Part 11

Gravitational-wave
experiments




Data analysis techniques

In this chapter we begin our study of GW experiments. The functioning
principles and the sensitivities of existing or planned detectors will be
examined in great detail in the subsequent chapters. In this chapter we
rather introduce a number of general concepts which characterize any
GW detector, and we discuss the crucial problem of how to extract a
GW signal from the (typically much larger) detector noise.

In Section 7.1 we will see how the various noise generated inside a
_ the detector can be conveniently treated referring them to the detector
input, and are characterized by a spectral strain sensitivity, which has
 dimensions 1/v/Hz. In Section 7.2 we introduce the pattern functions
that encode the detector angular sensitivity. We will then discuss in Sec-
tion 7.3 the optimum filtering techniques that must be applied to the
detector output. The importance of this procedure stems from the fact
that, with existing detectors and with reasonable estimates of the GW
signal, we expect that the GW signal will be buried into a much larger
noise. The fact that we try to extract a small signal from noisy detectors
is certainly not a new situation in physics. Rather on the contrary, it
is a typical problem in many fields, e.g. in radio engineering where it
has been much studied in connections with radars, or in radio astron-
omy for application to pulsar searches, and standard filtering techniques
have been developed. We will see how these techniques are adapted to
the problem of GW detection. The proper interpretation of the results
obtained with matched filtering relies on notions of probability and sta-
tistics, that we discuss in Section 7.4. Here, after an introduction to
the frequentist and the Bayesian frameworks, we discuss how to recon-
struct the parameters of the source and how to examine the statistical
significance of the observation of an event with a given signal-to-noise
ratio. Then, in Sections 7.5-7.8, we will examine the application of these
concepts to various classes of GW signals, i.e. bursts, periodic signals,
coalescing binaries and stochastic backgrounds.

7.1 The noise spectral density

The output of any GW detector is a time series, which describes for
Instance the oscillation state of a resonant mass, or the phase shift of
the light recombined after traveling in the two arms of an interferometer.
This output will be a combination of a true GW signal (hopefully) and
of noise. To understand how signal and noise combine, it is useful to
think of a GW detector as a linear system. At its input there is the GW
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Fig. 7.1 A schematic representation
of a detector as a linear system.
The full transfer function T'(f) is
the product of the separate transfer
function. Here T'(f) = Tu(f)T(f),
and fious(f) = Ti(f)Ta(fIna(f) +
To(f)ms (f).

signal that we want to detect. More precisely, the input and output of
the detector are scalar quantities, while the GW is described by a tensor
hi;. So, in general, the input of the detector will have the form

h(t) = D” hijb(t) 5

where D% is a constant tensor which depends on the detector geometry,
and is known as the detector tensor. For example, for a detector which is
driven only by the (z,z) component of h;; (which, as we will see, is the
case for a resonant bar oriented along the 2 axis), DY = 1ifi = j =1
and DY = 0 otherwise. We will later compute the explicit form of D¥
for interferometers and for resonant masses.

For a linear system, the output of the detector is a linear function,
in frequency space, of the input h(t), that is, the output hoyu(t) of the
detector (in the absence of noise) is related to the input h(t) by

ﬁout(f) = T(fﬁ:'“(f) )

(7.2)

where T(f) is known as the transfer function of the system. However,

in the output of any real detector there will also be noise, so the output
Sout(t) will be rather given by

Sout (t) = hout (t) + Nout (t) .

More precisely, a detector can be modeled as a linear system with many
stages, labeled by i = 1,..., N, each one with its own transfer function

T;(f), so the total transfer function is T'(f) = [[, 7i(f). For example,

we will see in Chapter 8 that resonant-bar detectors are composed of
a heavy aluminum cylinder which is set into oscillation by an incoming

GW; its energy is then transferred to a lighter mechanical oscillator,

coupled to the heavy bar, which works as a mechanical amplifier, then

(7.3)

and we can simply think of the detector as if s(¢) were its output, com-
posed of a noise n(t) and a GW signal h(t),' and the detection problem
is how to distinguish A(¢) from n(¢). In the following, when we speak of
the detector output, we will always refer to s(¢).2 If one has a theoretical
model for a given source of noise n;(t), which appears at a given stage
of the linear system, we can compare it with h(¢) simply multiplying
it by the inverse of the appropriate transfer function, in order to refer
this noise to the detector input. Equivalently, of course, one could refer
both the noise and the signal to the true detector output, and com-
pare Nout (t) to the quantity hou(t) whose Fourier transform is given by
eq. (7.2). However, the great advantage of referring everything to the in-
put is that n(t) gives a measure of the minimum value of h(t) that can be
detected and hi(t), apart from the geometrical factor D¥ which is always
of order one, depends only on the incoming GW. In contrast, hout (%) de-
pends on the transfer function of the system, and different detectors can
have transfer functions which differ by many orders of magnitude. Thus,
the use of 1wt (t) and hoyt(t) would be very unpractical when we want
to compare the performances of different detectors.

So, in the above sense, we take n(t) to be the detector’s noise. If the
noise is stationary, as we assume for the moment, the different Fourier
components are uncorrelated, and therefore the ensemble average® of
the Fourier components of the noise is of the form

(@ (A = 8(F = )350(5). 76)

The above equation defines the function S,(f).
i(—f) = n*(f) and therefore S, (—f) = Sp(f).
less, as we will assume, S,(f) has dimensions Hz~*.
generality, we can also assume that

Since n(t) is real,
If n(t) is dimension-
Without loss of

it is transformed into an electric signal by an LC circuit coupled to the
light oscillator, and then this electric signal is further amplified by one
or more SQUIDs, and recorded. Clearly, noise can he generated at each
of these stages. Each noise will propagate to the output with a transfer
function which depends on the point of the linear system at which it
first appeared, see Fig. 7.1, and will contribute to total noise nque(t) at
the output. It is convenient to refer each noise to the detector input,

(n(t)) =0.

Observe that, for f = f’, the right-hand side of eq. (7.6) diverges.
However, in any real experiment we have a finite value of the time
T used to measure 7(f), see Note 3. Restricting the time interval to
~T/2 <t <T/2 we have

(7.7)

defining the quantity n(f) from T/2
5(f =0) — / dt ™7t =T. (7.8)
a(f) =T (f)ow(f) (7.4) ~T/2 oo
where oy (t) is the total noise measured at the output. That is, n(t) Then, from eq. (7.6) with f = f/, we get
is a fictitious noise that, if it were injected at the detector input, and
if there were no other noise inside the detector, would produce at the <!7~l(f)!2> _ %Sn(f)T. (7.9)

output the noise ngyu(t) that is actually observed. It is therefore the
quantity that we can compare directly with h(t), i.e. to the effect due
to the GW. We then define

s(t) = h{t) + n(t), (7.5)

For a function defined on the interval [—77/2,7/2], the Fourier modes
have discrete frequencies f, = n/T, so the resolution in frequency is
. given by

Af = (7.10)

1
T
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tOne often multiplies the detector out-
put by T71(f) already at the level of
data acquisition, so in this sense s(t) is
really the output of the data acquisition
system.

2Some more nomenclature: we will al-
ways use the word “event” to indicate
that in the detector happened some-
thing, which deserves further scrutiny.
At this stage, it could be due to a GW
or (much more likely) to noise. An
event which is already assumed to have
been generated by a GW will be called a
“GW signal”. The letter s convention-
ally used to denote the detector output
s(t) = h(t) + n(t) does not stand for
“signal” (the signal in this nomencla-
ture is h(t)). It can rather be taken
to denote the “strain amplitude” of the
detector.

3The ensemble average is the average
over many possible “realizations” of the
system. In practice we have only one
physical system, our detector, but we
can follow it in time, so the ensemble
average is replaced by a time average
(this implicitly assumes that the sys-
tem is ergodic). Then the ensemble av-
erage is computed measuring the noise
n(t) over a given time interval 7', and
considering this as a “realization” of the
system. From this we obtain A(f) (with
a resolution in frequency Af = 1/7T).
‘We then repeat the procedures over a
subsequent time stretch, again of du-
ration 7" and separated by a sufficient
time shift from the first realization, so
that the correlation between the noise
n(t) in the two stretches can be ne-
glected, and we define this as a second
independent realization of the system.
Finally, we average n(f) over many in-
dependent realizations. It is useful to
keep in mind that a time-scale T is im-
plicit in this procedure, and will indeed
appear in the equations below.
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We can then write eq. (7.9) also in the form

1 ~

55a(1) = (I(NP) Af. (7.11)
The factor 1/2 is conventionally inserted in the definition (7.6) of Sy, (f),
so that (n?(t)) is obtained integrating S,(f) over the physical range
0 < f < oo, rather than from —oco to oo,

(n2(t)) = <nio(t =0))
= / dfdf' (n* (f)n(f"))

=§7m#&w>

— 00

oG
:A 4 5u(f). (7.12)
The function S, (f) is known as the noise spectral density (or the noise
spectral sensitivity, or the noise power spectrum). More precisely, it is
called a single-sided spectral density, to emphasize that (n?(t)) is ob-
tained from it integrating only over the physical range of frequencies
f > 0. Alternatively, we can write

<712(t)> — ‘/_OO df SSOUME sided(f) , (713)

with gdouble sided( £y — (1/2)5, (f). Throughout this book, when we will
use the term spectral density or power spectrum, we will always refer to 'b
the single-sided quantity.

Equivalently, the noise of a detector can be characterized by 1/Sn(f),
which is called the spectral strain sensitivity, or spectral emplitude, and
has dimensions Hz~1/2. Note that, if the noise increases by a factor A,
n(t) — An(t), then S, (f) — A?S,(f) while the strain sensitivity scales
linearly.

Actually the definition (7.6), even if rather intuitive, is not mathe-
matically rigorous, because the function n(t) in general does not satisfy
the conditions necessary for having a well-defined Fourier transform; for
instance, on the interval —co < t < 00, n(t) does not necessarily go to -
zero at t — F00, so ii(f) in general does not exist. A more precise defin-
ition of the spectral density is obtained considering the auto-correlation
function of the noise,

R(T) = {(n(t + 7)n(t)) (7.14)
A Gaussian stochastic process n(t) is characterized uniquely by its aver:
age value {(n(t)), that for a stationary noise is a constant and can be set
to zero with a constant shift of n(¢), and by its auto-correlation func-
tion. Typically, the knowledge of the noise at time ¢ gives us very little
information on the value of the noise at a subsequent time ¢ + 7 with 7
sufficiently large, that is, for |7| — oo, R(T) goes to zero quite fast, e.g.
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exponentially, R(1) ~ exp{—|7|/7.}. The limiting case is white noise, in
which the noise at time ¢ and at any subsequent time ¢ + 7 are totally
uncorrelated, so for 7 # 0 we have (n(t +7)n(t)) = (n(t+7)){n(t)) = 0,
and R(T) ~ 6(7).

The auto-correlation function therefore goes to zero very fast as 7 —
+o0, and it satisfies the requirements for performing the Fourier trans-
form. We can then define the (one-sided) noise spectral density S, (f)
by

1 1o0 .

59 (f) = / dr R(t) ™™, (7.15)
The reality of R(r) implies S,,(—f) = S%(f), while invariance under
time translations gives R(—7) = (n(t —7)n(t)) = (n(t)n(t + 7)) = R(7)
which implies Sy, (—f) = Sn(f). Inverting eq. (7.15),

)

R(r) = (n(t‘-I— T)n(t))

= -;— /_Z df Sp(f)e t2mIT (7.16)
and in particular
R(0) = (1?%2(?2
=5 [ @
:/OOO df Su(f). (7.17)

Comparing this result with eq. (7.12) we see that, when 7(f) exists,
eqs. (7.6) and (7.15) are equivalent definitions of S,. Otherwise, only
eq. (7.15) applies. Equation (7.15) is known as the Wiener—Khintchin
relation.

If R(1) ~ 0(7), we see from eq. (7.15) that S, (f) is independent of

frequency and therefore we have white noise. If instead S, (f) depends

on f, one speaks generically of colored noise. A typical example is 1/f
noise, which is a generic denomination for a noise where S, (f) has a
power-law behavior, S,,(f) ~ 1/f7, over many decades in frequency.

7.2 Pattern functions and angular
sensitivity

From eq. (1.58), we know that a GW with a given propagation direction

1 can be written as

(7.18)

hij (t, X) = Z

@) [ drha(p)emmen
A=+,x -

where ef} are the polarization tensors given in eq. (1.54). We take x = 0
as the location of the detector. For a detector which is sensitive only
to GWs with a reduced wavelength much larger than its size, such as
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resonant masses and ground-based interferometers, we have 27 fi - x
n-x/X <« 1 over the whole detector, and we can neglect the spatia]
dependence of hgp(t,x). So, to study the interaction of GWs with such
detectors we can write simply

hiz(t) = Z e,f;(ﬁ) /OO df ha(f) e 2mift

A=, X
= Y ed@hat). (7.19)
A=+,X

Combining this with eq. (7.1) we see that the contribution of GWs to
the scalar output of the detector can be written as

h(t)= > DYefi()halt).

A=+,X

(7.20)

Tt is then convenient to define the detector pattern functions F4(h),

Fa(h) = DYefj(h). (7.21)

The pattern functions depend on the direction fi = (8, ¢) of propagation
of the wave, and in terms of them eq. (7.20) becomes

h(t) = he (D) FL(0,0) + hy (£)Fx (0, 0) . (7.22)

The above equations assume that we have chosen a system of axes (i1, V),
in the plane orthogonal to the propagation direction 1 of the wave, with
respect to which the polarizations iy and hy are defined. It is interesting
to see what happens if we change this system of axes, performinga
rotation by an angle 1 in the transverse plane. Then the axes (i, ¥) are
rotated to new axes (@', ¥') given by

0 =1cosy — ¥siny,
V' =1isiny + ¥ cos, (7.23)
where we used the same conventions on the sign of 1 as in egs. (2.188)
and (2.194). With respect to the (i1, ¥) axes, the amplitudes of the plus
and cross polarizations have values hy and hx, while with respect to
the (', V') axes, they have the values b/, and h/ . Equations (1.49) and
(1.50) show that A/, and h’, are related to hy and hy by

Rl = hy cos21p — hy sin 21, (7.24)
B, = hysin2y + hy cos 2y, (7.25)

In the new frame, the definition (1.54) states that the polarization ten-
sors are given by

(ef;) () = wa (7.26)
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Then, using eq. (7.23), we find

Il

(e55)'(
()"

The pattern functions F4 depends on the polarization tensors ef‘j through
eq. (7.21). Since the detector tensor is a fixed quantity, independent of
1, we find that in the new frame

Fi () = F,(h)cos2¢ — Fy (A1) sin 29,
Fl (A) = Fy (D) sin 29 + Fy (f) cos 21 .

(7.27)
(7.28)

/
!

1) = ef; (A) cos 2 — €5 sin 20,
n) = e

4 () sin 2y + e’ cos 29

(7.29)
(7.30)

Combining this transformation of the pattern functions with the trans-
formation of hy, hy given in egs. (7.24) and (7.25), we see that h(t) in
eq. (7.22) is independent of .

Of course, once a choice of the axes ({1, V) used to define the polariza-
tion is made, then the pattern functions Fy4 depends on # and ¢ only.
However, it is sometime useful to keep generic the definition of the (11, V)
axes in the transverse plane, and to parametrize the possible choices by
the angle 1. In this case, the pattern functions depend also on v, and

Fo(f;9) = Fi(1;0) cos 2t — Fy (11;0) sin 290,
Fy (D;1p) = Fy (1;0) sin 2¢p + Fi (f;0) cos 29 .

(7.31)
(7.32)

A useful identity satisfied by the pattern functions, independently of
the specific form of the detector tensor D;;, is*

/ d*h
4
where as usual d?n = dcosfd¢ is the integral over the solid angle. As
for the integral over d?n of F2 and of F2, with a generic choice of the
angle ¢ they are different. We will see for instance that one can choose

¥ so that F'x vanishes while Fy is non-zero, or viceversa. However, if
we average over the angle v, we find

27 d?/} N B 2w d’(,b N

In fact, inserting eqgs. (7.31) and (7.32) into eq. (7.34), the equality

H(B)Fy () =0, (7.33)

(7.34)

follows from [ d) sin 2¢) cos 24 = 0 and [ dysin® ¢ = [ dipcos? . From

this, it also trivially follows that

(FE(m;9)) = (FZ (1;9)) (7.35)
where > g )
4 " d*n
<'”>:/0 o E() (7.36)
For later use we also define the angular efficiency factor
F=(F)+(F3) =2(F}). (7.37)

4Equation (7.33) can be shown in full
generality writing

/ d%h Fy (R) Fy (1)
- Dachd/dzﬁe;;;(ﬁ)ejd(ﬁ) 5

and using eq. (1.54), which shows that
e;rb (h)e’,(A) is a sum of terms such as
U400V, which has three factors
and one factor ¥, and of similar terms
with @ < V. A simple way to see that
the integral over d?f vanishes is then
to observe that, when we integrate over
all possible values of fi, for each term
U1,V there is also a corresponding
term obtained with 0t — —i1 and v —
+¥, which cancels it.
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However, with three interferometers we have five measured quantities,
the three functions h;(¢), ¢ = 1,2, 3, and two independent delay times,
0 we can solve for hy(t), hx(t),0 and ¢. The actual accuracy of the re-
construction depends on the signal-to-noise ratio. For typical expected
signals, at first-generation interferometers the angular resolution could
be of order one square degree.

Table 7.1 The pattern functions F(6, ¢;¢ = 0) for various detectors. For interfer
ometers, the arms are perpendicular and along the (z,y) axis, (¢,¢) are the usual
polar angles defined using the z axis as polar axis and, for a wave propagating along
the z axis, ¥ is the angle in the (z,y) plane measured from the z axis, just as ¢.
For cylindrical bars, 6 is measured from the longitudinal axis of the bar and, if we
denote by z the longitudinal axis, for a wave propagating along the z axis, again
9 is the angle in the (z,y) plane measured from the = axis. For resonant spheres;
the modes m = 0, lc, 1s, 2¢, 2s are combinations of the five quadrupolar modes with
m = —2,...,2, defined in Zhou and Michelson (1995). The angular efficiency factor
F is defined in eqgs. (7.36) and (7.37). Observe that the mode m = 0 of a sphere has
the same pattern functions as a cylindrical bar (apart from a constant), while the
mode m = 2¢ has the same pattern functions as an interferometer.

7.3 Matched filtering

We have seen above that the detector output will be of the general
form s(t) = h{t) + n(t). Naively, one might then think that we can

Detector Fo(6,0;¢ =0) Fu(8,9;=0) F detect a GW signal only when |h(t)| is larger than |n(t)]. This would
be very unfortunate since we will see that, with plausible estimates of
interferometers %(1 + cos? ) cos 2¢ cosfsin2¢ 2/5 the expected GW signals bathing the Earth, and with the sensitivity of
the present generation of detectors, we will rather be in the situation
cylindrical bars ~ sin® 6 0 8/15 R < [n(t)].

The fundamental question that we ask in this section is then how can
we dig out the GW signal from a much larger noise. This is a classical

resonant spheres

vy o2 roblem in many fields of physics or in radio engineering, and the answer
:: _ (1) s (\/Si/l?;?e Zin ¢ gin 0 cos ¢ ;?Z 12 that we can detect values of h(¢) much smaller than the floor of the
m/ — e sin 0 cos 9 o o:s é sin 0 sin ¢ 2/5 noise if we know, at lefamsif to some level of aceuracy, thfﬂ form of (‘L(t).5
m— 9 ~1(1+4cos?0)sin2¢  cosf cos 2 2/5 Tg m}c‘lers‘(:anjc’l the basic 1dea,A we can flrst 111ust1jate a smlple version of
m— 9 _;_ (21 + cos? 0) cos 26 cos 0sin 2¢ 2/5 this “filtering” procedure, before moving to optimal filtering. Suppose

that s(t) = h(t) + n(t), and that we know the form of the GW signal
h(t) that we are hunting for. Then we can multiply the output s(t) by
h(t), integrate over an observation time 7', and divide by T,

We will compute the explicit forms of Fi « (6, ¢ ;) for bars and interfer-
ometers, in their respective chapters. We find useful to collect here the
result that we will find for interferometers, cylindrical bars and resonant
spheres; in Table 7.1 we give the value of F'(0,¢;¢ = 0) (with appro-
priate definitions of the angles, discussed in the table caption and, in
more detail, in their respective chapters), and the values of the angular
efficiency factor F.

As we see from the above table, the pattern functions are relatively
smooth functions of the position of the source in the sky. On the one
hand, this has the positive consequence that GW detectors have a large
sky coverage, of almost 47, except for some blind directions. This is very
different from conventional astronomy, where a telescope must point the
source very precisely to detect it. The reverse of the coin, however, is
that with a single GW detector we cannot determine the position of the
source in the sky. A single detector has an output h(t¢) that, according to
eq. (7.22), depends on four unknown: the two functions h. «(t) and the
angles (0, ) that give the source position. To disentangle these quanti-
ties we need a coincident observation by a network of detectors. With
two detectors we have at our disposal their two outputs k1 (t) and ha(t),
and the delay time 715 between these two signals. These three quantities
are not yet sufficient to solve for the four unknown h (£), hy(¢), 0 and ¢

T T T
% /0 dt s(t)h(t) = % /0 dt}ﬂ(tH% /0 dtn(t)h(t). (7.38)

The crucial point now is that h(t) and n(t), separately, are oscillating
functions. However, the integrand of the first integral on the right-hand
side is definite positive; it might be for instance the integral of something
like cos? wt, times a slowly varying function of time; this integral then
grows, for large T', as T'. Its value averaged over a time 7 is therefore of
order one in T,

1 T
7 /0 dt h(t) ~ h3, (7.39)

where hg is the characteristic amplitude of the oscillating function h(t).
In contrast, since the noise n(t) and our chosen function h(t) are un-
correlated, the quantity n{t)h(t) is oscillating, and its integral will grow
only as T%/? for large T (as is typical of systems performing a random
walk), so

1T To\ /2
= /O din(e)h(e) ~ (%) noho, (7.40)

where ng is the characteristic amplitude of the oscillating function n(t),
and 7 a typical characteristic time, e.g. the period of the oscillating
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5More precisely, we must know h(t) and
have an idea of the typical scales of vari-
ations of the noise, in order to exploit
their different behaviors.
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5We limit ourselves to linear filters, i.e.
filters in which § is linear in s(t), as in
eq. (7.41).

We now ask what is the filter K (¢) that maximizes S/N, for a given
n(t). This variational problem is elegantly solved by defining the scalar
product between two real functions A(t) and B(t), by

* i A )BY)
(A|B) =Re / df

oo (1/2)8a(f)

< A(f)B(f)
=4Re / df —=—==,

where Re denotes the real part, and the second line holds because we
take A(t) and B(¢) to be real functions, so that A(—f) = A*(f) (recall
also that Sp(—f) = Su(f)). Since S,(f) > 0, this scalar product is
positive definite. Then eq. (7.45) can be written as

function h(t). Thus, in the limit 7" — oo, the second term on the right-
hand side of eq. (7.38) averages to zero, and we have “filtered out” the
contribution of the noise from the output. Of course, in practice we can.
not sent T to infinity, either because the signal h(t) itself has a limited
temporal duration or because we are limited by the total available ob-
servation time. Still we see that, to detect the signal given in eq. (7.39)
against the background of eq. (7.40), it is not necessary to have hg > ng,
but it suffices to have ho > (70/7")'/?ng. For example, for a periodic sig-
nal with a period 79 ~ 1 ms, such as a millisecond pulsar, observed for
T =1 yr, we have (10/7)'/? ~ 107°. We can therefore dig very deeply
into the noise floor. ‘

After having discussed the intuitive idea, let us see how the above
procedure can be made more precise mathematically, and optimized in

(7.46)

order to obtain the highest possible value of the signal-to-noise ratio, S (ulh)
We define . N )2 (7.47)
§= / dt s(t)K (1), (741 . . ; orm i
—o0  where u(t) is the function whose Fourier transform is
where K (t) is called the filter function. We assume that we know what 1 N
GW signal we are looking for, i.e. we know the form of h(t). We then u(f) = §Sn(f)K(f)~ (7.48)
ask what is the filter function that maximizes the signal-to-noise ratio,
for such a signal. Since the filter function is chosen so to “match” the In this form, the solution is clear. We are searching for the “vector”
of unit norm 7 = wu/(uju)'/?, such that its scalar product with the

signal that we are looking for, the technique is called matched filtering.

The signal-to-noise ratio (in amplitude) is defined as S/N, where §
is the expected value of § when the signal is present, and N is the rms
value of § when the signal is absent. Since (n(t)) = 0, we have

S = /m dt (s(t)) K (1)
- /OO dt h(t)K (£)

:/m#MﬁR%ﬂ, (7.42)

while

dtdt' K(#)K (') (n(t)n(t'))

i
P
g 8

(7.43)

- / e KK () / " apdp Fmistais (@ ())R(f) .
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Using eq. (7.6) we obtain

N = [ a3

— o

E(f)?,

(7.44)

and therefore
* AR (S
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“vector” h is maximum. This is obtained choosing i and h parallel, i.e.
 (f) proportional to h(f), so we get

h(f)
Snl(f)

K(f) = const. (7.49)

The constant is arbitrary, since rescaling § by an overall factor does not
change its signal-to-noise ratio. Equation (7.49) defines the matched
filter (or Wiener filter).” In particular, if we are looking for a signal h(t)
embedded into white noise, so that S,(f) is a constant, then the best
filter is provided by the signal itself, which is the filtering discussed in

_eq. (7.38). However, when S,(f) is not flat, eq. (7.49) tells us that we

must weight less the frequency region where the detector is more noisy,
a very natural result.

Inserting the solution (7.49) into eq. (7.48) we get @ = const. X h.
Plugging this into eq. (7.47), the overall constant cancels and we get the

optimal value of S/N,
SN _ 1/2
(%) = 2,

(&) = [ o5t (o

which is the optimal value of the signal-to-noise ratio.® The above equa-
tions are completely general, and independent of the form of A(f). In
Sections 7.5-7.8 we will apply them to some specific signals.

(7.50)

that is
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"It is also common in the literature
to write eq. (7.41) in the form § =
[0 dts(t)G(—t), and to call G(t) the
filter function. So G(t) = K(—t) and
G(f) ~ h*(f)/Sn(f):

8Recall from Section 7.1 that our
Sn(f) is single-sided. In terms of the
double-sided spectral density, defined
after eq. (7.13), we have (S/N)? =
ffooo df lh(f)IZ/SSouble sided (f)
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9See Note 2 on page 337 for the distinc-
tion between events, GW signals, and
detector output.

10 pe kind of example that appears in
all textbooks: we toss a coin five times.
What is the probability of getting all
five times head (data), given that the
coin has 50% probability of heads and
tails (hypothesis)?

parameters take a given value, nor of the probability that a hypothesis,
or a theory, is correct. Hypotheses, or theories, are not the outcome of
a repeatable experiment. Rather, they are correct or they are wrong,
and similarly the true value of a parameter in a theory is what it is, and
these are facts that are not subject to probabilistic analysis.

In the Bayesian approach, instead, one is allowed to consider the
probability of a hypothesis, or of a theory, or the probability that a
‘parameter within a theory takes a given value. To define these prob-
abilities, one starts from the identities P(A N B) = P(A|B)P(B) and
P(BNA) = P(B|A)P(A), which follow from the definition (7.52) of con-
ditional probability. On the other hand, AN B = BN A and therefore

7.4 Probability and statistics

The matched filtering technique discussed above (as well as other tech
niques that we will meet later in this chapter) provide us with a way t
optimize the signal-to-noise ratio, assuming that a given signal is indee
present in our data stream. The issue that the experimenter normall
faces (especially in the field of GW experiments) is however differen
We do not know a priori whether a GW signal is present or not in
given stream of data, and we know even less its waveform. We ca
apply the matched filtering technique repeating it with many possib]
different filters, e.g. many possible starting times for the putative sig

nal, many possible parameters describing a family of waveforms, ete P(B|A)P(A)
and we will correspondingly extract from our data stream a number P(A|B) = — P(B) ) (7.53)
“events”,? with various values of the signal-to-noise ratio S/N. Wha

which is Bayes’ theorem. Observe also that, from the axioms of proba-
pility given above, it follows that

P(B) = Z P(B|A;)P(4;),

can we conclude from this? When can we claim detection of GWs? And
if we can claim detection, what can we learn from it, in particular ho
can we reconstruct the properties of the source (such as, for an astro
physical source, its direction, its distance, its mass, etc.), and with wha
accuracy?

To address these questions we need to use statistical reasoning. Befor
looking into the technical aspects, it is however useful to discuss mor
generally the statistical frameworks that one can use, as we do in th
next subsection.

(7.54)

for any B and for A; disjoints and such that U;A; = S. Therefore
eq. (7.53) can be rewritten as

pap) - FBAPA

T T, P(BIAYP(A)” (7.55)

7.4.1 Frequentist and Bayesian approaches

50 the denominator is just a normalization factor. As long as A and B
are the outcome of a repeatable experiment, eq. (7.55) would be accepted
also by frequentists. In the Bayesian approach, however, one applies this
to A = hypothesis (or parameters, or theory) and B = data. Then one
finds that

An abstract definition of probability can be obtained by considering
set S with subsets A4, B, ..., whose interpretation for the moment i
left open, and defining the probability P as a real-valued function tha
satisfies the Kolmogorov axioms: 1. For every A in S, P(A) > 0. 2
For disjoint subsets (i.e. ANB =0), P(AUB) = P(A) + P(B), and 3
P(S) = 1. Furthermore, one defines the conditional probability P(A|B
(i.e. the probability of A given B) as

P(hypothesis|data) oc P(datajhypothesis) P(hypothesis) . (7.56)

oo

The probability of the hypothesis given the data is called the posterior
probability, and eq. (7.56) states that it is proportional to the product of
two factors. The first is the probability of the data given the hypothesis
(a “honest” frequentist probability), which is called the likelihood func-
tion. The second is the probability of the hypothesis, and is called the
prior probability (or, simply, the prior). The latter cannot be determined
just by performing identical trials (so it makes no sense to a frequentist)
and, in the Bayesian approach, one must make assumptions to determine
it. In fact, this prior probability in general can even depend on subjec-
tive factors, and on the state of knowledge of the person that makes
the analysis. In the Bayesian interpretation, P(hypothesis) can be seen

P(A|B) = f%@

There exist two main approaches to probability, frequentist (also called
classical) and Bayesian, depending on the interpretations of the subsets
A B, ...

In the frequentist interpretation, A, B, ... are the outcome of a repeat-
able experiment, and the probability P(A) is defined as the frequency
of occwrrence of A, in the limit of an infinite number of repetitions. :
In this interpretation, the probabilities of obtaining some data are of b
course well-defined, and it also makes sense to consider the conditional = 8s the “degree of belief” t.hat the hypotl}esm is true, and eq. (7.56) de-
probability of obtaining some data, given some hypothesis (or given = Scribes the evolution of this degree of. belief due' t:o the fa(?t that we have
. performed the measurement. The prior probability describes the degree

a theory, or given the value of the parameters in a theory).1Y There- . p O
fore, quantities such as P(datalhypothesis) or P(data|parameters) make = Of belief in the hypothesis before the 1neasureme11t was 111113 e, and the
posterior probability describes the degree of belief after.

sense. However, one is never allowed to speak of the probability that the
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HObserve also  that eq. (7.56)
is stated as a proportionality, so
P(hypothesis|data) must be nor-
malized summing over all possible
hypothesis (or theories) that we want
to compare, or integrating over a given
domain of values for the continuous
parameters.
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Fig. 7.2 The Neyman construction
for the lower limit z; of the confi-
dence interval. Here the measured
value was zo = 5 and, to get the
interval at 90% C.L., we look for a
Gaussian distribution such that its
area at = > 5 (shaded region) is 5%
of the total area. This is a Gaussian
centered in x1 = xg—1.644850 (here
we used o = 1).

Fig. 7.3 The same as the previous
figure, for the upper limit x» of the
confidence interval. The Gaussian is
now centered in xo ~ g+ 1.64485¢0.

So, in this case we have a Gaussian distribution centered on xg (rather
than on 1 or on g as in the Neyman construction), and we use it as a
p.d.f. for z;. The most probable value of z; is found by maximizing this
p.df, which of course gives z; = xg, and the Bayesian 90% confidence
interval is defined as the interval which subtends an area equal to 90% of
the total area of the p.d.f.'? In the case of a Gaussian distribution, the
_ Bayesian and frequentist definitions give the same result for z; and za,
oven if the interpretation is different. However, in a general situation,
the two definitions do not agree. The frequentist confidence interval,
py construction, always has the prescribed coverage, i.e. we are sure
that in the limit of a large number of repetitions, 90% (or whatever
the chosen C.L.) of the confidence intervals obtained by the different
repetitions of the experiment will include (“cover”) the true value x,
no matter what x; is. This covering properties is not necessarily true
in the Bayesian procedure, which in certain cases yields intervals whose
frequentist coverage is less than the stated C.L. (i.e. they undercover).
This can happen in particular for event-counting experiments, that obey
Poisson statistics, when the data sample is small.

Beside the situation when we have small numbers, the other typical
situation where the Bayesian and frequentist approaches can give sen-
gibly different answers is when the variable z, for physical reasons, has
a bounded domain, and the measured values are close to the bound-
aries of the domain. An instructive example, that nicely illustrates the
different results that can be obtained with the Bayesian and the fre-
quentist approaches in such situations, is the following.'® Nowadays, we
know from oscillation experiments that the three neutrinos have a small
mass, with squared masses (more precisely, squared mass differences)
between 107° and 10~ %eV?. Before these results, a number of other
experiments attempted a direct measure of the mass m,, of the electron
neutrino (or more precisely, of m2) from tritium beta decay. In the early
1990s the experimental situation was that various experiments reported
negative values for their best estimate of m?2. This is not surprising in
principle since, if m? were really zero, or anyway much smaller than
the experimental accuracy (as indeed it was), and if the distribution
of the data is an unbiased Gaussian, on average half of the ensemble
of the experiments should report negative values, and statistical fluc-
tuations can drive the average over the experiments in the unphysical
region m?2 < 0. However, these negative fluctuations happened to be so
large that even the frequentist upper limit at 90% C.L. was negative,
and was m?2 < —16 eV2.4 To say the least, it is quite disturbing to set
up a complicated experiment to come out with the conclusion that m?2
is smaller than a negative value. The point is that this statement holds
at 90% C.L., so it should be false in 10% of the cases, and here we know
for sure that we are in this false 10%.1%

A possible alternative in this case is to include our prior information
that m2 > 0. This suggests to take a Bayesian approach with a prior
p.d.f. P(m?) which is zero when m? < 0, and uniform for m2 > 0, and to
use the resulting posterior p.d.f. to set the bound on m?2. Here however

This difference in approach implies also an important difference amop
the frequentist and the Bayesian notions of confidence interval and g
confidence level (C.L.). The expression “confidence interval”, withoy
further qualifications, refers to the frequentist definition, and has th
following meaning. Suppose that we are performing repeated identicy
measurements of a physical quantity z. We want to express our resy]
saying that, at a given confidence level, say 90%, z1 < x < 25. What i
meant by this is the following. The true (unknown) value of z is a fixe
number z, which is always the same in all repetitions of the experiment
each repetition provides a different interval [z, 5], that we want t
construct in such a way that z; will be contained inside this interval i
90% (or whatever the specified C.L.) of the repetitions, no matter wha
the true value x; is. This is the frequentist concept of coverage. There |
a general construction, given by Neyman in a famous 1937 paper, tha
allows us to construct the frequentist confidence intervals. We illustrat
it in the simple case in which we know that the experimental apparatu
provides values distributed as a Gaussian around the true value z¢, witl
a standard deviation o, \

P(x (7.57

202

Suppose that a given repetition of the experiment yields the value g
The Neyman’s construction (using for definiteness 90% C.L.) proceed
by finding a value 21 < 2o such that 5% of the area under P(z|z;)
at @ > wp. That is, we fix 27 by requiring that a Gaussian distributio
centered on z1, only in 5% of the cases produces values of z higher than
Zo, see Fig. 7.2. If the true value 2; were smaller than such z;, then
the value z¢ that we observed was due to a statistical fluctuation tha
takes place in less than 5% of the repetitions, so choosing in this way th
lower limit of the interval, we are wrong at most in 5% of the cases. Th
upper limit of the confidence interval is obtained similarly, by finding 2
value @y > xg such that 5% of the area under P(x|zs) is at = < g, see
Fig. 7.3. Observe that the prohabilistic variables in this construction
are ry and xa, while the true value z; is fixed (and unknown). ‘

In contrast, the Bayesian approach constructs a probability distribu
tion for the true value z;. This is obtained from the likelihood functior
P(datalhypothesis) in eq. (7.56), where the hypothesis is that the true
value of x is x; and the data is the observed value xzg. We denote this
likelihood function as A(zglzy). In our case, this is the same as the
Gaussian given in eq. (7.57), so A(zglzy) = P(xg|z:). As long as we
interpret it as the probability of obtaining the value 2, given that the
true value is @, the likelihood function is a legitimate frequentist con-
cept. However, in the Bayesian approach, it is inserted into eq. (7.56),
together in this case with a flat prior in x;, to get a probability density
function (p.d.f.) in the variable z;, given the observed value g, k

(@ — x0)* } ‘

e

P(ay

(7.58)

1
70) = Bg?yi2 exp{‘ 207
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125uch an interval is selected uniquely
by imposing an extra requirement, typ-
ically that it is symmetric around the
maximum, or that it is the minimum
length interval. For a Gaussian dis-
tribution, these two conditions give of
course the same result.

Bwe follow the paper by Cousins
(1995), “Why isn’t every physicist a
Bayesian?”, where the reader can find
a very clear exposition of the difference
between the Bayesian and frequentist
approaches.

gince the early 1990s, direct experi-
ments (i.e. experiments not based on
oscillations) on the electron neutrino
mass squared have improved, but still
their world average is negative, see Yao
et al. [Particle Data Group| (2006).

151¢ should be mentioned that a strict
application of the frequentist Neyman
construction can never produces an up-
per limit in the unphysical region, but
rather an empty confidence interval
(which is equally disturbing). There
is however a generalization of the Ney-
man construction that produces non-
empty intervals in the physical region,
see Feldman and Cousins (1998).
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161y fact, in the standard compilation
of experimental high-energy physics
data, the Particle Data Group (PDG)
“Reviews of Particle Properties”, essen-
tially all measurements and their statis-
tical uncertainties are reported within
the frequentist framework.

a distribution P(m2)dm?Z with P(m2) = const. is flat with respect t
the variable m2 but, since dm2 = 2m,dm,, it is linearly raising wit
respect to m,. The issue is significant since the resulting upper boun
depends on the choice. In this specific problem the consensus finall
settled on using a flat prior in m?2, which gave an upper bound, at 90
C.L.,, m2 < 26.6eV*.

A physicist that is not too much interested in the philosophical ag
pects of the debate, can take a pragmatic attitude and use a frequentis
or a Bayesian approach, depending on the kind of experiment to be an
alyzed. In particular, elementary particle physics is very well suited fo
the frequentist approach. This basically stems from the fact that in thi
case it is the physicist that controls the parameters of the experiment
(e.g. the kind of particle used in the beams, the beam energy, etc.) an
can reproduce them accurately many times. We are therefore in th
situation where the frequentist notion of repeated trials fits very well.!
The advantage is that this allows us to report objectively the outcom
of the experiment, without the need of incorporating prior (and possibl
subjective) beliefs.

On the other hand in astrophysics, and even more in GW astrophysics
the sources can be rare, they are not under the control of the experi
menter, and each one is very interesting individually. If a single BH-BH
binary coalesces, and we detect its signal in a GW experiment, we would
obviously be very interested in questions such as in which direction the
binary system was, at what distance from us, what were the masses
of the two black holes, their spins, etc. A strict frequentist approach
is inapplicable here. We do not have at our disposal an ensemble of
identical BH-BH binaries located in that position, with the same value
of the masses, etc. We just have that unique event, and we want to

get the maximum out of it. In this case, a Bayesian approach can be

more appropriate, since it allows us to ask questions such as “What was
the most likely value of the position, masses, spin, etc. of the BHs?”
For this reason, while negative results, giving upper limits on the rate
of GW signals, should normally be expressed in frequentist terms, the
discussion of parameter estimation from a given positive detection, to
which we turn next, should rather be performed within the Bayesian
framework.

7.4.2 Parameters estimation

In Section 7.3, when we introduced the matched filtering technique, we
assumed that the form of h(t) is known. In practice, however, h(t) will
necessarily depend on a number of free parameters. For instance, if h(t)
is a short burst of GWs, among its parameters we will certainly have its
time of arrival £5. When searching for very short bursts we might simply
use a Dirac delta, so h(t) = hod(t — tp), but more generally we might
also wish to include its temporal width At and possibly more parameters

realization ng(¢).

describing the shape of the pulse. For a coalescing binary, among the pa-
rameters we will have the time of entry in the interferometer bandwidth,
the distance to the source, the star masses, etc.

Therefore, we must consider a family of possible waveforms, or tem-
plates, that we denote generically as h(t;0), where § = {61,...,0x} is a
collection of parameters. Correspondingly, we have a family of optimal
flters K (t;0), determined through eq. (7.49), K(f;6) ~ h(f;0)/Sn(f).
In practice, this means that we must discretize the #-space, and repeat
the filtering procedure many times, once for each point of this discretized
parameter space (except that for some parameters the maximization pro-
cedure can be done analytically, see below).

The problem that we address in this section is the following. Suppose
that & GW signal has indeed been detected, which means that for some

template h(t;0) the value of S/N, determined by the optimal Wiener

filtering (or by any other procedure that we specified in advance) has

exceeded a predetermined threshold, and the signal satisfies further cri-

teria that we might have set for claiming detection, such as coincidences

between different detectors (we will see in more detail in Sections 7.4.3
_and 7.5.3 some possible criteria that could allow us to claim a detection,

at a given confidence level). How do we reconstruct the most probable
value of the parameters of the source, and how we compute the error on
these parameters?

This question is Bayesian in nature, so its answer is contained in the
posterior probability. To compute the likelihood function, and hence
the posterior probability, we assume for simplicity that the noise n(t)
is stationary and Gaussian. From eq. (7.6) we see that the variance
of the Fourier mode of the noise with frequency f is proportional to
(1/2)S,(f), so the corresponding Gaussian probability distribution for

o0 ~ 2
o) =N exp{ =5 [ ar St
—00

the noise is
(1/2)Sn(f) } ’

where AV is a normalization constant. This is the probability that the
noise 7(t), which is a random variable with zero mean, has a given
The above result can be rewritten very simply in
terms of the scalar product (7.46) as'”

p(no) = N exp{—(nolno)/2} .

(7.59)

(7.62)

~ We are assuming that the output of the detector satisfies the condition
. for claiming detection, i.e. it is of the form s(t) = h(t; ;) +no(t), where

no(t) is the specific realization of the noise in correspondence to this

event, and 6; is the (unknown) true value of the parameters §. The

likelihood function for the observed output s(t), given the hypothesis

that there is a GW signal corresponding to the parameters §;, is obtained
 plugging ng = s — h(f;) into eq. (7.62),

A(s]6:) = A exp {;%(s — h(8)]s — h,(at))} , (7.63)
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T For simplicity, we limit ourselves to
the case of a single detector. The
formalism can however be extended
straightforwardly to multiple detectors.
In this case the definition of the noise
spectral density, eq. (7.6), is replaced
by

(Yo (7)) = 805 = 1) 5 Sn(las

(7.60)
where the indices a,b label the detec-
tors. This definition takes into account
the possibility of correlated noise. Let
A(t) and B(¢) be vectors whose com-
ponents Aq(t) and Bq(t) are output of
the single detectors, and let [Sy, 1}‘“’ de-
note the inverse matrix. The equations
of this section can then be generalized
to multipole detectors, using the scalar
product

(A|B) = 4Re (7.61)
/0 S A ST (DI B)

which generalizes eq. (7.46). See the

Further Reading for details.
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18 A an example of prior information,
one of the typical parameters entering
in the waveform is the distance r to the
source, and we might be searching for
signals from a population of stars with a
known distribution in space, e.g. a dis-
tribution p{® (r)dr ~ r2dr for isotropic
sources, or p(9 (r)dr ~ rdr for sources
within a few kpc from us, in the Galac-
tic disk. Another typical parameter
is the mass of the star and, for neu-
tron stars, we know from astrophysi-
cal observations that their mass distri-
bution is strongly concentrated around
1.35Mq.

19Assurn'mg that the eccentricity can
be neglected, since the orbit should
be highly circular by the time the
signal enters in the bandwidth of a
ground-based detector, as we saw in
Section 4.1.3.

20Fgr details see, e.g. the statistics sec-
tion of Yao et al. [Particle Data Group]
(2006).

2L As we already mentioned when dis-
cussing the example of the neutrino
mass on page 350, a distribution which
is flat with respect to the variables 8¢
is no longer flat if we make a non-
linear transformation of the parame-
ters. Therefore this prior distribution
assumes a definite choice of coordinates
in the parameter space.

or, introducing the short-hand notation hs = h(6;),
1 1
NGl = A7 exp { (tuls) ) = 09} -

In the Bayesian approach, according to eq. (7.56), we also introduce a
prior probability p(®(6;).1® Then, the posterior probability distribution
for the true value 6;, given the observed output s,

Then, maximization of the posterior probability becomes the same as
maximization of the likelihood A(s|6;). The value of @; that maximizes
A(Sfﬁt) defines the maximum likelihood estimator, and we denote it by
éML(s). It is the most widely used estimator in general situations.?? It
is usually simpler to maximize log A. From eq. (7.64),

log A(s[6:) = (hels) - %(htmt). (7.66)

Since we are working at fixed s, the term (—1/2)(s|s) in eq. (7.64) is an
irrelevant constant, and we omitted it. Denoting §/d6; simply by ;,
the value of Ay, is found by solving the equations

(&;hﬁs) - (ailylilh,t) =0.

p(0s) = N 9000 exp { (ls) = 5l | (7.65)

where, since we are considering p(6¢|s) as a distribution in ¢ for a fixed
output s, we have reabsorbed into the normalization factor A the term
(s|s)/2 which appears in the exponential in eq. (7.64).

Once the prior distribution is given, eq. (7.65) gives the p.d.f. in the
parameter space, so in principle it contains all the information that
we need. However, in this form the information might not be very
manageable. The §-space will in general be a multi-dimensional space of
large dimension. For example, for a binary coalescence the parameters
9% that determine the waveform, at the post-Newtonian level, are the
distance, the source’s location (two angles), the orientation of the normal
to the orbit (two more angles), the time at which the signal enters in the
interferometer’s bandwidth, the orbital phase at that moment, the two
masses of the stars, and their spins, so 15 parameters in all.? From the
probability distribution function (7.65) in such a complicated space we
would like to extract some more approximate, but also more manageable
information; essentially, we want the most probable value of the variables
0, that we denote by é, and also their corresponding errors.

There is no unique way of defining what is the most probable value
of 8;. A rule for assigning the most probable value is called an estima-
tor. The most important properties that an estimator must have are:%
(a) Consistency: the estimator must converge to the true value as the
amount of data increases. This property is so important that it is pos-
sessed by all commonly used estimators. (b) The bias b is defined as the
difference between the expectation value of the estimator, E(¢) (taken
over a hypothetical set of similar experiments in which 6 is constructed
in the same way), and the true value 6;, b = E(0) — 6;. When b = 0 the
estimator is said to be unbiased. (c) Efficiency: we want the smallest
possible value for the variance of #, and (d) Robustness, i.e. the property
of being relatively insensitive to small departure in the assumed p.d.f
due to factors such as noise.

Two choice of estimators seems especially reasonable. The firstiis |
to define § as the value which maximizes the probability distribution
function (7.65). Another natural option is to define it as the average of
8,, over the distribution (7.65). We discuss these options below.

(7.67)

The errors Af" can then be defined in terms of the width of the proba-
bility distribution function (7.65) at the peak.

Typically, (7.67) is a set of equations that must be solved numerically
(except for some parameter such as the overall amplitude that can be
eliminated analytically, see below). However, they have a rather simple
geometric interpretation. The set of all possible waveforms h(¢;6) de-
fines a manifold, called the manifold of the signals, parametrized by the
coordinates #*. This is a subset of zero measure in the space of all pos-
sible functions, so the addition of generic noise n(t) to a function h(t; )
will necessarily bring us out of this manifold. In Fig. 7.4 we illustrate
the situation with a two-dimensional manifolds of the signals. The point
labeled 6, represents the true value of the signal, and therefore lies on the
manifold. The addition of noise carries us outside this manifold. Since
we are minimizing (s — h|s — h), see eq. (7.63), the maximum likelihood
estimator actually searches the point on the signal manifold which is
closest to the output s, where distances are defined with respect to the
scalar product ( | ).

To summarize, in the Bayesian framework éML is determined assuming
a flat prior distribution and requiring the maximization of the posterior
_ probability (7.65), i.e. maximizing our “degree of belief” in the hypoth-
esis that there is a GW signal. A natural question, at this point, is
what is the relation between éML and the value of 6 that provides the
highest signal-to-noise ratio in the matched filtering. We now prove that
in fact they are the same. To show it, we write the generic template as
h(t;0) = ah,(t;€), where a is an amplitude, and is a free parameter,
while the normalization of h, has been fixed imposing some condition.
We have separated the parameters 6 into a and the remaining parame-
ters, that we call £&. The maximization with respect to a of log A can be
performed analytically since, from eq. (7.66),%2

log A(sla, &) = alha|s) — %Q(halha) . (7.68)

Requiring dlog A/Ba = 0, we get the maximum likelihood estimate for

a
A  (hals)
amL(s) = m

3

Maximum likelihood estimator

Let us consider first the situation in which the prior probability is flat. 2! . (7.69)
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223ce any textbook on statistics, e.g.
Lyons (1986), Section 4.4, for an in-
troduction to the maximum likelihood
method and its virtues. Observe that
the likelihood is a legitimate concept
also in the frequentist approach. The
most probable frequentist value is again
identified with the maximum of the
likelihood, and the confidence interval
is usually defined in terms of the point
where 2 log A decreases by one unit with
respect to its value at the maximum.
In the frequentist approach, however,
we cannot use the likelihood as a p.d.f.
for the true values of the parameters,
i.e. we cannot consider areas under the
curve, and of course we cannot include
priors.

7 s=h(0p +n

6,

>

4

Fig. 7.4 The manifolds of the sig-
nals, parametrized by the coordi-
nates (61,62). The point 8; is the
true value of the signal. The addi-
tion of noise to h(f;) brings us out-
side this manifold, and the maxi-
mum likelihood estimator searches
the point on the signal manifold
which is closest to s.

2370 keep the notation lighter, we
omit the subscript t (which stands for
“true”) from a and €. We are anyway
considering p.d.f. for the true values of
the parameters.
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243We also mention that another way of
understanding the meaning of the max-
imum likelihood procedure is in term of
the Neyman—Pearson criterium, which
consists in maximizing the probability
of detection, subject to a given false
alarm probability, and leads again to
the condition that log A be maximum.

2511 the GW literature, the log of the
prior p°(#) is sometime added to the ex-
ponential in eq. (7.65), and the result-
ing exponential is called again the log-
likelihood function, log A, so the corre-
sponding estimator is called again the
maximum likelihood estimator. This
notation is however potentially con-
fusing. For instance, one might be
tempted to make a frequentist use of
such a “log A”, which is obviously in-
correct, since it involves a prior proba-
bility.

The maximization with respect to the remaining variables £ can be per-
formed substituting this expression for a into log A, obtaining

1 (hals)?

log A(slé) = = <.

(s1¢) 2 (halha)
The maximization of this quantity amounts to maximizing the overlap
of the output s with the normalized template hq/(hq|ha)'/?
overlap is measured using the scalar product ( | ), defined in terms
of the noise spectral density S,(f). This is just the matched filtering
procedure discussed in the Section 7.3. Thus, the maximum likelihood

(7.70)

method provides a way of estimating the overall amplitude ¢ (which

cannot be fixed just searching for the filter that maximizes the signal-
to-noise ratio, since eq. (7.47) is unchanged by a multiplicative rescaling

of the filter u) while, for the remaining parameters, it returns the values
that maximize the signal-to-noise ratio according to matched filtering.?4

Maximum posterior probability

In various situations we do have important prior information, and we
might want to include it in the analysis, see Note 18 for examples. In

this case, rather then maximizing the likelihood function, we must deter-
mine the estimator by maximizing the full posterior probability p(6|s)

given in eq. (7.65), which takes into account the prior probability distri-
bution.?® For a generic prior, of course, the maximum of the posterior
distribution will change, so it will no longer coincide with the value that
gives the highest signal-to-noise ratio in the matched filtering. What
happens is that the value suggested by matched filtering is weighted
against our prior expectations (in a real sense, our “prejudices” ), to

provide a new estimate of the most likely value for the true parameters,
When we want to include non-trivial prior information, some concep-

tual complication may appear (apart from the issue of how to choose

the appropriate prior). Suppose, for definiteness, that we have a two-

dimensional parameter space (01, 62), as in Fig. 7.4, and that we are not
interested in the variable 3. Then, we can integrate the p.d.f. given in
eq. (7.65) over 6y, to obtain a reduced p.d.f. in the variable ;. From
the geometric interpretation given in Fig. 7.4 it is clear that, as far as

the likelihood function is concerned, the maximum in the variable 6y
is the same, independently of whether we integrated or not over 6.
However, once we include a generic non-flat prior probability 0 (),
this nice geometric interpretation is lost and, in general, if (01,0,) is
the maximum of the distribution function p(6q,62|s), it is no longer

true that the #; is the maximum of the reduced distribution function

p(611s) = [ dBap(01,02]s), obtained integrating out fy. Thus, there

is an ambiguity on the value of the most probable value of 6y, which

depends on whether we are interested or not in f2. Another possible

drawback, this one common to both the maximum likelihood and the

maximum posterior methods, is that we might want an estimator that

minimizes the error on the parameter determination, and this in general

, where the

is not the case for the maximum likelihood or maximum posterior prob-
ability estimators. These issues motivate the consideration of the Bayes
estimator, in the next subsection.

Bayes estimator

In this case the most probable values of the parameters is defined by

di(s) = / b6 p(0]s), (7.71)

i.e. is the average with respect to the posterior probability distribution.
The errors on the parameters is defined by the matrix

£g = [ g’ - G507 — G plels) (.72

_ that is, in terms of the mean square deviations from 6}(s), where the

average is taken again with respect to p(f|s). Even when there is a
non-trivial prior probability function, the Bayes estimator is clearly in-
dependent on whether we integrate out some variable from p(f|s), since
we anyhow integrate over all the #° when computing élB and Z’,; Fur-
thermore, it can also be shown that, if one wants to minimize the error
on the parameters, averaged over the whole parameter space, the Bayes
estimator is the optimal one.

The “operational” meaning of the Bayes estimator is the following.
Suppose that, after a sufficiently long run, we end up with a large en-
semble of detected signals, which correspond to actual GWs, and that
among them there is still a large subensemble of GW signals that pro-
duced a given output s(¢). Each of these waves will be characterized by
different values of the true parameters 6; and therefore by a different
h(t; ;) that, by combining each time with a different realization of the
noise n(t), has produced the same output s(¢). Then 6% (s) is the value of
g, averaged over this ensemble of signals, and Y% is the corresponding
Ims error.

Thus, the Bayes estimator has a well-defined operational meaning, and
welcome mathematical properties, such as the independence on whether
we integrate out some variable and the fact that it minimizes the error on
parameter estimation. Its main drawback is its computational cost, since
the evaluation of eq. (7.71) or of eq. (7.72) involves a multi-dimensional
integral over the space of # variables which, as we have seen, could have
a dimensionality of order 15 or larger, and furthermore at each point
of this parameter space we must compute the function p(f|s), given
in eq. (7.65), which requires the numerical computation of the integral
over frequencies that defines the scalar product ( | ). The choice of the
best estimator is therefore subject to various considerations, including

computational cost, and depends on the specific situation. The use of

the Bayes estimator goes also under the name of non-linear filtering.
Of course, in the limit of large signal-to-noise ratio (which unfortu-
nately is not expected to be the appropriate one for GW detectors, at
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least in the near future) these issues becomes irrelevant, and all con
sistent estimators give the same answer. In this limit, there is also

very simple expression for the error on the parameters. If the SNR is
large, the error that we make on the parameter estimation is small. Fo
simplicity we assume that the prior p(®)(0) is nearly uniform near 6 = g
where 6 is the value produced by (any) consistent estimator, say for def
initeness the maximum likelihood estimator éML. That is, we assum
that the prior information is irrelevant for reconstructing the parame
ters. In eq. (7.65) we can then write 6" = %, + A@?, and, since A
is small, we can expand the exponential in eq. (7.65) in powers of Agt

The linear term of the expansion vanishes because 6§, is, by definition,

the maximum of the distribution, and to quadratic order in A8 we get
1 o
])(9[8) = N exp {—51_\”A91A0J} y (773

where I'j; = (8;0;h|h — s) + (Oih

d;h). Observe that, in the first term

we have h — s = —n and, in the limit of large signal-to-noise ratio, |n| is
much smaller than |h|. So in this limit the first term can be neglected,

and we get

l—‘?‘,j = (6,/7[8Jh) s
evaluated at # = Oyr,. This is called the Fisher information matriz.
Then the expectation value of the errors A" are given by

(AGIAYY = (T™HY (7.75)

7.4.3 Matched filtering statistics

As we have discussed in the previous sections, a general data analysis
strategy consists in performing matched filtering, applying many differ-
ent templates h(t; #) to the data. This will result in the generation of a
list of “events” (in the sense of Note 2 on page 337), defined by the fact
that the signal-to-noise ratio, in correspondence with some template,
raises over a predetermined threshold. Applying the maximum likeli-
hood criterium (or the maximization of the posterior probability, if we
want to include prior information), we can then get the most probable
value of the parameters 0, under the hypothesis that a GW signal h(t; )

was present. The issue that we want to address now is the following.

How well such hypothesis performed? In other words, what is the sta-
tistical significance of the fact that we found events at a given level of
signal-to-noise ratio?

The answer to this question depends crucially on the statistical prop-
erties of the noise so, first of all, it is important to realize that in any
detector we can distinguish between two kinds of noise: “well-behaved”
Gaussian noise, whose probability distribution is a Gaussian, and non-
Gaussian noise, which is a generic denomination for anything else. ‘A
Gaussian distribution ~ e~* /2 drops very fast for large values of its ar-
gument z. The intuitive idea, that we will formalize below, is therefore

(7.74)

to eliminate Gaussian noise by setting a sufficiently large threshold for
the signal-to-noise ratio. Non-Gaussian disturbances, however, have in
general a totally different statistical distribution, characterized by long
tails at large values of S/N, which decay only as a power law.2°

These noises cannot be eliminated just by setting a high threshold,
since they can produce events with values of S/N that, in Gaussian dis-
tribution, would be inconceivably large. As a limiting case, any detector
shaken by an earthquake will produce “events” with arbitrarily high val-
tes of S/N. Of course, these events cannot be eliminated just by setting
a high threshold in S/N. Rather, they should be identified and vetoed.
All detectors are equipped with sensors which monitor various aspects
of the detector performance as well as environmental conditions (e.g.

seismometers), so that non-Gaussian disturbances are vetoed as much

as possible. However, it is practically impossible to be sure that one
has identified and vetoed all possible non-Gaussian disturbances. So,

_ while in principle one can study experimentally the noise distribution
and then set a threshold so high that even non-Gaussian fluctuations

would be very rare, in practice this is not possible because the resulting
threshold would be much too high, and therefore would considerably de-

_ grade the sensitivity of the detector. Rather, the best way of eliminating

non-Gaussian noise is to perform coincidences between two or more de-
tectors. This is among the reasons why various different detectors have
been built, and they are operated as a network.

In the following, we first discuss the statistical significance of obtain-

_ing a given value of the signal-to-noise ratio S/N, assuming that only

Gaussian noise is present. This will tell us how to fix the threshold in
S/N so that, at some confidence level, we know that higher values of

_ §/N have not been produced by Gaussian noise alone, and allows us to

generate, from the data stream of the detector, a list of “events”. These
events will then be subject to further scrutiny, using for instance coinci-

dences between detectors whenever possible, with the aim of eliminating

those which are due to non-Gaussian noise, and retaining the GW sig-
nals, if any. For the rest of this section we will be concerned only with

. Gaussian noise, while coincidences and other techniques will be discussed
_when we examine the various type of signals, in Sections 7.5-7.8.

In egs. (7.42)—(7.45) we defined the signal-to-noise ratio in terms of
the expectation value of the signal. Here however we want to study the

 full statistical distribution, rather than just its expectation value, so we
. define

(7.76)

~ where § is the filtered output defined in eq. (7.41) and N is given in

eq. (7.43), that is N is the root-mean-square (rms) of § when the signal

is absent. The definition of p is therefore analogous to the definition of
the signal-to-noise ratio S/N, see eqs. (7.42)—(7.45), except that in the

lumerator we have § rather than its expectation value (8). As a result,
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B ror instance, a large class of phe-
nomena, characterized by what is called
self-organized criticality, are such that
the number N of events that release
an energy FE is distributed as dN =
E~7dE where, quite remarkably, the
exponent - has approximately the same
universal value, v >~ 1.6, in phenomena
apparently very different. Such a law,
together with the value v >~ 1.6, is in
fact observed in earthquakes from dif-
ferent seismic faults (in which case it
is called the Gutenberg—Richter law),
in soft y-ray bursts from highly magne-
tized neutron stars, as well as in numer-
ical simulations of fractures in solids.
The same distribution is experimen-
tally observed when searching for short
bursts in resonant-bar GW detectors,
where they are likely due to microfrac-
tures inside the bar, and give an ex-
ample of the non-Gaussian noise that
we will have to fight. See Dubath,
Foffa, Gasparini, Maggiore and Sturani
(2005), and references therein.
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Fig. 7.5 The probability distribu-
tion P(R|R), as a function of R, for

R =20 (solid line), R = 30 (dotted
line) and R = 50 (dot-dashed line).

the relation between p and S/N is S/N = (p). From

- /DO dt [h(t) + n(t)] K(t) (7.77

J =00
we see that, when h is absent, p is a random variable with zero averag
and, since it has been normalized to its own rms, with variance equal t
one. Thus, in the absence of a GW signal, the probability distributio
of pis

p(plh = 0)dp =

L e=P"/2 dp. (7.78
p

In contrast, if in the output there is a GW signal & with a signal-to-nois

ratio p, eqs. (7.76) and (7.77) give p = p+n/N, where i = [ dtn(t)K (¢

Since NN is just the rms of A, in this case p — p is a Gaussian variabl

with zero mean and unit variance, so

R

] R |
pelp)dp = —== =72 dp. (7.79

The variable p is the signal-to-noise ratio in amplitude. It is useful t
introduce also R = p?, which is the signal-to-noise ratio in energy, sine

the energy of GWs is quadratic in the GW amplitude. Observe that
p, being proportional to A(t), is not positive definite, and runs between

—o0 and oo, while of course 0 < R < oo. The probability distributio
for R, when there is in the output a GW signal with a signal-to-nois
ratio in energy R = p?, follows from eq. (7.79) observing that a singl
value R is obtained from two values of the amplitude, p = +VR, so th
probability of detecting an event with SNR in energy between R an
R + dR, when the SNR of the GW signal is R, is given by

P(RIR)dR = p(p|p)dp + p(—plp)dp

evaluated at p = R'Y/2. Writing dp = dR/(2R/?), we get

(7.80

_ dR 1
P(RIR)AR = —— ——
(RIF) 2R 2r

= 21 i e~ (BTR)/2 ogh {\/ RR} dR.
NP

From this we can compute the average value of R for a given R,

{e—w—m?m i e—(wfu}

(7.81

(R) = /O.OOdRRP(R[R) =1+R.

If we write R = E/kT,, where T}, has the physical meaning of an effective

temperature of the noise after matched filtering, we can also rewrit
eq. (7.82) as B
(Y =k, +E.

(783

Therefore the average value of the detected energy is the sum of the
energy F deposited in the detector by the GW, plus the energy kTn

associated to the detector noise, a very natural result. In Fig. 7.5 we
show the form of the probability distribution P(R|R), as a function
of R, for different values of R. Observe that, while the average value
is at R = 1+ R, the maximum of the distribution is at a somewhat
lower value. The corresponding distribution for R in the absence of
signal is obtained setting R = 0 in eq. (7.81). In Fig. 7.6 we compare
the probability distribution P(R|R) when R = 10 with the probability
distribution in the absence of signal, P(R|R = 0).

The different behavior of the two distributions suggest that, when
searching for a signal with a signal-to-noise ratio R in energy, we can
discriminate a true GW signal from a fluctuation due to Gaussian noise
setting a threshold in R, at a value R; that eliminates most of the noise,
while retaining a large fraction of the signal distribution. Observe that
anyway there will always be a false alarm probability, given by

DFA =/ dRP(R|R = 0)
Ry

= 2/00 alpe_”z/2
P

= 2erfe (py/V/2), (7.84)

where erfc (z) is the complementary error function. Furthermore, there
is a false dismissal probability, i.e. a probability of losing a real GW
signal, given by?7

Ry -
DFD :/ dR P(R|R) . (7.85)

0
The threshold R; can be fixed deciding what is the maximum false alarm

level that we are willing to tolerate. This depends also crucially on the
number of trials that we do with different templates. For example, for
a coalescing binary, one can estimate that of order 10° templates might
be needed to cover with good accuracy the possible range of values of
masses and spins. Furthermore, to match the template to the signal one
can estimate in about 3 ms the maximum temporal mismatch between
the two. In one year of data (~ 3 x 107 s), one must therefore try ~ 1017
starting values of time, and for each value of time we have 10° templates
to cover the masses and spin parameters, so overall one might have to

try 10'° templates.?® Often the false alarm level is fixed so that the ex-

pected number of false alarms in a run will be of order a few. With a
lower threshold one would be flooded by spurious events, while higher
threshold have of course the effect of increasing the false dismissal prob-
ability. The few events obtained will then be subject to further scrutiny.
Thus, if we search for a coalescence in a single detector, with one year
of data and 10'° templates, we could chose a threshold in amplitude
p: ~ 8, since this gives prpa ~ 2.5 x 1071, However, performing coinci-
dences between two detectors the probability of obtaining a false alarm
simultaneously in the two detectors is the square of the single-detector
probability, if the noise in the two detectors are uncorrelated, so in this
case we might want [2erfc (p;/v/2)]? =~ 107%, which gives p; ~ 5.5.
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5 10 15 20 25

Fig. 7.6 The probability distribu-
tion P(R|R), as a function of R,
for R = 10 (solid line), compared
to the probability distribution in
the absence of signal, P(R|R = 0)
(dashed).

27In other words, whatever the value of
R, the distribution P(R|R) is such that
there is always some probability that
R be smaller, and even much smaller,
than R, and therefore the GW can
go undetected even when the thresh-
old R; was smaller than the value R
due to the GW alone. If one thinks
in terms of energies, it might be coun-
terintuitive that the energy released in-
side the detector can be smaller than
the value that would have been released
by the GW alone, in the absence of
noise. Recall however that GW detec-
tors really measure an oscillation am-
plitude, and the amplitude induced by
the GW combines with the amplitude
induced by noise with a relative phase,
so noise and signal can interfere con-
structively or destructively. In the lat-
ter case the overall output has a smaller
energy than that due to the GW signal
alone.

284We will see however in Section 7.7.1
that all these time shifts can be taken
into account simultaneously perform-
ing a single Fast Fourier Transform,
which makes the problem computation-
ally feasible.
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29%We reserve the capital letter P for the
distribution in energy, i.e. in R, and use
p for the distribution in amplitude, i.e.
in p.

In the above discussion, we assumed that the output of the detector
is a single quantity p which, in the absence of noise, has a Gaussian
distribution. Actually, we will meet below examples in which we have
two outputs z,y, each one with its Gaussian noise, which are combined

in quadrature, so that p> = 2% + y?. In this case the corresponding
distribution function can be computed as follows. For the distribution
p2(plh = 0) in the absence on signal (where the label 2 reminds us that
we have two degrees of freedom z,y),? we simply have

dz dy

T —@y?))2
(2m)1/2 (2m)1/2

pa(z,ylh = 0)dzdy =

ag _ -

= pdp —e P /2. .
pdp o—e (7.86)
If we are not interested in the phase § we simply integrate over it, and
we get

2
p2(plh = 0) = pe=?/?,
which is called a Rayleigh distribution, or a x? distribution with two
degrees of freedom. To compute the distribution in presence of signal,
we start from the probability distribution of z,y, given that the true
GW signal has the values %, §
1 B2 (i
pa(@, Y|z, g)dady = 5 el +v-9)) (7.88)
o
We pass to polar coordinates, & = pcosf, y = psind, with p? = R,
so dxdy = pdpdf = (1/2)dRdf. To obtain the probability distribution
Py(R|R) we integrate over the phase 6, and we also integrate over all
the values of Z,§ with the constraint 22 + g = R, that is,

B dR 2 00 IR . B
Py(RIR)dR = c o df dzdyé(z” +g° — R)
0 — 00
1 1 .9 9
o exp{ 5[(93 =z +(y-0)°}, (7.89)

where ¢ is a normalization constant. The integrals are easily performed
expressing also Z, y in polar coordinates, T = rcos¢’, § = rsiné’, so

2m 2 o)
Py (RIR) :const./ dé’/ do’ / d(r*)5(r* — R)
0 0 Jo
1 _ =
xexp{—5(R+ R)+ VRR cos(f — ')}
_ 27
= const’. ¢~ (F+R)/2 / doyeVRR cosex (7.90)
0

where o = /—§’. The integral over « gives a modified Bessel function Io.
We fix the normalization constant requiring that fooo Py(R|R)dR = 1,
and we get

Py(R|R) = %e*<R+R>/210 <\/RR> . (7.91)

(7.87)

More generally, if p> = 27 + ... 22, performing a computation similar to
that presented above one finds®”

(n—2)/4 B _
P,(R|R) = 1 <E> 67(R+R)/21%;1 ( /RR> .

At (7.92)

In Fig. 7.7 we show the function P(R|R) given in eq. (7.81), which is
appropriate for the case of a single degree of freedom, together with the
functions P, (R|R) for n = 2 and n = 10 degrees of freedom, as obtained
from eq. (7.92). These distribution functions are known as the non-
central chi-squared densities with n-degrees of freedom. The average
value of R with n degrees of freedom is

(R) = / dRRP,(RIR)=n+R, (7.93)
0
and therefore )
(E) =n(kT,)+ F, (7.94)
while the variance is given by
(R?) — (R)? = 2n + 4R. (7.95)

7.5 Bursts

We now begin to apply the general theory that we have developed, to
specific classes of GW signals. We begin with GW bursts. A number of
astrophysical phenomena, like supernova explosions or the final merg-
ing of a neutron star—neutron star binary system, can liberate a large
amount of energy in GWs in a very short time, typically less than a sec-
ond, and sometimes as small as few milliseconds. We will refer to such
signals as GW bursts, and we denote their duration by 7,. In Fourier
space, a GW burst therefore has a continuum spectrum of frequency
over a broad range, up to a maximum frequency fmax ~ 1/74.

Optimal signal-to-noise ratio

In principle, if we know the form of iL( f), we can just plug it into
eq. (7.51) to obtain the S/N for a given noise spectral density of the
detector. However, bursts come from explosive and complicated phe-
nomena, and it is very difficult to predict accurately their waveform.
We can first of all make some simple order-of-magnitude estimates, dis-
tinguishing two cases.

Narrow-band detectors

In this case the detector is sensitive only to frequencies in a bandwidth
Af, centered around a frequency fgy, and we assume that Af is small
with respect to the typical variation scale of the signal in frequency space.
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3OSee, e.g. McDonough and Whalen
(1995), Sections 4.8 and 4.9.
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Fig. 7.7 The probability distribu-
tion P(R|R) given in eq. (7.81)
(solid line) compared to Pn(R|R)
with n = 2 (dashed line) and with
n = 10 (dot-dashed), as a function
of R, for R = 30.
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31 As we will see in Chapter 8, the band-
width of resonant-mass detectors has
subsequently evolved, reaching values
of order Af/fo ~ 0.1, but still, in a
first approximation, eq. (7.96) applies.
We will also see that, for resonant-mass
detectors, Sp(f) is not at all a slowly
varying function of f around the reso-
nance frequency fo, so in the estimate
(7.96) we must really take an average
of 1/Sn(f) over the whole useful band-
width Af, and we cannot simply use

178w (fo).

Outside this interval, the detector is blind and 1/5,(f) in eq. (7.51) be.
comes practically zero. Inside this small bandwidth l~7( f) cannot change
much, so our ignorance of the precise waveform becomes irrelevant, and
in the integrand in eq. (7.51) we can approximate E(f) with }Nz(fg). Then

eq. (7.51) becomes ,
S = A
(%) =4 gL,

L

where 1/5), is an average value of 1/5,(f) in a bandwidth Af centered

on fo. This was the typical situation of resonant mass detectors unti]
the 1990s, when the bandwidth Af was only of order a few Hz, around
a frequency fo ~ 1 kHz.?!

Broad-band detectors

In this case we get the signal in a bandwidth (fuin, fmax) where foa

is the maximum frequency contained in the burst, if the detector i

sensitive up to fiax, or otherwise is the maximum frequency to which

the detector is sensitive. The detailed form of the signal is therefore
important, but a first order-of-magnitude estimate can still be obtained

writing eq. (7.51) as
E : - 4|}~7|2 fmax
N TS,

n

(7.97)

where & is a characteristic value of h(f) over the detector bandwidth
and Sy, is a characteristic value of S, (f).

We can translate these order-of-magnitude estimates into limits on the
value of the dimensionless GW amplitude A(t) that can be measured.
For this we assume for definiteness that the wave comes from a direction
such that Fy =1 and Fx = 0, so that h(t) is the same as the amplitude
h(t) of the + polarization. In the most general situation, we will also
have a factor which depends on F,. and F and reflects the sensitivity

of the detector to the given direction and polarization of the wave. To

express eq. (7.51) in terms of h(t) we need a model for the signal. For a
GW burst of amplitude hg and duration Tg, @ crude choice could be

h(t) =ho if |t] < 7,/2 (7.98)
and h(t) = 0 if [t| > 7,/2. We can write it more compactly as
h(t) = hoTy breg (t) (7.99)

where ,04(t) has a rectangular shape of unit area, Oreg(t) = 1/7, for
lt] < 74/2 and dyeg(t) = 0 for |t| > 7,/2. For 7, — 0, Oreg(t) becomes
a Dirac delta. More generally, for a burst we can model h(t) as in
eq. (7.99), choosing for e, (t) a smooth function of unit area which goes
to zero rather fast for |t|27,. Performing the Fourier transform this
gives

[W(f)] ~ hoty , (7.100)

(7.96)

times a dimensionless function of the frequency, numerically of order
one, and whose details depend on the precise waveform &,e(t) chosen.

Actually, rather than using a function d,e.(t) with a unit area, it can
be more convenient to write h(t) = hog(t), with g(t) some function
peaked at t = 0 and with ¢(0) = O(1), so that the value of A(?) near
the peak is of order hg (rather than hgdres(0) as in eq. (7.99)). A simple
waveform of this type is a Gaussian,

h(t) = hoe ¥ /74 (7.101)
whose Fourier transform is

h(f) = hory v/ e=("I70)"

A waveform with a somewhat more realistic shape is a sine-Gaussian,
i.e. a Gaussian modulated by a frequency fo,

(7.102)

h(t) = ho sin(27 fot) ety (7.103)
shown in Fig. 7.8. Its Fourier transform is
B(f) _ hoﬂﬂ? {e—vﬂ(f—fo)%z _ e_WQ(f-i-fo)?r;} 7 (7.104)

and is shown in Fig. 7.9. If 472 375 > 1, near f = fy the second
term in brackets is negligible with respect to the first (while close to
£ =0 it cancels the first term so that 2(0) = 0), and we basically have
a Gaussian in frequency space, centered at f = fo, and with a value at
the maximum

{h(fo)| = hoTg g .
Writing f = fo+Af we see that the width of the maximum Af is of order
1/(r7q), s0 Af/fo ~ 1/(mforg). For wfory < 1, h(f) becomes relatively
flat while for 7 fo7, > 1 it is sharply peaked around fo. Using egs. (7.96)
and (7.97) we can estimate the minimum value of the dimensionless
GW amplitude hg that can be detected at a given level of the signal-
to-noise ratio S/N. For narrow-band detectors eq. (7.96) gives, using
for definiteness the value |h(fo)| =~ hoty (v/7/2) appropriate for a sine-
Gaussian waveform,

(7.105)

1 g /2
o o S/N), 106
(h0>m1n T <7TAf> ( / ) (7 )
while for broad-band detectors eq. (7.97) gives
1 g 1/2
e — n S/N). 107
(hO)mm Ty <7rfmax> ( / ) (7 )

The precise numerical factors, of course, depend on the choice of the
waveform, so to fix the numerical coefficients in egs. (7.106) and (7.107)
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Fig. 7.8 The sine-Gaussian function
2,2

sin(27 fot)e ™t /79, for 7, = 3 ms and

fo = 500 Hz, as a function of ¢ (in

seconds).

0.002
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Fig. 7.9 |h(f)| (in units of hg) for
a sine-Gaussian function with fo =
500 Hz, 7¢ = 3 ms (solid line) and
for a sine-Gaussian function with
fo = 500 Hz, 7, = 1 ms (dashed
line).
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2In the computation, we neglect
the term exp{-72(f + fo)zTg} in
eq. (7.104), which is small with respect
to exp{—m2(f — fg)QTQQ} and, when
we integrate eq. (1.159) over df, we
replace f2 exp{—m?(f — fo)QTg} with
fg exp{—m2(f — fO)Zng} and we extend
the resulting integral from —oo to +oo.

we must know the shape of the signal h(f), use the exact form of the noig
Sn(f), and perform the integral in eq. (7.51). We see from eqs. (7.106
and (7.107) that in a narrow-band detector the minimum detectab]
amplitude is higher by a factor (fmax/Af)'/?, compared to a detects
which is able to maintain the same typical sensitivity S, over a brog
bandwidth. This reflects the fact that the narrow-band detector ha
access only to a portion of the Fourier modes of the burst.

Rather than expressing the result in terms of hg, it is also common tg

use the so-called root-sum-square (rss) amplitude h.g, defined by

hi, = / dt h*(t)

:/_ & 1) (7.108),

For the Gaussian (7.101) we have

™
h’?‘ss = h(?JTCI \/;’

while, for the sine-Gaussian (7.103),

(Gaussian) , (7.109

™ _9-2p2_2
:h/ng — (1—“6 m fng)>

]2
! 8

rss

Observe that, dimensionally, s ~ (time)l/ 2. 80 hygs 18 conventionally

quoted in Hz 2 as the strain sensitivity.
To have an idea of the numerical values of hyg (or, equivalently, of hg

that could be obtained from astrophysical phenomena, we can compute

the energy released in GWs by an event which produced, at the detec

tor, a given value of h.es. This can be obtained from the expression for
dE/dAdf given in eq. (1.159). Observe however that, for a wave coming

from an arbitrary direction and with arbitrary polarization, a detecto
does not measure directly h(f) and hyx(f) but rather the combina

tion A(f) = Fyho(f) + Fxhx(f), where F, . are the detector pattern

functions. For definiteness, we consider a GW coming from the optima

direction for the + polarization, so we take Fy = 1 and Fy = 0, and

for hy(f) we take the sine-Gaussian waveform (7.104). We substitute
this into eq. (1.159) and we get the total energy AFE,.q radiated by th
source in GWs,32
3/2 2
G
3

2 2
hgTe 13

g
S
@

joNy

|

TN
Mol N
O

=R (7.111)

G
Inserting the numerical values,

r 2 h 2 f ?
ABq =~ 1x 102 My c? ;
L= 0 Mo <8kp0> <1o~19Hz‘1/2 LkHz)

(sine-Gaussian) . (7.110)

where in the second line we normalized r to a value of order of the

distance to the galactic center. Recall that in the above we assumed
a wave coming from optimal direction. For an ensemble of waves with
arbitrary direction and polarization, we must also take into account the
average over the pattern functions of the detector. For an interferometer,
this is a factor 2/5 (see Table 7.1), so on average a burst coming from
arbitrary direction, in order to produce a given signal /.5 in the detector,
had an energy larger by a factor 5/2, compared to eq. (7.112). We see
that a burst at the kHz, with hu = 10719 Hz ™Y 2, carries away about
1072 solar masses in GWs, if it comes from a source located at typical
galactic distances.

Taking 107 2Mgc? as a reference value for AE,.q (which, as we will
see in Vol. 2, is the maximum value that can be reasonably expected
in cataclysmic events involving solar mass objects. Even larger energies
can be released in the merging of very massive black holes), we see that
a detector must reach at least a sensitivity to hyss of order 1019 Hz /2

to have some chance of detecting GW bursts from the galactic center.

To be able to see a burst which releases 102 solar masses in the Virgo
cluster of galaxies, which is at » ~ 14 Mpc, one rather needs to be able
to reach hg ~ 6 x 10723 Hz /2 or, from eq. (7.110) with 7, = 1 ms, a
value of the dimensionless amplitude hg ~ 2 x 10~21,

7.5.2 Time—frequency analysis

The matched filtering technique that we have discussed in Section 7.3
works well if we know the form of the signal, or if we can parametrize it
with a limited number of free parameters, so that it becomes practically
feasible to put a sufficiently fine grid in this parameter space, and repeat
the search for each point of the grid. As we will discuss in the next
sections, this can be the case for the inspiral of compact binaries and,
partly, for the signals due to pulsars.

Concerning bursts, the situation is different. In general, bursts may
come from complicated explosive phenomena, such as supernovae, or
from processes such as the final merging of coalescing binaries, which
are difficult to model. In a narrow-band detector, such as resonant bars,
we only have access to a narrow range of Fourier components of the

_signal. Thus, in a first approximation it is reasonable to model the

signal as flat in frequency, i.e. as a Dirac delta in time and, as a next
step, we can use more realistic modelizations such as the Gaussian and

_ the sine-Gaussian waveforms described above. However, in a broad-

band detector, the difference between these simple modelizations and
the real waveform will become important. Thus, to exploit optimally
the capabilities of a broad-band detector, one is lead to consider also

_ other methods, which are sub-optimal with respect to matched filtering

when the waveform is know precisely (since we have seen that, if the

_ waveform is known, matched filtering is the optimal strategy) but might

be more robust in the absence of detailed knowledge of the signal.
Such search algorithms can be obtained working in the time—frequency

7.5
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33The information about time localiza-
tion, which is encoded in s(¢), is of
course still encoded in 3(f), since from
5(f) we can get back s(t) uniquely.
However, it is lost in |8(f)|?, since it
was contained in the phase relation be-
tween the Fourier components, and this
information is obliterated when taking
the modulus. A nice example (taken
from van den Berg (1999), a textbook
on wavelets) is obtained if we take s(t)
to be a classical symphony. Then its
power spectrum will immediately re-
veal the dominating keys: the ground-
tones and their harmonics. Suppose
now that we play the parts in a different
order, and we even interchange smaller
parts within the parts. The power spec-
trum would not change at all, while to
the ear, which actually makes a time—
frequency analysis, the result is very
different.

Ty fix the ideas, one can consider
that the sampling rate 1/A¢ of an inter-
ferometer is typically of order 10 — 20
kHz. We can imagine that we are
searching for bursts of duration §t =
0.5 s, so frequency space is split into
bins of width 2 Hz. Restricting the
search to the frequency range where in-
terferometers are most sensitive, which
corresponds to a bandwidth Af =
O(200) Hz around peak sensitivity, we
have a total of O(100) bins in frequency,
for each value of the start time of the
segment.

plane. To understand the usefulness of the time—frequency representas
tion, suppose at first that we have a function s(¢) defined on the whole
real axis —oo < t < co. We can take its Fourier transform 5(f) and com-
pute from it the power spectrum |§(f)|?>. A plot of the power spectrum
against the frequency will enable us to see immediately what are the
dominant Fourier modes. However, this power spectrum knows nothing i
about when things happened.3?

The simplest way to recover partly this information is to take the
Fourier transform not on the whole real line, but on segments of length
§t. When we Fourier transform the function s(¢) on the interval 0 < ¢ <
ot and we plot the resulting power spectrum, we find the Fourier modes
that dominated the function, during this temporal span. We can then
repeat it for 8t < t < 26t, etc. Of course, on a finite segment of length
5t, the resolution in frequency is finite, and is 1/dt, so we are giving
up the fine details in frequency space, but we gain an understanding of
when things happened. That is, rather than working in frequency space,
with an arbitrarily good resolution, it can be convenient to work in the
time—frequency plane, making a good compromise between the accuracy
in frequency and the accuracy in time.

This is particularly important when we are looking for transient phe-
nomena, such as GW bursts. Suppose that we are unable to compute the
detailed waveform of a burst, as it is typically the case, but still we can
give a reasonable estimate of its total duration 6¢, and of the frequency
range f1 < f < fo where most of its power should be concentrated.
Then, a useful search strategy is as follows.

First of all, it is convenient to work in a discretize space. Recall that
the output of a detector is sampled at some rate 1/A¢. Then, we can
split the output into time segments, and inside each segment the output
s(t) is given by the discrete set of values ’

S; = S(tstart +]At> y (7113)

where tgar 1s the start time of the segment considered, j = 0,..., NV,
and 6t = NAt is its length. We can then perform a discrete Fourier
transform over the segment 8¢ by writing

N—1

2mi
§;€ = Z njexp{wjk} 5
j=0

(7.114)

or

N-1 ;
§e=Y_ nlty) exp{2mi(t; — tovar) fi} - (7.115)
=0

where t; = lspare + AL and

~ NAt &t
We see that frequencies are spaced by 1/d¢, up to a maximum frequency
equal to N/dt (since eq. (7.114) is periodic under k¥ — k + N), which
of course is just the sampling frequency 1/At.3* We can write as usual
s; = n; +h;, where n; is the noise and h; a putative signal, and we define

(7.116)

the Fourier transforms n and ;L;g as in eq. (7.114). The discrete version
of eq. (7.6) is obtained replacing the Dirac delta by a Kronecker delta,

. 1
<7zkn,zc/) = 6kkl §Sk N

(7.117)
where we used the short-hand notation Sy = S, (fx).

If the only theoretical expectation that we have about a signal is
that it should have a duration 6¢, and should have most of its power
in a frequency band fi < f < fa, with fi = ky/8t, fo = ko/dt, and
fo—f1 = 0f, we can form, for each possible start time tstare, the quantity

. &2 52
— Z ___Sk ,

k=ky

(7.118)

which is called the excess power statistic. We collect the values of £ for

_all possible start time and, if we find a value above some given thresh-
old, we record it as an even

.35 To understand what is a statistically

significant value of &, observe that £ is formed from kg — & independent
complex variables si. Since (ky — k1)/0t = fo — f1 = 6§ f, the number of
independent real variables is

N =256t (7.119)

ie. twice the area of the time—frequency plane explored. Therefore,
even in the absence of any GW signal in the data, the average value of
£ is of order A.3® This means that a real GW signal, in order to be
visible in € against the noise with a signal-to-noise ratio of order one,
must give a contribution to € of order N. From eq. (7.119), N' > 2
(the uncertainty principle, in a quantum langauge) and, depending on
the situation, one can have A/ > 1. Comparing with eq. (7.51), we see
that, if we knew the waveform and we could make a matched filtering,
such a signal would produce a value of S/N of order N/ /2 In other

_ words, using the excess power statistic, we can detect with a signal-
_to-noise ratio of order one, a signal that with matched filtering would
~emerge with signal-to-noise ratio of order A'/2.37 This is not surprising

since we know that, when we have the waveform, the matched filtering

__maximizes the signal-to-noise ratio. However, the excess power statistic
_only needs very crude information about the signal, namely its duration

and its typical frequency range, and is therefore much more robust.
Furthermore, it can be proved that, if the only information on the signal
is its duration and its bandwith, the excess power method is the optimal
one.

From the above discussion, it is clear that the method is viable only
when A is not too large. For instance, for the inspiral phase of a coalese-
ing NS-NS binary, as observed in a ground-based interferometer, we see
from eq. (4.21) that the signal enters the bandwidth of the interferome-

_ter, say at 40 Hz, when the time to coalescence is 7 = 25 s, and sweeps
_in frequency up to the kHz. Taking §f ~ 1000 Hz and 6t ~ 25 s, we get
N ~ 5% 10% and N2 ~ 200, so the excess power method would allow
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3571 the sense defined in Note 2 on
page 337.

36N ore precisely, in the presence of
Gaussian noise & follows a x? distrib-
ution with N degrees of freedom, while
in the presence of signal it follows the
corresponding non-central x2 distribu-
tion, see eq. (7.92).

37For a more accurate estimate of
the signal-to-noise ratio obtained re-
stricting the frequency bandwidth, i.e.
performing a band-pass filter, see
Section II of Flanagan and Hughes
(1998a).
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38 For fast spinning BHs the coalescence
time will be longer, since they must first
shed some angular momentum before
setting into their final state, in order
that the angular momentum of the fi-
nal BH does not exceed the maximum
value allowed for rotating BHs. The
estimate of N depends on the angular
momentum of the BHs, but a typical
value can be N'1/2 ~ 5. See Flanagan
and Hughes (1998a), Section IIIE.

39 the literature on wavelets, this is
actually written as a= /29 ((t — to)/a),
where a is a dimensionless quantity that
rescales a characteristic frequency im-
plicit in the function .

us to detect signals only when their signal-to-noise ratio, with matcheq
filtering, is of order several hundreds. Thus, for inspiraling binaries, the
excess power method is not at all competitive. Furthermore it is not
needed, since in this case we have precise calculations of the Waveform

in the inspiral phase, as we saw in Chapter 5.

The situation is different for the merging phase of a BH-BH coales.
cence. In this case the maximum value of f can be estimated to be
of order fqnr, where fonr is the ringing frequency of the fundaments]
quasi-normal mode of the black hole. To include the power radiated
by the BH in its higher quasi-normal modes, an estimate of order 2 fame
could be more appropriate. Black hole normal modes will be discussed in
Vol. 2, and we will see that fqur can reach a maximum value (for rapidly
spinning BHs of mass m) fque = ¢3/(2rGm). Observe that this is quite
larger than the maximum frequency (4.39) at which the inspiral phase
ends, so we finally take §f ~ 2fqu ~ ¢*/(7Gm). As for the merging
time, we can roughly estimate that it should not be much larger than
risco/c, where risco = 6G'm/c? is the radius of the innermost stable
circular orbit in a Schwarzschild geometry, see eq. (4.38). Taking for

instance 6t ~ 2risco/c = 12Gm/c3, we get the estimate N2 ~ 2, so
the loss in sensitivity with respect to optimal filtering is not large. This
is quite important, considering that the merging phase is very difficult
to model.*®

The time—frequency method discussed here can be generalized in vari-
ous directions. One possibility is to consider wavelets. These are general-
izations of the Fourier transform, in which to a function s(t) is associated
a function S(f,t0) of two parameters, of which f is the frequency and
tp is the position in time of the signal, '

>0
S(ito) = | b @ste).
— 0
The simplest example consists in taking

Ureo () = e it — 1),

where (1 —tg) is a window function centered around tg. This Windowed
Fourier Transform, or Gabor transform, as it is called, is essentially what
we have used above (more precisely, we used its discrete version), with
a sharp window function. Other choices of window functions, such asa
Gaussian, are more commonly used in signal analysis.

A possible drawback of a choice such as eq. (7.121) is that the tem-
poral window has a fixed size, independently of the frequency. In most
type of signals, however, there is a correlation between the characteristic
frequency of a given segment and the time duration of the segment, such
that low-frequency pieces tend to last longer. To take this into accout,
the wavelet transform is defined by choosing a window function of the
form 9 (f(t — to)) (times a normalization constant /f), which depends
explicitly on f.3% In this way, at high frequencies the temporal window is
shorter, so we have a better time resolution. In a sense, wavelets provide
a “microscope” that, at each point in time of the signal, zooms in and

(7.120)

(7.121)

out, depending on the frequency scale of the signal. The other crucial
property is that it is possible to choose wavelets so that they form an
orthonormal basis, and the signal can therefore be decomposed uniquely
into its component with respect to this wavelet basis, just as in the
Fourier transform. Wavelets are by now widely used in signal analysis
in many branches of science, and many possible choices of wavelets are
available, depending on the problem at hand, see the Further Reading.

Another generalization of the time—frequency analysis discussed here
consists in marking as “black” the bins in the time-frequency plane
where an indicator such as the excess power statistic goes above a thresh-
old value, and searching for structures of black bins, such as clusters.
This is basically a variant of the Hough transform that we will discuss
in Section 7.6.3, in the context of periodic signals.

7.5.3 Coincidences

Given that GW bursts can have a very short duration, even smaller
than a millisecond, the output of ground-based detectors are sampled
with a very high frequency, typically O(10) kHz. In one year there are
about 3 x 10'Y ms, so even a fluctuation with a probability ~ 10710 is
bound to occur on average in one year worth of data. Then eq. (7.84)
suggests, for bursts, a threshold on the amplitude signal-to-noise ratio
of order p; ~ 6, in order to have just a few false alarms per year in
a detector. However, this only eliminate Gaussian noise. GW bursts
are particularly well simulated by non-Gaussian events such as micro-
creeps in the materials or sudden external mechanical or electromagnetic
disturbances. In some cases the external disturbance can be identified,
and the corresponding event is therefore vetoed, but in most cases this is
impossible. To eliminate these non-Gaussian noise, the only possibility
is to perform coincidences between different detectors.*?

Using two or more detectors in coincidence is a standard practice in
physics, at least since the early days of cosmic ray research. The idea is
that, if two detectors are far apart, their noise are mostly uncorrelated,**
and the probability of an accidental coincidence is small, while a GW
should excite both detectors nearly simultaneously. Below we discuss
some of the issues that must be addressed in order to apply this idea to
GW detectors.

Relative orientation of the detectors

We have seen that the response of a detector to a GW depends on the

~relative orientation between the detector and the source. To perform

coincidences between two or more detectors, it is therefore optimal to
orient them, taking into account their difference in location, so that their
response to an incoming GW signal is the same, or at least as similar as
possible, for all of them. Otherwise, a real signal can be missed simply
because, when one detector was oriented favorably with respect to the
source, the other had a very poor sensitivity for the same direction.*?
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O0bserve that the use of coinci-
dent detectors also allows us to lower
the threshold necessary for eliminat-
ing Gaussian noise, since now the false
alarm probability, for uncorrelated de-
tector mnoise, is the square of (7.84).
For instance, in the example above, the
threshold p: ~ 6 valid for a single-
detector search becomes p; ~ 4.5 in a
two-detector correlation (even neglect-
ing all consistency check discussed be-
low).

A With some exceptions. For exam-
ple, seismic or electromagnetic distur-
bances might propagate from one de-
tector’s site to the other.

4201 the other hand, detectors with
different orientation can perform inde-
pendent measurement of the signal, al-
lowing to disentangle the polarizations
and the arrival direction of the wave,
see the discussion on page 342.
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43T his depends not only on the sam-
pling time of the detector, but also
on other factors, in particular on the
signal-to-noise ratio of the event, since
noise combines with the GW signal dis-
torting and broadening its shape.

Coincidence window

Each GW detector has its temporal resolution, which might for instance
be of the order of few ms.*® Given two detectors, with variances oy
and o2 on the arrival time of their respective events, the corresponding
variance in the coincidence search is 012 = /0% + 03, and therefore one
can ask that the events be coincident within £k standard deviations oy,
(e.g. k = 3 can be a typical choice). To this uncertainty one must add
the light travel time (At)ygne between the two detectors since, depending
on the source location, either the first or the second detector will be hit
by the wavefront a time up to (At)igne before the other. So finally one
requires that the arrival times ¢; and ¢y in the two detectors are within
a coincidence window

1/2
It — ta] < (A)ugn + k (03 +02)"2 . (7.122)
This typically results in a coincidence window of the order of a few tens
of ms.

Energy consistency

Another possible handle to discriminate between accidental coincidences
and true GW signals is the compatibility of the signal in the two (or
more) detectors. Ideally, if the GW signal is much larger than the noise,
two detectors oriented in the same way should register the same en-
ergy flux, when a GW hits them. In contrast, two events due to noise
which by chance happen simultaneously in the two detectors, should
have uncorrelated energies. However, in practice, at moderate values of
the signal-to-noise ratio the signal h(t) induced by the GW combines
with the noise n(t) and, depending on the relative phase of these con-
tributions, the output h(t) + n(t) fluctuates and can be either larger or
smaller than the value that would be induced by the GW. Therefore,
as we computed in Section 7.4.3, one has a probability distribution for
the amplitudes (or for the energies) measured in the two detectors, and
the compatibility criterion must take into account this probability dis-
tribution. This procedure also requires that the two detectors have'a
sufficiently reliable calibration in energy.

Waveform consistency

A broadband detector has rather detailed information on the waveforni,
and a consistency condition between the waveforms observed in the two
detectors can be imposed. For instance, one of the algorithms used by
LIGO for generating candidate events is based on the identification of
connected regions (“clusters”) in the time—frequency plane where the
power is not consistent, statistically, with Gaussian noise, as discussed
in Section 7.5.2. Then each event is characterized by its bandwidth
(fmin, fmax), 1.6. by the low and high frequency bounds of the cluster.
One can then require, for instance, that the bandwidth of events in

different detectors have an overlap, or at least that they are separated
in frequency by no more than a fixed window Af.

Background estimation

After having applied all these cuts, we can still have accidental coinci-
dences that, by chance, passed them. However, the residual number of
accidental coincidences can be estimated very reliably. First of all, one

_can simply predict it from the observed event rate in a single detector,

assuming that the noise is stationary. But in fact the most direct esti-
mation of the background is obtained using a shifting algorithm which,
together with many other techniques used in GW research, was intro-
duced by Weber. The procedure consists simply in shifting the data
stream of one detector with respect to the other by a time step signif-
icantly longer than the coincidence window, say 2 s, and counting the

. number of coincidences obtained after shifting (subject to the same re-
quirements on the coincidence window and energy compatibility imposed

on the coincidences at zero time shift). These coincidences, of course,
are now all accidental, since the shift has been chosen much larger than
the coincidence window and therefore of the uncertainties in the arrival
times. We then repeat the procedure with a different shift, say 4 s, and
we count again the number of accidentals. One can repeat the proce-
dure for many different shifts (the overall time shift must however be
short compared to the time-scale over which the event rate in a single
detector changes substantially). We then average over these shifts, and
we have a rather accurate estimate of the average number of accidental

_ coincidences, its variance, and more generally their distribution (which

is found experimentally to be a Poisson distribution, as expected when-
ever we count a number of discrete independent events), and we can also
study how these quantities depend on the energy of the events.

7.6 Periodic sources

While a burst source is typically radiating only for a period of less than
a second, a periodic source emits continuously an almost monochroma-
tic signal, so the limit on its observation comes from the total available
observation time, which can be of order of years. Our intuitive discus-

_ sion of matched filtering showed that, if we can follow a signal for a

time 7°, the minimum level of signal that we can extract from the noise
scales as 1/T"/2, see eqs. (7.39) and (7.40). This means that, for peri-
odic waves, we can extract from the noise a signal with an amplitude &g
much smaller than the one that can be measured in the case of bursts.

_ This opportunity, however, also comes at the expense of some complica-

tions, since we must able to track carefully the signal for a long period.

~ We already met a similar situation in Chapter 6, where we studied the

timing formula for the radio signals of pulsars, and we saw that there
are two main issue to address: the intrinsic changes of the frequency of

the source, and the modulation of the signal due to the motion of the
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Hpor GW s, propagation effects be-
fween the source and the Earth, such as
dispersion in the interstellar medium,
are totally irrelevant, given the small-
ness of gravitational cross-sections.

Barth.
If, for a moment, we neglect these effects, a periodic source emitting
GWs at a frequency fp produces in the detector a signal

h(t) = Fy(6,0) ha () + Fx (6,6) hy (1) | (7.123)

where
h(t) = ho,4 cos(2m fot) , (7.124)
hy (t) = ho x cos(2m fot + ). (7.125)

We take by definition fo > 0; hg 4 are the real amplitudes for the two
polarizations (A = +, x), and « is their relative phase. We denote by
6, ¢ the angles that define the propagation direction n of the GW from
the source to us, so the polar angles of the source, as seen from the
Earth, are 83 = 7 — @ and ¢5 = ¢ + 7.

Assuming for the moment that the source is, intrinsically, perfectly

periodic, still the motion of the Earth modifies eqs. (7.123)-(7.125) as

follows.

e Because of the Earth’s rotation, the apparent position of the source
in the sky changes, so the angles § and ¢ which appear in the
pattern functions change with time, and are periodic functions of
sidereal time, with period one sidereal day. If we are tracking
a specific source in the sky, the time dependence of the pattern
functions, F4(0(t), $(t)), must therefore be taken into account,
and this produces a modulation of the amplitude of the signal.

e Because of the Earth’s rotation and of its revolution around the
Sun (or, more precisely, because of its motion with respect to the
Solar System Barycenter, as discussed in Chapter 6), the relative
velocity of the Earth and the source changes with time, and this
produces a time-varying Doppler shift in the frequency.

As a consequence, h(t) is not a simple monochromatic signal. We will
come back to these amplitude and phase modulations in Sections 7.6.1
and 7.6.2. For the moment, however, we restrict to an observation time
T sufficiently short, so that these amplitude and phase modulations can
be neglected. For the amplitude modulation due to the Earth’s rotation,
this requires of course T « 1 day, while for the Doppler effect we will
quantify this requirement in Section 7.6.2. In this limit h(¢) becomes
monochromatic, with a frequency fo.

In this simplified setting the form of the matched filter becomes obvi-
ous: we must limit ourselves to a bandwidth as small as possible around
fo, since enlarging the bandwidth we accept more noise but we add no
further signal. If T is the total observation time, our resolution in fre-
quency is 1/T, see eq. (7.10), and therefore a bandwidth as small as
possible means Af =~ 1/T. Formally, we can obtain the same result
using eq. (7.49). From eqgs. (7.123)—(7.125) we have, for f > 0,

R() = (7 — fo) 3 [Fe (0, O)hos + Ex(6, $)hoe™™] , (7.126)

and therefore eq. (7.49) gives
K(f)=68(f = fo),

apart from an arbitrary constant, in which we also reabsorbed 1/.5,(fo).
Of course, the Dirac delta is a mathematical idealization, and if we mea-
sure for a total observation time 7' we must replace it by a regularized
Dirac delta,

(7.127)

oo } T/2 )
5(f):/ dt emft—>/ dt e*?mit (7.128)

T/2

which has a support over a range Af ~ 1/T and satisfies §(0) = T.
Then eq. (7.51) becomes

N2 . _
<%> = 'F+ (0, )ho,+ + Fx (Q,Cb)f'to,xe_mf /0 df (5(f'S' —n](cjc))é(())

T
ST (7.129)

Not surprisingly, the signal-to-noise ratio increases if we increase the
observation time, and the dependence S/N ~ /T is what we already
found using heuristic arguments in eqs. (7.39) and (7.40).

In general, the frequency fj is not known in advance. However, for
an exactly periodic signal, we do not need to repeat the matched filter-
ing procedure separately for each value of the unknown parameter fj.
In fact, from eq. (7.42), when f(( f) = 6(f — fo) the signal is simply
S = h(fo), and the values of h(f) for all f can be computed at once per-
forming a single Fast Fourier Transform (FFT), which is a particularly
efficient algorithm.

If this were the end of the story, the search for periodic signals would
simply consist in performing a single FE'T on a stretch of data of length
T, and looking for lines in the power spectrum. The signal-to-noise ratio
of these line should improve with the observation time as vT. We will
see in Section 7.6.1 and especially in Section 7.6.2 that the full story is
more complicated.

= |F (8, 0)ho+ + Fx (0, d)ho,xe |

7.6.1 Amplitude modulation

As we pointed out above, the pattern functions depend on time because

of the Earth’s rotation, and are therefore periodic functions of sidereal
time, with a period of one sidereal day. In the matched filtering, we
must take this into account, and this results in a different amplitude

_modulation for each possible source position. We will discuss in the

hext sections how to efficiently scan the parameter space, in order to

; take this effect into account.

If we want to estimate the effect of this modulation on the sensitiv-

_ity, we can however simply observe that, for integration times 7' longer
_than one day, the effect of this amplitude modulation can be taken into
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451f, rather than being interested in
the sensitivity to a specific source, one
wants to define an average sensitivity
for an ensemble of sources, then one
can improve this estimate taking care
of the fact that there is a statistical
preference for the angles and polariza-
tions that give a larger S/N, since these
can be seen to larger distances. This
modifies S/N by factors that can be
approximately estimated to be of order
(3/2)1/2 ~ 1.2, see Thorne (1987).

account averaging eq. (7.129) over the apparent motion of the source in
one sidereal day, i.e. averaging over all values of the right ascension of
the source, and over a range of values of the declination which depend
In.a first approximation, we can
replace this average with an average over the solid angle and over the
polarization angle 1.%> From eq. (7.129), using egs. (7.33) and (7.35),

on the specific orbit of the source.

we then find

(%) = (sG)

h =hd , +h§ .

where

that (F?) = F/2. We can also rewrite eq. (7.130) as

S hy

=0 (7.132)

N hy’

defining the dimensionless quantity hn,,

<F§1>1/2 <Sn;f0)>1/g |

hn =

Therefore h,, is the GW amplitude that can be measured by the detector,
for a periodic signal, at S/N = 1 (assuming that we have been able to
correct for the phase modulation, see next section). More generally, the |

minimum amplitude that can be detected at a given value of S/N is

Sp(fo)\ /?
)

(hO)min =

S/N <
<Fi>1/2

It is instructive to compare this result with the minimum burst ampli-
Recalling that
Sy (f) has dimensions 1/Hz, i.e. dnnensmns of time, we must divide it

tude detectable at a broad-band detector, eq. (7.107).

by a time in order to obtain a dimensionless quantity, such as a GW

amplitude. For bursts, we see from eq. (7.107) that this time-scale is

the duration 7, = 1/ fmax of the burst, while for a periodic signal we see
from eq. (7.133) that it is the observation time 7. Since T can be of the
order of months or years, while 7, is typically between the millisecond
and a second, the minimum value of A detectable for periodic signals is
much smaller than for bursts. On the other hand, a periodic signal is
intrinsically much weaker, since a burst emits a huge amount of energy

in a very short time. We will estimate in Section 7.6.3 the maximum

distances at which typical periodic signals can be seen.

For bursts, we assumed that the wave came from the optimal direction,
and for this reason we wrote no angular factor in eq. (7.107). For periodic
signals, an average over the source position is in any case necessary

(7.130)

(7131)

The values of (F77) for various detectors are given in Table 7.1, recalling

(7.13)

(7.134)

hecause of the apparent motion of the source in the sky, leading to the
amplitude modulation, and produces the angular efficiency factor (Ffr)
in eq. (7.134).

An alternative reference quantity which is often used is h3;y,, which
is defined as the minimum value of iy that can be detected at a given
value of S/N, integrating for 7' = 10" s (i.e. about 1/3 of a year),

SN
<F2 1/2

V/Su(fo) x 10-7Hz. (7.135)

hB/yl' =

7.6.2 Doppler shift and phase modulation

Even if an astrophysical source emitted exactly monochromatic GWs
with a frequency fo, for a detector on Earth the instantaneous value of
the observed frequency f would change with time because of the Doppler
effect. Recall that, to first order in v/¢, the frequency measured by an
observer with a velocity v with respect to the source is

(7.136)

where T is the unit vector in the direction of the source. If v - # were a
constant, this would cause little concern, since it would just amount to a
constant offset in the frequency and, with a single FFT, monochromatic
lines at all possible frequencies are searched simultaneously. However,
the velocity of the detector with respect to the source changes in time
because of the Earth’s rotation and because of its revolution around the
Sun and this induces a time-dependence in the observed frequency. We
denote by (Av)p the change of the component of the velocity in the
direction of the source, in a time 7. Then the frequency f changes on
the same time interval by an amount

(Af)Dopplex fO (AU)T

When we integrate the signal for a time 7', the resolution in frequency
is Af = 1/T. As long as (Af)poppler 18 smaller than this resolution,
all the GW signal falls into a single frequency bin and the Doppler
effect can be neglected. To estimate the maximum integration time
for which the Doppler effect is negligible, we consider first the effect
of the Earth rotation around its axis. At a latitude of 40 degrees, the
rotational velocity of the Earth is vmot = wyot R c0s(40°) =~ 355 m/s,
where wyoy = (27/24 hr) and Rg =~ 6.38 x 10° m is the mean Earth
equatorial radius. This gives vye/c >~ 1.2 X 107, During an integration
time 7', the Earth rotates by an angle Af = w1 and, if A§ < 1, in
order of magnitude the change of the component of the velocity in the
direction of the source is given by (Av)r /v ~ A6, i.e.

(7.137)

(Av)r ~ Vrotwrot T . (7.138)

(The precise numbers, of course, depends on the exact direction of the
source with respect to the detector.) Then (A f)peppler becomes of the
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4B por frequencies fo > O(40) Hz we
have T' <« 1 day, so the approximation
Af < 1 used to write eq. (7.138) is con-
sistent. Otherwise, a more accurate es-
timate is needed.

order of the frequency resolution if

Vro 1
fO < - L> WrotT ~ ? 5 (7139)
which gives |
. (1kHz\'/?
T ~ 60 min . (7.140)
0

Therefore, for waves with fo ~ 1 kHz, the Doppler effect due to the
Earth’s rotation around its axis becomes important after about one
hour.%® Tt reaches its maximum value after about 12 hr (the precise
numbers, again, depend on the source position), when the detector hag
inverted its velocity with respect to the source, Av,o; = 2001, and in
this time span the frequency has changed by a total amount

. . Urot HA— fO
(Af);g;;xwon" ~ 2.4 x 1073 Hz <1kHZ> :

We can repeat the same reasoning for the orbital motion of the Earth

around the Sun. For an order-of-magnitude estimate we can take the
orbit as circular, with a radius R = lau ~ 1.5 x 10" m and wo,p, =
27 /(365 days), S0 Vorb = 3 x 10 m/s and vo,, /¢ =~ 10™%, The maximum
frequency shift induced by the Earth revolution is then

max 1 kHZ (7142)

(Af)er® ~2f0”—“:“—’~0.2Hz< fo ) ,

and is much larger than that due to the Earth rotation around its
axis, given in eq. (7.141), because vorh, > vror. However, the large
drift (7.142) takes place over a six months period. In an integration
time 7" much shorter than six months, the orbital motion induces a
variation (Av)p ~ VobworbT and the corresponding frequency shift is
(A f)poppier ~ fo (Vorb/c) werpT. Similarly to eq. (7.139), the time af-
ter which the orbital Doppler shift becomes larger than the frequency
resolution is given by

1

fo (Uocb) wor T~ (7.143)
ie.
1kHz\
T ~ 120 min < Z> : (7.144)
0

Therefore the Doppler shift due to the Earth rotation around its axis
is the first to become important, when we increase the integration time
(after about 1 hr if, for instance, fo = 1 kHz). The orbital Doppler
shift becomes of the order of the frequency resolution shortly afterwards,
after an integration times of about 2 hr for fy = 1 kHz, but then raises
steadily; after less than one day it becomes more important than the
contribution from the Earth’s rotation around its axis, and it continues
to raise for a six months period becoming, on the long term, the largely
dominant effect.

(7.141)

After an integration time of four months, i.e. T ~ 107 s, the frequency
resolution is A f = 10~7 Hz, which is many order of magnitudes smaller
than the Doppler shifts (7.141) and (7.142). It is interesting to see what
is the form of the frequency spectrum when we are sensitive enough to
resolve the time-changing Doppler shift. To simplify the geometry, we
assume at first that the detector performs a simple circular motion, with
frequency wy, and radius R, and that the source is in the plane of the
orbital motion of the detector, as in Fig. 7.10. Since the source is at a
very large distance, we have a plane wavefront propagating along the y
axis, and therefore proportional to coslwo(t + y/c)], where wy = 27 fy
and fo is the GW frequency. The y coordinate of the detector is a

_function of time; we choose for definiteness the origin of time so that

y(0) = 0, and therefore y(t) = Rsin(w,t). Then the detector sees a

signal proportional to

cos {wo <t + @H = cos[wot + Bsin(wmt)] (7.145)

_where

. woR - wo v
b=== Wm
with v = w,, R. The parameter § is called the modulation index, and
W = 27 f, where f,, is the modulation frequency. This signal can be
written as a superposition of monochromatic waves using the identity

(7.146)

o0

Z Ji () cos[(wo + kwm)t],

k=—o0

coslwot + G sin{wpt)] = (7.147)

where J;(3) is the Bessel function.” The signal is therefore split into a
carrier at the frequency fg, plus an infinite number of sidebands at fy +
k[, for all integer &k, and the power in the k-th sideband is proportional
to JZ(/3). The qualitative form of this spectrum depends strongly on the
modulation index . For § — 0 and k integer we have Jy(3) ~ BI*l so
when < 1 most of the power is in the carrier (k = 0), with smaller
power in the sidebands k& = £1, even smaller power at k = +2, etc.
However, in our case [ is given by eq. (7.146) and it is large. In fact,
for the rotation of the Earth around its axis, setting w,, = 27 /(24 hr)
and v/c =~ 1.2 x 107°% eq. (7.146) gives 3 ~ 100 (fo/1kHz), while for
the orbital motion 3 ~ 3 x 10%(fy/1kHz). Therefore, in the range of
frequencies relevant for ground-based interferometers (fo > O(10) Hz),
we are always in the regime 3 > 1.

The average number of sidebands into which the total power is dis-
tributed can be calculated using®

P kemoo K2R (D)
Yoo TR (B)
ﬂ2
= '5‘ 5
so the power is distributed in O(f) sidebands, as shown in Fig. 7.11.
Once the frequency resolution 1/T has become of the order of this

(k?)

il

(7.148)
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Fig. 7.10 The simplified geometry
discussed in the text. The detector
D performs a circular motion in the
(z,y) plane. The source S is in the
same plane, along the y axis.

47 This identity can be obtained
writing cos[(wo + kwm)t, inside
the sum, as cos(wot) cos(kwmt) —
sin(wot) sin(kwmt), and using Grad-
shteyn and Ryzhik (1980), 8.514.5 and
8.514.6, recalling that, for k integer,

T_w(z) = (~1)F T (2).

Bgee Gradshteyn and Ryzhik (1980),
8.536.2.
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Fig. 7.11 The quantity JZ(3) for
£ =50, as a function of k.

Doppler line broadening, increasing 7' further does not improve sy
stantially the signal-to-noise ratio. In fact, while a smaller frequency b
contains by definition less noise, it now also contains less signal, sin
the signal gets spread over many bins. However, if at this stage the
signal already emerged from the noise, increasing 7" further we improve
the resolution by which we are able to reconstruct the line shape (and

observation time T (recall that only the temporal variation is relevant,
otherwise the Doppler effect would give just a constant offset in fp),
while A6 is the angular resolution (in radians) on the position of the
source.

If we take (Av)p ~ vorpworbT we find that, to apply the Doppler
correction, we need to know the source location to an accuracy

therefore the accuracy by which we can reconstruct the source position. 1
J 3 Af < —
see 1\ot.e 49 bclow): o _ ; Fo(vorn /¢) worn T2
Luckily, there is in principle a very simple way (borrowed from pulsar 782
radio-astronomy) to correct for the Doppler shift. In the simple geomet. ~ 0.1 arcsec (10 S) (1 kHZ) . (7.151)
rical situation illustrated in Fig. 7.10, we just need to define a new time T Jo

variable ¢ = ¢ + y(t)/c. In terms of this variable the signal (7.145) is

simply proportional to cos(wpt’) and, performing the Fourier transform

with respect to ', all sidebands collapse into a single frequency. For g

generic source location, the redefinition of time that does the job is
x(t)-#

t=t+ - (7.149)

This expression is correct as long as the Doppler effect due to the orbital
motion dominates that due to the Earth rotation around its axis, i.e. for
721 day, and also as long as the angle we,,7" is small, since otherwise
the approximation (Av)p ~ UorbworbT should rather be replaced by
“(AU)T ~ Uorb S weyp 1, s0 approximately eq. (7.151) is valid as long as
1 day ST <4 months.*

If we are targeting a specific source whose position is known to this
accuracy or better, as is the case for many pulsars, this requirement
does not pose special problems. However, as we will discuss in Vol. 2,
there are many mechanisms that can produce periodic GWs, in partic-
ular in neutron stars, that are not necessarily associated to a strong
electromagnetic emission or, as with pulsars, the electromagnetic emis-
sion could be beamed in a direction that does not intersect the Earth.
It is in fact quite likely that most of the potentially interesting sources
of periodic GWs have no detected optical counterpart. For example,
the closest observed neutron star is at a distance r ~ 100 pc; however,
population synthesis calculations indicate that the closest one should be
at a distance 7 ~ 5—10 pc, and then in a sphere of radius r ~ 100 pc
there should be O(10%—10%) neutron stars. It is therefore of the great-
est interest to perform blind searches, i.e. searches for unknown sources
over the whole sky. In principle, this means that we should partition the
celestial sphere in pixels with a size given by eq. (7.151) (in fact even
smaller, see Note 52 in the next section), and in each one we should ap-
ply a separate Doppler correction. As we will see in the next section, for
integration times of months this is impossible, even with the maximum
present or foreseeable computer power.

Furthermore, we have assumed until now that the intrinsic GW fre-
quency fp of the source is stable, within the experimental resolution
Af =1/T, and that the only modulation comes from the relative mo-
tion of the detector. This means that we are assuming a stability of the
source frequency at the level

where x(t) is the position of the detector (measured for instance using
the Solar System Barycenter (SSB) as a reference frame) and # is the unit
vector pointing toward the source. Observe that this is just the Roemer
time delay that we already discussed in Section 6.2.2. We can therefore
simply resample the output of the detector in terms of this new time, and
we have corrected for the Doppler effect. The procedure has an added
bonus: it is quite likely that, in the Fourier spectrum of the output, there
will be monochromatic lines due to instrumental noise. If such a line has
a frequency that is constant in time to a good accuracy, its signal-to-
noise ratio will increase as V7, just as for a GW signal. However, when
we apply the resampling procedure, a real GW signal, which was spread
over many bins, is collapsed to a single frequency bin, an conversely an
instrumental line which was monochromatic will be spread over many
bins, and will finally be diluted into the noise. In other words, we are
using the Doppler modulation as a powerful signature that discriminates
a real GW signal from instrumental noise.

The simplicity of this solution comes however at a price: we need to
know both x(#) and ¥ with great precision. We can assume that the
motion of the Farth is known to a sufficient accuracy (although, if we
want to integrate for a time 7" ~ 1 yr, we need to keep under control
effects that can produce shifts Af ~ 1077 Hz, and for this we must also
include small effects like the oscillations of the Earth around the Earth-
Moon barycenter, which however are precisely known), so the main error
comes from the uncertainty on the angular position of the source. From
eq. (7.136) we see that, in order to correct for the Doppler shift with an

accuracy smaller than the experimental resolution 1/7" on f, we need, Afo _ RN
in order of magnitude, fo T fo
' 7 kHz
fo 1 N 10 107s 1 159
(B0 A <, (7.150) ~1x10 T ) (7.152)

where (Av)r is the variation of the velocity of the Earth during the % Quite remarkably, rotating neutron stars can sometime have this sta-
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49Actually, one could turn the argu-
ment around and observe that, if we
are so lucky that there is a periodic
signal so strong that can be extracted
from the noise without correcting for
the Doppler shift then, following the
evolution of the frequency with time,
we will be able to reconstruct the po-
sition of the source to the accuracy A@
given by eq. (7.151). With present de-
tector sensitivities, however, this possi-
bility seems quite unlikely.
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50The spindown age is of the order of
the age of the pulsar if, throughout its
lifetime, the pulsar frequency evolution
can be described by the equation

f=—af" (7.154)
(where a is a constant) and if the brak-

ing index n > 1. In fact, integrating
the above equation we get

F©) 0D = (7)==
=a(n—1)t, (7.155)

where t = 0 is the time at which the
pulsar was born. If the frequency at
birth, f(0), was much bigger than the
frequency today, and if n > 1, we can
neglect the term [f(0)]~("~1) and the
age of a pulsar is related to its present
values of f and f by

1
a{n — 1) fn-1
I
(n —DIf

-
= . 7.156
n—1 ( )

b=

Experimentally, the braking index n
typically has values n ~ 2—3, depend-
ing on the specific pulsar.

bility. The main mechanism that produces a drift in their frequency ig
the fact that a rotating NS radiates, both electromagnetically and gray.
itationally, and therefore loses energy. This energy is taken from the
rotational energy of the NS, which therefore spins down. Pulsars are
characterized by their spindown age 7,

f
T= (7.153)
L/
where f is their rotational frequency. As we saw in Section 4.2.1, for
rotation around a principal axis and in the quadrupole approximation,
the GWs emitted are monochromatic with a frequency fo = 2f, so
T = fo/|fol.?° During the observation time T, a pulsar with spindown
age 7 changes its GW frequency by an amount Afy = foT' = — foT/T‘
i.e. by
Afo T

fo 7

10%yr T
~32x 10710 () (L)
3210 < T > <107s>

Comparing with eq. (7.152) we see that, with an integration time T
107 s, for a millisecond pulsar with fo ~ 1 kHz, the effect of the spindown
is important if its spindown age is lower tha.n 3 x 10% yr while, if fo =
10 Hz, spindown is important, again over 7" = 107 s, if 7 < 3 x 107 yr.
Therefore for many pulsars, and in particular for young pulsars, over
such a long observation time the spindown must be taken into account.
Actually in young pulsars the spindown rate can be so high that even
the effect of the second derivative fo can become important.

(7.157)

For known pulsars the spindown can be measured and taken into ac-

count when we make the Doppler correction, while for blind searches it
introduces new unknown parameters. Besides spindown, there are other
reasons why the frequency of the GW emitted by a pulsar can change:

e Pulsars exhibit glitches, i.e. sudden jumps in the frequency related

to rearrangements of their internal structure. These glitches can

produce changes in the frequency as large as Afy/fo ~ 1076 and
occur erratically, at a rate which depends strongly on the specific
pulsar, but in general of the order one glitch every few years.

e A large fraction of the known millisecond pulsars are in binary
systems. In this case, there will be an additional Doppler effect
due to the motion of the source, as we saw in Section 6.2.

e Pulsar are the remnant of supernova explosions, and at birth they
can receive a large kick; so their velocities can be larger than the
typical velocities of the stars in their galactic neighborhood, and
the pulsar proper motion can be important. Of course, if the mo-
tion is uniform, this only produces a constant shift in the frequency.
However, accelerations due to gravitational fields can be impor-
tant. In particular, many pulsars are found in globular clusters.
In this case, the acceleration due to the Newtonian gravitational

forces from all the other stars is known to produce frequency drifts
comparable to the spindown rate.

e Even a uniform proper motion can be important if, during the
observation time, it drives the NS out of the pixel in the sky where
it was initially. For instance, a pulsar at a distance r = 300 pc, with
a transverse velocity v = 103 km /s with respect to our line-of-sight,
in a time 7' = 107 s moves by Af = vT/r ~ 10~ %rad ~ 0.2 arcsec
which, according to eq. (7.151), is of order of the accuracy Af that
we need, over such an integration time 7', for a pulsar radiating
GWs at fo ~ 1 kHz.

In the next section we will discuss how one can try to cope with these
difficulties.

7.6.3 Efficient search algorithms
Coherent searches

_ From the discussion of the previous section we know that, if we want to
_integrate the signal for a long time, we must resample the output of the

detector in terms of the time t' defined in eq. (7.149), plus further cor-
rection for the spindown or other effects that change the frequency. The
GWs produced by a rotating NS, in the absence of spindown, has been
computed in eq. (4.223). Including the Doppler effect of the detector
and the spindown of the source we can write the signal received as
1+ cos?e . .
———— cos O(t) + F\ (1a(¢); 1) ho cos ¢ sin D(t),
(7.158)
where hg is given in eq. (4.224), and ¢ is the angle between the spin
axis of the neutron star and the propagation direction 11 of the GW; of
course n = —f, where  is the unit vector pointing toward the source,
and depends on time because of the relative motion of the detector
and source. The evolution of the accumulated phase ®(t) = 27 [ dtf(t)
observed by the detector can be described by a Taylor expansion, writing

h(t) = Fy(n(t);¥)ho

FE) = fo+ folt' —t5) + %fo(t/ — )., (7.159)

where ¢’ is the resampled time given in eq. (7.149), i.e. the time of arrival
of the signal in the Solar System Barycenter (SSB),5 and ¢} is a fiducial
value, such that ®(t;) has the value ¢g. Then

1. 1.
©(t) = do+2m | folt' —to) + 5 fo(t' — to)? + glolt' = to)® + .. }
(7.160)
Of course, a truncated Taylor expansion is useful only if the higher order

terms are small corrections during the whole observation time 7". This is

not the case for a neutron star in a binary system, which rather performs
a circular motion around the center-of-mass of the system, so eq. (7.160)
only applies to isolated neutron stars.
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51Actually, the precise redefinition is

= tt X(? 4 AEO Ag@ |
where Apg and Agg are the solar sys-
tem Einstein and Shapiro time delays
discussed in Section 6.2.2. However,
given the detector and the source posi-
tions, the Einstein and Shapiro delays
can be computed, as we did explicitly
in Section 6.2.2, and introduce no new
free parameter.
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52 A more careful argument shows that
it even scales like 7%, because the ap-
proximation (Av)r ~ vopWern used
to derive eq. (7.151) does not hold si-
multaneously for the right ascension
and for the declination angles, see
Brady, Creighton, Cutler and Schutz
(1998).

If our target is a given pulsar whose position, proper motion and spin:
down parameters are known to sufficient accuracy, the form of the signal

(7.158) is fixed. Then we can simply demodulate the signal defining g

new variable ¢/ as

fo v e, Jo
t" = (t' —t et —t -t ..,
( O)+2f0( 0) +6f0( )"+

so that eq. (7.160) reads ® = ¢g + 27 fot”. We resample the detector

(7.161)

output with respect to this variable, and then all we need to do is to

perform a single Fast Fourier Transform (FFT) on this resampled stretch
of data, of length 7. The number of spindown parameters fo, fo, ... to
be included to have sufficient accuracy depend on the source, and on the
observation time T

If however we want to perform a blind all-sky search, the problem
becomes quickly intractable with increasing observation time 7'. In fact,
our parameter space is given by the angles (65, ¢5) of the source and by

the spindown parameters fo/fo, fo/fo, etc. Observe that fo itself does

not contribute to the dimension of the parameter space; the resampling
of time (7.149) is independent of fo, while eq. (7.161) depends only on
the ratios ,fo/fo, f;)/fo, ..., and not separately on fq, fo, fo,.... Thisis
a crucial advantage of the resampling technique. If, rather than resam-
pling the detector output, we directly used the Wiener filtering for the
waveform given in egs. (7.158) and (7.160), then fy would be an ad-
ditional parameter to be searched, and the computational cost would
increase dramatically.

Then, what we should do is to discretize this parameter space, and for
each point of this parameter space we should perform the appropriate
demodulation (7.161) and one FFT. This procedure is referred to as a
coherent search. Its drawback is that, if we want to take advantage of
the large integration time, the mesh in the discretized parameter space
must become finer and finer when we increase T'. For instance, even
in the simplest case in which the spindown parameters are negligible,
and therefore the parameter space is given only by the angles (65, ¢);
still the number of patches in the sky that we must consider is at least
Npatches = 4m/(A6)% and scales at least as T4, see eq. (7.151).52

More generally, the number of mesh points depends on the kind of
search that we perform. For instance, old pulsars are less demanding
than young pulsars of the same frequency, since their spindown rate is
lower and therefore it can be taken into account using a larger mesh in
the spindown parameter space. Similarly, we see from eq. (7.151) that
slow pulsars (say, fo < 200 Hz) are easier to analyze that fast pulsars
with fo ~ 1 kHz.

Since the time needed for data analysis grows with a large power of
T, increasing 1" we necessarily reach a point where the data analysis
would take the same time as the observation time T and beyond that
point it would quickly becomes many orders of magnitude larger than
the observation time. We can therefore take as a limit the condition
that the time required by data analysis does not exceed the observation

.
|
é
g
.

time used to take the same data. To have an idea of the computational
requirements consider that, using 107 s of data to search for periodic
GWs with frequencies up to 500 Hz, requires the calculation of a FFT
with 100 points, which takes about 1 s on a teraflop computer (assuming
that all 101° points can be held simultaneously in fast memory), and we
need one such FFT for each point of the parameter space. It can be
estimated®® that a coherent all-sky search of 7' = 107 s of data for slow,
old pulsars (7 > 1000 yr, fo < 200 Hz, i.e. the “easier” target) requires
only one spindown parameter and 10'° independent points in parameter
space, while for young, fast pulsar (frequencies up to fo ~ 1 kHz, 7 as
low as 40 yr) three spindown parameters and 8 x 102! points in parameter
space are required. Then, even in the “easy” case, the analysis of four
months of data would require three centuries on a teraflop computer!
Requiring that the data analysis does not last more than data taking,
one finds that for slow, old pulsars the data stretch cannot be longer
than ~ 18 days, while for young, fast pulsar the limit is less than one
day. The disappointing conclusion is that, even if a detector can in
principle take good data for months or years, a coherent blind all-sky
search for pulsar using fully these data is impossible.

Incoherent searches

A solution to the computational problem discussed above is to split
the total observation time 7 into N stacks of length Tyiack, with 7 =
NTytack. We choose Titack S0 that a coherent search over such a time is
computationally feasible. So the output of each coherent search over one
stack is a collection of function 173( f), one for each value of the parameter
space. For each point in parameter space we then add the quantity
Ih(f)|? over the N stacks. Since in this way the phase information
between the different stacks gets lost, this is called an incoherent search.
If we denote by Tastack the time needed to perform a coherent search on
_astack of data of length Ty;ack, the time needed for the full incoherent
search is Tine = N 7gtack, while the time needed for a full coherent search
over the whole time 7" is Teon ™~ (T/Tstack ) Tstack = N Tstack, SO

1

Tinc =~ W}‘ Tecoh » (7162)

where the power n, as discussed above, is determined by the kind of
pulsars that we are targeting. Since n is large (at least n = 5, even
when no spindown parameters are needed, see Note 52), it is clear that
_Incoherent searches have a huge advantage in terms of computational

. cost and, for a given observation time 7', taking NV sufficiently large, i.e.

Titack sufficiently small, the computation becomes feasible.

From the point of view of sensitivity, the value of (S/N)? obtained
from a single stack of length Tytaec is given by eq. (7.130) replacing T°
by Titack. Adding AV of these spectra the variance is reduced by 1 /NN
and therefore, for an incoherent search, eq. (7.130) becomes

_‘g 2¥ 2 Nl/sztack 2
(N) ‘<F+>( Sn(fo) )hO
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53%ee Brady, Creighton, Cutler and
Schutz (1998).
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produce a number of interesting candidate signals, for certain values of
the parameters. These points in parameter space can then be examined
more thoroughly with a directed coherent search.

We can now compare the experimental sensitivity given by eq. (7.164)
with the signal expected from a rotating NS, given in eq. (4.224). We
then find that the maximum distance r which a detector can reach in a
blind full-sky search for periodic GWs from rotating neutron stars is

10-23 gz~ 1/? T \'Y?
r = 5.8kpc ( >
< g;,/z( 0) 3x107s

(20 () (e fo \*
7 10-6/ \ 1038 kg m?2 1kHz )

The reference value n = 100 corresponds to a search for a total time 7' =
3% 107 s divided into stacks with Tiseack =~ 30 min (so NV ~ 1.7 x 10%), a
factor 1/ (Ff)l/ 2 — /5 as appropriate for interferometers, see Table 7.1,
and a value S/N ~ 4. The strain sensitivity S,l,,/ % has been normalized
to the value expected for an advanced interferometer.

1 5 T 9 ;
=75 (F3) <Sn<f0)> h (7.163’

and the minimum amplitude detectable at a given S/N, eq. (7.134)

becomes
Sn fO 1/2
(h'O)rnin =1 <#> . (7164

where we have defined an efficiency factor

NL/4

(7.166)
n = (S/N) W ) (7.165

which takes into account the desired level of the signal-to-noise ratj
S/N, the average over the orbit of the source, which produces the facto;
(F2)1/2 and the need to separate the data into N stack for computa
tional feasibility. ’

In practice, beside being forced by computational requirements, inco
herent searches are also necessary because a detector never has months
and not even weeks, of continuous good data taking. There are alway.
interruption due to maintenance, period of higher noise level that mus
be removed, etc. and the experimental precision that one has on the tini
at which data taking resumed is not sufficiently good to recombine co
herently different stacks of data. The incoherent method, of course, car
be applied even when the single stacks have not all the same duration
and when they are not consecutive.

When performing an incoherent search each stack is demodulated, a
discussed in the previous section, using a mesh of points sufficient.t
confine the searched signal into a single bin. The individual power spec
tra, before being summed, must be corrected for their relative frequene
drift using a finer parameter mesh suitable for removing the phase mod
ulation over the whole observation period. The simplest implementatio
of this method consists in choosing stacks of about 30 min, so that th
Doppler effect in each stack can simply be neglected, and within a sin
gle stack no demodulation is needed. In this case a period of 107 se
of data is divided into N =~ 5000 stacks, and the minimum detectabl
value (ho)min in eq. (7.164) is larger than in a coherent search by a facto
N4~ 8. With the difference, of course, that a blind full-sky incoher
ent search of this type is computationally feasible while a blind full-sk
coherent search is not.

Alternatively, one can choose longer stacks, say of the order of on
day. These will need demodulation, but a relatively coarse mesh iI
parameter space will suflice to concentrate the whole signal into a sing
bin. Then we combine the separate stacks using a finer mesh. Of course
the longer the stack, the higher is the sensitivity, but the higher is als
the computational cost. Incoherent searches can also be used as a fits ;
stage in a hierarchical search: an incoherent blind all-sky search cal

The Hough transform

As we have seen above, in incoherent searches the observation time is
divided into stacks, where the phase modulation due to Doppler effect
_ and spindown is either negligible (if Tytacks S 30 min) or anyway rela-
tively easy to correct for, so that a GW signal, if present, falls into a
_ single frequency bin. When we compare different stacks, the position
~ in frequency of the bin that contains the signal changes, because of the
~ Doppler effect and of the spindown. For each point in the parameter
_space (05, ¢s, fo/ fo, Jo/ fos - .) we can compute how the position of the
_ bin should change and we can correct for it, using the resampling tech-
_ nique discussed in the previous section. In this way, for each point of
parameter spaces, the bins are “realigned”, and the power in correspond-
ing bins is summed.

An interesting variation on this scheme is given by the Hough trans-
form, which is a technique used for pattern recognition in digital im-
~ages.” In the Hough transform, as a first step, rather than summing
__up the power in the corresponding bins, we fix a threshold in each data
stack. A bin is deemed “black” if the power in it exceeds the threshold,
and “white” if it does not. In the time—frequency plane obtained align-
_Ing in frequency (with no correction) the various stacks, we therefore
have a set of black pixels, as in Fig. 7.12.

In the case of Gaussian noise, where large fluctuations are unlikely, it
would in principle be more convenient to sum up the power of the corre-
sponding bins, rather than reducing all the information to a set of zeros
(White) and ones (black). However, the Hough transform is more robust
_in the presence of non-Gaussian noise and large occasional external dis-

a0,
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K was developed in 1959 by Paul
Hough at CERN, to analyze the tracks
of particles in bubble chambers, and to-
day is also used in astronomical data
analysis.
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Fig. 7.12 The time—frequency
plane, with bins of length
At = Tiaex in  time and
Af = 1/Tuack In frequency.
Bins where the power exceeds a
given threshold are marked in black.

Nth stack
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Fig. 7.13 The map that to each
black pixel associates a submanifold
in the parameter space X.

turbances, which is the case in a real detector. Consider for instance

the situation in which instrumental noise gives a very large spike in fre.

quency, during a relatively short period, e.g. in only one stack. When
summing the power, this single disturbance can give a large effect on
the total sum, while collapsing all the information to black/white it
contributes only to a single pixel. This method can therefore be appro-

priate when we search for a signal that is small, but is there during the

whole observation time, and is embedded in a noise that occasionally

can be much larger than the signal.

The next step is to perform a pattern recognition procedure in the
set of black pixels, to see if some of the black pixels lie along a specified
curve. To simplify the setting, suppose that we are searching for straight

lines in the (¢, f) plane of Fig. 7.12. (The generalization to more complex
curves is conceptually straightforward.) The set of all straight lines in
this plane is parametrized by two parameters (a,b), as t = af +b. We
denote by ¥ the manifold described by the parameters (a,b); in our
example of straight lines of course ¥ = R?, but the notation is more
general. Given a black pixel, we can find the set of points in the manifold
Y that are compatible with it; for instance, in our straight lines example,
if a black pixel is centered at (¢1, f1), the straight lines consistent with it
are those that satisfy t; = afi + b, and the corresponding submanifold
of ¥ is the curve b = afi — t1 in the (a,b) plane. More precisely, since
the pixels in the (¢, f) plane have a finite resolution, we will rather get
a bunch of straight lines in Y. The transformation that, to each black
pixel in the (¢, f) plane associates a submanifold in X, is illustrated
graphically in Fig. 7.13.

In the absence of noise, the submanifolds in £ obtained in this way
from all the black pixels would have a non-empty intersection, which
would define the point in parameter space compatible with the obser-
vations. Of course, in the presence of noise the intersection of all the
curves will be empty. Still, we can try to recover the most probable value
of the parameters in 3 as follows. First, we discretize the manifold .
Let us call C; the surface in ¥ obtained from the first black pixel. We
then assign +1 to all the bins in X that belong to C;. We repeat the
same for the second black pixel, adding +1 to the the bins in 3 that
belong to Ca, and so on for all the N black pixels. In conclusion, we have
constructed a map that, to the set of black pixels, associates a histogram
in the parameter space X.

In the GW detection problem, the manifold 3 becomes the parameter
space (0, ds, fo/fo, f."o/fo, ...) and the straight lines of our example are
replaced by the curves in the (¢, f) plane that describe how f changes
with time because of the Doppler effect and of the spindown. The points
in parameter space whose number count is above a certain threshold are
the candidates for a possible detection and can be further investigated,
for instance with a coherent search.

7.7 Cloalescence of compact binaries 387

7.7 Coalescence of compact binaries

The coalescence of compact binaries, such as BH-BH and NS-NS bina-
ries, is a particularly interesting signal for broad-band GW detectors.
This comes from a combination of two facts: first, we saw in eq. (4.44)
that, in the last stages of the inspiral, a binary system can radiate away
in GWs up to a few per cent of its total mass. This is a huge amount of
energy, so the signal from an inspiral is quite strong, compared to most
other GW sources. Second, the inspiral phase can be tracked for many
cycles in a broad-band detector. We saw in eq. (4.23) that a ground-
based interferometer can follow the inspiral phase of a compact binary
system for O(101) cycles. Thus, matched filtering can be very effective
for extracting this signal from the noise. From eq. (7.40) and the discus-
sion below it we see that, in order of magnitude, with matched filtering
we can dig into the noise and catch the signal from a coalescence, even
when the typical amplitude of the GW signal inside the interferometer

_ bandwidth is smaller than the noise floor by a factor N / 2, where N, is

the number of cycles for which we are able to track carefully the signal
with our template. Thus, we can gain a factor as large as N /2 100
in amplitude, if our template is so good that we can follow closely the
signal from the time it enters in the interferometer bandwidth until the
inspiral phase terminates and the two objects merge. Since the GW
amplitude is proportional to 1/7, a factor O(100) in amplitude means
that we gain a factor O(100) in the maximum distance to which we can
detect a source. For these reasons, we will see that interferometers have
the potential of detecting coalescing binaries up to distances of order
of hundreds of Mpc, and advanced ground-based interferometers could
reach a few Gpe.

To exploit this opportunity we must however be able to follow closely
the signal with a template. This means, first of all, that for a given value
of the parameters of the binary system (time of coalescence, masses,
spins, etc.), one must know the waveform accurately. We already quan-
tified this requirement in Section 5.6, where we found that we need
to compute the post-Newtonian corrections up to 3.5PN order. As we
saw in Section 5.6, these remarkable computations have indeed been
performed. The second aspect is that we do not know in advance the
parameters of the system, and therefore we must scan a potentially large
parameter space.

To leading Newtonian order we computed the waveform in eq. (4.29),
and the corrections in the restricted post-Newtonian approximation were
discussed in Section 5.6. Combining these results with the general ex-
pression A(t) = Fyh(t) + Fxhx, we see that the output h(t) for a
binary inspiral, in the restricted post-Newtonian approximation, is

. 2/3
) = e |20 ol (1) + 20

2/3
+Ax Fig;‘ﬁl] sin[®( fow (1)) + Po (7.167)
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55Explicit expressions for ®(fgw) and

few(t) up to 2PN were given in
eq. (5.273), and in eq. (5.270) or
(5.272).

56Recall also from Section 4.1.4 that,
for binaries at cosmological distances,
i.e. at a non-negligible redshift z, the
masses mqy and mg must be multiplied
by (1 4+ z), and the distance r must
be replaced by the luminosity distance

dy ().

57Furthermore, the angles (6, ¢) change
in time because of the Earth’s mo-
tion. For a ground-based interferom-
eter, which follows the coalescence only
for 10—15 minutes, this dependence can
be neglected. For a space-borne in-
terferometer, instead, it must be taken
into account.

where, as discussed in Section 5.6.3, ®(fyw) and fgw(t) are known up to
3.5PN order.5® We have esplicitly displayed the arbitrary constant ®;
in the phase, equivalent to the arbitrary constant wg in eq. (5.265), and
we have defined

A (7.168)

i
+

f 5/3 2
4 (GM. 1+ cos”y
() Rt
T c 2

5/3
Ay = 4 <G‘M‘:> Fy(6,¢)cost.

(7.169)

r\ c?
Writing A, = Acosa and Ay = Asine, with 4 = (A2 + A2)Y/2 and

tana = Ay /Ay, we can rewrite this as

2/3
v =4 |0 oia i@+, am)

with ¢ = $g — «.%0 Thus, in the waveform enter the distance 7 to the :
source, its location, specified by the angles (6, ¢) which appear in the

pattern functions, the orvientation of the orbit with respect to the line of
sight (two angle, one of which is ¢, and the other identifies the axes with
respect to which the plus and cross polarizations are defined), the refer-
ence time t, at which the signal enters in the detector bandwidth (which
appears through ®(¢) and fow(t)), the constant phase ¢, the masses of
the two stars, and in principle also their spins (which we neglected in
eq. (5.273)). So, in total, we have 15 parameters.®” However, a number
of simplifications are possible, as we discuss in the next subsection.

7.7.1 Elimination of extrinsic variables

The variables that can be eliminated from the parameter space are gener-
ically called extrinsic. First, we observe that all possible shifts in time
of the signal can be obtained at once with a single Fourier transform.
Consider in fact the scalar product (h(f,t.)|s) between the output s(t)
of the detector and the template h(¢;0,t.) where, from the parameters
0%, we singled out explicitly the arrival time t,, defined as the time when
the hypothetical signal enters into the interferometer bandwidth, say at
few = 10 Hz. The waveform h(t;6,t,) is obtained from h(t;8,t, = 0)
with a time translation, so if we denote by a(f;6) the Fourier transform
of h{t;0,t.) at t. = 0, the Fourier transform of h(¢;0,1.) at t. generic
is simply A(f; )™/, Thus, from the definition (7.46) of the scalar
product, we have

(h(6,t.)]s) = 4Re /Oo df W 0)5(f) eS| (7.171)

0 Sn(f)

which is just the Fourier transform of h*(f;6)3(f)/S,(f). Thus, per-
forming a single FFT we can immediately locate the value of #, which
gives the highest signal-to-noise ratio. This is of course of great practi-
cal importance. Typically we can expect that, to perform efficiently the

matched filters.
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matched filtering, the maximum mismatch in arrival time that we can
tolerate between the real signal and our template could be, say, of order
3 ms. If one should analyze one year of data (3 x 107 s) computing a dif-
ferent scalar product every 3 ms, for each value of # one should perform
10' times the computation of the scalar product h(t; 0, t,), while we see
that just a single FFT does the job.’® Thus, the arrival time ¢. is not
really part of the parameter space that must be searched. Figure 7.14
shows the result of a simulation in which the signal corresponding to
the coalescence of two BHs, each with a mass of 10M, at a distance
of 150 Mpc, is injected into the noise of the VIRGO detector. Perform-
ing the Fourier transform, we see that we have a spike in correspondence
with the time at which this signal has been injected (in the figure, t, = 1,
in arbitrary units).

Two more parameters that appear in eq. (7.167), which can be elimi-
nated analytically from the matched filtering procedure, are the ampli-

_tude A and the phase ¢ of the signal. We already saw in Section 7.3

that the optimal filter is defined modulo an arbitrary constant, so the

overall value of the amplitude A does not enter when we search for the

template that maximizes the signal-to-noise ratio. The maximization of
the SNR with respect to ¢ can be performed analytically, writing the
template (7.170) in the form

h(t) = he(t) cosp + hs(t) sing. (7.172)

If s(t) is the detector output, after maximization of the log-likelihood
function over the amplitude A, according to eq. (7.70) we want to further
maximize

2
2logA = (hs)

D) (7.173)

[(hels) + (hs]s) tan o]
(helhe) + (Rslhs) tan? ¢ + 2(he|hs) tan o

This expression is easily maximized analytically with respect to tan .
The result is simpler if we introduce two new templates

(7.174)
(7.175)

hp = hecos g, + hesing, ,
hg = hecos g + hgsin ¢,
where the angles ¢, and ¢, are chosen so that hy, and h, satisfy (hylhg) =

0, i.e. they are orthogonal with respect to the scalar product ( | ).
In terms of these orthogonal templates the likelihood function, after

performing the maximization over the amplitude A and over the phase
_ p, takes the simple form

(hpls)? (hgls)?

(hoplhp) — (helhg)
Therefore, the maximization with respect to the remaining variables is
tquivalent to maximizing the sum in quadrature of the outputs of two
In the absence of signal, the signal-to-noise ratio p

2logA =

(7.176)

58More precisely, if we have a time se-
ries with IV samples, computing the in-
tegral which defines the scalar product
has a computational cost O(N), and if
one had to repeat it for all possible ar-
rival times, the overall cost would be
O(N?). With a single FFT, instead,
the computational cost is O(N log V).

10 —— - -
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Fig. 7.14 The result of a simulation
in which the signal due to a BH-
BH coalescence, each with a mass of
10Mg, at a distance of 150 Mpc, is
injected into the noise of the VIRGO
detector. The arrival time is located
from the position of the spike in
the Fourier transform (7.171), which
here is at ¢ = 1. (Courtesy of A.
Viceré.)
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Fig. 7.15 The distribution of the
signal-to-noise ratio, in the simula-
tion of Fig. 7.14. (Courtesy of A.
Viceré.)
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5974 should also be observed that, for
coalescing binaries, non-Gaussian noise
should be much less important than for
short bursts, since it should be much
easler to have an impulsive disturbance
that simulates a short burst, rather
than a noise that lasts for about 15
minutes, simulating for all this time the
behavior of a chirping signal.

60Actually, the expression that we used
for hy and hy assumes a given choice
of the axes with respect to which the
plus and cross polarizations are defined,
which is related to the orientation of
the orbit, see page 296. Since a pri-
ori we do not know the orientation of
the orbit, this will in general differ by
an unknown angle v from the defini-
tion of axes that the experimenter uses
to define the pattern functions. Corre-
spondingly, the expressions for hy and
hx must be rotated as in egs. (7.24)
and (7.25), so the function Q is actu-
ally Q(6, ¢;¢,v). However this 1 de-
pendence, being an orthogonal trans-
formation, does not affect that compu-
tation of {|Q}?) performed below.

is therefore a random variable which follows the Rayleigh distribution
(7.87), while in the presence of signal it is a non-central y? distributiori
with two degrees of freedom. Indeed, we see in Fig. 7.15 that, in the
simulation of Fig. 7.14, p follows a Rayleigh distribution (except, of
course, for the presence of the single spike with S/N =8at t, =1).59

7.7.2 The sight distance to coalescing binaries

The Fourier transform of the chirp amplitude, to Newtonian order, h
been computed in Problem 4.1, while the result in the restricted P
approximation, up to 2PN order, is given in eqgs. (5.274) and (5.275
Then we find, for the Fourier transform of h(t) = hy Fy + hy Fy,

NS ) AL I
“”:(a) ﬁ(“) frret g, (am
where

1+ cos?,
2

The phase ¥ is just the quantity denoted W, in eq. (5.275), and th
relative factor ¢ between the two terms in @ is due to the fact that |
Wy = Wy + (7/2).° Plugging this expression into eq. (7.51), we can |
write the signal-to-noise ratio for a coalescing binary as

SN? 5 1 ¢ /GMN\Y? R

where fi.x is the value of the GW frequency when the inspiral pha
terminates and the two stars merge. An estimate of Sfmax 1S fmax
2(fs)1sco, where (fs)isco given in eq. (4.39), and the factor of 2 is valid
as long as the emission is dominated by quadrupole radiation. For a
wave coming from optimal direction (e.g. Fy =1and Fy = 0), and
with optimal value of the inclination of the orbit (cost = 1), the func-
tion Q(f,¢;1) = 1. However, a more appropriate reference value for
|Q(0, ¢;1)|? is given by its average over all possible directions and incli
nations. Using (F¥) = (FZ) = 1/5 for interferometers (see Table 7.1),
we get (|Q(6, ¢;0)|?) = (1/5)g(1), where g(1) was defined in eq. (3.338)
and its average over the inclination ¢ is 4/5, see eq. (4.10). Therefore

QO, ;1) = Fy (0, 0) +iFy (0, ¢)cost. (7.178

. (7.179

(1Q0, ¢; )2 = 2, (7.180)

[N

where here (...) denotes the average over the angles and over the incli-
nation. Then we rewrite eq. (7.179) as

s 2 <§>1/2 1 C<GMC>S/6 (190, ;1)) /2
6

N 5 w23y e (2/5)
1/2
Smax —7/3
0 Sn(f)

This relation can be inverted to give the sight distance dgignt, i.e. the
maximum distance r at which we can see a binary coalescence, once we
have chosen a given threshold for S/N %! assuming an average direction
and inclination,

2 (5\"? ¢ [GM.\Y* /f“‘“df
dsight:g 6 w23\ B o

1/2

IR s

Sn(f)

(7.182)

We will see in Chapter 9 the numerical values that can be obtained for
dsighe at existing and advanced interferometer‘s. ‘

Tt is instructive to verify from these expressions that, in order of. mag-
nitude, for a coalescing binary the matched filtering procedure gives a
gain ~ Ncl /2 To this end, we assume that S, has a constant.valug 5?0
between a minimum frequency fo and fuax, while it is essentlal‘ly infi-
nite for f < fo. Then, neglecting all numerical fact{ors (and using for
simplicity units ¢ = 1, and the notation M = GM,/c?), we can perform
the integral in eq. (7.181), and we get

S

~ L pgs/0 g2 p=ars, (7.183)
.

From eqs. (7.167) and (7.168) we see that the GW amplitude is of order

ho ~ ~ 213 5/3 (7.184)
r
while, from eq. (4.23), the number of cycles spent in the interferometer

bandwidth is N M_S/gfo_s/:i ‘ (7.185)

Using eq. (7.184) to eliminate 7 from eq. (7.183), and eq. (7.185) to
eliminate M, we get

5 _h
N (foSo)'/?

which shows indeed that, in order of magnitude, the signal-to-noise ratio
(in amplitude) is larger by a factor N2 than for a burst with a char-
acteristic frequency fo (compare with eq. (7.107) with 7, = 1/fo .a,nd
fmax = fo). Of course, a more precise estimate ?equires .the real form
of S,,(f), as well as the exact computation of the integral in eq. (7.181).
This shows explicitly how the matched filtering procedure allows us to
dig deeply into the noise floor, as we discussed already on page 344.
Consider in fact the situation in which, after tracking the signal by
N, > 1 cycles, we finally get S/N of order one, so we begin1 /‘520 see
the signal. According to eq. (7.186), this means that ho/(foSo)'/* was
of order 1/N; /2. However, ho /(f0S0)'/? is the “instantangous” value
of the signal-to-noise ratio, i.e. the value of S/N over a single cycle.

N2, (7.186)
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61Recall however from page 359 that
the signal can combine with the noise
either in a constructive or in a destruc-
tive way, so the output p of the interfer-
ometer is a random variable whose av-
erage is S/N and which follows, in the
presence of signal, a non-central x? dis-
tribution with two degrees of freedom.
Therefore, at any distance r, there is a
probability of missed detection, and the
fact that a source is at r < dgigpt does
not mean that it will be certainly de-
tected. Conversely, there is also a non-
zero probability that the signal from a
source at r > dgigne combines with the
noise so that its S/N raises above the
threshold.
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62 he precise computation of the er-
rors on the parameters can be done us-
Ing the explicit expression of the wave-
form to evaluate the Fisher information
maftrix defined in eq. (7.74), and then
we can compute the errors on the pa-
rameters as in eq. (7.75). Using the
waveform with the post-Newtonian cor-
rections to the phase and assuming a
detection with S/N = 10 one finds
that, if one knew that the spins of
the star are negligible, then M. could
indeed be measured with a precision
of 0.01-0.1%, while the reduced mass
#, which enters in the post-Newtonian
corrections, could be measured to 1%.
However, one in general has no a pri-
ori information on the spins, and the
measurements of masses and spins hap-
pen to be strongly correlated. This
degrades the accuracy on the mass
reconstruction, so one finally obtains
AMc/Me ~ 0.1-1% (which, however,
is still a quite remarkable accuracy) and
Ap/p ~ 10 — 15% for NS-NS and NS-
BH binaries, or Ap/p ~ 50% for BH-
BH binaries with typical BH masses of
order 10Mg. Observe that, the larger
the mass of the stars, the smaller is the
number of cycles in the detector band-
width, since the coalescence takes place
earlier, see eq. (4.39), so the precision
in the reconstruction of the parameters
is less good. See Cutler and Flanagan
(1994) for details.

Therefore, the integrated signal-to-noise ratio provided by the matched
filtering procedure can be of order one or larger, even when the instan-
taneous signal is deeply buried into the noise,

Finally, an important issue is the precision that can be obtained in the
reconstruction of the source parameters. In particular the chirp mass
M., that appears in the phase of the waveform, can be estimated very.
precisely, since the phase can be followed accurately for MV, cycles. Thus,
any mismatch AM, between the true value of the source and the value
used in our template will be amplified by a factor M,, and we could
expect that

AM, 1

~ ——

M. N

(7.187)

Given that at a ground-based interferometer AV, can be of order 103-104,
see eq. (4.23), this would give a rather remarkable accuracy AM /M, ~

1074-1073. As for the reduced mass H, it appears in the 1PN corrections

to the phase, which are smaller by a factor O(v?/c?) than the leading
term, so it can be measured less precisely.52

7.8 Stochastic backgrounds

In 1965 Penzias and Wilson discovered that the Universe is permeated
by the Cosmic Microwave Background (CMB) electromagnetic radiation.
This radiation is a relic of the early Universe, and the microwave photons
that compose it decoupled from the primordial plasma about 3 x 105
years after the Big Bang, and since then they have been propagating
essentially freely. This discovery, providing direct evidence for the Big
Bang, was one of the most significant in the history of cosmology.

Since then, the CMB has been sub Ject to deep investigations. We now
know that its spectrum is a perfect black-body (in fact, the most perfect
black-body spectrum existing in nature). This background is, to a first
approximation, isotropic. The observation by the COBE satellite of
temperature fluctuations over the sky, at the level AT /T ~ 1072, has
been one of the most important discoveries in cosmology in the last
decades, and the detailed investigation of the multipole moments of these
anisotropies by COBE and various other experiments, and particularly
by WMAP, has opened up the field of precision cosmology.

There are good reasons to expect that the Universe is permeated also
by a stochastic background of GWs generated in the early Universe.
Furthermore, a stochastic background of GWs can also emerge from the
incoherent superposition of a large number of astrophysical sources, t00
weak to be detected separately, and such that the number of sources
that contribute to each frequency bin is much larger than one.

The mechanisms that can lead to the production of stochastic GW.
backgrounds in cosmology and in astrophysics will be examined in detail
in Vol. 2. Here we discuss how to characterize such a background in
general, and what are the optimal strategies for its detection.

7.8.1 Characterization of stochastic backgrounds

o (1 E ) .
Using the plane wave expansion (1.58), we can write

. . A R
hij(tx) = > / df/d2nhA(f, fi) ef} (1) e 2 (tR/e)
’ ) =G
e (7.188)
' j e oA (B
We work in the TT gauge, so hi = 0 and 0’ h; = O The tensmg €ij (n)f
are given in eq. (1.54). A stochastic background is a Sgperpoa'tlor.l 0
“ra\rés with all possible propagation directions fi, therefore the 1n§hces
i / above take the values 1, 2, 3, contrary to the case of the GWs emitted
ﬁig)m a single far source, where we could label the GW in thej TT' gauge
as hay With a, b, taking the values 1,2 and labeling the two directions in
the transverse plane. A stochastic background is defined by the f;.gwt. that
the amplitudes h A(f,n) are random variables, characterized statistically
o UL ‘~ . ‘ 63
by their ensemble averages. ‘ o
y\Ne will make the following assumptions on stochastic backgrounds of
GWs.

e The background is stationary. This means that all correlators de-
pend only on time differences, and not on the absolute va,/lues of
time. So, for instance, the two-point correlator (h A(tl)h,A/ (@) can
depend only on ¢t — t’, and not separately on ¢ and . In~F0ur1er
space, this means that (% (f)ha (f’ )) m.ust be proportlor{al tg
5(f— f'). This assumption is certainly JustlﬁfedA For a backg'leun.
created in cosmological epochs, the typical tlme—scal.e on wh‘mh it
can change substantially is of the order of the age of t}le Universe
(for instance, its spectrum changes because‘ it is redshifted). Dur-
ing the duration of the experiment, which 1s.at most a few years,
it is very difficult to imagine that the properties of the background
could change appreciably.5t ‘

o The background is Gaussian. This means that all N—po%nt cor-
relators are reduced to sum and products of the jcwo—pomt cor-
relator (ha(t)ha (t')) (and of the vacuum expectation vallue (h A)
that however, as we have seen, can be set to zero). Gaussianity is
rooted in the central limit theorem, that states that t.he sum of a
large number of independent events prodlllces a Gausmap Sijf:ha.?—
tic process, whatever the probability distribution of the individual
events. This assumption is therefore expected to hold to a very
good accuracy for cosmological backgrounds. It would not hold
for astrophysical backgrounds, if the number of sources tha‘F con-
tribute is not that large, and we are on the verge of dlstlng}nshmg
the individual contributions. In this case, further information can
be extracted from the higher-point correlators. . .

e The stochastic background is isotropic. Experience with CMB in-
dicates that the early Universe was highly isotropic and, for the
photons, temperature fluctuations across the sky are at Fhe level
AT/T ~ 107°. It is reasonable to expect that a stochastl,c ba‘ck—
ground of GWs of cosmological will also be in a first approximation
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63 An ensemble average is the average
over many copies of the system. Our
system is in this case the Universe and
we do not have many copies of it! Of
course, the ergodic assumptions must
be used here, and the ensemble aver-
age is replaced by a temporal average,
compare with Note 3 on page 337.

645 ationarity also implies that (ha (£))
is a constant so, even if it were non-
zero, it would just contribute to the
vacuum energy density. As far as we
are interested in GWs, that is in the
time-dependent part, we can therefore
set {(ha) =0.
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isotropic. Of course, after a first detection of a GW background, :
it will be extremely interesting to investigate its anisotropies and
therefore to give up this assumption. In particular, in a cosmo.
logical background we must expect a dipole term, dominated by
the Earth motion in the rest frame of the CMB, while higher mul.

tipoles could give extremely interesting information on the early
Universe.

We might have to give up completely the assumption of isotropy
when we study stochastic backgrounds of astrophysical origin. In
particular a background of galactic origin will not be isotropic,
but rather it will be more intense when we look in the direction
of the galactic plane, just as the electromagnetic background die

to galactic sources gives its characteristic appearance to the Milky
Way. We will in fact discuss in Vol. 2 an example of this type, the
background created by galactic white dwarf binaries.

Waves coming from different directions should be uncorrelated, so
(% (f,m)ha (f, 1)) should be proportional to a Dirac delta over

the two-sphere, defined as
5% (A, 1) = 6(¢ — ¢')d(cos § — cosh'),

where (6, ¢) are the polar angles that define fi. Isotropy implies
that the proportionality constant must be independent of f.

e Finally, we assume that the background is unpolarized, as it is
natural both in a cosmological context and if it is the result of the

superposition of many different astrophysical sources. This means

that (ﬁj‘(f./ ﬁ)sz/ (f/,A")) must be proportional to §4 4/ and the

proportionality coefficient must be independent of the polarization

index A.

Under these assumptions, a stochastic background of GWs is uniquely
characterized by a single function Sy, (f), defined by

(Ba(fsmhar (f0) = 8(f — 1) == (7.190)

The function Sj,(f) is called the spectral density of the stochastic back-

ground, in analogy with the spectral density of the noise defined in
Section 7.1. Just as for the noise spectral density, we use the conven-
tion that Sy, (f) is single-sided. It has dimensions Hz~' and satisfies
Si(f) = Su(—f). The factor 1/(4n) in eq. (7.190) is a choice of normal-
ization such that

I I PR - 1
/d2nd2n’ (R (f, D)har(f, 1)) = (f — f’)éAA,ESh(f).
where, as usual, d?fi = dcosfd¢. We see that the factor 1/2 in the

definition of Sy, (f) has been inserted so that Sy,(f) is normalized in the
same way as the single-sided spectral density of the noise, see eq. (7.6).

(7.189) |

(7.191)

Using egs. (7.188) and (7.190), as well as Y , effes = 4, which follows
from the normalization (1.55) of the polarization tensor e{}, we get

oo
(o) =4 [ a su(h). (7.192)
The sum over 4, j is understood, and h;;(t) = hy;(¢,x = 0). The spectral
density of the signal, Sy (f), is the quantity that allows us to perform a
direct comparison with the noise in a detector, which is characterized by
S.(f). However, to have a physical understanding it is much more con-
venient to think in terms of the energy density carried by the stochastic
background. According to eq. (1.135), this is related to hy; by

2

c e
P W X
Pegw 327TG<hz'7h ) (7‘193)

_In cosmology there is a very natural unit of energy density, that is,

the energy density needed for closing the Universe. This critical energy
density is

3c*HE
=—_—0 194
pe 8rG (7.194)
where Hpy is the present value of the Hubble expansion rate. As we

mentioned on page 194, the value of Hy is usually written as Hy =
hox 100 km s~! Mpc™!, where hy parametrizes the existing experimental
uncertainty and is called the normalized Hubble expansion rate. The
most recent determinations give hg = 0.73(3). Numerically,

pe~ 1.688 x 1078 h3  ergem™. (7.195)
Normalizing pgw to pe, the intensity of a stochastic background of grav-

itational waves can be characterized by the dimensionless quantity

Qg = P2

gw =

(7.196)

c

Using eqs. (7.192) and (7.193), the energy density can be written as
an integral over dlog f of some spectral density, that we denote by%

dpgw/dlog f,

Paw = /f :OO d(log f) ;ﬁzlf‘ (7.197)
We also define
Qew(f) = ;)1“ dciiggwf, (7.198)
50 Qg in eq. (7.196) is related to Qg (f) by®
Qg = /f iooo d(10g ) Q). (7.199)
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65 There is a slight abuse of notation
here. Of course pgw, on the left-hand
side of eq. (7.197), is independent of the
frequency, so its derivative with respect
to f, or to log f, vanishes. On the right-
hand side, dpgw /dlog f is not the deriv-
ative of pgw with respect to log f, but
just a notation for the spectral density
of pgw, which stresses that it is the en-
ergy density contained in a logarithmic
interval of frequency.

56 1fere again there is a slight ambigu-
ity in the notation, because we use the
same symbol (gw for the normalized
energy density, on the left-hand side of
eq. (7.199), and for its spectral density,
on the right-hand side. This notation is
however standard in the GW literature,
and we will conform to it.
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67Unfortunately; we sometime use ho
also to denote a GW amplitude. Since
the reduced Hubble constant hg will
only appear in the combination h%ng,
no confusion is possible.

The fact that we consider the energy per unit logarithmic interval of
frequency, dpgy /dlog f, rather than dpgy/df, is useful because in this |

way Qgw(f) is dimensionless.

Even if the experimental error on the Hubble expansion rate is be- |
coming smaller and smaller (just a few years ago values of hg between |
0.4 and 1 where considered possible), still it is not very convenient to |
normalize p,, to a quantity, p., which is uncertain: this uncertainty 'i;
would appear in all the subsequent formulas, although it has nothing to |
do with the uncertainties on the GW background itself. Therefore, one |
rather characterizes the stochastic GW background with the quantity |

héQew(f), which is independent of hg.57

We now compute the relation between S, (f) and h%ng( f). As dis-
cussed in Section 1.4.3, the brackets in eq. (7.193) denote a time average,
However (under the ergodic assumption, see Notes 3 and 63), this is just
the ensemble average used above. We can then substitute the plane wave
expansion (7.188) into eq. (7.193), and compute the ensemble average |

using eq. (7.190). The result is

2 =
c* J=o0

o= 5o |, A8 ) SCRIPS).

Comparing with the definition (7.197) we get

d/)gw _71'62 3
dogf ~ ag! o) (7.201)
and
. Ar® 4 )
ewlf) = 3HZ F25u(F) (7.202)

Finally, it is interesting to express h3Qqy (f) in terms of the number of
gravitons per cell of the phase space, n(x, k). For an isotropic stochas-
tic background n(x,k) = ny depends only on the frequency (which is
related to the momentum k by |k| = fiw/c = 27/if /c), and not on the
direction k. Then, writing d°k = [k|?d[k|dQ — 47x(27h/c)®f2df, and
df = fdlog f, and considering that a graviton of frequency f carries an

energy fw = A(2x f), we have

d*k
vw =2 | ——=h ny
Pg / (27Th)3 (27Ff) ny

16m2h [ -
- [ dtog ) finy

3

(7.203)

where the factor of 2 in front of the integral is due to the two helicity

states of the graviton. Therefore

dpgw 167%h

o4
TooF = 3l (7.204)
and
4
. n
h%QgW(f)f:d.6<—16§7> <1k~’;{z> . (7.205)

(7.200) |

As we will see in Vol. 2, this equation is useful in particular when one
computes the production of a stochastic background of GWs due to am-
plification of vacuum fluctuations, since this computation gives directly
ng.

7.8.2 SNR for single detectors

The comparison of egs. (7.6) and (7.191) makes it clear that an isotropic
stochastic background of GWs is seen in a detector as an additional
source of noise. This poses an important conceptual problem in the
identification of a stochastic GW background. In practice what will
happen is that, after a careful modeling of the detector and of its noise
sources, one would expect to have a certain value of the spectral den-
sity of the noise, S,,(f). When the detector is turned on, one measures
(s?(t)), where as usual s(t) = n(t) + h(t), with n(t) the noise and h(t)
the response of the detector to a GW signal. If one observes that (s*(%))
is larger than expected, the crucial problem is how to tell whether this
is really due to a GW background or, more trivially, to some source
of noise that has not been adequately accounted for when estimating
S, (f). Similar problems were faced in the discovery of the cosmic mi-
crowave background; Penzias and Wilson found an excess noise in their
antenna (a horn reflector that was meant for satellite communications)
and worked hard for one year in order to exclude all possible sources of
terrestrial and astrophysical noise, before writing a short paper with the
modest title “A Measurement of Excess Antenna Temperature at 4080
Mc/s", and concluding “From a combination of the above, we compute
the remaining unaccounted-for antenna temperature to be 3.5+1.0 K at
4080 Mc/s”.

To cope with this problem, it is clear that in the search for stochas-
tic backgrounds of GWs with a single detector one must set at least
a relatively high threshold on the signal-to-noise ratio; for instance, a
signal-to-noise ratio S/N = 5 on the amplitude could be a typical choice
(while lower values of S/N could be used for the only purpose of putting
upper bounds). Further handles could come from an anisotropy of the
stochastic GW background, if it is due to unresolved galactic sources,
since this would produce a sidereal time modulation due to the motion
of the detector. Another handle is the possibility that the dependence
of the excess noise on the frequency is found to be in agreement with
some theoretical prediction from a given cosmological or astrophysical
mechanism.

To compute the minimum value of h%ng that can be measured at a
given S/N, we observe that, if there is no signal, we have (see eq. (7.12))

$0) = 20 = [ dr8.0), (7.200)
0

while, if a stochastic GW background is present, there is also a con-
tribution from hA(t). For each propagation direction i we can write
h(t) = hyFy 4+ hy Fy, and therefore, taking the ensemble average and
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8 Observe that here S/N is the signal-
to-noise ratio with respect to the GW
amplitude, just as we have defined it
for bursts, coalescence and periodic sig-
nals. For stochastic backgrounds, what
is actually measured is an energy den-
sity, and it make sense to introduce the
signal-to-noise ratio with respect to the
energy density, which is quadratic in
the amplitude. If one prefers to reserve
the notation S/N for the signal-to-noise
ratio in energy, then on the left-hand
side of eq. (7.213) one must write S/N
rather than (S/N)2.

averaging also over ii and over the polarization angle v,

Phdy Pady L\ o,
/I{é—%<h>_</ﬂﬁF+ (3 +h%)

where we used the fact that the angular averages of F? and of F2 are
equal, see eq. (7.35). For an isotropic background, the ensemble average
(h?) that appears on the left-hand side of eq. (7.207) is independent
of the angles © and ¢, so the angular average gives one. The term on
the right-hand side of eq. (7.207), instead, can be written in terms of
Sn(f) using eq. (7.192) and observing that, for any given propagation
direction, we have h;;h* = 2(h% + h%). Then

(7.207)

o0
02 =28 [ ar ), (7.208)
0
where, with an abuse of notation, the brackets in (h?) denote the en-
semble average while the brackets in (Ff_) denotes the average over d?f
and di. In eq. (7.37) we have defined the angular efficiency factor
F = (F2) + (F2) = 2(F?), whose value for various detectors are given
in Table 7.1. In particular, F' = 2/5 for interferometers and F = 8/15
for resonant bars. Then

ey =F [ s, (7.209)
Jo
So, in the presence of signal,
(s*(1)) = (n*(1)) + (B*(t))
- /0 A7 1) + FSu(f)] - (7.210)

Therefore, if a stochastic background is present, one simply observes that
(s*(¢)) is higher than the value expected from the noise, everywhere or
just in some frequency range. More precisely, we can compare the output
with the expected value of S, (f) in each frequency bin (with bins of
size Af = 1/T after an observation time 7). To take the binning into
account, we replace

JEIGLES SENAING (7.211)
and
JEXGLED SR (7.212)
The signal-to-noise ratio in each bin is thereforef®
<§>2 _ p Su(f)A)
_ 2 onlf)
=F 5 (7.213)
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Of course the integration time 7', which enters through Af, canceled
in eq. (7.213). Increasing the integration time, we decrease the size of
the bins and therefore the noise in each bin, but we equally decrease
the signal present in each bin. Therefore, in a single detector, as far
as the signal-to-noise ratio is concerned, there is no gain in integrating
the signal in time. Either the signal stands out immediately as soon as
we switch on the detector, or it will always remain below the noise. If
however the signal stands out, integrating it for a longer time we get a
more detailed resolution of its frequency dependence.

In conclusion, the minimum value of S} (f) measurable with a single
detector having a noise spectral density S,(f), at a given level S/N of
signal-to-noise ratio in amplitude, is

lS’ N 2
[S}l (.f)]l'l'lin = 7l(f) ( /F1 ) 4 (7214)
and correspondingly the minimum detectable value of gy, is
4n? (S/N)?
[Qgw (f)]min = 3H-_0§ F2Sn(f) P (7.215)

A very important feature of this expression is the factor f2. It tells us
that, if one is able to reach a given level in S, (f) at low frequencies, it
will be possible to reach a much better sensitivity in Qg (f) compared to
what can be obtained with a similar value of S,,(f) at high frequencies.
Of course, the experimental problems that one has to solve in order to
reach a given value of S,,(f) depend very strongly on the frequency f.
However, at f = 1072 Hz, the space detector LISA aims at reaching
a strain sensitivity S.,l/ 2(f) =4 x 1072 Hy Y 2 while a ground-based
interferometer at f = 10% Hz has S,},/Q(f) = 4 x 10723Hz Y2, as we
will see in Chapter 9. Therefore, moving from f = 102 Hz to f =
1073 Hz, we lose only four orders in magnitude in Sn(f), but we gain a
factor (10%/1073)3 = 10'® thanks to f°. Therefore, it is much easier to
reach a small level for [Qgw(f)lmin at low f rather than at high f. The
other important question is in what frequency range should we expect
that cosmological or astrophysical mechanisms produce an interesting
value for Qg (f). As we will see in Vol. 2, there is a large variety of
possible mechanisms, which can produce stochastic GW backgrounds
everywhere from f = 1078 Hz up to f = 10° Hz. Their detection
is therefore easier when they are large at low frequencies, since then
comparatively high value of the noise spectral density S,,(f) can be over-
compensated by the factor f2, and becomes more and more difficult as

we go to high frequencies. Numerically, with normalizations useful for
LISA, eq. (7.215) gives

3 1/2 2
[18Q%w (f)]min = 1.1 x 10712 / S
0ne ImHz ) \ 4 x10-21H,~1/2

() ()

(7.216)

7.8 Stochastic backgrounds 399



400 Data analysis techniques

Using normalization factors appropriate for ground-based interferome-
ters, we rather have

762w (f)]min = 0.12 Y Si'”
07w/ 100Hz) \ 4 x 10-28Hz""/?

B

In both cases we used a rather high value of the signal-to-noise ratio
as a reference value, S/N = 5, according to the discussion above. The
huge difference between the value hZQgy ~ 10712 in eq. (7.216) and the
value h3{gw ~ 0.1 in eq. (7.217) is due to the fact that LISA can reach
a value of S,, not far from that of ground-based interferometers, at a
much lower frequency.

As we will see in Vol. 2, no cosmologlcal or astrophysical background
of GW is expected to exoead heQew(f) ~ 1075, independently of the
frequency. Therefore egs. (7.216) and (7.217) tell us that LISA has an
extremely good sensitivity for stochastic backgrounds of GWs, while
ground-based interferometers, used as single detectors, do not reach an
interesting level for stochastic backgrounds. However, having at our
disposal more than one ground-based detector (interferometers or bars
we can correlate their outputs, and the sensitivity improves dramatically
as we discuss in the next section.

(7.217

N

N

7.8.3 Two-detector correlation
Optimal signal-to-noise ratio

With a single detector, it is impossible to adapt to stochastic back-
grounds the matched filtering technique that we studied in Section 7.3
The reason is that, to perform the matched filtering, we need to know the
form of the signal, but for stochastic backgrounds the GW signal h(t)
is an unpredictable randomly fluctuating quantity, just like the noise
n(t). However, if we have two detectors, we can use a modified form of
matched filtering in which, rather than trying to match the output of a
single detector to a predetermined signal h(t), we match the output of
one detector to the output of the other.

To implement this idea we proceed as follows. We write the output ‘
sp(t) of the k-th detector as sip(t) = hu(t) + ni(t), where kb = 1,2
labels the detector. Observe that the scalar output hy(t) depends in
general on the detector, because different detectors can have a different
location and/or a different orientation and therefore a different pattern ‘
function. We are interested in the situation in which the GW signal
hy(t) is much smaller than the noise ny (t), which is the realistic situation
for all ground-based detectors, as we have seen in the previous section.
Multiplying both sides of eq. (7.188) by the detector tensor D% and

using eq. (7.21), we can write the GW signal hy, in the k-th detector as

- > / df/dznhA

A=+,x

h}, t Xk —27mf(t nxk/c)FA( )

7.218
where FA i+ are the pattern functions of the k-th detector and x;E is 11;2
location. As always, the size of the detector is taken to be much smaller
than X, so we can neglect the spatial variation of the GW over the
extension of the detector. Passing to the Fourier transform, we have

hk Z /dQH}LA(f ) 2717fnxk/(FA( )

A=-+,X

(7.219)

where we denote Ay (f,x;) simply as hi(f).
s51(t) and s2(¢) of the two detectors we define

T/2 T/2
/ dt/ dt’ sy (D)sa(t)Q(t — 1),

T/2 T/2

To correlate the outputs

(7.220)

where 1" is the total observation time (e.g. one year) and @ a real filter
function, analogous to the function K (t) in Section 7.3. Y is our signal,
and we want to maximize its signal-to-noise ratio.

We limit ourselves to functions Q(t — ¢') that fall rapidly to zero for

large |t — t'|. Passing to the Fourier transforms, we get
-+o0
Y= / dfdf'df" or(f — f")or(f = f1)51(N)&(f)Q(f"), (7.221)
where
T/2 ‘
or(f) = / dt e ft
~T/2
sin(wfT)

= (7.222)

and becomes a delta function in the limit f7°— oco. Even on a relatively
short stretch of data with, say, T = 103 s, at f =
fT = 10%. Over the whole useful bandwidth of ground-based detectors
we can therefore replace ér(f) by a Dirac delta, and eq. (7.220) becomes

10 Hz we have

00
v [ dsinsma. (7.223)

Recall that, in the signal-to-noise ratio S/N, S is defined as the ensemble
average value of Y when the signal is present, while IV is the rms value of
Y when the signal is absent. Then, assuming that the noise in the two

_detectors are not correlated (and averaging also over the polarization
_angle ¢),

s= [ s
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59%0r two detectors of the same type
this means to orient them in the same
way, so in a two-interferometer correla-
tion the arms are taken to be along the
z and y axes for both interferometers,
and for a two-bar correlation the longi-
tudinal axes of the bars are taken paral-
lel to each other. For the correlation be-
tween a bar and an interferometer, we
see from the form of the pattern func-
tions given in Table 7.1 that the opti-
mal correlation is obtained aligning the
longitudinal axis of the bar with one of
the arms of the interferometer.

[Ty [ [ e

oo 4 A
x F{ () F (85 9) (R (f, )ha (£,0) Q(F) . (7.224)
Using eq. (7.190), together with 6(0 fTﬁz = T, this becomes
s=% [ @S, (7.225)

where we have defined
n=% |5

and Ax = Xo—X; is the separation between the two detectors. The func
tion I in called the (unnormalized) overlap reduction function. It takes
into account the fact that the two detectors can see a different gravi-
tational signal, either because they are at different location or because
they have a different angular sensitivity.

The difference in location is reflected in the exponential factor. In par-
ticular, if 27 fAxz/c > 1, i.e. if the separation Az >> X, this exponential
is rapidly oscillating and suppresses strongly the correlation. This reflect
the fact that, when Az > X, the two detectors are experiencing GW
signals that are uncorrelated.

The different angular sensitivity of the two detectors is instead re-
flected in the term 3 , Fi*(A)F5' (). It is also useful to introduce the
quantity

o
expqi2nfa- — 3,
¢

> F()Ff ()
A

(7.226)

(7.227)

ma= (42 [ Srtwnm

aligned

where the subscript means that we must compute £, taking the two
detectors to be at the same location and oriented one relative to the
other so that the quantity Fis is maximized.%® Observe that, if the two
detectors are of the same type, e.g. two interferometers or two cylindrical
bars, Fio is the same as the constant I’ defined in eq. (7.37). The
(normalized) overlap reduction function v(f) is defined as

(7.228)

For instance, for the correlation between two interferometers, Fj5 = 2/5.
The factor Fio takes into account the reduction in sensitivity due to the
pattern functions, already present in the case of one interferometer, and
therefore v(f) separately takes into account the effect of the separation
Ax between the interferometers, and of their relative orientation. With

this definition, v(f) = 1 if the separation Az = 0 and if the detectors
are perfectly aligned. However, the use of T'(f) is more convenient when
we want to write equations that hold independently of what detectors
(interferometers, bars, or spheres) are used in the correlation.

We now find the optimal choice of the filter function Q(f) that max-
imizes the signal-to-noise ratio. We need to compute

N?=[(Y*) = (Y)?],_, (7.229)

-/ " atar QNG ()
(33 (£ (F)n ()75 () — (L (D)aa () 3 Y (F))] -

If the noise in the two detectors are uncorrelated, the mixed correlator
(05 (f)n2(f)) vanishes, so the second term in brackets is zero, while the

first factorizes (R (f)nz(f)fn(f)n5(f')) = (1 (f)na(f)) (A2 (£)R3 ().

Then we get

N* = /_ oo\ dfdf' Q(NHQ* (A5 (Fiw (F)) (73 (f )iz (f)) . (7.230)

Using )

(£ (F)) = 8(F = £)5Sna(), (7.231)
where S, x(f) is the noise spectral density of the k-th detector, and
using 6(0) = T, we finally get

T

ve= 7 [ ariamesi, (7.232)
where we have defined the combined noise spectral density
Su(f) =[S (F)Sna ()2 (7.233)

Equations (7.225) and (7.232) show the same crucial feature that we al-
ready observed when we discussed the matched filtering for periodic sig-
nals: the signal S increase linearly with the observation time 7', while the
noise N increases only as T'%/2. Therefore, the signal-to-noise ratio in-
creases with the observation time as 7'%/2, Putting together egs. (7.225)
and (7.232) we have

S _ s Lt SORUA)
" [f #1002

We can now find the filter function Q(f) that maximizes S/N. The
procedure is analogous to what we have already done between eqgs. (7.45)
and (7.51). For any two complex functions A(f), B(f) we define the

(7.234)

_ positive definite scalar product

.8) = [ " A(1)B()SAS). (7.235)
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00bserve that, for periodic signals
and for bursts, as well as for a single-
detector search of stochastic back-
grounds, we defined the quantity S/N
as linear in the GW, ie. if h(f) —
Ah(f), then (S/N) — A(S/N), see
eq. (7.51) and eq. (7.213). For searches
of stochastic backgrounds with two-
detector correlations, we have rather
defined S/N as linear both in h (¢) and
in ha(t) and therefore S/N scales over-
all quadratically in the GW amplitude.
If we prefer to use a quantity that is lin-
ear in the GW amplitude we can define
SNR = (S/N)l/z, so SNR is propor-
tional to 71/4. Of course, it is a matter
of conventions whether to use SNR or

(S/N).

Then eq. (7.234) can be rewritten as

o larss)

N (Q) Q)i /2

As we already discussed below eq. (7.47), this expression is maximized
choosing

(7.236)

F(j)Sh(f) )

Q(f) = const. S20/)

(7.237)

It is important to observe that the optimal filter depends on the sig-
nal that we are looking for, since Si(f) enters eq. (7.237). Plugging
eq. (7.237) into eq. (7.236) we find the optimal signal-to-noise ratio,

S (FSh, T5h>1/2

N Sz S

or, writing explicitly the scalar product,”™

00 2 1/2
e TR

In particular, for a two-interferometer correlation, I'(f) = (2/5)y(f) and

S (8 55(]”)}1/2
<N>intfintf B {25T/0 df,y (f> S?z(f) .

For two cylindrical bars, instead, I'(f) = (8/15)(f), while for the cor-
relation between an interferometer and a cylindrical bar, from the ex-
plicit expressions of the pattern functions in Table 7.1, we get again
I(f) = (2/5)1(5).

Using eqgs. (7.233) and (7.202) we can also rewrite eq. (7.239) as

(7.240)

1/2
S 3H? /” - Q2 (f)
— =— |27 df T°(f)— , 7.241
N T T RS s (724
and in particular, for a two-interferometer correlation,
1/2
S 3H3 > Q2. (f)
(%) =l [ e e
N/ inte—ine 107 0 f0Sn1(f)Sn2(f)
(7.242)

We can now compare the measurements of stochastic backgrounds per-
formed with the two-detector correlation, to the measurement which

uses a single detector, both from the point of view of sensitivity, and of ;

the ability to discriminate true GWs from noise.

(7.238)

Comparison of two-detector and single-detector sensitivities

To compare the sensitivity of a two-detector correlation with the sensi-
tivity of a single detector we assume that we have two identical detectors
at a very close distance and with the same orientation, so that T'(f) be-
comes equal to the angular efficiency factor Fio = F. (This is the most
favorable situation; however in practice, if the detectors are too close,
there will be correlated noise.) To perform an order-of-magnitude esti-
mate, we approximate eq. (7.239) as

512

g\ 2

— | ~(2TAf)F* L 7.243
(%) ~eranrg, (7213
where Af is the useful bandwidth of the detectors, centered around
a frequency f, and S, and Sy are typical values of S, (f) and Sp(f),
respectively, over this bandwidth. Then the minimum detectable value
of Sy, at signal-to-noise level S/N, is

Sn (S/N)
QTAf2 T F

(Sh>min ~ (7244)

and therefore

Ax?  f38,  (S/N)

Q rw min ™ G
(] 3HZ (2TAf)Y/2  F

(7.245)

where f2 is really a typical value of f3 over the bandwidth. Comparing
eq. (7.244) with eq. (7.214) we see that, correlating two detectors, we
have gained a factor (2'Af)~1/2. Numerically,

1 ~1x10-5 150 Hz \ */? lyr 1/2
(TAf)Y/2 Af T '

Therefore, integrating for one year the output of two detectors with a
bandwidth of 150 Hz, we can improve our sensitivity to S, and there-

(7.246)

.~ fore to h3Qgw, by approximately five orders of magnitudes, with respect

to the sensitivity of a single detector.™ It is interesting to compare these
results with the matched filtering procedure discussed in Section 7.3. In
Section 7.3 we took advantage of the fact that we knew the form of the
signal, in order to discriminate it from the noise. Here, instead, in a
single detector both the signal and the noise have the same statistical

properties, but we took advantage of the fact the signals in the two de-

tectors are correlated, while the noise are decorrelated. In particular,
the measure of the correlation between the signals in the two detectors
is given by the overlap reduction function I'(f) of eq. (7.226), which
shows that the signals are indeed well correlated if the separation be-
tween the detectors is much smaller than X, and if the detectors are well
oriented with respect to each other. Technically, the assumptions that
the noise are uncorrelated entered in eq. (7.224), as well as when pass-
ing from eq. (7.229) to eq. (7.230), where we neglected the correlator

(5 (Hia(f)).
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"I The precise numbers, of course, can
only be obtained once we have the form
of Sp(f) and of Sn(f), carrying out
the integral in eq. (7.239). Observe
also that in eq. (7.214) appears (S/N)?
while in eq. (7.244) appears (S/N), but
this is simply a consequence of the fact
that, for the two-detector correlation,
we have defined S/N as a quantity
quadratic in the GW amplitude, while
for a single detector we defined it to be
linear in the GW amplitude. Once we
choose our criterion for fixing the confi-
dence level, e.g. a signal-to-noise ratio
1.7 in amplitude, the quantity that we
are denoting by (S/N)2? here and the
quantity denoted by S/N in eq. (7.214)
have the same numerical value.
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Recall however that the optimal filter depends on the form of the |
signal. A stochastic background of cosmological origin, as we will see in
Vol. 2, is not expected to show strong spectral features in the bandwidth
Af ~ 1 kHz of ground based interferometers, so it should be adequate :
a simple power-law parametrization,

thgw(f) = I(fa

where K and o are two parameters, and « could be positive or nega-
tive. For each value of o we can construct the optimal filter (the overall
constant in the filter is irrelevant, as we have seen, so different values |
of K give the same filter) and, given the noise spectral density S,(f),
eq. (7.239) gives S/N as a function of K and o, and therefore tells us
what region of this parameter space can be explored, at a given con- |
fidence level. For astrophysical backgrounds, more elaborated parame-
trizations of hgQgw(f) might be necessary at broadband detectors.

(7.247)

Non-stationary noise

Until now, we have assumed that the noise in the detectors is stationary, |
and that it can be represented by a fixed function S, (f). However, such
an assumption is not realistic, even more considering that we wish to use |
a very long observation time, of the order of months. Each detector has
periods where it is more quiet and periods where, because of environ- .
mental or other disturbances, it is more noisy. Therefore the function
S, (f) changes with time, and we must know how to combine periods in
which the detectors had different noise. To study this issue we can sub-
divide the total observation time 7" into 7 intervals of length T, where
I =1,...,m labels the interval of data, and with 7" = >7° | T7. We
choose the T so that within each interval the noise of the two detectors
can be considered stationary. To each of these intervals we can then |
apply eq. (7.239), so the value of the optimal signal-to-noise ratio from

this interval is
2 .00 . ;
<§> - 2T1/ dfFQ(f)ﬁg)— (7.248)
I 0 ‘

N Sh(fi1)
Here S,,(f;I) is the total noise spectral density during the /-th interval, :
S2(f;1) = Snui(f; DSna(f;1), where S, ;(f;1) is the noise spectral
density of the j-th detector during the I-th interval. We now ask how
we should combine the (S/N); of the different intervals to form the
total optimal signal-to-noise ratio. The correct answer can be guessed
observing that the optimal (S/N)?% is linear in 77, see eq. (7.248) and,
in the limit in which the noise is stationary over the whole observation
time 7, we must find that the total optimal signal-to-noise ratio S/N |
satisfies (§/N)? ~ T = 3, Tr. This fixes uniquely the relation between
the total optimal signal-to-noise ratio S/N and the (S/N)y,

EEGL o

I=1

The same result can also be obtained more formally introducing the

observable S Yy
ZI Ar
(where it is understood that the sums run over I =1,.. ., m) and choos-
ing the variables A\; > 0 so that the signal-to-noise ratio of Yiot is maxi-
mized. From eq. (7.225), with T replaced by T7, we see that the Y have
a mean value

Yiet = (7.250)

S{ = <Y1> = ,uT] s (7251)

where u = fooo df Su(f)T( £)Q(f) is independent of I. For the noise,
from eq. (7.232) we have

Ty [ ~
Nt = [ dfIQUPSID)
= Tro}. (7.252)
The signal-to-noise ratio S/N of Yiq is obtained by writing
2Ty
S = (Yiot) = p=5—, 7.253
(Yior) = Y ( )
and
N? = (Y20~ (Yo
2 2
_ ol (7.254)

Q2 An?

where we assumed that noise in different intervals are uncorrelated, so
(Y]YJ> = 5IJN12. Therefore

§Q_: 2 (ZI{‘ITI)Q.
N? 2 ATy

The maximization of this expression with respect to the Ay can be per-
formed very simply, introducing the positive definite scalar product be-
tween two vectors with real components a; and by,

(a,b) = Z arbro?Tr.
1

(7.255)

(7.256)

Then g N
2oy _(_J_’(_’l__) _ (7.257)
N (Ar, Ar)1/2
This expression is maximized if the vectors with components A and 0;2
are parallel, so A\; = 1/0? (apart from an irrelevant overall constant).
Physically, this means that more noisy periods are weighted less. Then
the variable Yop¢, whose signal-to-noise ratio is optimal, is given by

Do UIQYI

}/opt = -
1 ‘712

(7.258)
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21 practice, it can be more conve-
nient to perform a FFT over the seg-
ment and use the frequency space ex-
pression (7.223).

and the value of the optimal S/N is given by

which, using eqs. (7.251) and (7.252), is equivalent to eq. (7.249), as
expected. Equation (7.239) then becomes

1/2

s _ = , - m T, ‘
= {2/0 IO Y s (7.260)

This is equivalent to saying that, in eq. (7.239), we must make the
replacement

T ™m TI
S " = EED

This way of composing the noise is very natural. It means that noisy
periods contribute little to the total signal-to-noise ratio. If we perform

the same order-of-magnitude estimate as in eq. (7.245), we conclude that

1 G 1

N - (7.262
[ng(f)}?nin ; [ng(f; I)]?mn )
where [Qgw (f; 1) min is the minimum value of gy, detectable using only
the data in the I-th interval, and [Qgw (f)]min is the minimum value of
Qg detectable combining the n intervals.

How the background is actually measured

We can now give an example of an operative way of measuring the
stochastic background. First of all, one divides the total observation
time T into intervals of length 77, such that within each interval the
detector noise is stationary. This scale is chosen based on observations
of the detector noise variation, and could typically be of order of one
to a few minutes. Within each interval, the spectral density S, (f;I)
can be considered constant in time, and is determined experimentally.
We can now compute the filter function, using the measured value of
Sn(f; I) and assuming a given form for €. For instance, (g, = const.
can be the simplest choice, or one can use the parametrization (7.247)
and repeat the procedure for various values of a.

To have an experimental determination of St = (¥7) and of N; =
[(Y72) = (Y7)?]'/? one further divides each interval into segments of length
At, labeled by an index J = 1,...,n, and with 7; = nAt (with At much
larger than the light travel time between the detectors, which for the two
LIGO observatories is about 10 ms). The signal Y7 relative to the J-th
segment of the I-th interval is computed using eq. (7.220), with the time
integration running only over the J-th segment of the /-th interval.”®
Observe that the filter function Q(t —#') typically vanishes very fast for
|t — ¢'| larger than a few tens of ms, so in practice if ¢ belongs to the

(7.261)

J-th interval, the support of Q(¢t — t’) is entirely contained in the J-th
interval.
From the set of Y7, at fixed I, one can construct the sample mean

1 n

Sr==> Y11, (7.263)
n
J=1
and the sample variance
1 n

7= Yis—S1)?, 7.264
Nj n_lz( 17— 51) (7.264)

J=1

of the I-th interval. We repeat this procedure for all intervals and,
according to eq. (7.249), the total signal-to-noise ratio is

(3 -G

I=1

(7.265)

If this S/N exceeds a predetermined threshold value one can state that a
stochastic background is detected, with a confidence level which depends
on the threshold used.™

Multiple-detector correlation

Another interesting question is what happens if we correlate the outputs
of N detectors, with N > 2. For simplicity, we assume at first that we
have N identical detectors, with the same noise spectral density S, (f),
and all running simultaneously for a time 7.
With N detectors we can form N(N — 1)/2 independent two-point
correlators
Yi; =

T'/2 T/2
dt / dt' si(t)s; (HYQt — 1), (7.266)

—T/2 —T/2

with ¢ < j. (If the detectors have different noise spectral densities,
then also the filter function depends on 4,7, and we write it @Q;;(t —
t').) Conceptually, for a stationary stochastic background, there is no
difference between the situation in which N(N — 1)/2 identical pairs of
detectors run for a time T, and the situation in which a single pair of
detectors runs for a time Tiota = T X N(IN — 1)/2. In the former case,
sampling the output of the detectors at times ¢5, with £ =1, ..., kmax,
we get a set of values Y;;(¢x), for each of the N(N —1)/2 pairs (4, 7). In
the latter case we directly get a set of values Y (i) for the single pair
considered, with k taking values up to kmax X N(N — 1)/2. In both
cases we must then compute the average of Y over all these values, so
the result is the same and the difference is just a matter of notation. In
conclusion, the signal-to-noise ratio with N identical detectors can be
obtained from eq. (7.239) making the replacement

(N —
SNV -1 4

T —
2

(7.267)
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73 A subtle point is that it can be shown
that, if we wait long enough, i.e. if
the total observation time is sufficiently
large, any predetermined fixed thresh-
old will be exceeded. In other words,
in the limit 7 — oo the false alarm
probability is 100%! To have a finite
false alarm probability even in the limit
T — oo, the value of the threshold must
increase with the number of intervals n
faster than loglogn.



410 Data analysis techniques

In contrast, for stochastic backgrounds we are never confronted with
rare events. At any given moment the GW stochastic signal is always
much below the noise, and is never responsible for large fluctuations of
the output. There are no rare events to be searched in coincidence, and
the only advantage of using more detector pairs is that the total amount
of data available increases, which means that we have a longer effective
observation time.

The situation does not change substantially if, rather than two-point
correlators, we consider M-point correlators, with M smaller than or
equal the number of detectors N. For instance, with four detectors we
can consider a four-point correlator (si(f)s2(f)ss(f)sa(f)). Repeating
the same steps as above, one finds again that the signal-to-noise ratio
(always defined to be quadratic in the GW signal, in order to compare
with the same quantity as in two-detector case) scales as VT.

On the other hand, an advantage of multiple-detector correlations
is that it might be easier to suppress correlated environmental noise,
_ especially if the various detectors are not close to each other.

If we denote by [Qgw]min,n the minimum value of Q,,, measurable with
N identical detectors and by [Qgw]|min,2 the minimum value of Qg de
tectable with two detectors, then

9 1/2
—]V(TVA—I)_} [ng]lninj .

In the more realistic case in which the detectors have different noise spec-
tral densities, or have different common time of operation, the situation
is formally identical to the case of non-stationary noise discussed above,
where the observations taken during a time 73; by each pair of detectors
(4,7), with 4 < 7, plays the role of the observations taken during the
time intervals labeled by I in eqs. (7.260) to (7.262). Therefore, the
signal-to-noise ratio is obtained from eq. (7.239) with the replacement

[ng}min,N - { (7268) :

T . Ty v
Si() ;S,,%(f; (7)) (7.269)

where Tj; is the common time of operation of the detectors i and j, and
S2(f3 (7)) = Su(f;9)Sn(f;4) is the product of the spectral densities
of the i-th and j-th detector. The order-of-magnitude estimate of the
minimum detectable value of gy, eq. (7.262), becomes

1 _ 1
{ng(f)}?mn,N a [ng(f§ <L.]>)h2nm .

Correlated noise and signal chopping

Equation (7.239) shows that a true GW signal has a signature that in
principle could allow us to distinguish it from the noise: increasing the

(7.270) observation time, the signal-to-noise ratio in the presence of a real GW

1<j

When all detectors are equal and have the same common time of op-
eration, [Quw(f;(77))]min becomes independent of the pair ,j consid-
ered, and is the quantity that we denoted by [Qgw|min,2, S0 We recover

eq. (7.268).
In a sense, this result is disappointing. We have seen in eq. (7.245)
that, passing from a single detector to a two-detector correlation, we

gain a factor 1/(2TAf)*/? in the minimum detectable value of Quw. For
T'=1yrand f = 100 Hz, this means and improvement by a factor 105
in sensitivity. Passing from N = 2 to N = 3 detectors, instead, we see

from eq. (7.268) that we gain only a further factor v/3.
This is very different from the situation for bursts discussed in Sec:
tion 7.5.3. In the case of bursts, the noise that compete with the signal

consists of large, relatively rare fluctuations. At any given moment the

probability that, in a single detector and within a given time window, say
of order few tens of ms, a fluctuation with a signal-to-noise ratio above
a large threshold takes place, is a small number ¢ < 1. The probability
that a second detector has a simultaneous independent fluctuation above
this threshold, within the same window, is O(e?), the probability of a
three-detector coincidence is O(e?®), etc. Then, for bursts, the gain in
statistical significance passing from a single detector to a two-detector
coincidence is that same as the gain passing from a two-detector to:a
three-detector coincidence. The crucial point is that for bursts, after
matched filtering, we are left with short events with a large value of
S/N, which are rare.

signal must increase as T%/2.

Actually, this is a signature that only allows us to distinguish a sto-
chastic GW background from uncorrelated noise in the two detectors.
Unfortunately, any residual correlated noise would still mimic the behav-
ior of a real GW signal. The problem is therefore how to make sure that
correlated noise are negligible, and this can be a hard task, particularly
for very long integration times. If two detectors are at the same site,
or very close, their overlap reduction function is maximized, but we will
certainly have correlated environmental noise. We have seen that the
overlap reduction function suppresses the GW correlation if the detector
separation is Az > X. For instance, at f = 50 Hz, X ~ 1000 km. Most
environmental disturbances will decorrelate on a much shorter length-
scale, so it is possible that two detectors at a suitable distance are still
correlated as far as the GW background is concerned, but they have
negligible correlated noise. However, beyond a given sensitivity level,
seismic noise or propagating electromagnetic disturbances might still
give important correlated noise, and this is a difficult issue that will
have to be carefully studied experimentally.

An interesting option offered by the two-detector correlation is the
possibility of chopping the signal. Chopping is a general term for mea-
surements in which we switch our detector between the quantity that we
want to measure and a reference quantity. It is a very powerful experi-
mental technique, that exploits the fact that in many situations one can
measure with a much better precision the variation of a quantity rather
than the quantity itself because, taking the difference, many uncertain-

7.8  Stochastic backgrounds 411
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" The classical example of this tech-
nique was the Dicke radiometer, which
was developed by Dicke during World
War 1I for application to microwave
radars, and measured the radiation
temperature of a radio source (i.e. the
temperature of a black body having
the same radio brightness). A direct
measurement was difficult: the signal
needed a large amplification, and fluc-
tuations in the amplifier gain resulted
in large errors. To overcome this dif-
ficulty, in the Dicke radiometer the
receiver switches quickly between the
source and a carefully calibrated black
body, whose temperature was chosen to
be of the order of the value expected
for the source. To tell when these tem-
peratures were equal was much eas-
ier than to obtain a direct determina-
tion of the source temperature. The
same principle of comparing with a ref-
erence black body was used by the
FIRAS spectrometer on board of the
COBE satellite to measure the black-
body spectrum of CMB. To measure
the CMB anisotropies, i.e. the varia-
tion of the black-body temperature over
the sky, the principle used by the DMR
detector on COBE and by the subse-
quent high-precision experiments such
as WMAP is to compare the tempera-
tures between two points in the sky.

ties, e.g. calibration uncertainties, cancel out.”™ In particular, one can
compare the measurement in a situation where the signal is expected,
to the situation where a null answer should come out.

At first sight, it appears that a measurement of this type is impossi-
ble for a stochastic backgrounds of GWs, since the background is always

there, and gravitational forces cannot be screened. It seems therefore

impossible to compare the output of a detector when no stochastic GW
background acts on it, with the output when the background is acting on
it. Remarkably, this is no longer true when we consider a two-detector
correlation. In fact, changing the relative orientation of the two de:
tectors, the factor Y, F{'(0)F35' () in eq. (7.226) changes, and it is
therefore possible to modulate the signal. To illustrate this point, we
compute Fip for a bar-interferometer correlation. Using Table 7.1 and
egs. (7.31) and (7.32) we see that, for ¢ generic, the pattern functions
of an interferometer are

F_ﬁmtf)(é, &5, ) = 5(1 + cos? ) cos 2¢ cos 2¢) — cos B sin 2¢ sin 24,

intf 1 .
Fi m(@, ¢ ) = 5(1 + cos” 0) cos 2 sin 24 + cos O sin 26 cos 24) .
(7.271)

The pattern functions of the bar for ¥ generic can also be obtained from
Table 7.1 and eqs. (7.31) and (7.32). We must however pay attention to
the fact that in Table 7.1, the variable denoted by @ for resonant bars is
the angle measured from its longitudinal axis, while for an interferometer
with arms along the x and y axes, we denoted by 6 the polar angle
measured from the z axis, so these two angles are not the same unless
the bar is vertical. If instead the bar lies in the z,y plane, at an angle
o with the y axis, and we denote by 8 the polar angles measured from
the z axis, then the pattern functions of the bar become

Fibm)(ﬁ./ ¢;,1) = [~ cos? fcos? (¢ — ) + sin?(¢ — a)] cos 2t
+cos @ sin 2(¢ — )] sin 2¢)
FP(9, 61 ) = [~ cos? 0 cos(¢ — o) + sin®(¢ — )] sin 24

~[cosOsin2(¢p — )] cos 24 . (7.272)
From this it follows that
dn dvp (bar) (intf) 2
aoniutd phar) @ — %o
/ o EA Wy 7 Cos 20 (7.273)

(The overall sign of Fy is irrelevant since I'(f) enters quadratically in
the signal-to-noise ratio.) We see that the correlation is maximum when
the bar is aligned with one of the interferometer arms (i.e. when o =0
or & = 7/2). In contrast, when a = 7/4 we have Fi5 = 0. Therefore in
this configuration the signal obtained from the interferometer-bar corre=
lation vanishes. Even if GWs cannot be screened, the “composite detec:
tor” whose output is the correlation between a bar and an interferometer
can be set in the “off source” position! We can then compare the result

in this configuration with the result when the resonant bar is parallel
to one of the interferometer arms, which is the position that maximizes
the correlation. This chopping strategy has been used in the LIGO-
ALLEGRO correlation. The ALLEGRO resonant bar (which has now
terminated its activity) was located relatively close to the LIGO obser-
vatory in Livingston, and was mounted on a platform that allowed to
rotate it easily. (After a rotation, data taking of good quality resumed
in just half an hour.) The bar was therefore taken for a few months in
the “off source” position, and then rotated to the “on source” position
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for a few more months.

Further reading

e For a textbook discussion of matched filtering

and of detection of signals in noise see Wainstein
and Zubakov (1962) and McDonough and Whalen
(1995). For matched filtering and optimal signal-
to-noise ratio for GW bursts see Thorne (1987), and
Saulson (1994), Chapter 4. Statistical aspects of
parameter estimation are discussed in Finn (1992)
and in Cutler and Flanagan (1994), where the mul-
tiple detector case is also treated. For a review of
data analysis for interferometric GW detector see
Viceré (2000).

Books on probability and statistics typically cover
many shelves in any physics library, and recommen-
dation are very much subjective. For an elementary
but very practical introduction to statistics (tuned
to the needs of particle physicists, but quite useful
also in the GW context), see Lyons (1986). A con-
cise and useful summary is given in the sections on
probability and statistics of the Review of Parti-
cle Properties, in Yao et al. [Particle Data Group]
(2006). A very nice discussion of Bayesian vs. fre-
quentist method, in the context of particle physics,
is given in Cousins (1995). A discussion of the fre-
quentist vs. Bayesian approach in the GW con-
text is given in appendix A of Cutler and Flanagan
(1994).

The analysis of bursts of unknown shape using
band-pass filtering is discussed in Flanagan and
Hughes (1998a, 1998b), in the context of the
merging phase of black hole binaries. Time-
frequency techniques are further discussed in An-
derson and Balasubramanian (1999), Anderson,
Brady, Creighton and Flanagan (2001) and Viceré
(2002). An algorithm based on clusters of pixels

in the time—frequency domain (termed TFCLUS-
TERS) is presented in Sylvestre (2002). A book
on the use of wavelets in physics is van den Berg
(1999). Application of wavelets to the analysis of
GW bursts can be found in Klimenko, Yakushin,
Rakhmanov and Mitselmakher (2004) and Kli-
menko and Mitselmakher (2004) (the WaveBurst
algorithm).

Some sources, such as accreting neutron or quark
stars, as well as neutron stars stressed by large inte-
rior magnetic fields (magnetars), could emit repeat-
edly small bursts of GWs, with very characteristic
correlations, both in energy and in time, among
the different bursts, typical of systems displaying
self-organized criticality. These correlations could
give a further handle in their data analysis. These
“GW bursters” are discussed in Coccia, Dubath
and Maggiore (2004) and Dubath, Foffa, Gasparini,
Maggiore and Sturani (2005).

The search strategy for GW bursts using the three
LIGO interferometers is discussed in Abbott et al.
J}(2004b). The sensitivity of a network of in-
eters for reconstructing the source position
is studied in Giirsel and Tinto (1989). Searches
for GW bursts using coincidences between up to
five resonant bars are described in Astone et al.
[IGEC] (2003a). Results with correlations among
three bars, with improved sensitivities, are reported
in Astone et al. [IGEC2] (2007).

Introductory discussions of the search strategies for
periodic signals can be found in Saulson (1994),
Section 14.6 and Schutz (1991). More detailed
analysis are given in Brady, Creighton, Cutler and
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Schutz (1998) and in Brady and Creighton (2000).
The application of the Hough transform to peri-
odic GWs is discussed in Krishnan et al. (2004).
A search for periodic GWs from a single specific
source, using the LIGO and GEO detectors, is de-
scribed in Abbott et al. [LSC] (2004a). Limits on
28 isolated pulsar using the LIGO S2 run are given
in Abbott et al. [LSC] (2005b).

The importance of post-Newtonian corrections for
the data analysis of coalescing binaries is empha-
sized in Cutler et al. (1993). Detailed discussions of
data analysis procedure and parameter extraction
for coalescences is given in Cutler and Flanagan
(1994), Poisson and Will (1995), Krélak, Kokko-
tas and Schéfer (1995) and Flanagan and Hughes
(1998a). For computations of the waveform with
the PN formalism, see the Further Reading section
in Chapter 5.

Optimal template placement for inspiraling com-
pact binaries is discussed in Owen (1996) and Owen

and Sathyaprakash (1999). A comparison of tem-
plates for binary inspiral is given in Damour, Iyer
and Sathyaprakash (2001). A particularly useful
family of templates for BH-BH inspiral have been
proposed by Buonanno, Chen and Vallisneri (2003).
A description of the LIGO search strategy for co-
alescences can be found in Abbott et al. [LSC]
(2005a).

The optimal SNR in a two-detector correlation
and the overlap reduction function are discussed in
Michelson (1987), Christensen (1992) and Flana-
gan (1993). A detailed discussion of signal process-
ing strategies for stochastic backgrounds of GWs ig
given in Allen and Romano (1999). Signal chopping

is discussed in Finn and Lazzarini (2001). Stochas-

tic backgrounds of GWs are reviewed in Maggiore
(2000). The search strategy of LIGO for stochastic
backgrounds of GWs is discussed in Abbott et al.
[LSC] (2004d) and (2005¢).

Resonant-mass detectors

The history of experimental GW physics began with resonant-mass de-
tectors. The pioneer was Joseph Weber who, in the 1960s, developed the
concept and built the first resonant bars. In the course of the subsequent
four decades, resonant-mass detectors operated by various groups have
reached sensitivities better than Weber’s original bars by about four or-
ders of magnitudes in energy. Still, we will see in this chapter that these
sensitivities could allow the detection of only relatively strong signals in
our Galaxy or at most in our immediate galactic neighborhood, which
are expected to be rare. To gain access to sources at large extragalactic
distances it is necessary to build large interferometers, which will be the
subject of the next chapter.

The passage from resonant detectors to interferometers implies a jump
from “small-scale” experiments, performed by groups which can be as
small as half a dozen people, to “Big Science”, with collaborations
of hundreds of people and financial costs which are higher by factors
0(10?-10%). As we will see in the next chapter, such a jump is justified
by the formidable discovery potential of interferometers and especially
advanced interferometers. We nevertheless begin our discussion of ex-
periments with resonant-mass detectors, both because they still have
the possibility of detecting rare or unexpected events, and also because
their study is instructive in itself. Our emphasis will be on aspects that
have an intrinsic conceptual interest, such as understanding how a GW
interacts with a macroscopic piece of matter, and on how it is possible to
detect vibrations of a macroscopic body which are incredibly small, with
amplitude many orders of magnitude smaller than the size of a nucleus.
We will see that, by themselves, resonant detectors are remarkable in-
struments; it is possible to measure vibrations in a two-ton object, such
as a typical bar, which corresponds to just a few tens of phonons, and
variations AL of their length L, with AL/L ~ 10711018,

8.1 The interaction of GWs with an
elastic body

8.1.1 The response to bursts

A typical bar is a cylinder of length L ~ 3 m and radius R ~ 30 cm, so
in a first approximation we can treat its vibrations as one-dimensional.
We orient the bar along the z axis, with the end-faces at +L/2, and we
study the dynamics of a volume element dV of the bar originally located

8.1 The interaction of GWs
with an elastic body

8.2 The read-out system
8.3 Noise sources

8.4 Resonant spheres
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