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Mn this case, the precise numerical fac-
tor is (v/c)? = Rg/(2d).

GW generation by
post-Newtonian sources

In Chapter 3 we discussed the generation of GWs assuming that the
background space-time can be taken as flat, i.e. that the sources that
produce GWs in their far-field region contribute negligibly to the space-
time curvature in their near-field region. We then computed the GW

production as an expansion in v/c¢, where v is some typical internal speed

of the source. We saw that the leading term is given by the Einstein

quadrupole formula, and that higher-order corrections in v/c can be

organized in a multipole expansion. This procedure assumes that the
background space-time curvature and the velocity of the source can be
treated as independent parameters, so that we can keep the space-time
flat, while taking into account the v/c corrections. This is indeed the case
when the dynamics of the system is governed by non-gravitational forces.
For example, a beam of charged particles accelerated by an external
electric field could reach highly relativistic speeds, but still it contributes
negligibly to the background space-time curvature, and for such a source
the formalism developed in Chapter 3 is adequate. For v/c < 1 we can
compute the corrections in powers of v/c to the leading quadrupole result
using the multipole expansion, since in this case the lowest multipoles
dominate. Even in the extreme relativistic case, where the multipole
expansion becomes useless, we can still compute GW production using
the exact formula (3.14). An example of the latter type of computation
was given in Section 4.4.

However, the astrophysical systems which are more interesting for

GW detection are held together by gravitational forces. In this case the

assumption that the velocity of the source and the space-time curvature
are independent is no longer valid, and the above formalism cannot bée
applied. In fact, for a self-gravitating system with total mass m we have
(v/c)* ~ Rg/d, where Rg = 2Gm/c? (so Rg has the meaning of the
Schwarzschild radius associated to the mass m) and d is the typical size
of the system (e.g. its radius, for an isolated source such as a rotating
neutron star, or the orbital distance for a binary system). For a binary
system we saw this explicitly in eq. (3.2).! More generally, the relation
(v/e)? ~ Rs/d holds for self-gravitating systems as a consequence of
the virial theorem.
gravitational field near the source, as soon as we switch on the v/c
corrections we must also, for consistency, consider the deviation of the
background from flat space-time.

Since Rg/d is a measure of the strength of the

5.1

In this chapter we discuss how to go beyond the limit of sources mov-
ing in flat space-time. For a self-gravitating system such as a binary
gbar, assuming that space-time is flat means that we describe its dy-
namics using Newtonian gravity, rather than general relativity. We will
see that, when dealing with a (moderately) relativistic system, held to-
gether by gravitational forces, the source must rather be described by a
post-Newtonian (PN) formalism. In Section 5.1 we recall the PN expan-
sion in general relativity, and we discuss how to obtain the lowest-order
correction to the Newtonian equations of motion. GW generation by
post-Newtonian sources is described in great detail in Sections 5.2-5.4,
and the application to sources with strong gravitational fields, such as
neutron stars and black holes, is discussed in Section 5.5.

The results of this chapter have first of all an intrinsic conceptual
interest, since we see here at work the full non-linear structure of general
relativity. Furthermore, this formalism is of paramount importance in
the computation of the waveform from an inspiraling binary system.
In fact, as we will see in Section 5.6.1 (and we will further discuss in
Chapter 7), a very accurate prediction of the waveform is necessary to
extract the GW signal of an inspiraling binary from the experimental
data. This waveform has by now been computed to very high order in
v/c, as we will review in Section 5.6. It is quite remarkable that non-
linear effects in general relativity of apparently very high order, in fact
corrections in v/c even up to order (v/c)”, are crucial for the extraction
of a coalescing binary signal from the experimental data. Conversely,
compact binary systems might turn out to be a unique laboratory for
testing the non-linear aspects of general relativity.

The post-Newtonian expansion

5.1.1 Slowly moving, weakly self-gravitating

sources

The relation between different possible regimes for the sources, depend-
ing on the strength of their self-gravity and on their velocity, is schemat-
ically illustrated in Fig. 5.1. In the plane (v?/c?, Rg/d), the region close
to the horizontal axis, where Rg/d is negligible, corresponds to sources
whose dynamics is governed by non-gravitational forces, and which can
be described using the linearized theory developed in Chapter 3. The
region close to the vertical axis corresponds to essentially static bodies,
which are not interesting sources of GWs. Slowly moving, weakly self-
gravitating sources correspond to the region of the plane where (v/c)?
and Rg/d are comparable, and none of them is too close to one. As we
will see in this chapter, they must be described by a post-Newtonian
formalism, so they are marked as “PN” in the figure. When Rg/d gets
close to one we are dealing with strong gravity, typically black holes or
neutron stars, and we have to resort to strong-field methods.

We now consider a slowly moving and weakly self-gravitating source,
which means that v/c and Rg/d are sufficiently small,? so we can use
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Fig. 5.1 The different regimes in the
plane (v?/c?, Rs/d).

2The term “slowly moving sources” can
be misleading. For instance, we will
be interested in applying the formalism
to inspiraling compact binaries made
of neutron stars or black holes which,
in the last stage of their coalescence,
can reach values of v/c as high as 1/2
(in correspondence with the innermost
circular orbit, defined by the minimum
energy for circular orbits), and in this
sense are very relativistic objects. This
means that we might need the result to
a very high order in v/c. Observe also
that the condition v/c < 1 must be im-
posed both on the bulk velocities of the
objects, such as the orbital velocities of
each neutron star in a NS-NS binary
system, and also on the internal veloc-
ities inside each extended body. This
means that we are also requiring that
the sources are at most weakly stressed.
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311 the presence of strong-field sources,
such as black holes or neutron stars, the
near zone can be further separated into
a strong-field near zone and a weak-
field near zone. The strong-field near
zone is the region contained inside balls
centered on the sources (e.g. around
the two stars in a binary system), and
with a radius equal to a few times their
Schwarzschild radius. The weak-field
near zone is the rest of the near zone,
i.e. is the near zone with these strong-
field regions excised. We will discuss
strong-field sources in Section 5.5.

“When studying the propagation of
GWs across cosmological distances, it
can be convenient to further distinguish
among a local wave zone and a dis-
tant wave zone. The boundary between
the two is where become important ef-
fects on the propagation of GWs such
as deflection or redshift due to the back-
ground curvature of the universe, or the
gravitational lensing induced by galax-
ies, etc. These effects have already been
studied in Section 1.5, and in the fol-
lowing we will only consider the local
wave zone. Technically, this implies
that we will consider background space-
times that are asymptotically flat.

them as expansion parameters, and that they are related by v/c ~
(Rs/d)*/?. We also demand that the matter energy-momentum tensor
T of the source has a spatially compact support, i.e. that it can be
enclosed in a time-like world tube r < d (more precisely, the statement
r < d is assumed to hold in the harmonic coordinate system defined
below), and that the matter distribution inside the source is smooth, i.e.
that T#¥(t,x) is infinitely differentiable over the whole space-time. We
will discuss in Section 5.5 the applicability of the formalism to systems
containing black holes.

Our aim is to understand how to compute systematically the correc-
tions to the results of linearized theory, in an expansion in powers of v/c.
Just as in electrodynamics, for a non-relativistic source it is convenient
to distinguish between the near zone and the far zone. We found in
eq. (3.24) that the typical reduced wavelength of the radiation emitted,
X, is larger than the typical size of the source, d, by a factor of order
¢/v so, for non-relativistic sources, d < X. The near zone is the region
r <€ X, and the exterior near zone is the region

d<r<X. (5.1)

In the near zone retardation effects are negligible, and we basically have
static potentials. We will see that in this region the post-Newtonian
expansion is the correct tool.® The far zone (or wave zone) is defined as
the region r > X.* In the far zone we have waves, retardation effects
are crucial and a different treatment is required. The near and the far
region are separated by an intermediate region at r ~ X (which, in
electromagnetism, is called the induction zone).

In a first approximation, we might think that the problem of comput-
ing GW generation from a weakly self-gravitating source, in an expansion
in v/c, has two aspects:

e We must determine the general-relativistic correction to the equa-
tions of motion of the sources up to the desired order in v/c, using
a post-Newtonian expansion.

e Given their motion to the desired order, we must compute the
GWs emitted by these sources. We have seen in Chapter 3 that
GW production can be organized in a multipole expansion, which
is an expansion in v/c. Thus, we cannot limit ourselves to the
quadrupole formula, but we must include a number of higher mul-
tipoles, consistent with the order in v/c to which we wish to work.

The real story is however more complex, and these two aspects can-
not really be separated. In particular, the emission of GWs costs energy
which is drained from the source so, beyond a certain order, GWs will
back-react on the matter sources, influencing their equations of motion.
Furthermore, because of the non-linearity of general relativity, the grav-
itational field is itself a source for GW generation, and the GWs which
have been computed to a given order in v/c, at higher orders become
themselves a source of further GW production. So, a full-fledged for-
malism for computing systematically the production of GWs of a self-
gravitating source in powers of v/c is necessarily quite complicated.

5.1

5.1.2 PN expansion of Einstein equations

The post-Newtonian approximation is a basic tool of general relativ-
ity, developed already in 1916 by Einstein himself, by Droste, de Sitter,
and Lorentz, and it has produced a number of classical results. Still,
when one tries to extend the lowest-order computations to a system-
atic all-order expansion, or when one wants to use it for computing the
generation of GWs, it raises important conceptual (as well as technical)
difficulties, and a fully satisfactory formulation emerged only in rela-
tively recent years.

We begin by analyzing the lowest-order post-Newtonian corrections to
the motion of the source, neglecting for the moment the back-reaction
due to GWs (as we will see, the back-reaction of GWs on the motion of
the source does not enter into play at the level of the first and even the
second PN corrections). As discussed above, we assume that the source
is non-relativistic, v/c < 1, and self-gravitating, so that (Rg/d)Y/? ~

_v/c. We introduce the small parameter®

e~ (Rg/d)"/? ~v/e, (5.2)
and we also demand that [7%]/T% = O(e?), i.e. that the source be
weakly stressed. For instance, for a fluid with pressure p and energy
density p, this means that p/p = O(e?). We then expand the metric and
the energy-momentum tensor in powers of €. As long as we neglect the
emission of radiation, a classical system subject to conservative forces
is invariant under time reversal.® Under time reversal goo and gij are
even, while gop; is odd. On the other hand, the velocity v changes sign
under time reversal so, as long as the invariance under time-reversal is
preserved, goo and g;; can contain only even powers of v (and therefore of
€), while go; can contain only odd powers of v. By inspection of Einstein
equations one finds that, to work consistently to a given order in e, if
we expand goo up to order €” we must also expand gg; up to order €1
and g;; up to €~ 2. Furthermore, the expansion of gg; starts from O(e).
Thus the metric is expanded as follows

goo=-1+ Fgoo+ Wgeo+ @goo+...,

@goi + Fgoi+...
6+ gy + Way+.,

(5.3)

where (Mg, denotes the terms of order € in the expansion of o7
94 p i3

Similarly, we expand the energy—momentum tensor of matter,
7% = OO0 @004

70 — (D0 | (3) p0i 4 ,
T4 = @i L@ pid

(5.4)

We can now plug these expansions into the Einstein equations, and
equate terms of the same order in €. To determine the order of the vari-
ous terms we must also take into account that, since we are considering a
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5When comparing with results in the
literature, observe that some authors
define € ~ v/c, as we do, while others
define € ~ (v/c)?.

6The emission of radiation breaks time-
reversal invariance through the bound-
ary conditions, since the no-incoming-
radiation boundary conditions (defined
in Note 1 on page 102) are transformed
into no-outgoing-radiation boundary
conditions or, in other words, the ve-
tarded Green’s function under time-
reversal becomes an advanced Green’s
function. We will come back to this
point below.

7Actually, one could always generate
terms with the wrong parity by per-
forming a gauge transformation. So
a more accurate statement is that, as
long as radiation-reaction effects are
neglected, odd terms in ggo such as
(5)g00 (as well as even terms in go;
and odd terms in g;;) satisfy homoge-
neous equations, and can be set to zero
with a gauge transformation. In con-
trast, even terms in goo (as well as odd
terms in ggp; and even terms in gij) sat-
isfy inhomogeneous equations, with the
appropriate terms from the expansion
of the matter energy—momentum ten-
sor on the right-hand side, so we cannot
find a gauge transformation that sets
them to zero. See Chandrasekhar and
Esposito (1970).
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source moving with non-relativistic velocity v, the time derivatives of th
metric generated by this source are smaller than the spatial derivative
by a factor O(v),

2] 7]

at :O(U)g}j;

or dg = O(€)0;. In particular, the d’Alembertian operator, applied to
the metric, to lowest order becomes a Laplacian,

(5.5

1 0°

2 o

This means that retardation effects are small corrections, and the lowest.
order solution is given in terms of instantancous potentials. In the PN
expansion we are therefore trying to compute some quantity F (t—r / c)
such as a given component of the metric, which is intrinsically a function
of retarded time ¢t — r/c, from its expansion for small retardation,

+ V2 =[1+0(H))V?.

7‘2

Wﬁ’(t) +.... (5.7)

F(t—r/c) = F(t) - %F(t) +
Each derivative of F' carries a factor of w, the typical frequency of the
radiation emitted. Since w/c = 1/X, we see that eq. (5.7) is in fact an
expansion in powers of r/X. Therefore the PN expansion is valid only in
the near zone, r < X, and breaks down in the radiation zone r >> X. We
will examine in detail this breakdown in the far region in the following
sections, where we will see explicitly how a naive extrapolation of the PN
iterative scheme up to r = oo leads to divergences. So, the PN expansion
is a formalism that can be used to compute the gravitational field in the
near region, but must be supplemented by a different treatment of the
far-field region, to compute the fields in the radiation zone.

5.1.3 Newtonian limit

Let us first recall, from elementary general relativity, that the Newtonian

limit corresponds to keeping gog = —1 + (Q)ggo, go: = 0 and g;; = ;5 in

eq. (5.3). In fact, the equation of motion of a test particle with velocity

v, in a gravitational field, is obtained from the geodesic equation

2. ¥ v

do g deldat (5.8)
dr? Bodr dr

In a weak gravitational field we write Guv = Nuw + hyy with |h,,| <1

and, in the limit of low velocities, the proper time 7 is the same, to

lowest order, as the coordinate time t. Furthermore, dz®/dt = ¢ while

dz'/dt = O(v). Then, the leading term in v/c is obtained setting p =

v =01in eq. (5.8),

5.1

Since we are considering a source moving with non-relativistic velocity,
the time derivative of the metric generated by this source is of higher
order with respect to the spatial derivatives, so to leading order eq. (5.9)
becomes , )

% = 92—8%00. (5.10)
Writing hoo = —2¢ and defining U by U = —c?¢, we recover the New-
tonian equation of motion a = VU, and we see that U is the (sign-
reversed) gravitational potential.® In a potential U, the virial theorem
tells us that a massive particle moves with a velocity v? = O(U), so hgo
is of order v?/c?. Comparing with eq. (5.3), we see that the Newtonian
limit corresponds to (Jggg = 2U/¢?, while all other corrections to the
flat metric do not affect the Newtonian equation of motion. Observe in
particular that 2) 9ij does not contribute to the Newtonian limit, despite
the fact that it is a correction O(v?/c?) to the leading term (Vg,; = d;,
just as Pggg is a correction O(v?/c?) to the leading term Vggg = —1.
This is due to the fact that, in the geodesic equation (5.8), 8" goo enters
through Iy, which is multiplied by (dz®/dt)? = ¢2, while the gradient
of the spatial metric, 8%g;y, enters through I, which is multiplied by
(dz? /dt)(da* Jdt) = O(v?).

It is worth remarking that here it was crucial that we considered the
propagation of a massive particle with v/c < 1. If we rather consider
the propagation of a photon in the metric generated by a non-relativistic
source, there is no v/c suppression since v is approximately equal to ¢,”
and the deviation from flat space in gop and in g;; both contribute to
leading order. For instance, the metric generated by a weak and nearly
static Newtonian source, in the de Donder gauge, is given by

ds? = —(1 +2¢)dt* + (1 — 2¢)5idatda? (5-11)
 where ¢ = —U/c? and
G Tt %/
U(th) = c—2/d3.'13/ ]T(;X—’l) . (512)

(This is easily proved using eq. (3.8), and observing that for a non-
relativistic source, to leading order in the source velocity, only Tpg con-
tributes, so only hgg is non-vanishing. We neglect retardation effect
since we are interested in the near-zone field, and we finally express the
result in terms of Ay, = hy, — (1/ 2)nuwh.) If we study the propagation
of a photon in such a background, of course both the correction —2¢
to ngop = —1 and the correction —2¢d;; to 7;; = &;; must be taken into
account, and give contributions of the same order.19

Having established that gog = —1 + (2 900, goi = 0 and g;; = 6;; gives
the Newtonian approximation to the dynamics of a massive particle,
it follows that the terms ®ggo, go; and (z)gi]- give the first post-
Newtonian order, denoted as 1PN, the terms ®gog, gy, and Wg,;

_ gives the 2PN approximation, etc.
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81t is a nearly universal convention
in research papers in general relativity
that U denotes the sign-reversed grav-
itational potential, so that U > 0. We
will refer to U simply as the potential.

9More precisely, v differs from c only by
terms of order U/c?, where U is given
in eq. (5.12) below.

OWhen studying the deflection of light
from the Sun, Einstein at first (in 1911)
used the metric

ds® = —(1 + 2¢)dt? + dx?,

suggested by the Newtonian limit of a
massive particle, and obtained a deflec-
tion angle of only one half of the correct
value, which is the one obtained from
(5.11). Einstein himself obtained the
correct deflection angle in 1915, when
he had the final form of his equations.
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" This name originates from the fact
that, in this gauge, the coordinates =
satisfy

Ou(v/—g g"*"d,)a” = 0.

On a scalar function ¢, in curved space,
we have

(5.14)

O¢ = D*Dye (5.15)
1 L
= —\/?K] au(\/__gg‘ 61/)(15

where D, is the covariant derivative,
and a scalar function ¢ that satisfies
O¢ =0, ie.

Ou(V=gg""dv)¢ = (5.16)

is called a harmonic function. By (a
slightly improper) extension, also the
coordinates xf that satisfy (5.14) are
called harmonic coordinates (even if @
are not four scalar functions indexed by
p, 80 the operator D* Dy, on them is not
the same as on scalars).

We will use the denominations De Don-
der gauge condition and harmonic
gauge condition as synonymous. Some-
times in the literature the name
“De Donder gauge condition” is re-
served to the linearized form given in
eq. (1.18), while “harmonic gauge con-
dition” is reserved to eq. (5.13).

5.1.4 The 1PN order

We now discuss the first post-Newtonian correction.

gauge condition,

Ou(v/—gg") =0.

coordinates are referred to as harmonic coordinates.!!

It is now in principle straightforward, even if somewhat long, to insert
the expansions (5.3) and (5.4) into the Einstein equations, using eq. (5.5)
to establish the order of the various term, and the gauge condition (5.13),
expanded to the desired order, to simplify the equations (for the explicit
computation, see Weinberg 1972, Section 9.1). For gy we get the
Newtonian equation

V[P gis) = —a O (518)

VO] — IGZG (1)701 (5.19)

V2 gg0] = 92[P goo) + @ 9438:0;? g00] — 8:1 g00) 8:[ goo]
BTG [ s g @00 (5.)

where V2 = §% 0;0; is the flat-space Laplacian, and the sum over re-
peated lower (or upper) spatial indices is performed with §;;. The solu-

tion of eq. (5.17), with the boundary condition that the metric vanishes »

at spatial infinity, is
@) goo = 26,

where
o(t, x) =

so U = —c*¢ is the (positive) Newtonian potential. Similarly, the 1PN
egs. (5.18) and (5.19) are immediately solved,

x — x|

@ gy = =240, (5.23)
@ go; = G, (5.24)

where
Gilt,x / }x~X/} W7ot x'y . (5.25)

To solve eq. (5.20) we replace on the right-hand side ¥ gog by —2¢ and
@) g.; by —2¢ 845, we use the identity

0;8;p = %v2(¢2) — ¢V, (5.26)

First of all, it is
useful to choose from the beginning a gauge condition, since this sim-
plifies drastically the equations. A convenient choice is the De Donder

(5.13)

"This is also called the harmonic gauge condition, and the corresponding

(0) 700 / -
*% /d?’x’ _*M’ (5.22)
c

5.1
and we introduce a new potential ¥ defined from
®goo = —2(¢* + ¥). (5.27)
Then eq. (5.20) becomes
Vi = o+ Y [(Z)TOO +@ 7] (5.28)

which, again with the boundary condition that 1 vanishes at infinity,
has the solution

d3 !

1 .
Pt x) = — ﬁ { 2¢ + {(Z)TOO(t’X/) +@ Tll(t,xl)]
X — X
(5.29)
Observe that ¢ and (¢ are not independent, since the gauge condition

eq. (5.13) imposes the constraint

480 + V¢ =0. (5.30)

From the explicit expressions (5.22) and (5.25) we see that these are
indeed satisfied, because of the conservation of the energy-momentum
tensor, expanded to 1PN order.

In agreement with the discussion below eq. (5.6), ¢, and (; are in-
stantaneous potentials: their value at time ¢ depends on the value of the
energy—momentum tensor at the same time ¢, rather than at retarded
time. However, we can re-express the solution in terms of retarded po-
tentials. This is useful both to understand better the structure of the
above solution, and as a starting point for the computation of higher
post-Newtonian orders. We begin by observing that, putting together
egs. (5.21) and (5.27), we have

goo = —1 =26 — 2(¢* + ) + O(¢%)
=—1-2(¢+9) — 20> + O(c5) .
Since 9 is of higher order compared to ¢, in the last term we are free

to replace ¢? by (¢ + )%, because the additional terms are beyond the
1PN order anyway. We introduce the quantity

762(¢ + ’lrl)) s

which has the dimension of a velocity squared, so the solution for ggo,
to 1PN order, can be written as

2V 2V? 1
900:—1+”C*2—-c—4+0<2§> .

(We will often follow the convention, common in the literature on the
PN expansion, of writing the remainder as O(1/c") rather than O(e™).)
To this order, this can be written more compactly as

v/ 1
goo=—e2V/¢ + 0 <E€) :

(5.31)

(5.32)

(5.33)

(5.34)
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12Actually, the PN solution could be
rewritten equivalently in terms of the
advanced integral or of any combina~
tion of retarded and advanced Green’s
functions.  What really selects the
appropriate Green’s function are the
boundary conditions. In particular, the
retarded Green’s function is selected
by the no-incoming radiation bound-
ary condition at null infinity. How-
ever, we have already seen in eq. (5.7)
that the PN expansion only holds in
the near region r « X and therefore,
within the PN expansion, it is not pos-
sible to impose boundary conditions at
infinity. As we will see below, a dif-
ferent approximation scheme, the post-
Minkowskian expansion, will be em-
ployed in the external source region
d < r < oo, and the boundary condi-
tion will be consistently imposed on the
post-Minkowskian solution, and will se-
lect the retarded Green’s function. The
PN solution and the post-Minkowskian
solution will then be matched in the
overlap region d < r < X. Even if the
PN expansion at a given order could
be rewritten in many different forms,
e.g. in terms of advanced potentials, or
of half-advanced and half-retarded po-
tentials, writing it in terms of retarded
Green’s function makes it possible the
matching, since the post-Minkowskian
solutions in d < r < oo will be unam-
biguously written in terms of retarded
potentials, once the no-incoming radia-
tion boundary condition is imposed on
it.

5.1
The potential ¢ satisfies 4 1
p ) i goi =~ Vi + 19 (C_5> , (5.43)
47
Vi = — 0T, (5.35) 2 1

see eqs. (5.17) and (5.21), while ¢ satisfies eq. (5.28). Thus,

47l

and V,V; are given by retarded integrals over the energy—momentum
VA9 +y) = 0o+ oy [(OT0 4@ T O 7]

tensor of the source, egs. (5.39) and (5.41). Observe also that, to this
order, the energy-momentum tensor of the source enters only through
the two combinations ¢ and o;.

At large distance from the source, i.e. at r > d, we can expand the
_ potentials V' and V; using

(5.36)

To this order, 93¢ = 93(¢ + 1), so the above equation can be written i
terms of the flat-space d’Alembertian O = 99,0, as

Oy = _47TG [(O)TOO 4+(2) 00 4 (2) T“} o
c? 1 1 xx - 4
ArG 1§~—}{’|:7_ —*?3—4-..., (5.45)

=g [T+ T, (5.37)
where r = |x|, and we find that the gravitational field at d < r (but still
within the near region, » <« X) is expressed in terms of the multipoles
of the energy—-momentum tensor of the source. We will examine this

multipole expansion in more detail in Section 5.3.2.

where, to 1PN order, we could replace (D700 (2 700 with the total
value of the 00 component of the energy-momentum tensor, 79, and
similarly 7% with 7%, We use the active gravitational-mass density
defined in eq. (3.205). Then the 1PN equation for gog can be written as

OV = —4rGo, (5.38) 5.1.5 Motion of test particles in the PN metric

Once we have the metric in the near zone, we can obtain the equations
of motion of a particle of mass m which moves in the near zone from
the geodesic equation or, equivalently, writing the action in the given
curved background,

and therefore V (¢, x) can be written as a retarded integral, as'?

V(t,x) =G / d*a’ bc%ﬂ ot =[x = x| /e,x). (5.39)

' dat dzv \ M
S = 77TL(3/ dt '*gﬂyg—zi‘t—

) vt Vi
= —mc /dt (‘900 290 —9ii 5 ;

and extremizing it. We will be particularly interested in the equations of
motion for a binary system. If we limit ourselves to the lowest PN cor-
rections, it is possible to treat the two masses as point-like.'® In curved
space, the energy—momentum tensor of a set of point-like particles with
masses m, and coordinates z# (a = 1,2) is

This retarded potential can be written in terms of instantaneous poten-
tials expanding o(t — [x — x'|/c,x’) for small retardation effects,
=], - xP? (5.46)
o+
c ¢ 2c?
and of course, given that we are working to 1PN order, for the moment
we can only retain the result of this expansion, truncated to 1PN order.
We can proceed similarly for go; and g;;. Using the “active mass-current
density” defined in eq. (3.206), and observing that in ¢; retardation
effects are anyway of higher order, we are allowed to rewrite egs. (5.24)

olt—|x=x'|/c,x') = o(t,x')— fo+..., (5.40)

and (5.25), to 1PN order, replacing ¢; with V; defined by , 1 day dzy (3
' ’ Vo= a —24 —x,(1)), 5.47
T = s S G G @), (6a)

1
Vilt,x) =G [ &2 ———0y(t — |x — x'| /e, %), .
H(6:) / Ix — x| (e /e,x) which generalizes the flat-space expression (3.121). In a N-body system,

the metric felt by a particle, labeled as b, is obtained taking as a source
the energy-momentum tensor of all the other particles, i.e. replacing >,
with 7, in eq. (5.47).** Expanding the determinant of the metric to
second order and using egs. (5.21) and (5.23) we get

—g=1-® goo + Z @ g,
i

=1-4¢.

and similarly we can replace —c?¢ with V in the solution for gij, since
again the difference is of higher order.

To summarize, in harmonic coordinates the 1PN solution can be writ:
ten in terms of two functions V and V; as

(5.48)

2 2, 1
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131y higher order, some regularization
of the Dirac delta becomes necessary.
See Section 8 of Blanchet (2006) and
the Further Reading for a discussion of
the various regularizations which have
been used.

Mpor radiation reaction, a self-force
must also be included. However, we will
see below that radiation reaction effects
enter only in higher orders, and will be
discussed in Section 5.3.5.
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Then the expansion of eq. (5.47) (with 37, — > ;) gives

OT%(t,%) = mac®s® (x = x4 (1)), (5.49)
a#b

@70t x) Zma <—Ua +2¢c > 83 (x —x,(t),  (5.50)
a#b

Wi, x) = mavi6® (x = xa(t)), (5.51)

a#b

@it x) Zm Vil 68 (x — x4 (1)) . (5.52)

atb

Plugging these expressions into egs. (5.22)—(5.29) we obtain the metricin

which the particle b propagates and, inserting this metric into eq. (5.46),

we get its action, S,. The total action of the system is the sum over all |

particles, S = Sy, Expanding the square root in the action and
keeping for consistency only terms up to O(v*/c*) gives the first post-
Newtonian corrections. In terms of the Lagrangian, the result for a
two-body system is L = Lo + (1/c?) Lo, with

1 . 1 Crmam
Lo = Smuv? + Tmgof + T2 (5.53)
2 2 ,
and
1 1
L= é‘ml’u% + émwg (5.54)
Gmys
+_”;_m_2 {3(& L 0B) = Tvievs — (Bva)(iovy) — ST M)
) T

where r is the separation vector between the two particles, r = |r| and
# =r/r. The same computation can be repeated for a system of N parti-

cles, and the result is the famous Einstein—Infeld-Hoffmann Lagrangian,
L s LO + (1/02)[/2 Wlth

Gm,
L(] = Z mel, +Z mn ,nb (555) -

27ah

and

1 Gmgmy . .
Loy = Z gmavg — Z — 22 [TVa vy + (FabVa) (Lo Vp)]
mambv MeMpTe
Ly et Z 2.2
a b#a a b#a cta
wherea =1,...,

we can derive the equations of motion of a N-particle system, including
corrections of order v?/c?, i.e. to 1PN order. If one rather performs the

R SR G S

(5.56)

N labels the particle, r4p is the distance between parti-
cles ¢ and b, and Py, the unit vector from a to b. From this Lagrangian |

5.1

expansion up to 2PN order, the equation of motion of a binary system
takes the schematic form

2 i
T = T (14 0() + O] + 9 [0() + O]}
where m is the total mass, x is the relative separation, ' = z*/r, and
§t is the unit vector in the direction of the relative velocity. The leading
term is of course just Newtonian gravity. The terms O(¢?) are the 1PN
correction to the equations of motion which gives rise, for instance, to
the periastron advance of the orbit. The terms O(e*) comes from the
2PN correction. The explicit integration of the 1PN equations of motion
for a binary system will be discussed in Chapter 6, on pages 317-320,
when we need it for the timing formula of binary pulsars.

(5.57)

5.1.6 Difficulties of the PN expansion

The straightforward PN expansion that we have presented, and which
was used until, say, the early 1980s, suffers from two serious problems.
The first is that, beyond some order, divergences appear. We will see this
explicitly in eq. (5.199), and in the discussion below it. However, it is
useful to understand first qualitatively the essence of the problem, which
is rooted in the fact that general relativity is a non-linear theory. We are
trying to solve iteratively the Einstein equations, that have schematically
the form
Oy = Syulh], (5.58)
where S, is a source term, that depends both on the matter energy—
momentum tensor and, non-linearly, on h,, (we will see in eq. (5.72)
below how to write ezactly the Einstein equations in this form). One
could envisage a systematic weak-field, low-velocity expansion as follows.
We write
hyw = Ol + Ol + @b+ (5.59)
To zeroth order, we simply set <0)]1W = 0. The first-order solution,
(Vh,,,, is obtained setting h,, = 0 on the right-hand side of eq. (5.58),
while, according to eq. (5.5), on the left-hand side we neglect the time-
derivative. Then we get an equation of the form

v2[Mh,,] = (matter sources). (5.60)

This is integrated by making use of the instantaneous Green’s function
of the Laplacian, i.e. of the Poisson integral defined on a generic function

/(x) by ) e
A7) = 4 [ G S,

(where A = V?) and leads to results such as eq. (5.22). At next order,
we insert (D1, into S[h] while, in Oh,,, we replace 93 by, by RV,
so the gravitational field at the next iteration, @h v, is determined by
an equation of the form

(5.61)

VZ[(Q)ILW] = (matter sources)+ (terms that depend on mh,,“,) , (5.62)
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151 the earlier works this problem was
somehow swept under the rug. The rea-
son is that divergences start to appear
only from 2PN order. Furthermore, up
to 2.5PN order, the result can be made
finite by using some not well justified
trick, consisting in bringing some deriv-
ative inside the integrals, to make them
finite. In this way, early papers man-
aged to get the lowest-order results that
nowadays we know to be correct. How-
ever, inexorably divergent integrals ap-
pear at 3PN order. Therefore this ap-
proach is not consistent, and even the
validity of the lowest-order results be-
comes highly questionable.

16ActuaHy, it can even by shown that
the PN expansion cannot be asymptoti-
cally flat beyond 2PN or 3PN order (de-
pending on the gauge condition that is
used), see Rendall (1992).

which again one would attempt to integrate by using the Poisson inte:
gral. The problem is that, beyond some order, the resulting Poisson inte-
grals are necessarily divergent. In fact, first of all, even if the source hag
a compact support, the second term on the right-hand side of eq. (5.62)
extends all over the space, raising an issue of convergence at infinity
of the Poisson integral. Furthermore, the higher is the PN order, the
higher is also the order of the multipoles that contribute. The gravitas
tional field corresponding to a multipole of order [ has a factor (x-x')!
which comes from the expansion of 1/|x — x/| in eq. (5.45). When we
use such a field as a source for the next iteration, for I sufficiently large
we necessarily get a divergence at large x’ in the retarded integral 1

This problems turns out to be purely technical. Simply, the correct
solution to the Poisson equation is not necessarily given by the Poisson
integral (5.61). The correct solution is fixed by the boundary conditions,
and we will see in Section 5.3.2 that in our problem it is given by a
procedure of analytic continuation, that reduces to a Poisson integral
only when the latter is convergent, and otherwise is different, and is
always finite.

The second problem of the “standard” PN expansion is conceptual,
and is that it cannot take into account the boundary conditions at in-
finity. This can be understood by observing that, as already discussed
below eq. (5.7), in the PN expansion we are trying to reconstruct a
retarded field, say of the form

1
Fu(t=r/c),

h/w =

from its expansions for small retardation, r/c < t,

1 1 1. T 7“2 s
T—' F;w (t*T/C) — —,— F}Ly(t)ﬁEle<t)+ﬁF;‘w (t)*gg}‘ v (t>+ . (564)

The coefficients of the higher-order terms therefore blow up as 7 — oo.
This has nothing to do with the real behavior of the gravitational field
at infinity, which should be asymptotically flat, and simply reflects the
inadequacy of the PN expansion to study the large r region.

From a mathematical point of view, the PN expansion is an example of
singular perturbation theory, or asymptotic expansion, i.e. an expansion
of a function F(r,¢) around € = 0,

F(rie) = enlr)e”,

where the coefficients ¢,, depend on a second parameter, here r, and
they blow up as 7 — oo. So, this expansion is not uniformly valid in 7,
and cannot be used at r — oo. In particular, as we already observed
in Note 12, it is impossible to include in the PN expansion the bound-
ary conditions at infinity, such as the no-incoming radiation boundary
condition, appropriate for a radiation problem.®

The solution to this difficulty, as we will discuss in details in the
following sections, is to make use of the PN expansion only in the near

5.1

region, and to use a different expansion"m the f‘ar region. Then, thebtvzf
expansions are matched in an intermediate region, Where.they are‘. o ”1
valid. This procedure is known as “matf:h?d. asyglptotlc expansion”.
The appropriate boundary conditions at infinity will then be imposed

on the solution valid in the far zone.

5.1.7 The effect of back-reaction

Once we will have developed a systematic and Consiste.nt formalism. for
computing the gravitational field both in the near and in the far region,
we will also be able to compute the modification of the equatlons' of
motion of the sources, due to the back-reaction of GWs. Before enter'mg
into the technical aspects, however, we can understand with physical
arguments what sort of result we should expect. .

When we include gravitational radiation the structure of the expan-
sion changes, because invariance under time-reversal is broken by the

houndary conditions. To study GWs we impose that there is no incom-

ing radiation at ¢ = —oo (compare with Note.l on page 102). Time
reversal exchanges outgoing waves with incoming waves, so the.argu-
ment used above to prove that gop and g;; are even and thg.t goi is o.dd
in v breaks down. Radiation reaction can generate terms in goo which
are odd in v (and cannot be gauged away) and, correspondingly, even
terms in gg; and odd terms in gij.” o .

It is not difficult to understand to which order in v /cradiation reactlo.n
effects should come into play. We saw in Chapter 3 that the 1;0\()3\761‘ 1;21;11—
ated in GWs by a system with typical velocity v is P ~ Gm*v°®/(c’r?),
where m is a mass scale of the system and r its size, see e.g. eq. (3.339).
On the other hand, writing the total energy of the system as the sum
of its kinetic and potential energy, Eiot = Ekin +V, and using t}21e virial
theorem Fyin = —(1/2)V, we have Eiop = —FEkin = —(1/'2)mv‘. If we
equate the time derivative of Fio to minus the power radiated in GWs
we therefore get, neglecting numerical factors,

d Gm?2v8 )
*771117;;) ~ s (5.66)
g r c

Thus, we expect that radiation-reaction effects enter eq. (5..57) starting
from O(v®/c®) = O(€?), so the equation of motion of a binary system
should be of the generic form
2,4 \ _
Cz—ﬁ _ M 0() 4 0() + O() + O() . ]
[t r
+0*[O(e%) + O(e*) + O(e°) + O(®) +.. ]} . (5.68)

Given that one traditionally uses the power of (v/c)? to' label the PN
order, the term O(e”) is called the correction to the equamol.ls of Il?OthIl
of order 2.5PN, the term O(¢®) is the 3PN order, etc. We will see in the
next sections how to derive these results.
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Ty higher orders, because of non-
linearities, radiation reaction will also
contribute to terms in gop which are
even. We will see in eq. (5.186) that an
even contribution to goo due to back-
reaction indeed appears at 4PN order.
Thus, beyond 4PN order, all term.s
(even and odd) contain pieces associ-
ated to radiation reaction.
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Bhe quantity (—g)1/2¢g®f is also
called the “gothic metric”, and denoted
by a gothic g, see Landau and Lifshitz,
Vol. II (1979), Section 96.

9For this reason, in the literature h®#
is sometimes defined with the opposite
sign, i.e. hf = pab (—g)Y/2g*8 We
use the definition (5.69), following the
notation of the review Blanchet (2006).
This means that, when we compare the
results of this chapter with the corre-
sponding linearized limit studied in the
previous chapters, we must take into
account this overall sign in the GW am-
plitude. For the same reason, the sign
on the right-hand side of eq. (5.72) be-
low is the opposite of that in eq. (1.24).

9.2 The relaxed Einstein equations

First of all, we recast Einstein equations in a form which will be partic :

ularly convenient. From the metric ¢®° (), we define the field he8 (x
by

where, as usual, ¢ is the determinant of gap- This is an ezact definition
and we are not assuming that h.g is small. Observe that we use thej ;
typographical symbol h,g to distinguish it from hag, which is rather
defined by gag = 1ag + hap+ O(h?).*® In the limit of small hqg we have

—g = (1+h), where h = n**h,,, and g* = n*f — pad g

—h oo @B — (1 p)2 (P _ pas)
1
= hP — 577“’6}7,.

Thus, h*? reduces to the quantity h%? used in linearized theory, see
eq. (1.15), except for an overall sign.'® We now impose the de Donder,

or harmonic, gauge condition (5.13), which in terms of h®? reads

9h*? =0,

(5.71)

In this gauge the exact Einstein equations (1.3) take the Landau-Lifshitz
form

167G
K o

af _
O =+ ; (5.72)

where O = —9?/0t? + V? is the d’Alembertian in flat space-time. The
quantity on the right-hand side is defined by

ct

Taﬁz _ Taﬁ
(=9) + 167G

AP

(5.73)

where T°? is the matter energy-momentum tensor. The tensor A®?
does not depend on the matter variables, and is defined by

167G

af __ o o v v o
A - ct (_g)tl/i+ (&lh Mauhﬁ — h# 8;,,8,,*1 ’6)7

(5.74)

where t%i is called the Landau-Lifshitz energy—momentum pseudoten-

sor,

167
oA

v o 1
(—g)tfi = gaug”’Ouh /\aphﬁﬂ + igz\ugaﬁaph/\uauhp“
G (90,0 + g 8,0 ) 5, hee (5.75)

1 A L e
+5(20°%9% = 9°P9M) (2005907 = G gur)ONN"T B0

hot = (kg)l/anB _ 77&/3, (5.69)

(5.70)

Since t’zlfi depends explicitly on the metric g, it is a highly non-linear
function of h,,. Using the De Donder gauge condition, we see that the

last term in eq. (5.74) is a divergence,

Oyh*H9,hP — h#9,0,h*P = 9,0, (h*hPY — h#hof) (5.76)
Thus, we can also rewrite eq. (5.72) as
, 167G
08 =+ =22 [(—g) (T + 657) + B 0,x°7H | (5.77)
where 4
‘ afpry _ C hct,uhﬁlf _ hpuhaﬁ =
X —167rG( ). (5.78)

The important point is that egs. (5.71) and (5.72) are an ezact way of
recasting the Einstein equations (subject to the assumption that all of

_space-time can be covered by a harmonic coordinate system), and no
_approximation has been made ye

£.20
Compare this with the standard form of Einstein equations,

3G

Gap = 0_42“&[3, (5.79)

where

1
Gap = Rap — igaﬁR (5.80)

is the Einstein tensor. Because of the Bianchi identity DsG*® = 0,
eq. (5.79) implies automatically the covariant conservation of the matter

__énergy—momentum tensor,

DT =0. (5.81)

In turn, eq. (5.81) is an equation of motion for the matter variables.
Thus, Einstein equations automatically fix the motion of matter. Ein-
stein equations are completely equivalent to eq. (5.72) together with
eq. (5.71). However, from a mathematical point of view it makes per-
fectly sense to first solve eq. (5.72) without requiring, for the moment,
that eq. (5.71) be satisfied. Then eq. (5.72), alone, does not constraint
the dynamics of the matter variables. In principle, we could assign our-
selves an arbitrary time dependence to 7%?, and the equation would still
be well defined. For this reason, the 10 tensor components of eq. (5.72)
are called the relazed Finstein equations; we have relaxed the condition
that the matter variables obey their equations of motion. Of course,
this condition must be recovered when, on the solutions of eq. (5.72), we
impose eq. (5.71), since the two equations, together, are equivalent to
the Einstein equations. Indeed, the gauge condition (5.71) implies that

728 satisfies the conservation law
TP =0, (5.82)

with an ordinary, rather than covariant derivative, and this turns out
to be fully equivalent to eq. (5.81). Thus, if we first solve eq. (5.72),
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20 At first sight eq. (5.72) is surprising,
since it seems to suggest that hy, prop-
agates along the light-cone of flat space-
time, because on the left-hand side we
have the flat-space d’Alembertian. Ac-
tually, this is not true because in A%8
we have the term h“"@;,,@uh“ﬁ, which
has two derivatives acting on a field
hof . If we wanted to write the equa-
tion so that all terms with two deriva-
tives acting on h®? are on the left-hand
side, the term h“”aﬂf),,h”‘ﬁ should also
go on the left-hand side, so the total dif-
ferential operator acting on he# is not a
simple flat-space d’Alembertian. Still,
eq. (5.72) is a legitimate way of writing
the Einstein equations, which is partic-
ularly convenient because the flat space
d’Alembertian is easily inverted.
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2Log course, these works have built on
a large body of literature, which ex-
tended over decades, see the Further
Reading section.

then eq. (5.71) can be seen as the condition that imposes the equations
of motion on the matter variables. Imposing the no-incoming-radiation
boundary conditions (defined in Note 1 on page 102), eq. (5.72) can be
formally integrated in terms of the retarded Green’s function (3.6), just
as we did in linearized theory (see eq. (3.8)), and we get

. af (4! 1 R
ha‘ﬁ(t7x)=—4G/d4:L"T (', x")o(t' =t + [x — x| /c)

ct x — x|
4G [ dBa’
—_ afy I !
i (t—|x=x'|/e,x). (5.83)

On this solution, we can then impose the gauge condition (5.82), which
is equivalent to requiring that the matter sources satisfy the equations
of motion in the metric g, .

Contrary to the result (3.5), (3.6) of linearized theory, in eq. (5.83)

798 s itself a functional of h*? and of its derivatives, so for the mo-
ment we have simply converted the differential equation (5.72) into an

integro-differential equation for h®?. Finding an exact solution of such
an equation is hopeless for all realistic astrophysical sources, and we
must resort to approximation methods. The crucial observation is that

different approximations must be employed, depending on whether we
are in the near or in the far zone. In the near zone, the solution for h i
will be given in terms of instantaneous potential, and retardation effects
can be treated as small corrections. In the far region the post-Newtonian
approximation breaks down, and we will rather have gravitational waves;
so retardation effects will of course be crucial.

The fact that different expansions must be used in the near and in the
far region, in itself is not different from what happens in electrodynamics.
The great difference is that electrodynamics is a linear theory, governed
by a wave equation of the form OA, = —(4n/c)J,, where the source J,
depends only on the matter fields, and not on A, itself. However, in
eq. (5.72) or in eq. (5.83), the field h,, appears even on the right-hand
side; thus, the gravitational field itself generates gravitational waves and,
if we compute iteratively to a sufficiently high order, we will find that the
GWs compute at a given order generate themselves more GWs at higher
orders. This is an unavoidable consequence of the non-linear structure
of general relativity. At the technical level this is reflected in the fact
that, even if the matter energy-momentum tensor 7°° is localized in
space, the total source 79 is not confined to a compact region, but it
extends over all of space-time. As a result, a correct treatment is quite
complicated (and a naive treatment of the integral in eq. (5.83) typically
results in the divergences which plagued early attempts, see Note 15).
Nowadays these problems have been solved, and the generation of GWs
from post-Newtonian sources has been computed to very high PN order,
thanks to the quite remarkable work of two groups, one composed of
Blanchet, Damour and coworkers, and one of Will, Wiseman and Pati.?!
Below we discuss these two approaches.

5.3 The Blanchet—Damour approach

5.3 The Blanchet—Damour approach

In the problem of computing GWs from a non-relativistic, self-gravitating
source with typical velocity v there are two length-scales: the size d of the
source (which, for a binary system, is the orbital radius), and the length
R that determines the boundary of the near zone, see eq. (5.1). Ac-
cording to eq. (3.24), X = (¢/v)d so, for non-relativistic sources, X > d,
and therefore the near zone extends up to a radius R > d. In the
region 7 < R the gravitational field can be computed using the post-
Newtonian formalism. However, as we have seen in the previous section,
the post-Newtonian approach breaks down at » > R.

On the other hand, outside the matter source (r > d) the energy-
momentum tensor of matter vanishes, and the only contribution to 7%
in eq. (5.73) comes from the gravitational field itself. If the gravitational
field inside the matter source is weak, which (for the moment) is an
agsumptions of the method, already at r = d space-time will not deviate
much from flat and, as r increases, it will approach Minkowski space-time
more and more. Thus, over the whole region d < r < oo we can solve
the vacuum Einstein equations using a post- Minkowskian expansion, that
takes into account iteratively the deviation from flat space-time. Since
the post-Minkowskian expansion is valid for d < r < oo and the post-
Newtonian for 0 < r < R, the two expansions have an overlapping region
of validity, d < r < R. The strategy of the Blanchet-Damour formalism
is therefore to use the post-Newtonian expansion in the near region, the
post-Minkowskian expansion outside the source, and to match them in
the intermediate region. In the following subsections we discuss these
steps.

5.3.1 Post-Minkowskian expansion outside the
source

We first consider the external domain d < r < co. Since we are out-
side the source, the energy—momentum tensor of matter vanishes, and
we must solve the vacuum Einstein equations. By assumption, we are
considering sources whose self-gravity is weak. Thus, in a first approx-
imation the metric in the external domain is just 7,,, i.e. we have
Minkowski space-time. At a distance r, the corrections to the Minkowski
metric will be given as an expansion in Rg/r where, as in Section 5.1.1,
Rg = 2Gm/ ¢? and m is a characteristic mass of the system. Since Rg is
proportional to G, the post-Minkowskian expansion can be written as an
expansion in powers of (. We use as basic variable h®? = /—g g®f —n*?
we choose the De Donder gauge, and we write

V=99 =P + GhYP gt 4 (5.84)

ie.

hef =" Grhe? (5.85)

n=1
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22For  the explicit
MBlh, h, h] see eq. (
(1995).

expression  of

1.6) of Blanchet

We now plug this expansion into the relaxed Einstein equations (5.72)
with 797 = 0

Oh®? = AP | (5.86)

and we equate terms of the same order in G. The tensor A*® depends
on gu, which is a highly non-linear functional of h,,,, so it contains all
possible powers of h,,, starting from terms quadratic in h. Thus, we
can write

AP = NO[h,h] + M [h, b h] 4+ L*?[h, h, b, h] + O(h%),  (5.87)

and N M7 etc. can be found from the explicit expression of AP,
with long but straightforward computations. For instance

1
NFh h] = —h*0,0,h*" + ALl

—6ah;u/a'u'hﬁy

1
V7R — 0% h (5.88)
— 9Ph,, 0" 4 (’Lh““(&”hﬁ + 9,hPY)
1 1, 1

+’f]aﬁ _Zaph;u/aphw/ + gd,_,,ha“h + Eauh,/pa”h“p} y
where, on the right-hand side, h = n,5h®?
and lower with the Minkowski metric 7,,.2? Since A®? starts from a
term quadratic in h®? and therefore proportional to G2, to order G we

simply have
oh¢? =0, (5.89)

and, to higher orders, we get

Dhgﬂ = ]Vaﬁ[hl, h]] , (5. 90)
Ohy” = Mhi, by, ] + N%lhy ho] + N*Plho by, (5. 91)

and so on, together with the gauge conditions
s hgﬂ =0.
We write generically the n-th equation in the form

Dhgﬁ :A%ﬁ{hth?"':hn—l}a (7' > d), (593)
where we have recalled that the above equations are valid only in the

exterior region r > d.

General solution of the linearized vacuum equation

We consider first the linearized equation (5.89). We want to find the
most general solution, in order to be able to perform later the match-
ing with the near-region post-Newtonian solution. The most general
solution of eq. (5.89) in the region r > d (with d any strictly positive
constant), can be written in terms of retarded multipolar waves,

he# = Za,;{ K29( t~r/c)} , (5.94)

, and all indices are raised
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where we have used the multi-index notation introduced in Section 3.5.1,
and the tensors K 'O‘ﬁ are traceless and symmetric with respect to the
indices 71,...,1%. Fxom the fact that Ko‘ﬂ is a function of u =t —7/¢, it
follows that D(K of (u)/r) = 0 and, since the flat-space d’Alembertian
commutes with Jr, eq. (5.94) is a solution of eq. (5.89). Since the set
of STF tensors K ab , with all possible rank [, provide a complete set of
representation of Lhe rotation group, this is the most general solution.
Observe that this solution is acceptable since we are in the domain r > d,
so we have excluded r = 0 from the domain where it is required to hold.
Otherwise all multipoles in eq. (5.94) would become singular.

Equation (5.94) is the most general solution of eq. (5.89), but in gen-
eral it does not fulfill the De Donder gauge condition. The tensor Kgﬁ
is symmetric in the Lorentz indices «, 3 so, for each L, it has 10 ten-
sor components. Imposing the gauge condition agh = 0 reduces the

_ number of independent tensor components to six, and one finds that the
most general solution of the equation of motion and gauge condition, in

the external region, has the form
W7 = k77 + 0% +0%0f — Pt

where the components of k‘?ﬁ are given by

k= T2 Z

3L{ I (u )] ) (5.96)

1>0
; 1
k,?‘ = 1 [ Iz(i) L(u) + T 1emb8 (;JbL_l(u)>] ,
I>1
i (2) (1)
kY = 42 ll { L jL— o(u )mea < eab(’lJ])bL 2(“))}
1>2

We have used the notation
dn f
dun’

FM () = (5.97)

to denote the n-th derivative with respect to retarded time.?? The ten-

sor k:?ﬂ depends on two families of symmetric and traceless multipole
moments,

Ip(u) = {5, L, L, Lijr, .. .}, (5.98)
and

JL(U) = {Ji,Jij,Jijk,...}; (5.99)

which are arbitrary functions of retarded time, except that the gauge
condition requires that I, Igl) and J; are time-independent. This ex-
presses the conservation of the total mass M = I of the system, of the
total linear momentum P; = Igl) , and of the total angular momen-
tum S; = J;.2* The moments I; and J; are mass-type and current-
type moments, respectively, just as in the multipole expansion of lin-
earized theory, discussed in Section 3.5. The explicit powers of ¢ in

23We also made use of the notation
introduced on page 134, so in partic-
ular BL*Q = 6“ .A.S.il_z, IijL*Q =
Lijiy..i,_o, and round brackets around
indices denote the symmetrization,
agizy = (1/2){(aij + aj;). On the right-
hand side, we freely raised or lowered
the spatial indices with d;;.

24\We further impose the condition that
the metric is stationary in the far past,
i.e. that all Iy, and J; are constants
for t < -7, with T — oo. This
is expected to be basically equivalent
to the no-incoming radiation boundary
condition, but offers some technical ad-
vantages. With this boundary condi-
tion, the requirement that IEI) be con-
stant implies that also the center-of-
mass variable X; = I;/I is constant,
rather than a priori linearly varying in
time.
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25When comparing with eq. (3.204), re-
call that in the linearized limit hyw re-
duces to —h,.., see Note 19, and also
that a factor G has been explicitly ex-
tracted from h" see eq. (5.84).

26We include in eq. (5.102) a sign cor-
rection pointed out in Arun, Blanchet,
Iyer and Qusailah (2004), see their
eq. (3.8).

27They are also called the “source
multipole moments”, see the review
Blanchet (2006). The term “algorith-
mic multipole moments” used in the
original papers stresses that they are in-
termediate quantities that allow us to
connect, via a well defined algorithm,
properties of the source to the “multi-
pole moments at infinity”, to be defined
later. The term “source moments”
stresses that they have explicit closed-
form expressions as integrals over the
source, see below.

eqs. (5.96) follow from the choice of dimensions [I1] = [mass] x [length}!
and [J] = [mass] x [velocity] x [length)!. These are chosen in anticipa-
tion of the fact that I and J; will be related to the mass and current

multipoles of the source. The “mass dipole” I; can be set to zero shifting

the origin of the coordinate system.
The function ¢f can be written in terms of four STF moments Wy,
XL,YL and ZL, i

4 -t J1
wl= Z< u) a1 [;VVL(U)} : (5.100)
>0 ’
; 4 —1)! 1
= > (l—,)am {;XL(U):! (5.101)
120 ’
4 (—1)! 1 ! 1,
— 2 Op—1 |i;Y.iL—1(U) to n 16m1)8u <;AbL_1(u)>} .

The appearance of the function ¢f in eq. (5.95) reflects the fact that
eq. (5.89) is invariant under lincarized gauge transformations, % —
z® + ¢f{(x), compare with eq. (1.19). One might be tempted to dis-
card ¢f as pure gauge modes (which would give back the result that
we found for linearized theory, see eq. (3.204)),%° but this would not be

correct. Our aim is to use the solution (5.95) for hfﬁ as a starting point |

for the iterative process that gives hy A , h?ﬁ , etc., and therefore to con-
struct a solution of the full, rather than linearized, Einstein equations.

Taking as starting point two different solution for h; which differ by a |

linearized gauge transformation ¢ will produce, through the iterative
procedure, two solutions of the full Einstein equations that are not re-

lated by the full non-linear invariance under diffeomorfisms of general
relativity, and which therefore are not physically equivalent. So, beyond

linear level the two sets of multipole moments (Ir,Jz, Wy, Xz, Y, Zz)
and (Iz,Jr,0,0,0,0) are not gauge-equivalent. Rather, the six multipole
moments (I, Jp, W, X, Y, Z1) are gauge-equivalent to a reduced set
(M, S8.,0,0,0,0), in which Mz = Iy and Sy = Jz only to lowest or-
der, and more generally My and Sy depend on all the six moments
(Ir,Jp, Wy, X5, Yz, Z1). For example, for the quadrupole moment one
finds that M,; starts to differ from I;; at O(1/c®), i.e. at 2.5PN order,?

e, 1
My =T+ — [W(Q)Iij - W<1>1§;>} +0 (?) , (5.102)

where W is Wy, for [ = 0. The six sets of moments (I, ...

referred to as “algorithmic multipole moments” .?”

,Zy,) are

Iteration of the solution. Multipolar post-Minkowskian
expansion

We have found above the most general solution of the linearized equation
(5.89), together with Qgh?ﬁ = 0, in the domain r > d. Next we want
to plug this solution into the right-hand side of eq. (5.90), and solve the
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resulting equation for hs, and so on. The general problem is therefore
how to integrate a wave equation such as eq. (5.93), when the source
term A, has been determined by the previous recursive level.

Given the function A,,, the problem amounts to inverting the O oper-
ator. Physicists are well accustomed to some possible solutions for the
inversion of the d’Alembert operator: the retarded and the advanced
Green’s functions, familiar from classical electrodynamics, or the Feyn-
man propagator, which is a basic object in quantum field theory. How-
ever, from a mathematical point of view, the inversion of the O operator
has many other possible solutions, which depend on the boundary con-
ditions of the problem.

In the problem at hand the retarded Green’s function is simply not the
correct solution (and even less any other combination of retarded and
advanced Green’s functions). The point is that the use of the retarded
(or of the advanced) integral requires the knowledge of A, over all of
space, while eq. (5.93) is valid only for » > d. Observe that, since we
are outside the source, we can write each h,, in a multipole expansion,
which is an expansion valid for d/r < 1, so A, in eq. (5.93) is composed
of the product of many multipole expansions. If we naively extended
eq. (5.93) down to r = 0, we would find that the right-hand side of
eq. (5.93) is highly singular at » = 0 and, if we make the convolution
with the retarded Green’s function, the retarded integral diverges.

The appropriate solution has been found by Blanchet and Damour,
with a clever mathematical procedure. First, we observe that we are fi-
nally interested in computing to some finite order in the PN expansion,
and to each given order only a finite number of multipoles contribute.
This means that, outside the source, we do not really need the exact ex-
pression of hgﬁ , h?ﬁ , ete. but only their multipole expansion, truncated
to some finite order, that depends on the order of the PN expansion that
we wish to compute. It is therefore very convenient (in fact, technically
inevitable) to perform a multipole expansion of the post-Minkowskian
solution, up to a given finite order, and to iterate not h?ﬁ but rather
its (truncated) multipole expansion. This method is therefore called the
multipolar post-Minkowskian (MPM) expansion.

Since, in the MPM computation of h%? with n given, only a maximum
number of multipoles are relevant, we can find a positive real number
B, sufficiently large, so that 75A27 is regular at the origin. Thus, the
retarded integral

I°?(B) = o} (TBA,O{ﬂ)

ret

(5.103)

is well defined, where we denoted by O__! the convolution with the re-
tarded Green’s function,?®
1 [ d3
o N x) = —— — f(t — Ix — x|/, %X). 5.104
Ot = -5 [ S ek xljex). (08
Now, it can be proved that I¢?(B) admits a unique analytic continuation
in the complex B-plane, except at some integer values of B and, when
B — 0, develops some multipole poles. Thus, near B = 0 we can write

2BWe also impose the boundary condi-
tion in the form given in Note 24. In
the retarded integral, the integration is
actually over d*z, along the past null
light cone. As r — oo along the past
null light cones, t goes toward —co, so
this boundary condition forces An" to
become strictly zero beyond some value
of r. Therefore there is no problem of
convergence of the integral at r — oo.
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29More precisely in the definition of
the FPp_o operation, eq. (5.108), for
dimensional reasons we use (r/rg)P
rather than rB. The constant g is
arbitrary, and will cancel from physi-
cal quantities, as we will see in Sec-
tion 5.3.4. For the moment, we set
ro = 1, to simplify the notation.

39The explicit expression is somewhat
involved, and can be found in Blanchet
(2006), eqgs. (41) and (42).

I28(B) in a Laurent expansion,

=S B,

P=po

(5.105)

where pg € Z. If pg < 0 there are poles. Applying the flat-space
d’Alembertian to both sides of this equation and using eq. (5.103) we
get
o0
rBAP =N Brogd .

p=po

(5.106)

Writing P = eP1°87 expanding the exponential, and equating terms
with the same powers of B we find that, for pg < p < —1, Daaﬁ =0,
while for p 2 0

log r
0ue8, = ( i Y hos (5.107)
In particular, the term with p = 0, i.e. u? = gﬁ)zo, satisfies Ou2? =

A%P so we succeeded in finding a particular solution of eq. (5.93). In
other words, a solution of eq. (5.93) is given by the coefficient of B° in
the Laurent expansion (5.105). This is called the finite part at B = 0 of

the retarded integral, and denoted as FPg_g, s0%°

=FPpo {Tpt [PPA7]} . (5.108)

We can write this even more compactly introducing the symbol FP,
defined on any function f(z) by

FP Dletf FPp-o {Dxet [

gl

(5.109)

This finite part operation is a prescription which makes well-defined the:

otherwise divergent retarded integral. The important point is that it is
not just a prescription superimposed by hand on a would-be divergent
quantity. Rather, we have seen explicitly that it is a correct way to find
a solution of eq. (5.93), valid in the region r > d. Observe that, when
the retarded integral of a function f is well-defined, FP Dr—ei f reduces
simply to Dr”e% f.

Actually, eq. (5.108) is just one particular solution of the inhomoge-
neous equation (5.93). The most general solution is obtained adding the
general solution of the homogeneous equation Th®? = 0. Indeed, the

solution (5.108) in general will not satisfy automatically the harmonic
gauge condition. So, the solution that we are looking for is really of the
form

hof = &8 B (5.110)
where v57 is a solution of the homogeneous equation, chosen so that
On Uaﬁ —0Oq uaﬁ . Since we have the explicit form of u28 the func-
tion U,,‘:ﬁ can be determined exactly.?0 The conclusion is that the MPM
expansion provides a well-defined algorithm for computing the post-
Minkowskian corrections, in principle to arbitrary order.

At this stage, the multipole moments (Ir,J7, Wy, X7, Y, %) (or,
equivalently, My and S;) know nothing about the properties of the
source, since they simply parametrize the most general solution of the
vacuum Einstein equation. We will determine them in terms of proper-
ties of the source, matching the MPM result to the multipole expansion
of the post-Newtonian result, in the region d < r < R, where both the
post-Minkowskian and the post-Newtonian formalism are applicable.

5.3.2 PN expansion in the near region

We now consider the near region. The 1PN solution, in harmonic coordi-
nates, has already been given in the Section 5.1.4. First of all, it is useful
to re-express it in terms of the variable h*”, defined in eq. (5.69), rather
than in terms of g"*.3! In terms of h*”, the solution at the Newtonian
level is pa1ticu1arly simple, h% = —4V/c? + O(1/c*), h% = O(1/c?) and

h'/ = O(1/c¢*). We can now plug this solution into the right-hand side

\ of eq. (5,72). This gives

16 4
Dhooz —Z—G <1+ V> TOO— 1—?&V&V+O(%> R
> C C C

DhOi — lGWGTOz O (_1:> ,
ct c?

167G
4

(5.111)

(5.112)

Oh% =

4 . 1
TZJ 4 {d,V(%V — 552‘3‘8[‘«:‘/8;;‘/} +0 < ) (5 113)

The solution of these equations is

44 1
ho0 — gV (V- 2V + 0 <0—6> ; (5.114)
.4 1
R (_) , (5.115)
h = — Wi + 0 , (5.116)

where V', V; are given in egs. (5.39) and (5.41). W;; is a new retarded
potential, defined by
] [””

Wi (t,x) = (W/d3

§5¢j8kV(()kV)} (x',t—|x—x|/e),

F@Vov
(5.117)

where o;; = 7. This is the same as the 1PN solution given in eqs. (5.42)—
(5.44), written in terms of h*¥ rather than gH¥, except that this iterative
procedure automatically gives h;; up to O(1/c%) (which is needed to it-
erate consistently the solution to higher orders), rather than just up to
O(1/c*) as in eq. (5.44). Observe that the integrals in the definition of
V and V; are convergent since the source, and therefore o and o;, have a
compact support. The integrand in the definition of W;; rather depends
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31Recall that h*¥ denotes the combi-
nation (5.69), and is not simply the de-
viation from the flat metric gt” — ntv.
The relation between h*¥ and gh" is
therefore non-linear.
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on the function V' and does not have a compact support. However, from |

eq. (5.39), we find that, when |[x'| — oo,

x —x GM
vV <t — L—[,x’> — = (5.118)
c x|
where
M= /dsyo(y, —00) + O(1/c?) (5.119)

is the initial mass of the source. From this, we can check that the integral

defining the potential W;; is convergent.

Multipolar PN expansion

We can now introduce another 1n1p01tanf ingredient of the method, the
“multipolar post-Newtonian expansion”, which combine the PN expan-
sion with the multipole expansion.

The post-Newtonian expansion is valid both inside the source (r <da),
and in the external near zone d < r < R. In the external near zone we
can then expand each post-Newtonian order in a multipole expansion,
since the expansion parameter of the multipole (-‘XpdllSlOn is d/r. This

gives rise to the “multipolar post-Newtonian expansion”, and provides
crucial simplifications when performing the matching with the solution

in the far region. To 1PN order, we just need the multipole expansion

of the potentials V and V;. This can be written in full generality as

[ (t~r/c)] , (5.120)
=0
SERY!
W(t,x):GZ( z'” or E Girn(t — r/c)} . (5.121)
=0 '

Using eqs. (3.184), (3.
and V; satisfy OV =
(5.41)), we get

1
Friu) = /d3y IL 11 dz8(z)o(u+ zlyl/e,y), (5.122)

1
Gulw) = [ Eyin [ dzaioutu+=iyl/ey),
-1
where u =t —r/c, and the function §;(z) is defined in eq. (3.189).

The PN expansion to arbitrary order

We now tackle the problem of finding the PN solution to all orders. We
write the PN expansion of h w0 the form

o

1
-yl

n=2

hiv (n) hv ,

(5.124)

185) and (3.188), together with the fact that V
—4drGo and OV; = —47Go; (see egs. (5.39) and

(5.123)

where we have extracted explicitly the powers of 1/¢, to help the book-
keeping (just as we did with G in the post-Minkowskian expansion).??

Similarly, we expand the effective energy—momentum tensor as>?

o0

1
- Z C_ﬂ (’n)T/LU )

n=-—2

(5.125)

Inserting this into the relaxed Einstein equations, and equating terms
with the same powers of ¢, we get a recursive set of Poisson-type equa-
tions,

VM) = 167G (8 7] 4 o7 [(“_2>h’“’} . (5.126)
We could now try to solve these equations using the Poisson integral
(5.61). However, as we already discussed in Section 5.1.6, beyond some
value of n the resulting Poisson integrals diverge. This does not mean

 that eq. (5.126) admits no solution, but simply that the Poisson integral

is not the correct one. The problem here is purely technical, and consists
in finding the correct inversion of the Laplacian. The Poisson integral
is the right solution only when the houndary condition is that the field
vanishes at spatial infinity; otherwise, the solution is different. As an
obvious example, consider the equation

VU = —p, (5.127)

where p is constant all over space (physically, this equation gives a model

of Newtonian cosmology). If we attempt to solve for U using the Poisson

integral (5.61), we find a divergent result. However, on a function U(r),
1 62

VU = “_“[TU(T)] )

s (5.128)

so we see immediately that U(r) = (—1/6)pr? is a solution. In this case,
it was simply not appropriate to impose the boundary condition that
U(r) vanishes at infinity, since the source p does not vanish either.

In our case the problem is similar, but more subtle. The point is
that we cannot enforce the boundary conditions at infinity within the
PN expansion, because this expansion becomes singular as r — oo, as
we saw in Section 5.1.6. The correct way to incorporate the boundary
conditions is to match the PN solution in the near zone to the post-
Minkowskian solution in the external source region, and to impose the
no-incoming radiation boundary conditions on the post-Minkowskian
solution.

A possible strategy is therefore to find one particular solution of the
set of equations (5.126). This is the same as a particular solution of the

_ relaxed Einstein equation (5.72), which is an inhomogeneous equation,

so the most general solution is obtained adding an arbitrary solution of
the homogeneous equation Oh*” = (0 (subject to a regularity condition
at the origin, see below). This homogeneous solution will then be fixed
matching the PN solution to the post-Minkowskian solution. Once we
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32However in this case one finds that,
starting from 4PN order, (™h*¥ hag
also a logarithmic dependence on ¢, and
the expansion contains arbitrary pow-
ers of logc.

330Observe that this expansion starts
from n = -2, since 7#¥ has dimension
of pc?.
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340bserve that here the factor x| B
regularizes the divergence at infinity,
while in the analytic continuation tech-
nique discussed in Section 5.3.1 it regu-
larizes the divergence at the origin. For
this reason, here we start from B large
and negative, while in Section 5.3.1
we started from B large and positive.
More precisely, one assumes that the
source is extended and made of some
perfectly regular (i.e. C®) distribution
of fluid. We then separate the original
Poisson integral into a part from r = 0
up to a finite value, say to the bound-
ary R of the near zone, and a part from
r =R tor = oco. The inner integral
converges (assuming that f is a smooth
function of the source), and no factor
[x'|B is inserted there, while the outer
integral is regularized by the insertion
of the factor |x/|Z. By the uniqueness
of the analytic continuation, the result
is the sum of the near zone and far zone
integrals.

have found a particular solution of eq. (5.126), the addition of an arbi:
trary solution of the homogeneous equation provides the most general

solution in the near region, while in the previous section we found, with

the post-Minkowskian expansion, the most general solution in the exter:
nal source region. Thus, the matching condition will admit a solution.
A particular solution of the set of equations (5.126) has been found

by Poujade and Blanchet using a variant of the analytic continuation
technique discussed in Section 5.3.1. Given a function f(x), we consider

the integral

—-1/..B x 7~_i dg.’L’,
A0 =3 [

X = X'|

x'[Pf(x).

If we take B sufficiently large and negative, the factor |x/|?
any potential divergence of the integral at [x'| — c0.3* Equation (5.129)
then defines a function of B, for B sufficiently large and negative. One

can then prove that this function admits a unique analytic continuation

to the complex B-plane, except for B = 0, where it can develop multipol

poles and can be written in a Laurent expansion. The coeflicient u of

B is again denoted by FP_q,
U = FPB:o{A_l[’T‘Bf]} .

With the same argument used on page 258 for the inversion of the

d’Alembertian operator, we can now show that u satisfies VZu = f, so |
u provides a well-defined inversion of the Laplacian. When the Poisson
integral converges FPp_o{A~[rB ]} is the same as A~ f. Therefore,
we recover the lowest-order results obtained in the early works on the

PN expansion. However, now all higher-order terms are manifestly finite
and calculable.

We denote by an overbar the expansion of a quantity up to n-th order

in the PN expansion, e.g.

(Y = 1 7 L
hHv — Z o (m)ppy

m=2

Taking the sum over n of both sides of eq. (5.126), we see that the
particular solution that we have found can also be written compactly as

167G

part =

To this solution we must add the most general solution of the homoge- ~k
neous equation, subject to the condition of regularity at the origin. This

has the form

ROt —r)c) — RSPt +7/c)

hom = 1 I 2r

=0

where R}fﬁ (u) are arbitrary functions of u, and are STF tensors in the
1;. The fact that this is a solution follows from the fact that,

indices 7; ...

(5.129)

regularizes

(5.130)

(5.131)

hers = —3— FPO 7 (5.132)

+00 g ;
poo 167G Z( DiPS . (5.133)
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for any function f(u), where u =t — r/c, we have O[f(u)/r] = 0, and
similarly O{f(v)/r] = 0, where v = t + r/c. The inclusion of all STF
tensor provides a full set of representations of the rotation group, so for
instance the first term in eq. (5.133) gives the most general retarded
solution. The condition of regularity at » = 0 fixes the antisymmetric
combination of retarded and advanced waves. Observe that, under time
reversal, hf:gm is odd. According to the discussion above eq. (5.3), it
therefore describes radiation reaction.®® We will indeed see that this
term gives a correction to the leading term of the radiation reaction
force.

5.3.3 Matching of the solutions

In the external source region, d < r < oo, we have found the solution
in the form of a post-Minkowskian expansion, eq. (5.85). For d/r < 1
the multipole expansion is applicable, so we could write the solution
for hy in terms of the multipole moments (Ir,,J., W, X, Y, %) or,
equivalently, in terms of (M, Sz). Through the iterative procedure that
we have discussed, all higher-order terms hg, hs, ... are then determined,
in the form of a multipole expansion.

On the other hand, in the region 0 < r < R, with R is the boundary of
the near region, we have found the solution in terms of a post-Newtonian
expansion. Since we are considering a source with v < ¢, we have R > d,
and the region of validity of the PN expansion overlaps with the region
of validity of the post-Minkowskian expansion. In the post-Minkowskian
scheme, the moments (Iz,...,Zz) are quantities that parametrize the
most general vacuum solution, but for the moment know nothing about
the specific source under consideration. In PN solution, on the con-
trary, the energy—momentum tensor of the source enter explicitly, see
eq. (5.132). Comparing these two solutions in the overlapping region,
we can therefore fix the multipole moments (I, ...,Z) in terms of the
energy—momentum tensor of the source.

To perform this matching we observe that, in the overlap region
d < r <R, we have d/r < 1 so each term of the post-Newtonian ex-
pansion can be in turn re-expanded in powers of d/r, i.e. in a multipole
expansion. This is the multipolar post-Newtonian expansion discussed
in Section 5.3.2. On the other hand, again in the overlap region, each
term of the multipolar post-Minkowskian expansion can be expanded in
a post-Newtonian way, i.e. in powers of v/c. A crucial point is that
the n-th term of the post-Minkowskian expansion, i.e. the term h®? in
eq. (5.85), when expanded in a PN fashion, is such that?®

1 ; 1 y 1

This means that, to work to a given order in the PN expansion, we
need to take into account only a finite number of iterations of the post-
Minkowskian expansion. For example, suppose that we want to perform
a computation to 2PN order, i.e. that we want to compute the correction

35Furthermore, the fact that it is a
solution of the homogeneous equation
means that a source is not needed to
sustain this field, which again leads to
an interpretation in terms of a pure ra-
diation field. It is well known already in
classical electrodynamics that the an-
tisymmetric combination of advanced
and retarded waves is associated with
radiation reaction. See, e.g. Poisson
(1999) for a review.

36For the proof see Blanchet and
Damour {1986), eq. (5.5).
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37 Ror the proof, see Section 5 of
the review Blanchet (2006). For the
explicit expression of the moments
(Wr,X1,Yr,Z1), which are needed
only when performing computations to
relatively high order, see eqgs. (87)—(90)
of Blanchet (2006).

38O’bserve also that the factor of G
have been reabsorbed in the definition
of hi", see eq. (5.85).

O(1/c*) to the Newtonian metric. This means that we need goo up to
O(1/c%), goi to O(1/c®), and g;; to O(1/c*), included. Equation (5.134)
shows that we need to compute h, up to n = 3, i.e. that we must
perform two iterations of the linearized solution hy.

Comparing the multipolar post-Newtonian expansion with the PN
re-expansion of the post-Minkowskian solution, allows us to fix the muk
tipole moments (Iz,...,Z) in terms of the energy—momentum tensor
of the source. Remarkably, it is possible to compute them analytically,
for any [, and formally to arbitrary order in the PN expansion. For I,
and J;, one finds®”

) A2 + 1)041(2)
Iz, (u .777/613 / { 7Py i M Lk RASTATS (Y
2t (2)2r 20+ 1)(2 + 3) JiE

2(20 + 1)d142(2)
c4(l+ D +2)(2 45

~ 1
JL(u)z]:P/d?’x/ dz Gab(z‘,{dz(z)@L—UaEb
-1

@210 (z) (1)
(0 +2)(20 + 3) Tr-1)acXpe }(U + z[x| /¢, x).

‘We have defined

] i'ijng)} (u+ z|x|/c,x), (5.135)

(5.136)

7_00 47U
Y= ot (5.137)
,7_07',
Zi=—, (5.138)
N =79 (5.139)

where 7% = §;;7Y, 7 is given in eq. (5.73), the bar over a quantity
denotes its PN expansion up to the desired order, and the integration in
d®z is over the whole space R®. The function 51( ) has been defined in
eq. (3.189), and the remaining notation is explained on page 134 and in
eq. (5.97).

Comparing with eqgs. (3.207) and (3.208), we see a truly remarkable
fact: despite all complications of the non-linear theory, the full non-
linear result for hi”, to all orders in the PN expansion, is obtained from
the result of linearized theory simply replacing TH with 7, and insert-
ing the FP prescription.3®

The integration over z is computed, in an expansion in powers of 1 /¢,
using eq. (3.209). In particular, to 1PN order one finds from the above
equations that the mass quadrupole I;; (i.e. Ip with | = 2) is given by

' . 1
:/d%mij &(u,x) + 142 5.3 /d z 245 %)? 7 (u, x)

20 0
_ﬁ%/dzzuka (ux)+0< ),

with o and o* defined in egs. (3.205) and (3.206).
notation introduced on page 134, Z;; = z;x; —

(5.140)

According to the
(1/3)8;5]x|?, and similarly
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for 1. Observe that, for the mass quadrupole, to 1PN order the
integral is over a function with compact support, so the 7P prescription
is not necessary. It is remarkable that, to 1PN order, this general-
relativistic result is actually identical to the linearized gravity result
obtained from eq. (3.207). That is, for [;; at 1PN order, we do not even
need to make the replacement T}, — 7., since the contribution due to
the gravitational field in 7, actually cancels out.

The second aspect of the matching problem is that it allows us to
fix the functions R%’g that appear in the homogeneous solution (5.133).
The result is

“+o0
R () FP / P & / dz 5,(2) M(T*P)(u — 2]x¢| Je,X')
(5.141)
where M(7%7) denotes the multipole expansion of 7%#. This homo-
geneous term is associated with radiation reaction effects at 4PN or-

_ der, due to the so-called tail effects, that will be examined in detail
_ in Section 5.3.4. We will also see that the leading radiation reaction

term appears at 2.5PN order (indeed, we already understood this from
eq. (5.67)), so this homogeneous term describes a 1.5PN correction to
the leading term of the back-reaction force.

There is one more comment to be made on the validity of the whole
formalism that we have discussed. A crucial point of the whole pro-
cedure is the existence of a region where the domain of validity of the
post-Minkowskian expansion, d < r < oo, overlaps with the domain
of validity of the PN expansion, 0 < r < R. If this were not the
case, the general form of the post-Minkowskian solution would still be
valid, since it is the most general solution of the vacuum Einstein equa-
tions. However, we would not be able to connect the multipole moments
Ir,J1,...,Zy that parametrize it, to the properties of the source. As
we saw, the PN expansion breaks down at distances r ~ X ~ (c/v)d.
Since for a material source v/c¢ < 1, one might hope that there is al-
ways at least a small overlap between the near zone and the external
region. However we have seen, already at the level of linearized theory,
that a source oscillating at a frequency ws emits quadrupole radiation
at frequency w = 2w,, while its mass octupole and current quadrupole
radiation is at w = w, and at w = 3w, and a multipole of order n distrib-
utes its radiation among a set of lines in frequency, up to a maximum
frequency nws. In a computation to n-th PN order, we must include
multipoles up to order ~ n, which therefore generate GWs with fre-
quencies up to w, = O(n)ws, and, correspondingly, reduced wavelength
X = O(1/n)Xo, where X ~ (c/v)d. If n is larger than O(c/v), it is no
longer true that X,, > d, and for GWs of such wavelengths the near zone
no longer overlaps with the exterior region, so we cannot compute them
with this formalism. At the same time, while for v/c < 1 the lowest
multipoles dominate, this is no longer true when v/c approaches one,
so the contributions that we are unable to compute are also no longer
negligible.

In other words, for a system with typical velocity v, we can compute
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391t should be observed however that
the Bondi-Penrose expansion does not
exist if the source has been active in the
infinite past, as can be seen with physi-
cal arguments, see Damour (1986), and
with rigorous mathematical results, see
Christodoulou and Klainerman (1993).
However, in the Blanchet—-Damour for-
malis;m one always consider a source
that was quiet at time ¢ smaller than
some value —T', see Note 24 on page
255. Physically, this restriction is not
an important limitation, since the bi-
nary system was obviously not there be-
fore the epoch of formation of its stars.

only up to a post-Newtonian order O(c/v). Thus, the formalism that
we have discussed becomes asymptotically exact for v/c — 0, while it
gradually breaks down in the opposite limit v/c — 1.

5.3.4 Radiative fields at infinity

Having computed the moments Iz, ..
is now determined, and we can study it at future null infinity, i.e. at
7 — oo with u =t — r/c fixed, where we expect to find gravitational
waves. One finds that, in this limit, the n-th term h%? of the post-
Minkowskian expansion (5.85) has the formal structure

o0
M
hev =%
k=1

where, as usual, the summation over the multi-index I is understood.
The appearance of terms involving logr at future null infinity is a co-
ordinate effect, due to our use of harmonic coordinates. It is known,
since the classical works of Bondi et al., Sachs, and Penrose in the 1960s

n—1 ~
w fup, (logr)?
G oy (W) ==

M

(5.142)

I
=

p

on the asymptotic structure of space-time at future null infinity, that it
is possible to find other coordinate systems, called radiative coordinates
or Bondi-type coordinates, where the logarithmic terms are absent.?®

We denote one such coordinate system by capital letters, X#* = (T, X),
and we introduce R = [X| and U = T — R/c. The unit radial vector

in these coordinates is N = X/R, and as usual Ny, is the multi-index
notation for Ny, ... N;. We write the metric in this coordinate system

as Gy =y + H wv- Then, the post-Minkowskian expansion at future
null infinity has the general structure

o O

v "y NL
Hy" = ZK§;7<k,n)(U)§E ’
k=1

(5.143)

without logarithmic terms. The coordinate transformation from har-
monic to radiative coordinates can be obtained, order by order in G,
computing explicitly the behavior of h®” at future null infinity.

We now introduce two sets of STF multipole moments, called the
radiative multipole moments, or the multipole moments at infinity, and
denoted as Uy, (U) and V(U) (where the argument U is retarded time
T — R/c in radiative coordinates, and should not be confused with Ur
with [ = 0), defined as follows. At future null infinity, we select the
1/R part of H;j, and we project it onto the TT gauge making use of
the projection operator A;; . as in eq. (1.40). We denote the resulting
expression by HEET‘ Then, UL (U) and VL (U) are defined by

o7 AG 1
Hj (U>N):§§Aijab(N)ZW Ny —2Uapr—2(U)
’ =2
21

—4N(:L—26<:d(avb)dL~2(U)} :

1T (5.144)

., Z 1, the solution outside the source
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Once we have the explicit expressions of Uy and Vj, in terms of the
algorithmic moments Ir,Jz,... %z, including all 1/c corrections consis-
tent with the PN order to which we want to work, we have completed
the solution to the problem of GW generation, since we then have the
waveform at infinity, in terms of the energy—-momentum tensor of the
source.

Lowest-order determination of Uy, Vy,

We first compute the relation between the radiative moments Uy, Vp
and the algorithmic moments Iy,...,Zy, to lowest order in 1/¢c. So, we
limit ourselves to the lowest order in the post-Minkowskian expansion,
hii = Gh% | with hij given in eq. (5.95). We neglect the function ¢},
which at the linearized level is a gauge mode, so it contributes only to
higher orders in 1/c. Then hy is the same as the tensor k}’ given in
eq. (5.96). To this order, there is also no difference between harmonic
and radiative coordinates, since no logarithmic factor appears at infinity.
To get the leading term for r — oo we simply extract the factor 1/7 from
the derivatives in eq. (5.96), and we use the fact that, on a function
f(u) of retarded time u = t — r/¢, we have 0;f(u) = (0;r)df /dr. Since
Oir = xi/r = n; and df /dr = (=1/c)df [du, we get

(=1

Of(u) = —F~ny FOw). (5.145)

We insert this into eq. (5.96) and we write h;l;T = Ajjaphap. Comparing
with the definition (5.144), and observing that, to lowest order Iy, = M,
and Jp = Sz, we find that*°

UL ) =MP W), Vo)=Y W). (5.146)

Thus, to lowest order in 1/¢, the radiative multipole moments Uy and Vi
are simply equal to the [-th time derivative of My and Sy, respectively.
At this level, we have simply reproduced the result of linearized theory.
Indeed, we saw in Sections 3.3 that the coefficient of 1/ in the amplitude
(what we have now called a radiative moment) is given by the second
derivative of the mass quadrupole moment, see eq. (3.59), by the third
derivative of the mass octupole, see eq. (3.141), etc. (see eq. (3.204) or
egs. (3.291) and (3.293) for the general result).

Of course, we cannot limit ourselves to this lowest-order result, but we
must include all 1/c¢ corrections to the relations (5.146), consistent with
the PN order to which we wish to work. So, we next consider the cor-
rections in 1/c coming from the first iteration of the post-Minkowskian
algorithm, i.e. from the inclusion of hy. We will see that this study also
teveals a very interesting conceptual feature, the presence of so-called
“hereditary terms”.

Higher-order corrections

To illustrate in a simpler setting the computation of the first post-
Minkowskian iteration, we take as starting point for the iterative pro-

40We must also take into account the
minus sign discussed in Note 19 on
page 250.
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cedure a linearized metric h?ﬁ of the form given in eq. (5.96), retaining

only the two lowest-order mass multipoles, I = M and I;;. The latter,
up to 2. 5P\I corrections, is the same as MZ], see eq. (5.102). Then we

can write h
haﬂ o haﬁ

o+ h(M”) (5.147)

where, from eq. (5.96), the monopole part is given by
4M ‘
iy = - (5.148)

together with h(()fvl) = th1>

and the quadrupole part 1s

0 (recall also that M is time-independent),

2 1
hisr,) = =220k {;Mkz(uf)} , (5.149)
: 2 1 .
hiha,,) = Tak {iMi? (U)} : (5.150).
ij M@ .
hdv.[”) C4 7, ’L] (I.L) . (015l>

We can now determine the next post-Minkowskian iteration, h2 , solving
eq. (5.90) with N%P[hy, hy] given in eq. (5.89). Since N°@ is quadratic
in hy, when we insert eq (5.147) we get three terms, one quadrdtlc in
the monopole part h(M)’ one quadratic in the quadrupole part oA

(M4
and a mixed monopole—quadrupole term,
af 3 a
hy" = h?lvﬂ) + h(MxM”) + h(waMH) (5.152)

The monopole-monopole part h(\[r,) is easily computed. Since h

non-vanishing only for & = 8 = 0, N8 (haays hoay] collapses to a vely
simple expression. For instance,

14M?2

clrd

N%hany, han) = —

Thus, h(W is obtained solving the equation Dh(l\/1'>> = —14M?/(c*r).
Since the right-hand side is time-independent, in this case there is no
need to go through the procedure of taking the retarded integral with
the 7P prescription. Simply, the solution will be time-independent (so
the d’Alembertian becomes a Laplacian), and will be a function only of
7. From the expression of the Laplacian in spherical coordinates we get

1 &2

14M?
r dr? [h(Mg]:—

chpd

which (together with the boundary condition that the metric vanishes
at spatial infinity) gives

A 2

00 ™

hivey = R (5.155)

term to h2 , we must compute the finite part at B =
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Gimilarly one finds that h(MZ) =0 and h(MZ) = —n;n;M?/(c*r?).4! Since
it proportional to 1/7%, h?Mg) does not contribute to the 1/r part of the
field, and hence to the radiative moments at infinity.

Consider next the mixed monopole-quadrupole term. When we plug

hf‘d = h'(lﬁ M) T h(M y into NV *Alh1, hy] and we retain the terms bilinear in

af and h®? | we find that N®P[h, h] takes the general form

h(M) (Mij)°

Naﬁ{h,h}(mxl\dij) — = H(k)( ), (5.
k=2

hian
is the sum of terms
with negative powers of r, such as 1/r,1/7%, etc. multiplied by func-
tions of w =t — r/c. The factors ny come out when taking the spatial

for some functions Hé»k) (u). This follows simply from the fact that
is proportional to 1/7, times a constant, while hgﬁ“)

_ derivatives, using 0;r = n,.

Thus, to ﬁnd the contribution of this mixed monopole-quadrupole
0 of retarded
integrals of the form

Ot lnpr? R H(u)], (5.157)

for some function H(u) (we omit the index L in H(u), in order not to
imply a summation over [). The computation of this retarded integral
gw(*s two completely different results when k& = 2 and when k > 3. For
k > 3 (but still k¥ <1+ 2, which is the case that we will need) one finds*?

k—3 k—3—j
. - —k Cipg AT
FPp—o Opt[nrB*H(u)] = np, ZO 7’1’%1‘ mﬂ(u) ,  (5.158)
=
where c;p; are some numerical coefficients,
2k =30k — 3N (L +2 - k)l + )
2T B2 DML g) 5150

I+ k—=2)31— )
Observe that, since j takes the values 0,...,k — 3, the order of the
derivative of H(u), k — 3 — 7, is between k — 3 and zero. Since k > 3
this is never negative. The important point about eq. (5.158) is that the
result is local in time: its value at a given (retarded) time u depends on
the function H(u) and on a finite number of its derivatives, evaluated
at the same retarded time u. We will refer to terms with this property
as “instantaneous”.

It is clear, however, that the above result cannot hold for & = 2, since
in this case the order of the derivative of H(u), k — 3 — j, can become
negative. Indeed, for k = 2 on finds that the result is given by an integral
of H(u), rather than by its derivatives,

x>
(1] e ),
T c T T c
where @;(z) is a special function known as the Legendre function of the
second kind. (Observe that for k = 2 the retarded integral converges at

(5.160)

v

41 The correctness of the result can be
checked observing that
ap af 28
monopole — Ch(I\I) +G h(M")
is nothing but the Schwarzschild met-
ric, written in harmonic coordinates,
and in terms of h®? = (—g)1/2g%f —
7P expanded to second order in
Rg/r = 2GM/(c?r).

For the explicit computations see
Blanchet and Damour (1986) and
(1988), as well as the appendixes of
Blanchet (1998a) and (1998b).
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Bt s easy to extract the term 1/'/'2
from N[h, n](MxM ;. Just observe

that both h?M) and h?
carry each one at least one de'fOI 1/r,
and that 8;(1/7) = —n;/r?, so all terms
involving spatial derivatives of 1/r are
at least overall O(1/r?). Taking further

into account that h(d) is non-vanishing

) already

only for « = 8 = 0 and is time-
independent we see immediately that,
in eq. (5.89), in the mixed term, the
only contribution O(1/r?) comes from

the first term, and is h(aﬁ)(?QhEﬁ )

443¢e Blanchet (2006), eq. (110), for

h(al\ixM .y, and Blanchet (1998a) for
ha
(lejx\/lkl)

r =0, so the F'P prescription is superfluous.) The crucial point is that,
since the integration variable z runs from r to oo , this result does not
depend just on H(u) at the value u =t —r/c, but also on all its values
at earlier times, from v = —00 t0 u = t —r/c. In other words, the result
depends on the whole past history of the source. A term of this kind is
called “hereditary”, and we will discuss its physical meaning below.

The asymptotic behavior of eq. (5.160) for 7 — oo and t — r/c fixed
is computed using the known behavior of Q;(z) in the limit x — 17,

Qulo) = - 10z (15 ) =0+ 0w = 1) log(a ~ 1)

where the constant ¢, = Zﬁg:l k
ztoy=(2—r)/c, we get

o [ i) =G [ v (1= £ ) s (5) + 201
U 7‘2H(t r/c)| = 27./0 dy H (t . y) {log 5 >+2a1

+0 <logr> ‘
r2

Thus, asymptotically this is O(1/r), and contributes to the radiation
field. We can now compute the hereditary term in h((llﬁxlvl” y» considering
for definiteness the component o = = 0. Inserting eq. (5.147) into
NPlhy, hy] and keeping only the mixed monopole—quadrupole terms,

we find*®
M 4 1
2d nmJM(J) +0 <r_3> .
Using eq. (5.160) we therefore find

8M .
h(I\/IXM“) C4 n TLJ/ dZQQ ( > 4( >(t _ Z/C)

+ instantaneous terms.

(5.161)

~L1. From this, changing variable from

(5.162)

NOO [h7 h] (l\’IXI\/I”’) (5163)

(5.164)

The instantaneous terms are straightforwardly computed using eq. (5.158)
Similarly one can compute the other tensor components of h(l\ﬁXsz)’

as well as the quadrupole-quadrupole term h(M M)’ and one finds
that they all have hereditary contributions, besides the instantaneous
terms.*4

Using the asymptotic expansion (5.162) we can now compute the con-
tribution of hg # to the radiation field at infinity, and therefore to the
radiative multipole moments. For Uz, we get

2OM [ M (4 ) [log (57 ) + »i]

Uy (u) =M (u) +

C
1
+0(5)
c®

where, as usual, u =t — r/c and

(5.165)

22+ 51 +4 2
“‘_1(z+1z+2 Zl

(5.166)
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We see that the second term in eq. (5.165) is a O(1/c®) correction (i.e.
a 1.5PN correction) to the leading result given in eq. (5.146). The logr
term in the correction is typical of the harmonic coordinate system that
we are using and, as we mentioned, can be eliminated going to radiative
coordinates. From the study of the logarithmic terms at infinity one
finds that retarded time U in radiative coordinates is related to the
harmonic coordinates (¢,7) by

v=¢- D20y, (’")+0(G2)
C 70

} (5.167)

where 7o is the arbitrary constant discussed in Note 29 on page 258,
and provides a scale for the logarithm. Its arbitrariness corresponds
to a freedom in the choice of a system of radiative coordinates, and in
particular we see from eq. (5.167) that it can be reabsorbed into a shift
in the origin of retarded time U. So it is a a gauge-dependent constant

that will not influence any physical result, as it is already clear from the

fact that the starting expression (5.165) is independent of ro. In terms
of these radiative coordinates, eq. (5.165) becomes

2GM [T
UL (U) = M(L]')(U) + — ]0 dr ng+2) (U —1) [log <2:;)> + M]

1
+o(5)

i.e. inside the logarithm, r is replaced by rg. Similarly, for the current-
type multipoles one finds

(5.168)

: 2GM &
Vi (U) = S(If)(U) +-3 dr Sg+2)(U -7) {log <2%T—> + m}
0
1
+0 <c—> , (5.169)
where
!
ey Z . (5.170)

Of course, the relation between the radlatlve and algorithmic moments is
needed with the highest accuracy for the lowest multipole moments, since
the contribution of higher multipoles to the radiation field is suppressed
by higher powers of 1/c. In particular, to compute the GW production
in a binary system up to 3PN, we need the relation between the [ = 2

_ mass moment Uj; and My; up to 3PN order, which is

2GM  [Tte° cr 11

U (U) = M@ = / MW= ol

3 (U) i (U)+ ), dr M’ (U —7) |log e + s
2G

7B
G2 5 1
% {?1\4@1\4@ 2@ 1\4(5)1\/I])a - geabul\lﬂﬂsb}

+o0 .
/ dr MO (U = M) (U - 1)
0

a{i" " j)a 7 ali” " ja 7 a(i
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over retarded time from —oo to ug, which therefore depend on the value
of the multipole moments at all times u < uyg.
In other words, the intuition stemming from flat space-time suggested
that GWs propagate on the light cones, while we find that they rather
propagate both on and inside the light cones.®® It is as if the gravitational =~ “®Indeed it was already known since

interaction did not propagate just with speed ¢, but with all possible the 1950s, from theb study of the ifli-
speedS 0<v<e tial value problem in general relativ-

. . . . ity, that, given some initial data on a
Physically, this result can be better understood using a field-theoretical Spalce—]ike hypersurface S, to determine

Janguage, in terms of back-scattering of gravitons. For instance, the the gravitational field at a point P we
1.5PN hereditary term, in the first line of eq. (5.171), depends both on  need not only the values of the initial
derivatives of the quadrupole moment M;;, which in a field-theoretical data on tjhe intersection of S with the
- . . ; A past (curved-space) light cones of P,
language is associated to a graviton line, and on the mass M of the pbut also the data inside this intersec
source, so it corresponds to scattering of gravitons off the background tion, see the Further Reading.
curvature generated by the mass M of the source. The 2.5PN hereditary
_ term in the second line of eq. (5.171) rather corresponds to a graviton—
graviton scattering process (in the language of Feynman graphs, it would
be related to a three-graviton vertex), while the terms proportional to
G?M? is a higher-order correction to the scattering of a graviton off the
external curvature. In this sense, gravitons always propagate locally at
the speed of light. However, their arrival time is delayed because they
can repeatedly scatter back and forth, either with the background grav-
itational field or among themselves. The same effect is known to take
place in the propagation of the electromagnetic field in curved space-
time. However, while conceptually it is legitimate to consider the prop-
agation of electromagnetic waves in flat space-time, where they just
propagate on the light cone, for GWs this limiting case strictly speaking
does not exist, since the source that generates GWs necessarily pro-
duces also a curvature of the background space-time, and also because
GWs scatter among themselves (or, in the language of Feynman graphs,
because of non-Abelian graviton vertices). So, this propagation inside
the light cone unavoidably occurs, when one takes into account the PN
corrections. We see here a reflection of the fact that gravity is an intrin-
sically non-linear theory.
Looking more closely at the hereditary terms in eq. (5.171), we can
distinguish between two types of terms, with and without the factor
log 7 inside the integral. We examine first the 2.5PN hereditary term in
the second line. Introducing V = U — 7, this integral can be written as

2 2N 12 +oo
L2 / dr MO (U ~ 1)
C] O y
« Nlog? [ E2) 4 2T (T . 124627
8 \ 25 ) T 70 %8\ 2ry ) " aa100
1
i) <§> (5.171)

The 1.5PN correction, in the first line, is the hereditary monopole-
quadrupole term in hgﬂ that we have computed above. In the second
line we have a hereditary 2.5PN contribution, due to the quadrupole-
quadrupole term in hg‘ﬂ , and in the third line we have the instantaneous
contribution from this quadrupole—quadrupole term. The term propor-
tional to G*M? is a monopole-monopole—quadrupole term in the second
post-Minkowskian iteration hg‘ﬁ , and again it is a hereditary term.

Below we discuss the physics behind these non-local contributions.
First, we observe that the above results allow us to compute the wave-
form and, from it, we can obtain the energy radiated at infinity. This
can be obtained inserting eq. (5.144) into the expression for the radiated
energy, eq. (1.153). The result for the radiated power P, as a function
of retarded time U, is (compare with the linearized result, eq. (3.210))

= @ I+ 1)1 +2 ,
Ihzggcw+l{a£1ﬂ£é1+1yﬁU8%U“ﬁpaﬂ>

41(1+2)
T (S e

VPOV
For example, up to 2PN order, this equation gives

Gl omyo 11 one
P:Eg{gUij Uij +07 T8‘§Uijk;U1:jk:

LT oo o L 1)) 1 ,
+ZAI |:9072U’L'jk'mUijk,1n+ézvij}cvij}g +0 g ,(5.173)

16 (14,0
+ 4= Vi Vi)

(where the average is understood), compare with the 1PN result of lin-
earized theory given in eq. (3.156).

Physical meaning of hereditary terms. “Non-linear memory”

U
and “tails” Fiy(U) = / av MG (VM) (V) (5.174)

At first sight, the appearance of terms that are not instantaneous is
quite surprising. For an interaction that propagates in flat space at
the speed of light, the signal detected at time %y, coming from a source
at a distance r, depends only on the instantaneous state of the source
at retarded time ug = tp — /¢, so it depends on the source multipole
moments and on its derivatives, all evaluated at u = ug. However, the
sources that generates GWs also curve space-time, so GWs necessarily
propagate in a curved space. We see that, as a consequence, besides the
instantaneous terms there are also hereditary terms, given by integrals

o]
= / v KU, V)MI(V)ME) (v),
— o
where the kernel (U, V) = 6(U — V) is flat and equal to one for V < U,

and vanishes for V' > U. Consider a source whose multipole moments

were constant in the far past,®® then it becomes active, and finally is  *6This was among the basic assump-
turned off at some value of time which, for a far observer at a given tions of the method, see Note 24 on
distance r, corresponds to a given value of retarded time, say U = P8¢ 255 and guarantees the conver-

1ce of the integral at V = —co.
Up. For U > Uy we can split the integral in eq. (5.174) as f_UOO dV = goniee of The ntegrat @ °
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4T The existence of such a memory ef-
fect was also found by Christodoulou,
from a rigorous mathematical study of
the asymptotic behavior of the gravita-
tional field at null infinity, and is also
known as the “Christodoulou mem-
ory”. The term “non-linear” distin-
guishes it from a memory effect that
exists already in linearized theory, see
the Further Reading section.

]_Ugo av + [(% dV . However, since the integrand in eq. (5.174) vanishes
for V > Uy, the integration between Uy and U gives zero, and for all
U > Uy we have F;;(U) = Fj;(Up): the integral remains frozen forever
at the value it had at U = Uy. Thus, the contribution to the GW
amplitude due to this term remains non-zero even after the source has
been switched off.

This is due to the fact that, in eq. (5.174), very remote times are
weighted as much as more recent times, since the kernel (U, V) is a
flat function of the integration variable V, for V' < U. Therefore, the
result is really determined by the cumulative history of the source, in-
cluding its very remote past. For this reason, it is called a “memory
effect”, and the 2.5PN hereditary term in the second line of eq. (5.171),
which is non-linear in M,;, is called the “2.5PN non-linear memory in-
tegral”. " Observe however that, taking the time derivative of Fy;(U),
we obtain an instantaneous term. Thus in the energy flux, which is
determined by f)/};-T, the 2.5PN non-linear memory term gives an instan-
taneous contribution.

Consider next the 1.5PN hereditary term in the first line of eq. (5.171).
Introducing again V = U — 7, we get an integral of the form

U-v
2P, ’

where Py = 7o /c is an arbitrary constant with dimensions of time. We

split
U U—2P U
/ dV:/ dV+/ av,
. oo Ju—ap

and, in the first integral, we integrate twice by parts. Using the fact
that the derivatives of M;; go to zero sufficiently fast for U — —oo, we
get

U
Gy (U) = / dv M (V) 10g< (5.175)

(5.176)

1 7(2) v 1 1\/1(4) log u-v
Gy (U) = 2PMM (U —-2P)+ Lo dv Mg’ (V) log 2T,
U—-2pP
- A% @)
_ —MS(V). 5.177
[ o 4T

The terms in the first line involve only values of V' in the “recent past”,
U —2P <V €U, while the contribution from the remote past, —oo <
V < U — 2P is in the integral in the second line. This way of rewriting
G;;(U) allows us to understand that the contribution of very remote
times, V — —o0, is weighted with a quadratically decreasing kernel
(U —V)~2, contrary to what happens in the memory integral, where the
kernel is flat and very remote times contribute as much as recent times.
A contribution of the type (5.177) is called a “tail integral”. Thus, the
first line in eq. (5.171) gives the 1.5PN tail integral, and the last line
gives the 3PN tail integral.

In conclusion, the GWs emitted by a source which at some value of
time suddenly switches off, can be considered as made by three distinct
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pieces: the wavefront, which is due to the instantaneous terms; a tail,
which effectively travels at a slower speed and therefore arrives later,
and which smoothly fades away with time; and, finally, a “memory”,
which is a persistent DC (i.e. zero-frequency) contribution.

5.3.5 Radiation reaction
Radiation radiation in electromagnetism

Radiation reaction is a classical problem that was first studied in elec-
tromagnetism (the pioneering works were by Lorentz, in 1892 and 1902,
and by Planck, in 1897).48 As a warm-up, let us recall these classical re-
sults. Consider a system of electric charges e, moving under their mutual
influence. Being accelerated by their interaction, they radiate electro-
magnetic waves. This emission costs energy, which must be drained from
the mechanical energy of the system. This means that there must be a
force which acts on these charges and performs the work necessary to
account for the energy loss. This force is called the back-reaction force
due to the emission of radiation, or simply the radiation reaction.

In other words we expect that, when we compute the total electromag-
netic field due to a system of charges in mutual interaction, to a term
describing electromagnetic waves in the far zone should correspond a
term in the near zone, that describes a radiation reaction force acting
on the charges. This is indeed the case. The dynamics in the near zone
can be studied starting from the expression for potential (¢, A) in terms
of the charge density p and the current density j,

B(t,x) = / a3z’ P p(t —|x— x| /e, %), (5.178)
1 1
At,x) = - /dS:L” mj(t —|x =X/, x). (5.179)

We perform an expansion for small retardation effects, just as we have
done for the gravitational field when we have discussed the PN expan-
sion, and we insert the result in the Lagrangian for a point-like charge
e, in this external field, which is

Lo = —mc* 1_852;*6 o( ey A
a c2 a Xa-)+?va' (Xa)'

The result (see Landau and Lifshitz, Vol. II (1979), Sections 65 and 75)
is that, up to second in v/e, the Lagrangian is conservative, i.e. depends
only on the positions and velocities of the particles, and reads

1 5 ML €ah 1 . .
L= Z 5Malat 802“ ~Z {1 - 2—62[va~vb + (VaFap) (vb-rab)]} .
a

a>b Tab
(5.181)
(The analogous result for the gravitational field was given in eqs. (5.55)
and (5.56).) To this order only even powers of v/c enter, and the term
linear in v/c vanishes because of charge conservation. Indeed, were it

(5.180)

48Actually, the fact that a finite speed
of propagation of the interaction in-
duces a radiation-reaction force was al-
ready proposed by Laplace in 1776, in
the context of the gravitational interac-
tion of the Earth-Moon system, and for
this reason it has also been called the
Laplace effect. See Chapter 2 of Ken-
nefick (2007).
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not for electromagnetic-wave emission, only even powers of v/c could
appear, for the same argument based on time-reversal that we discussed
on page 239 for the gravitational field. Starting from O(v®/¢?) however,
we have a non-vanishing contribution to the expansion of the potentials
¢, A, which therefore must be the sought-for radiation-reaction term.
Indeed, expanding ¢ and A to this order, one finds that the correspond-

ing electric field is )

33
where d = ) e.x, is the electric dipole moment of the system, while
the corresponding magnetic field vanishes. This electric field exerts on
a charge e, a force F, = ¢,B, so the total work performed on all the
charges is

E d, (5.182)

2 .. |
;Fa-va =ggd ;eava . (5.183)
Taking the time average and integrating by part, we get
2 )
<za: FCL'V(L> = _5;:3 <d > (5184) .

This is just the negative of the energy radiated away in electromagnetic
waves in the dipole approximation. We see that the work done by the
radiation reaction force, computed from a near-zone expansion, matches
exactly the energy carried by the radiation field at future null infinity.

Radiation reaction from GWs

In Section 4.1.3 we computed the effect of GW emission on the orbit of a
binary system simply requiring that the energy and angular momentum
carried away from the GWs at a given time, were drained from the orbital
energy and angular momentum of the source at the corresponding value
of retarded time. This is unavoidable in linearized theory, since energy
and angular momentum must be conserved (and, for compact bodies,

we will see that their internal structure influences the dynamics only
starting from 5PN order, see page 288, so to order smaller than 5PN

there is no internal degree of freedom that can relax, supplying the
required energy). However in the full non-linear theory, given the non-
linear phenomena in the propagation of the GWs from the source to
infinity that we have discussed, it is no longer obvious that the energy
and angular momentum carried away by GWs at a large distance r and
time ¢, are balanced by losses of the system at the corresponding retarded
time t — 7/e.

Anyway, we have by now all the tools necessary to verify explicitly the
correctness of this energy-balance argument, since we have in principle
determined, in an expansion in v/¢, both the radiation field at infinity,
and the metric in the near region. The latter determines the equation of
motion of the matter source. For a binary system, the equation of motion
takes the form already schematically written down in eq. (5.68). The
terms O(e?) and O(e?) in eq. (5.68) are the 1PN and 2PN corrections,

et
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respectively, and are non-dissipative (the Lagrangian giving the equa-
tions of motion up to O(e?) was explicitly written down in egs. (5.55)
and (5.56)). They describe various general relativistic corrections to the
orbit, such as the periastron advance, etc.

We now want to find the leading term in the back-reaction, i.e. the
first term which is odd in v (and that cannot be set to zero with a gauge
transformation). This leading term can obtained by replacing 7, with
the energy—momentum tensor of matter 7%%. Then, eq. (5.132) becomes
simply

N e, 1
hof(t,x) = T /d?’x’ix—_)—(,—’T Pt —|x — x| /e, x"). (5.185)

Since 7% has compact support, we can expand its argument t—|x—x'|/c
in powers of |x — x'|/c, just as we did for electromagnetism, and the
resulting integrals are convergent.*® One then finds that a number of

lowest-order term vanish because of mass and momentum conservation,
_or they can be set to zero with a gauge transformation. The first non-

vanishing terms which are odd under time-reversal and cannot be gauged
away are O(1/c”) in goo, O(1/¢%) in goi, and O(1/c%) in g;, i.e., they
are a 2.5PN correction to the metric (5.3). One can then compute the
rate of dissipation of energy due to these non-conservative terms, and
one finds that the result reproduces the Einstein formula for the emis-
sion of radiation in the quadrupole approximation, in linearized theory,
eq. (3.75). This computation was first performed by Chandrasekhar and
Esposito (1970).

In the 1970s and early 1980s, however, the subtleties in the use of the
PN expansion, that we have discussed at length in this chapter, were
not yet fully understood, and the PN expansion was used over all of
space, including the far region. As we have seen, this unavoidably pro-
duces divergences in higher order. So, one had reproduced the correct

_radiation reaction, but as a term of an expansion in which subsequent

terms diverge; not a very satisfying state of affairs. This was at the
basis of a controversy over the validity of determining the back-reaction
on the sources from the energy balance argument, and over the validity
of Einstein quadrupole formula itself, when applied to self-gravitation
systems. The issue is particularly important, as we will see in the next
chapter, for its application to the change in orbital periods of binary
pulsars, which constitutes the first experimental evidence of GW emis-
sion.

Nowadays, we know that the correct formalism implies a different
treatment of the near- and far-field regions, and the PN result to all
order is given by eqs. (5.132), (5.133) and (5.141), and is explicitly finite
thanks to the FP prescription, that comes out from a correct use of
the formalism. Thus, the 2.5PN radiation reaction is now part of a
systematic and well-defined expansion. For a compact binary system
this term is responsible for the decrease in the orbital period P,. The
fact that we can compute it directly from the PN expansion in the near

__region, without invoking any energy balance argument, provides a direct

49ince the integrand has compact sup-
port, the finite part prescription is un-
necessary. Observe also that the ho-
mogeneous term given by egs. (5.133)
and (5.141) does not contribute to the
leading radiation-reaction term (it con-
tributes only starting from order 4PN).
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50Actually, the existence of hereditary
terms was first observed in the 4PN
near-region metric, see Blanchet and
Damour (1988) and later in the radi-
ation field at infinity.

lSee Blanchet (1997), eq. (4.33).

and satisfying way of deriving the theoretical prediction for . As
we will see in Chapter 6, this prediction has been confirmed by the
observation in binary pulsars. k

A check of the energy balance argument to even higher orders is tech-
nically more difficult. We have seen that the quadrupole radiation at
infinity corresponds, in the near region, to a 2.5PN correction to the
metric. Thus, the 1PN correction to the radiation field corresponds to
a 3.5PN correction to the near-region metric. Of course, to check the
energy balance argument beyond leading order becomes more and more
difficult, since it requires the computation of higher and higher orders
in the Pl\ expansion of the near metric.” For compact binary, the full
near-zone metric has been explicitly computed up to 3.5PN order, and
shown to be consistent with the loss of energy and angular momentum at
infinity, see the Further Reading. Furthermore, even for the tail integral
it has been possible to check explicitly the energy balance argument, and
the tail term in the radiation at infinity has been shown to be correctl
reproduced, for general PN sources, by a corresponding non-hereditar
term in the near-region field. Since the tail integral is a 1.5PN cor-
rection to the radiation at infinity, the corresponding hereditary term .
appears in the 4PN near-region metric.®® To this order, one finds 1ndeed
a hereditary correction to ggo given by

8 't t—t .
Sgoo(t x) = — 5@ i M(t )/ dt' 1og< P ) M (), (5.186)

=00

with P a time-scale. We see that it depends on the mass M and on the
mass quadrupole M;;, just as the monopole—quadrupole terms hod (MxMj;)
computed, in the far region, in eq. (5.164), and it has the same logarith- i,
mic singularity at the upper limit of the integral.
The explicit computation shows that the terms in the metric that
correspond to back-reaction (i.e. the terms described by antlsymmetrlc
waves, see Note 35) can be written as

00 o
(hl )antisym o

01 _ i
(hl )a,ntisym - G ~3 Vleactv

h%]) = VL)]
( ! antisym Gt react ?

(plus terms that can be set to zero with a gauge transformation). Up :5
to 4PN order in the near-zone metric (which gives the corrections up
to 1.5PN order to the radiation reaction force), the tensor potential |
VI'(,JKt can be neglected, while the scalar potential Vieaey and the Vector -
potential Vi . are given by®>! ‘

4

6"5 ‘/react ’

RS (5) G| 1 1
Vieac(t,x) = 55 zili () + = 7 | 1g9”® =0 by
AGPM e %) 1
- Mj/o d710g<2)1 (t_T)+O<C > (5190);

- 1
V}Iéar:(tvx) g 211$zgic13,k ( ) f_, Gz]k-E]ka‘;),L( ):| +0 (C_’T) . (5191)
To 2.5PN order in the metric, only the term ploportional to I(S)
eq. (5.190) contributes while the terms proportional to 1/¢” in eq. (5 190)
are a 3.5PN correction, and the tail integral in Vie,c is a 4PN correction.
Similarly, taking into account the factor 1/c? in eq. (5.188), and com-
paring with eq. (5.3), we see that V... is a 3.5PN correction. Thus, to
2.5PN order, the result reduces to the Burke-Thorne potential that we
already discussed in eq. (3.114) (since I*/, to lowest order in v/c, reduces
to the quadrupole moment Q% of linearized theory).

The energy loss can be computed directly in terms of the potentials
Vieac and Vi, and fully agrees with the energy loss computed from the
radiative field at infinity.5? It is interesting to observe that the vector
component V; of the radiation-reaction potential is responsible for the
loss of linear momentum, i.e. for the recoil of the center-of-mass of the
source due to GW emission, and balances exactly the value that can be
found computing the flux of linear momentum at infinity.

5.4 The DIRE approach

We now discuss an approach due to Will, Wiseman and Pati and termed
DIRE (Direct Integration of the Relaxed Einstein Equation) by the au-
thors. This formalism is similar in spirit but different in technical details
from the Blanchet—Damour approach. It can be proved, however, that
the two formalisms are completely equivalent. For reasons of space we
will limit ourselves to a brief description, referring the reader to Pati
and Will (2000) for more details.

The basic strategy of this method is to start from eq. (5.83), and to
iterate the solution in a slow-motion (v < ¢), weak-field (Jh,,| < 1)
approximation, in order to obtain in a systematic way the corrections to
linearized theory. To zeroth order we set h,, =0 w = 0 over all space-
time, which means that (©) Guv = M- 1f we denote by w )h the result
of the N-th iteration and by V)728 the value of 7% when h v =N )h
then the iterative rule is

Ly PR Rl S )
ct ' |x — x/|

(N+]')haﬁ(t,

X) = —
(5.192)
The equation of motion of matter is then obtained 1m¥)osmg the N-th
iteration of the De Donder gauge condition (5.71), hot =
Setting (Oh w = 0, we have 0)7af — 7o and the ﬁrst iteration (1)h,“,
gives back the result of linearized theory, eq. (3.8). Since (0790 = T8
has compact support, the integral is well defined and no divergence
appears at this stage. The first PN correction is obtained computing
(Dhef | This requires plugging (MVhe? in the expression for 7¢7. Since
(1) pas already includes GWs propagating to infinity, now the source is
no longer restricted to a compact region, and one must be careful in
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52gee again Blanchet (1997).
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Fig. 5.2 The past light cone of the
point P, and the cylinder which
bounds the near zone D. Here the
point P is in the far region.

53 This is slightly different from the def-
inition of R that we used discussing the
Blanchet-Damour formalism, where we
preferred to keep R (much) smaller
than (c/v)d, to make sure that the ex-
pansion parameter in the near zone is
much smaller than one. Here however
R is a formal parameter that separates
the integral into an inner and an outer
part, and whose cancellation, when we
resum the two parts, will be checked ex-
plicitly, see below, so its precise value
is irrelevant. For definiteness we assign
it the value (¢/v)d, following Pati and
Will (2000).

handling the integral.
To compute the right-hand side of eq. (5.192) we proceed as follows

We consider a bound system, whose center of mass is taken to be at the ;
origin of the coordinate system, and whose radial extension is always
smaller or equal than a value d. We define the source zone as the world

tube
T ={z%r <d,—oo <t <co}.

Outside 7 the energy—momentum tensor of matter vanishes, 7% = (),

We next introduce the length-scale R = (c/v) d. The near zone is defined

by the world tube

D={z%r <R,—oc0o<t< oo}, (5.194)

while the radiation zone is defined as the region at r > R.%® The Dirac

delta in eq. (5.192) tells us that, in order to compute the field (V+1)pas
at a point P = (¢,x), we must integrate over the past flat-space null
cone of P. As we see from Fig. 5.2, this past null cone intersects the
world tube D in a hypersurface N (which of course is a three-dimensional
hypersurface, but in Fig. 5.2 we suppressed one spatial dimension). In
the figure we illustrated the situation in which P is in the far zone. In
general, we wish to compute N*Uho® both when P is in the far zone
(since this allows us to compute the GWs emitted) and when P is in
the near zone, since this determines the equation of motion of matter.
A picture similar to Fig. 5.2 can be drawn when the tip of the cone, P,
is inside the cylinder that (in this simplified 2+1 dimensional picture)
bounds D. For definiteness, in the following we specialize to the case
where P is in the far region.

The integration over the past null cone C can then be split into an
integration over A (defined as the part of the null cone which is in
the near region) and an integration over the remainder C — A". The
integration over AV gives, carrying out first the integration over ¢/,

(N+1)haﬁ(2‘ X) _ _flg B! (]\7)7—aﬂ(7f - }X - X/]/C, X/)
N A Iy

Within A the integration variable x satisfies |x/| < R while, since P is
in the far zone, we have r = |x| > R. Therefore we can expand the x’
dependence, in both occurrences of |x — x’ | in the integrand, in powers
of |x/|/r. This gives

T (5.195)

4G K (1) 1
NFDRE (1, %) = “0_42 ( zv) ar {;MW(U)} , (5.196)
A =l
where
MOPL(y) = / a3z’ 798 (u, x" )2’ " . (5.197)
M

Here u = —r/c, and M is the intersection of the near-zone world-tube
D with the constant-time hypersurface t 44 = u. The integral is therefore
expressed in terms of the multipole moments of 7%, and is explicitly

(5.193)

convergent because the region M is bounded. For GWs, we are inter-
osted only in the spatial components h*/, and in the term decreasing as

1/r, so we can bring the factor 1/7 in eq. (5.196) outside the derivatives.

Using

ou dM
8zt du
s AM

= —NnN —

du’

M (u) =

(5.198)

where nt is the unit vector in the observation direction, and dM (u)/du =

dM /dt, for GWs eq. (5.196) gives

1GK 1 o

A | ot
m:
rc =0

(NFOR (2, x) = / &’ 79 (u, x) (). (5.199)
M

The next step is the computation of the outer integral, that is, of the in-

 tegral over the region C —A. In this outer region the energywmoglen‘cum
’ . . . N) .« \
 tensor of matter vanishes, and the only contribution to (M)7%# comes

from Vhef We can therefore compute it using the expression of
(MheB  ag determined at the previous iteration level. The domain of
integration is slightly complicated geometrically, as we see from Fig. 5 2,
but the integration region can be expressed in a manageable form Wlth
an appropriate change of variables (see Pati and Will 2000 for details).

The original integral over the light cone C, eq. (5.192), was of course
independent of R, which is an arbitrary constant that we have intro-
duced to split it into two pieces, one at r < R and one at r > R. In
contrast, the inner and outer integrals for h®? depend separately on the
radius R, and in particular they are divergent when R — oo. Observe
in fact that the contribution of h®? to 7¢# falls off at large distances
as some power of r. Thus, if R is taken to infinity, for sufficiently high
values of [, i.e. for large multipoles, the integral in eq. (5.199) diverges.
This is in fact the divergence to be expected if we try to extrapolate
the PN expansion to the far region, as we discussed in Section 5.1.6.
The correct procedure, then, is to keep R finite, and show that the:?e R~
dependent terms cancel against similar contributions from the remainder
of the null cone, C — N. This cancellation has indeed been proved ex-
plicitly to 2PN order (for terms proportional to positive powers of. R) %n
Wiseman and Will (1996) and to all orders, with a proof by inductlgn, in
Pati and Will (2000). This cancellation is of course inevitable, bl.lt it has
a very important practical consequence. When computing for instance
the inner integral, one will generally find terms which are independent
of R as well as terms that depend on R (as a power, or logarithmically).
However, we know that all R-dependent terms must cancel against sim-
ilar terms from the outer integral, so in the computation one can simply
drop them, and retain only the R-independent contributions. Similarly,
one can drop all R-dependent terms in the outer integral.

Thus, one finally has a manifestly finite and well-defined procedure
for computing systematically all higher-order corrections to linearized
theory.

5.4 The DIRE approach
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“near reglon ‘

Fig. 5.3 The near region of a com-
pact binary system. Within two
balls, centered on the two stars, of
radius of order a few times r¢, the
gravitational field is strong.

54 We follow closely Damour (1987).

5.5 Strong-field sources and the
effacement principle

Until now we have assumed that the gravitational field is never strong,

Our final aim, however, is to apply this formalism to systems containing

compact objects such as neutron stars or black holes, in particular to
a compact binary system which is slowly ulspnahng, with an orbita]
velocity v < c. For a binary system, the quantity d that determines
the characteristic source size is the typical orbital separation, and it
satisfies Gim/d ~ (v/c)?, where m is the total mass of the system. We
denote instead by 7y the characteristic size of the two stars (assumed for
notational simplicity to be comparable). Since we are considering the
slow inspiral phase, we are in the regime d > 7q.

Using for definiteness the Blanchet-Damour formalism, the three ba.

sic ingredients are: the post-Minkowskian expansion in the outer source
region, the post-Newtonian expansion in the near region, and the fact
that there is an intermediate region where we can match the two expan-
sions. Even for a binary made of compact objects, when we are at a

distance 7 (measured from the center-of-mass of the system) of order of

a few times the orbital separation d, gravity is already sufficiently weak,
Then, from say r = 1.5d up to r = oo the post-Minkowskian expansion
is justified, even for compact binaries containing neutron stars or black
holes. Furthermore, when v < ¢, the near zone extends up to distances
R > d, and we have at our disposal a wide region where we can per-
form the matching to the PN solution. So the issue is whether, with
the methods that we have discussed, we can reliably compute the PN
solution in the near region r < K. Even in most of the near region the
gravitational field is weak; however, within two balls centered on the two
stars, of radius of order a few times 7o, see Fig. 5.3, the gravitational
field becomes strong. It is therefore unclear whether the PN expansion
is applicable.

We will see in this section that, in spite of this legitimate concern, the
formalism that we have developed is indeed valid for compact objects.
We will also estimate the effect of the internal structure of a compact
object, and we will see that it shows up in the equations of motion only
at the very high 5PN order, well beyond the accuracy of existing com-
putations. This remarkable fact can be traced to a property of general
relativity, which has been termed “the effacement of the internal struc-
ture”. Since the same phenomenon takes place in Newtonian gravity, we
begin with a discussion of this simpler case.5¢

Effacement of the internal structure in Newtonian gravity

Treating the bodies as perfect fluids, a N-body system in Newtonian
gravity is described by the velocity field of the fluid, v*(¢,x), and by the
mass density p(¢, x), which is subject to the constraint to have a compact
support consisting of N non-overlapping connected regions. We denote
by p the pressure, and we assume an equation of state p = p(p). The
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dynamics is governed by the continuity equation,

Op + 0i(pvi) =0, (5.200)

by the Euler equation

p(Opv' + v 9v) = —0;p + pOU , (5.201)

where U is the sign-reversed gravitational potential (therefore U > 0),
and by Poisson equation

ViU = —4nGp. (5.202)

We denote by V, the volume occupied by the a-th body. By definition,
on its boundary 9V, we have p = p = 0. The mass of the a-th body is
given by

Mg =/ 3z p(t,x), (5.203)
‘/(1

’ and is a constant, thanks to the continuity equation. The center-of-mass
coordinates of the a-th body are defined by

Zi(t) = L Pz xtp(t,x). (5.204)

Ma Jv,

Differentiating twice with respect to time and using egs. (5.200) and

(5.201) we get .
dQZ(zl / d3 f
Meg—5 = T Ji,
dt? Va

fi==0ip+pd;U.

The potential U is obtained solving eq. (5.202) with the boundary con-
dition that it vanishes at infinity,

U(t,x) G/cﬁ"”x

Ix — x|

_ZG/ B rpfx)l

(5.205)

with a force density
(5.206)

(5.207)

‘ where, in the second line, we made use of the fact that p is non-vanishing

only on the volumes V, with a = 1,... N. The potential acting on the
a-th body can therefore be split into a “self-part”,

!
Utefa xy=a / d*z’ fgiﬂ, (5.208)
7 Va Ix — x|
and an “external part”,
plt,x)
UEetag x) =G / d3z’ . (5.209)
(tx) =G> " x|

b#a
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551 principle y should be written as
Ya- However, we will use it as an inte-
gration variable, so its dependence on
a will only appear through the integra-
tion domain, and we omit its index a.

Correspondingly, the force acting on the a-th body is decomposed intdt .
a self-force ‘
Fi(sell);a _ / B [*67‘,]) + /)aiU(seIf),a} ’

Ve ‘

(5.210)

(in which we also included the pressure term) and an external force

plete _ / B pd, 1 (@xt) (5.211)

If one were to make a naive estimate of these two forces, based solely on
dimensional analysis, one would write (assuming for definiteness that all
bodies have comparable masses m) F(eif)a Gm?/r} and Flextha
Gm?/d?, where g is the typical body size and d is the distance between
the nearest bodies. Since d > rg, the self-force would be much lar ger
than the external force. However, in Newtonian gravity the self-force
vanishes exactly. The pressure tum in eq. (5.210) vanishes because 1t‘
is the integral of a gr ddl(‘llt and on the boundary p = 0. The secondl
term, using eq. (5.208), is \

(self).a 3 3/pr)
t,
F, =G Vadmp( Xd /a x|
_ 3. 3, zP(f pt,x)plt,x")
—-_G vd /d 'z = o) S RCRIE)

The integrand is odd under the exchange of z with 2’ while the integra-
tion domain is symmetric under this exchange, so the integral vanishes,
and there is no self-force. It is however worth observing that the two
factors p(t,x) and p(t,x) entered the above integral in two conceptu-
ally distinct way. One factor, which is the one explicitly written in the
second term in eq. (5.206), is really the density of “passive gravitational
mass”, which measures the response of matter to an external gravita-
tional field. The second factor, which enters through eq. (5.207), is the
density of the “active gravitational mass”, which is the source for the
gravitational field. The fact that these two densities are in fact equal is
crucial to the vanishing of the integral in eq. (5.212). Thus, the vanish-
ing of the self-force in Newtonian gravity is a non-trivial result, rooted
in the equality between active and passive gravitational mass.

In the equation of motion (5.205), the first term that depends on the
internal structure of the bodies, and not just on their masses, is then
obtained performing a multipole expansion of the external force. We
introduce a coordinate®®

y =X —2z4(t), (5.213)

centered on the a-th body. Since we have shown that the self-force

vanishes, eq. (5.205) becomes

ma / Py p(t, 2 (t) + y) U D2 (4 2, (8) + ). (5.214)
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The density of the a-th body is localized around y = 0, so it is convenient
to introduce the notation pa(t,y) = p(t,z4(t) +y), while the exterrllal
potential at z,(t) + y can be expanded around the value at the point
7a(t), plus small corrections. Thus, the multipole expansion is obtained

writing

QU A (L 2, +y) = [T 47 9,0,U 0
+%y«fykaiajaw<ext%a + .. )t zq). (5.215)
Tnserting this expansion into eq. (5.214) we get
o = [ma ;U &* 4 1] 9;0;U 02
d 2
+§zg’faiajakU<ext>»a +.0 )t 2a), (5.216)
where
I = /V &y pa(t,y)y’ (5.217)
k= / &y palt, )y’ y" (5.218)

a

and so on. However, the dipole in eq. (5.217) vanishes identically be-
cause of the definitions (5.204) and (5.213). In eq. (5.216) we can replace
IJ¥ by the quadrupole moment QIF = 17k — (1/3)67F I since the fac-
tor 67%, when contracted with 8;0;0,U (ext). in eq. (5.215), produces
0, VU et)2 and the Laplacian of ’rhe external potential is proportional
to Zb;,ga pp and therefore vanishes inside the a-th body. Thus,

2Z’i (ext),a 1 3”"898 U(ext),a t )+
Ma~rs & =m0 U (t,2,) + §Qa ;0; Ok (t,2a) + ... .
(5.219)
The monopole term gives Newton’s law. The quadrupole term is the first
term which depends on the inner structure of the body. Each deriva-
tive acting on U2 hrings a contribution O(1/d), while each factor
y" in the definition of the multipole moments, aftey_mtegratlon over V,,
brings a factor O(rg). Thus, the contribution of I}/ is smaller than the

monopole term by a factor O(r3/d?). Furthermore, in the quadrupole

_ moment Q% only the non-spherical part of the matter distribution con-

tributes, and this gives another suppression factor, that we denote by e.
In general € < 1 and, in many cases, € < 1. In conclusion, defining

a=2«1, (5.220)
d

the structure-dependent terms give a correction to Newton’s law of order

e, when a naive dimensional analysis that does not take into account

that the self-force vanishes exactly, would have rather suggested that

they are larger than the external Newtonian force by a factor 1/a?.

Overall, the terms that depend on the internal structure of the body



286 GW generation by post-Newtonian sources 5.5 Strong-field sources and the effacement principle 287

are therefore suppressed, with respect to naive expectations, by a factor |

| relativistic case, we define the functions #L(t) considering the dipole
ea*. As we have seen, the equality of active and passive gravitational

moment of 700

mass is at the origin of this large cancellation, which is known as the

“effacement principle”.

In order to generalize these results to Einstein gravity, it is useful |
to observe that there is a suggestive way of rewriting the Newtonian

equations of motion, in a form that only involves surface integrals, rather
than volume integrals. We start from eqs. (5.205) and (5.206). We
neglect the pressure term, since this is a gradient and gives a vanishing
contribution, and we use eq. (5.202). Then eq. (5.205) becomes
™m Pza _ ! Bz V2UHU
Cdiz T 4AnG T o
where U is the total potential, including the self-potential.
identity
9;(8,U8;U — V2UaU ,

%5@(7‘6/&[](9#(7) = (5.222)

we can rewrite this as

42z : y
Ma—r" :/ A3z 0tV
Va

dt?
Sa

<a Uo;U — (5¢.7-6kU8;€U> ,

where
1

4nG

and dS; is the two-dimensional surface element, on a surface S, bound-
ing the volume Va, which is arbitrary except that it does not include any
other volume Vj, with b # a. This surface-integral representation of the
equation of motion is expecially interesting, since it shows that nothing

tij =

depends on whether the gravitational field inside the bodies is weak or
strong. In principle, one could even have a singularity inside the volume:

Va, but the equations of motion can be computed evaluating the “stress
tensor” ¥ on a surface which is far-away from the body (recall that we
assumed d > 1o, 50 we can go to distances parametrically larger than
rg before enclosing any other body), where all fields are weak.

Effacement of the internal structure in Einstein gravity

Just as we have done above for Newtonian gravity, we now show how
to write the PN equations of motion of general relativity using surface
integrals, using a variant of a classical work by Einstein, Infeld and
Hoffmann (1938), developed by Itoh and Futamase. We start from the
Einstein equations in relaxed form, in the harmonic gauge. First of
all, we want to define the analogous of the center-of-mass coordinates:
Observe that in the Newtonian case the center-of-mass coordinates z: ()
are such that the mass dipole I7 in eq. (5.217) vanishes. In the general

(5.221)

Using the

(5.223)

(5.224)

Di= [ dyyrite® +y), (5.225)
Ve

(where 7+ is the effective energy-momentum tensor defined in eq. (5.73))
and requiring that D¢ vanishes or, equivalently, that it takes a specified
value. The functions 2% (¢) generalize the Newtonian notion of center-of-
mass coordinates, and can be better called “center-of-fields” coordinates,
since 790 include also the contribution to the energy density from the
gravitational field. We now define the quantity P# as

PE(t) = / By (¢, za(t) +y), (5.226)

Va

5o this is an effective four-momentum of the a-th body, which includes

also the contribution of the gravitational field. Using the conservation

| of 7, eq. (5.82), and the notation v} = 2}, we find
H i
dZa,_ = / dPy [0 + v} 0" (t, 24 (t) + ¥)
Va

= / Py [~ 4+ 0L 07O (t, 24 () + ) - (5.227)
Va

Since v’ is just a function of time, independent of y, we can carry it
outside the integral and we are left with a total derivative. Hence, the
variation of P* is given by a surface integral,

H ) )
Eli = */ deT.m +,U;'i / deTU/L )
S(l

(5.228)
dt J S

A Ielation between the “momentum” P!, the “energy” PY, and the ve-
locity v?, of the a-th body can be obtamed by taking the time derivative
of eq. (5.225) On the left-hand side we get zero since D!, vanishes (or is
anyway a constant), by definition of “center-of-fields” comdmates On
the right-hand side we use the conservation of 7" and we integrate by
parts, keeping the boundary terms. Then we obtain

P} =Pl +Qy, (5.229)

Qé:/ de'yZ'rjO—vg/b ds;yir™.
S(l

Finally, taking the time derivative of eq. (5.229) and using eq. (5.228)
to compute dP!/dt and dP?/dt, we arrive at an equation for dvl /dt,

pod_vzl :—/ deTjinL'Ug/ de'rOi-i-’Ufl/ de’l'jO
e dt Sa ’ Sa Sa

o dQ
i, 00 _ wa
-vaua/ as;r .
Sa

where
(5.230)

5.231
dt ( )
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560bserve that this effacement princi-
ple is valid in general relativity, but
not necessarily in some of its exten-
sions. For instance, in the factor ea?
that we found in the Newtonian limit,
the suppression factor ¢ is related to
the fact that the gravitational field de-
scribes a massless particle with helici-
ties £2, which forces gravitons to cou-
ple to the quadrupole moment. In ex-
tensions of general relativity that in-
clude gravitationally interacting scalar
fields this suppression factor is absent,
since the scalar couples to the trace
of I;;. Furthermore, in certain scalar-
tensor theories, the local value of New-
ton’s constant G is controlled by the lo-
cal value of the scalar field. In this case,
the inner structure of a body is affected
by the presence of a companion, which
modifies the value of G inside the first
body. Thus, in this strong form, the ef-
facement principle is really a properties
specific to general relativity.

57 After one has found a suitable regu-
larization of the point-particle singular-
ity, which is a non-trivial issue, see the
Further Reading.

This is an equation of motion for the a-th body. The remarkable poin
is that it is written entirely in terms of surface integrals. On the right
hand side this is explicit, while the quantity P? on the left-hand sid,
can be obtained by integrating the . = 0 component of eq. (5.228), wit
the initial condition that, when v/c — 0, P? — m,c?, where m, is th
(ADM) mass of the body, so even P? is determined by surface integrals

In conclusion, even if somewhere inside the volumes V, the gravits,
tional field becomes strong, as is the case for neutron stars, or even i
there is a horizon, as for black holes, the evaluation of the equation o
motion (5.231) can be done on surfaces far from the sources, at a dis
tance smaller, but of the order of the separation d between the bodies
say at r = d/3. All these surface integrals therefore only involve wea,
fields. In other words, we have been able to replace the knowledge of th
detailed internal structure of the source with a knowledge of the grav
itational field at large distances from it. The equation of motions ar
the same, independently of whether a given value of the surface integra
computed say at a distance r = d/3, was produced by a very relativisti
source with strong self-gravity or by a nearly Newtonian source wit
negligible self-gravity, spread over a larger volume V,.%% Then, the PN
expansion is applicable even to strong field sources.®” Since the surfac
integral formulation is just an equivalent way of recasting the equation
of motion derived from Einstein equations, it follows that even the PN
expansion in its original formulation, discussed in Section 5.1, is valid
for strong-field sources.

The computation of the PN expansion with the surface integral metho
has been performed explicitly, up to 3PN order, by Itoh and Futamase
see the Further Reading section, and the results are in full agreemen
with that found with the direct PN expansion, with the important added
bonus that this computation shows explicitly that the result is valid fo
strong fields.

=

Structure-dependent corrections in compact binaries

We are now in the position to estimate the post-Newtonian order at
which corrections that depend on the internal structure of the body show
up in the equations of motion of an inspiraling binary. The physical effect
that induces a correction in the equations of motion is the fact that the
tidal force exerted by the first body distorts the second body, inducing
in it a quadrupole moment. The interaction between this quadrupole
moment and the first body produces a force, which modifies the orbit.

The above discussion shows that, using the surface integral method,
it is possible to perform the computation staying always in a Newtonian
weak-field regime, so we expect that a simple estimate of this tidal ef-
fect based on a Newtonian description should give the correct order of
magnitude. In Newtonian gravity, the tidal force exerted by a body at
a distance d on a body of radius rq is of order

G'mro

e (5.232)

Flidal ~
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The typical ellipticity € induced by such a force is of order of the ratio
of this tidal force to the typical self-gravity,

Gm
Flel ~ —o. (5.233)
"o
Therefore o
e~ Bl 08 (5.234)

self
where o = ro/d. The corresponding induced quadrupole moment is
Qij ~ emrs. According to eq. (5.219), with md,U s ~ F,ENQWLOH)

(where F,,(N@Wton) is the Newton gravitational force) this produces a

v

structure-dependent interbody force of order

. 1
F(mduced) ~ %aiaj};’(Newton) ~ 6?“8 EEF(Newton) ) (5235)
From eq. (5.234), we then find
F(induced) ~ aSF(Newton) ) (5236)

On the other hand, for a compact body we have ro ~ Gm/c?, and

therefore & ~ G'm/(c*d). From the virial theorem, (Gm/d) ~ v?, so

o~ (v?/c?). In conclusion, for compact bodies,

F(induced) -~ (2)10 F(Newton) )

C

(5.237)

A full relativistic analysis indeed confirms this estimate. So, the first
structure-dependent term gives a 5PN effect in the equation of motion.
This is well beyond the present state-of-the art which, as we discussed,
is the 3.5PN order.

In conclusion (after one has found a consistent regularization of the
point-particle singularity) the PN formalism can be legitimately applied
even in the presence of strong fields, and the corrections dependent on
the internal structure can be neglected up to the extremely high 5PN
order. As long as the two bodies are far from the merging stage (hence
v/c is not too close to one), these 5PN effects can be neglected, and
both the orbital motion and the GWs that are produced are determined
uniquely by the masses of the bodies, independently of whether the
internal structure is highly relativistic or almost Newtonian.®®

5.6 Radiation from inspiraling compact
binaries

The most important application of the above formalism is to the inspiral
of compact binaries. We already saw in Section 4.4.1, in the context of
linearized theory, that a binary system gradually spirals inward because
of the emission of GWs, and the resulting waveform increases in am-
plitude and in frequency, producing a characteristic “chirp”. This long

581 our discussion we have considered
spinless bodies. Otherwise, the orbital
motion and the GW generation is deter-
mined by two parameters for each body,
its mass and its intrinsic angular mo-
mentum. Both can be obtained mea-
suring the gravitational field at large
distances.
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59F0or instance 0O(10%) cycles in the case
of two neutron stars with m1 = ma =
1.4Mg.

inspiral phase is followed by a phase in which the two object plunge
toward each other, and merge. The resulting system, typically a black
hole, finally settles down to its ground state, radiating away the energy
stored in its excited modes. This is the so-called “ringdown phase”. So,
the evolution of a compact binary system can be separated into these
three phases: inspiral, merging, and ringdown. The merging phase is
particularly difficult to model, and here the detailed nature of the source
(e.g. whether we have black holes or neutron stars) is also important,.
The merger and ringdown phases will be analyzed in detail in Vol. 2
which is devoted to the issues in GW physics which depends on the spe-
cific nature of the source. Here we will rather discuss the inspiral phase;
which is universal, at least up to a very high PN order. ~

5.6.1 The need for a very high-order computation

The reason why the computation of the waveform to a very high PN
order is crucial, is that GW experiments are hunting for signals which
are buried in a noise orders of magnitudes larger than the signal itself,
To extract such a small signal from the noise there exists a standard
technique, called matched filtering, that we will discuss in great detail
in Chapter 7, that works if we know well the form of the signal.

For an inspiraling compact binary, we saw in eq. (4.23) that, in a
ground-based interferometer, the signal enters into the detector band-
width, say at fmin ~ 10 Hz, about 17 minutes before the coalescence,
and the signal sweeps up in frequency, performing a vary large number
of cycles,? before the two stars merge. In order to exploit optimally the
signal present in the detector, and therefore to detect sources at farther
distances, we need to have an accurate theoretical prediction of the time
evolution of the waveform, and especially of the phase, which is rapidly
changing. To understand how stringent is this requirement, and also to
write compactly the PN corrections, it is useful first of all to introduce
some new notation. In place of the source frequency w,, we introduce
the dimensionless variable

<Gmw5 ) 2/8
T = : ,
3

where m = mi + mso is the total mass of the system and w, = 27 f; is
the orbital frequency of the source. Writing = [(G'm/r) (rw,/c®)]?/3,
and observing that Gm/r ~ v? and rws ~ v, we see that

,02

Thus, the v/c corrections can be expressed as correction in powers of
21/2. We also define the symmetric mass ratio

(5.238)

(5.239)

b mims
v=1 =

———— 5.240
m (my+mg)?’ (5.240)
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and the post-Newtonian parameter

G

rc?

il

¥ , (5.241)

which is O(v?/c?). We finally introduce the dimensionless time variable

I/C3

5G'm
where t. is the time at which the coalescence takes place.

We can now rewrite some Newtonian results for a chirping binary,
obtained in Section 4.1, in terms of these parameters. In particular, the
relation between the frequency and the time to coalescence for circular
orbit, eq. (4.19), reads simply (taking into account that in Section 4.1
we computed the radiation emitted by a circular orbit in the quadrupole
approximation, s0 ws = Wew/2 = T fgw)

0=

(te —1), (5.242)

1
T= o/, (5.243)
The accumulated orbital phase, defined by
¢
¢= [ dt'ws(t), (5.244)

to

can be written, using eq. (4.30) together with ® = 2¢ (see eq. (4.28)),

]_ 5
6= o~ = 0%, (5.245)
or, eliminating © in favor of z,
2=5/2
0= o~ 5 (5.246)

Finally, the number of cycles spent in the detector bandwidth can be
written, using eq. (4.23), as Neye = N (fmin) — N (fmax ), where

L1 (GMNTE L

N(f) - 327[—8/3 ( (23 ) f /
N 5.247
32 (5.247)

All these relations receive corrections from the PN expansion, that can
be written as an expansion in powers of 2'/2, see eq. (5.239), and that
will be examined in detail below. In particular, the PN corrections to
eq. (5.247) take the form

2—5/2

- 327y

N(z) [1+O(x) + O(z*?) + O(2?) + O(z®?) + .. ]. (5.248)
If we want to track the evolution of the GW signal, we need a template
which reproduces the number of cycles with a precision at least O(1). We

see from eq. (5.248) that, since the leading term in NV (z) is proportional
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6OEX(:ept that, with the so-called
Hadamard regularization, some ambi-
guity appears at 3PN order. This
ambiguity does not appear with di-
mensional regularization, see Damour,
Jaranowski and Schéfer (2001b) and
Blanchet, Damour, Esposito-Farese
and Iyer (2004), nor with the surface
integral method, see Itoh and Futa-
mase (2003), nor with the ADM Hamil-
tonian formalism, see Damour, Jara-
nowski and Schéfer (2000), and the re-
sults agree.

61See Blanchet (2006), eq. (182), where
the result spills over two pages!

to 27%2, we need to include the corrections up to O(z*/2) in order to
have an error not larger than O(1) on M(z). This means that we need to
compute the PN corrections to the phase at least up to 2.5PN level, i.e.
corrections smaller by a factor (v/c)® with respect to the leading term,
Actually, this is not even enough because, once we have accumulated an
error of order one on the number of cycles, our template has clearly gone
out of phase with the signal, so a more accurate computation is really
required in order to exploit optimally the information contained in the
output of a ground-based interferometer, at least up to 3PN order, and
better yet to 3.5PN.

An equivalent way of understanding the need for a high-order PN
computation is to look at the waveform, rather then at the number of
cycles N(z), and to observe that the last term in the expression (4.37)
for the phase W (f) of the GW amplitude is, in terms of x,

—5/3
3 (GMC 8wf> 3w

— 5.
A\ 3 1280 (5.249)

Thus, for small z the Newtonian phase U, is of order z~%/2, and it
diverges for # — 0. The 1PN corrections gives a contribution to W,
of order #~3/2 which, even if subleading with respect to the Newtonian
term, still diverges as z — 0, and similarly all the contributions up to
2.5PN must be kept since they either diverge (up to 2PN) or anyway
stay finite (the 2.5PN term) in the small z limit, and only starting from
3PN level we have corrections which vanish as = — 0.

5.6.2 The 3.5PN equations of motion

The general principles for performing such a computation have been
discussed in detail in Sections 5.3 and 5.4, and we have also seen in some
detail how to obtain the near-field metric to 1PN order, in Section 5.1.4.
A new technical problem that arises in higher orders is due to the fact
that, if one uses as energy—momentum tensor of the two bodies the
expression in terms of the Dirac delta, eq. (5.47), one finds divergencies
in the computation of some integrals. Therefore, a modelization of the
two bodies as point-like is not possible, and some regularization of the
Dirac delta is necessary. Different regularizations have been considered,
and (up to 3.5PN) they all give the same final result, as we expect
from the effacement principle discussed in Section 5.5.59 The equation
of motion has the general form
dv' Gm

xt i 1
- ﬂ+A%T+BU}+O<E>,

—_ .250
dt P2 (5.250)

so it has a term proportional to the relative separation z* and a term
proportional to the relative velocity in the center-of-mass frame, v*. For

a generic orbit, the expression of A and B is extremely long.5! However
+

we have seen in Section 4.1.3 that, by the time that the signal enters
in the bandwidth of a ground-based interferometer, radiation reaction
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has circularized the orbit to great accuracy. For orbits that are circular
except from the inspiral due to radiation reaction, one finds that the
radial velocity is O(1/c%), so most terms in the expression for A and B
can be dropped, to 3.5PN order, and eq. (5.250) becomes
dv? C
R w2 LIIZ o C,U’L ,

dt s

(5.251)

where

‘ ) 41
wﬁ:ci—gn{l—}—(—BJrV)’er(6+—4-V+V2>72

75707 41 19
+ {—10 + <22 log(r/r() — i + 6_47T2> v+ ?1/2 + VB} ﬁ/s}
+0 <i> ; (5.252)
8
_and )
32 G3miy 1 .
(= E—CETT-}_O (£—7> . (5.253)

Observe that eq. (5.252) is the PN generalization of Kepler’s law. The
velocity-dependent term in eq. (5.251) describes the radiation reaction.
The term O(1/c®) in ¢ is due to the 2.5PN radiation reaction, and we
have not written explicitly the more complicated 3.5PN contribution to
4 In eq. (5.252) appears a length-scale r{j, which is a gauge-dependent
constant. This is not surprising, since the radius r that appears in the
above formulas is the relative separation in harmonic coordinates, so it

s not an invariant quantity (similarly, v in eq. (5.241) is not an invariant

quantity). However, z defined in eq. (5.238) is a physical quantity, so if
we express a physical observable as a power series in z, the constant 7|,
must cancel out. For instance, inverting eq. (5.252) one finds

v ., 65 5
me{l—i- (1—§>m+ <1*Eu>x
2 2203 41
+ [1 + (—% log(r/7’0) — == — ~—7r2> v

2520 192
1
o (z§> }>

which displays explicitly the dependence of v on 7f. On the other hand,
the PN expansion of the energy of a circular orbit up to 3.5PN turns
out to be

/ 2 1 7 49 1
B=F 7{1+ <Z+—v> 7+ (——+—u+~u2)72

2 4 4 8§ 8 8
235 /22, 46031 123 , 27, 5 o]
+ [aJr (—3—10@,(7"/7‘0)+ 5940~ 61" v+ 357 + el |7
+0 <i> , (5.255)
8
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which seems to depend on 7, both explicitly and through ~. However
inserting eq. (5.254) into eq. (5.255), one finds that r{ cancels out, and

2
pecx 3 1 27 19 1 5\ o
E=- —— — —v | —_— e —y - — ;
7 {1—{—<4 12V>r+< 8+8U 241/ r

. [_6_75 N <34445 - g@ﬂ2> 155 , 35 VB} $3}

64 576 96 967 5184
1
ro (%)

5.6.3 Energy flux and orbital phase to 3.5PN order

(5.256)

The computation of the equations of motion in the near region is one
of the outputs of the formalisms that we have discussed in the previous
sections. The other is the waveform, and therefore the energy flux, at
infinity. A computation of the gravitational waveform to a very high
PN order is a daunting task. Currently, the computation of the phase
is complete up to 3.5 PN order (for the case where the stars have negli-
023¢e Blanchet, Faye, Iyer and gible spins).%? For the power radiated in GWs, Pyy, one finds, after an
Joguet (2002) and Blanchet, Damour, extremely long computation,

Esposito-Farese and Iyer (2004).
5 1247 35
Pgw: v x°{1+<——- 2 >$+47r33/

(G 336 12
< 44711 9271 65 2> )
V4 —v T

9072 504 18

8191 583
B 5/2 .
t\ %2 ™ > R (5.257)
6643730519 16 , 1712 856
+ { 69854200 3" 105 C 105 0816%)

n < 134543 41 2) o 94403 2 775 3} 3
7776 48 30247 324
16285 = 214745 193385 , 719 1
< 504 T 1ras U 3024 ¥ )7””/ +O<c_8>}'

where C' = 0.577... is the Euler-Mascheroni constant. Observe that
the limit » — 0 corresponds to a test mass moving in the background
geometry generated by the other body, which is just a perturbation of
the Schwarzschild metric. In this limit, using methods from black-hole
perturbation theory, the result has been computed up to the extremely
high 5.5PN order, see the Further Reading. Comparing the limit of
eq. (5.257) when v — 0, with the result of black hole perturbation
theory up to 3.5PN, one finds complete agreement, including rational
fractions such as 6643739519/69854400. This is a very non-trivial check
of the above computation.

The orbital phase evolution up to 3.5PN can now be obtained by
integrating the energy balance equation dE/dt = —F,,, with E given
in eq. (5.256) and P,y in eq. (5.257). This gives x as a function of time.
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The result, expressed in terms of © defined in eq. (5.242), is
1 1 ™3 11N ol Lo iss
p= = Ie) o)
r=3° {1 i <4032 T 5"
< 19583 24401 31 2) o172

V4 —v
254016 = 193536 288

11891 109 ) e5/8 (5.258)
53760 1920”7
~10052469856691 1 , 107 107 ©
-+ —C — —=log | —
6008596070400 6 420 3360 256
3147553127 451 2), 15211 2 25565 3| -3/
780337152 3072 442368 331776

< 113868647 31821

204941 ,\ - 1
~ - CRUAENGR =
133520640  143360° | 3870720 > i i <c8

_ The orbital phase ¢ is now obtained by integrating d¢/dt = w, which,

expressing ¢ in terms of © and w, in terms of z, reads
=4
4 _ 5 e
do v
Inserting z as function of © from eq. (5.258), the integration gives
3715 55 3
— __Q5/8 2 Vo142, 9-3/8
#(t) 1/9 {1+<8064+96y> 4"
9275495 284875 1855 5\ .4
e1/2
+ (14450688 * o58048” T 2088” )
- ( +

38645 65 . )
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172032 2048 ’/) i 8 <@0>
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(5.259)

5682520275840 107 56 C T 423 °8 \ 256

126510089885 ~ 2255 2
4161798144 2048

154565 , 1179625 o] o a4

1835008 1769472"

188516689 488825 141769 ) o 7
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+O <_1§> } (5.260)
c

where ©(t) is given in eq. (5.242), and O is a constant of integration to
be fixed by the initial condition (i.e. by the value of © when it enters
the detector’s bandwidth) which replaces ¢y in the Newtonian formula
(5.245). Observe that, due to the log © term at 2.5PN level, as well as
due to negative overall powers of O in higher orders, it is no longer true
that ¢ in eq. (5.246) is the phase at the coalescence time; rather, now
¢ diverges as © — 0. In terms of z, the above result reads

—5/2 3715 55
x o 3/2
- 2 e 10
Y=, { * (1008 * )r i
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53The minus sign of egs. (5.263) and
(5.264) with respect to the result in
eq. (4.29) is due to the sign difference
among hy, and Ay, see Note 19 on
page 250.

64See Blanchet (2006), eqs. (236)—(242)
for the full result including the 2.5 PN
corrections H-<+Q/><2>

55The use of 1 instead of the actual
phase ¢ of the source is convenient be-
cause it allows us to collect the logarith-
mic terms which come out of the com-
putation of the tail effects discussed in
Section 5.3.4.

| (15293365 | 27145 3085 .\ ,
1016064 ' 1008~ " 144
3645 65\ o (@
- 1
+< 1344 16) 8\ 2o
12348611926451 160 , 1712 . 856
R o R B
{ 18776862720 3 21 o 10e(162)
L (1573765635 2255 L\ 76055 , 127835 ) |
™ - 14
12192768 ' 48 6912 5184~ | "
L (77096675 | 3T85L5  7A045 L\ o,
2032128 ' 12096~ 6048 '
+O <c )} (5.261)

where g is another constant of integration. When we consider spin-

ning bodies, there is also a spin-orbit coupling arising at 1.5PN and a

spin—spin coupling starting at 2PN. They are known up to 2.5PN or der,
included.

5.6.4 The waveform

The full waveform is presently known up to 2.5PN order. The two polar-
izations are defined with respect to two axes p and q, chosen to lie along
the major and minor axis, respectively, of the projection onto the plane
of the sky of the circular orbit, with p oriented toward the ascending
node. The general structure of ‘(he two polarization amplitudes is

2Gux

hix(t) = {Hf,)x + o PHED +aH D, 4 8P 2@,

A
PP 40 <FG>} (5.262)
The leading term is®3-64
H(m(t) —(1 4+ cos® t) cos 2¢(t) (5.263)
Hig)(t) = —2cosLsin 2¢(t), (5.264)

where 1) is a phase, related to ¢ by

9(6) = 6(1) — 270 10g (”S“)) |

wo

(5.265)

and wq is a constant frequency that can be conveniently chosen as the
entry frequency of an interferometric detector.%5 For the crucial phase
¢ one uses the highest available precision, i.e., at present, the 3.5PN
result (5.260), independently of the order at which the waveform has
been computed. This is necessary since, as discussed in Section 5.6. 1,
the phase is given as an expansion in z but, in the limit 2 — 0 the

corrections to ¢ up to 2PN order are divergent. Only starting from

_ detector bandwidth at different times.
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95PN correction the correction has a finite limit for z — 0, but is
anyway of order one in the phase, and we need better than that On
the other hand, we see from eq. (5.262) that the correction to b2 g >< ie.
the terms £1/2H (1/2) zHW | ete., vanish for z — 0 so, in the small z
limit, it makes sense to neglect them even when we 1nclude all avmﬂdbée
corrections up to 3.5PN in ¢. The approximation in which only H (0)
is retained in eq. (5.262), while all available PN corrections to ¢ are
included, is called the “restricted” PN approximation. .

In practice, however, we are not interested in the waveform for para-
metrically small values of z, but rather for the typical values of v/ ¢ and
hence of z, at which the signal of an inspiraling binary enter§ in the
detector bandwidth. Then, for a ground-based detector, the first few
corrections to the amplitude are numericall}( important, and p.roduce an
amplitude modulation of the chirp signal.%® The first correction to the

amplitude (which is of 0.5PN order, i.e. O(v/c)) is given by

HS'/Q) = —Englél—n [(5+ cos® 1) cosp — 9(1 + cos® 1) cos 31], (5.266)
m
Hi‘t/z) = —Z sin ¢ cos Léﬁ [sin ¢ — 3sin 37 , (5.267)
m
where dm = my — mq is the mass difference. Observe that, while the

phase of the leading terms Hg)’)x depends on 2¢, that is on the integral

 of 2w,, the phase in the next-to-leading terms depend on ¢ and 3¢, that

is on the integral of ws and 3ws. This can be traced back to the fact,
discussed in Sections 3.3 and 3.4, that for a purely circular motion with
frequency ws, the mass quadrupole radiates GWs with wgw = 2ws, while
the mass octupole and current quadrupole both radiate at wgw = ws and

at Wew = 3ws. Thus, together with the quadrupolar component which

1/2) .
_is chirping according t0 wgw(t) = 2w(t), the term HEL/X) in eq. (5.262)

describes two “sidebands” chirping at wgyw(t) = ws(t) and at wgw(t) =
3ws(t), while Hil})( is again chirping at wew(t) = 2w,(t), as vx{*ell as
at wWaw (t) = 4ws(t), etc. Observe tha(;c7 these components enter in the

It is also useful to express eq. (5.258) as an explicit relation between
time ¢ and the GW frequency f(t) (defined here as twice the source
frequency fs(t?’ so f(t) is really the frequency at which the quadrupole
component H. +O . is chirping). We limit ourselves for simplicity to 2PN
order, and we ,neglect spin corrections. First of all, observe that the
Newtonian relation between f and ¢, eq. (4.19), can be rewritten in the

form
—(F0/£)77]

where t, is an arbitrary reference time (e.g. the time of entry of the
signal in the interferometer bandwidth), f. = f(t.), and the parameter
7o is given by

t—t, =0 [ (5.268)

To = fo (M)t (5.269)

206
Here we introduced the shorthand notation M = Gm/c?, Wher.e m =
my + My is the total mass of the system (observe that, dimensionally,

66 An amplitude modulation can also be
obtained if the compact stars have an
intrinsic spin, which is the physically
realistic case. See the Further reading
for details.

87 This time delay can be quite large.
For instance, when the quadrupole
component has reached the frequency
few = 2fs = 10 Hz, the octupole and
current quadrupole give a contribution
at fgw = 3fs = 15 Hz. From eq. (4.20)
we see that the quadrupole will reach
15 Hz only after about 5 more minutes.
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M is actually a time) and, as usual v = p/m. The post-Newtonian

corrections, up to 2PN order, modify this relation as follows,
el ()
t—ti=7|1— | = 1—{ =
’ { <f* f
~5/3 —4/3
() e (]
e fa
with

= e [T (ML) T (743 + 111/) ,

+ 71
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T 1027 336 ' 4
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1016064

5429

, 542
2 1008"

1 (M f,) /3 —1< ﬂ 2
(M f.) v +1441/ .

In terms of these quantities, the chirping of the GW frequency can be

written as
AR I ST AN
dt 89 \ f« 479 \ fe

s (I L9 (n\T (L)
8 m \Jf+ 2\ 8\m fa ’
and the accumulated phase ® = 2¢ which appears in the quadrupole
part of the waveform depends on f(¢) as

. —5/3 - SN —1
o= () )22 (- (2))

25 115 f —2/3 5 Ty f —1/3

Iém<“<ﬁ> )*5%G‘<ﬁ> |

(5.273)
The Fourier transform of k. (t) and h(t) are computed in saddle point,
just as in Problem 4.1. In the restricted PN approximation, the result

is
o 172 5/6
he(f) = <2> s <GMC>O/G FoTI6 i (r) 100
6 223\ 3 ’ 2 '
(5.274)
so it is the same as what we found in the Newtonian case in Problem 4.1,
except that the phase W, which in the Newtonian case is given by
eq. (4.37), now receives corrections. To 2PN order, written in terms of
the parameters 79, ..., 7, it becomes®®

5
1287

(5.272)

8See Poisson and Will (1995).

~5/3
Vi(f) =2nf(te+r/c) — o — Z_ +orf, Fgo (fi)

(5.270) |
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f “Uogn L/ f —2/3 o ~1/3
+71 (ﬁ) -5 <?:> +3/2(~f—*> R

(5.275)

while /1 is obtained from h.., by replacing (14cos? 1)/2 by cos ¢ and with
Uy = U, +(m/2). Observe that 79 depends on the masses only through
the combination M ~%/3y~1 which gives M. 5/ 3, and more generally all
Newtonian results depend on the masses mi and mso of the two stars
only through the chirp mass M,. However, this degeneracy is broken
by the PN correction, since the parameters 71, etc. depend on different
combinations of M and v. Therefore, the masses m; and mso can now
be separately determined by a comparison of the observed phase with

(5.271)

the PN prediction.

Further reading

» The lowest-order post-Newtonian corrections to
the gravitational field in the near region are dis-
cussed in many general relativity textbooks, see e.g.
Chapter 9 of Weinberg (1972), Chapter 4 of Will
(1993), or Section 5.2 of Straumann (2004). A re-
view of the problem of motion in general relativity
is given in Damour (1987).

e The form (5.72) of the Einstein equations was found
by Landau and Lifshitz in the 1940s, see Landau
and Lifshitz, Vol. 1T (1979), Section 96. In a iter-
ative procedure, to lowest order the gravitational
field h** that appears in 7°° is set to zero, so ¢
reduces to the energy-momentum tensor of matter.
Thus the Landau and Lifshitz derivation, see their
Section 110, was the first which showed that the
Einstein quadrupole formula is the correct lowest-
order result even for weakly self-gravitating bodies
(even if the problem of the finiteness of the higher-
order corrections was addressed only later).

Early attempt toward the construction of a system-
atic wave-generation formalism for post-Newtonian
sources were performed by Epstein and Wagoner
(1975), Wagoner and Will (1976) and Thorne
(1980). In particular, in the latter paper are given
general expressions for the GW fluxes in terms of
radiative multipole moments at infinity. The DIRE
approach builds on these earlier work, as well as on
the works by Wiseman and Will (1991), Wiseman
(1992, 1993), and has been developed in particular
in Wiseman and Will (1996), Pati and Will (2000,

2002), and Will (2005).

The method of matched asymptotic expansions was
introduced in the radiation-reaction problem by
Burke (1971). The back-reaction of GWs and its
relation to the PN expansion is discussed in Chan-
drasekhar and Esposito (1970) (where references to
earlier work can be found). Here the correct 2.5PN
is obtained but, as we discussed below eq. (5.185),
in this scheme higher-order terms were divergent.
For the same reason, one could question also the va-
lidity of the result in the far region, i.e. the Einstein
quadrupole formula, for self-gravitating systems.
The unsatisfactory status of the derivations that
were available at that time, for the back-reaction
and for the Einstein quadrupole formula, was dis-
cussed by Ehlers, Rosenblum, Goldberg and Havas
(1976). These criticisms stimulated a better under-
standing of the radiation reaction problem in gen-
eral relativity and of the derivation of the quadru-
pole formula, see Walker and Will (1980a, 1980Db),
Damour and Deruelle (1981), and Damour (1983a,
1983b).

A review of the “quadrupole formula controversy”
(as well as of the various controversies to which
GWs have been subject) is Kennefick (1997) and
a very detailed and interesting historical account
is given in the book Kennefick (2007). Nowadays,
with the full development of the systematic and
consistent expansion methods discussed in Sections
5.3 and 5.4, the problem of the validity of the
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quadrupole formula for self-gravitating systems is
settled.

The Blanchet-Damour formalism has been devel-
oped in various papers. The general principles
are discussed in Damour (1983b) and (1987). The
structure of the fields in the post-Minkowskian ex-
pansion is studied in Blanchet and Damour (1986).
The expansion of the fields at future null infinity
and the relation to Thorne’s (1980) radiative mo-
ments is done in Blanchet (1987). The 1PN genera-
tion of GWs is computed in Blanchet and Damour
(1989). The multipole expansion of the gravita-
tional field in linearized gravity in terms of STF
tensors is presented in Damour and Iyer (1991a).
The 1PN expression for the spin moments is com-
puted in Damour and Iyer (1991b), and the 2PN
result for mass and current moments is obtained
in Blanchet (1995), and applied to coalescing bi-
naries in Blanchet, Damour and Iyer (1995). The
2.5PN result (where the moments Wy, ..., Z start
to mix with Iy, Jp) is computed in Blanchet (1996).
The matching of the post-Newtonian and post-
Minkowskian solutions is obtained in full general-
ity in Blanchet (1995, 1998c). The determination
of the PN expansion to all orders from the match-
ing conditions is discussed in Blanchet (1993), Pou-
jade and Blanchet (2002), and Blanchet, Faye and
Nissanke (2005). A detailed review of the formal-
ism, and its application to inspiraling binaries, is
Blanchet (2006).

Farly investigations of tails and back-scattering
in the gravitational radiation field were performed
by Newman and Penrose (1968) and Bardeen and
Press (1973). The tail integral was computed in
Blanchet and Damour (1988), looking at the 4PN
metric in the near-field zone. Its effect on the ra-
diative moments at infinity (where it shows up as
a 1.5PN correction) is computed in Blanchet and
Damour (1992). In the DIRE approach, the tail
integral is computed in Pati and Will (2000). The
hereditary terms up to 3PN order are computed
in Blanchet (1998a, 1998b). The possibility of de-
tecting the tail contributions from the experimental
data is discussed in Blanchet and Sathyaprakash
(1995) and, for the memory terms, in Kennefick
(1994).

The initial value problem in general relativity,
and the fact that initial data inside the light-
cone are required, is discussed in Bruhat (1962).
The non-linear memory effect has been found in
Christodoulou (1991), using a mathematically rig-
orous study of Einstein equations at null infinity.

Its relation to a 2.5PN contribution is clarified in
Wiseman and Will (1991), Blanchet and Damour
(1992), and Arun, Blanchet, Iyer and Qusailah
(2004). ;
The denomination “non-linear” memory effect ig
used to distinguish it from a linear memory efi
fect which arises already in linearized theory, for
instance in a scattering process, as a result of an
overall change of the linear momentum of the bod-
ies, see Zeldovich and Polnarev (1974), Braginsky
and Crishchuk (1986) and Braginsky and Thorne |
(1987). The non-linear memory term can be under-
stood as the linear memory term due to the linear
momentum of the outgoing gravitons, see Thorne
(1992). v
Important contributions to the 3PN dynamics have
been obtained with a ADM-Hamiltonian formalism
by Jaranowski and Schifer (1998, 1999, 2000) and
Damour, Jaranowski and Schéfer (2000, 2001a);
and, with a direct PN iteration in harmonic co:
ordinates, in Blanchet and Faye (2001) (equa-
tions of motion), de Andrade, Blanchet and Faye
(2001) (Lagrangian and conserved quantities) and |
Blanchet and lyer (2003) (reduction to center of |
mass). The complete determination of the dynam-
ics of binary systems to 3PN is done in Damour, |
Jaranowski and Schifer (2001b) and Blanchet, |
Damour and Esposito-Farese (2004), using dimen-
sional regularization. Observe that, at 3PN order;
one computes only the metric at the location of
the particles. The metric at a generic space-time
point admits a closed form only to 2.5PN order, and
has been computed in Blanchet, Faye and Ponsot
(1998). The 3PN equations have also been obtained
with the surface integral method by Itoh, Futamase
and Asada (2000, 2001), Itoh and Futamase (2003)
and Itoh (2004). The results obtained with these
different methods agree with each other.

Beyond 1PN order a model of the source as point-
like, i.e. in terms of Dirac deltas, gives rise to di-
vergences, and need to be regularized. Hadamard
and dimensional regularization are reviewed in Sec
tion 8 of Blanchet (2006). Dimensional regulariza
tion of point-like sources is introduced in Damour,
Jaranowski and Schéfer (2001b) and further used in
Blanchet, Damour, Esposito-Farése and Iyer (2004
2005). This method, based on analytic continu
ation in d = 3 + ¢ spatial dimensions, allows us
to resolve some ambiguities that appear at 3PN in
Hadamard regularization.
In the language of quantum field theory, a point-
like singularity is an example of an ultraviolet di-

vergence, which reflects our ignorance of short-
distance physics, and can be dealt with standard
method from effective low-energy field theory. An
approach of this type is discussed in Goldberger
and Rothstein (2006).

e The surface integral method derives from the clas-
sic paper of Einstein, Infeld and Hoffmann (1938).
Its application to the derivation of the quadru-
pole formula for strong-field sources is discussed in
Damour (1983a, 1983b). A variant of this method
has been developed by Itoh, Futamase, and Asada
(2000, 2001), and used in Itoh and Futamase (2003)
and Itoh (2004) to give a derivation of the 3PN
equations of motion, valid for sources with strong
internal gravity. The effacement of the internal
structure in Newtonian gravity and in general rel-
ativity is discussed in detail in Damour (1987). A
discussion of the fact that the tidal interaction be-
tween compact bodies shows up only to 5PN order
even in the full relativistic theory can be found in
Damour (1983b).

e Explicit formulas for the phase and waveform of a
compact binary system can be found in Blanchet
and Schéfer (1993), Wiseman (1993}, Poisson and
Will (1995), Blanchet, Iyer, Will and Wiseman
(1996) and Blanchet (1996). The orbital phase
to 3.5PN is computed in Blanchet, Faye, Iyer and
Joguet (2002), based on the 3PN computation of
the radiative moments in Blanchet, Iyer and Joguet
(2002). The waveform to 2.5PN is computed in
Arun, Blanchet, Iyer and Qusailah (2004). A sum-
mary of explicit formulas is given in the review
Blanchet (2006).

e For compact binaries, the radiation reaction terms
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up to 3.5PN order are computed (either with the
energy balance argument or with explicit PN com-
putations) in Iyer and Will (1993, 1995), Blanchet
(1997), Pati and Will (2002), Konigsdorffer, Faye
and Schéfer (2003), and Nissanke and Blanchet
(2005). For non-spinning bodies, the 4.5PN back-
reaction terms have been computed, from the en-
ergy balance argument, in Gopakumar, Iyer and
Iyer (1997). For general PN sources, the balance
equation has been checked explicitly to 1.5PN or-
der (i.e. 4PN order in the near region metric) in
Blanchet (1997).

e The inclusion of spin is discussed in Kidder, Will
and Wiseman (1993), Apostolatos, Cutler, Suss-
man and Thorne (1994), Kidder (1995), Krolak,
Kokkotas and Scéfer (1995), and Tagoshi, Ohashi
and Owen (2001), and has been completed to
2.5PN in Faye, Blanchet and Buonanno (2006) and
Blanchet, Buonanno and Faye (2006).

The effect of the eccentricity is computed in
Gopakumar and Iyer (2002) and Damour, Gopaku-
mar and Iyer (2004).

e In the limit in which one of the masses in the bi-
nary system tends to zero and becomes a test mass,
while the other is a black hole, the computation of
the motion in the PN expansion can be studied us-
ing linear perturbation of a black-hole space-time,
see Poisson (1993). With this technique the PN ex-
pansion has been pushed up to the extremely high
5.5PN order by Sasaki (1994), Tagoshi and Sasaki
(1994) and Tanaka, Tagoshi and Sasaki (1996). Up
to 3.5PN order the result can bhe compared with
the limit ¥ — 0 of the formulas presented in Sec-
tion 5.6, and one finds complete agreement.




