimates of the rate are uncertain and will be discussed in detail in
Vol. 2, where we will see that, if our theoretical understanding of the
formation and evolution of compact binaries is correct, at these distances
the chances of a detection are small, with O(10~%)—0O(1071) events per
vear for BH-BH coalescences, and O(1073)—O(1072) for NS-NS binaries.
We will see however in Section 9.5.2 that these rates improves drastically
for advanced interferometer.

For burst searches, the sensitivity of a broadband detector depends
strongly on where, in frequency, the burst is peaked, and on its temporal
duration. Assuming for definiteness a flat spectrum over the frequency
bandwidth, a burst that radiates an energy 1075 Mg c? in GWs would be
visible, at SNR = 8 and assuming optimal orientation, up to O(10) kpc.

For spinning pulsars, the sight distance is obtained from eq. (7.166)
as a function of the ellipticity € and of its frequency fo.
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Fig. 9.32 The strain sensitivity, in m/+/Hz, of the LIGO detector in Livingston.
The strain sensitivity in Hz 7'/ is obtained dividing by the arm length L =
4000 m. The noise budget is very well understood. (Courtesy of the LIGO
collaboration.)
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Fig. 9.83 The strain sensitivity, in 1/v/Hz, of the GEO detector during the S5
run. (Courtesy of the GEO collaboration.)
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ity of Advanced LIGO compared
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a narrow-band configuration are
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Fig. 9.35 The main noise contribu-
tions in a possible Advanced LIGO
configuration. (Courtesy of the
LIGO collaboration.)
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curve of Advanced Virgo, compared
to the initial Virgo. (Courtesy of the
VIRGO collaboration.)

9.5.2 Advanced interferometers
Ground-based detectors

For the LIGO and VIRGO interferometers there is a well-defined plan
for upgrades which should lead, in a few years, to second-generation
detectors with much better sensitivities, Advanced LIGO (to which will
contribute also GEO600 and the Australian consortium ACIGA) and
Advanced VIRGO. GEO600 should evolve into a tunable narrow-band
detector in the high-frequency region (GEO-HF), and in a facility for
testing technologies for future interferometers. A cryogenic detector,
LCGT, is under study in Japan, and there are plans for an interferome-
ter in Australia, AIGO. Examples of planned sensitivities are shown in
Figs. 9.34-9.36.

While a number of details might still change, the baseline for the main
improvements that are planned is the following.

e An increase in the input laser power from the present value of
order 10-20 W up to 100--200 W. After power recycling, this would
lead to a laser power in the Fabry—Perot arm cavities of order
1 MW. This has the effect of reducing the shot noise, improving
the sensitivity in the high-frequency region. Such a huge power
will however induce thermal lensing in the test mass optics, due to
absorption in the substrate and coatings, and compensation effects
will be added.

e As discussed in Section 9.4.2, the increased laser power will pro-
duce a larger radiation pressure noise, up to the point that this
becomes a dominant noise at low frequency. This is compensated
increasing the mirror masses, up to about 40 kg.

e LIGO will introduce much better seismic isolation, improving the
sensitivity at low frequencies and bringing the “seismic wall” from
40 Hz down to about 10 Hz. VIRGO already has a seismic isolation
appropriate for an advanced interferometer.

e The test-mass suspensions, presently made of steel wires, will be
replaced by silica (which has lower losses), fused to the mirror
with silicate bonding to create a single monolithic object, thereby
reducing suspension thermal noise. This technique has already
been developed in GEO600. Further improvement can be obtained
shaping the suspension fibers in the form of a ribbon. The resulting
suspension thermal noise will be lower than the radiation pressure
noise (in broad-band observation mode, see below), and compara-
ble to the Newtonian background at 10 Hz.

e New mirror coatings, with lower thermal noise and lower losses
(e.g. thanks to the insertion of dopants) are investigated.

The basic optical configuration is still a power-recycled interferometer
with Fabry—Perot cavities in the arms. To this configuration is added sig-
nal recycling. This consists of adding a new mirror, the signal-recycling
mirror, at the output port of the interferometer, i.e. between the beam-
splitter and the photodetectors in Fig. 9.25. As in our discussion of the
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power recycling cavity, the addition of this mirror creates a new cavity,
the signal-recycling cavity, composed by the “effective interferometer
mirror” and the signal-recycling mirror.

Recall from Section 9.2.2 that a GW of frequency wgy, generates in the
interferometer sidebands at wr, & wey. If the signal-recycling cavity is
tuned in resonance with a sideband corresponding to some given value
of wgy, the sensitivity of the interferometer for this GW frequency is
enhanced, at the cost of the bandwidth. This enhancement depends on
the finesse of the signal-recycling cavity. If the signal-recycling cavity is
tuned to anti-resonance, the sidebands are extracted and the bandwidth
of the detector is increased, with respect to the case where no signal-
recycling cavity is present. This technique is know as resonant sideband
extraction. As a result, with tiny adjustments of the position of the
signal-recycling mirror, of order of fractions of A, we can either tune the
interferometer to some specific source or increase the bandwidth. These
two options are illustrated in Fig. 9.34. The signal-recycling technique is
already implemented in GEO600, although without Fabry—Perot cavities
in the arms.

Thanks to these and to other improvements, an advanced interferom-
eter in wideband mode will be limited, over a bandwidth from about
10 Hz to a few kHz, mostly by the optical read-out noise, as we see from
Fig. 9.35, and therefore by the quantum limit. In the signal-recycling
configuration it is however possible to perform quantum non-demolition
measurements, hence going beyond the standard quantum limit, with
a simple modification of the input—output optics, see Fig. 9.37 and the
papers by Buonanno and Chen in the Further Reading section.

With the strain sensitivity of an advanced interferometer, the perspec-
tive for detection and for opening the field of GW astrophysics are quite
good. A detailed discussion of the sources and their strength will be
the subject of Vol. 2. Here we observe that the sight distance to NS-NS
binaries becomes

dNs_Ns = 0(300) Mpc. (9.248)

At this distance, the expected rate is between O(10) per year and O(100)
per year. For BH-BH with masses 10M, the sight distance becomes

dBHfBH = 0(15) GpC 5 (9249)

and expected rates are between one signal per year and O(500) per
year.*? For BH-NS binaries,

dpr-ns = O(750) Mpc, (9.250)

with an expected rate between one signal per year and O(30) per year.

Looking further ahead, there are ideas for “third generation” interfer-
ometers. Among the features that are being considered, is the possibil-
ity of building an underground detector. As discussed in Section 9.4.4
(compare with Note 34 on page 524) the micro-seismic noise is mostly
propagated through surface waves, so underground it is sensibly reduced,
which also results in a reduction of the Newtonian noise induced by the
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Fig. 9.37 Plot of 1/5,(€2)/55% (y)
(where Q = 27 f and v = 27 fj,0le)
as a function of Q/~, for different
optical configurations.  Reprinted
with permission from Buonanno and
Chen, Class. Quantum Grav. 18
L95 (2001b).

404 major source of theoretical uncer-
tainty is related to the fact that the po-
tential progenitors of a BH-BH system
can go through a phase of common en-
velope evolution, that can lead to the
merging of the progenitor stars rather
than to the formation of a BH-BH bhi-
nary. See Belczynski, Taam, Kalogera,
Rasio and Bulik (2006) for a discussion
of these rates and of their theoretical
uncertainties.
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micro-seismic motion. Another third-generation feature could be the
use of cryogeny. A Japanese collaboration, building on the experience
gained with TAMA, has proposed the realization of the LCGT detector,
made of two independent underground interferometers in the same vac-
uum system, with 3 kms arms and cryogenic mirrors, cooled at 20 K,
to be located at Kamioka, an old mine transformed in an underground
physics laboratory. This site is about 1000 m below the top of a moun-
tain, and provides a very stable seismic and temperature environment. A
prototype, CLIO, has already been installed and is under development.:

Interferometers in space

The region below about 10 Hz is unaccessible to ground-based interfer-
ometers, because of the wall due to seismic and Newtonian noise. Still,
we will see in Vol. 2 that the mHz region is potentially very rich in GW
sources, including particularly fascinating objects such as supermassive
black holes. The only way to detect them is to go in space, where the
seismic noise is absent. One such project is LISA. The LISA mission is
a collaboration between the European Space Agency (ESA) and NASA.
The concept of the LISA mission is quite impressive. It consists of three
spacecrafts, separated by 5 million kms, in a equilateral triangle con-
figuration, orbiting the Sun. The center of the triangle should be at
a distance of about 50 million kms (i.e. about 20° degrees along the
orbit) behind the Earth. The size of the arms is chosen to optimize the
sensitivity for GWs in the 10 mHz region, and in general LISA would
be sensitive to GW frequencies in the range 0.1 mHz-0.1 Hz.

For a detailed description of the mission concept we refer the reader
to the Further Reading section. Here we briefly mention some aspects
of this remarkable experiment.

o Inside each spacecraft there will be two test masses (one for each
arm), freely floating. The spacecraft is kept centered on the test
masses using a drag free technique, in which the position of the
masses is sensed, and the spacecraft adjusts its position with re-
spect to them, using micro-thrusters. The thrusts necessary to
maintain drag-free operation are extremely small, less than 100 uN,
and the required recoil is obtained emitting in space just a handful
of fast ions. This compensates for external influences such as solar
winds, micro-meteorites, etc. that in the long term would sensibly
alter the nominal position of the spacecraft. The LISA Pathfinder
is a ESA mission to demonstrate the drag-free control technique
at the required accuracy.

o The free masses exchange among them laser signals. Over a dis-
tance of 5 million kms, reflection is impossible because of power
losses due to diffraction; after a travel of 5 million kms, the laser
beam is spread over a surface of radius 20 kms. So LISA uses
a laser transponding scheme in which the incoming laser light is
sensed, and another laser is phase-locked to it and sends back an-
other beam.

9.5

e LISA has unequal arms, with arm-lengths known to £20 m from
the measurement of the round-trip time. Then, contrary to what
happens in a Michelson interferometer with equal arms, laser fre-
quency fluctuations do not cancel out when taking the difference
between two arms. For this reason, the LISA concept uses time-
delay interferometry, in which the outputs of the two arms are
recombined with a time delay that takes care of the arm differ-
ence. In the process, laser frequency noise is canceled (while the
signal from GWs with frequencies in the mHz region is unaffected).

e After minimizing spurious forces on test masses, the other most
important issue is the need to keep the temperature distribution
in the spacecraft as constant as possible, since the mass displace-
ments due local temperature fluctuations would induce changes in
the Newtonian gravitational forces on the test mass, as well as
accelerations of the test masses due to thermal radiation pressure.

Clearly, LISA would be an extremely impressive instrument and its
scientific achievements could be truly spectacular.

A number of other space missions are currently discussed, such as
DECIGO, a Japanese space project with arm-lengths shorter than LISA,
to bridge the gap between LISA and the ground-based detectors; and
ASTROD, a Chinese space project with arm-lengths longer than LISA
which, among other relativity experiments, would extend the search for
GWs to lower frequencies. Follows-up to the LISA mission, such as the
Big-Bang Observer (BBO), are also being investigated.
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Further reading

e For a lively discussion of the history of

e Computations of the sensitivities to GWs of Fabry—

gravitational-wave research, as well as the develop-
ment of GW interferometers, see the popular book
Thorne (1994). See also the review Thorne (1987).

A textbook devoted to the interferometric detec-
tion of GWs is Saulson (1994). For reviews, see
also Giazotto (1989), Drever (1991), and Ju, Blair
and Zhao (2000). A large bibliography on GW in-
terferometers can be found in the review by Rowan
and Hough (2000).

A detailed discussion of the optics of GW in-
terferometers is the “VIRGO Physics Book,
Optics and related Topic”, available at
http://wwwcascina.virgo.infn.it/vpb/. The effect
of scattered light in interferometers is discussed in
Vinet, Visson and Braccini (1996) and Vinet et al.
(1997). Mesa beams are proposed in Bondarescu
and Thorne (2006).

Perot cavities in various configurations can be
found in Vinet, Meers, Man and Brillet (1988) and
Meers (1988, 1989).

A pedagogical discussion of lock-in detection is
given in Black and Gutenkunst (2003). A nice
discussion of null instrument is given in Saulson
(1994), Chapter 10. For a discussion of Pound-—
Drever—Hall locking see Saulson (1994), Section
12.5, and Black (2001). A discussion of the global
control of the VIRGO detector can be found in
Arnoud et al. (2005). For resonant sideband ex-
traction see Mizuno et al. (1993).

Shot noise in modulated interferometers is dis-
cussed in Niebauer, Schilling, Danzmann, Ridiger
and Winkler (1991) and Bondu (2003). Radiation
pressure is discussed in Edelstein, Hough, Pugh and
Martin (1978) and Caves (1980, 1981).
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e For quantum non-demolition measurements see

Caves, Thorne, Drever, Sandberg and Zimmer-
mann (1980) and Braginsky and Kalili (1992). For
application to advanced interferometers see Kim-
ble, Levin, Matsko, Thorne and Vyatchanin (2000)
and Buonanno and Chen (2001a, 2001b, 2002). For
a review of quantum noise in GW interferometers
see Corbitt and Mavalvala (2004).

The effect of seismic noise in GW interferometers is
discussed in Saulson (1994), Chapter 8. Newtonian
noise are studied in Saulson (1984) and Beccaria et
al. (1998). Our discussion of thermal noise followed
the internal VIRGO note Flaminio et al. (2005),
where calculations of the various thermal noise are
performed in detail. Thermo-elastic noise is dis-
cussed in Braginsky and Vyatchanin (2003).

e Updated information on the existing GW inter-

ferometers, as well as technical documents, PhD
theses, etc. can be found at
http://www.ligo.caltech.edu/ (LIGO)
http://wwwcascina.virgo.infn.it/ (VIRGO)
http://www.geo600.uni-hannover.de/ (GEO600)
http://tamago.mtk.naoc.ac.jp/ (TAMA)

A detailed description of the LISA mission can
be found in the LISA Pre-Phase A Report
(1998).  See also the reviews Bender (2001),
Danzmann and Riidiger (2003), and the web site
hittp://lisa.jpl.nasa.gov.

For lack of space, we have not discussed experi-
ments searching for GWs using the Doppler track-
ing of spacecraft. For a recent review, see Arm-
strong (2006).
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