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Schutz (1998) and in Brady and Creighton (2000).
The application of the Hough transform to peri-
odic GWs is discussed in Krishnan et al. (2004).
A search for periodic GWs from a single specific
source, using the LIGO and GEO detectors, is de-
scribed in Abbott et al. [LSC] (2004a). Limits on
28 isolated pulsar using the LIGO S2 run are given
in Abbott et al. [LSC] (2005b).

The importance of post-Newtonian corrections for
the data analysis of coalescing binaries is empha-
sized in Cutler et al. (1993). Detailed discussions of
data analysis procedure and parameter extraction
for coalescences is given in Cutler and Flanagan
(1994), Poisson and Will (1995), Krélak, Kokko-
tas and Schifer (1995) and Flanagan and Hughes
(1998a). For computations of the waveform with
the PN formalism, see the Further Reading section
in Chapter 5.

Optimal template placement for inspiraling com-
pact binaries is discussed in Owen (1996) and Owen

and Sathyaprakash (1999). A comparison of ten
plates for binary inspiral is given in Damour, Tye
and Sathyaprakash (2001). A particularly usefy
family of templates for BH-BH inspiral have bee
proposed by Buohanno, Chen and Vallisneri (2003)
A description of the LIGO search strategy for co
alescences can be found in Abbott et al. [LSC
(2005a).

Resonant-mass detectors

The history of experimental GW physics began with resonant-mass de-
tectors. The pioneer was Joseph Weber who, in the 1960§, developed the
concept and built the first resonant bars. In the course of the subsequent
four decades, resonant-mass detectors operated by various groups have
reached sensitivities better than Weber’s original bars by about four or-
ders of magnitudes in energy. Still, we will see in this chapter th‘at thege
_sensitivities could allow the detection of only relatively strong s1gnals‘ in
our Galaxy or at most in our immediate galactic neighborhood, wlugh
_are expected to be rare. To gain access to sources at large extragalactic
distances it is necessary to build large interferometers, which will be the
subject of the next chapter. . . .
The passage from resonant detectors to interferometers implies a jump
from “small-scale” experiments, performed by groups which can bfe as
small as half a dozen people, to “Big Science”, with collaborations
of lundreds of people and financial costs which are higher by fac.tors
0(10%-10%). As we will see in the next chapter, such a jump is Just.lﬁed
by the formidable discovery potential of interferometers and 'espec%ally
advanced interferometers. We nevertheless begin our discussion of ex-
periments with resonant-mass detectors, both because they still have
the possibility of detecting rare or unexpected events, and also because
their study is instructive in itself. Our emphasis will be on aspects that
have an intrinsic conceptual interest, such as understanding how a GW
interacts with a macroscopic piece of matter, and on how it is possible to
detect vibrations of a macroscopic body which are incredibly small, with
amplitude many orders of magnitude smaller than the size of a nucle}ls.
We will see that, by themselves, resonant detectors are remarkable in-
struments; it is possible to measure vibrations in a two-ton object, such
as a typical bar, which corresponds to just a few tens of phonons, and
variations AL of their length L, with AL/L ~ 1071910718,

The optimal SNR in a two-detector correlatio
and the overlap reduction function are discussed ir
Michelson (1987), Christensen (1992) and Flana.
gan (1993). A detailed discussion of signal process
ing strategies for stochastic backgrounds of GWs i
given in Allen and Romano (1999). Signal choppin,
is discussed in Finn and Lazzarini (2001). Stochas
tic backgrounds of GWs are reviewed in Maggiore
(2000). The search strategy of LIGO for stochastic
backgrounds of GWs is discussed in Abbott ef qf
[LSC] (2004d) and (2005c).

8.1 The interaction of GWs with an
‘ elastic body

8.1.1

A typical bar is a cylinder of length L ~ 3 m and radius R ~ 30 cm, S0

in a first approximation we can treat its vibrations as one-dimensional.
We orient the bar along the x axis, with the end-faces at +L /2, and we
study the dynamics of a volume element dV of the bar originally located
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1Soe, e.g. Landau and Lifshitz, Vol. VII
(1970), or Love (1944).

8.1

at a position z. In the proper detector frame introduced in Section 1.3.3,
under the action of the GW this volume element will be displaced to a
new position z+u(t, z), with u(t,z) < z. In this section we consider the
response to a GW burst of duration 7, much smaller than the relaxation
time of the bar. As we will see in more detail later, for a typical bar
this relaxation time is of order 600 s, and the approximation 7, < 600 s
is excellent for astrophysical bursts, which can have 7, = O(1) ms. In
this case we can neglect dissipative effects in the bar during the passage
of the burst, and we know from elasticity theory! that the longitudinal
elastic oscillations of the material are governed by a wave equation,
a2,

dm <%t7u — v g;;) = dF,(t,x),
where dm is the mass of the volume dV considered, dF, is the x compo-
nent of the force exerted by the gravitational wave on the mass dm, and
v, is the speed of sound in the material, related to the Young modulus
Y and to the density p by v =Y/p. \

Before proceeding with the formalism, we observe that eq. (8.1) is
appropriate only if the effect of GWs on the bar can be approximated
by a Newtonian force rather than by the full equations of general rel-
ativity. We saw in Chapter 1 that the effect of GWs on test masses

The appropriate boundary conditions are

(5)

and express the fact that there is no flux of elastic energy flowing outside
the bar. Equations (8.3) and (8.4) determine the elastic deformation of
the bar produced by the GW. Again from elasticity theory we know that
the energy stored in the elastic deformations is given by

1 2 ou\’
E= = g . 5
Jam3|(5) +(5) (5.5)
The mode expansion compatible with the boundary conditions (8.4) is

Z (Sn 511]

Substituting into eq. (8.3) we get

z==+L/2

(8.4)

(8.1)

271 + 1)+ &, (t )cos[ T (217 +2)].  (8.6)

[ee)

> l6n-+whéalsin

n=0

(277 + 1))+

(€ +w!, fn] cos[ 7 (277 +2)] = %xﬁm,

can be approximated by a Newtonian force, and is expressed by the ‘ (8.7)
equation of the geodesic deviation (1.95), only if the spatial separation with T, -
between test masses (and therefore, in our case, the size L of the bar) Wn =7 (2n+1), Wy, = (2 +2). (8.8)
is much smaller than the typical scale of variation of the GWs, Which in Using the orthogonality relations
turn is equal to the reduced wavelength X of the waves. Otherwise, the Lo
expansion performed in the derivation of the equation of the geodesic " J 9 1
deviation breaks down, and a full general relativistic treatment becomes e T sm{ 7 ( n+ 1)) bln[ T (2m +1)] = 3 0n,m (8.9)
necessary. As we will see in this chapter, the fundamental mode of the L/2
bar resonates at the frequency wy = mvs/L, and the bar is sensitive to / dz sin{T(ZH +1)] cos{ 7 (2m +2)]=0, (8.10)
GWs with frequencies of the order of its resonance frequency. Then, the —Lj2
relation between the length L of the bar and the reduced waveleng’.ch ‘ we find from eq. (8.7)
X of the GW that it searches is L/X ~ 7vs/c. Of course, in any avail- L2
able material v, < c¢. For instance, in aluminum at low temperatures, / T
3 + W, = d 2 1
vy ~ 5.4 km/s and 7vs/c = 6 x 107°. Therefore for resonant bars the én n&n 1) Tz sinf— 17 (2n+1)]
approximation L/X < 1 is excellent and we can use the equation of the (_1 ™ 2L
geodesic deviation to discuss their interaction with GWs. = m phm , (8.11)
Using eq. (1.95) we can write the Newtonian force in the proper de- ‘

tector frame in terms of the expression of hy; in the TT frame, while

1. » . 1. L2

dF; = 2} gfﬂdm, (8.2) &+ w;f& = th dz accos[ T (‘)n +1)]
—L/2

with 2/ = (z + u,0,0). Since u = O(h), to linear order in h we can -0. (8.12)

simply set 27 = (z,0,0) on the right-hand side of eq. (8.2). In this

chapter the GW will always be expressed in the TT gauge and, to make

the notation lighter, we omit the label T'T from h;;. Then we have

dF,(t, z) = (1/2)zhy, dm, and eq. (8.1) becomes
82114 282'u 1

Gz Ve ggr g hes

The latter integral vanishes because the integrand is odd under z — —z,
and therefore the modes &/, do not couple to GWs.2 We now restrict to
the fundamental mode &, with n = 0, whose dynamics is governed by

the equation

. 2L .
(8:3) éo+wibo = oo, (8.13)
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2F‘hysically this can be understood re-
calling, from Section 1.3.1, that the
equation of the geodesic deviation de-
scribes displacements from a fixed point
z = 0. Therefore, by definition, the
volume element located at the origin
does not move. In the case of a bar
this means that, as long as we are in-
terested only in its response to GWs,
we can further impose the boundary
condition {(z = 0,t) = 0. The func-
tion sin[rz(2n + 1)/L] satisfies it and
therefore the modes &,(¢t) are allowed,
while cos[nz(2n + 2)/L] does not van-
ish at z = 0 and therefore ¢, () = 0.
Of course, this result is specific to the
form (8.2) of the force exerted by GWs.
More specifically, it is a consequence of
the spin-2 nature of the gravitational
field, which is described by a traceless
symmetric tensor with two indices h;rST,
s0 to obtain dF; we are forced to satu-
rate one index with z7.
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3This value of the effective mass sim-
ply reflects the normalization of the
normal modes. Here we have chosen
sin[rxz(2n + 1)/L] as normal modes,
which are normalized as in eq. (8.9).
If we rather choose as normal modes
Uy, = v/2sin[ra(2n 4 1)/L] and we ex-
pand u(z,t) = 3, an(t)¥n(z), then
€n(t) = V2 an(t) and the effective mass
of an(t) is M rather than M/2. In
Section 8.4, when we discuss resonant
spheres, we will in fact adopt the latter
normalization.

4See, e.g. Landau and Lifshitz, Vol. 1
(1976), eq. (22.12).

®Observe that this relation is com-
pletely independent of the shape of the
burst, and Fs; depends only on the
Fourier component of the GW at the
bar’s resonance frequency fg. This is
a consequence of the fact that the du-
ration of the burst 74 is much smaller
than the dissipation time so, as far as
the absorption of energy from a burst
is concerned, the resonance can be con-
sidered infinitely narrow.

with
T

L
To obtain the elastic energy of this mode we replace u(t,z) in eq. (8.5)
with &u(t)sin(nz/L). For a uniform bar of mass M we have dm
(M/L)dx, and we can perform the integral over z, obtaining

wp = (814)

M .
E = —4—(53 + wiEd). (8.15

Equations (8.13) and (8.15) show that the fundamental mode of a thin
cylindrical bar of mass M and length L is formally identical to a har-
monic oscillator with frequency wo and mass mg = M/2, driven by a
force F(t) = (2/7%)moLhy,. Comparing with eq. (8.3), we see that this
is the force exerted by GWs on a oscillator with an effective mass® mq
and an effective length | = (4/72)L.

An oscillator of mass mg subject to an external impulsive force F'(¢)

absorbs from it an energy E, (the label s stands for “signal”) given by*

1 2

7 2mg (8.16)

/ dt F(t)e ot

—OoC

The energy transferred to the fundamental mode of the bar by a GW
burst is obtained using F(t) = (2/7?)mqoLhg, with mg = M/2, so
_ ML? ?

E I

(8.17)

/ it o () =00

™

By definition, a burst is described by a function A(t) which goes to zero
very fast at ¢ — +o00. We can therefore integrate by part twice the above
expression, and we get

 ML*(2nfo)? 2

B 7

/ dt by (t)e 2T fot

— o0

= 16MIL2f2 o (fo)2 .

0

(8.18)

Therefore the value of |he.(fo)]? can be obtained measuring the energy
E, deposited in the bar,®

1 E

!ﬁmv(fO)k = ZE}? M

(8.19)

It is interesting to see how an elastic bar, once excited by a GW, evolves
in time. If we are interested in the long-time behavior of the signal,
we must take into account that the energy E absorbed by the bar will
be slowly dissipated by internal frictions. As we mentioned before, this
dissipation takes place on a time-scale of about 600 s, which is much
longer than the duration of a burst. Therefore, while the absorption of
energy from a GW burst is extremely well described by eq. (8.13), to
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study the subsequent time development of the signal we must generalize
this equation to .

. . 2L .

50 + 7060 + w§€0 - Fhwz 3 (820)
where 7o describes the effect of dissipation on the mode &. A very

important parameter is the quality factor of the bar (or, more precisely,
of the mode &) Qo, defined by®
wo
Qo= —.
o
Experimentally, values of Qg of order 3 x 10° (and even up to 2 x 107)
are obtained in bars at cryogenic temperatures, which corresponds, for
fo ~ 900 Hz, to a relaxation time 1/ ~ 600 s.

Equation (8.20) is easily solved going in Fourier space,

go(w) = TO(‘”)’;%:C(W) )

(8.21)

(8.22)
where”
2L w?

Tow) =22 ¥
() 72 w? — WwE +iyw

(8.23)

is called the transfer function for the mode &. The form of |Tp(w)|? is
shown in Fig. 8.1. We write w? — wi + ivow = (w — @y )(w — @_) with

g = j:\{wg - (70/2)2 ~L%

In a typical bar 7 is smaller than wg by a factor Qo = O(10°) so the
second term in the square root is completely negligible and

(8.24)

By~ fwg — z% ‘ (8.25)
Then eq. (8.22) gives
2L [ dw wgfzfx(w) iwt
t)=— — - wr .26
50( ) 2 ~/~o<> 2 (w _u—)+)(w —(D,) € (8 )

As an example, we consider the case of a Dirac delta perturbation,

haez(t) = hoTy 6(2). (8.27)
As discussed below eq. (7.99), this can be taken as a crude description
of a burst of amplitude hg and duration 7,. For the Dirac delta pertur-
bation, the Fourier transform A, (w) = ho7, is a constant and

2L * dw w? )
1) = — h - —iwt )
bol®) n@””/mzww—wnw—w>e

(8.28)

For ¢ < 0 we can close the contour in the upper half-plane and, since w.t
both lies below the real axis, see eq. (8.24), we get zero, as required by
causality. For ¢ > 0 we close the contour in the lower half-plane, where
we pick the contribution of the two poles at w = w4, and we get

) 2
é-o (t) >~ 7-7;5 ]7,0(4)07'9 6‘7015/2 sin LUQt . (829)

We therefore have damped oscillations, and we see that, even if the GW
burst lasts only a few ms, the bar continues to ring for a very long time,
of order 10 min.

61n later sections we will meet other
quality factors, like that of the trans-
ducer, or the total mechanical qual-
ity factor of the bar-transducer system.
To avoid confusion, we denote by Qo
(rather than simply by @, as usually
done in the literature) the quality fac-
tor of the mode &p.

7The sign of the factor iypw depends
on our conventions on the Fourier
transform (see the Notation). Often
in the literature the opposite conven-
tion on the Fourier transform is used,
F(t) = [ldw/(2m)|F(w)et™!, and then
To(w) = (2L/7?) w?/(w? — wd — inow).

U0 12 13 14 1S
0)/0)0

Fig. 8.1 The logarithm of the func-
tion (w2 /2L)To(w)|?, against w/wo,
for Qo = 10°.
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8.1.2 The response to periodic signals

We have seen that the fundamental mode of a resonant bar has an in-
trinsic time-scale 79 = 1/49 ~ 10 min, which is the time on which it
dissipates its elastic energy due to internal frictions. GW bursts have
a typical duration of the order of the ms, and therefore dissipation ef-
fects are completely negligible as long as we are interested in the total
energy ahsorbed from the GW. For this reason, we could compute the
energy absorbed by the bar during a burst setting vo = 0, and the basic
equation (8.19) is independent of .

For a periodic signal at the resonant frequency wg the situation is
different. Operatively, a periodic signal is just a wave-packet with fre-
quencies around the resonant frequency wp of the bar, sufficiently narrow
in frequency space, so that its temporal duration is much longer than
1/740 =~ 10 min. In the limiting case of an exactly monochromatic wave

the temporal duration of the signal becomes infinite. If an ideal har-
monic oscillator, with no losses, is driven by an exactly periodic force

at its resonant frequency, its amplitude (and therefore the energy it ab-
sorbs) grows indefinitely. In a real harmonic oscillator there is a damping
force proportional to v5€ which becomes larger and larger as z;‘o grows,
until the losses become so large that they compensate for the energy
absorbed by the external source. At this point a stationary regime is
reached.

To study the response of the fundamental mode of the bar to periodic¢
signals we must therefore use eq. (8.20). We consider a wave propagating
along the z axis,

haw(£) = ho Re {e*w*z/ '5)} , (8.30)

where N is a real constant and Re denotes the real part. The bar is
located in the plane z = 0, so

- : , 2 Lhow? _
€0+ Y0éo + wibo = *TRQ 7], (8.31)
and a particular solution of this inhomogeneous equation is
, 2L how? g iwt
t) = e
So(t) 2 Lu? — wi +ivw
2Lhow? (w? — w?) coswt — yow sin wt
- 2 2 212 2,2 (8.32)
/T (W? —wg)? + 15w

The energy of this solution is found from eq. (8.15). If w = wy it is
time-independent, and is given by

M .
E= —4“(53 +whés)

1
= FMLQhSwSQ(% , (8.33)

where (Jg = wo/vo. This shows that eq. (8.32) describes an equilibrium
state where the energy absorbed by the wave is compensated by the
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Josses due to friction. For an ideal oscillator, Qo — oo and therefore
E — oo. A bar which initially is not excited and which is then hit by a
wave-packet centered around wyp, with a spread of frequencies Aw < wy,
reaches asymptotically this solution after a transient time of order 1/~p.
At w = wo eq. (8.32) becomes

—— sinwgt . (8.34)
Comparing this with the situation in which the bar is hit by a Dirac
delta excitation, eq. (8.29) we see that, first of all, there is no exponential
decay exp{—-ot/2}, since the periodic wave continuously feeds energy
into the bar, compensating for the internal losses. And, second, the
overall amplitude is much larger since 7, ~ 1 ms is now replaced by
1/70 ~ 600 s. Physically this is clearly understood: a burst excites the
bar only for the short time 7,, while under a periodic perturbation the
amplitude of the oscillation keeps increasing for a time 1/~p, until the
rate of losses due to dissipation become equal to the rate at which energy
is feed in by the GW, and an equilibrium regime is established.

8.1.3 The absorption cross-section

Equation (8.32) in principle characterizes completely the response of a
bar to a monochromatic wave. However, it is instructive to express this
result in terms of the cross-section of the bar for GW absorption.® The
power absorbed by an oscillator with velocity & subject to a force F(t)

is F'(t)€o. In our case, recalling that the effective mass of the mode &
is M /2, the force is

(8.35)

b

and, using eq. (8.32)

N Lhow? ? ww? — wg) sin wt coswt + yow? cos? wit
F (75)50 =2M 2 p) 2Y2 2, 2 :
3 (W? —w§)? + yow
(8.36)
Since the energy of the incoming waves is defined as an average over
several cycles, we are more interested in the average power absorbed
over a cycle,

dEabs hd
—— = (F(t
7 (F(t)&o)
ML?h2 6
- 0 L (8.37)
T V- L
In particular, at the resonance frequency
dEabs 1 2,2 3
7 = FML hIOwOQ() . (838)

8We limit ourselves for the moment to
a wave with pure + polarization, prop-
agating in a direction perpendicular to
the bar. See page 425 for the most gen-
eral result.
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9I\Turnericedly, setting M = 2270 kg,
L=3m, fo=1kHz and Q = 10°, we
get oans(wo) =~ 3 x 10718 ¢m?, which
can be written as o,ps(wo) = 7r?, with
r 2 107% cm. Tt is amusing to see that,
even at the resonance, the cross-section
for absorption of GWs of a whole two-
ton bar is of order of the cross-section
of a hard sphere (i.e. a sphere that ab-
sorbs with unit probability everything
that arrives within its radius r) with
a typical atomic size. This reflects of
course the weakness of the gravitational
interaction.

00bserve that we extended the inte-
gral from —oo to +oo. The error that
we are introducing is negligible because
the contribution to the integral from
the region |w — wpl| > g is very small.
For the same region, the detailed form
of the incoming wave-packet is not im-
portant.

Comparing with eq. (8.33) we see that at the resonant frequency (and t
once we have reached the stationary regime, where the solution for a bar !
initially at rest approaches (8.32)) dEaps/dt = o F. Of course dFqps/dt j%
depends both on the properties of the bar and on the intensity of the %
incoming radiation. A quantity that characterizes uniquely the detector |
is the absorption cross-section o.,s(w), defined by g
:

dEabs EZ_Ei §

dt dAdt’ ,

where w is the frequency of the incoming monochromatic wave and E;,
is the incoming energy, so dFi, /dAdt is the energy arriving per unit time §
on a unit area, again averaged over a few cycles, as we always do for the z
|

= Ous(w) (8.39)

energy of a wave. We consider a GW propagating along the z direction,
with hy = hgy = hocoswt and hy = 0. Then, using eq. (1.155),

dEw  Ahw?
dAdt — 32nG

(where we used (cos? wt) = 1/2), and therefore

B 32voG'M L? wt

(8.40)

Tabs(W) = 53 TR AR (8.41)
At the resonance frequency we have?
32GM L3w
Uabs(wO) - _—703& . (842)

The cross-section at resonance, however, is not really the best indicator
of the detector sensitivity. Consider for instance a wave-packet whose
Fourier modes ﬁ(w) are approximately constant over a narrow interval
w1 < w < wy which includes the resonance frequency of the bar wy. The
response of a bar to this wave-packet is determined by the integral of

the cross-section

i
|

“2 dw
— o(w). (8.43)
/w1 2m

Since the cross-section is peaked around the resonance frequency wy, to

compute this integral we can approximate o(w) using

W 3

@~ 002w+ wo) + 13 Aw w0+

(8.44)

This approximation is the leading term in an expansion in vy /wg = 1/Qo.

Since Qg > 1, to a very good accuracy we have'? %
2w 32v0GML? [ dw wi |

. P50 2 M@ = w0 8
Then, to leading order in 1/Qp, we find i
= dw i

8GM L2w? |

_ 8GM Ly (8.46) |

T 03 ' .

Jsing eq. (8.14) we can express wq in terms of the speed of sound in the
material, wg = mvs/L, and then

5, 8 GM ('us)2 . (547

™ C C

This shows that the result depends only on the mass M of the bar, and
on the speed of sound in the material. Numerically, for an aluminum
bar with mass M = 2270 kg, ¥¢ ~ 4.4 x 1072! cm? Hz.!!

Observe that the integrated cross-section is independent of )y, be-
cause the peak value of o(w) is proportional to Qo, but such a large value
is obtained only over a range Aw ~ 1/Qq, so Qo cancels in [ dw o(w).
More precisely, from the explicit expressions we see that the integrated
cross-section is related to the cross-section at the peak by

V

Yo = :)4— Uabs(wﬂ) .

Naively, one might then think that the value of ()¢ is not relevant for the
performance of the detector. However, what really matters for detection
is the ratio between the signal and the noise. In Section 8.3 we will dis-
cuss the possible sources of noise and we will appreciate the importance
of having a large Qo.

We will see below that, despite the fact that a resonant bar is a macro-
scopic object, weighting more than two tons, one is able to detect bar’s
oscillations which are so small that a classical treatment is no longer
adequate, and it is instead appropriate to describe them in terms of the
number of phonons that are excited.!? It is therefore instructive to verify
that the cross-section (8.46) is recovered in a quantum treatment of the
fundamental mode &.

We have seen that the variable & describes a harmonic oscillator of
mass mgo = M/2 and frequency wg. According to the standard rules of
quantum mechanics, we promote it to an operator and we write

ho\ /2 .
- T
£0_<]\/[cuo> (a+a),

with a, ' the creation and annihilation operators, and [a, a'] = 1 (com-
pare with egs. (8.171) and (8.172) below). The free Hamiltonian of the
quantum oscillator is given by the familiar expression Hg = hwo(ata +
1/2) and acts on the harmonic oscillator states labeled by |n). In a quan-
tum field theory interpretation, the state vector |n) describes a collection
of n phonons, each one with frequency wg. To compute the cross-section
we study the interaction of this quantum harmonic oscillator with the
classical external force given in eq. (8.35),'3

F(t) = —(1/7*)M Lhow? coswt .

(8.49)

(8.50)

(8.51)

We define the interaction Hamiltonian from F = —0Hin/0&. In the
quantum treatment the interaction Hamiltonian is then

1
Hiny = —QMLhowzfo coswt
2
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11Using eq. (8.11), it is straightforward
to repeat the above computation for
the n-th longitudinal mode &, of the
bar. Its resonance frequency is wn =
(2n + 1)wo, and for the cross-section,
integrated around wy,, we get

1 -

Gng i 0 (8.48)
Thus, the first excited mode of the bar
which couples to GWs (&, with n = 1)
is at a frequency fi = 3fo, and its
integrated cross-section X1 is smaller
by a factor of 9 compared to the in-
tegrated cross-section %g of the funda-
mental mode.

n =

121y particular, we will discuss in Sec-
tions 8.3.3 and 8.3.4 that the ulti-
mate limitation of resonant bars, un-
less one uses quantum non-demolition
techniques, is given by the so-called
“standard quantum limit”, where we
are detecting single-phonon transitions
induced by the GW.

13Any detectable GW is exceedingly
classical, so we only need to use a quan-
tum description for the oscillator.
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Angular sensitivity and pattern functions

1 , h 1/2
= — (M Lhow* cos wt) (a+a') . (8.52) . .
W Muwo We have seen that the output of a resonant bar with its axis along the
z direction is determined by the value of hz,(t). More generally, if we
denote by I the unit vector in the direction of the longitudinal axis of
the bar, the scalar output is A(t) = I*l7h;;(t). Comparing with eq. (7.1)
we see that the detector tensor of the bar is

DY =i, (8.59)

We assume that before the arrival of the GW the oscillator & is in its
ground state [0). To first order in perturbation theory, the interaction
Hamiltonian (8.52) induces transitions to the state |1), with a transition
amplitude

Since hij is traceless, we can equivalently choose to define D% in the
traceless form D% = [1[J — (1/3)6%. We now compute the pattern func-
tions, defined in Section 7.1, for a cylindrical bar. The geometry is
illustrated in Fig. 8.2. We denote by n the unit vector in the propa-
gation direction of the GW, with polar angles (6,¢). We use as polar
axis the longitudinal axis of the bar, so 6 is the angle between fi and
the z axis and, because of the cylindrical symmetry of the bar, we can
take ¢ = 0 without loss of generality. In Fig. 8.2, we have a reference
frame (x,y, z), where the bar is along z axis and the y axis is perpen-
dicular to the plane of the page, in the downward direction. Since we
have set ¢ = 0, the source is in the (z, z) plane. We introduce a second
reference frame (2/,%/, 2’) such that the propagation direction fi of the
GW coincides with the 2’ axis, and the 3’ axis is parallel to the y axis.

i [ ;
Toy = Tk / dteﬂwo%llHint‘m

. MLhou)g

= ¥Z————2F2(ﬁMWO)1/2 278 (w — wy) , (8.53)

where we have taken wy > 0, w > 0. The probability that a transition
takes place at any time is [Tp_1]? . We regularize the time interval
restricting to —7'/2 < t < T'/2, and therefore the transition rate is

M L?h¢wd 5

5, 0w —wo), (8.54)

1 )
A, FilTo-l” =

where we used the fact that, on a finite time interval —7/2 < ¢ < T/2,

2m8(w) = /T/z dt &'T 855 Therefore the plane defined by the (z,z) axis is the same as the plane
—T/2 ’ (8.55) defined by the (2/,2’) axes (and is the plane of the page). The (z,z2)

axes are obtained from the (z/,2’) axis performing a counterclockwise
rotation by an angle o = (7/2) — 6 around the y axis. In the (2/,y/, 2)
frame the GW has the form

and therefore 2mé(w = 0) = T'. In each transition is absorbed an energy
hwy, therefore the energy absorbed per unit time is

hy hy O
h;j =1 hx —-hy O , (8.60)
0 0 0

dBus _ ML*h3ui

ij
where hy « are defined with respect to the (z/,y) axes. To find the
form of this GW in the (x,y, z) frame, we must compute how this tensor
transforms under the rotation that brings the (2',y/, 2’) frame onto the
(z,y, z) frame. This rotation is described by the matrix

The incoming flux corresponding to the force F(t) is given by eq. (8.40).
Using eq. (8.39), we then obtain

G J2 2
w 5(f — fo)- (8.57)

Oabs = o

cosay 0 sina
R = 0 1 0 , (8.61)

—sinaa 0 cosa

Of course, having neglected the decay width of the excited quantum
state, the cross-section is a Dirac delta rather than a curve with the
Breit-Wigner shape (8.41). To compare with the classical calculation,
it is simpler to consider the integral of o, around the resonance, and
from eq. (8.57) we get

with sina = cosf and cosa = sinf. The components of the tensor
hi; in the (x,y,2) frame are obtained from the components hgj in the
(«/,y,2") frame by hi; = RixRjih,. Then
hw:{; = leRllh;{;I,
= hy[(R11)? — (R12)?] + 2k R11Ri2
= hysin®0. (8.62)

Then we find F, (fi;1) = 0) = sin® § and F\ (f;1) = 0) = 0. The label
Y =0 in Fy » refers to the fact that these are the values of the pattern

32GM L2 f2
/df Tabs = -——f£, (8.58)

mes

in agreement with eq. (8.46). It is not difficult to check that the same
result is obtained if the initial state of the oscillator is a generic state
[n) rather than |0). (Observe that in this case the quantity relevant for
the absorption of energy is |1y —p41]? — |Th—n_1|?).
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Source =z
X’

Fig. 8.2 The relation between the
(z,v, 2) and the (z',y’, 2’) reference
frames.
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M general, a useful choice of axes, i.e.
a preferred value of v, could be sug-
gested by the geometry of the source.
For instance, if the source is a binary
star in an elliptic orbit, with the plane
of the orbit perpendicular to the z’ axis,
a preferential frame will be given by the
two major axes of the ellipse, and in
this frame the GW amplitudes hy and
hx have a simpler form.

functions when the plus and cross polarizations are defined with respect
to the (z',%') axes. More generally, we might wish to refer the plus
and cross polarizations to another system of axes, obtained rotating the
(z',y') axes by an angle 1) around the 2’ axis.'* We have already seen in
egs. (7.31) and (7.32) how Fy and Fy transform under such a rotation,
and then we get

how = Fy(hs)hy + Py (i), (8.63)
with

Fo(A;) =sin? 0 cos2y,  Fy (h;9) = sin? 0 sin2¢ . (8.64)

We see that the pattern functions have been determined by two factors:
the geometry of the detector (which, in the case of resonant bars, is
reflected in the fact that only the component h,, enters, where z is the
bar axis) and the transformation property of h;; under rotations.

In general, we do not have experimental information on the polariza-
tion state of the wave, i.e. we do not know with respect to which axes
the GW takes a given form. This could be the situation, for instance,
when we search for GWs from a binary system of which we do not know
the orientation of the orbit. In this case it can be useful to average

ez (f)? over the angle 1. We denote this average by (...)y. Using .

eqs. (8.63) and (8.64) and the fact that (cos®2¢), = (sin® 2¢))y, = 1/2
while (sin 2y cos 2¢)y, = 0 we get

(o ()7 ) = 5 sin* 6 (JRa (£ + B (NE) . (865)

In eq. (8.47) we found the bar cross-section for a wave arriving from op-
timal direction, § = 7/2, and a purely + polarization with optimal angle
1 = 0. We can now compute the bar cross-section for waves with arbi-
trary arrival direction. In the incoming energy, eq. (8.40), h? is replaced
by [hy[? +|hy|? (in eq. (8.40) we limited ourselves to the case h. = ho,
hx = 0) while, if we average over the polarization, from eq. (8.65) we find
that in the absorbed energy A3 is replaced by (1/2)sin 8(|hy |2 +|h.|?).
Therefore the cross-section (8.47) is replaced by

(So(0))y = <%sin4 9) 8 GM (1)2 . (8.66)

w o C C

The factor sin* @ is the price that we pay when the wave arrives from
a non-optimal direction, while the factor 1/2 reflects the fact that we
are averaging over 1 rather than taking the optimal value. For GWs
coming from all directions, a conventional measure of the sensitivity can
be given by the average of this cross-section over the solid angle. Since
the average of sin” § over the solid angle is 8/15, we find

32 % (’U5>2 '

<ZO<€)>1/),9 = 57 ¢ - (867)
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8.2 The read-out system: how to measure
extremely small displacements

A resonant mass is a device that absorbs a very small fraction of the en-
ergy of the incoming GW and transforms it into mechanical oscillations.
The next task is to detect these oscillations. It is here that most of
the experimental ingenuity enters, and in fact the great improvements
in the sensitivities of resonant bars from the times of Weber are due
mostly to two factors: (1) The fact that bars have been cooled to cryo-
genic temperatures, as low as 0.1 K. (2) The continuous improvements
in the read-out system.

To have a first idea of the difficulty of the problem, recall from eq. (8.29)
that a GW burst with amplitude hg, typical frequency fo and duration
74 ~ 1/ fo drives oscillations of the fundamental mode of the bar with
an amplitude & ~ Lhg. From egs. (7.109) and (7.112) we see that even
a supernova explosion in our Galaxy, which is an event that takes place
only a few times per century and, from numerical simulations, is ex-
pected to release 1075—1077 solar masses in GWs in a few milliseconds,
would produce on Earth a GW with at most hg ~ 1072°, More realisti-
cally, to have some chances of detection we might need to reach a value
ho ~ 10721, This gives

& ~3x107%m (8.68)

for a bar with L ~ 3 m. This is a factor 10% smaller than the size of
a nucleus, so such a measure might seem hopeless. As we will see in
this and in the next section, this is not so, at least at a sensitivity level
of &5 ~ 10719 —1071® m, where resonant bars already perform routinely
measurements. There are two main issues to address here. First, how it
is possible to detect, in absolute terms, such a small displacement. This
will be the subject of this section. The second issue is how to make sure
that the effect of GWs is not swamped by much larger noise, and will
be discussed in the next section.

Before entering into technical aspects, however, it is important to
realize that what we want to measure is indeed an extremely small dis-
placement, but it is a coherent displacement of a macroscopic body,
such as the end-face of the bar, or the mirror of an interferometer. If
we wanted to detect a displacement such as that given in eq. (8.68) on
a microscopic scale, this would be utterly impossible. At the atomic
scale, the notion of position of the bar end-point is not even defined
with that precision. However, our sensors really detect the displacement
of a macroscopic portion of the bar face (or of the mirror of an interfer-
ometer), and in this case the individual fluctuations at the microscopic
level average out, and we are only left with the coherent part of the mo-
tion. It is intuitively clear, and we will see it quantitatively in the next
section, that for instance thermal noise cannot easily generate collective
vibrations of a very heavy object. The other important clue is that we
do not really want to measure the displacement &y(¢), but just some of

427
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®o m @1 m,
L. L.
% &

Fig. 8.3 The schematization of the
bar-transducer system as a double
oscillator.

1570 the pioneering times of Weber
the transducer was a piezoelectric,
ie. a material (a ceramic or a crys-
tal) that, under mechanical compres-
sion, becomes polarized and generates
an electric field. So a piezoelectric is re-
ally sensitive to the strain 8¢/dz. For
the mode &, the spatial dependence is
sin[%*(2n + 1)] and
0 . mx 9 . T N
9 sln[f( n -+ 1)] ~ cos[— (2n + 1)].
(8.69)
Therefore the strain is maximum near
the center of the bar, and the piezo-
electrics were glued on the bar surface,
near the midpoint. Modern resonant
bars operate at low (2-4 K) or ultra-low
(0.1-0.5 K) temperatures, both to re-
duce the thermal noise and to allow for
the use of superconducting devices like
SQUIDs in the read-out. Piezoelectrics,
instead, are not suitable for cryogenic
detectors, since some of their properties
degrade at low temperatures; in par-
ticular, they have high intrinsic losses
and therefore they lower the @ fac-
tor of the system. Piezoelectrics have
therefore been abandoned, and all re-
cent resonant-mass detectors have used
the resonant transducer scheme.

67 his schematization neglects back-
action forces, that will be treated in
Section 8.3.3. It also neglects the ef-
fect of the electric oscillator that per-
forms the transduction process, see Sec-
tion 8.2.2.

its Fourier modes 50 (f), in a frequency window where the effect of the
GW is important. In this sense, eq. (8.68) is a bit misleading. The GWs
that we are searching do indeed produce a displacement of this order
in &o(#), but in Fourier space their contribution is localized in some fre-
quency range, so we only have to fight against the Fourier modes of the
noise in the same frequency range.

We now enter in the detail of how such a small displacement can be
measured. In general, it is necessary to use a transducer, i.e. an object
that transforms the displacement into an electric signal. A particularly
convenient scheme is the resonant transducer. In a resonant transducer
the displacement, before being converted into an electric signal, is am-
plified mechanically. This is obtained coupling the bar to an oscillator
with a light mass. We will see in Section 8.2.2 how such a device is ac-
tually built, but for the moment we can simply schematize this system
as a double oscillator, consisting of an oscillator with (effective) mass
mp and frequency wy coupled to an oscillator of (effective) mass my and
frequency w, as shown in Fig. 8.3. The first oscillator represents the
fundamental mode of the bar, and we denote its displacement from the
equilibrium position by & (). As we found in eq. (8.15), its effective
mass myg is equal to M /2, where M is the mass of the bar. The second
mass represents instead the transducer, and we denote its displacement
from the equilibrium position by & (¢).1°

8.2.1 The double oscillator

As a first step, we discuss the dynamics of the double oscillator. For the
moment, we neglect dissipation effects. Then the system is described by
the Lagrangian

1 ., 1 .
L= §m0§§ + §mt5§ —V(&, &), (8.70)
with 1 1
V(&,&) = §mowgf(2) + ‘Q‘mtwtz(& —&)?. (8.71)

Defining 11 = my/mg, the equations of motion in the presence of external
forces Fy and Fy acting on & and &, respectively, are!®

£+ wlby + (e — &) — L0 (8.72)

mg

" F
&+ w6 — &) = o (8.73)

t

These equations are easily solved performing the Fourier transform and
inverting the resulting 2 x 2 matrix. Consider in particular the response
of the system to an impulsive force on the bar, like a GW burst, so that
Fy/mg = agd(t), while we set £, = 0, since the direct effect of the GWs
on the light mass is much smaller than the “kick” that it receives from
the bar, when the latter is hit by a GW. Then we get

2 2

- —w* + wf

w)=a ,
fow) = a0 (W? —w?)(Ww? —w?)

(8.74)

2
~ wt
- = 5 8.75
& (w) = ao D) =) (8.75)
where wi are the solutions of
wh — Wi+ (14 p)wiw? + wiw? =0. (8.76)

We see that the bar-transducer system has two resonance frequencies
w+. Formally, at w = w4, egs. (8.74) and (8.75) state that &{w) and
én (w) diverge. Once we include the dissipation terms in the equations,
as we will do below, w+ get an imaginary part and & (w) and & (w) at
the resonances are large but finite. From egs. (8.74) and (8.75) we get

" dw —w? +w? iwt
= & iwt 8.77
ot “’0/_00 2m (@ —wh)(w? —w?) (577
< dw w? —iwt
— = : - Wt 8.78
“) ”0/_00 or (W — W)W —wE) © 57

Actually, these integrals are well defined only after we give a prescription
for displacing the four poles (at w = fw; and at w = +w_) from the
real axis. In principle, we can find explicitly the imaginary parts of
the poles including the dissipation terms in the equations, as indeed
we will do below. However, this is not really necessary here, since the
position of the poles with respect to the real axis is fixed by causality:
&o(t) and & (t) must both be zero at ¢ < 0, i.e. before the Dirac delta
perturbation arrives. Since for t < 0 we must close the contour in the
upper half-plane, all poles must be in the lower half-plane, so that for
t < 0 none of them contributes, and we correctly get &(¢) = 0 and
&(t) = 0. As a consequence, for ¢ > 0, when we close the contour in the
lower half-plane, we pick the contribution from all the four poles, which
are circled clockwise. (We already checked explicitly this pole structure
in the simpler case of eq. (8.28), see eq. (8.24).) Then a straightforward
application of Cauchy theorem gives, for ¢t > 0,

2 2 2 2
ag wi —wi | wf —ws | )
= sinwyt+ ——sinw_t}, (879
o) = i (st S (5.79)
2 1 1
&(t) = —~2aow—tQ <——Sinw+t+ —Sinwt) . (8.80)
wi —w? wy w_

Therefore the solution is a superposition of modes £+ (t) oscillating with
frequencies wy and w_. Of course, £4(t) are simply the normal modes
of the system, and the same results could have been found diagonalizing
the Lagrangian.

We now consider the limit ¢ < 1. In this case the amplitude of &;(¢)
is maximized taking w; = wq, apart from corrections of higher order in
t, This choice defines the resonant transducer. Then eq. (8.76) gives

Wi ™~ wp (1 + 4 + O(u)) , (8.81)
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Fig. 8.4 The displacements of the
bar, &o(t) (upper graph) and of
the transducer, & (t) (lower graph),
both in units of ag/we, for p = 1073,
as a function of wpt. Observe the dif-
ference in vertical scale between the
two figures.

and the solutions (8.79) and (8.80) become
Eo(t) = ;—O (sinwt + sinw_t)

(8.82)
wo
&o(t) =~

ag

2w/

Writing wi = wo Fwy, with wy = (1/2)wo/It < wo, the above equations
can be rewritten as

(—sinwyt +sinw_t) . (8.83)

a
Eo(t) ~ =0 sinwot cos wyt ,

(8.84)
wo

&e(t) ~ —

coswot sin wyt (8.85)

wo/H

so we have beatings between the two oscillators, and the energy flows
periodically from the bar to the transducer and backward, with a fre-
quency equal to the beat frequency wp, which is much smaller than wy
The evolution of the system is shown in Fig. 8.4.

The maximum oscillation amplitude of the transducer, Ay, is larger
than the maximum oscillation amplitude of the bar, Ay, by a factor
1//ft- This is the maximum value allowed by energy conservation, since
it means that the elastic energy of the bar, (1/2)mow3 A3, periodically
is completely transferred to the transducer, so at that moment A; is
given by (1/2)muwiA? = (1/2)mewd Af, and A;/Aq = 1/,/fi. We there-
fore have a mechanical amplification of the bar oscillation. This result
suggests to take p as small as possible. However, as we will see in Sec-
tion 8.3, if we take my too small, the thermal noise of the transducer
becomes large, and this fixes an optimal value of 1. The optimal values
of p is typically of order 10731074

The conclusion is that, while the fundamental mode of the bar res-
onates at the frequency wy, the system composed by the bar’s mode &
and the resonant transducer, with p < 1, has two resonant frequencies
wa, slightly displaced from wq and given in eq. (8.81), and the oscillation
amplitude of the transducer is larger than that of the bar’s fundamental
mode by a factor 1/,/x.

We now introduce dissipation in the system. Then egs. (8.72) and
(8.73) are replaced hy

mg [50 + wggo + /ng (o — &) = Fy + f(()iiss 7
’Int{fg + wf(ft — 50)] =F + ftdiss ’

where, as before, Fy, Fy are the external forces. The dissipative forces
fliss | gdiss are given by

giss — *mo’yofg - 77.11'%(50 — &), (8.88)
£ = —myy (& - &), (8.89)

where vy and . are related to the quality factors of the bar and of
the transducer by Qo = wo/v and @y = w; /v, respectively. Limiting
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ourselves for simplicity to the lowest non-trivial order in p = m;/m, we
introduce the modes &4 (t) from
1 _ 1
o = ﬁ(& +&-), &= o
In terms of &4 (t) the equations of motion, with the inclusion of the
dissipative terms, become

(=&++&-). (8.90)

ﬂ

Wwg e L (F_ R
2 g7+w+§+_\/§(m0 \/'Emt)7

fo | \mf—t> . (8.92)

mo my

Er+7& + (8.91)

: . Ry 2 1
—+FE+— wil = —

- +76-+ 5 4+ twif NG (
where w} = w§(1£ /i) and 7 = (y0+7)/2. We see that these equation
decouple only if v9 = 4 (and in this case, as well as in the absence of
dissipation, £+ (t) are the two normal modes of the system). Going in

. Tourier space, it is easy to find the solution for éi and therefore for &,
_which is'7

- (Fo(w)/mo)wd — (Fy(w)/mi)(w? — W + iwo) '

i(w) = (7 = T i) (0 — o T i) (8.93)

This general result will be useful in Section 8.3 when we study the dif-
ferent sources of noise acting on the bar and on the transducer. For
the moment we are only interested in the response to a GW so we set,
according to eq. (8.13) Fy(w) = —(2L/7®)mow?h(w), and F(w) = 0.
Then we find

&(w) = Tt(w)i?,(w) , (8.94)
where the transducer transfer function is
Ty(w) = 2L wiw?

W= T (w? — Wi +iwy)(W? - w? +iwy) (8.95)

The squared modulus of this transfer function is shown in Fig. 8.5 (solid
line), together with the the same quantity for a single oscillator (dashed
line), given in eq. (8.23) and already shown in Fig. 8.1. Observe that,
because of the small value of u, the two peak values of the transducer
transfer function are much larger than the peak value of a bar alone,
having the same quality factor. In contrast, at w > wg |Ti(w)| goes to

| zero as 1/w?, while |Tp(w)| goes to a constant.

We see that dissipation is governed by 4. We can then define the
mechanical quality factor of the bar-transducer system by ¥ = wo/Qm,

L)
Qm N 2 QO Qt ’

Typical values that have been reached in resonant bars are of order
Qm ~ 106

(8.96)

I the denominator we neglected a

term that depends on (v —~0)%w? and,

numerically, is totally negligible.
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Fig. 8.5 Log,|(7?/2L) T3 (w)|? as a
function of w/wo, for Q = wp/¥ =
10% and ;4 = 1072 (solid line) and
the same quantity for the bar alone,
with Q = 10° (dashed line), plotted

against w/wp.
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Fig. 8.6 A schematic representation
of the capacitive transducer.

18 Observe that, in these schemes, the
quantity that is actually monitored is
not & but & —&g. The transfer function
for & — &o is easily obtained repeating
the steps that led to eq. (8.95). How-
ever, by construction the amplitude of
&t is much larger than the amplitude of

&0, 80 & (t) — Eo(t) = & ().

8.2.2 Resonant transducers

The double oscillator provides a mechanical amplification of the oscilla-
tion of the bar. The next step is to read the displacement of the light
mass, transforming it into in an electric signal. Various schemes have
been devised by different experimental groups. The principle of all these
transducers is to use the displacement of the small mass to modulate a
stored electromagnetic field. In general terms, transducers can be dis-

tinguished between passive and active (also called parametric). Passive
transducers modulate a d.c. field, while parametric transducers modu-

lates an a.c. field generated by an external source.

In particular, in capacitive transducers a d.c. electric field is stored in
the gap of a capacitor (values of the gap as small as 10 yum have been
obtained). The light mass of the double oscillator is used as one of the

plate of the capacitor, while the other plate is rigidly fixed with an elec-
trically isolated support to the bar face so, in the same schematization
used in the previous section for the double oscillator, the system is ag
shown in Fig. 8.6. In inductive transducers, instead, a persistent super-

conductive current is stored in a flat coil. The light mass of the double
oscillator is now a superconductive ground plane, whose oscillations in-
duce modulations of the inductance.'®

The resulting electric signal is still very small and must be further

amplified electronically. At cryogenic temperatures the best amplifier
is invariably a SQUID. However, here we face a problem of mismatch
between the large output impedance of the transducer, 1/(wC) ~ 10°

ohm, and the small input impedance of the SQUID, wLgq ~ 1072 ohm. §

Optimal signal transfer is then obtained inserting a transformer between
the transducer and the SQUID. As a result, we end up with a system
of three oscillators, two mechanical (the oscillation &, of the bar and
the oscillation & of the transducer) and one electric (the LC' circuit
formed by the transducer capacitance and the transformer inductance).
These oscillators are coupled, and therefore the system is described by
a generalization of egs. (8.86) and (8.87) that includes the dynamics of
the electric mode. The full system of equations is somewhat compli-
cated. However, to get a qualitative understanding, we observe thaf
the strength of the coupling between oscillators can be measured by
the fraction of the energy that flows from one to the next. For the
two mechanical oscillators we have seen that, taking u < 1 and tuning

wi = wo, all the energy of the first oscillator (the bar) can be transferred

periodically to the second (the transducer), with a beating frequency
wp = w4/t We want to characterize similarly the coupling between the
transducer and the electric mode.

For this, we start by observing that the output of the electromechan-
ical transducer is a potential V', which is a linear function of the trans-
ducer motion, so a displacement & of the transducer generates a poten-
tial V' given, in Fourier transform, by

Viw) = a(w)é(w). (8.97)
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When a(w) is a constant, the potential V(¢) is linear in & (¢) while, if
a(w) ~ iw, the potential V'(¢) is linear in d&(¢)/dt. On the relatively
small frequency range of interest for resonant bars, a can usually be ap-
proximated by its value at wp, which means that we can write eq. (8.97)
equivalently as V(t) = a&(t), or as

V(t) = Znk(t),

with Zy1 = a/(—iwg). The electromagnetic energy Fem = (1/2)CV? of
the capacitive transducer is then given by

(8.98)

1
Bem = 5Ca’] . (8.99)

The elastic energy of a transducer is'®

1 .
Eeoas = _I”ntwégg . (8100)

2

The ratio of these energies, 3, gives a measure of the transfer of energy
from'the bar to the electric mode,

E m C'c 2 2
fem = % (8.101)
Eelas  miwg  mwilZ]
where |Z] = 1/wyC is the impedance. Recalling the definition Zy, =
a/(—iwp) we can also write
| Zo1 |2
=—, 8.102
mywo| Z| ( )

Observe that g is inversely proportional to the mass of the transducer
my. If, instead of using the resonant transducer scheme, one coupled di-
rectly the bar to the capacitor, § would rather be proportional to 1/my,
where my is the effective bar mass, and the transfer of energy from the
bar to the amplifier would be much less effective. Thus, we can see the
resonant transducer as the solution to a problem of impedance match-
ing: the mechanical output impedance of the bar is very high, compared
to the mechanical impedance of the electric field in the capacitor, and
the light mass in the resonant transducer scheme plays the role of a
mechanical transformer for the bar elastic energy.

The best coupling between the mechanical modes and the electric
mode is obtained setting wem = wg, in which case the two mechanical
modes and the electric mode are all in resonance. Unfortunately, to ob-
tain a high quality factor for an electric circuit is more difficult than for
mechanical resonators. If we couple resonantly our double oscillator with
a mechanical quality factor Q,, ~ 10° to an resonant electric circuit with
a quality factor Qe much lower than 108, in the electro-mechanical sys-
tem composed by the two mechanical oscillators and the electric circuit,
dissipation would take place mostly when the energy is in the electric
circuit. As we will discuss in Section 8.3.1, a high overall @ is however
necessary in order to fight thermal noise. One solution, which has been

More precisely, since the transducer
is an extended object, the relation be-
tween g, and w%{? includes numer-
ical factors of order one that depends
on the geometry of the transducer, and
my is an effective mass, defined so that
eq. (8.100) holds, and which differ from
the actual transducer mass by a factor
of order one.
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2OWe will see this formally in Sec-
tion 8.3.2, see in particular Note 27.
However, the reason can be understood
physically observing that, if 8 is small,
only a small part of the total energy
flows from the mechanical modes to the
electric mode, so the oscillation ampli-
tude of the electric mode is small. To
pick up a signal with a smaller oscilla-
tion amplitude we need a larger integra-
tion time, and a large integration time
means a small bandwidth, Af ~ 1/At.
Furthermore, with a larger value of 3, a
smaller mechanical amplification is re-
quired, and the mass my of the resonant
transducer can be made heavier. As we
will see in Section 8.3.1, this reduces
the transducer thermal noise, which is
another fact that limits the bandwidth.

ZlActually, both the AURIGA and
MiniGRAIL groups developed double-
stage SQUIDS, in which a de SQUIDs
senses the signal and its output is
further amplified by a second stage
SQUID.

used by all detectors until recently, is to detune the electric mode, keep-
ing its frequency fem about 30% higher than the resonances of the two
mechanical modes because, if the oscillators are detuned, only a fraction
of the total energy O(f8) is transferred to the electric mode, where it is
dissipated fast. The drawback of this solution is that the bandwidth of
the detector increases with /3, so a small 3 means a narrow bandwidth.?0

However, recently various groups have improved the quality factor
of the electric resonator and brought it in resonance, or close to the
mechanical modes. As a result, the bandwidth of the detectors has been
greatly enhanced, and in particular for the AURIGA detector is now of
order or larger than 100 Hz, see Fig. 8.17 below.

We have now transformed the bar displacement into an electromag-
netic signal, and the final step of the transduction process is its ampli-
fication. At cryogenic temperatures, SQUIDs are by far the amplifiers
with the lowest noise, so they are the natural choice for the final ampli-

fication chain in resonant detectors.?! In this way it has been possible
to measure changes in energy corresponding to the absorption of O(100)

quanta of frequencies wg, i.e. AE = Nhwy with N = 0(100). This
is quite remarkable, if we think that we are detecting vibrations corre-
sponding to just about 100 phonons, in a two-ton object!

Alternative read-out systems have also been actively investigated. We
briefly discuss two possibilities.

Parametric resonant transducers

These transducers make use of an external power source (the “pump” os-
cillator). The oscillation of the light mass in the double oscillator can be
used to modulate a capacitance, just as in the capacitive transducer dis-
cussed above, but the capacitor is now part of a high-Q resonant circuit
which, in turn, modulates the phase and amplitude of the reflected or
transmitted signal. This produces sidebands at the frequencies wy, = wo,
where wy, is the pump frequency, which can be at optical, microwaves
or radio frequencies. Then the signal is demodulated using as reference
the original pump signal. Contrary to passive devices, parametric trans-
ducers have an intrinsic power gain, due to the up-conversion of the
signal to much higher frequencies. We can see passive transducers as
objects in which the transduction process, i.e. the transformation of the
mechanical oscillations into an electric signal, is completely separated
by the amplification process, which is performed later by a SQUID. In
parametric devices, instead, the transduction and at least part of the
amplification are performed simultaneously. On the other hand, for
parametric transducers, important limitations come from phase noise
and stability problems in the pump. It is also necessary an excellent
carrier suppression, otherwise the pump power reflected from the cavity
overwhelms the signal in the sidebands.

An important difference between passive and parametric transducers
is that in passive transducers the relation between the input and the
output is linear, both in amplitude and in phase, while this is not the

.
-
-
-

case for a parametric transducer, because of the effect of the external
pump field. We will see in Section 8.3.3 that, because of the role of
the uncertainty principle in the measurement process, this difference
has important implications for the ultimate sensitivity attainable with
passive and with parametric transducers.

Dual detectors

The resonant transducer scheme has two advantages. The first is that
it provides a much needed mechanical amplification of the signal. The
second is that, since it amplifies only the mode to which it is tuned
(normally the fundamental mode of the bar) it allows us to forget about
all the higher modes of the bar. This means that we can neglect the
thermal noise associated to all the higher modes &, of the bar, and we
can describe the bar-transducer system as a simple system with two
degrees of freedom, &, and &;.

On the other hand, when in the next section we discuss the various
contributions to the noise, we will see that the resonant transducer also
introduces an important limitation. In particular, because of its thermal
noise the sensitivity of a resonant bar is restricted to a relatively narrow
region Af around its resonance frequency.

An alternative that has been recently proposed is the so-called dual
resonator. In this scheme one has two nested objects, such as two con-
centric cylinders, or an outer hollow sphere and an inner concentric solid
sphere. One can arrange the size and material so that the fundamental
mode of the inner body finner is, say, around 3 kHz, while the funda-
mental mode of the outer body, fouter is around 1 kHz. The idea is to
measure the differential displacement between these two surfaces. The
displacement could for instance be detected by an optical read-out made
of a high-finesse Fabry-Perot cavity,?? resonant with an incident laser
beam, as in Fig. 8.7. Since no resonant transducer is introduced, the
useful bandwidth covers the whole interval f € [fouter, finner] (in fact, in
this region one can even show that the oscillation amplitude of the two
nested bodies adds up, while some noise partially cancel).

The first problem that must be solved is to have sufficient power in
the cavity and a sufficiently high finesse, in order to be able to reach the
required sensitivity, taking into account that we have given up the ampli-
fication that was provided by the resonant transducer scheme. Cavities
of this type are being developed, but still we are not yet at the required
sensitivity level. Second, one should find a way to get rid of the contribu-
tion of all the higher modes. In the resonant transducer scheme one has
a selective read-out based on frequency: only the mode with the same
frequency as the resonant transducer is amplified. In the dual scheme,
it has been proposed a geometrically based mode selection, which con-
sists in sensing a large portion of the surface, so that the effect of higher
modes averages out and, comparing the deformations on different parts
of the body, one can enhance the contribution of deformations with a
quadrupolar symmetry.
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Fig. 8.7 Scheme for a possible read-
out of a dual detector. The small
gap between the two spheres is mea-
sured using a high-finesse single-
ended cavity. Reprinted figure with
permission, from Briant et al. Phys.
Rev. D 67, 102005 (2003). Copy-
right 2003 by the American Physical
Society.

2ZFat.brnyerot cavities will be dis-

cussed in detail when we come to in-
terferometers, in Chapter 9.
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23 More precisely, n(t) is the noise re-
ferred to the detector’s input, see the
discussion in Section 7.1.

24 Observe that the use of the transfer
function of the bar—transducer system
is still an oversimplification. We have
seen that the electromagnetic trans-
ducer is really a three-mode system
composed by the bar, transducer, and
electric mode. If the electric mode is
detuned, a two-mode description can be
sufficient. Otherwise, the full transfer
function of the three-mode system must
be used for a detailed quantitative un-
derstanding. Thus, the analysis that we
present below is really meant to obtain
only a qualitative understanding of the
effect of the principal noise in a reso-
nant detector, and is not sufficient to
reproduce accurately the details of the
sensitivity curves.

8.3 Noise sources

In this section we examine the sources of noise that limit the perfor-
mances of resonant bars. In particular, in Sections 8.3.1 and 8.3.2 we
discuss the two types of noise that are more important in existing de-
tectors, namely thermal noise and read-out noise, and we will see that
their combination fixes the useful frequency bandwidth. We will then
discuss other sources of noise, including some fundamental limitations
imposed by quantum mechanics.

For each source of noise, we can characterize its effect in two com-
plementary ways: (1) We can compute the minimum detectable energy
that should be deposited in a bar by a short GW burst in order to over-
come this noise, say at signal-to-noise ratio S/N = 1. (2) We can give
its contribution to the noise spectral density. The former characteriza-
tion is physically more intuitive, but it carries less detailed information,
because it is a quantity integrated over the frequency bandwidth. The
noise spectral density, on the other hand, carries the full spectral infor-
mation. Below we will use both characterizations.

The noise spectral density has been defined in Section 7.1. To compute
it, for resonant bars it is convenient to proceed as follows. First of all, we
write as usual the output of the detector in the form s(¢) = h(t) + n(t),
where h(t) is the contribution due to GWs and n(t) is the noise.?3 We
have seen that, when GWs provide the only force acting on the bar, the
corresponding displacement, that we denote here by () is related to
the GW by

EM(w) = T(w)h(w), (8.103)
where T'(w) is the transfer function. We can use this equation to study
the displacement of a single oscillator like the bar fundamental mode
o, in which case the transfer function is the function 7Tp(w) given in
eq. (8.23), or we can use it to study the transducer displacement &
in which case the transfer function is given in eq. (8.95). The latter
quantity is more relevant, since it is the motion of the transducer that
is sensed, but it can also be useful to compare the situation with the
resonant transducer with what happens if we have only the mode &;.%*
We denote generically by £ the displacement in which we are interested,
either £ or &, and it is understood that the corresponding transfer
function is used.

The noise gives further contributions to the displacement,

£M(w) = T(w)i(w) . (8.104)
Following the general definition of spectral density given in Section 7.1,
the single-sided spectral density of a displacement, Se(w), is defined by

€)= 55w,

Using eq. (8.104) we see that the noise spectral density S, (w) is related
to the spectral density of the displacement induced by that noise by

PO (1) = |T(w)]? S (w) - (8.106)

(8.105)

Therefore, to compute the contribution to S, (w) due to a given noise
source, say thermal noise, we can compute the spectral density of the
displacement induced by this noise, and we then divide it by |T(w)|?.?°

8.3.1 Thermal noise

Thermal (or Brownian) noise is due to the thermal kinetic energy of
the atoms of the detector. Naively one might think that, in a bar at
temperature 7', the minimum detectable energy excitation should be
AFmin =~ kT, otherwise the excitation is drown into the thermal fluc-
tuations. A key contribution by Weber was the realization that, in a
mechanical oscillator with a high @, the minimum detectable energy
due to thermal noise is in fact much smaller. The physical intuition
behind this result is that a high-Q oscillator dissipates very slowly; if we
excite the oscillator, we know that it will return to its original state in
a very long time. In particular, the fundamental mode of a bar has a
relaxation time 79 = 1/y9 = Qo/wop of order 10 min, which means that
it is extremely weakly coupled to the thermal bath constituted by all
other bar’s modes. Therefore we expect not only that the time needed
to go from an excited state back to the ground state will be long but
also, conversely, that the time needed to develop energy fluctuations of
order kT in the fundamental mode will be of order 7.

On the other hand we have seen that a GW burst, in a time 7, cor-
responding to the burst duration, excites bar’s oscillations with an am-
plitude & ~ hL. Since 74 is much smaller than the relaxation time
19 of the fundamental mode of the bar, we can expect that the energy
fluctuations due to thermal noise in such a short time are much smaller
than k7', and rather of order kT (7,/7). The idea is therefore that, if
we sample the bar’s state with a time resolution At¢, the minimum GW
energy detectable against thermal noise should be

At
(AEmin)thermal ~ kT —

pt (8.107)

as long as At > 7, (of course, if At become smaller than the burst
duration, we start to lose part of the signal). In practice this will be
achieved using the matched filtering procedure of Section 7.3, with a
filter functions, such as a Dirac delta, that discriminates a fast excitation
from the slow thermal modes.

To confirm this physical intuition, we study the evolution of the bar’s
fundamental mode in the presence of thermal noise. In the previous
sections we studied the evolution of £y using the equation for the damped
oscillator, ) )
o+ wiko = =00 - (8.108)
If this were the complete description of the bar’s dynamics, the time
evolution of &(f) would be fully deterministic. In principle, we could
then simply subtract it, and attribute any deviation from the expected

_evolution to external causes like GWs. However, thermal noise enters in
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25Observe that Sn{w) has dimensions
Hz™1, so the strain sensitivity S}-;/ 2 (w)
has dimensions Hz~'/2, while Se(w)
has dimensions m?/Hz. The sensitivity
of the bar is usually displayed plotting
either Sy (w) or S},,/z(w). This is more
useful than plotting S¢(w) or 551/2 (w),
especially when we compare the sensi-
tivity of different experiments like bars
and interferometers. In fact, a bar and
an interferometer with the same sen-
sitivity to GWs, ie. with the same
Sy (w), would have very different spec-
tral density of the displacement, since
for bars the length-scale that enters in
the transfer function is the bar’s length
L = 3 m, while for interferometers it
is the pathlength of the light in the in-
terferometer arms. As we will see, for
ground based interferometers this is of
the order 102 kms. Therefore, in differ-
ent detectors, very different values of
Se{w) can correspond to the same min-
imum value of h(w) that can be mea-
sured.
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26The  Qreen’s function is selected
uniquely imposing the causality condi-
tion, i.e. requiring that the particu-
lar solution of the inhomogeneous equa-
tion, at time ¢, depends only on F(t')
at ¢ <t

the fact that it produces a stochastic force, responsible both for the dis- g
sipation term —vo&o, and for fluctuations around it. To take fluctuations |
into account the above equation must be replaced by |

mo (€0 + wiéo) = Futoe (8.109)

with

<Fstoc> - *m/O’YOé() . (8110) :

%
We write Fyoe = —moyolo + F(t), where F(t) is a stochastic force
that describes the thermal fluctuations, known as the Nyquist force. By |
definition (£'(t)) = 0. Thermal noise fluctuations can be described by a
stochastic Gaussian process, since they are the sum of many independent
contributions, so the stochastic properties of F(t) are uniquely defined
by its average value that, as we have seen, is zero, and by its auto-
correlation function (F'(2)F(t')). At the microscopic level, F(t) is due
to atomic collisions, at a rate which can be, say, O(10'°) collisions per,:‘g
second. Therefore, on a macroscopic time-scale, the force at time ¢ and ;
at time ¢’ are completely uncorrelated if t # ¢/, and we can write |
|
|
E
E
l
i

(FOF(t)) = Aod(t —t'). (8.111) .

We will see in a moment how to fix the constant Ag. The dynamics of
&o(t) is now governed by
()

€0 +Yobo + wibp = —~
m

: (8.112)
0

which has the solution

olt) = &)+ | Tt e - )R,

Mo J oo

(8.113)

where €8°™ (1) is the general solution of the homogeneous equation and
G(t) is a Green’s function, i.e. a solution of eq. (8.112) with F(t)/mqg
replaced by §(t). The Green’s function can be easily found performing
the Fourier transform and repeating basically the same steps that lead
to the integration of eq. (8.22),%% and we get z
|

1
G(t) = —0(t)e ™% sinwpt (8.114)

wo

where 6(t) is the step function, 6(¢) = 0 for ¢ < 0 and 6(t) = 1 for t > 0. ;
Therefore

fO (t) _ fgom(t) +

1 ¢ ,
A e—r0E=t)/2 g R (3115
Mowo / € sinfwo(t — )] F(¢') . (8.115) %

— 0o

We assume for simplicity that F(t) is switched on at ¢ = 0, and that
§0(0) = 0 and £(0) = 0. With these boundary conditions we get, for
t >0, |

rt
Eo(t) = ! / dt’ e 2 sinfwg (£ — ¢ F(E) .
0

(8.116)
moWwyp |

Using eq. (8.111) and introducing v =t — ' we then obtain

. AO ! —YoU in2
(€2(t)) = - ‘/0 due” 7" sin” wou
Ao

~ 2miwdo

(1 —e 1t (8.117)

where in the last line we neglected terms which are small for 7y < wpg.
The time evolution of the average kinetic plus potential energy of the
mode & due to thermal noise is therefore given by

(B(0) = Gmohled) + 5moléd)

2
= mow§(£5)
A0 g oty (8.118)
2moo

In the limit ¢ — oo, the system thermalizes and the equipartition of
energy states that (Ewin(t)) — (1/2)kT and (Epe(t)) — (1/2)kT, so
(E(t)) — kT. Comparison with eq. (8.118) fixes the value of Ao,

Ao = 2kT movo , (8.119)

and therefore ‘
(B(t)) = kT(1—e /™),

where 75 = 1/7p. This shows that, while asymptotically (E(t)) — kT,
equilibrium is reached only on a time-scale t > 7. On a time-scale
At < 79, expanding the exponential in eq. (8.120) we rather get
At
(E(t = At)) ~ kT —,

To

(8.120)

(8.121)

confirming the physical intuition that led to eq. (8.107). It is instructive
to realize that the result (8.119) is a particular case of a very general
theorem. According to the definition (7.15), which expresses in general
the relation between the spectral density and the auto-correlation func-
tion of any quantity, the (single-sided) spectral density of the force F(t),
that we denote by Sp(w), is related to the auto-correlation function of
F(t), Re(t' - t) = (F()F(6)), by

1

(FEF0) = 5 [ 52 Sew)e .

8.122
2 J_ 2m ( )

Comparison with eq. (8.111) shows that Sp(w) = 24, so the spectral
density is flat. Equation (8.119) can therefore be seen as a relation
between the fluctuations due to the force F' (represented by Sr) and the
dissipation (represented by 7o),

Sr = 4kT moyo - (8.123)

This result is a particular case of the fluctuation—dissipation theorem,
which can be formulated as follows. Let z(t) by a variable describing
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a linear system (either mechanical or electrical) subject to an external
force F(t), and let v(t) = @(t) be the velocity. In Fourier space, we can
always cast the equation of motion of a linear system in the general form

Flw) = Z(w)i(w). (8.124)

This defines the impedance Z(w). Its inverse, Y (w) = Z Y (w), is called
the admittance. The fluctuation—dissipation theorem states that the
(single-sided) power spectrum of the force responsible for thermal fluc-
tuations, Sp{w), is related to the real part of Z by

Sp(w) =4kT Re Z(w). (8.125)

For the damped oscillator, eq. (8.112) gives
m
7 = —To(aﬂ — Wi +iw), (8.126)
so Re Z = mgyy and we recover eq. (8.123). The real part of Z in
general is responsible for dissipation in the system, so eq. (8.125) relates
fluctuations to dissipation.

We can now compute the spectral density of the noise due to thermal
fluctuations, considering for the moment only the bar’s mode &y. Below
we will generalize to the bar—transducer system. Writing the velocity as

(W) = —iwép(w), eq. (8.124) can be written as
) 1 .
o(w) = T F(w), (8.127)
and therefore
1
Sthermal — ;
SO Sz
~ 4kT myg
= TR (8.128)

From the explicit forms (8.126) and (8.23) we see that Z(w) is related
to the transfer function of the mode &g, To(w), by

2L mow
To(w) = — ,
olw) = 7@ (8.129)
Therefore we can rewrite eq. (8.128) as
4T~y [ 72\°
thermal _ 2
S¢ (w) = —— <_2L [To(w)]®. (8.130)

The contribution to the noise spectral density due to the thermal noise
is obtained using eq. (8.106). We see that |T'(w)|? cancels, and we end
up with

thermal _ T kT fg

where we eliminated L using wy = mus/L, with v, the speed of sound
in the bar, we used mo = M/2, with M the total mass of the bar,
Yo = wo/Qo, and we expressed everything in terms of f = w/(2r). We
can make the following comments.

e We have found that Sg‘e"mal(w) is proportional to |Tp(w)]?. Since
however the contribution of thermal noise to S,(w) is obtained
dividing S| ghermal(w} by |To(w)]?, see eq. (8.106), the transfer func-
tion To(w) cancels, and Sy, (f) shows no special feature around the
resonance frequency fo; rather, it has a smooth frequency depen-
dence, Sp(f) ~ f~* This means that, if thermal noise were the
only source of noise, resonant bars would be wide-band detectors,
that is, their sensitivity would not be limited to a region close to
fo. As we will see below, bars become narrow-band detectors only
when we include the noise introduced by the read-out scheme.

¢ We understand the importance of a large quality factor, since we
found Sthermal(£) ~ 1/Qq. This is in agreement with eq. (8.107),
since 79 = Qop/wo, 50 (AEmin)thermal ~ 1/Qo. Furthermore, we
learn from eq. (8.131) that thermal noise can be fought lowering
T (obviously), but also taking M and v, as large as possible. The
dependence 1/M expresses the physically obvious fact that thermal
noise is not effective in generating a coherent motion of a massive
object. We also see that StPer™al( £} decreases at high frequencies,
but this result will be modified when we include the transducer.

The computation of the noise spectral density performed above takes
into account only the bar mode . We now consider the bar—transducer
system, and we compute the effect of thermal noise on the transducer
displacement. At first sight, eq. (8.131) can be alarming, because it
suggests that, if the thermal noise of the bar is proportional to 1/M,
the thermal noise of the transducer should be proportional to 1/m, and
therefore it will be very large, since the transducer is very light. This
would ruin completely the usefulness of the resonant transducer scheme.
However, eq. (8.131) has heen derived for a single oscillator, while here
we have two coupled oscillators. We now show that it is indeed correct
that, in the bar—transducer system, the thermal noise in the transducer is
Sn(f) ~ 1/my, except in a narrow frequency range around the resonant
frequency. This will provide a first (but, as it turns out, not the most
important) reason that limits the bandwidth of resonant bar detectors.

To this end, we go back to eq. (8.93), which gives the transducer
displacement & (w), when we apply a force Fy on the bar and a force £y
on the transducer. In terms of the transfer function given in eq. (8.95)
we can write

- m Ty(w) |Folw) Fi(w) w? —wf +iwy
_ ™ _ . 132
&) 2L w2 my my w3 (8.132)

To compute the effect of thermal noise, we take as Fy and F; the Nyquist
forces acting on the bar’s fundamental mode and on the transducer,
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function of the frequency f (in Hz).
Dashed line: transducer contribu-
tion. Dot-dashed: bar contribution.
Solid line: total thermal noise. We
use as numerical values Qo = Q¢ =
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Fig. 8.9 The same as Fig. 8.8, on a
larger frequency range.

respectively. From the fluctuation-dissipation theorem, in the form of

eq. (8.123), we have

Sr, = 4kT movo, Sk, = 4kT myy, .
Assuming that the Nyquist forces acting on the bar and on the trans-
ducer are uncorrelated we find, for the spectral density of the transducer
displacement,

| Tyw))? Yo, v (W —wi)? + wled
S = ART | — + — : 0
e, (W) 12 ot {mo + - o } . (8.134)

As discussed above, the noise spectral density is obtained dividing by

T3 (w)|?, so we get (using L = v /wy, mo = M/2, v = wo/Qo, 1 =
wo/Qy and expressing the result in terms of f = w/27)

Sthermal(f) =7 kT fg I: 1 __1_(f2_f02>2+<ff0/Q0)2} )

MUEF @+MQt fél

(8.135)

The term 1/Qq in the bracket is the thermal noise of the bar, see
eq. (8.131). The second term is the transducer thermal noise, and we
see that it is indeed proportional to 1/my, so it is enhanced by a factor
1/ compared to the bar’s noise. What saves the situation is the fact
that 1/my is multiplied by a function of f which becomes very small at

f:an
7 kT fg{1+ 1 }

T Qo M2 f4 1QtQo

Numerically, for Qg ~ Q¢ ~ 10% and p = 107, we have 1/(uQ:Q) ~
1078, s0 at f = fy the transducer thermal noise is completely negligible,
and it remains smaller or of the same order of magnitude of the bar’s
thermal noise as long as (f* — f§)?/ fg < u(Q:/Qo), or, since (Q¢/Qo) =
O(1), as long as |f — fo| < foy/B-

We see that the term (f fo/Q)? in eq. (8.135) gives a totally negligible
contribution to SiPermal( f) even when f2 — f2 =0, so we can neglect it
everywhere, and we can write more simply

i)

(8.136)

L (fP-f)°

uQ 2

o KT f3 01
Sthel mal _ EAURS Bl

(8.137)

In Fig. 8.8 we plot the function [StPer™al(£)]1/2 and the two separate
contributions from the bar and the transducer. With the parameters
given in the figure caption, at f = fy we get [Sf}le”“al( fo)]l/ v 6 x
10722 Hz =2, Observe that the thermal noise is minimum at fo, rather
than at the normal mode frequencies fi. Figure 8.9 shows the same
quantities on a larger frequency window. Observe also that, at low f,
Sthermal( £) diverges as 1/f*, while at large f it goes to a constant.

(8.133)

8.3.2 Read-out noise and effective temperature

We now consider the other crucial source of noise in resonant detectors,
that is, the noise introduced by the read-out scheme. We have seen
that the output of a capacitive transducer is a potential, V', which is
modulated by the displacement of the light mass, as in eq. (8.97), and
further amplified electronically. Any amplifier has however an associated
wideband noise, described by a spectral density of the output potential,
Sy approximately constant in frequency, and with dimensions volts? /Hz.
Since V' = «&;, any fluctuation in the potential due to electronic noise
results in an error in the measurement of &, which can be described by
a spectral density of the displacement

1
o2

SEm = =Sy (8.138)
With good approximation « and Sy are independent of the frequency
in the bandwidth of interest, so Sg. !is approximately a white noise.
Observe also that S anl can be made smaller increasing «, that is, trans-
ferring more efficiently the energy from the mechanical oscillators to the
amplifier.

As we did for thermal noise, we can characterize the amplifier noise
either in terms of the energy that must be deposited by a GW burst
in order to overcome it, or in terms of the noise spectral density. We
consider first the energetic point of view. If, as in eq. (8.107), we use a
sampling time Af, the bandwidth is Af ~ 1/At. Then the fluctuations
in €2 due to amplifier noise in such a sampling time are given by

~fo+Af/2 ) )
@en= [ asmrasmiap (3139)

fo—Af/2

The corresponding minimum value of the detectable energy is therefore
given by

am 1
(AEmin)ampl = mfw(%(g? (t» ~ mtwgs . Pl A_t . (8140)

We see that (AFmin)amp: is proportional to 1/At. This is due to the
fact that, if the sampling time is small, the bandwidth is large and we
are flooded with amplifier noise. On the contrary, we saw in eq. (8.107)
that (AFEmin)thermal 18 proportional to At. Therefore, putting together
the amplifier and thermal noise, we discover that there is an optimum
value of the sampling time At and therefore of the bandwidth. We come
back to this below

The other useful (and more detailed) characterization of amplifier
noise is in terms of its mnoise spectral density, S2™P!(f). According to
the general definition (8.106), to get S2™P! we must divide the spectral
density of the transducer displacement, Sg:npl by the squared modulus
of the transducer transfer function T} (w), given in eq. (8.95). Recalling
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Fig. 8.10 log,,[SZ™'(f)/A]"/?, as a
function of the frequency, for p =
2.4 x 10™* and fo = 915 Hz.

2TObserve also that ngpl is propor-
tional to 1/a?, see eq. (8.138), and
therefore to 1/82%, see eq. (8.101).
Therefore eq. (8.145) show that T
is proportional to 1/8% and, from
eq. (8.144), Af is proportional to 5.
Therefore the bandwidth can be en-
larged increasing 3, i.e. the coupling
of the mechanical to the electric modes,
compare with Note 20 on page 434.

that ¥ = wy/Qun, see eq. (8.96), we get

ampl — [(fQ B f?k)Z + (ffO/Qm)Q] {(fQ o f—2—)2 + (ffO/Qm)ﬂ
Sn (f) - "4 f4f§ 3
(8.141)
where A= gz— ngp} . (8.142)

In Fig. 8.10 we show the dimensionless quantity [S2PY(f)/A]Y/2, for
the same values of fo, p, Qo and Q¢ used above for thermal noise. The
amplifier thermal noise is minimum at the two resonance frequencies fi.

Thermal and amplifier noise are the two dominant contributions to the
strain sensitivity in present detectors, so we can now put these two effects
together and obtain a first understanding of the detector’s sensitivities.
We start from the energy considerations, that are less accurate (since
the detailed frequency dependence is integrated over) but more intuitive.
Combining egs. (8.107) and (8.140) we see that the minimum detectable
energy is

At o 1
AEy, ~ kT T + /IVTLtwgsgjnp E ) (8143)

where At is the sampling time. We take 7 to be the relaxation time
of the full three modes system (mechanical plus electric), and we write
T = () /wo, where @ is the overall quality factor of the system. Since the
first term is proportional to At and the second to 1 /At, we can minimize
AFEn;, choosing an optimal value of At. This gives

1 .
Afz——— ngdOps

144

Ao " Q (8.144)
where X
meS’ngp

= _@T ; (8.145)

In typical experimental situations, we can have Q = O(10%) and I’
O(1078—1077). Therefore, at a frequency fo ~ 1 kHz, we can have
Af = O(10-100) Hz. An important point that we understand from
this result (and which was fully realized only in the 1980s) is that the
useful bandwidth of a resonant bar has nothing to do with the width of
the peak of the resonance in the transfer function. In fact, the latter
is (Af)res = fo/@Q and, for typical values Q ~ 10° and fy ~ 1 kHz, it
is extremely small, of order of 1 mHz. Instead the useful bandwidth,
given in eq. (8.144), is many order of magnitude larger: it depends on
@ only as 1/Q'/? rather than as 1/Q (since T ~ 1/@), and we see from
eq. (8.145) that it can be made larger lowering the amplifier noise, so it
really depends on the details of the read-out system.?”

When At = (At)opt, the two terms on the right-hand side of eq. (8.143)
become equal, and

(At)op

AEpiy ~ 2kT ~—=2

. (8.146)

Writing (At)opt ~ 1/Af and 1/75 = 70 = wo/Q, we get

A1E'rx1in = kTeff 5 (8147)
with an effective temperature Teg given by
A7 fo 1/2
~ — 2L~ yrt/2,
Teff Q Af (8148)

For a bar cooled at a thermodynamic temperature ' ~ 2 K, with @ ~ 1x
10%, Af ~ 10 Hz, fo ~ 900 Hz, eq. (8.148) gives Tog ~ 2 mK. This result
is quite interesting; it means that, even in a bar at the thermodynamical
temperature of 2 K, we can detect bursts that deposited in it an energy
Fs of just a few mK. The fact that, sampling the output at a fast rate,
we can dig deeply into thermal noise, is of course just an example of the
general concept of matched filtering that we discussed in Section 7.3.

To have a more detailed picture, we consider now the noise spectral
density. The total noise spectral density is

Sn(f) _ S;;lhermal(f) + S;almpl(f) , (8149)

with Sthermal( £ g the spectral density of thermal noise (bar plus trans-
ducer) given in eq. (8.137) and S2™P( f) is the spectral density of the am-
plifier noise given in eq. (8.141). The total strain sensitivity is S/ 2(f).
Explicitly, recalling that p = my/m = 2my /M, we have

kT [ f¢ {i 1 (f2—f8)?
Mz fo {ﬁ

Snlf) = (8.150)

ples el R
L Qr [ -fir (ffo/czm);l }ifQ — 12+ (£fo/Qm)*] } _
H 0

We recall that Qg, Qs are the quality factors of the fundamental mode
of the bar & and of the transducer &, respectively; @Q,, is the total
mechanical quality factor, see eq. (8.96) and @, which enters in the
definition (8.145) of T, is the total quality factor of the system.

We see that, for given values of the quality factors and of p, the factor
I" determines the relative importance of thermal and read-out noise, and
therefore controls the bandwidth Af.

In Figs. 8.11-8.13 we plot the logarithm of the total strain sensitivity
[S(f)]'? (solid line) and the separate contribution from thermal noise
of the bar and of the transducer [SEPer™al( £)]1/2 (dot-dashed line), and
from the amplifier noise, [S2™P!(f)]'/? (dashed line). We use for defi-
niteness the values =24 x 107, Qo = Q; = Q =2 x 108, T =1 K,
M = 2300 kg, vs = 5400 m/s, fo = 915 Hz, and we vary T', so we change
the relative importance of amplifier and thermal noise.
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Fig. 8.11 loglo[S}L/z] as a function
of the frequency, in Hz, taking I' =
1077. The other parameters are
given in the text. Dashed line:
amplifier noise. Dot-dashed line:
thermal noise (bar plus transducer).
Solid line: total. Here the amplifier
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to the resonances.
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8.3.3 Back-action noise and the quantum limit

In this section we discuss another source of intrinsic noise, the back-
action noise, that in present resonant detectors is small, but which can
become important for the design of advanced detectors, and also has an
intrinsic conceptual interest, because of its relation with fundamental
limitations imposed by quantum mechanics.

When we studied the double oscillator, in Section 8.2.1, we introduced
external forces acting on the oscillator & (which represents the funda-
mental mode of the bar) and on the oscillator &, which represents the
light mass, and we denoted these forces by Fy and F; respectively. We
then wrote the equations of motion in the form (8.72)-(8.73). Further-
more, we had an elastic force acting between the bar and the light mass.
Defining the spring constant k = mw?, egs. (8.72) and (8.73) can be
rewritten as

m(go + wibo) = +k(& — &)+ Fy, (8.151)
midy = —k(& — &) + Fr . (8.152)

Of course, since the force k(& — &y) acts between the bar and the light
mass, it enters with opposite signs in the equations for fo and for §t

As we saw in Section 8.2.2, this coupling between &, and &, is a schema-
tization of an extended device which consists of a capacitor, which in
turn is part of an LC circuit, and is connected to an amplifier. This
read-out has been designed so that the mechanical oscillations of the
transducer are transformed into an electric signal. Unfortunately this
process is reversible, and fluctuations in the electric circuit generate a
force that actually shakes the transducer and the bar. Any noise in the
electronic apparatus will then appear as a stochastic force Fy; acting
between the bar and the light mass. This force is called the back-action
exerted on the bar and on the light mass by the amplifier. More gen-
erally, it describes the effect of any fluctuation taking place between
the bar and the transducer, e.g. fluctuations of the electric field in the
capacitor. Then eqgs. (8.151) and (8.151) must rather be written as

m(€o + w%ﬁq.) = +k(& — o) + For + Fo,
me&y = —k(& — &) — For + Fy,

or, including also the dissipation terms as in egs. (8.88) and (8.89),

(& + wio) = +h(& — &) + [For + mene(ée — o)) + [Fo — myoko)
myds = —k(& — &) — [For +men (& — &) + Fy . (8.154)

Having extracted explicitly these dissipation terms, now Fy and Fp; are
stochastic forces with zero mean, (Fy,) = (Fy) = 0, characterized by
their spectral densities S, and Sg,. (Since we are studying the noise
acting on the bar, we can assume that there is no GW contribution to
Fo; otherwise, we can just extract the GW force and write it explicitly.)
Then the spectral densities of eq. (8.133) must be replaced by

(8.153)

SFO - SFO + SFm, ) SFr - Sm -+ SF()t .

To evaluate Sg, we consider for instance the case of a voltage ampli-
fier.?® In a voltage amplifier the noise can be described by a voltage noise
plus independent fluctuations in the current. We denote the single-sided
spectral densities of the voltage and current noise by v2 (measured in
vyolts?/Hz) and 2 (in amp?/Hz), Iebpectivdy The spectral density of
the output voltage V is given by Sy = v2+|Z|?%i2, where Z is the imped-
ance, and we neglected correlated noise between voltage and current. It
is customary to define the noise temperature 7;, of the amplifier by
2kT,, = Uniyn (where the factor of 2 is due to the fact that we use single-
side spectral densities), and the amplifier noise resistance R,, = vy, /in.
Introducing further the dimensionless quantity A = R,,/|Z|, known as
the impedance match ratio, and using eq. (8.101), one gets

1 .
Sa.:np] ? (@% + IZ|2,LEL)

2KTn (/\ + 1) . (8.156)

myws 3

The back-action force due to current fluctuations can be computed in
this case observing that the power dissipated in the electric circuit is P =
VI. The contribution to V' due to the displacement of the transducer
is obtained from eq. (8.98), V = Z5;&, so the corresponding power is
P = Zo1&. This is the power generated by a force of modulus Za; 1
acting on a mechanical object with velocity &. Therefore a current [ in

the circuit exerts on the transducer a force of modulus Fy; = ZQII and
the spectral density of this back-action force is Sg,, = |Z21]?i2, where
in is the spectral density of the current. As we saw below eq. (8.98),

|Zo1| = a/wo, s0 S, = &% /wg. In terms of T}, and A, we have

i2 = 2kT,,/A| Z|, and therefore

a?
SE, + Sry, = AT myy + 2K7T, 2)\|Zl (8.157)

Expressing the result in terms of /3, given in eq. (8.102), we find
Sk + Sk, = dmey (;J + kT, [32 Ci“) (8.158)

Therefore, at least in a first approximation,?® the back action is formally
equivalent to a shift of the transducer temperature

T~>T+~ﬂ;—ziT

(8.159)

For the amplifier noise we use eq. (8.156). Typically A > 1 so, .S'mnpl
2kT, )\ /mywd 3. Then, including the back-action, the minimum detectable
energy (8.143) becomes

2kT,
AFEin ~ (ktT + be — kT ) FTnA

ﬂwo At

8.160
o) (8.160)
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28 This example is somewhat old-
fashioned, since modern resonant de-
tectors use SQUIDS rather than volt-
age amplifiers, but is the simplest set-
ting for illustrating the general ideas.

29A more detailed computation based
on the full set of equations govern-
ing the coupled mechanical and elec-
tric modes show that the strain sensi-
tivity of the back-reaction has a differ-
ent form, as a function of the frequency,
from that due to thermal noise.
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This expression raises an interesting issue of principle because it shows
that, even if one were able to cool the bar to a negligibly small value
of the thermodynamic temperature 7', still there would be a minimum
value of the detectable energy, since even at 7" = 0 we have both a term
proportional to At and a term proportional to 1/At. Setting 7' = 0 in
eq. (8.160) and writing 7 = Q/wo, we have

2
AE‘min ~ kT’n, <_ At + ”i L) . (8161>

This is minimized choosing (At)ept = 2A/(Bwo), and the corresponding
minimum detectable value of the energy is

ABpin ~ 2kT,, . (8.162)

Therefore, even if we cool the detector to T' close to zero, an ultimate
limitation is provided by the amplifier noise temperature. For a SQUID,

Ty ~ 1073 mK, while the lowest effective temperatures that have been |
reached by bars at present are of the order of 0.3 mK, so this limit at

present is not very important from a practical point of view.

Nevertheless, this observation brings us to a second interesting ques-
tion, namely, what is the minimum value that can be obtained in prin-
ciple for the amplifier noise temperature 7,7 As we will discuss in the
next subsection (and as was shown by Heffner, already in 1962) any lin-
ear amplifier (e.g. an object that preserves a linear relation between the
input and output values of the amplitude and the phase of the signal)
working at a frequency wg, as a consequence of the uncertainty principle,
has a minimum noise temperature given by

KT, ~ hwy . (8.163)

We therefore discover that the ultimate limitation for a resonant bar
operating with a linear amplifier is given by the uncertainty principle,

AEmin % wa . (8164)

This is known as the standard quantum limit. It states that the best we
can do (with a linear amplifier) is to detect an acoustic oscillation of the
fundamental mode of the bar which, at the quantum level, corresponds
to a single phonon.

A measure of how far we are presently from the quantum limit is

provided by
N = e (8.165)
})hOHOD m . N

For Teg ~ 2 mK and fo = 900 Hz, Npponon = 5 x 10%. Both the group
that runs the EXPLORER and NAUTILUS detectors and the AURIGA
group have attained Nphonon ™~ 10? so, for the moment, the quantum

limit is not the main limitation in resonant bars, although we are getting

closer to it. The detection of a single-phonon excitation in a two-ton bar

would be a remarkable technical achievement, and would correspond to
an energy detection sensitivity at the level hwg ~ 6 x 10~3% J.

Further reflection shows that the quantum limit, in itself, cannot be
an absolute limit. Quantum mechanics does not forbid arbitrarily pre-
cise measurements of energy, but only arbitrarily precise simultaneous
measurements of conjugate variables. The origin of the problem is that
a linear amplifier allows us to reconstruct both the amplitude and the
phase of the motion of the oscillator &. However, for a harmonic os-
cillator, to know its amplitude and its phase is equivalent to knowing
simultaneously the position and the momentum, and it is here that the
Heisenberg principle comes into play. The quantum limit can therefore
be evaded if we give up the information on the phase. We discuss the
issue in more detail in the next subsection.

8.3.4 Quantum non-demolition measurements

Consider a generic harmonic oscillator, with mass m and frequency wg,
described classically by a coordinate x(¢). The solution of the equation
of motion with the initial conditions 2(0) = z¢ and z(0) = vy is

x(t) = xo coswopt + % sinwot . (8.166)
0

Let v(t) = z(¢), and define Xy, X as

t

X = z(t) cos wot — v(®) sinwot (8.167)
wo
4

Xo = z(t) sinwpt + %El coswot . (8.168)
0

Using eq. (8.166) and the corresponding expression for v(t), we see that
X1 = 2o and X2 = vg/wp, so X1, Xy are conserved on the equations of
motion, and eq. (8.166) can be rewritten as

z(t) = Re [(X1 +iXa)e ™0 . (8.169)
At the quantum level, we denote the operators by a caret, so £ and p

are the position and momentum operators, with [£,p] = ¢A. As usual,
the Hamiltonian of the harmonic oscillator is

H—ﬁ2+1 232 = hw N+1 8.170
07 5, T Mot = o 2/ (8.170)

where N = a'é, and

L (mwoNY2 P
a~< - ) <z+zmw0> , (8.171)

ot _ (o 1/2 L D
a (2}7,) Z zmwo . (8.172)
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In the Heisenberg picture we define the operators X; and X5 as in
egs. (8.167) and (8.168),

. t

Xi(t) = &(t) coswot — gfw)o

)

Xo(t) = (1) sin wgt + cos wyl . (8.174)
mwo

Similarly to what happens classically, in the absence of external forces
the Heisenberg operators X;(t) and X3(¢) are conserved,

aX;  0X; i

L%, Ho = 0. 8175)

dt ot h

This property selects X; and X; as particularly useful observables, since
any change they experience must be due to external disturbances, such as
GWs or other external forces. The interaction of the quantum harmonic
oscillator with an external classical force F(t) can be described by an
interaction Hamiltonian Hi,e = —F(t)Z. In the presence of F(t), Xl
and X’g are no longer conserved; rather

dX1 i Ft)

— = =] X Hjn - - Ly .
o n[/\l, ] . sin wot (8.176)

X, i O F(@®) '

— = 75{X2’Hmt} = +mwo coswpt . (8.177)

This integrates to

. . 1 ¢
Xi(t) = X1(to) — / dt' F(t') sinwpt’ (8.178)
mwo Jy,

and similarly for X5. The important point is that, since F'(t) is a classical

force, the second term on the right-hand side is a c-number rather than
an operator. Suppose that at time ¢5 we perform a measurement of the

observable X7 on the oscillator. We will find some value X 9, and the

measurement leaves the oscillator in the corresponding eigenstate | XV)

of X1(t0). In the Heisenberg picture the state | X7) does not evolve, while
the operator X (t) evolves as in eq. (8.178). Then, since the second term

on the right-hand side of eq. (8.178) is a c-number, for ¢ > t; we have

X1 (0)|XP) = X, ()| X?), (8.179)

with .
(1) = X] - / dt' F(t') sinwot’ . (8.180)

o )i,

So, at time ¢ > #o the oscillator is still in an eigenstate of X 1(t), and
a measurement of X 1 at time ¢t will give the above value, and will not
affect the oscillator state (apart possibly for a phase, since states in
the Fock space that differ by a phase correspond to the same physical
state). In other words, when the classical force F(t) is acting, after the

sinwot | (8.173) |

first measurement, all successive measurements of X 1 leave unchanged
the state of the oscillator, even if the result Xi(¢) of this measurement
changes continuously in time, see eq. (8.180).

This is of course very different from what happens when we rather
measure the position operator Z(¢) of the oscillator, since in this case
each time we perform a measurement of Z(¢) we have a wavefunction
reduction which forces the oscillator in an eigenstate of Z(¢), and the re-
sult obtained at ¢t = tg does not fix uniquely the outcome of a successive
measurement at t > to. It is clear that X; (or X2) are the best quanti-
ties to be measured when quantum mechanics becomes important, since
from a series of repeated measurements of it we can reconstruct deter-
ministically the time-evolution of the external classical force F(t). A
measurement that leaves the state of the system unchanged, as the mea-
surement of X 1(t) described above, is called a quantum non-demolition
measurement.

Having established that X 1 and Xg are the most useful observables
for our purposes, we can discuss what the uncertainty principles has to
tell about their measurement. From the definition, eq. (8.173), we see
that

0
(X1, Xo] = 2 (8.181)
mwo
Therefore, on any state,
1 h
AXy = = | (X1, Xo]) | = . 8.182
AX1AXy 2 5 [([X1, X)) | G (8.182)

Suppose that we measure X; and Xo using an amplifier with a band-
width Af < fy. This means that we sample the oscillator position over
a time At much longer than the period of the oscillator. Therefore we
are actually measuring the average value of X; and X5 over a period,
that we denote by X; and Xy, respectively. If we use a linear amplifier,
when the input is given by eq. (8.169), the output is of the form

y(t) = Re [A(X1 +iXy)e ™!, (8.183)

with A a constant amplification factor, in general complex. Since X;
and X, are treated symmetrically in this expression, their errors are
equal, AX; = AX,. In this case eq. (8.182) gives

B B I 1/2
AX =AXs > (27@0) . (8.184)

Recall from eq. (8.173) that (X1, X2) are obtained from (z, p/mwq) per-
forming a rotation by an angle wot. Then AX; = AX, implies also
Az = Ap/mwq which, together with AzAp > 1/2, means

1/2
Aw= 2P >< h ) . (8.185)

=
mwq 2muwg

Therefore, if we monitor the fundamental mode of the bar with a linear
amplifier, quantum mechanics sets a limit to the error Az. Writing, as
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usual, m = M/2, where M is the total mass of the bar, we have

2000kg\ /% /1kHz\ '/
M fo '

(AZ)min ~ 2.9 x 107 em < (8.186)

In terms of energy, writing

N mws 5\ ?
=t () ).
2 mwo

we see from eq. (8.185) that, even if the oscillator is in its ground state,

there is a minimum error on the energy

0,2 2
(AE)min =~ hdead [<é2> + (Al)zil = %MO'

2 Mwo

More generally, if one takes as wavefunction a Gaussian both in Xj |
and Xo, centered on the expectation values (XH} and (X5), and with
variances AX; = AXy = (h/2mwo)'/?, one finds that the variance of
the average number of quanta in this state is AN = (N 4 1/4)"/? and

therefore N1/
(AE)min = o (JV + Z) .

We have therefore understood how eq. (8.164) comes out: it is a conse- |
quence of the uncertainty principle and of the specific way of performing |

the measurement with a linear amplifier, which gives AX; = AX5. Now,

however, we can also understand how, at least in principle, such a limit |
can be evaded: from eq. (8.178) we see that measuring either X1 or X5 is
sufficient to reconstruct to external force F(t), which in our case means
to measure the incoming GW. So, we need to perform a very precise
measurement of, say, X1, giving up completely the information of X,. |
Strategies of this type are called back-action evasion measurements, since
the back-action force on X; caused by the measurement process, which
in general is responsible for the uncertainty principle, has been evaded, |

or rather has been concentrated uniquely on the conjugate variable Xo.
More precisely, from eq. (8.180), we have
dXi(t) 1

e f%F(t) sinwot ,

and from this we can accurately reconstruct F(¢), except when sinwpt |

is close to zero. However, when F(1) is a classical force, we can also use

a second transducer, on which we measure only Xs(¢), since this second

transducer is affected by the same classical force F'(¢). Then from this
measurement we get
dXs(t) 1

= Ft S wot
dt mwo (t) coswot,

and F(f) can be completely reconstructed.

(8.187) |

(8.188)

(8.189) |

(8.190)

(8.191)

8.3.5 Experimental sensitivities

In this section we discuss the sensitivities of existing resonant detec-
tors. Actually, the experimental situation is in continuous evolution; all
detectors typically alternate data-taking periods with upgrades, old ex-
periments terminate their activity, and new ones are sometime proposed.
Thus, any discussion of the experimental situation is bound to become
obsolete on a relatively short time-scale. We therefore discuss only very
briefly the various detectors, referring the reader to the web pages of
the various collaborations in the Further Reading section for updated
information, and we rather discuss what results can be achieved with
existing or foreseeable sensitivities.

Presently (2007) three resonant bars are in operation: AURIGA (Leg-
naro, near Padua), EXPLORER (CERN) and NAUTILUS (Frascati,
near Rome), while a fourth bar, ALLEGRO (Baton Rouge, Louisiana),
terminated operation during 2007. EXPLORER and NAUTILUS are
operated by the same collaboration (ROG). We show in Fig. 8.14 a pic-
ture of NAUTILUS and in Fig. 8.15 a picture of AURIGA. In Fig. 8.16
we show a typical strain sensitivity curve of the EXPLORER and NAU-
TILUS detector, and in Fig. 8.17 a typical the strain sensitivity of AU-
RIGA. We see that, thanks to the improvement in the read-out system
discussed in Section 8.2.2, this strain sensitivity has a minimum value

S22~ 1% 1072 Ha V2 (8.192)

and stays below 4 x 1072! Hz '/? over a bandwidth of 100 Hz. We
now discuss, using the results of Section 7.3, the sensitivity to bursts,
periodic and stochastic signals that can be obtained with these strain
sensitivities.

Sensitivity to bursts

Using eq. (7.96) at S/N = 1 (of course a higher threshold, typically of
order 5—6, must be used), we can estimate that |A(fo)| ~ [Sn/(4Af)]}/2.
Using an average reference value S%,/ 2 4% 10"2'Hz~ Y2 gver a band-
width Af ~ 100 Hz gives the order-of magnitude estimate for the mini-
mum detectable value of 2(fo),

Ih(fo)| ~2x 10722 Hz L. (8.193)

Assuming a sine-Gaussian waveform (7.103), centered on the resonance
frequency fo of the detector and of duration 7,4, and using eq. (7.105),
we get the minimum detectable value of the GW amplitude,

1
ho ~ 2 x 10712 (—IE?) ,

Tg

(8.194)

or equivalently, using eq. (7.110), the minimum detectable value of A,

P 1/2
Begs ~ 5 x 10~ 2 Hz~1/2 (l—mf> ! .

1
- (8.195)
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Fig. 8.14 A picture of the NAU-
TILUS resonant bar and of the cryo-
stat.

G

Fig. 8.15 A picture of the AURIGA
resonant bar. The transducer is vis-
ible.
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30 These are the values for NAUTILUS,
but they are very close for the other
bars.
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Fig. 8.16 The strain sensitivity
[Su(H)]Y? of EXPLORER (the
curve with two minima) and NAU-
TILUS (the curve with one broad
minimum) in 2004. The peaks
around 940 and 1000 Hz, respec-
tively, are reference signals sent to
the detectors to monitor the SQUID
gain.

AURIGA - Sept 2004 - operating temperature = 45K
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Fig. 8.17 The strain sensitivity

[S. ()12 of AURIGA in 2004.

For resonant bars it is often useful to think directly in terms of the
energy deposited by a burst in the detector. In this case, inserting the.
numerical values®® M = 2260 kg, L = 3 m, fo = 940 Hz, and measuring |
Es in milliKelvin, eq. (8.19) gives

E 1/2 .
h(fo) =25 x 10722 Hz * [ —= 8.196)
7’(][0) 1TmK y ( )
and we see from eq. (8.193) that present resonant detectors can measure
excitations that leave in a bar an energy F; ~ 1 mK. Assuming again
a sine-Gaussian waveform centered within the detector bandwidth, and
using eqs. (7.104) and (7.110), we get hi = (2/m)Y/2|h(fo)|?/7y. Insert- |
ing this into eq. (7.112) and using eq. (8.196) we find that a GW burst
that deposited in a resonant bar an energy F; should originate from a
process that liberated in GWs the energy

5 B r \? /1ms fo 2
ABaq = 107" Mac? .
155X 107 Moc <1mK> <8kpc> < T ><1kHz>

(5.107)
The above equation tells us at what maximum distance a resonant bar |
can see a GW burst, given the minimum value of E, that can be mea-
sured. For a GW burst that liberates an energy 1072Mgc? (such as the
merging phase of a NS-NS coalescence), with fo = 1 kHz and 7, = 1 ms,
we get

1mK>1/2

s, min

Fmax ~ O(100) kpe ( (8.198)
so we have access to galactic events and to our immediate galactic neigh-
borhood. However, events liberating 1072 My c? are extremely rare ona
galactic scale. Less energetic events will be more common, but of course
we can see them only if they are even closer. From eq. (8.197), setting
Esmin = 1 mK, we see that for a phenomenon taking place at 80 pe
(corresponding to the distance to the closest known neutron stars, while
the closest estimated neutron star should be at 5-10 pc), we need a
process that liberates AF.q = 5 X 10’9]V[@c2.

Sensitivity to periodic signals

The minimum detectable amplitude of a periodic signal has been coni-
puted in eq. (7.164). For present resonant bars, we normalize the spec-
tral sensitivity to the value given in eq. (8.192). Recall also that n =
(S/NYNYA(F2)=1/2 see eq. (7.165), is a factor that takes into account
the desired level of S/N, the need to split the data into N stack for
computational feasibility, and the angular efficiency factor (Fi)_l/ 2
For resonant bars (F2)71/2 = (15/4)1/2 ~ 2, see Table 7.1. For a blind
full sky search one could use stacks of length less than one hour, which is

about the maximum value for which the Doppler effect within a stack can
be neglected, see eq. (7.140). This, for one year of data, gives N ~ 104,
so N'1/% ~ 10. Therefore, at S/N = 1, we have n ~ 20.

Using this reference values for 7, the minimum detectable amplitude
of a periodic signal, eq. (7.164), can be rewritten as

_ Sy (f 3% 1075\
tun =510 (3) (i 5its) (7)o

and, using eq. (7.166), the maximum distance at which we can see the
signal from a spinning NS is

10-2 Hz /2 T \Y?
r ~ 200 pe <-2-Q> - ( - >
i 22 (fo) 3x107s
IZZ

¢ fo \?
8 <10—G) (1038kgm2> (1kHz)

However, if one is targeting a specific pulsar, the reference values for

'71/ ? and 1 change. First of all, as discussed in Section 7.6, the need
to divide the observation time into N stacks with A/ > 1 emerges only
when we perform blind searches, in order to keep the computational
burden within affordable limits. In a dedicated search to a single source
there is no need for it, and the only limitation comes from the maximum
consecutive time that a detector can run without interruptions due to
maintenance. Taking Tyiack ~ 1 — 2 week, in one year we get N /4 25
and therefore, at S/N = 1, we can take = 5 as a more appropriate
reference value.

Furthermore, if we know the frequency of the source, we can tune
the frequency of the detector to this value.®! Once one of the resonance
frequencies of the bar—transducer system has been tuned to the target
source, we can give up the condition of having a bandwidth as large as
possible, in favor of a better sensitivity at the resonance frequency. Ac-
cording to the discussion in Section 8.3, this means that we must reduce
as much as possible the thermal noise, so that it goes below the amplifier
noise, which is by itself very much suppressed at the resonance frequen-
cies fy. In this way, better peak sensitivity can indeed by obtained.
For instance, AURIGA reached S — 4 % 102 Hz V2 over a 2 Hz
bandwidth, cooling the detector down to 0.24 K . Using these reference
values for Sp/? and 7, eqgs. (8.199) and (8.200) can be rewritten as

1/2 7 N\ 1/2
o —25 (7 Sn'(fo) 3x107s
hain = 4 1072 (1) (4 — = , (8.201)

4x 1072 Hg /2 T \'?
) S (fo) (3 X 107S>

2
% ( € ) I, fo
1076/ \ 1038 kg m? 1kHz

(8.200)

r ~ 2.9kpe <

|

(8.202)
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31 Within O(50) Hz this can be done
simply at the level of electronics, chang-
ing the electric field in the transducer,
which results in a change in the nor-
mal modes of the three-modes system
made by the two mechanical oscillator
and the electric mode. Otherwise, if
one has a specific target in mind, one
could build a dedicated bar, choosing
length and material so to have the ap-
propriate resonance frequency.
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3275 build a resonant detector with a
lower resonance frequency one should
increase its size and mass, with a corre-
sponding increase in technical difficul-
ties, particularly in the cryogeny, and
in the financial costs.

Coalescences

This is the kind of source for which the difference between bars and
interferometers is more important. A ground-based interferometer is a
broad-band detector, that operates from a few tens of Hz to a few kHz.
In this bandwidth, we saw in Sections 4.1 and 7.7.2 that we can follow
the evolution of the waveform for a number of cycles N, ~ 10%, which
results in a gain of order N, /2 100 in the maximum distance at which
we can detect a coalescence. For resonant detectors this is not possible.
First of all, for BH-BH binaries with typical BH masses ~ 10M,, the
coalescence takes place when fg, ~ 400 Hz, see eq. (4.40), therefore the
signal never enters in the bandwidth of resonant bars, which operate at
the kHz.?? For NS-NS binaries the coalescence takes place at the kHz,
but then the bars only see the final merging phase, which lasts a few
Thus, for a bar, a
NS-NS coalescence is just a burst, and there is no gain associated to the

milliseconds, rather than the long inspiral phase.

number of cycles N,.

Stochastic backgrounds

Performing the correlation between two resonant bars, both working in
a relatively narrow bandwidth around a frequency fy, the expression of
the signal-to-noise ratio for stochastic backgrounds, eq. (7.239), becomes

S Sh(fo)

n(fO) 7

~ (2TA )T (fo) (8.203)

and for two resonant bars T'(f) =
an optimistic value S/N =1, is

= 1,0\ 174 1/4
25 Hz :
S (fo) =T x 10724 Hy /2 < Zf > (%1)

1/2 1/2
x <10 21H~1/2> > ’
corresponding to

3 172 1/2
3 N 25 Hz, lyr

N EED !
10-21Hz V2 ) ~v(fo)

As we will discuss in Vol. 2, there are bounds on stochastic background
of GWs of cosmological origin that forbid values of A%l larger than
~ 10751079 at any frequency, and astrophysical backgrounds are also
expected to be below this value. With these sensitivities, resonant bars
do not seem therefore capable of detecting a stochastic background, and
for this reason these searches have not been much pursued.

(8.204)

(8.205)

(8/15)y(f), see egs. (7.228) and (7.37)
and Table 7.1 Therefore the minimum detectable value of Sy, (fo), using

The sensitivity at the quantum limit

We have seen in the previous sections that present resonant bars are
dominated by thermal and read-out noise. Thermal noise in principle
can be lowered cooling further the bars and increasing the quality factors,
while for the read-out noise we have seen that an intrinsic limitation,
if we do not use quantum non-demolition techniques, is given by the
guantum limit.

We first of all compute under what conditions the thermal noise can
be reduced below the quantum limit. Combining egs. (7.96) and (8.19)

we get
(fo) =4Af L
SnlJo) = 480 {5prra &

If the read-out noise allows us to detect a vibration corresponding to NV
phonons, S2P!( fy) is obtained from eq. (8.206) setting Es = Nhwg. We
express L in terms of the speed of sound, L = v, /wg, and we obtain

(8.206)

SR fo) = AZ:? (?Of > Nh. (8.207)
As for thermal noise, eq. (8.137) gives
Sihermal o) = % % _r}& . (8.208)
Requiring that Sthermal( fy) < Sampl( £y we therefore get
0> kT
ONRAT (8.209)

The quantum limit corresponds to N = 1, and we then find that, to
bring thermal noise below the quantum limit, we need

T 100 Hz
7
0010 () (120,

Therefore, for a detector cooled at T = 20 mK and with a bandwidth
Af = 100 Hz, we need @ > 107. This is not an unrealistic target with
present improvements in materials. Of course, beside being able to push
thermal noise below the quantum limit, we must also be able to detect
__excitations with N = O(1) in a two-ton bar. Presently, using double
_ SQUIDs, one is able to reach N = O(100), and further progress can
_ be expected in the near future. It therefore appears that reaching the
_quantum limit, or at least getting close to it, is a challenging but not
_unrealistic target, and we can take the quantum limit as the estimate
_ of the best sensitivity that resonant-mass detectors could achieve with
improvements of existing technologies.??

Numerically, taking M = 2300 kg, vy = 5400 m/s, Af/fo ~ 0.1, and
setting N =1, eq. (8.207) gives

(8.210)

~3x 1078 H Y2,

quantum limit

[53/2(fo) (8.211)
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33This is not necessarily the ultimate
sensitivity of resonant detectors, since,
as discussed in Section 8.3.4, in princi-
ple the quantum limit can be circum-
vented using quantum non-demolition
techniques.
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For periodic signals, the minimum GW amplitude that can be detected
with such a strain sensitivity, when one searches for a specific target,
can be read from eq. (8.201), and we see that it is

3% 1075\ /2
hmin = 3 X 10;26 (Q) (*><—S> y (8212)
9]

T

corresponding to a maximum distance at which a spinning NS is visible

> T 2 € I, fO :
~ 40k - ——— 2z
' be <77> <3 X 1078) (1076> <1O38kgn12> <1kHz>

(8.213)
Concerning bursts, detecting a single quantum at f; = 900 Hz means
to measure an energy E; =4 x 107° mK. From eq. (8.198) we see that,
with this sensitivity, we can measure a burst which releases 1072 solar
masses, such as a NS-NS coalescence, up to about 15 Mpc, which is just
the distance to the Virgo cluster. However, recalling that these estimates
assumed S/N = 1 we see that, even at the quantum limit, we would not
really have access to the Virgo cluster, but rather to distances of order
a few Mpc. To explore larger distances with a resonant bar, it would be
necessary to use quantum non-demolition techniques to circumvent the
quantum limit, as discussed in Section 8.3.4.

In terms of the dimensionless GW amplitude hg for a burst with du-
ration 7, = 1 ms, with the above sensitivity eq. (8.194) is replaced by
ho ~ 2 x 10721, The same result can be obtained, in a physically trans-
parent way, simply applying the uncertainty principle to the harmonic
oscillator §p that represents the bar’s fundamental mode. From eq. (8.29)
we see that the maximum amplitude & of the bar oscillation is

2L
A&) = “7;2— hOWOTg .

(8.214)

On the other hand, for any harmonic oscillator of mass m, if we sense
its motion without using quantum non-demolition techniques, we have
Ap = mwoAz, and then the uncertainty principle AzAp > % implies

h

Az > :
mwo

(8.215)

Applying this to the oscillator described by &, and recalling that its
effective mass is m = M/2, where M is the mass of the bar, we get

2L 2k
ﬁ hoWQTg 2 MUJO (8216)
and therefore, for a burst with duration 7, such that fo7, ~ 1,
s 1 h 1 A .
ho = — ~ = . 8.217)
0 <2\/§> LN Mwy, ~ TV Muw (8.217)

Taking M = 2300 kg and L = 3 m, this gives hg 2 1 x 107!, in agree-
ment with the previous estimate.

8.4 Resonant spheres

We conclude this chapter with a discussion of spherical resonant-mass
detectors. From a conceptual point of view, this study reveals inter-
esting features of the interaction of GWs with a macroscopic body. In
particular we will see that, due to the spin-2 nature of the gravitational
field, GWs couple only to some quadrupolar normal modes of the sphere
and, more generally, a spin-s field couples only to some normal modes
with angular dependence given by the spherical harmonics Y}, with
| = s. From the experimental point of view, we will see that resonant
spheres can improve on resonant bars on at least three aspects. First,
for a given resonance frequency, they are more massive, and therefore
have a larger cross-section for absorption of GWs, and hence a better
sensitivity. Second, a sphere has isotropic sensitivity and offers a full
sky coverage, while all other detectors have blind directions. And third,
using the information in the different quadrupolar modes of the sphere,
it is possible to reconstruct the arrival direction and the polarization of a
GW, something that cannot be done with a single bar or interferometer.

8.4.1 The interaction of a sphere with GWs
The three-dimensional equations of elasticity

In Section 8.1 we studied the response to GWs of a cylindrical bar,
treating the problem as one-dimensional. To study a resonant sphere,
instead, we need the full equations of elasticity in a three-dimensional
body, which we recall in this section.?* We first write the equations for
a generic elastic body, and we will later specialize to a sphere.

We consider an infinitesimal volume element of the elastic body, lo-
cated at the position x. Under the action of an external force, like that
exerted by a GW, it will be displaced to a new position x + u(x,t).
Within elasticity theory the equation governing the dynamics of u(x,t)
" 621% 8015

PaE = B T fis (8.218)
where f is the force per unit volume acting on the elastic body, and oy;
is called the stress tensor. Hooke’s law states that, for homogeneous and
isotropic media,

(8.219)

where up, = (1/2)(O1um + Omuy) and A and g are known as the Lamé
coefficients.®> The equation of motion (8.218) then becomes
9%u B
PW =
The boundary condition (in the absence of external tractions on the
surface of the body) is that, on the surface, o;;n; = 0, where 1 is the
unit normal to the surface of the elastic body. Using eq. (8.219) this can
be rewritten as

MV -wia+2un-Viu+pn x (Vxu)=0.

Ti5 = Mgk 035 + 21005,

A+ )V(V-u)+puVia+ f. (8.223)

(8.224)
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34See, e.g. Landau and Lifshitz,
Vol VII (1970) or Love (1944).

35Alternatively one can use the com-
binations ¥ (Young modulus) and op
(Poisson ratio), related to the Lamé co-
efficients by

A G (8.220)
2(1 -+ O’P)

he— Y (500

(1—20p)(1 + op)

so in particular
A

op = ——. 8.222
P (8.222)

Typical materials have A/(2u) close to
one. For instance the alloy Al 5056
used in many resonant detectors at
cryogenic temperatures has A ~ 6.3 X
101°N/m? and p =~ 3.0 x 10°N/m?,
so A/(2u) = 1.05. Observe that for
A/(2p) = 1 we have op = 1/3.
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360bserve that vy is different from
vs = (Y/p)}/? which, as we saw be-
low eq. (8.1), is the longitudinal speed
of sound in a thin bar, even if both ve-
locities refer to longitudinal waves. The
reason is that vs is the velocity of lon-
gitudinal sound waves in the limit in
which the transverse section of the bar
is much smaller than the wavelength of
the sound waves, while vy is the veloc-
ity of longltudlndl sound waves when
the transverse dimension is at least as
large as the wavelength.

"To search for the normal modes we set the external force f = 0 and we |

write ,
u(x,t) = u(x,w)e” ! + cc.,

so u(x,w) satisfies

A+ p)V(V-u) +uViu = —pwu.

To solve eq. (8.226) we separate u(x,w) into its longitudinal and trans-
verse parts, u = uj + uy, defined by V x u =0and V. .u; = 0.
Substituting this into (8.226) (and taking once the divergence and once

the curl of the resulting equation) we get the two equations

(V2 + ¢y (x,w) =0,
(V2 + k) (x,w) =0,

where ¢ = pw? /(X + 2u) and k% = pw?/p. Observe that k and ¢ are

related by )
e _ _H
k2 XN+2u’

Equations (8.227) and (8.228) show that w(x,) and u (x, ) describe
(n/p)2,

waves propagating with velocities vy = [(A+2u)/p]"/? and v, =
respectively.®® Writing u(x,w) as a superposition of plane waves,

= Z a(k, w)ex

k

u(x,w) (8.230)

we see that for uj we have kxu(k,w) = 0, so it describes a wave which
displaces a volume element of the material along its propagation direc-

tionk, ie. a longitudinal wave, and similarly u, displaces it in the trans- ',
verse direction. Furthermore, the condition V-u | means that transverse

waves do not involve changes in volume, contrary to uy which induces

compressions and expansions of the volume element. We can construct j

the longitudinal and transverse solutions introducing two scalar func-
tions x(x;¢) and @(x; k). We write the longitudinal part as

Vx(x,q),

while, defining the operator L = —ir x V, we can form two independent
transverse vectors, that we denote by us(x, w) and uy (x, w), respectively,

uH (X,w) - (8231)

uy(x,w) =1V x Lp(x, k) uy (x,w) =iLo(x, k). (8.232)
Equations (8.227) and (8.228) become
(V+P)x(x0) =0, (V2 +E)p(x, k) =0 (8.233)
The most general solution for u is therefore of the form
u(x,w) = Couy (x,w) + Crug(x,w) + Couy (x, w) (8.234)

= COVX(X? Q) + 7C’1‘V X L@(Xv k) + Z'OZLQD(Xv k) )

(8.225)

(8.226)

(8.227)
(8.228) |

(8.229)

where x and ¢ are solutions of eq. (8.233). We now impose the boundary
condition (8.224). This quantizes the allowed values of k (and therefore
of ¢, since ¢ and k are related by eq. (8.229)) and, apart from an overall
normalization factor, fixes the value of the constants Cy, C; and Cs.
The solutions so obtained are the normal modes of the system, and we
denote them by 1, (x), where N labels collectively all the labels that
are necessary to classify the normal modes. Since the normal modes
form a complete set, the most general displacement u(x, t) that satisfies
the boundary conditions can be expanded as

t)=> En(t)pn(x). (8.235)
N

For a thin cylindrical bar the problem is one-dimensional, and we found
in Section 8.1.1 that there are two families of normal modes, given by
1 (x) = sin[rz(2n+1)/L] and v, 5(z) = cos[rz(2n+2)/L], so in this
case N = {n,a} with a = 1,2 a discrete label. We also found that the
modes 1, 5 do not couple to GWs while the coupling of the modes 1,
to GWs can be summarized in terms of an effective mass of the mode
and an effective external force. In the next subsections we discuss the
analogous results for a sphere.

The normal modes of a sphere

We can now specify the above general formalism to a spherical elastic
body of radius R. The solution of eq. (8.233) is

X(X> q) = jl(qﬁr)yim(eaqs) ) (X ”‘J) - ]l(k"l") lm(e ¢)

where j;(z) is the spherical Bessel function. Inserting this into eq. (8.234)
and imposing the boundary condition (8.224) we find two families of
solutions, called toroidal and spheroidal modes. To write the result in a
compact form, it is useful to define the functions

(8.236)

dz z

Boe) = 2 ﬁl(z)zi(m>; Ba(z) = dz]l(z) (8.237)

B5(2) = 3162(2) + (L= T+ 2], (5.238)

M@:@@~%£&@. (8.239)

Then we have the following classification.

Spheroidal modes. These modes have [ > 0. When [ # 0, their allowed
values of k are the solutions of the equation

Os(kR)Ba(gR) — Ul + 1)1 (kR)B1(¢R) = 0,

where ¢ and k are related by eq. (8.229). For each [ this equation has
an infinity of solutions, that we denote by kﬁl, with n =1,2,.... Equa-

(8.240)
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Table 8.1 The values of kSL forl =0

tion (8.240) however does not depend on m, so there is a (2/+ 1)-fold de-
generacy. The corresponding frequencies are obtained from eq. (8.228),

and [ = 2 and n = 1,...4, taking ;
A/(2p) = 1.05, which corresponds to WS = /2 kS 8241
the alloy Al 5056. (In a real detec- nt ('u/p) i (8 )
tor, these values change by O(10%)
because)of the effect of the suspension  The explicit form of the spheroidal modes with [ # 0 is
system.
s PN .
I n (kR)S I n (kR)S ltbnlm (7‘7 0, ¢) = {a’ﬂl(rh’ + bn[(T)RV] Ylm(é)’ ¢) ) (8'242)
0 1 5.580 2 1 2.651
2 12.304 > 5111 Where
3 18.870 3 8.639 dji(2) Ji(z)
4 24,286 4 11.100 am(fr) = CpJ {anl?[z:qﬁlr - ,Bnl [(l + 1) P |z=kil7" > (8243)
I Ji(z) Ji(z) | di(z)
s bnl(") = Cnl 'R I:Q’rnl > t;;:qil-r - ﬂnl <_—Z + __dz Iz:kizr .
. ~N
6 N .
«/ N The constants «y,; and G, are given by
4 . .
---------- . g
2 N oan = B3(kSR), B = Eﬁl (¢5,R). (8.244)
< 0.2 0.4 0 6\ N 0.8 : 1 . . P
. *—- 7 The constants ¢, are normalization factors. We fix them requiring

Fig. 8.18 The functions ai(r), for
I = 2 and n = 1 (solid line),
n = 2 (dashed line), and n = 3
(dot-dashed), plotted against /R,
for A/(2p) = 1.05. The functions
CLnl(T’) are normalized according to
eq. (8.246).

3

2

Fig. 8.19 The functions b, (r), for
I = 2 and n = 1 (solid line),
n = 2 (dashed line), and n = 3
(dot-dashed), plotted against r/R,
for A/(2¢) = 1.05. The functions
bni are and normalized according to
eq. (8.246).

/ B p (5,)" S, = M, (8.245)
1%

where M is the mass of the sphere and V' its volume. If p is constant,
as will typically be the case, the normalization condition becomes

[ e @) =V (5.240
We can also write eq. (8.242) in the equivalent form
U’Szm (7“, 07 (b) = Anl<7’)Yl'm,<9, (b)f' - Bnl(r) it X LYlm(e, ¢)) , (8.247)

where Ay (r) = ani(r) and Byi(r) = (R/r)bu(r). The functions a,,(r)
and by, (r) are plotted in Figs. 8.18 and 8.19.

For [ = 0, instead, the allowed values of k are the solution of the
equation

Pa(gR) =0, (8.248)
and the spheroidal modes are given by
P2 00(r, 0, ) = ano(r)F ano(r) = ¢ @ﬁ; (8.249)
noo\" ¥, @) = Gno ) n0 — Cno dz Z:qior' .

Therefore the spheroidal modes with [ = 0 are purely radial. In Ta-
ble 8.1 we give the value of k2, for some of the lowest [ = 0 and [ = 2
spheroidal modes, computed numerically from eqgs. (8.240) and (8.248),
taking A/(2u) = 1.05 (as we will see in the next subsection, the modes
I = 2 are the most interesting, since they are the only ones coupled to
GWs). Observe that the numerical values of k2, depend on \/(2u).

Torotdal modes. These modes are purely transverse and exist only for
[ = 1. The eigenvalues kI, are determined by the equation B (kR) = 0
and have the form

Y him (1,0, 6) =y ji(kEr)iLYim,

with ¢/, the normalization constant. Observe that iLY},, = r x VY,
is orthogonal both to Y,,,# and to VY, i.e. to the displacements due
to the spheroidal modes. The values of k%, for [= 1,2 and n =1,...,4
are given in Table 8.2. They are independent of A/(24), since they are
determined only by the function 3;(z), given in eq. (8.237).

(8.250)

The interaction of the normal modes with GWs

We next discuss how these normal modes interact with GWs. We start
from the expansion of the displacement u(x, t) in terms of normal modes,
eq. (8.235), and we substitute it into eq. (8.223). Using the fact that,
by definition, the normal modes 1)y (x) satisfy eq. (8.226) with w = wy,
we get .

pY (Enr +winén )y (x) = f .

N
Here N = {nlm;a}, where the label o = {5, T'} denotes spheroidal and
toroidal modes, respectively. To obtain an equation for £ we take the
scalar product of both sides by 15 and we integrate over dz. Since the
normal modes are orthogonal, and normalized as in eq. (8.245), we get
1

7 B f Py
Recall that f is the force per unit volume. In the case of GWs, eq. (8.2)
gives f; = (1/ 2)]7;1ijLJ p and therefore (omitting for simplicity the label
TT on hyj)

(8.251)

N + wiién = (8.252)

(8.253)

. . 1 . e
En +NEN Fwién = ﬁi’vij/ P ()l
\

where on the left-hand side we also added a term yn&én to take into
account the effect of dissipation. The above equation is completely gen-
eral and holds in any geometry, with %, equal to the normal modes
appropriate for the geometry in question. Here we are interested in a
resonant sphere, so we must compute the right-hand side for the toroidal
and spheroidal modes. For the toroidal modes wgl,m, the integral van-
ishes for all [, and therefore they do not couple to GWs.3” This is anal-
ogous to the fact that, in a cylindrical bar, the modes proportional to
cos[rz(2n 4 2)/L] do not couple to GWs. They can therefore be used
as a veto to distinguish spurious excitations due to noise from GWs.

We then turn our attention to the spheroidal modes. Writing them in
the form (8.247) we have

[ @ )iy = [rdrdQA )21, + By L)
(8.255)
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Table 8.2 The values of k;{l forl =1
and [ = 2, and n = 1,...4. They do
not depend on A/(2u).

I n &RT 1 n (EkRT
1 1 5763 2 1 2501
2 9.095 2 7.136
3 12.323 3 10.515
4 15515 4 13.772

37 The proof is straightforward. In-
serting the explicit form (8.250) of the
toroidal modes, we are left with an in-
tegral of the type

/d‘ga:f(r)a:j(ilti)* ,
where f(r) = jg(k:‘;?‘), Y = Yy, and
Li = —iejpqxp0y. We integrate 8, by

parts, obtaining
/dS:::f(r)mjeimmp(’)qy*
- /dQS'a”sqf(r)wjeipqpr*
~ipg [ Y0y (1))

where d2S is the surface element of
the boundary, &, = x4/r is its nor-
mal, and we used €;pq0¢Tp = €ipglpg =
0. The first integral vanishes because
€ipgTpq = 0. In the second integral we
use 9y [F(r)e;] = F/(r)aqz; + £(r)b5q.
The term f'(r)&qz; vanishes after con-
traction with €;pqp, so we finally get

/dsmf(T)a:j (iL;Y)*

:eijk/dsfljf(f')mky*. (8.254)

The result is therefore antisymmetric
in (,7). In eq. (8.253) this quantity
is contracted with h;;, which is sym-
metric in (7, ), so the right-hand side
of eq. (8.253) vanishes.
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383ome of the best motivated exten-
sions of general relativity contain also
gravitationally interacting scalar fields.
In this case the trace of h;; does not

vanish (it is in fact expressed in terms of

these scalar fields), and now the mono-
pole mode ! = 0 of the sphere can
be excited. We understand from this

a remarkable and unique property of

a spherical resonant-mass detector: it
can tell the spin content of the field
that excites it, since the spin of the field
matches exactly the value of | of the
multipole modes that it excites.

It is easy to see that the angular integral is non-vanishing only if [ = 0
or [ = 2. In fact, the symmetric and traceless tensor ;z; — (1/3)8;;72 is
a pure spin-2 tensor and therefore, expanding it in spherical harmonics,
it contains only the harmonics with { = 2, i.e.

1 2
2 2 77,
Tilj = g(sij'] +r § c; )27?1'7

m'=—2

where c[’j'/ are coefficients, whose explicit form we do not need here (but
we already found them in eq. (3.221)). Since the spherical harmonics
are orthogonal, when we integrate the term proportional to A, (r) over

dS) we find that 6;; Y}, ~ di;Yo0Y);, gives a non-zero contribution only if

I =0, while Y5,/ Y}s gives a non-zero contribution only if I = 2. As for
the term proportional to By, recall from elementary quantum mechanics
that the angular momentum operator L, acting on the spherical har-
monics Yy, gives a combination of spherical harmonics with the same
value of [. Therefore, zpx;L,Y; has a non-vanishing integral over the
solid angle only if [ = 2 (when [ = 0 the term proportional to By, is
absent from the spheroidal modes, see eq. (8.249)).
In general relativity h;; is tlaceless and symmetric. Then, when in
q. (8.253) we perform the contraction with f;, the terms with [ = 0
vanlsh since they are proportional to A,o(r)d;;. In conclusion, within the
framework of general relativity, GWs excite only the spheroidal modes
with { = 238
We can now compute the right-hand side of eq. (8.253), restricting to

[ = 2. It is convenient to write f;; in terms of its spherical components

where, for notational simplicity, we denoted f;erm simply as &, and w?,
as wn. Equation (8.260) shows another remarkable feature of a resonant
sphere: the modes &, are sensitive only to the component h,, of the
GW with the same m. Therefore, from the five quadrupolar modes &,,,,,
at n given, we can reconstruct the full matrix h;j(w), at the frequency
w = wp. This is different from what happens in resonant bars and, as
we will see, in interferometers, where there is only a single output, of
the form Ay Fy + hyx Fy, where F  are functions that depend on the
direction of the arrival of the GW (which is a priori unknown). The
output of a sphere contains much more information, as we will see in
detail in Section 8.4.2.

Jomparing eq. (8.260) with eq. (8.3) we see that the quadrupolar
modes &, of a sphere are formally equivalent to an oscillator with effec-
tive length leg = Ry, while, from the normalization condition (8.245),
it follows that the effective mass of the modes is equal to mass M of
the sphere.?® Comparing with the results obtained for the fundamen-
tal mode of the cylinder of mass My and length L, we see that all
results that we obtained for the fundamental mode of a cylindrical bar
can be immediately applied to the spheroidal modes with [ = 2 and n
generic of a sphere of mass Mgpn, simply performing the replacements
(1/2)Mey1 — Mgpn and (4/7?)L — xn R, and taking into account that
the mode &, is driven by h,, rather than by h,,.

We can then obtain the cross-section of the sphere for absorption of
GWs, simply repeating the computations performed in Section 8.1.3.
The result is
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39By definition of normal modes, the
&N are oscillators with frequencies wy,
so the energy associated to £y is pro-
portional to 5?\, + w'f\,gfvl
all coefficient is found observing that
the kinetic energy of an oscillation

The over-

u(x,t) = En ()P (x) is given by

H

/dm Ja)?

26 [ ool

1 .
5 45%’ ’

where in the last line we used the nor-
malization condition (8.245). Therefore
the effective mass of the modes &, is
equal to the mass M of the sphere.

B, with m = —2,...,2, introduced in Section 3.5.2. The h,, are defined oM 3
. _ vs
as in eq. (3.222) Y, = Fy - ( c ) (8.261)
hij (t) Z h () V™, (8.257)
where the five tensors fj’n with m = —2,...,2, are a basis in the with
space of the tensors traceless and symmetric with respect to the two 8r2 2 5w
indices (7, ), and are given explicitly in eq. (3.218). We insert this into T T4op (REk,)”. (8.262)

eq. (8.253) and we compute explicitly the integral when [ = 2. The

result is 1 1
. S ..
”Q‘Vh/ij /d3$ ('w'an)i Ty = iRthm ) (8258)

where the coefficients x, are given by

1
Xn = 137; / duuw® [An2{kn2w) + 3 Bua(knou)] (8.259)
Jo

and sy = k2 R is independent of R (the values for [ = 2andn =1,...,4

nl

are given in Table 8.1). The numerical values of x,, forn=1,...,4 a,nd ;

A/(21) = 1.05 are given in Table 8.3. Therefore eq. (8.253) becomes

Enm + Ynbnm + wifnm = ’2‘ Bxnhm , (8260)

The numerical values of x,, and F,, for n =1,...,4 and \/(2u) = 1.05
are given in Table 8.3. We see here another important advantage of a
spherical resonant-mass detector, over a cylinder. A cylinder of length
L and a sphere of radius R searching for GWs at the same frequency
w must have L ~ 2R, as we see comparing eq. (8.14) with eq. (8.241)
which, for a material such as aluminum, gives for [ = 2 and n = 1 (the
fundamental quadrupolar mode) w =~ 1.62v,/R. However, a sphere with
diameter L is much more massive than a thin cylinder of length L of
the same material, and therefore its cross-section for GW absorption is
much higher. Furthermore, for the sphere the sensitivity is isotropic,
while for the bar we assumed a wave coming from the optimal direction.
Averaging over all possible directions the bar cross-section is further

reduced by a factor 4/15, see eq. (8.67).

Table 8.3 The values of y, and

of Fy, for n = ., 4, setting
M (2p) = 1.05.

n Xn Fy

1 -0.328 2.996

2 -0.105 1.141

3 0.020 0.116

4 0.007 0.026
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8.4.2 Spheres as multi-mode detectors

One of the most interesting features of a spherical resonant mass is that
it is a multi-mode detector. A resonant cylinder is a single-mode detector
because, at each resonant frequency wy, there is only one longitudinal
mode. The output of a resonant cylinder is therefore a single quantity,
the component of h;; along the bar axis, say hs... This is related to the
components hy and hy of the GW and to the direction of arrival of the
wave by hge = hy Fi (0, ¢) + h« Fx (8, ¢), where Fy (0, ¢) are the pat-
tern functions of the bar. From this single output we cannot disentangle
the information on the GW amplitude from that on the source direction.
The same signal could be induced by a GW with a smaller amplitude
but well oriented with respect to the bar, i.e. impinging transversally
on it, or by a GW arriving from a less optimal direction, but with a
higher amplitude. Even less can be said as to how this energy is shared
between the two polarizations.

Therefore, if we detect a signal in a single cylindrical bar, in the ab-
sence of an optical counterpart the best one can do is to guess that
the wave came from a more-or-less optimal direction and to guess that
hy ~ hy, and under these assumptions one can estimate the energy
flux carried by the wave. Almost nothing can be said about the source
location, except that it cannot be too close to the bar’s blind direc-
tion, which is its longitudinal axis. As we will see in later chapters, the
situation is similar for a single interferometer, and to improve it substan-
tially, with bars or interferometers, it is necessary to detect the signal
simultaneously in different detectors.

A sphere is completely different from this point of view. At each
resonance frequency wy, corresponding to an [ = 2 spheroidal mode, it
has five degenerate modes coupled to the GWs, and therefore a sphere
has five independent outputs. As we have seen in eq. (8.260), each of
the five modes &, (with n given and m = —2,...,2) is driven only by
the spherical component fz,m(wn) of the GW which has the same value
of m. Therefore, monitoring the five &,,, we obtain the five quantities
- (wp) and, using eq. (8.257), we can reconstruct the full matrix INW
at the resonance frequency or, more precisely, in a bandwidth centered
around w,.

The full matrix ﬁij contains all the information on the arrival direction
and on the amplitude of the two polarizations. In particular, if the
excitation of the detector is really due to a GW, rather than to noise;
it must be possible to rotate the axes of our reference frame so that
the new z axis coincides with the propagation direction of the wave. In
other words, once we measure the quantities h,, and we construct h;;
as in eq. (8.257), it must exist a rotation R such that

hy hx O
RikRJ’lhm = }'Lx ——h+ 0
0 0 0

(8.263)
i

Then the propagation direction i of the GW is obtained applying this

rotation to the original 7 axis, i.e. n; = Ri;2; = Ry3. Given the original
matrix h;j, the determination of the incoming direction (in the absence
of noise) is therefore a straightforward algebraic problem, whose solution
is

haghiz — highag

t'a,n =N nm - T T ) 8'264
¥ v/ hi2h1s — hi1hos ( )
n2 4+ n? 1/2 )
tanf = (n; + 1) = fus —. (8.265)
N, hi2 cosp — hyysing

We have therefore reconstructed the arrival direction, up to a sign ambi-
guity: we cannot distinguish a wave coming from the direction A from a
wave coming from —1, since if (0, ) satisfy eqgs. (8.264) and (8.265) then
also (m — 0,7 + ) satisfy it. (This ambiguity could be fixed measuring
the time delay between two detectors.) We have therefore determined
the arrival direction and we can now read the two separate amplitudes
hy and hy from eq. (8.263).4°

At this stage we have used five outputs to determine four quanti-
ties: the two amplitudes hy,hy (or, equivalently, the amplitude h =
(h% + h%)'/2 and the polarization angle ¥ defined by h = h. cos2¥ +
hy sin 2¥), and the two angles 6, ¢ that give the unit vector n. We still
have one unused information. This is a veto that distinguishes GWs
from spurious events due to noise. In fact, given five arbitrary numbers
B, the matrix )~ hq,,,,yg; is by definition traceless and symmetric, be-
cause the V[ are traceless and symmetric, but this just means that,
with an appropriate rotation, we can bring it to the form

a d 0
d b 0 , (8.266)
0 0 ¢ /..

ij
with a+b+c = 0. That is, we can choose two Euler angles associated to
a rotation to set to zero the (1,3) and (2,3) elements of the matrix (and of
course at this point we can also set d = 0 with a rotation around the new
z axis). The fact that, after performing such a rotation, we automatically
find ¢ = 0 and therefore @ = —b is instead a specific property of GWs,
due to their transverse nature. In conclusion, the five quadrupolar modes
of the sphere allow us to determine the source direction i (up to a sign
ambiguity i — —n), the two separate amplitudes h, and hy, and to
have a veto that discriminates GWs from noise.

Other vetoes emerge naturally in a resonant sphere. For instance,
from Tables 8.1 and 8.2 we see that the toroidal mode with [ = 2,n = 1
is quite close, in frequency, to the spheroidal mode with [ = 2,n = 1.
Since the former is not coupled to GWs while the latter is the main
mode that is monitored for GW detection, an excitation of the latter
when the former is not excited would give further confidence on the GW
origin of the signal.*!

We have seen above that, in the ideal case in which the signal is given
uniquely by the GWs, and the noise is negligible, a sphere is able to
locate ezactly the direction of the source, contrary to a single bar or
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400 course, once we find a rotation
that brings h;; to the form (8.263), any
further rotation around the new z axis
still leaves h;; in this form. This fur-
ther rotation just amounts to a redefin-
ition of the axes with respect to which
the two polarizations are defined, and
mixes hy and hy as in eq. (2.194). In
particular, it can be chosen so that hy
is set to zero and h;; becomes diagonal,
hij = diag (h4, —h4,0).

I Toroidal modes have no radial dis-
placement, so to detect them we need
transducers coupled to the transverse
oscillations of the surface.
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Fig. 8.20 The MiniGRAIL resonant
sphere. A few resonant transducers
are also visible.
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Fig. 8.21 The strain sensitivity of
MiniGRAIL (as of Jan 2005) com-
pared to the prediction of a sim-
plified two-mode model, cooling the
detector to a temperature 7' = 5 K.
The lowest curve is the sensitivity
expected cooling at 7' = 80 mK. The
final goal is to reach T = 20 mK.

a single interferometer that, even in the ideal noiseless limit, have an

angular resolution of order 47. Of course, in a real situation noise is
present, and the angular resolution of the sphere depends on the signal-

to-noise ratio. We denote by €y and ¢g. the actual angles which give
the direction of propagation of the wave and by 6. and ¢. the angles.
computed from the five outputs of a noisy resonant sphere. We introduce
the notation A8 = 0, — 8y and A¢ = ¢, — ¢g. A useful indicator of the

angular resolution is
AQ =7 [(A)? + sin® 6o (Ap)?] (8.267)

which is the area of a circle on the unit sphere, centered on the actual

source location, and with radius dn = n,—1ng, where fg is the unit vector
of the actual propagation direction of the GW and 0. is the direction
computed from the noisy outputs. Then it can be shown (Zhou and

Michelson 1995, Stevenson 1997) that, if we denote by SNR the signal-
to-noise ratio in energy, in the limit of large SNR the angular resolution
is given by

. ; 1
(A6)? = sin® g (Ag)* = R (8.268)
and therefore
2m
A= INR (8.269)

A spherical resonant mass detector, MiniGRAIL, has been developed
at Leiden University, in the Netherlands, and is in its commissioning
phase. It is a sphere of 68 cm of diameter and a mass M ~ 1.3 ton,
shown in Fig. 8.20. At 4 K its spheroidal quadrupolar modes are at
f =~ 2980 Hz. The material is an alloy CuAl6%, chosen because of its
high quality factor (Q ~ 107 at low T'), high sound velocity (vs ~ 4100

m/s) and a sufficient thermal conductivity, which already allowed to cool
it below 100 mK. The ultimate goal is to operate it at a thermodynamical

temperature T ~ 20 mK. The expected bandwidth should be of order

230 Hz, and possibly higher. The quadrupole modes are monitored

using various transducers, coupled to double-stage SQUID amplifiers.
The optimal choice is to have six transducers in the so-called TIGA
configuration, see the Further Reading section. The target is to reach a

temperature T' = 20 mK, and a strain sensitivity 5}17,/2 of order 10722 =

10-23Hz /2. The present sensitivity is shown in Fig. 8.21.

Since its size is relatively small, MiniGRAIL explores high frequencies;
in the 3 kHz region. As we will discuss in Vol. 2, this could still be an
interesting region for astrophysical signals from compact objects.
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Further reading

e A historical account of GW research can be found

in Thorne (1987). For overviews of resonant bars
see e.g. Thorne (1987), Coccia (1997), Ju, Blair
and Zhao (2000) and Bassan (2002).

Computations of the sensitivity of resonant bars
can be found in Pallottino and Pizzella (1981, 1984,
1991), Michelson and Taber (1981,1984), and Price
(1987). It is interesting to observe that the role of
the amplifier noise was first pointed out by two dis-
tinguished theorists, Gibbons and Hawking (1971).

Resonant transducers have been proposed by Paik
(1976). For detailed reviews on passive transducers
see Richard and Folkner (1991). Parametric trans-
ducer are discussed in Veitch (1991) and in Ju, Blair
and Zhao (2000). The dual scheme is proposed in
Cerdonio et al. (2001) and Briant et al. (2003).
See also the review Cerdonio (2003).

For back-action and the quantum limit in res-
onant bars see Giffard (1976). Quantum non-
demolition measurements are discussed in detail
in Caves, Thorne, Drever, Sandberg and Zimmer-
mann (1980) and in Braginsky and Kalili (1992).

Analysis of the coincidences between the five res-
onant bars ALLEGRO, AURIGA, EXPLORER,
NAUTILUS and NIOBE, and the relative upper
limit on GW bursts, can be found in Allen et al.
[IGEC] (2000) and Astone et al. [IGEC] (2003a).
Searches for periodic GWs are reported in Astone
et al. [ROG] (2002).

Descriptions of the detectors can be found in As-
tone et al. (1997b) for NAUTILUS, Astone et
al. (2003b) for EXPLORER, Blair et al. (1995)
for NIOBE, Mauceli et al. (1996) for ALLEGRO,
M. Cerdonio et al. (1997) and J.-P. Zendri et al.
(2002) for AURIGA.

For information on the resonant bar experiments
see the links:

http://sam.phys.lsu.edu
http://www.auriga.lnl.infn.it
http://www.romal.infn.it /rog/explorer
http://www.Inf.infn.it/esperimenti/rog/nautilus

Coordination among the various GW experi-
ments (both resonant masses and interferom-
eters) is provided by the Gravitational Wave
International Committee (GWIC), see the link
http://gwic.gravity.psu.edu

The advantages of a resonant sphere in terms of
cross-section and its multi-mode capability were al-
ready realized in the 1970s, see Forward (1971),
Ashby and Dreitlein (1975) and Wagoner and Paik
(1977). Detailed discussion of spherical detectors
can be found in Zhou and Michelson (1995), Lobo
(1995) and Coccia, Lobo and Ortega (1995). Hol-
low spheres are studied in Coccia, Fafone, Frossati,
Lobo, and Ortega (1998) and Lobo (2002). The
multi-frequency capability of the sphere and the
possibility of reconstruction of the chirp mass and
orbital parameters of a coalescing binary with a sin-
gle sphere is discussed in Coccia and Fafone (1996)
and Spallicci, Frossati and Krolak (1997). The re-
sponse of a resonant sphere to GWs in extensions
of general relativity is discussed in Bianchi, Coc-
cia, Colacino, Fafone and Fucito (1996) and, for
scalar fields, in Bianchi, Brunetti, Coccia, Fucito
and Lobo (1998) and Maggiore and Nicolis (2000).

A particularly useful configuration of transducers
for a spherical detector, the TIGA configuration,
was proposed and investigated experimentally in
Johnson and Merkowitz (1993) and Merkowitz and
Johnson (1995, 1997). See also the PhD thesis of
Merkowitz (1995). Another configuration requiring
only five transducers, but with four of them sen-
sitive to transverse displacements, is proposed in
Zhou and Michelson (1995). Detailed discussion of
sensitivity and optimal filtering in the presence of
multiple transducers is given in Stevenson (1997).

For MiniGRAIL, see de Waard, Gottardi, van
Houwelingen, Schumack, and Frossati (2003), and
the PhD theses of de Waard (2003) and of Got-
tardi (2004). Updated information can be found
at http://www.minigrail.nl.  Another spherical
resonant-mass under development is the “Mario
Schenberg” detector of the Brazilian GRAVITON
project, see Aguiar (2004).




