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times a factor [1 + O(v?/c?)]. Now we use the identities
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where the parentheses on the indices, in eq. (3.364), denotes the symmetriza-
tion over the indices 4, (i.e. Ay = (1/2)(As; + Aji)). These identities can i
be obtained (with quite some work) inserting eq. (3.234) into the definition of |
the spin-2 tensor harmonics. Inserting the explicit values of ass, boo from Ta:
ble 3.1 (and recalling the change of notation j — ! that we made in between
see Note 47), we get
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where the final intégral as been performed using eq. (3.23). The integral for
Uim 1s performed similarly using egs. (3.363) and (3.364), with the final result
given in the text.

Further reading

e The quadrupole radiation is discussed in all gen-
eral relativity textbooks, see in particular Wein-
berg (1972), Misner, Thorne and Wheeler (1973),
Landau and Lifshitz, Vol. IT (1979) and Straumann
(2004).

e The radiation from sources with arbitrary veloc-
ity is discussed in Weinberg (1972), Section 10.4.
Gravitational wave generation is also discussed in
detail in the reviews Thorne (1983) and (1987).

e Radiation reaction for slow-motion sources is dis-
cussed in Misner, Thorne and Wheeler (1973), Sec-
tions 36.8 and 36.11.

e The multipole expansion for time-dependent fields
in terms of STF tensors was introduced by Sachs
(1961) and Pirani (1964). Thorne (1980) derived
the slow-motion expansion of the mass and spin
multipole moments, both in STF and in spherical
tensor form. The closed-form expression for these
moments in STF form is derived in Damour and
Iyer (1991a). A detailed review of the multipole ex-
pansion for GWs, as well as a historical overview of
the relevant literature, is Thorne (1980). A phys-
ical discussion of current quadrupole radiation:is
given in Schutz and Ricci (2001).

Applications

In this chapter we apply the formalism that we have developed to var-
ious instructive problems. The systems that we examine here are still
somewhat idealized, compared to real astrophysical sources. This allows
us to understand the essence of the physical mechanisms with a mini-
mum of complications, and forms the basis for a more detailed study of
realistic sources, which will be the subject of Vol. 2.

We begin, in Section 4.1, with the study of binary systems, taking the
bodies as point-like and moving at first on a Newtonian trajectory. We
will compute how the back-reaction of GWs affects the motion of the
sources, inducing the inspiral and coalescence of the binary system, and
we will see how this, in turn, affects the emission of the GWs themselves.

In Section 4.2 we will compute the radiation emitted by spinning rigid
bodies, which are a first idealization of rotating neutron stars.

In Section 4.3 we compute the radiation emitted by a body falling
radially into a black hole. A full resolution of this problem requires
expansion over the Schwarzschild metric, rather than over flat space-
time of linearized theory, and will be deferred to Vol. 2. However, we
will see that the low-frequency part of the spectrum can be computed
using a flat space-time background, so we can perform here this part
of the computation. We will also compare the situation in which the
infalling particle is point-like with that of a real star, which can be
disrupted by the tidal gravitational force of the black hole. This is
particularly instructive because it allows us to compare the coherent
and the incoherent emission of GWs.

In Section 4.4 we study the radiation emitted by a mass accelerated
by an external force. It will be interesting to compare the results with
the electromagnetic radiation from an accelerated charge. We will see
that, while the electromagnetic field of a relativistic charge is beamed
into a small angle in the forward direction, this does not happen in the
gravitational case. Finally, some computational details are collected in
a Solved Problems section, at the end of the chapter.

4.1 Inspiral of compact binaries

_In this section we consider a binary system made of two compact stars,
_ such as neutron stars or black holes, and we treat them as point-like,

with masses mi,me, and positions r; and re. In the Newtonian ap-
proximation, and in the center-of-mass frame (CM), the dynamics re-
duces to a omne-body problem with mass equal to the reduced mass
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p=mima/(my + my), and equation of motion ¥ = —(Gm/r*)r, where
m = mq + my is the total mass and r =rg —1I1 the relative coordinate
We consider first the case of circular orbits. Then the orbital frequenq}
w, is related to the orbital radius R by v?/R = Gm/R?* with v = wsR
so we have Kepler’s law :
,  Gm

s = RE e (4.1)
We already studied this system in Problem 3.2, and the corresponding
gravitational wave amplitudes are given in egs. (3.330) and (3.331). In

these expressions, we eliminate R in favor of w, using eq. (4.1), and we
introduce the chirp mass

w

M, = 13/5m?/° = (mamg)®/®

(my +m2)'/%

Then egs. (3.330) and (3.331) become

4 GMNY? (1P 1+ cos® 6
h+(f) = ;; < c2 > (—f—) ——T- COS(Qng\Kytret + 2¢) .
4 LGMN (e P :
= - cos B sin(27 fawtret + 20)

4.3
where we expressed the result in terms of fow = Wew/ (27), with wiw :)

2ws. Observe that, in this lowest-order Newtonian approximation, the
amplitudes h4 and hyx of the GWs emitted depend on the masses m; meo
only through the combination M. ’

The factors in eq. (4.3) are possibly more expressive if we write them
in terms of ratios of quantities with dimension of length, introducing the
Schwarzschild radius associated to the chirp mass,

2G M,

c2

-

: (4.4)

and using the reduced wavelength of the GW, X = ¢/wgw. Then, eq. (4 3)
reads 7 '

1 +cos? 0

he(ty=A cos(Wewtret +20) ; (4.5)
hy () = A cos 6 sin(wgwtret + 2¢), (4.6)

B 1 Rc RC 2/3
=g (5)(5)

From eq. (3.337) we can write the power radiated in GWs, per unit solid

angle, as
P _ 2 ¢ (GMcwgw o
aQ G 2c3 9(0),

where

(4.7)

(4.8)
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where

20\ 2
g(f) = <17+—C§Oi—9—> +cos® 6. (4.9)

Observe that (cos® (2wt + 2¢)) = 1/21s independent of ¢, 0 the angular
Jistribution of the radiated power, which 18 proportional to (h2 + h%),
is also independent of ¢. The angular average of g(f) is

/ %% g() = % , (4.10)

_ where, as usual, dQ) = dcosfdp. The total radiated power P is there-

foret

59 & (CMawgw "’
P= (,,%/) . (4.12)

2¢3

Q4

. 4.1.1 Circular orbits. The chirp amplitude

Equation (4.3) gives the amplitude of the GWs, assuming that the mo-
tion of the sources is on a given, fixed, circular Keplerian orbit. However,
the emission of GWs costs enersy: The source for the radiated energy 18
the sum of kinetic plus potential energy of the orbit, which is

Eorbit = Eyin + Epot.
Gmama
2R

(4.13)

and therefore, to compensate for the loss of energy to GWs, R must
decrease in time, sO that Fombit becomes more and more nega»tive.2
According to eq. (4.1),if R decreases, ws increases. On the other hand,
if w, increases, also the power radiated in GWs increases, as we see from
eq. (4.12). Then R must decrease further, and we have a runaway process
which, on a sufficiently long time-scale, leads to the coalescence of the
binary system. As long as

by L W (4.14)

we are in the regime called of quasi—ci];cular motion. In fact, using
eq. (4.1) we see that the radial velocity R can be written as

) 2w

R ZR%
3 ws
2

W
= -‘5 (UJSR) Z)E .

S

(4.15)

Then, as long as the condition ws < w3 is fulfilled, |R| is much smaller
than the tangential velocity wsR, and the approximation of a circular
orbit with a slowly varying radius is applicable. In the following, we
compute the back-reaction of GWs when eq. (4.14) applies.

Using eq. (4.1), we climinate R in favor of Wew in €. (4.13), and we
get

Eorbi\', = '(Gchswéw/g2)l/3 . (416)

11 Section 5.6, where we apply the
post—Newtoni;m formalism to inspiral-
ing binaries, we will see that, rather
than using the source frequency ws, it
is convenient to use the variable © =
(Gmws /63)2/ 3, which is dimensionless
and of order 02/ ¢?, where v is the typ-
ical orbital velocity. We also introduce
the “symmetric mass ratio” v = p/m,
so Me = »3/5m,. Since here we are
computing in the quadrupole approxi-
mation and we are considering a circu-
lar orbit, we have wgw = 2ws, and the
result (4.12) can be written as
2

P—BGUO:. (4.11)
The corrections to this result in the
post-Newtonian expansion are given in
eq. (5.257).

21n our idealized setting of point-like
particles, the two masses have no inter-
nal structure, so no degrees of freedom
that can relax supplying, at least par-
tially, the required energy, and the only
possible source of energy is the orbital
energy of the system. FEven in a realistic
system of two stars, however, at least in
the early phase of the coalescence, the
orbital frequency is much smaller than
the frequencies of the normal modes of
the star, and therefore the internal dy-
namics of the stars is decoupled from
the orbital motion, and all the energy
supplied to GWs again comes from the
orbital energy of the system. We will
see in Section 5.5 that, for compact ob-
jects, corrections that depend on the in-
terna) structure of the bodies enter only
at the very high order 5PN in the post-
Newtonian expansion, i.e. they are cor-
rections of order (v/ )19 to the equa-
tions of motion.
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3If we denote by (tcoal)ret the value
of retarded time t,ot at coalescence,
and by tcoa the value of the ob-
server time t at coalescence, we have
T = (tcoal )ret — tret = Looal — t, since re-
tarded time and the observer time differ
only by a constant quantity, the time
taken by the GW to propagate, at the
speed of light, from the source (whose
center-of-mass, to an excellent approx-
imation, can be taken to be at a fixed
position during the observation time)
to the observer. Therefore, even if what
we observe today on Earth depends on
what happened millions of years ago in
a far galaxy, when a quantity like Sfaw
depends on the difference 7 we can ex-
press it simply in terms of the observer
time t.

Observe that, at fixed wgw, the dependence on the masses is again only
through the chirp mass. Equating P in eq. (4.12) to ~dEorbis/dt we find

12 GM N\ *?
Wgw = 321/3 <C—3> wea!®, (4.17)
or, in terms of foy, = wey/(27),
.96 GM,\*/*
o= 3 (SE) e, (418) |

S e

Integrating eq. (4.18) we see that fuy formally diverges at a finite value .

of time, that we denote fcoa. In terms of 7 = teon — ¢ (the time to |

coalescence), the solution of eq. (4.18) reads®

1/ 5 1\ ram.\ %8
o= (555 7) (%)

The divergence is cut off by the fact that, when their separation becomes
smaller than a critical distance, the two stars merge, as we discuss in
more detail below, see eq. (4.38). Inserting in eq. (4.19) the numerical

values we find

, 1.21Mo\*/® 15\ %8
fgW(T) ~ 134 Hz (T) 7 s

(4.20)

where, as reference value for M., we have taken 1.21M, which is the |

chirp mass of a system of two stars, each one with a mass of 1.4Mg.
Equivalently, we can write eq. (4.20) as

1.21Mu\ "% /100 Hz\ ¥/
MC fgw .

From this we find that (when M. = 1.21M) at 10 Hz (which is of the
order of the lowest frequencies accessible to ground-based interferome-
ters) we get the radiation emitted at about 7 = 17 min to coalescence;
at 100 Hz we get the radiation from the last two seconds, and at 1 kHz
we get the radiation from the last few milliseconds. From Kepler’s law
(4.1) we find that, when fgy = 1 kHz, the separation between two bodies
with my = mg = 1.4M is R ~ 33 km. Such a small separation can be
reached only by very compact bodies like neutron stars and black holes.
Since the radius of a neutron star with m = 1.4Mg, is about 10 km, for
neutron stars and black holes the point-like approximation at this stage
becomes inaccurate, but still not meaningless.

A useful quantity for assessing the sensitivity of detectors to inspi=
raling binaries is the number of cycles spent in the detector bandwidth
J € [fmin, fmax]. When the period T'(t) of the GW is a slowly varying
function of time, the number of cycles in a time interval dt is given by

T~2.18s < (4.21)

(4.19)

dNeye = dt/T'(t) = few(t)dt, so

tmax
Neye = / few(t)dt

tmin

fmax f w
= / df e H .
f

(4.22)
Jew

min

For the inspiral of a binary system we can express fgw as a function of
few using eq. (4.18), and we get

Neye = 1 (GM. o (f~§/3 _ ~5/3)
Ve 3978/3 3 J min Jmax
10Hz 5/3 /1 9M. 5/3
~1.6 x 10* ( 7 ) = ® 7 (4.23)
min e
where in the second line we assumed n_nsn/ 3 _ r;j){ 3~ n:iSn/?)’ as is typi-

cally the case. This means that ground-based interferometers can follow
the evolution of the signal for thousands of cycles, and a space-borne
interferometer sensitive to the mHz region can follow it for millions of
cycles.® For this reason, accurate predictions of the waveform, going well
beyond the Newtonian approximation used here, are very important, and
will be discussed in Section 5.6.

As the frequency increases, the orbital radius shrinks. From eqs. (4.1)
and (4.19) (recalling that 7 = tcoa — t, s0 that d/dr = —d/dt, and using
a dot denotes d/dt),

R 2wy
R 3 Wew
1
=——, 4.24
47 ( )
which integrates to
1/4
-
o =ro (7)
1/4
tcoal —t
= —_— 4.25
RO (tcoal - t()) ( )

where Ry is the value of R at the initial time tg, and 79 = %coal — Zo-
The function R(t) is shown in Fig. 4.1. We see that there is a long
phase where R decreases smoothly, followed by a plunge phase, where
our approximation of quasi-circular orbit is no longer valid.®
Inserting eq. (4.19), evaluated at an initial time ¢y when 7 = 79, into
eq. (4.1), we find the relation between the initial radius Fg and the time
to coalescence g,
5 R}

= . (4.26)
256 G3m2pu

70
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4More precisely, a space interferometer
such as LISA has fmin ~ 107% Hz, and
signals in this frequency band are pro-
duced by the inspiral into supermas-
sive BHs with a mass O(10%)Mg. In
a coalescence of two supermassive BHs
with m1 = mgo = 106M@, we have
M, ~ 0.9x 108 Mg and N is only of or-
der 600. However, in the infall of a stel-
lar mass black hole into a supermassive
black hole, taking mj; = 10°Mg and
ms = 10Mg, we have M. ~ 10°Mg
and A ~ 5 x 107.

—

coal

Fig. 4.1 The evolution of the sep-
aration R(t) between the two bod-
ies, in the lowest-order Newtonian
approximation.

5Furthermore, in compact binaries
made of black holes or neutron stars,
the flat-space approximation is totally
inadequate in the plunge phase, see the
discussion around eq. (4.38) below. We
will discuss the plunge phase for sys-
tems with BH or NS in Vol. 2.
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5 As discussed in Problem 3.2, we are
interested in the radiation that a binary
star emits in the direction which points
from the star toward us. The angle 6 is
therefore equal to the angle ¢ between
the normal to the orbit and the line-
of-sight, while we can orient the axes
so that ¢ = 0 or, equivalently, we can
reabsorb the fixed value of ¢ into a shift
of the origin of time.

Expressing the initial radius Ry in terms of the initial orbital period

Ty = 27 /ws(70) through Kepler's law, R3 = Gm(Ty/27)?, and plugging

in the numerical values, we find

T 8/3 M- 2/3 M
702 9.829 x 10°yr | - Fo o)
1hr m L

Therefore, under our assumption of circular orbits and for masses of
order My, only binaries which at formation had an initial orbital period.
of less than about one day can have coalesced by emission of GWs,

within the present age of galaxies. We will discuss in Section 4.1.2 how E
E Fig. 4.2 The time evolution of the GW amplitude in the inspiral phase of a binary

this result is modified for elliptic orbits.

Until now we have studied how the GW frequency evolves in time,
in a binary system. We next examine how the corresponding waveform

of the GW changes. A particle that moves on a quasi-circular orbit

in the (2,y) plane with a radius R = R(t) and an angular velocity
ws = ws(t) has Cartesian coordinates x(t) = R(t) cos(®(t)/2) and y(t) =

R(t)sin(®(t)/2), where we have defined

t
B(t)=2 [ dt' ws(t))

to

3
/ 0t e (1)

to

When we compute the GW production in the quadrupole approxima-

tion, in the computation of the second time derivative of the quadrupole

moment there are therefore three differences, compared to the case when

ws and R constants, i.e. to the computation which gives eq. (4.3):

e in the argument of the trigonometric functions, wgy,t must be re-
placed by ®(¢);

e in the factors in front of the trigonometric functions, wgy is re-
placed by wgy (£);

e we should also include in the computation the contributions com-
ing from the derivatives of R(t) and of wgw (t).

However, as we have seen above, the radial velocity R is negligible as
long as wy < w?. Using eq. (4.17), the condition W, < w? translates
into GMews/c® < 0.5. In terms of fay = wew/(27), this means that
R is negligible as long as fye < 13kHz (1.2Mg/M.). As we will see
in eq. (4.40) below, the transition to the plunge phase takes place ear-
lier, thus as long as we assume that we are in the inspiral phase we call
simply neglect the terms proportional to R in the computation of the
waveform, at least to lowest order, and similarly for the terms involving
the derivative of wgy (¢). The only changes, therefore, are the replace:
ment of wgyt by ®(t) in the argument of the sine and cosine, and of w;
by w(t) in the prefactor, all evaluated at the retarded time t..® Then,

(4.27)

(4.28)

system.

5/3 2/3 2

b (t) = § (%) (ngw(ftyet)> (1 + ;os L) cos(®(tr)]
5/3 . 2/3

hy(t) = % (%) (M) cost sin[®(te)] - (4.29)

Using the explicit expression (4.19) we find (recall that dr = —dt)

—-5/8
5GM, 5
o(r) = -2 (— ) T 4y,

: (4.30)

where &g = ®(7 = 0) is an integration constant, equal to the value of
® at coalescence. Then the GW amplitude can be expressed directly in
terms of the time to coalescence 7 measured by the observer,

1 /GM, 5/4 5 1/4 1+cos?e
_1 c o S TeosTi ®(r)], (4.31
m0=1(ZE) " (2) (M) eoslocr s

5/4 1/4
hy(t) = ! <Gj;4c> <3> cos¢ sin [®(7)] (4.32)
r c cT
where

T ="tcoal — t, (4.33)

¢ is the observer time (rather than retarded time) and teoq is the value
of ¢t when the coalescence takes place (compare with Note 3). We see
from the above equations that both the frequency and the amplitude
increase as the coalescence is approached; this behavior is referred to
as “chirping” (for its similarity with the chirp emitted by a bird). The
functional dependence of hy (or of hy) on ¢ is shown in Fig. 4.2.

As we will see in detail in Chapter 7, to compare the theoretical
waveforms with the experimental sensitivities it is necessary to have the
Fourier transform of the GW amplitudes. To compute the Fourier trans-
form of the chirp signal is not completely straightforward, since iy (¢)
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174 Applications

"More precisely, this is valid in the test
mass limit, when one of the two stars is
much lighter than the other. For finite
masses, this result receives corrections
that can be expressed as an expansion
in powers of the symmetric mass ratio
v = p/m. The position of the ISCO is
also affected by the spin of the bodies.
We will discuss these effects in Vol. 2.

are defined only on the interval —oo < t < fga1, and we compute their
Fourier transform explicitly in Problem 4.1. The result is

(4.1), this means that the inspiral phase ends when the source frequency
fs approaches the value

, 3
. wp € (GMANY" 1 /14 cos?s L 439
hy(f) = Aet+() - < 3 > f7/6 ( 5 ) ;o (4.34) (fshsco 6v6 (2m) G (4.39)
» (f) = A et () c <G]§[c>5/6 f:/ﬁ cost. (4.35) Inserting the numerical values, this gives
r c
Mg
where the constant A has the value (fe)isco = 2.2kHz (Tn_> ’ (4.40)

For instance, for a NS-NS system with the typical masses m; = mq =~
1.4Mg, so that m ~ 2.8 Mg, we have (fs)isco ~ 800 Hz, while for a BH-
BH binary with a total mass m = 10M we have (fs)isco ~ 200 Hz.
The coalescence of two supermassive BHs with m ~ 106M¢, takes place
when fg is in the mHz region.

_ Plugging eqs. (4.34) and (4.35) into eq. (1.160) and performing the
angular integration we get the energy spectrum in the inspiral phase, in
the Newtonian approximation,

1 /5\? )

The phases are given by ¥, = W + (7/2) and

. -5/3
Wilf)=2mf totrfe) =g+ (S enr) L

where ®g is the value of the phase ® at coalescence, see eq. (4.30).
We will see in Sections 5.6 and 7.7 that an accurate computation of

Uy «(f), going well beyond the Newtonian approximation, is crucial g ar — /3 (GM,)3/3 f=1/3 441
for discriminating the signal of a coalescing binary from the detector § df 3G ¢ ’ (4.41)
noise, and we will give in eq. (5.275) the post-Newtonian corrections to §

eq. (4.37).

The above computations have been performed in a flat background.
For binary systems made of black holes or neutron stars, the gravita-
tional field close to the stars is however strong, and this has important
consequences on the dynamics of the binary system when the two ob-
jects get close. A full discussion of a realistic coalescence of compact
binaries will be deferred to Vol. 2. However, the most important qual-
itative modification to the dynamics comes from the fact that, in the
Schwarzschild geometry, there is a minimum value of the radial distance
beyond which stable circular orbits are no longer allowed, i.e. an Inner-
most Stable Circular Orbit (ISCO). In Schwarzschild coordinates this is
located at r = risco, with

Integrating up to the maximum GW frequency fuax for which we are still
in the inspiral phase we can estimate the total energy radiated during
the inspiral phase,

2/3 } )
AEypq ~ W@MC)U/B 23, (4.42)

or, inserting the numerical values,

2 2 M o/ f ax &e
AEBq ~ 4.2 x 107%M, — z . )
d 10" Moe <1.21M@> <1kHz) (4.43)

Setting fimax = 2(fs)1sco (as appropriate for quadrupole radiation) and
using eq. (4.40) we see that the total energy radiated during the inspiral
phase actually depends only on the reduced mass i of the system, and
is

6G'm
TISCO = ~ 5 (4.38)

-2 2
where m = my + mq is the total mass of the binary.” Therefore, for ABraq ~ 8> 107 "pc” . (4.44)

binaries made of BH or NS, a phase of slow adiabatic inspiral, going
through a succession of quasi-circular orbit and driven by the emission
of gravitational radiation, can only take place at distances 727risco-
When the ISCO is approached, the dynamics is rather dominated by
strong-field effects (namely, by the fact that the Schwarzschild geometry
no longer allows for circular orbits), and the two stars plunge toward
each other. Thus, the waveform computed above is only valid up to
a maximum frequency fmax, beyond which the inspiral phase ends and
the two stars plunge toward each other and coalesce. From Kepler’s law

_ For stellar mass objects this is a huge amount of energy, and this makes

coalescing binaries one of the most interesting sources of GWs. Actually,
_the above numerical value only provides an order-of-magnitude estimate,
since we performed a flat-space computation, and we cut off the result
by hand at the value of (f;)1sco obtained from the Schwarzschild geom-
etry. A better approach consists in observing that, in the Schwarzschild
__metric, the binding energy of the ISCO is given by®

Ebinding = (1 — /8/9)uc® =~ 5.7 x 107 2puc?, (4.45)
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83ee e.g. Landau and Lifshitz, Vol. II
(1979), Section 102, Problem 1.
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and this is the total energy radiated in GWs when the binary system is
slowly inspiraling from an orbit with large relative separation down to
the ISCO. We will see in Vol. 2 that the post-Newtonian corrections to
this binding energy are of order of a few per cent. Thus, the order-of-
magnitude estimate given in eq. (4.44) turns out to be reasonably close
to the correct result.

4.1.2 Elliptic orbits. (I) Total power and frequency
spectrum of the radiation emitted

We now consider the radiation emitted by masses in an elliptic Keplerian
orbit. As before, we denote by my, ms the masses of the two stars, by
m = my + mo the total mass, and by p the reduced mass. As usual,
in the CM the problem reduces to a one-body problem for a particle
of mass p, subject to an acceleration i = —(Gm/r?)t. We first recall, |
from elementary mechanics, the solution of this equation of motion for
an elliptic orbit, and then we compute the total power radiated in GWs
and its frequency spectrum.

Elliptic Keplerian orbits

The general solution of the equation of motion is obtained by observing |
that there are two first integral of motion, the angular momentum L;
and the energy E. The conservation of L implies that the orbit lies in
a plane; we then introduce polar coordinates (r,%) in the plane of the
orbit, with origin on the position of the center-of-mass (we use ¥ to
denote the angular position along the orbit, since we reserve 6 and ¢
to describe the angular distribution of the radiation emitted). Then, in
terms of 7 and ¢, the modulus of the angular momentum is given by

L= pur?y, (4.46)
while the energy is given by
E= %/,4(7"2 + 7'2&2) — G/,LTm
_ % wi? + 2ii2 - Gif iy (4.47)

From eq. (4.47) we get dr/dt as a function of r while from eq. (4.46) we
get dip/dt; combining the two expressions we find dr/dy as a function of
r and, integrating this expression, we obtain the equation of the orbit,
L L4 ecosy) (4.48)
- == ec . :
r R
The length-scale R and the eccentricity e are constants of motion, and
are related to the energy E of the system (with E < 0 for a bound orbit)
and to the orbital angular momentum L by

L2

= 4.49
R= Gz (4.49)

and
e =1+ 287 . (4.50)
G2m2.3 :
The eccentricity e for an ellipse satisfies 0 < e < 1; for e = 0 the
ellipse becomes a circle, while e = 1 corresponds to a parabola. The two

semiaxes of the ellipse are given by

R

a = m 5 (451)
R

The geometry is shown in Fig. 4.3. Inserting the explicit expression for
e given in eq. (4.50), we see that
_ Gmyp
2Bl
Observe that a is independent of L, so orbits with the same energy have

the same value of the semimajor axis a. In terms of @ and e, we can
rewrite the equation of the orbit (4.48) in the form

(4.53)

_a(l—e?)

r= .
1+ ecosp

(4.54)

Combining egs. (4.46) and (4.49), we see also that 7(¢) and v)(t) satisfy
the relation ( /2
. GmR
Y=
The explicit time dependence of 7(¢) and ¥ (t) is obtained by integrating
eqs. (4.46) and (4.47) (making use also of the equation of the orbit) and
is given in parametric form by

. (4.55)

r=all —ecosu], (4.56)
cosp = C0SU ¢ , (4.57)
1 —ecosu

where v is called the eccentric anomaly, and is related to ¢ by the famous
Kepler equation

B=u—esinu=wyt, (4.58)
with a

We have chosen the origin of time such that, at ¢t = 0, we have 9 = 0.
Making use of trigonometric identities, eq. (4.57) can also be rewritten

as
L 1/2
tan % = ( + e) tan x (4.60)

2 l1—e 27

e

1/2
Y = Ae(u) = 2arctan [(i + e) tan g—] . (4.61)
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Fig. 4.3 The definitions used for an
elliptic orbit. The polar coordinates
(r,v), as well as the Cartesian co-
ordinates (z,y), are centered on a
focus of the ellipse (dark blob). The
angle 1 is measured counterclock-
wise, from the z axis. The semiaxes
a,b are indicated. The focus splits
the major axis into two segments of
length a(1+ e) and a(1 — e), respec-
tively.
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Fig. 4.4 The function v¢(u) for e
0.2 (dashed line) and for e = 0.7
(solid line).

[

9The equation of the ellipse in Carte-
sian coordinates would be slightly sim-
pler if we choose the center of the el-
lipse, rather than a focus, as the ori-
gin, since in this case we simply have
2 = acosu(t) and y = bsinu(t). How-
ever, recall from Section 3.3.5 that, if
we want to compute the GW produc-
tion using just the quadrupole moment
for a particle with mass equal to the
reduced mass of the system, we rmust
choose the origin of our frame at the
point where xcon = 0.

The function A.(u) is called the true anomaly. Observe from eq. (4.58)
that, if t — ¢ + 27 /wo, we have f§ — [+ 27 and u — u + 27, so the
coordinates r, 1) are periodic functions of ¢, with period

'277

T (4.62)

wol

As u runs between —7 and 7, 1 also runs between —m and 7. A graph

of ¥(u) is shown in Fig. 4.4, for two different values of the ellipticity.
Observe that, for e = 0, 1 = u. We will also use Cartesian coordinates
(z,y) centered on the focus of the ellipse,

T =7 Ccosy

= afcosu(t) — e}, (4.63)
y = rsiny

= bsinu(t). (4.64)

In terms of the original problem with two bodies of masses m; and ma,
the focus of the ellipse is the point where xom = 0, and the coordi-

nates, measured from this point, are the relative coordinates in the CM
system.’

Radiated power

We first compute the total power radiated in GWs, integrated over all

frequencies and over the solid angle. We choose a reference frame where
the orbit is in the (z,y) plane. In this frame the second mass moment
is given by the 2 x 2 matrix
)
ab

where a,b = 1,2 are indices in the (z,y) plane. To compute the total
power emitted in the quadrupole approximation we must evaluate the
third derivatives of My, and we can then use the quadrupole formula

sin cos ¥
sin? ¢

cos? 1

sin 1 cos Y (4.65)

My = ;M’Z <

in 9(t). To compute these derivative, the simplest way is to write Mas
as a function of ¢ only, eliminating r with the help of eq. (4.54), e.g.

My =p r? cos? P

2
2 212 cos” P
= 1— _ . 4.66
par(l—e) (14 ecosth)? (4.66)
Now we can compute the time derivatives using
. (GmR)'/?
§ =
r
am\ 2 _
= <—a_§_> (1—e?)™32(1 + ecosv)?, (4.67)

in the form (3.76). In eq. (4.65) the time dependence is both in r(¢) and |

i
|
!
|
i:
i
.
|
|

G e

where we used egs. (4.55), (4.54) and (4.51). Then a simple computation
gives

My, = B(1 + ecos)? [2sin 20 + 3e sin 1) cos? P], (4.68)

My = B(1 + ecostp)? [~2sin 2¢) — esinth(1 + 3 cos? )], (4.69)

Mg = (1 + ecosth)? [~2cos2tp + ecos (1 — 3cos? 4))], (4.70)
with

= 4G 2m?

ab(l—e?)5
Plugging this into eq. (3.76) we get the power radiated, in the quadrupole
approximation, as a function of the position 1 along the orbit,

(4.71)

G .2 . .2 1 ...
Py) = 55 {Mu + Moy +2My, — g(M’u + Mz‘z)Z}
2G ) ) .9
= 155 [Mn + Moy + 3M;y — M11M22} (4.72)
8G*  uPmb

= 58 B (1 +ecosy)* [12(1 + ecosp)? + e?sin® ] .
As explained in Chapter 1, the GW energy is only well defined by taking
a temporal average over several periods of the wave. As we will see
below, a particle in a Keplerian elliptic orbit emits GWs at frequencies
which are integer multiple of the frequency wq defined in eq. (4.59), and
therefore the period of the GWs is a fraction of the orbital period 7" given
in eq. (4.62). Then, a well defined quantity is the average of P(1)(t))
over one period T'. We can now perform this time average, writing

= T/o dt P()
_ _‘f)g 27 dw
T om 0 E
=(1- 62)3/2

P(y)
2 Ch/}

—— (1+ ecostp) 2 P(z)
0 T

B 8G4u2m3
T 15c8g5

27
dy
X/ Q—f? [12(1—I—ecosz/))4+62(1—{—ecos¢)2sin21/)] ,
0 7

(1—e)"7? (4.73)

where we used eq. (4.67). The integral is elementary and one finally
obtains the total radiated power!?

32G*u*m3
e e OF (4.74)
with
N 1 73, 37,
f(e) TEITE ( +57¢°+ 56¢ ) (4.75)
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10ppis classical formula is due to Peters
and Mathews (1963).
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Fig. 4.5 The function f(e), on a log-
arithmic scale.

Using eq. (4.59) we can eliminate m in favor of wg, and rewrite the above
result as )
- 32 Gp

5 b

P a*wl f(e).

(4.76)

For e =0, we have f(e) = 1, while a becomes the radius of the circular
orbit and wg becomes the same as wg, so we get back the result for
circular orbits, eq. (3.339). The function f(e) is plotted, on a logarithmic
scale, in Fig. 4.5. For instance, for the Hulse-Taylor binary pulsar (that
will be discussed in detail in Chapter 6) the eccentricity is quite large,
e~ 0.617, and f(e) = 11.8. The radiated power is therefore an order of
magnitude larger than the power emitted in a circular orbit with radiug
a (i.e. with the same energy).

Combining eqs. (4.62), (4.59) and (4.53) we see that the orbital period
T is related to the orbital energy E by T' = const. x (—FE)~3/2 and

therefore . .
T 3 F

r_.3p (4.77)

T 2 E°

From eq. (4.74) we find the energy loss (averaged over one orbital period)

E = —P and therefore (using again eq. (4.53) to express F in terms of
a) we get

T 96 G3um?

T 5 at f(e),
where the average over an orbital period is understood. Expressing a in
terms of T" using eqs. (4.62) and (4.59) we can also rewrite this as

(4.78)

T 96 G5/3m2/3 /TN T8
___“___< > f(e).

-3 i o (4.79)

M|

This equation is of great importance, since it is at the basis of the first
experimental evidence for gravitational radiation, as will be discussed in
Chapter 6.

Coming back to eq. (4.74), we see that in the limit e — 1~ (with
a fixed) the radiated power diverges. This is due to the fact that, if
we send e — 17 keeping « fixed, we get R — 0 (see eq. (4.51)) and
b= a(l—e?)t/? = 0. Therefore, as the ellipticity e — 1~ at fixed a, the
motion of the relative coordinates approaches more and more the point
r = 0, where the acceleration Gm/r? diverges, and therefore the GW
production formally diverges as well. However, clearly at this moment
the approximation of point-like masses ceases to be valid, and we must
take into account the finite size of the bodies.

The limit e — 17 at fixed R corresponds instead to parabolic motion;

R

= 4.80
" 14 costy ( )

When ¢ — — the particle is at 7 = oo; by increasing ¢ the value of 7
decreases down to r = R/2 (reached for 4 = 0), and then increases again,
until again 7 — oo as ¢ — 7 (see Fig. 4.6). In this limit, eliminating

a in favor of R using eq. (4.51), we obtain from eq. (4.72) the power
radiated along the trajectory,

4..2,.3
P(p) = % (1 + cos9)* [12(1 + cosh)? + sin? ¢]
cC (o}

16G*2m2 1 11R
= — 14+ ——].
15¢® 15 2r
Then, P(%) goes to zero quite fast as r — oo or, equivalently, as ) — £,

see Fig. 4.7. This is of course expected, since the acceleration vanishes
as 1/72. As a result, the total energy radiated in GWs is finite

(4.81)

Bas= [ O; dt P(p(t))
- [ Zrw

P

_ 86w Gu? (”—0)5 , (4.82)

48 R c

where vg = 2(Gm/R)Y/? is the velocity at ¢ = 0 (which corresponds
to 7 = R/2), i.e. is the maximum velocity attained along the trajec-
tory. In this form, the result is similar to that found for a periodic
source, compare, e.g. with eq. (3.319). Since this finite energy is emit-
ted in a time T = oo, if we take the average value of the power over
a time 7' we find zero, as we can also check from eq. (4.74) writing
(1/a”)f(e) = (1/R%)(1 — €?)® f(e) and taking the limit e — 1~ at fixed
R. Of course, this reflects simply the fact that the radiation is emitted
basically between —m/2 < ¢ < 7/2, see Fig. 4.7; the radiation emitted
when 7/2 < || < 7 is instead finite (and, indeed, even negligible), even
if it takes an infinite time to get to ¥ = 7 or to come from ¢ = —m.

_ Frequency spectrum

Above we have computed the total radiated power, integrated both over
the frequency and over the solid angle. It is however very interesting
to compute the frequency spectrum of the radiated power, dP/dw, for a
Keplerian elliptic orbit.

Such a trajectory, given as a function of time by egs. (4.63), (4.64) and
(4.58), is of course not simple harmonic motion, and therefore the first
step is to perform the Fourier decomposition of the trajectory. This can
be done by observing, first of all, that z(t) and y(¢) are periodic functions
of the variable  defined in eq. (4.58), with period 2x. Therefore we can
restrict § to the range —m < [ < w, and we can perform a discrete
Fourier transform,

z(B) = i Ine (4.83)
y(B) = Z gne*inﬁ) (4.84)

4.1 Inspiral of compact binaries 181

Wén\
v /

Fig. 4.6 The parabolic trajectory.
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Fig. 4.7 The function P(%), nor-
malized to the value at ¢ = 0, for
parabolic motion.
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Fourier decomposition of the second mass moment, and therefore of
22(t),y*(t) and z(t)y(t). This is again computed in Problem 4.2, where
we show that

with &, = &, and g, = §*,,, since () and y(53) are real function
Furthermore, we have chosen the origin of time so that at t = 0 (i
at 4 = 0), we are at the point = a(l — e),y = 0; with this choic
z(—pB) = z(f) while y(—f) = —y(B). . Therefore, writing e~ "8

cos(nf) — isin(nf), in the expansion of z(8) contributes only cos(ng 22 (t) = Z Ap coswit, (4.96)
while in the expansion of y(3) contributes only sin(nf), and eqs. (4.83 n=0
and (4.84) simplify to ad
2
yo(t) = Z By coswpt, (4.97)
- n=0
2(8) = 3" an cos(nf), (4.85) -
n=0 ‘ z(t)y(t) = Z Cy sinwpt, (4.98)
- n=1
y(B) = Z by sin(nf) (4.86)
n=1 " where
where, for n > 1, a, = 2%, and b, = —2if,, while aqg = Zg. Since a®
’ : ’ =L - - - 4.99
[ = wgt, we can rewrite this as Ap = n [Jn—2(ne) — Jnt+2(ne) — 2e(Jn—1(ne) — Jny1(ne))],( )
b2
- By = — [Jnt2(ne) — Jn_2(ne)] , (4.100)
z(t) = Z (U COS Wit (4.87 " nb{ w+2(ne) = Jn
”:)0 ' C, = %— [Jns2(ne) + Jn_2(ne) — e(Jny1(ne) + Jn_1(ne))] .(4.101)
t) = by, si t, 4.88) . fy
v ,,; e (4.88) ’ The second mass moment (4.65) therefore has the Fourier decomposition
where .
=1 . 4.89) = Ay coswpt  Cp sinwn,t
o =, (4.89) M) =S ( T o)
We see that the Fourier decomposition of the Keplerian motion involves .: n=0 @
the fundamental frequency wo = (Gm/a? )1/ 2 and all its higher harmon :. _ f: M ) (4.102)
ics. The coefficients a,, and b,, are obtained by inverting egs. (4.85) and - ab ’
n=0

(4.86), which gives, for n # 0,
When we compute the radiated power, temporal averages such as

2 [T ,
on=2 [ d5a(®)cos(np), (190)
o (sinwpt sin wy, t)
2 [T )
= ™ (/0 4B y(B)sin(nf), (4.91 are non-vanishing only if n = m, so there is no interference term between
(4.92) the different harmonics, and
while, for n = 0, ; - so
r[r P=Y P, (4.103)
ap = — / dgz(3) . (4.93) —
T Jo

where P, is the power radiated in the n-th harmonics. To compute P,

With z(f) and y(8) given by egs. (4.63), (4.64) and (4.58), these inte- ; i
we use the quadrupole formula, written in the form

grals are computed explicitly in Problem 4.2, and the result is given in_

1]'Actua11y, Bessel functions were in- terms of Bessel functions,n
troduced for the first time just in this ‘
context, by Lagrange and, half a cen- _a .
» DY , n = —|JIp_1(ne) — Jpe1(ne 4.94

tury later, in the more general solution " n{ " 1( ) n-f—l( )} ( ) ‘
for the Fourier transform of the Kepler b

problem given by Bessel. See Watson bp = H{Jnfl(ne) + Jn,+1(ﬂ,€)] . (4.95)
(1966).

P=—Z (M5, 4 Moy + 38y — M1y Mas) (4.104)
(that takes into account that the orbit is in the (z,%) plane, compare
with eq. (4.72)), and we replace My, by M, LEZ) . Using
for n # 0, and ag = —(3/2)ae. The above result is interesting in itself MSZ) ot ( Apsinwpt —C, coswnt ) ’ (4.105)
b

but, to compute the spectrum of GWs, we are really interested in the —Cpcoswpt By sinwyt
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1
3 4 5 6
Fig. 4.8 The power P, radiated at
the GW frequency w, = nwo, as a
function of n, for e = 0.2. P, is
normalized to the value for e = 0.
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Fig. 4.9 The same as Fig. 4.8, for

2.5
Fig. 4.10 The same as Fig. 4.8, for
e=0.7.
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we get )
Py = GI90 0042 4 B2 4302 — 4, B,), (4.106)
15¢%
where we used (sin”wpt) = (cos’w,t) = 1/2. Recalling that w? =
Gm/a®, the above result can be rewritten as
32G*u2m?®
P, = W‘g(nae)) (4107) ‘
where
6 )
9(n,€) = g [A3(€) + B(e) +3C2(e) — An(e)Ba(e)], | (4108)

where the notation stresses that A,, B, and C,, depends on the eccen-
tricity e (recall also that b?/a® = (1 — €?)).

First of all, we can check from this expression that, in the limit e — 0,
we get back the result for circular motion. If e = 0, the argument of the
Bessel functions, in eqs. (4.99)-(4.101), vanishes. Since J,,(0) = 60,
and since for us n = 1, we see from eqs. (4.99)-(4.101) that in this limit
Ap — (a?/2)8n2, By — (—a?/2)8,2 (of course b = a when e = 0) and
Crn — (a%/2)3,2. Then we get back the result that, for circular motion,
only the harmonic with n = 2 contributes, and we find from eq. (4.108)
that ¢(0,n) = dn2, so we get back the correct value for the radiated
power.

For a generic value of e (with 0 < e < 1) all harmonics contribute,
and we have radiation at all frequencies wy, = nwy for all integer values
of n, including also n = 1. Increasing the ellipticity, increases also the
value of n = 7 where g(n,e) is maximum, as well as the value of P,
at n = 7, and the total radiated power. In Figs. 4.8-4.10 we show
the power spectrum P, normalized to the power radiated when e = 0,
for three different values of the ellipticity. Observe the change in the
horizontal and vertical scales, among these figures.

4.1.3 Elliptic orbits. (II) Evolution of the orbit
under back-reaction

The evolution equations

A binary system in a Keplerian orbit radiates both energy and angu-
lar momentum. In our approximation of point-like bodies (without an
intrinsic spin) these are necessarily drained from the energy and angu-
lar momentum of the orbital motion, which therefore undergoes secular
changes, both in its semimajor axis and in its ellipticity, until the system
enters the merging phase and collapses. In this section we compute how
the shape and size of the orbit evolve, for a generic elliptic orbit.

We already computed the energy radiated, in the quadrupole approx-
imation, in eq. (4.74). We now compute the angular momentum radi-
ated, again in the quadrupole approximation. We therefore start from
eq. (3.99), which we write as

dLi 2G

dt ~ 5cd
where L? is the orbital angular momentum of the binary system, and
we replaced Qpq by My (because the difference gives a contribution to
eq. (4.109) proportional to ezklémQ = EZMQM, which vanishes because
Qu is symmetric in (k,[) and ¢l is antisymmetric), and similarly we
replaced Qla by M,,. As in the computation of the radiated energy,
we put the orbit in the (z,y) plane, so My, is given by eq. (4.65), and
we write L, = L. Then, recalling that inside (...) we can integrate by
parts, eq. (4.109) gives

W 25 il Ma ~
be

dt
4(’

Z;"iu\llsa]\/[/a) 5 (4109)

M2aM1a>

(M:lz(Mu — M), (4.110)

The third derivatives M 11 and M a5 have been computed in egs. (4.68)
and (4.69), while a similar computation gives

Gum .
m szf)

x [—4(1+e cos )2 cos 1 + 2e(3 cos? 9 —

My = (4.111)

1+ 2ecos® V)] .

For periodic motion, the average over several periods of the wave is the
same as the average over one orbital period 7" and, as in eq. (4.73), we
transform the temporal average over one period into an integration over
Y, using

T at
/0 Fl)=0-

Then we get, for the angular momentum loss averaged over one period,

(4.112)

27 d?/
213/2 1 —2
) /0 o (1+ecosp) 2 (...).

7/2,,2,.5/2 2
(hl£:§G wem 1 / irl/ismw
dt 5 cPa”?2  (1-¢€2)? J, 27
x[=4(1 + ecostp)? cos ¥ + 2e(3cos® 1 — 1 + 2e cos® ¥)]
x[8 cos 1) + 6e cos? 1 + €] . (4.113)

The integral over 1) is elementary, and gives —4(1+47¢2/8). In conclusion,
from this result and eq. (4.74), the energy E and the angular momentum
L of the orbit evolve as

dE 32 G u?m? 1 73 5 37 4
_ 32 1 Lot} (4114
dt 5 od (- \ " 21 T 96¢ (4.114)
7/2,,2,,5/2
ab_ 3G em ! 14 L) (4.115)
dt 5 cda”? (1-—¢?)?
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and we recall again that these quantities are really averages over one
period, rather than instantaneous energy and angular momentum losses
Using egs. (4.50) and (4.53) we can rewrite these equations in terms of
the evolution of the semimajor axis a and of the eccentricity e,

da 4 G®um? 1 73 3
da _ 64 G um <1 + e _7@4> . (4.116)

dt 5 c*ad (1-e?)7/2 22° " 96

de 304 Gg/,bmz e 121 9

de _ _ gLl |

@~ dat (el ( + 354° ) (4.117)

From eq. (4.117) we see that, if e = 0, then de/dt = 0. Therefore a
circular orbit remains circular. This could also have been seen directly
from eqgs. (4.114) and (4.115), observing that, for e = 0, they give

ag _ dl
dt T

(4.118)

where wg = (Gm/a®)}/? is the frequency of the circular motion, see

eq. (4.59). Equation (4.118) is just what is needed to maintain the
relation between energy and angular momentum that holds for circular
motion. In fact, for circular orbits, using eq. (4.59),

Gnr 1
E=— QTZM =3 (Gm)z/BuwS/s , (4.119)
while
L =ma*wy = (Gm)Q/Buwal/B , (4.120)
and therefore
dE 1 _1/3
- =73 (Gm)?3 pw, Y300, (4.121)
dL 1 vy ’
==z (Gm)*? pwy iy (4.122)

from which eq. (4.118) follows. For ¢ > 0, eq. (4.117) gives de/dt < 0
instead, and therefore an elliptic orbit becomes more and more circular
because of the emission of GWs.

A direct numerical integration of egs. (4.116) and (4.117) is not as
straightforward as one might think. The reason can be seen by putting
the equations in dimensionless form. To do so, it is convenient to in-
troduce a length-scale R,, from R3 = 4G®um?/c5. We have chosen the
numerical factor so that when the masses of the two stars are equal,
m1 = mg = M, we have R, = 2GM/c?, so R, becomes equal to the
Schwarzschild radius of the stars. We then introduce the dimensionless
variable 7 = ct/R,, i.e. time measured in units of the light travel time
across a distance R, and the dimensionless function a(7) = a(r)/R.
Then eqs. (4.116) and (4.117) read

da 161 1 LT 8T
—=— —e® + —e
dr 5 ad (1—e2)7/2 24 96 ’

de_ 76 1 e 1+121 9
- 304° ) -

S e U .

(4.123) |
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This shows that 7 = ct/R, is the natural adimensional time-scale in the
differential equation. However, for typical solar-mass stars, R. ~ 3 km
and R./c = O(1075) s. Therefore, to follow the evolution of the orbit for
5 time £ ~ 1 yr, we need to push the integration up to a dimensionless
value 7 ~ 10'2, which is numerically difficult.

A better approach is to combine egs. (4.116) and (4.117) to get da/de,

dao 12 1+ (73/24)e* + (37/96)e*

e . 4.125
de 19" e(l— e2)[1 + (121/304)¢7 (4.125)
This equation can be integrated analytically, and gives
12/19 191 .\ 870/2299
€ 2
(e) =co— |1+ — , 4.126
ale) =0 T ( +304€> (4.126)

where cg is determined by the initial condition ¢ = a9 when e = eg. It
is convenient to define the function'?

£12/19 121 , 870/2299
= — |1+ — ) .
gle&)= 12 ( + 3O4e> (4.127)
so that a(e) = cpg(e); co is fixed by ag = cog(ep), and therefore
g(e)
ale) = a .
(e) = a0 oS (4.128)
In particular, for e < 1, we have g(e) ~ '/ while, for e close to 1,
g1
gle)~ 77—, (4.129)

where g1 = (425/304)%70/2299 ~ 1.1352. A plot of the function g(e) is
shown in Fig. 4.11.

Orbit circularization

A consequence of the above result is that the eccentricity decreases quite
fast, so the effect of the back-reaction of GWs is to circularize the orbit.
Consider a compact binary system, say a NS-NS binary, that at an initial
time has ag very large compared to the radius of the neutron stars, so we
are still very far from coalescence, and an eccentricity ep not particularly
small, neither especially close to one, so that g(eg) = O(1); let a and e
be the values of the semiaxis and eccentricity at a much later time, say
when the system is approaching the coalescence phase. Then e will be
small and, from eq. (4.128) and the small e limit of g(e), we have

£12/19 )
ale) ~ ag ——, 4.130
(€)= a0 g(eo) (
Le. 19/12
a
e {—— g(eo)] (4.131)
ao

100
50

Fig. 4.11 The function g(e), on a
logarithmic scale, against e.

12This has nothing to do with the func-
tion g(n, €) defined in eq. (4.108). Both
the notation g(e) for this function and
the notation g(n, e) for the function de-
fined by eq. (4.108) are standard in the
literature.
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For example, consider the Hulse-Taylor binary pulsar (which will he

discussed in detail in Chapter 6). Today it has a semimajor axis ag =

2 x 10° m and a rather large eccentricity ep ~ 0.617. By the time that
the two stars reach a short separation a, say of the order of a hundred
times the radius of the neutron stars, a = O(10% Rys) =~ 10° km, we have

ajag = O(5x107*) and, since g(eg) = O(1), the eccentricity has become
6. The conclusion is that (unless some

e~ (5 x 10741912 ~ 6 x 10~
external interaction perturbs the binary system), long before the two
neutron stars approach the coalescence phase, the ellipticity has become
zero to very high accuracy, and the two stars move on a circular orbit
which shrinks adiabatically.

The time to coalescence

We now compute the time to coalescence, 7(aop, €p), of a binary system

that, at an initial time to = 0, has semimajor axis ao and eccentricity

ep. When e = 0, we found the result in eq. (4.26),

= 5 4
0o Cag

256 G3m2p (4.132)

7(ag, e0 = 0) = 10(ao) =

For an elliptic orbit, we can integrate eq. (4.116) requiring a(t) = 0
at t = 7(ao, eo) or, equivalently, we can integrate eq. (4.117) requiring
e(t) = 0 at t = 7(ag, en), since we have seen that at the coalescence e
goes to zero. Since the analytic expression for a(e) is simpler than the
form of the inverse function e(a), it is in fact better to use eq. (4.117),
SO we write

/T(au,eu) g 7£ b /O de at(e)(1 — 62)5/2 (4.133)
0 304 GS,]TLQM €0 € (1 + égi@ ) ’ ‘
that is,
15 & [ at(e)(1— et
’ de2I\-— )" 4.134
(a0, €0) = 551 Gmap [t / e+ 501¢”) e

Using eq. (4.128) for a(e), we get

L g0 e :
/o de : (4.135)

19 g%(eq) e(l—}-égie)

,;;
&3

T((J,Q, 60) = To((l,o)

Expressing 79(ao) in terms of the orbital period as in eq. (4.27), we can
write the result for 7o(ag, €g) as

ToNS/3 /a2
7o(ao, €0) = 9.829 My (ﬁ) (—9) (M >F<eo>,

m

as g'(e)/e, and g(e) ~

where m = my + my is the total mass, p is the reduced mass,

4(6) 1—e2)5/?

e+ e (4.137)

F(eg) = 19 94(60)

and g(e) is given in eq. (4.127). For example, the Hulse-Taylor binary
pulsar has eg =~ 0.617 and F(eg) =~ 0.184, so its time to coalescence is
shorter by a factor 1/F(eg) ~ 5.4, compared to a binary on a circular
orbit with the same period. Using the values, m; = mg ~ 1.4Mg and
To =~ 7.75 hr we obtain the time to coalescence of the Hulse-Taylor
binary pulsar, 7(ag, eq) ~ 300 Myr.

It can be useful to write some approximate, but more handy expres-
sion, for F'(ep). In the limit eg < 1 the integrand can be approximated
e12/19 see eq. (4.127). Then

~1, (4.138)

so for eg = 0 we have F(0) = 1 and we get back the result for circular
orbit, eq. (4.27). In the opposite limit eg — 17, the integral in eq. (4.134)
is dominated by the region e ~ 1, where g(e) is given by eq. (4.129).
Then we get

A8 /1 — e% 4 e 1 g‘f 2\5/2
s . : 1 — 62y5/
Fleo= 19 < 91 ) / “ T z/s0m)] (- e )

~ e (1= )2+ 00)
768(1 e2)7/?. (4.139)

429

Therefore, in this limit the time to coalescence is smaller than for a
circular orbit with the same period, by a factor proportional to (1 —
e2)7/2. This dependence is easily understood from the fact that the
system spends most of its lifetime near ¢ = ag, e = eg, where the
radiated energy is enhanced by a factor proportional to (1 — 6%)7/ 2
compared to the circular case, see egs. (4.74) and (4.75). Comparing
the limits e — 0 and e — 17, we see that it is convenient to define a
function G(ep) from

Fleg) = Gleo)(1 — €2)7/2 (4.140)

because G(eg) is a function everywhere close to one. A plot of G(eg)
from the exact numerical integration of eq. (4.137) is shown in Fig. 4.12.
We see that G(e) is always very close to one, within a few per cent at
least until e = 0.6, where G(e) ~ 0.982, and then, approaching e = 1, it
raises to reach the finite value G(1) = 768/425 ~ 1.80.
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Fig. 4.12 The function G(e),
against e. At e = 1 G(e) is finite,
G(1) = 768/425 ~ 1.80.
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13 Here the word “flat” refers to the
geometry of the spatial slices. As a
four-dimensional space-time, the FRW
metric with & = 0 4s curved.

14Equation (4.142) also implies a much
stronger result. If at ¢ = to the velocity
has an initial value ug, the integration
of eq. (4.142) gives

@] = 20 jue (a143)

a{t)

so spatial velocities are redshifted by
the cosmological expansion. In a Uni-
verse which expands forever, even test
masses with a non-vanishing initial
value of u will eventually come to rest
with respect to the observer that uses
comoving coordinates.

4.1.4 Binaries at cosmological distances

Until now, we have implicitly assumed that the binary system that co.
alesces is at a sufficiently small distance from us, so that the expansion
of the Universe during the propagation of the GWs from the source tg
the detector can be neglected. However, some gravitational-wave detec.
tors, in their advanced stage, have the potential of observing coalescing
binaries out to cosmological distances: we will see that advanced ground-

based interferometers could detect BH-BH coalescences out to distances
of order 1-2 Gpc (corresponding to a redshift z ~ 0.25—0.5), while the

space interferometer LISA could detect the coalescence of supermassive
black-hole binaries out to redshifts z ~ 5—10. Actually, these will be
among the most fascinating sources of GW astronomy. The rich cos
mological information that could be extracted from such events will be
discussed in Vol. 2. Here we prepare the necessary tools, discussing how
the signal of a binary inspiral at a cosmological distance is affected by
the expansion of the Universe.

First of all, we recall a few elementary notions of cosmology (see, e.g
Chapter 2 of Kolb and Turner (1990) for more details and derivations),

also in order to fix our notation. The expert reader might wish to skip

this part and move on to page 194.

A reminder of FRW kinematic

On the Gpc scale, the Universe is to a first approximation isotropic and
homogeneous, and is described by the Friedmann—Robertson—Walker
(FRW) metric,

2

ds? = —c*dt? + a*(t) 1_7@ +r2d6® + r?sin® 0dg? |, (4.141)
where the function a(t) is called the scale factor and is determined by the
Einstein equations. After an appropriate rescaling of the coordinates, k&
can take the values k = 0 (flat Universe'®), & = +1 (closed Universe) or
k= —1 (open Universe). We define a(t) as adimensional, so the dimen-
sions of length are carried by r. The coordinates (¢, 7,0, ¢) that appear
above are called comoving coordinates. This name reflects the property
that a test mass, initially at rest in the comoving frame, remains at a
fixed value of its comoving coordinates r, 6, ¢ in spite of the expansion
of the Universe. This can be proved writing down the geodesic equation
in the metric (4.141) (just as we did in Section 1.3, when we understood
the physical meaning of the TT gauge). From the y = 0 component,
one finds dJul 5

= g [u], (4.142)
where |u|* = g;ju'u’ is the squared modulus of the spatial part of the
four-velocity u/. This equation shows that, in the comoving frame, if
at t = to the modulus of the four-velocity |u] is zero, then d|u|/dt also
vanishes, so |u| remains zero at all times.'* This explains why these
coordinates are called comoving: they “stretch” themselves, following
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_the expansion of the Universe. If, at an initial time, a star has co-

moving spatial coordinates (r1,61,¢1), and a second star has comov-
ing spatial coordinates (rg, 82, ¢2), and if both stars have zero velocity,

‘ then at any subsequent time their comoving spatial coordinates will still

be (r1,01,¢1) and (rg, 02, ¢2), respectively, and in particular their co-
ordinate distance will be unchanged, in spite of the expansion of the
Universe. Comparing with the discussion in Section 1.3.3, we see that
comoving coordinates in a FRW space-time play the same role as TT
coordinates in the space-time generated by a gravitational wave.

A star at 7 = r; and a star at r = 7o (and with the same values
of  and ¢) have a coordinate distance r = ro — ry. Of course, this

‘quantity has no physical meaning, since coordinates are arbitrary in

general relativity. The physical spatial distance is the proper spatial

distance, Tphys (t)v given by

dr2n e = gijdzida? . (4.144)

phys

_ [f the first star is at the origin and the second is at comoving radial

_coordinate 7, then eq. (4.141) gives dr2, = = a*(t)dr®/(1 — kr?), and
therefore their physical distance is

. dr _

'I*phys(t) = (](t)\/0 W . (4140)

In particular, for a flat Universe (k = 0) we have rpnys(t) = a(t)r.
Consider now a source located at comoving distance r, that emits
signals (such as electromagnetic or gravitational waves) which travel at
the speed of light, and are later received by an observer located at r = 0.
Suppose that the source emits a wavecrest at a time ftemis. The signal
will be detected by the observer at a time t,ps, which is obtained by

imposing ds? = 0 in eq. (4.141). This gives

s edt [T dr
_— = _ 4.146
/ o) / (P (4.146)

emis

Suppose that a second wavecrest is emitted at time femis + Atemis, and

_ _received at fops + Afons- Lhen

'tobs”!'A{/obs cdt B /’I‘ d,r (4 147)
tomis 4+ Atemse A1) Jo (1= kr?2)1/2” '

Observe that the right-hand side is always the same, since the source is
at a fixed comoving distance. Then, taking the difference between these
two equations, the right-hand sides cancel and, to linear order in Atemis,
one finds

a(tobs)

a(temis)
In an expanding Universe, there is therefore a dilatation of the time

Atobs = Atemis - (4148)

~measured by the observer, with respect to the time of the source. The

redshift of the source, z, is defined by

Cl'(tobs)
a (temis)

142= (4.149)
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Equation (4.148) means that the time fops measured by the observer’s
clock, and the time ¢; measured by the source clock are related by

dtobs = (14 2)dts . (4.150)

As a consequence, any frequency measured by the observer, f(°bs) ig
related to the corresponding frequency measured in the source frame,
f©), by

(s) ‘
+(obs) — f =

and the wavelengths are related by

/\(obs) — (1 + Z)/\(S) . (4152)

To complete our quick tour of kinematics in a FRW space-time, we
need the definition of luminosity distance and the relation between the
luminosity distance and the redshift. Let F be the energy flux (energy

per unit time per unit area) measured in the observer’s frame, and let £
be the absolute luminosity of the source, i.e. the power that it radiates
in its rest frame,
[ dFEs
dts '
where Fs is the energy measured in the source proper frame. The lumi-
nosity distance dy, is then defined by

L

e (4.154)

In the absence of redshift, the energy FE.ps measured in the observer
frame is the same as the energy Es measured in the source frame, and

dtobs = dts, 80
dEons  dFjs

dtons  dts
When it arrives at the detector, the energy radiated by an isotropic
source is distributed over an area A = 47r?, and therefore

1 dEgs

 drr? dtobs

1 dE;g

C4wr? di

L

42’

(4.155)

which shows that, in the absence of redshift, dr is just equal to the

distance r of the source. In an expanding Universe, however, the energy

observed is redshifted, 5

14z

Eobs -

(4.156)
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(the quickest derivation of this result makes use of eq. (4.151), together
with the quantum relation £ = fw, but this is a kinematic property
that can also be derived purely classically), while déghs = (1 + 2)dis.

crefore
Ther dEps 1 dE,
dtons  (14+2)2 dt,
Furthermore, using the FRW metric (4.141), we find that, at time ¢, the
surface of a sphere with comoving radius r is dwa®(#)r? (independently

of k), so when the radiation arrives at the detector it is spread over an
area A = 41a?(tons)r?. Therefore

(4.158)

L

F = ; 4.159
4702 (tops)r2 (1 + 2)2 (4.159)

which means that (setting tons equal to the present time tg)
dr, = (14 z)a(to)r. (4.160)

For small values of the redshift, we can express dj, as a function of z
as follows. We perform a Taylor expansion of a(t) around the present
epoch t = tg,

a(t) 1 2 2
=1+ Hg(t —tg) — —qoHS(t — ¢ .
(o) + Ho(t — to) 540 ot —to)* + (4.161)
where
a(to)
Hgy = R 162
* = alto)” (4.162)

is the Hubble constant (or, more appropriately, the present value of the
Hubble parameter H(t) = a/a), while

i) 1
(l(?f()) Hg
_alto)ilto)
a?(to)
is called the deceleration parameter.*® Using a(ty)/a(t) = 14z, eq. (4.161)

can be inverted to give perturbatively (¢ — 4p) as a function of z, while
inserting the expansion (4.161) into eq. (4.146) gives a(tg)r, as an ex-

do = —

(4.163)

pansion in powers of (¢ — ¢p) and therefore of z. The result is (see, e.g.

Kolb and Turner (1990), pages 41-42 for the explicit calculation)

Hydy, 1
:Z+§(1—q0)7;2—[—... . (4.164)

C

~ The first term of this expansion just gives the Hubble law 2 ~ (Ho/c)dy,
_ which states that redshifts are proportional to distances. The term O(22)
: s the correction to the linear law for moderate redshifts. For large red-

shifts, the Taylor series is no longer appropriate, and the whole expansion

15 This name is somewhat unfortunate,
since it suggests that presently the ex-
pansion of the Universe is decelerating,.
Rather, we will see below that the ev-
idence from the observation of type Ia
supernovae indicates that presently the
expansion of the Universe is accelerat-
ing, i.e. go < 0.
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16Type Ia supernovae are modeled as
carbon-oxygen white dwarfs, in a close
binary system. They accrete matter
from their companion until their mass
reaches a critical value ~ 1.30M¢, and
then they explode as supernovae. Since
the mass of the star at the moment of
the explosion is always the same, the
light curves of Type Ia supernovae are
sufficiently similar to each other and,
after applying corrections that take into
account a relation between the shape of
the light curve and the peak luminosity,
they can be used as standard candles.

history of the Universe is encoded in a function dz(z). As an example,
for a flat Universe (k = 0), eq. (4.146) gives

tobs
/ edt (4.165)

we can define a local wave zone, as the region where the distance to the
source is sufficiently large so that the gravitational field already has the
1/r behavior characteristic of waves, but still sufficiently small, so that
the expansion of the Universe is negligible. During the propagation of

tomis 0(1) the GW in the local wave zone, the scale factor a(t) does not change
Differentiating the relation 1+ z(t) = a(to)/a(t) we get appreciably, so in the local wave zone phy.smal -dlstances can be .ertten
as phys = @(temis)r, where 7 is the comoving distance and feps is (any)
a1 dz (4.166 time of emission,*” so 7ppys differs from 7 by just a constant normaliza-
a(t)  alty) H(z)’ -166) tion factor. Using eq. (4.29) we see that the GW produced by a binary
inspiral, at a distance rpnys = a(temis)” in the local wave zone, can be
so eq. (4.165) becomes written as
# dZ’ 2 fret
o= ety L T COS“ L °
alto)r = C/O () (4.167) hy(ts) = he(t™) —— o8 {27r/ dt;féfv)(t;)} , (4.170)
where the upper limit in the integral is the redshift z corresponding to gret
the emission time femis while, in the lower limit of the integral, we used h (ts) = he(t5") cose sin |27 / dt’, fﬂéfj(t’s)} , (4.171)
the fact that at the present time ¢ = ¢y we have z = 0. Then eq. (4.160)

grves where

z dz/
dr(z) =c(1+ —_,
L(z)=c(l+2) /O () (4.168) T o p

5/3 ) (4ret 2/3
ho(£°) = — 2 (GM°> (”fgw(ts )> . (4.172)

Here time is the time ¢, measured by the clock of the source (and #:°
is the corresponding value of retarded time) and the GW frequency fe

or, taking a derivative with respect to z,

c _d ( dL(Z)> , (4.169)

= is the one associated to this definition of time, that we denote by few .
H(z) dz\1+z

They are related to the quantities measured by the observer which is at a
cosmological distance, very far from the local wave zone, by egs. (4.150)
and (4.151). The dependence of fg(;i,) on ts is given by eq. (4.19), that

we rewrite as
. 1/ 5 1\ ram\"%*
e -1 () (55 . wm

T c3

Thus, from the knowledge of dr(z), we can get the Hubble parameter
H(z). This shows that the luminosity distance function dz(z) is a very
important quantity, which encodes the whole expansion history of the
Universe.

From the definition (4.154) we see that, in order to determine the lu-
minosity distance of a source, we need to know both F and £. The flux
F is the quantity that is directly measured by the observer. The problem
is to know the intrinsic luminosity £ of the source. This is possible if we
have a “standard candle”, that is, a source whose absolute luminosity
is known. The redshift of an electromagnetic source can be determined
from the redshift of its spectral lines, and then we get the correspond-
ing value of dr(z). Up to distances of order 600 Mpc, standard candles
are provided by Cepheid variable stars while, at larger cosmological dis-
tances, a standard candle is provided by Type Ia supernovae.'® The
Hubble constant is usually written as Hy = hg x 100km s~ Mpc ™, and
the most recent determination of hg is hg = 0.73 +£0.03, while the value
of the deceleration parameter is g = —0.74 + 0.18.

where 7, is the time to coalescence measured by the source’s clock.

To compute how this waveform propagates across cosmological dis-
tances to reach the observer, we should use eq. (1.179), that describes
the propagation of GWs in a curved space-time, specializing it to the
FRW metric. Actually, it is instructive to start from a simpler problem,
namely the propagation of a scalar perturbation ¢ in the FRW metric.
_ In this case, the propagation equation is simply O¢ = 0 where, on scalar
__functions, the curved-space d’Alembertian O = D, D* can be written as

0= = 0.(V39"0,). (4.174)

-

To solve this wave equation in the FRW metric, it is convenient to
introduce the conformal time 7 , from
dt

dn = Wt) , (4.175)

Propagation of GWs in a FRW Universe

We can now discuss how the waveform produced by a binary inspiral is
modified by the propagation across cosmological distances. First of all,
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T We do not need to track the change
of the scale factor during the observed
part of the emission process, so we do
not need to be more precise about temis.
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Epfore precisely, we are interested in
the evolution in a matter-dominated
Universe (since we need that stars al-
ready formed!). In this case the FRW
scale factor evolves as a(n) ~ n? and
a’/a = 2/n?. Instead, in a radiation-
dominated Universe, a(n) ~ 7 and
a’/a = 0.

19Obviously7 since a{n) evolves appre-
ciably only on a cosmological time-
scale, once we fix 7 = ¢ at one moment
of time in the present epoch, we have
7 = t, with exceedingly good accuracy,
over the whole time-scale relevant for
GW observation at a detector, so we
can write g(n — r/c) = gt — r/c) for
all these values of time. For the same
reason, a(7) can be written simply as a
constant factor a(tp).

ie.

t d
77:/ M, (4.176)

so the FRW metric reads (limiting ourselves for simplicity to k = 0)
ds® = a*(n) [—cPdn® + dr® + r2df* + 2 sin? 0d¢?] . (4.177)

We want to know how a solution which decreases as 1 /7 evolves in this

space-time. We therefore search for spherically symmetric solutions of
the form ¢(r,n) = (1/7) f(r,n). The equation O¢ = 0 in this metric then

becomes

0=0,(v~99""0,)¢
1,
= =30 [ ()r*0,0] + 0, [a*(n)r0,¢)]

g / a' /
= a2f - 1" - 2%y, (4.178)

where the prime denotes derivation with respect to cn, f/ = (1/c)of/om.

It is convenient to search for the solution in the form
1
flrm) = ——=g(rn). 4.179
e g(r,n) (4.179)

Then g(r,n) satisfies the equation

2 " a//
0,9—9"+—9=0. (4.180)

Now observe that a”’/a ~ 12, for dimensional reasons.'® Then we see

that eq. (4.180) has the approximate solutions
g(r,n) o~ etwln=r/e) (4.181)

as long as w” >> 1/n?, since in this case in eq. (4.180) the term (a”/a)g ~

g/n* is negligible with respect to ~¢" = w?g, and we are left with a
simple wave equation 92g — ¢” ~ 0. More generally, any function of the
form g(n —7/c) is a solution, as long as in Fourier space it contains only
frequencies such that 7%w? > 1. In conclusion, we have the approximate

solution
¢(r,m) =
ra(n
We can normalize conformal time so that, at the present epoch, n =t
Then, the wave observed today at a detector reads'®

1
ra(ty)

Thus, the propagation of a scalar wave through a FRW background is
very simple. Compared to the solution in the absence of cosmological
expansion, we just need to replace the factor 1/r with 1/[ra(t)].

Now we can turn to the propagation equation of a tensor perturba-
tion Ay, eq. (1.179). It is in principle straightforward to write down this

p(r,t)

g(t—r/c). (4.183)

—1-5 g(n—r/c). (4.182)

equation explicitly in the FRW metric (4.177); we then find that, once
we disregard all terms O(1/n*)hy,, with respect to the terms O(w?)hy,,,
we get back the same equation that we discussed for scalar perturba-
tions. Of course, this is not surprising. Simply, the condition 7°w? > 1
demands that w be large with respect to the typical scale of the back-
ground space-time and this is nothing but the condition that defines the
geometrical optics approximation. In this approximation all massless
particles follow null geodesics, independently of their spin, as we saw in
Section 1.5.1.
Then we find that, to leading order:

e The two polarizations hy and h decouple, that is each one satis-
fies a wave equation which is independent of the other. This means
that the propagation does not introduces a mixing among them.
For instance, if we observe the binary edge-on (cost = 0), we see
from egs. (4.170) and (4.171) that in the local wave zone the GW
has only the plus polarization; then, even after propagation across
a cosmological distance, the wave will still have only the plus polar-
ization. This is as expected, since we already saw in Section 1.5.1
that the polarization tensor of GWs is parallel-propagated along

the null geodesics.
o Both A, and Ay satisfy the same equation that we discussed above

for a scalar field.

The conclusion is that, after propagation from the source to the de-
tector, the GW amplitude from an inspiraling binary is still given by
eqs. (4.170) and (4.171), but with h. in eq. (4.172) replaced by

5/3 (8) fyret 2/3
Re(t) = (foc) (———”fg“’(ts )> : (4.184)

a(to)r \ ¢ c

as long as the geometrical optics approximation is valid. Today this
condition is 27 fow > tg 1 where to is the present age of the Universe,
and therefore is satisfied with extreme accuracy by all GWs in which we
are interested (in fact, by all GWs whose wavelength is smaller than the
present Hubble size of the Universe!). More generally, also the condition
27 fowe > t;ﬁis is extremely well satisfied, so the geometrical optics ap-
proximation is excellent for the whole propagation of the GW from the
source to the detector.

In principle egs. (4.170) and (4.171), together with eq. (4.184), provide
the final result. However, it is convenient to express them in terms of
the time fops and the GW frequency fg(\(,)vbs) measured by the observer,
rather than using the time t; measured by the source and its associated
frequency. Using eqgs. (4.150) and (4.151), we see that, in eqgs. (4.170)

and (4.171),

5 tons
[ e = [ s (1185)
since the redshift in d¢ cancels the redshift in f. Writing

£ =@+ 2) £, (4.186)
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where (compare with eq. (4.30)),

& —5/8
B(Tobs) = —2 (M) 18 4y, (4.193)

c obs

5/3 (obs) 2/3
he(Tobs) = . (GM5(2)> (M) , (4.194)

eq. (4.184) becomes

. 4 GM.N\3 (7 plobs) (tst 2/3
} . tIEt, — 2\2/3 c _ﬂv___(llﬁz
v ( obs) G:(to)'f' (1 + é) < 2 > ( -

4 o (GMN (e )\
(427" <’2—> <_f§_(—b‘) ,(4187)

Cdp(z) c c ¢

where in the second line we expressed the result in terms of the lumi-
nosity distance, using eq. (4.160). We see that, if we define the quantity |

and

3/8 —5/8
F009) (70 = ~ < 5 1 > (/GMC(Z)> ‘ (4.195)

8w 7 \ 256 Tobs c

Mo=(1+2)M, = (1+ z)u?’/smz/“:’ ’ (4.188) © The latter equation implies also that
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E 5/3
i f'(obs) — _9_9 71_8/3 <GMC(Z)> [ >(obs)]11/3 ) (4196)
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we get

In other words, we have the following modifications compared to the

W 5 3 gw
5 ) 2/3
w4 (OMN .
hc(ﬂﬁ;) = -CE ( (32 C) _EW_Z_(_O_Q s (4189) case z = 0:

» e The observed frequency is redshifted with respect to the frequency
measured in the source frame, fobs) = f)/(1+ z). For instance,
we saw below eq. (4.40) that the inspiral of a NS-NS binary system
terminates, and the two stars merge, when the intrinsic orbital
frequency of the source, in the source frame, is of order 800 Hz.
This means that, from the point of view of the observer, the orbital
frequency of the source will sweep up to a maximum value of order

800 Hz/(1 + z). For example, for a NS-NS coalescence at z ~ 2,

and therefore the GW amplitude takes the same form as in the absence of
cosmological expansion, with the replacements r — dr, and M, — M. »
n the general case of non-vanishing redshift, we will reserve the name |
“chirp mass” for M., rather than for M. From egs. (4.151) and (4.173), :
we find that the dependence of fé?\}m) on tobs 18 given by

»(obs) /ret 1 (8) [ 4re
fg('wb )(tobts) =713 - fg(w> Ua t)

! le : L/ s 14N\ faMN /8 the mm'dmum value of the source orbital frequency, ip the o‘bseerar
P < : > < ) frame, is of order 270 Hz, and the quadrupole radiation emitted in

L4z m \256 Tops c® the inspiral phase will be cutoff at twice this value.

175 1\ oM\ o The overall factor 1/r in the GW amplitude is replaced by 1/d(2).
= <256 Tobs> ( =3 > , (4.190) e M, is replaced by M. = (1 + 2) M.

A very interesting consequence of the above results is the follow-
ing. Suppose that we can measure the amplitudes of both polarizations
hy, hy, as well as féf,)vbs). The amplitude of hy is he(l + cos? 1) /2, while
the amplitude of hx is hecost. From their ratio, we can therefore obtain
the value of cost, that is, the inclination of the orbit with respect to the
Jine of sight. On the other hand, eq. (4.196) shows that, if we measure
the value of fésvbs) corresponding to a given value of fg(vaS), we get the
chirp mass M. Now in the expression for h. and hy all parameters
have been fixed, except dL(Z).21 This means that, from the measured 2'Observe that the ellipticity of the

value of hy (or of hy) we can now read dr. If, at the same time, we can orbit does not enter since, as we dis-
cussed in Section 4.1.3, by the time

measure the redshift z of the source, we have found a gravitational stan-

. that the stars approach the coalescence
dard candle, and we can use it to measure the Hubble parameter H (2), stage, angular momentum losses have
compare with eq. (4.168). We will discuss in Vol. 2 the rich cosmological  circularized the orbit to great accuracy
information that can be obtained from this type of measurements, as well Therefore it is legitimate to use the re-
as t1 thods dtoh ociated £ th dshift sults for circular orbits, as we have done

s the methods proposed to have an associate measure of the redsini o this section, and there is no free pa-

(either from optical observations or from GW observations themselves), rameter associated to the ellipticity.
and the associated experimental uncertainties.

g e o V\/herej'obS = g(l) + 2)7s is the time to coalescenc(e bmeasured by the ob-
e T ;re“éoala ;dithe_r g;cﬁtl ;at, \ge server’s clock. Then{ even the dependence of faw *) on tops 1s formally
o ren Just N functionlof thenob? the same as the relation at z = 0, once we replace M, — M. This
cerver’s time, rather than of the ob- result is due to the fact that, when z = 0, both the GW amplitude
server's retarded time. and the evolution of the frequency with time are determined by the
only time-scale of the problem, which is GM,./c®. What we are acfuaﬂy
finding is that, in a cosmological context, this time-scale is redshifted,
GM,/c® — (1+2)GM,/c. Thisis a very natural result, which formally

amounts to the replacement M. — (1 + z)Me.
To summarize, the signal received by the observed from a binary in- k
spiral at redshift z, when expressed in terms of the observer time tobsy
or equivalently in terms of the time to coalescence measured by the

observer, Tops, 18 given by

1+ cos?t
h/+(7—obs) = h/c(Tobs) ——2‘—‘ CcOSs [(D(Tobs)} s (4191) -

N (Tobs) = Nie(Tobs) COS L sin [P (Tobs )] (4.192)
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4.2 Radiation from rotating rigid bodies

The production of GWs from a rotating rigid body is of great impor-
tance, in particular for application to isolated neutron stars. In Sec-
tion 4.2.1 we examine the production of GWs in the simplest situation,
i.e. the radiation emitted by a rigid body which rotates around one
of its principal axes. Then, in Section 4.2.2, we will discuss the more
complicated situation where the rotation axis does not coincide with a
principal axis, and therefore there is a motion of precession.

Let us first recall, from elementary mechanics (see e.g. Landau and
Lifshitz, Vol. I 1976), a few basic notions of kinematics of rigid bodies.
A rigid body is characterized by its inertia tensor

Iij _ /dg'E P(X) (T25'13j _ l"i.’L'j) . (4197)

where p is the mass density. Since any hermitian matrix can be diag-
onalized by an appropriate rotation, there exists an orthogonal frame
where [;; is diagonal. The corresponding axes are called the principal
axes of the body, and the eigenvalues I, I, I5 are called the principal
moments of inertia. We will refer to the frame where I;; is diagonal as
the “body frame”. Denoting by x; the coordinates in the body frame,
we have

L= / dPx' p(x') (x° + 24%) (4.198)
I = /de p(x) (2% + L), (4.199)
I — / P p(x') (@)% + 242) (4.200)

From these explicit expressions we see that I + Iy > I3. Therefore each
principal moment of inertia must be smaller or equal than the sum of
the other two. The identity I; + Iy = I3 holds only if p(x) ~ 6(x3), that
is, for a bidimensional configuration of matter.

A simple geometry is that of an ellipsoid with semiaxes a, b, ¢, uniform
density, and mass m. In this case, eqs. (4.198)-(4.200) give

L="0+c, (4.201)
J

L=2(a+¢?), (4.202)
]

I = '—5'? (a®+b?). (4.203)

If the body rotates with angular velocity w, its angular momentum is

We denote by (J1, J3, J3) and (W], wy, ws) the components of the angular
momentum and of the angular velocity, respectively, in the body frame.
Then J| = L, J) = lhw) and J§ = Isw}. Observe that the direction
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of w is different from the direction of J unless either I; = I, = Is (which
holds only for a spherical object) or the rotation is around one of the
principal axes, e.g. when, w] = wsy = 0. The rotational kinetic energy is

1
Eroy = 5 lijwiw; , (4.205)
so in the body frame it is given simply by

1 2 2 2
Byt = §(Ilw’1 + Lw)y” + Isws”). (4.206)
If we denote by @ the unit vector in the direction of the axis of rotation,
so that w = ww, then E.o = (1/2)Iw2, where I = I;;;w; is called the
moment of inertia about the axis of rotation.

4.2.1 GWs from rotation around a principal axis

We first consider the situation in which the body rotates rigidly about
one of its principal axes. We denote by (21, x5, x5) the coordinates in the
body frame. This reference frame, by definition, is attached to the body
and rotates with it. We take the zf axis as the axis around which the
body rotate, and we denote by wyo the corresponding angular velocity.
We also introduce a fixed reference frame, with coordinates (z1, 22, 23),
oriented so that z§ = x3, see Fig. 4.13. In both frames, the origin of the
axes coincides with the center-of-mass of the body. The two frames are
related by a time-dependent rotation matrix R;;,

x; = ’R,ijajj , (4207)

with ]
CoSWrott  sinwpott 0
Rij = | —sinwrol coswrt 0 . (4.208)
0 0 1 i

We denote by If; = diag(/1, I, I3) the inertia tensor in the (z7,z3,75)

_ coordinate system, and by I,; its components in the (z1,z2,xz3) frame.

7,

Thus, I, ’J is a constant matrix, while [;; is time-dependent. The fact
that the moment of inertia is a tensor implies that

Ii; = RuRjlw
= (RIR");;, (4.209)
where R” is the transpose matrix, and therefore

I=RTT'R. (4.210)

k This gives

-2
Iyw=1 c08% Wyort + Ip sin® wyert

I — I
=1+ 1—2~—2 €08 2wWrott , (4.211)

Fig. 4.13 The principal axes
(2}, zh, %), which rotate with the
rigid body, and the fixed axes
(z1, 22, z3).
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22Actually7 for a relativistic source
(and in the approximation that the
internal gravitational fields are mnot
strong) M%¥ is really the second mo-
ment of 7% /c? je. the energy den-
sity over ¢2. For non-relativistic in-
ternal motions, 790 /¢? becomes equal
to the mass density p. Otherwise, all
the arguments below go through if, in
the definition of I, we define p to be
TOO /c

X

Fig. 4.14 The rigid body rotating
around the z3 axis; ¢ is the angle
between the line-of-sight and the 3
axis.

L -1

Iig = sin 2wyt

(4.219)

]22 = [1 Sin2 Wrott + 12 COS2 Wrotl
-1 h—

I3z =13,

2 «
€OS 2Wrett

(4.213)
(4.214)

while I13 = Iz3 = 0. Recall that in the quadrupole approximation the
GW amplitude depends on the second moment of the mass density M.
From eq. (4.197) we see that M% differ from I/ by an overall minus
sign, and for the absence of the trace term.?? However, the trace of g
tensor is invariant under rotation; in fact, from eq. (4.209), using the
cyclic property of the trace and the property of the orthogonal matrices
that RRT is equal to the identity matrix, we have Tr I = Tr [RTI'R]
Tr[I'RRT) = Tv I'. Since Tr I’ = Iy + I + I3 is a constant, we have

Mij = Iy + Cij (4.215)
where c;; are constants. In the computation of the GW amplitude only
the second time derivative of M;; enters and therefore the explicit value
of the constants is irrelevant, and we can write

€0s 2wyt + constant ,

— I
My = h 5 2 (4.216)

I — 1
My = 21— 52

sin 2wyott + constant (4.217)

Moo = + L oS 2wrott + constant , (4.218)
while M3, Mas and M3z are constant. We observe that, in our set-
ting in which the body rotates around its principal axis 2}, there is a
time-varying second mass moment only if Iy # I, which is quite clear
geometrically. We also see that M;; is a periodic function of 2w,et, so we
already understand that we have production of GWs with a frequency
Wew = 2wrot-

We can now compute the GW amplitude received by an observer at a
distance r, whose line-of-sight makes an angle ¢ with the direction of the
spin of the star, i.e. with the 3 axis, see Fig. 4.14. We use eq. (3.72);
setting with & = + and, without loss of generality, we orient the fixed
frame (x1, 29, 23) so that the observer is at ¢ = 0.

Inserting the expressions (4.216)~(4.218) for M;; and taking into ac-
count that Mys = Mog = Mss = 0, eq. (3.72) gives

1 4 1 2
he= 0 gy ) RO ), (219)
C
1 4G
hx = LZ"“ (1 — Iz) costsin(2uwrort) . (4.220)
T C

We therefore have a periodic GW, with wgyw = 2w,e. The fact that h
is proportional to (1+cos?¢)/2, while hy to cost, is the same result that
we found for the GW amplitude of a binary system in a circular orbit,
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seeed. (3.332). In fact, this is a generic property of eq. (3.72) whenever

]\/[1, = -—]\/[22 and M13 = M23 = Ms3 = 0.
Tt is useful to define the ellipticity € by
e=hzlz (4.221)
I3

For instance, for a homogeneous ellipsoid with semiaxes a,b and ¢, in

the limit of small asymmetry, i.e. a = b, egs. (4.198)—(4.200) give
h—

= (€%).

We write the angular velocity of the source as wyot = 27 fror and we

introduce few = 2fiot, Which is the frequency of the GW. In terms
of few and of €, the result for the GW amplitude found above can be

€~ (4.222)

rewritten as

14 cos?e
hy = ho ———— cos(27 fawt) , (4.223)
hyx = ho cost sin(27 fywt) ,
where -
472G Is [
ho=——— "¢ (4.224)

Neutron stars typically have a mass m =~ 1.4My and a radius a ~
10 km, which gives Iz ~ (2/5)ma? ~ 1 x 1038 kgm?. The value of the
ellipticity depends on the neutron star properties, and in particular on
the maximum strain that can be supported by its crust. This is quite
uncertain but, as we will discuss in Vol. 2, plausible values are in the
range ¢ < 1079, although values as large as € ~ 107° can be considered.
Inserting these numerical reference values, and taking a typical galactic

_ distance » = 10 kpc, eq. (4.224) gives

2
- s € I 10kpe faw
hg = 1.06 x 10 <1O_6> (1038kg1n2> ( r 1kHz
(4.225)

Observe that neutron stars that rotate more rapidly produce a stronger
GW signal, since hg ~ ng.w.

We next compute the power P radiated in GWs, plugging egs. ({1_.'216)7
(4.218) into the quadrupole formula (3.76). Observing that M =

—M 22, this gives
2G

pP= = — (M7, + M3y)
?;25 12408, (4.226)

and therefore the rotational energy of the star decreases, because of GW
emission, as

Aoy _ 326 2

dt 5¢b ot -

(4.227)
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231n the literature, (a, 3,~) are usually
denote by (8, ¢, 1), respectively. How-
ever, here we prefer to reserve the no-
tation (6, ¢) to denote the angles that
describe the angular distribution of the
gravitational radiation.

X3

line of nodes

Xy

Fig. 4.15 The definition
Euler angles (o, 3, 7).

of the

Since the rotational energy of a star rotating around its principal axis x4
18 Byoy = (1/2)I3w2, (see eq. (4.206)), if GW emission were the dominant
mechanism for the loss of rotational energy, the rotational frequency o

a neutron star should decrease as

Wrot = — 2 I3w5, . (4.228)
Experimentally, from the electromagnetic signal emitted by neutron
stars observed as pulsars (see Chapter 6), one rather finds wpop ~ —Witi
where n, called the braking index, depends on the specific pulsar but
typically ranges between 2 and 3, rather than n = 5. This means that
GW emission is not the main energy loss mechanism for a rotating pul
sar, and other mechanisms, of electromagnetic nature, dominate.

4.2.2 GWs from freely precessing rigid bodies

In general, in astronomical objects the rotation axis does not coincide
with a principal axis and, as a consequence, the motion of the rigid body
is a combination of rotation around a principal axis and precession. As
we will see in this section, the precession motion introduces qualitatively
new features in the GWs radiated.

To compute the GW production we proceed as in egs. (4.207)—(4.209).
We first introduce a fixed reference frame, with axes (x1, ze,z3). In this
inertial frame the angular momentum J of the rigid body is conserved,
and we choose the 3 axis in the direction of J. Next we introduce the
body frame, i.e. a reference frame attached to the rotating body, with
coordinates (z}, x5, %), whose axes coincide with the principal axes of
the body. The relation between the two frames is given by the Euler
angles (o, 3,7) defined in Fig. 4.15.23

To pass from the fixed frame to the body frame we first perform a
counterclockwise rotation by an angle 5 around the z3 axis. This brings
the z; axis onto an axis which is called the line of nodes (which is
the intersection of the (z1,22) plane with the (z],2}) plane). Next we
perform a counterclockwise rotation by an angle o around the line of
nodes. This brings the x5 axis onto the x4 axis. Finally, we perform a
counterclockwise rotation by an angle v around the 24 axis, which brings
the line of nodes onto the x} axis. Therefore we have z} = R;;x;, as in
eq. (4.207), but now the rotation matrix is more complicated,

cosy siny O 1 0 0 cos@ sinf 0
R = —~siny cosy O 0 cosa sina —sinfl cosf O
0 0 1 0 —sina cosa 0 0 1

(4.229)

The motion of the rigid body is specified once we know how «, 3 and
evolve with time. Let us recall, from elementary mechanics (see again
Landau and Lifshitz, Vol. I 1976}, how this can be obtained. In the
(w1, 2, 23) frame, the angular momentum J is conserved (this, of course,
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is not the case in the body frame, which is non-inertial, since it is rotat-
ing), and we oriented the 3 axis so that J = (0,0, J). In the (2,25, 25)
frame, instead, we denote the components of the angular momentum by
(J1,J5, J3). From Fig. 4.15 we see that

J] = Jsinasiny,
Jy = Jsinacosy, (4.230)

Ji=Jcosa.

On the other hand, we can write (J}, J}, J4) in terms of ¢, 3 and + using
again Fig. 4.15 and observing that, as a vector, the angular velocity
dee/dt is directed along the line of nodes, so its components in the body
frame are doe

o
Similarly, dB3/dt is directed along the x3 axis, so its components in the

body frame are

dp
dat

= (& cosy, —asinvy,0) . (4.231)

= (ﬁsinasinv,ﬁ’sina cosy, 3 cos o), (4.232)
while dv/dt is along the x4 axis, so in the body frame d~v/dt = (0,0,%).
The total angular velocity w is the vector sum of these angular velocities,
w = da/dt+dB/dt + d~y/dt, so its components w] in the body frame are

w! = ccosy + Bsinasiny,
wh = —désiny + Bsinacosy, (4.233)

wh =4+ fBcosa.
In the body frame the inertia tensor is diagonal, with eigenvalues 1, I5

and I3, so J| = Liw), J} = w) and J§ = Isw). Comparing egs. (4.230)
and (4.233) we therefore get

I (évcosy + Bsinasiny) = Jsin asiny, (4.234)
Ir(—ésiny + Asinacosy) = Jsinacosy, (4.235)
Is(% + fBcosa) = Jcos . (4.236)

These are first order equations in the variables (o, 3,7), and are the
first, integral of the equations of motion provided by the conservation

_of angular momentum.?* One can now integrate these equations and

obtain «(t), #(¢) and ~(¢). In the most general case, the result can be
written in terms of elliptic functions, and we will get back to it later in
this section. However, we first limit ourselves to the simpler case of an
axisymmetric body with I; = I5.

“Wobble” radiation from an axisymmetric rigid body

We consider an axisymmetric body, whose longitudinal axis z} makes
an angle o with the angular momentum axis z3. The angle « is often

24They are in fact the first integral of
the Euler equations for rigid bodies in
the absence of external torques,

I = whwh(Iy — I3)

IQ(;)/Q = wiwé(Ig —_— 1'1)

Iawy = wiwy(ly — I2)
as we easily verify taking the first deriv-

ative of egs. (4.234)—(4.236) and using
eq. (4.233).
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2E’Using the expression for 4 given in
eq. (4.240), we have

wh =4+ Beosa
= (I1/I3)Qcos

and therefore we can also write
I3 —1T
o= 2Lyt (4.241)
I

26 Observe that, for an axisymmetric
body, the orientation of the principal
axes in the (z{,x}) plane is arbitrary.
We choose the origin of time so that
Bt = 0) = 0, and then we choose
the orientation of the (), x}) axes so
that, at ¢ = 0, v(0) = w/2. Therefore
eq. (4.240) gives v(t) = (7/2) — wpt.

called the “wobble” angle, and the corresponding GW emission is called
“wobble radiation”.

When I; = I, the analytic solution of eqs. (4.234)—(4.236) is very
simple. Multiplying the first equation by cosvy and the second by sin~y
and subtracting them, we get

a=0. (4.237)
This shows that the inclination of the z§ axis with respect to the angular
momentum J is constant. Multiplying the first equation by sin~y and
the second by cos~vy and summing them, we get

Lfsina = Jsina. (4.238)
This shows that, if o 5 0, the xf axis rotates with a constant angular
velocity 8 = J/I; about the direction of J. We define

J

(4.239)
Finally, having found that both cosa and f3 are constants, eq. (4.236)
shows that even % is constant. Equation (4.236), together with J = I3,
gives

Is — I

I3

The minus sign in the definition w, = —% is chosen so that, for an oblate
body (I3 > I1), which is the normal shape of astrophysical objects,
wp > 0.?5 Using eq. (4.233) we see that the components of the angular

velocity in the body frame evolve as?®

Qcosc.

(4.240)

wi = acos(wpt),

wh = asin(wpt) , (4.242)
/
wg =0,
where a = Qsina and b = —wp + Qcosa are constants. This shows

that, in the body frame, the angular velocity rotates in the (z,z5)
plane, i.e. precesses around the z axis, with angular velocity wy,. This
precession is counterclockwise if wy, > 0 (which justifies the notation wy
for —4). Observe that |I3 — I;] <« I (in a NS, a possible value could
be |I3 — I1|/I3 ~ 1077), and therefore |w,| < 2. This motion is called
free precession, since it takes place in the absence of external torques,
just as a consequence of the deviation of the rigid body from spherical
symmetry.

We can now compute how the inertia tensor of the rigid body evolves
with time, in the fixed frame with coordinates (x1,z2, z3). As before we
denote by I’ the inertia tensor in the body frame, so I' = diag (I, I1, I3)
is a constant matrix, while we denote by I;; the inertia tensor in the fixed
frame. Then, as in eq. (4.210), I;; = (RTI'R);;, but now R is given by
eq. (4.229). ‘

4.2 Radiation from rotating rigid bodies 207

The explicit computation is simplified observing that, if we write the
rotation matrix (4.229) as R = A(y)B(a)C(3), we see that
RII'R = (CTBTAT)I'(ABC)

= (CTBT)I'(BC) (4.243)

because, when [; = I, the matrix A commutes with the matrix I’, and
ATA = 1 because it is an orthogonal matrix. Therefore, the angle y
drops out from I;, and the remaining matrix multiplication gives

I11 = I1(cos® B + cos® asin® 3) + I3 sin® o sin?
= — (I — I3) sin® v cos 23 + constant
(I — I3) sin® asin 283,

Iyo = I (sin? B + cos? av cos? B) + I3 sin® a cos? §

Iy =

NN N

= ——2—(11 — I3) sin® v cos 23 + constant (4.244)

Iz = —(Iy — I3)sinacosasin 3,
Ing = (I; — I3)sinacosacos 3,

2

Iz = I sin® a + I3 cos® a = constant .

 Observe that, since v dropped out and « is constant, the time depen-

dence of these expressions comes uniquely from 8 which, from eq. (4.239),
is A(t) = Qt (recall that we have chosen the origin of time so that 3 = 0
at t = 0, see Note 26). As in eq. (4.215), M;; = —I;;, plus constant

H

terms that give zero upon derivation. Therefore, we get

My = 2(I1 — I3)Q? sin? a cos(204)
Mz = 2(I1 — I3)Q? sin® arsin(201)
May = —2(I, — I3)Q? sin® o cos(2Qt)
M3 = —(I; — I3)9? sin o cos avsin (1) ,
Moz = (I — I3)Q? sin o cos o cos(Qt)
Mz =0.

(4.245)

- We see that some matrix elements of M;; oscillate as sin(20Q¢) or cos(20%),

while others as sin(Qt) or cos(2). From this, we already understand

that we will have GW emission at two frequencies, wWew = 20 and

Wew = 2. The origin of these factors is easily traced back: since the
only time dependence comes from §(¢), and 3 describes a rotation in

the (21, 29) plane, the time-dependent part of I;; has a factor sin(Q¢)
or cos(§2t) for each index ¢ or j that take the value 1 or 2, while the

index 3 produces no further time dependence. Then, as far as the
fime-dependent part is concerned, we have I1; ~ sin® Qt ~ cos(20t),
Iy ~ cos? Qt ~ cos(2Qt), L1z ~ sin(Qt)cos(Qt) ~ sin(201), while

i3 ~ sin(Q) and Ioz ~ cos(Qt). Thus, the fact that, beside the ex-

bected radiation at wg, = 262, we also have radiation at wgw = Q, Is a
consequence of the fact that the motion of precession produces, together
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270Opserve that the overall sign of the
amplitude depends on the choice of the
origin of time, and on the definition of
the axes (1,V) in the plane transverse
to the propagation direction, with re-
spect to which the polarizations are de-
fined. With our definition, when + = 0
these axes are 1 = % and v = y, see
page 111 and Fig. 3.2. In the literature,
this computation has been performed
choosing G and v so that, when ¢ = 0,
U =y and ¥ = —%. This is related
to our convention by a rotation of the
(01, V) axes in the transverse plane, by
an angle ¢y = w/2. Under this rota-
tion hy — —hy and hy — —hyx, see
eq. (2.194), so hyy — —h}.

with a time-varying value of I;; with 4,7 = 1,2, also a variation in I3
and [y3.

The computation of the GW amplitude radiated in a direction corre
sponding to polar angles (6 = ¢, ¢ = 0) is now performed using eq. (3.72)
We get

hy = 1 _GE [Myy — Mg cos® L + Mas sin 20 — Mag sin? (]
e
= A4 1 cos(Qt) + Ay o cos(20t) (4.246)
2G . .
hyx = = — [Mizcost — Myzsini]
e
= Ay 18in(Q) + Ay 2sin(2Q1) , (4.247)
where
Ay 1 = hosin 2o sinccose, (4.248)
Ay o =2h)sin® o (14 cos®1), (4.249)
Ay 1= hgysin2asine, (4.250)
Ay o = 4h{sin® a cost. (4.251) g
and27
G (Ig — 11)92
= — o (4.252) |

Of course it is understood that, on the right-hand side of eqs. (4.246) |
and (4.247), t is actually the retarded time. As we already anticipated,
we have radiation at both wgyw = () and at wg,, = 202 .

Observe that Ay 1 /A« 1 = cost. Therefore from this ratio (or, equiv-
alently, from Ay o/Ay o) we get the inclination angle ¢ (which, by defini-
tion, is in the range 0 < ¢ < 7). Given ¢, the ratio A4 1 /A 2 determines
the angle . The overall value of the amplitude then fixes |h(|. If the dis-
tance to the source is known by other means, we therefore get a measure
of !Il — 131

It is now straightforward to compute the total power radiated. Using
eq. (3.76) and observing, from eq. (4.245), that M3 = 0 and 3, My
0, we get

Pyuad = ’5*63<Mf1 + M3, +2M7, + 2M35 + 2M3)
2G
= —(I, — I3)’Q° sin” a(cos® a + 16sin® @), (4.253)
oC*

where the term sin? o cos? o is from the radiation at wew = §) and the

term 16sin? « is from the radiation at Wew = 2{2. Observe that, in the
limit of small «, the power radiated at wgy = 2 is O(a?) while the power
radiated at wgy = 20 is O(a?), so for sufficiently small o the radiation

at wgw = Q) is dominant. The two contributions become equal when |

cos? o = 16sin® o, i.e. for o = 0.245 rad ~ 14°.

4.2 Radiation from rotating rigid bodies

The back-reaction of GWs

We can now compute how the emission of GWs back-reacts on the mo-
tion of the rigid body. The energy radiated in GWs is supplied by the
rotational energy E..o of the rigid body, so

dEw;  2G

— (I — I3)*Q° sin® a(cos® a + 16sin o) .

— |
7t 5 (4.254)

The angular momentum radiated (in the quadrupole approximation that
we are using) is computed from eq. (3.97), and is supplied by the angular
momentum J = (0,0, J) of the rigid body. Setting i = 3 into eq. (3.97),

we have
E = _565 <]\4’1a.]%2a - A/]2a]\/11a>
= _5_(3 <A{{10M2a> > (4255)

where we observed that we can replace Qra by My, since ¢3#6,,Q0 =
F Q= 0, and similarly Qo — Miq, and in the last line we integrated
by part a time derivative, inside the temporal average. Inserting the
explicit expressions (4.245), we get

d 2G “ 14
d—i = ———(I; — I3)?Q° sin® a(cos® o + 16sin® @) .

5cP
Comparing this result with eq. (4.254), we see that dE,q/dt = Qd.J/dt.
Since 2 = § and J = I1 3 (see eq. (4.239)), the above equation gives

(4.256)

5o 20 (0 ~Iy)?

OC5 Il

(3% sin® a(cos® o + 16 sin” ) . (4.257)
The equation governing the evolution of « can instead be obtained writ-
ing the rotational kinetic energy as in eq. (4.206), and using w) =
Ji/I = (J/L)sinasiny, wy = Jy/I1 = (J/I;)sinacosy, and wh =
Ji/Is = (J/I3) cos o, see eq. (4.230). This gives

5o J? [sin®a i cos? a
ot g I I3 '

Taking the time derivative and making use of eq. (4.256) and of J = I, 3
on the right-hand side, and of eq. (4.254) on the left-hand side, we get

26 (I = I)? g
505 Il

(4.258)

sin a cos a(cos® a + 16sin? ) .

_ (4.259)
Equations (4.257) and (4.259) determine the evolution of the angles o
and . We see that, because of the back-reaction of GWs, both the
inclination angle «, and the angular velocity 3 decrease. However, using
eqs. (4.256) and (4.259), we see that

d
E(J cosar) =0. (4.260)
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Fig. 4.16 The inclination angle
a(t), plotted as a function of
t/70, with initial conditions a(0) =
0.5,u(0) = 1.
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Fig. 4.17 The function u(t) = 3/8o,
plotted against t/7p, with initial
conditions a(0) = 0.5, u(0) = 1.

Therefore J decreases and o decreases (i.e. cosa increases) in such a
way that Jcosa stays constant. Since Jcosa is the projection of the
angular momentum over the 4 axis of the body (see eq. (4.230)), we find
that the rigid body rotates around its longitudinal axis with a constant
angular velocity w} = (J/I3) cos . The rotation of the body around its
longitudinal axis is not affected by the GW back-reaction.

To study in more detail the coupled system of equations (4.257) and

(4.259), we introduce the dimensionless function

u(t) = B(t)/ o,

where fy is the value of B(z‘) at some initial value ¢ = 0, and we also
introduce the time-scale

_[2G (I _13)2 24 o
To = [5? T Bo

~ 1.8 % 109y <_£__>2 <1kHZ>4 (1038kgm2>
(I — I5)/ I3 7o — )

where fo = fo/(2r), and we used as reference for (I; — I3)/I5 and for
I3, values that can be typical for neutron stars. Then eqgs. (4.257) and
(4.259) become

(4.261)

(4.262)

1 -
i = —— u® sin? a(cos® a + 16 sin? ) , (4.263)
0
& = —— usin acos a(cos? a + 16 sin? @), (4.264)
To
with initial conditions ©(0) = 1 and «(0) = ag. In this form, it is

clear that 7y is the characteristic time-scale of the problem, and the
equations could be recast in a completely dimensionless form introducing
a dimensionless variable x = t/79, so that 704 = du/dr and & =
dee/da.

The asymptotic behavior of the solution can be easily read from
egs. (4.263) and (4.264), making use also of the fact that, as we shown
above, J cosa is a constant of motion. Since J = I; 3, this means that
Boo COS Qo = BO cos o, where the subscripts co denotes the value at
t = co. In terms of w, this means

(4.265)

Uoo COS Qoo = COS Qg .

Equating to zero the right-hand sides of egs. (4.263) and (4.264), we
see that the possible fixed points of the evolution are either u = 0 or
a = 0,7. However, the value us = 0 is not consistent with eq. (4.265)
(unless a9 = 7/2; clearly, this is an unstable fixed point, in which an
infinitesimal perturbation drives the evolution either toward a = 0 or
a = 7). Therefore the only asymptotic solution, for gy < /2, has
oo = 0. Then, eq. (4.265) shows that ue = cosag. Once we realize
that u approaches a finite constant 1., and that o — 0, from eq. (4.264)
we see that at large times & ~ —«a/7o, and therefore a(t) approaches

5
|
|
%
|
|

zero exponentially, with a time-scale 7o, = 70/ul , which is obtained
simply replacing B with fa in eq. (4.262).

The numerical integration of eqs. (4.263) and (4.264) is straightfor-
ward, and we show in Figs. 4.16 and 4.17 the solution for the initial
condition ap = 0.5, which confirms the asymptotic behavior found ana-
lytically.

In conclusion, on a time-scale given by eq. (4.262), the rigid body
aligns its rotation axis with the direction of the angular momentum
(o — 0), while the rotational angular velocity B = Q around the w3
axis decreases toward the constant value g cosag, and the rotational
velocity around its principal axis wj = {2 cos a stays constant.

Finally, it is interesting to compare the frequency wem of the electro-
magnetic pulses of a pulsar, idealized as a rotating rigid body,?® with the
frequency of the GWs that it emits. If a pulsar rotates around its prin-
cipal axis with frequency 2, and has I; # I3, which is the case discussed
in Section 4.2.1, then wem = Q, so we can determine  very precisely
by electromagnetic observations, and GW emission is at wgy, = 2. In
this case, therefore, we have an accurate prediction of the frequency at
which we expect GW emission.

Instead, in the case of “wobble” radiation discussed in this subsection,
in the limit of small a, the axes z3 and 2% almost coincide. If the source
of the electromagnetic radiation is some “hot spot” fixed on the star
surface then, for a far observer, the hot spot is basically rotating around
the @3 axis with a total angular velocity wyoy = 3 + ¥ = Q — wp, see
Fig. 4.15, so

Q= Wrot + Wy« (4.266)

The mean frequency wen, of repetition of the electromagnetic pulses will
be equal t0 wyot, SO Wem =  — wp. Instead, we saw that wobble grav-
itational radiation is emitted at wgy, = O and at wgy, = 2Q, so these
two lines are shifted, with respect to wem and to 2wey,, by the unknown
quantities wy, and 2wy, respectively. Using eq. (4.240), for the line at
Wew = {2, we have

Ig—jl

(4.267)

cos a) Wem -
3

Wew <1 +
Since |I; — I3]/I3 is in general very small, e.g. could be of order 10~7
in a neutron star, the difference between the actual GW frequency and
the value suggested by electromagnetic observation is small. An axisym-
metric astrophysical object is normally expected to be oblate (I3 > I3),
and in this case wgw > Wem. For a prolate body (I3 < I1), instead, we
have wgy < Wem.

Rotating and precessing triaxial bodies

We now study the radiation emitted by a generic triaxial body. We
choose the axes of the body frame so that IT < Iy < I3. The time-
dependent moment of inertia [;; in the fixed frame is again computed
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28The discussion below is really specific
to our crude modelization of neutron
stars as rigid bodies. Real neutron stars
are rather mostly fluid in their interior.
See the Further Reading section for the
results with a more realistic modeliza-
tion of neutron stars.
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29We assume for definiteness J? >
2FEIs; in this case, in the body frame,
the apparent precession of J is around
the «f axis; if instead J2 < 2EIs, it is
around the 2/ axis.

30For the elliptic functions cn, sn and
dn and for the Jacobi theta func-
tions that will appear below, we fol-
low the notation and conventions of
Abramowitz and Stegun (1972).

from I;; = (RTI'R);;, with R given by eq. (4.229), but now the de-
pendence on v does not cancel, contrary to the case I; = I discussed
above, compare with eq. (4.243).

Once expressed I;; in terms of o, 4,7, to compute the waveform we
need the time-dependence of the Euler angles, which can be found for
instance in Landau and Lifshitz, Vol. T (1976). The evolution of the
components of the angular velocity in the body frame is??

wy = acn(r,m),
L(l3 — )
W =a {-—_~
? Iy(Is — 1)

wh = bdn(r,m),

1/2
} sn(r,m), (4.268)

where cn, sn and dn are elliptic functions,®® and 7 is a rescaled time
variable,

(4.269)

oy [T DI - 1)
- Il ‘

The parameter m of the elliptic functions is given by

(12 ——11).[1(22
(Ig — 12)1352 ’

T ==

(4.270)

and a,b are the initial values of w] and wj,

a=wi(0), b=wi(0). (4.271)
Observe that we have chosen the origin of time so that w4(0) = 0. In
the limit J; = I, we have m = 0; since cn(7,0) = cos T, sn(r,0) = sin7,
and dn(r,0) = 1, in this limit we recover the result (4.242). The elliptic
functions are periodic functions of 7, with periodicity 4K (m), where
K (m) it the complete elliptic integral of the first kind. The components
of the angular velocity in the body frame are therefore periodic in %,
with period

Iy

1/2
Iy — L) (I3 - fl)J ‘

To compute I;;, we need explicitly the time-dependence of the Euler
angles. The solution for o and -y is

- K [ ( (4.272)

b

I3b
cosa(t) = % dn(r,m),

3 — Y2 on(r,m
tany(t) = ﬁ;gj — ﬁ” (r,m)

so they are both periodic with period T'. The solution for 3 is instead

) (4.274)

2

(4.273).

(4.275) |
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where
o J 21 Gylimer)
ST CAvT 4.276
T’ [1 T ’194(%'71'(21) ( )
J 2% [(Is—L)YIs—-I)1"*S ¢
= h(2 .
AR I Z - g sinh(27ney)

n=1

Here 94 is a Jacobi theta function, c; is defined to be any®! solution of
the equation sn[2ici K (m), m] = il3b/(I1a), and
g =exp{—7K(1—-m)/K(m)}. (4.277)

The function F1(t) can be written as a ratio of theta functions,

?94(%@ - ?:ﬂ'Cl)
t) = o 4.278
)61( ) ?94(2—;;+17TC1) ( )
\\\and admits the series expansion
o
—2q" . [ 4mnt
Pilt) = L(l ~ q2”):l sin ( T ) : (4.279)

n=1

_ Observe that /31 (¢) is periodic with period T'/2. In the problem there are

therefore two distinct periodicities, T and 7", and we can expect that
the frequency spectrum of the gravitational radiation will have two sets
of lines. The fact that v is periodic with period 7" identifies 27 /7" as the
angular frequency associated to precession, so we define

27
= 4.280
Ldp T ( )
o ﬂ'b (Ig 712)(]3 —Il) 1/2
- 2[((’)71) Il IQ ’
The angular frequency associated to rotation around the zs axis is in-
stead?? or  or

Given these complicated but explicit solutions for a(¢), 5(¢t) and ¥(t), one
could in principle plug them into the rotation matrix R;; and grind, to

~ obtain the moment of inertia in the fixed frame, and hence the waveform.

However, the discrete nature of the spectrum becomes more evident if,

_rather than working with the exact expressions, we perform a series

expansion for small wobble angle (which is equivalent to expanding in
powers of m) and small deviations from axisymmetry.>®> The result, up
to second order in m, is

hy = Ay o cos(2wyett) (4.282)
+A4 1 cos{(wrot + wp)t] + Ay 2 cos[2(wrot + wp)t],
hy = Ax osin(2wyeet) (4.283)

+ Ay 1 sinf(wrot + wp)t] + Ay 28in[2(wror + wp)t],

3gince the elliptic functions and the
theta functions have the same period-
icity, all solutions for ¢ are equivalent.

320ne can also check this result observ-
ing that, in the limit of small wobble
angle, it gives wrot = f — wp. Since
¥ = —wp, seeeq. (4.240), we get wrop =
A + 4, in agreement with the discussion
above eq. (4.266).

33 This computation is performed
in Zimmermann (1980) and
Van Den Broeck (2005), see the

Further Reading.
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34Ohserve that in Section 4.2.1 we
choose the origin of time so that, at
t = 0, the axis #} is aligned with the
axis z1, l.e. ¥(0) = 0, while here we
have chosen (0) = m/2. This is the
origin of the overall minus sign between
eq. (4.224) and eq. (4.285). As dis-
cussed in Note 27, we can reabsorb the
minus sign in both hg and h6 rotating
by an angle 7/2 in the transverse plane
the axes (1, V) used to define the plus
and cross polarizations.

where

Aig=ho(1/2)(1+cos?s),
Ay q = 2h{g(ap) sintcose,
Ap o= 2h{g*(ap) (1 + cos® ),

Ay o=hg cost, (4.28
Ay 1 =2h{g(ap) sine,
Ay o =4h{ g*(ag) cose.
The amplitudes hg and hy, are defined as
oL 4Gw? I
e (I~ I2) (4.285)
Y 1 G<Wmt + Wp>2 I +1p .
ho = S e— I3 — 5 > , (4.286)
and
- Ila ’
glag) = T (4.287)

Using eqgs. (4.234) and (4.236), and recalling that we have chosen the

origin of time so that v(0) = 7/2, we see that [ya/(I3b) = tan ag, where
ap = a(t = 0). Therefore, in the limit of small wobble angle ag, we have

g(ag) =~ ag.
From these expressions we see that, setting ag =

axis, given in eqs. (4.219), (4.220) and (4.224).34

0 (and therefore
glap) = 0) we recover the correct limit of rotation around a principal |

Instead, setting Iy = I (and recalling, from eq. (4.281) and Note 32,

that Q = wyot + wp), we recover the correct limit of precession of an

axisymmetric body when « is small, given in eqs. (4.246)—(4.252)

We see that, to zeroth-order in g(cap), we find the line at wgy = 2wyt
due to rotation around a principal axis. To order g(ag) emerges a line
at Wew = Wrot + Wp, and to order gQ(ozo) we get a further line at wgyw = “i
2wyot + 2wp. If we expand to higher order in g(ag), we find two sets of

lines at frequencies, respectively,

Wew = 2wrot + 2kwp
and
Wew = Wrot + (2k + 1)wp , (4.289)
with k = 0,1,2,..., whose intensity is suppressed by increasing powers
of g(ano).

To conclude this section, we should stress that all results discussed
above have been obtained for rigid bodies. For application to neutron
stars, a more realistic modeling of the neutron star interior (e.g. a fluid
body with an elastic crust) is necessary. We will come back to realistic
neutron stars in Vol. 2.

(4.288)

4.3 Radial infall into a black hole

In this section we compute the GWs produced when an object falls
radially into a black hole. We will start from the simple case of the infall
of a point-like particle. In principle, in a full computation we should treat
GWs as perturbations over the curved black hole space-time, rather
than using the expansion over flat space-time of the linearized theory
that we have discussed until now. As we will see, however, the low-
frecquency part of the spectrum can be computed within our formalism,
and the frequency at which the approach breaks down can be estimated.
This allows us to perform, in a rather simple setting, this instructive
computation. Next we will consider what happens when a real star,
rather than a point-like object, falls into a black hole. We will see that
the star can be disrupted by the tidal force of the black hole, and as a
result the radiation emitted by the various parts of the body adds up
incoherently. Beside its intrinsic interest, this problem will then allow us
to appreciate the difference between coherent and incoherent emission
of gravitational radiation.

4.3.1 Radiation from an infalling point-like mass

We then begin by computing the radiation generated by a point-like
particle of mass m which falls radially into a black hole of mass M, with
m < M. We make a number of simplifying assumptions. First of all, we
compute the GW production using the equations of linearized theory. In
principle this is not correct, since in linearized theory we expand around
the flat-space metric, while here we should rather expand around the
Schwarzschild metric. Second, we use the Newtonian equation of mo-
tion, rather than the geodesics of general relativity in the Schwarzschild
metric. Thus, if the particle comes from the positive direction of the z
axis, starting with zero velocity at infinity, we write

1
—mz® —
2

GmM
— =

2=—c|— ;
z

where Rg = 2GM/c® is the Schwarzschild radius of the black hole.
Third, we assume that most of the radiation is emitted when the particle
is non-relativistic, and therefore we use the quadrupole formula.

In the last part of the trajectory, close to the black hole horizon, all
these assumptions break down. In particular, eq. (4.291) is certainly
not valid close to the horizon, and it is also incompatible with the non-
relativistic assumption, since it formally gives z = —c at z = Rs. How-
ever, at sufficiently large distances the flat-space Newtonian approxima-
tion is correct, and these approximations become legitimate. Thus, we
first compute the radiation emitted from z = +oo until a value z = R.

0 (4.290)

and therefore

(4.291)

4.3 Radial infall into a black hole 215




216  Applications

35 A5 we will see below, the frequency
spectrum is peaked at w = O(c/Rg),
so the typical period of the GW is of
the order of the light travel time across
the Schwarzschild radius Rg. Therefore
the integral over time from —oco t0 max
is actually an integration over many pe-
riods of the typical gravitational radia-
tion.

30Gee Davies, Ruffini, Press and Price
(1971). We will discuss this computa-
tion in Vol. 2.

As long as R > Rg our approximations are justified. We will then
discuss the extrapolation R — Rg.

We first compute the total radiated power, using eq. (3.76) and ob-
serving that, in our problem, we have only one non-vanishing component
of Myj, Mss = mz?(t). Then

29 a ...
Pquadzfggﬂ 53)
2 Gm?

=3 (625 +2227)?).

The total radiated energy, in the quadrupole approximation, is therefore

2 2 “tmax .
_20m / dt (625 +225)2 |

Tk 5
15 ¢ o

(4.292)

(4.293)

where the integration over ¢ make superfluous the time average3® (...,
and tmax s defined by z(tmax) = R. We write dt = dz/# and, using
eq. (4.291), 7 = —c®Rg/(22%) and z' = —(c*/R%)(Rg/2)"/2. Then,
setting u = z/Rg, we get

2 Gm? [* —o/2
:-1—5 Rs/ duu=?

R/Rgs
4 Gm2 RS /2
" 105 Rs (F) (4.204)

Of course, the radiation increases if R decreases. If we extrapolate the
result down to R = Rg = 2GM/c? we get
2 m 5 (M
B=—=me (1) = 0.019mc (+) - 4.295
105"\ M (4.295)
This extrapolation turns out to be remarkably close to the result ob-
tained with the expansion over the Schwarzschild metric, using the gen-
eral relativistic equations of motion and performing the full relativistic
computation of GW production rather than using the quadrupole for-
mula. The result of this calculation®® is in fact

B =~ 0.010 me? (7—];‘[—) . (4.296)

Observe that the energy radiated in GWs is smaller than the rest energy
mc? of the particle, by a factor m/M.

The fact that the quadrupole approximation works quite well means
that, despite the fact that in the last part of the trajectory the particle
becomes relativistic, still the total power is dominated by the quadrupole
and in general by the lowest multipoles. Since the radiation emitted at
high multipoles is beamed into a narrow forward cone, while at low
multipoles it is distributed on a large solid angle, the fact that the low
multipoles dominate means that, in the radial infall into a black hole,
there is no beaming of gravitational radiation. We will see a similar
phenomenon when we study the gravitational radiation emitted by an
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accelerated particle, in Section 4.4. This is in sharp contrast with the
electromagnetic case where instead, when the source reaches relativistic
velocities, the high multipoles dominate, and the radiation is beamed.

We can also use eq. (4.296) to give an estimate of the energy radiated
in GWs in the head-on collision of two black holes of equal mass M. In
this case, we substitute m with the reduced mass M /2 and we ge‘g E ~
2.5 % 1073 M ¢?, which is quite close to the result E ~ (1—2) x 1073Mc?
obtained from numerical simulations.

We now wish to compute the frequency spectrum of the radiation emit-
ted. In principle, in order to compute the Fourier transform of a function
of time F'(t), we need to know F'(t) on the whole interval —oo <t < co.
However, our Newtonian trajectory (4.291) is a good approximation to
the exact general relativistic geodesic only up to a maximum value of
time fmax such that z(tmax) = R > Rg; beyond tmax it becomes at first
a poor approximation to the correct result and finally it even becomes
completely meaningless physically, since it formally gives |z| > 1 and
2z < Rg. Therefore, within our non-relativistic Newtonian approxima-
tion, we cannot compute the full form of the spectrum. However, we
know that a system with typical size d and typical velocity v radiates
GWs with a reduced wavelength X ~ d(c/v), see eq. (3.24). When the
particle approaches the horizon, the size of the relevant length-scale of
the particle-black hole system, for computing the time-varying part of
the mass moment, is of order Rg, and v ~ ¢, and therefore X ~ Rg. On
the other hand, when the particle is at R > Rg, the length-scale which
enters in the time-varying quadrupole moment is of order R, and v < c,
so the system radiates at X ~ R{c/v) > R > Rs.

This means that, with the Newtonian part of the trajectory, we can
reliably compute the part of the spectrum with X > Rg, or wRs < ¢,
since this radiation is generated when the particle is at large distance
from the black hole. The complete spectrum will be peaked at wRg ~ c,
but the radiation at these frequencies is generated close to the horizon
where a full general-relativistic computation is necessary. Finally, the
spectrum will be necessarily cutoff exponentially for wRg > ¢, since
there is no length-scale smaller than Rg in the problem.

To compute the spectrum at wRg < ¢ we can therefore use eq. (4.291).
The solution of this equation of motion is

. 3

212 (t) — 222 (t) = ER}S/ *clto —t). (4.297)
Defining ¢ from (3/2)R§/ch = 232(t) + (3/2)R}9/zct0, eq. (4.297) be-
comes z%/2(t) = (3/2)R}9/20(f— t). At t = —oo we have z(t) = +oo,
while the minimum value z(¢) = R is reached at a finite time

_ 2R3/?
tmax =t— —1/2 . (4298)
3cR
We further introduce the variable 7 = ¢ — ¢, so
3 172 23
z2(1) = iRS cr , (4.299)
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37The contribution from negative fre-
quencies gives the factor of 2 in front of
the integral.

and c7 ranges over the interval 2R%/?/ (BR}S/ ) < o7 < co. Equa-

tion (4.292) gives
2G / Ry
E=_— dt M3, . 4.300) |
1505 J oo 33 ( )
Writing M33(t) in Fourier transform one obtains

2G wme 6 - 5 1
E= @2/D 7w | Mas(w)|*, (4.301)

2
where, as discussed above, Wmax <K C/RS is the frequency for which our
ignorance of the trajectory beyond ¢myax becomes important.3? However,
here we must be careful because ‘

tmax
Ms3(w) = m/ dt 22 (t)e* (4.302)

diverges, since as t — —oo we have z(t) — +4oo. Fortunately, this
divergence is harmless: it simply reflects the fact that the size of the
particle-black hole system, and therefore its quadrupole moment, goes °
to infinity. However this divergent part of the quadrupole moment is
static since, from eq. (4.291), as z — oo we have 2 — 0, and therefore it
does not contribute to GW production. To dispose of this divergence,
the simplest way is to consider the Fourier transform of Mas () rather
than of Maz3(t), since in Msz(t) the static term has been eliminated.
Therefore, instead of eq. (4.301), we write

|
|

E= % /Ow ;Z—: W2 | M g3(w)]?. (4.303)
Using eq. (4.299) we find
Ms3(t) = 2m(z5 + 3?)
—m <2};’i02)2/3 , (4.304)

and, recalling that —oo < t < tyax corresponds t0 Ty < 7 < oo with
Tmin = 2R3/2/(3cRY*),

72/36_“”— )

drr (4.305)

2RSC2 2/3 o]
=)

Mas(w) =m <

Tmin

Defining u = wr,

~ 2/3  joo
]\"433(00) = mw™1/? <2R502> / /

. ~2/3 ,—u_

duu (4.306)

Tmin

The computation is valid down to R of order a few times Rg, SO Tmin =
O(Rs/c) and, in the limit wRs < ¢, which is the limit in which our
computation is justified, the leading term is obtained approximating the
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lower limit of the above integral with zero. Then we get an Euler Gamma
function

/ duu™2Be™ = ¢7"/5T(1/3) | (4.307)
0

as one can see rotating the contour to the negative imaginary semiaxis
of the complex u-plane, and eq. (4.303) gives
dE 2G
dw  15mcd

W?| M 33(w)]?

2 7/3 r2 1 2 4/3
— <“> (1/3) Gm (“’RS> (4.308)
3 Y c c
9 N\ 4/3
~0.177 GT? (@) , (wRg < ¢).

To study the spectrum when wRg/c is not small we need the full general-
relativistic computation, but we expect from the physical arguments
presented above that it must reach a maximum at wRg/c = O(1), and
will be cutoff exponentially when wRg/c > 1. Indeed, the numerical
results of Davies, Ruffini, Press and Price (1971) show that the spectrum
reaches a maximum at wRg/c ~ 0.64 and then is cutoff exponentially,
with an empirical law dE/dw ~ exp{—rkwRg/c} with k ~ 5.

4.3.2 Tidal disruption of a real star falling into a
black hole. Coherent and incoherent
radiation

We have seen in the previous subsection that, within the non-relativistic
Newtonian approximation, we can correctly reproduce the order of mag-
nitude of the power radiated in the radial infall of a point-like particle
into a BH, and we can compute the spectrum for wRg < 1. The inclu-
sion of the full non-linearities of general relativity amounts only to a cor-
rection of about a factor of two in the total power, compare egs. (4.295)
and (4.296).

A point-like particle is however an idealization, and in astrophysical
applications we are rather interested in the infall of an extended object
like a main sequence star, a white dwarf or a neutron star. We will see
in this subsection that in this case, because of the tidal disruption of the
star as it falls into the BH, the radiation can be emitted incoherently, and
this can reduce the production of GWs by many orders of magnitudes.

To understand qualitatively the difference between coherent and inco-
herent radiation, observe that in eq. (4.295) we found a radiated energy
E ~m?/M, where M is the BH mass and m is the mass of the infalling
particle (or, more precisely, the reduced mass of the particle-BH sys-
tem, but we are assuming m < M). If we describe an extended object
of mass m as a collection of N particles of mass ém and m = Nom, we
therefore find that, if the N constituents radiate coherently as a single
object of mass m, the radiated energy is

E(Coherent) ~ 2t

(4.309)
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Fig. 4.18 The estimate of the tidal
radius discussed in the text.

We denote by a the radius of the star when it is far from the BH, and
by an, the value of its radial size by the time that the star is close to the
BH horizon. We can estimate the order of magnitude of a;, using the
Newtonian trajectory (4.297) for a particle falling radially along the z

This N? dependence can also be understood observing that the to-
tal amplitude of the GW is the sum of the separate amplitudes, so
hiot = Ef\;1 h;, where ¢ labels the elementary constituents. For coher-
ent radiation the various terms in this sum have the same phase, so
ht°* = O(N) and the radiated energy E ~ hZ,, is O(N?). For incoher- |
ent radiation, the mixed terms in (3°, hi)? interfere destructively and
we are only left with the diagonal terms ), h2. Therefore in this case
the energy is IV times the energy radiated by a single constituent,
(dm)? 1 m?
M N M’ .
and the incoherent radiation is smaller by a factor N with respect to
coherent radiation. Observe that, in the limit N — oo with m fixed, the
incoherent radiation even goes to zero.
Whether a distribution of sources radiates coherently or incoherently
depends on the wavelength of the GW that we consider and on the linear
size a of the system. If a <« X, the phase of the GW does not change
appreciably over the whole source and the radiation is coherent, while if
a > X the phases from the single constituents oscillate strongly over the
system and the mixed terms in (3, h;)? average to zero, so the radiation
is incoherent. The transition between these two regimes is governed by
a form factor which, for the problem of the infall of a star into a black
hole (BH), will be computed below. ,
To perform this computation, we need first of all to understand how
the shape of an infalling star is distorted by the tidal gravitational field
of the black hole. A star is an object held together by self-gravity. A
first crude estimate of the tidal radius 7iqa1, i.e. of the star~-BH distance
where the tidal force exerted by the BH is strong enough to disrupt the
star, can be obtained as follows. We model a star of mass m as two
particle of mass m/2, orbiting each other in a circular orbit of radius a,
and we consider a BH of mass M at a distance r from the center of the
star, see Fig. 4.18. Then the tidal force which tends to disrupt the star
is

axis,

3 2/3
2(t) = |25 + 5Rg/zc(t0 0. (4.314)

E(in(;()heront) ~N

(4.310) Taking the variation with respect to zo we see from this equation that
two points that at time £y are separated by a radial distance dzg, at time
t are separated by 0z(t) = [z0/2(t)]'/?62y. We take as ty the time when
the star crosses the tidal radius, and is therefore still undeformed. Then

near the horizon the star is an ellipsoid with semimajor axis a;, given by

ap = | dal . (4.315)
h RS .

The evolution of the shape of the star as it plunges toward the BH
is shown in Fig. 4.19. The effect of the tidal distortion can be quite
dramatic. For instance, a main sequence star of 1M has a radius a ~
7 x 10° km. If it falls into a BH with a mass 10Mg and therefore
Rg =~ 30 km, eq. (4.313) gives ryqal = 4.7a and (riqa1/Rs)™? ~ 300.

We know from the previous subsection that most of the radiation is
emitted when the star is close to the horizon and therefore when it has
a size ap, in the radial direction. From the discussion at the beginning of
this subsection we know that a source whose larger dimension is of order
ap, will radiate coherently only the wavelengths which satisfy X > a,, or
w < ¢/ap. Therefore the parameter which governs the loss of coherence
is

. 1/2
Alw) = wg” = ‘i’; ('2‘2“) . (4.316)

GM(m/2)  GM(m/2)

Fridal = —— 5 5 For frequencies such that A(w) > 1 we have incoherent radiation while
(r- a)a (r+a) ‘ for frequencies that satisfy A(w) < 1 the radiation is coherent. In the
~2GM mg - (4.311) formal limit @ — 0 we have A(w) — 0 and we get back the point-like

result.
. As we mentioned in the previous subsection, the point-like spectrum
is peaked at w = @ =~ 0.64c/Rg. Therefore, when 0.64/Rs < 1/ay,

The system is broken apart if this force is larger than the gravitational
attraction between the two bodies of mass m/2, so if

9CM a S G(m/2)? 4312) only the high-frequency tails of the point-like spectrum are suppressed
ms (2a)2 (4. because of incoherent emission. These high frequency tails contributed
anyway negligibly to the total power even in the point-like case, since
which gives r < 7yaa ~ 3.2(M/m)*3a. The numerical coefficient de- WAy Beg gDy b P !

we saw that they were already exponentially suppressed. Therefore,
when 0.64/Rg < 1/ap the total power is practically the same as in
the point-like case. On the contrary, if 0.64/Rs > 1/aj, incoherent
emission suppresses the radiation in the region which includes the peak,
and where most of the power is concentrated, and the total radiated
power becomes a negligible fraction of the point-like case. Defining A =

pends of course on our crude schematization of the extended object.
If we rather model the star as an incompressible spheroid of mass 7,
mean radius a and constant density, the tidal radius becomes (see Chan-
drasekhar 1969, Section 56)

Pridal ~ 2.2 (M/m)Y 3. (4.313)
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4 .
2a i O | infalting

© star

horizon

Fig. 4.19 An infalling star of radius
a is tidally deformed by the black
hole when it enters within the tidal
radius 7iida1. By the time the hori-
zon is approached, the the star is an
ellipsoid with semimajor axis ap.
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Table 4.1 Suppression of gravitational radiation for stars falling radially into a black
hole, for different values of the mass M of the black hole. In all cases the mass of
the star is taken to be m = 1 M. Adapted from Table 1 of Haugan, Shapiro and
Wasserman (1982). :

Stellar type a(km)  M/Mg  (riga/Rs)"/? A
Main sequence 7 x 10° 10 300 3 % 10°
103 70 500
108 7 1
White dwarf 10% 10 40 430
10° 8 7
10° 1 0.01
Neutron star 10 10 1.3 0.4
103 1 7x1073
108 1 107°

wap/c = 0.64a,/Rs and using eqs. (4.315) and (4.313), we find

- M 1/9
A~ Ris (H) : (4.317)

and, if A2 1, we have a strong suppression of the total radiated power.
In Table 4.1 we show the dilatation factor (rtidal/RS)l/Q and the para-
meter A for a range of different stars. Observe, from eq. (4.317), that
for a given mass m the suppression is more important for stars with
large radius a, since they are less compact and have less self-gravity to
resist the tidal force of the black hole, and also it is more important
for lower BH masses, because the smaller gravitational attraction at a
fixed distance is overcompensated by the decrease in Schwarzschild ra-
dius, so tidal stripping takes place at shorter radial distances, where the
gravitational field is stronger.

From eq. (4.317) and Table 4.1 we see for instance that a 1M main
sequence star produces significant GWs only if it falls into a super-

massive BH with mass M > O(10°)Mg. For a white dwarf we need

M > O(10*) Mg, while for a neutron star our equation suggest that it
is needed M > O(3)Mg. Actually, a neutron star is so compact and
has such a large rigidity that we certainly cannot treat it as a dust ball.
We will examine in more detail black holeneutron star coalescences in
Vol. 2.

Having understood the physics with relatively simple arguments, we :
can now be more quantitative and compute the form factor. We found

below eq. (4.297) that the solution of the Newtonian equation of motion,

for a particle falling along the z axis which at t = ¢ has 2(t) = z;, can

be written as 3
3t 8) = SRS elli —1), (4.318)

4.3

with #; defined by
(4.319)

Therefore, for a swarm of NV particles of equal mass dm, eq. (4.302) gives

max

Maz(w) = om Z/ dt 2%(t; £;)e™" . (4.320)

Since z(t; ;) depends only on the combination #; —t, inside each integral
we can shift the integration variable ¢t — ¢ + ;. For large tmay this does
not change appreciably the upper integration limit, and we get

tmax

M33 = 5m2/ dt?’ ;0)e iw(t+)
fn)a,x
= [(Sm N/ dt 22(t;0) “"t:} [ Ee“"“} (4.321)

Since (0m)N is the total mass of the system, the first bracket gives the
value of Mas(w) in the point-like approximation.3® The second bracket
is the form factor, and we denote it by F'(w),

1N
w) =5 D et (4.322)
i=1

In eq. (4.319) we choose tg as the time when the center-of-mass of the
star crosses the tidal radius, so it is still an undeformed sphere. At ¢ = ¢,
the i-th constituent is located at z; = ryiqa + 025, With —a < 62 < o
and [0z;] < rida. Then eq. (4.319) becomes

_ 2(r45 §2;)3/2
To—to + (7t1dal+ 21.)

1/2
3crY
2r 3/2 Tiide 1/2 0z
to -+ — tidal Udal) 25 4.323
O+3cR§/2 +<Rs c (4.523)

The term in bracket does not depend on the index i and gives just a

__constant phase in eq. (4.322), which cancels when we take the modulus

squared. Then

N
F(w) = % Z expliw(riaal/Rs) /262 /c} . (4.324)
i=1

Passing to the coptinuum limit we get, for a system of uniform density,

1
)=+, / d(62)d%a, explic(raan/Rs)/?52/c},  (4.325)
v
where the integration is over the volume V of the system at time ¢,
when it is an undeformed sphere or radius a and V = (4/3)7wa®. At
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38 As we discussed in the previous sub-
section, the integral in Msz(w) is ac-
tually divergent. For the purpose of
computing the form factor this is irrele-
vant; we can repeat the argument with
M33(w), which converges, or we can

just regularize the integral in Msys (w),

since anyway the form factor factorizes.
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Fig. 4.20 The form factor F'(A(w)),
plotted as a function of A =
(wa/c)(ruam/Rs)"/?.

fixed 0z the radius of the circle in the transverse direction is given by
|21 ]2 = a® — (02)? = a®(1 — u?), where we have written §z = au, with
—1 < w < 1. Then the integration over the transverse plane of the
sphere at fixed u gives ma?(1 — u?), and

1
Fw) = 7a® /_1 du (1 —u?) exp{i(wa/c) (reaa/Rs) *u} .

(4.326)
We see that the combination A(w) = (wa/c) (ryqa/Rs)'/? appears in
the exponential and governs the form factor, as we expected from the
physical arguments presented above. Then

(4/3)ma?

a1
Flw) = g/ 1 du (1 — u?)et A
3 [sinA(w)

= 507 | Aw) (4.327) |

- cosA(w)} .

The form factor f is shown in Fig. 4.20 as a function of A. Since dE/dw |
is proportional to |Msz(w)[?, the spectrum for a real star is related to |
the point-like spectrum by

<dE>1-eal star B IF(M)IZ <dE>point—like

— — 4.
dw dw (4.328) .

4.4 Radiation from accelerated masses

In electrodynamics, a prototype example is the radiation emitted by
an accelerated charge. In this section we examine the corresponding
gravitational radiation emitted by an accelerated mass. Beside possible
applications to astrophysical situations, this exercise is quite instructive |
by itself, and in particular it will allow us to understand that, while elec- |
tromagnetic radiation from accelerated particles is beamed in a narrow |
cone in the forward direction, this is not the case for the GWs produced
by an accelerated mass. k

4.4.1 GWs produced in elastic collisions

We begin by considering the gravitational radiation produced during the
elastic deflection of an object by a fixed scattering center (or, equiva:
lently, a two-body collision in the center-of-mass frame). We denote the |
initial and final four-momenta of the object by p* and p'*, respectively. |
The energy-momentum tensor of a particle of mass m is given in |
eq. (3.121). In principle, given the interaction between the object and |
the scattering center, and the initial conditions, we should compute the |
classical trajectory xf(t), plug it in eq. (3.121), and then perform the
Fourier transform. However, in general this is neither practically fea- |
sible nor really necessary. We can instead approximate the collision as
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instantaneous, and we consider an elastic scattering, so p’° = p°. Then

we write, using eq. (3.120),
.7

_rp

T/.H/ (X7 f)
ym

e, v

5@ (x — vi) (1) + % 53 (x — V') 0(t), (4.320)
where 0(t) is the step function: (¢t) = 1if ¢t > 0 and §(¢) = 0 if ¢t < 0.
In a collision that lasts for a time At are generated frequencies up to
wmax ~ 27/At and therefore, when we approximate the collision as
instantaneous, we are introducing spurious contributions at arbitrarily
high frequencies. To recover the correct physical result it is sufficient to
estimate the time At actually taken by the collision. In a collision with
impact parameter b and relative velocity v, we have At ~ b/v, and we
must cutoff the spectrum at wmax ~ 270/b. At w K wWpay the spectrum
is well reproduced by the instantaneous approximation.

The four-dimensional Fourier transform of (4.329) is

OO
TH (k,w) = / cdt / A3 T (x, 1) eiwt=ikx (4.330)

, () T
_ pt'p” / + }’3” p/ /oo cdt eiwt—ik‘v't )
M J -0 0

ym
In the first integral we add a factor et at the exponent, with ¢ — 0T, to
assure the convergence at ¢t = —oo, while in the second we add —et, to
agsure the convergence at ¢t = +o00. Then

cdt 6iwt~ik~vt

T/U/ (k/ w) —

YT I 1Y
pr L } (4.331)

c
ym L} —kv—ie w-—kv +ic

If the particle which is being deflected is not massless, the denominators
are never zero and we can set € = 0. We compute first in the non-
relativistic limit and then in the general case.

Non-relativistic limit

In this case in the dehominators we approximate v ~ 1 and we neglect
the terms k-v and k-v’, so we find simply

i, ;.
Tj(w) ~ ~-m7;(p,ipj — pibj) - (4.332)
We use a reference frame where the scattering plane is the (z,y) plane;
the initial velocity is v = v(1,0,0) and the final velocity is

v' = v (cos Vs, sin g, 0), (4.333)
where ¥, is the scattering angle and |v/| = |v| = v since we are con-
sidering elastic scattering. Let (8, ) be the polar angles which iden-
tify the direction of the unit vector n in this frame (i.e. the angles
that describe the angular distribution of the gravitational radiation), so
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Fig. 4.21 The angular distribution
of the gravitational radiation in the
non-relativistic limit. The scatter-
ing plane is z = 0 and we have taken
Ve = m/2.

f = (sinf cos ¢,sin#sin @, cos ). Then, performing explicitly the con.

traction AijyleNij (w)T,;*, (w) in eq. (3.16), we find

; 2.4 1
doc.l)fde - g:——;(:;L sin? 9, |cos? § + 1 sin® (9, — 2¢) sin® 4] . (4.334)
The emission pattern is shown in Fig. 4.21, for the case ¥, = 7/2.

Observe that the radiation is emitted mostly along the z axis, i.e. in
the direction perpendicular to the scattering plane. Integrating over the
solid angle d) = dcos0d¢ we get

dkE 8G .
T = Breh m2vtsin® ¥, .

(4.335)

For the corresponding two-body problem, m is the reduced mass, v the
relative velocity and 95 is the scattering angle in the center-of-mass.

Actually, if one is interested only in the radiated energy, integrated\“
over the solid angle, and not in its angular distribution, it can be com-
puted more quickly observing that in the non-relativistic approximation

T;; is independent of the angle (all the angular dependence was in the
terms k-v and k-v’ that we dropped), and therefore

/ A Aij T Ty = Tiy Ty / A9 i g - (4.336)

The integral is performed using eq. (3.74), and we get back eq. (4.335).
The frequency spectrum found in eq. (4.335) is flat up to the cut-

off frequency wmax ~ 27v/b, and the total radiated energy is obtained

integrating up to wmax, S0

16Gm> (7))5 ;

Era ~
d 5b

(4.337)

where Rg = 2Gm/c? is the Schwarzschild radius of an object of mass
m. Therefore the total energy radiated is suppressed, with respect to
the rest-mass energy mc? of the particle, both by the by-now familiar
factor (v/c)® (compare, e.g. with egs. (3.319) or (3.340)) and by the
ratio Rg/b.

Relativistic limit

In the general relativistic case we repeat the same steps using the full
expression for T#¥ (k, w) given in eq. (4.331), with p* = ymu?, and setting
k = wii/c (see eq. (3.16)). We then find

dE Gm2~y2t
dwdQ 72 (4.338)
X [fl (v,95;0,9) — fa(v,95;0,¢)sin® O + fa(v,Vs; 8, ¢)sin? 9] ;
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where
1
fi(v,94:0,¢) = ab sin® I, + Z(a —b)?,

ol 950,6) = XD ot 4 YOE W oy g,

—2abcoss cos pcos(¢p — V),

(v, 95:0,9) = § lacos? 6~ beos? (6 — 1)) (4339)
_and
1
(IEG(U;Q.,(j)) = m
1
T1- (v/c)sin@cos¢’ (4.340)
—_— x — 1
b= 04i6,0) = 75
L (4.341)

T 1o (v/c)sinfcos(¢p —95)
In the non-relativistic limit we have a — 1,0 — 1 and, making use of
the identities

cos? ¢ + cos?(¢p — V) — 2 cos¥s cos pcos(¢p — Js) = sin? oy, (4.342)
cos? ¢ — cos?(¢p — V) = sin(¥s — 2¢) sin Vs, (4.343)

we recover eq. (4.334). Instead, in the ultra-relativistic limit, the factors

o and b bend the radiation in the direction of the motion (more pre-

cisely, in a direction determined by a combination of the initial and final
velocity). The resulting pattern function is shown in Fig. 4.22 for the
case v = 0.8. The distribution is tilted in the direction of motion but the
radiation is not focused in a very narrow cone, contrary to what hap-
pens in electrodynamics. We examine this point in detail in the simpler
geometrical setting of the next subsection.

4.4.2 Lack of beaming of GWs from accelerated
masses

In order to examine this effect eliminating irrelevant complications, let
us consider an inelastic scattering in which a particle of mass m initially
at rest, is accelerated in time At to a velocity v.%°

As in the previous problem, we assume that the acceleration is in-
stantaneous and we then cut off the spectrum at wpax ~ 27/At. The
energy—momentum tensor is again given by eq. (4.331), where now the
first term vanishes (since the initial velocity is zero) and in the second
term v’ is the final velocity, which we now denote by v. Therefore

icym R

T9(wh/e,w) = w l-n-v/c

Cym viod

= . 4.344
w 1—(v/c)cosf ( )
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Fig. 4.22 The angular distribution
of the gravitational radiation in the
relativistic limit. The scattering
plane is z = 0 and we have taken
Y =7/2 and v = 0.8.

391 principle our formalism is valid
only if we have a closed system, so the
total TH¥ is conserved. However, we
can imagine for instance that the par-
ticle of mass m is electrically charged,
and is accelerated by the electric field
inside a capacitor. To this closed sys-
tem we can apply our formalism. If
the arms of the capacitor are infinitely
heavy, they do not contribute to the
gravitational radiation because a heavy
object of mass M, in the scattering
process, acquires a recoil velocity V' ~
1/M and its contribution to dE/dw,
according to eq. (4.335), is dE/dw ~
M?V* = O(1/M?). Thus, in practice
we can just consider the particle of mass
m on the accelerated trajectory.
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Fig. 4.23 The function pem(#), in
polar coordinates, for a charged par-
ticle with acceleration parallel to the
velocity, and v = 0.99.
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Fig. 4.24 The function pyw(8) for a
particle with acceleration parallel to
the velocity, and v = 0.99. Observe
the difference in shape compared to
Fig. 4.23.

From eq. (3.16) we find

dFE Gm?2~? vipd vkt
= ik = 4.345
dQdw — 2m25 PP T (w/e) cos 0] (4.:345)
Using eq. (1.39) and performing the contractions, we get
dE  Gm?y? <’U)4 sin* 0 (4.346)
dQdw  4m2c \c¢/ [1—(v/c)cosf)?’ '
or
dE Gm? [v\4
where
. 4
o sin® @
ng(e) =7 [1 . (’U/C) cos 9]2 (4348)

describes the angular pattern. It is interesting to compare this result
with the electromagnetic radiation produced by a charged particle sud-
denly accelerated from rest to velocity v. This is given by (see Jackson

1975, eq. (15.65))
e? v\ 2
= (a722) () 5.

2
sin” ¢
pern(e) — — X 2"
11— (v/c)cosd)
Both the gravitational and the electromagnetic radiations are tilted for-
ward, because of the factor [1 — (v/c) cos8]? in the denominator. How-

dE

(4.349)
dQdw

BEM

where

(4.350)

ever, the different power of sin# in the numerator produces a crucial. |

difference in the overall shape. In fact, pey(f) has a maximum at an
angle 0 given by cos@ = v/c so, for large 7, 6 ~ 1/~; at the same time,
the width of this maximum is A§ = O(1/+). Therefore, for v — oo, the
electromagnetic radiation is not only tilted asymptotically toward the
forward direction, but is also beamed into a very narrow cone.

The angular pattern for GW is very different. First of all, the angle
f that maximizes pgy(0) is given by cos# = c(y — 1)/(vy) which, in
the large ~ limit, becomes 0 ~ (2/7)1/2; therefore § goes to zero only
as O(1/,/7). Second, and more important, one easily checks from the

explicit expression that the width of the maximum of pgw(6) is A8 =

O(1), to be compared with A8 = O(1/7) for the electromagnetic case.
This is due to the fact that the value of pen at its maximum is 72,
and it drops to values O(1) if we move away from the maximum by
A = O(1/+); for the gravitational radiation, it is still true that the
value of pgyw at its maximum is O(~?) just because of the factor 2 in
front of it, but it remains O(~?) if we move away from the maximum by

a Af = O(1).
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Therefore, even in the limit v — oo, the gravitational radiation is not
beamed in a narrow cone, but it is extended over a solid angle compara-
ble to 4w. The electromagnetic and gravitational radiation pattern are
shown in Figs. 4.23 and 4.24, respectively, for v = 0.99. The origin of
the difference is the factor sin* # in the numerator of eq. (4.348), which
reflect the spin-2 nature of the gravitational field, compared to the sin® 6
in the numerator of eq. (4.350), which reflect the spin-1 nature of the
electromagnetic field.

To understand this point better, it is instructive to rederive this angu-
lar distribution, that we have obtained from a purely classical treatment,
using the language of quantum field theory. This can be done evaluating
Feynman diagrams such as that in Fig. 4.25, that describe the emission
of a graviton by an accelerated particle. The angular dependence is
easily understood observing that the propagator of the massive particle
gives a contribution to the amplitude proportional to

1 1

GrRETm? 2k (4.351)

where p is the final four-momentum of the massive particle and k of the
graviton, (pk) denotes the scalar product of the two four-vectors, and
we used p? = —m? and k? = 0. We write p* = (E,/c,|pl,0,0), with
Ip| = Epv/c?, while the graviton four-momentum is

kH = (Eq4/c, k| cosb, |k|sin6,0), (4.352)
where k| = E;/c. Then
1
(pk) = _ZEEpEk[l — (v/c)cos]. (4.353)

This gives a factor [1 — (v/c) cos 8] in the denominator, in the amplitude
M, and therefore a factor [1 — (v/c)cos6]? in the emission probability,
which is ~ |M]?. This is independent of whether the wavy line in
Fig. 4.25 is a photon or a graviton, as long as it is a massless particle, and
elucidates why, both in pem(0) and in pgy (8), the angular dependence of
the denominators is the same, [1 — (v/c) cos 8]2.

The numerator is instead fixed by the emission vertex. For a photon,
the external line carries its wavefunction €} (k). Recall that physical
photons are transverse, €,(k)k* = 0. With k* given by eq. (4.352), this
equation has two linearly independent solutions

el (k) = (0,sin0,— cos0,0), P (k)= (0,0,0,1), (4.354)

which corresponds to the two physical polarizations (plus the pure gauge
mode € ~ k). The amplitude is proportional to*?

Z ei;\)(ic)p“ = |p|sinf.
A=1,2

(4.355)

Therefore in the numerator, in the amplitude, we have a factor siné,
which gives a factor sin® § in pem (0), in agreement with eq. (4.350).

ptk 2

®

Fig. 4.25 A Feynman diagram cor-
responding to graviton emission by
an accelerated mass. The cross de-
notes the external field that acceler-
ates the mass. The wavy line repre-
sents the graviton.

40The fact that the Lorents index car-
ried by €, is saturated by p* can be
obtained writing explicitly the interac-
tion vertex in quantum electrodynam-
ics, but in fact it is evident from the
fact that the amplitude must be lin-
ear in €,, so we cannot saturate the
index p contracting ¢, with a second
polarization vector e#, neither we can
contract it with &, since €, (k)k" van-
ishes. Then €, (k)p* is the only possible
Lorentz scalar. Note also that, accord-
ing to the Feynman rules of QED, an
outgoing photon is actually associated
to a factor €7, but we have chosen a real

[
basis for the polarization vectors.
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Hrppe computation is faster if we ori-
ent the axes so that the z axis is in the
direction of the graviton momentum k,
and the scattering plane in Fig. 4.25
is identified with the (y,z) plane. In
this frame k* = (Ey/c)(1,0,0,1) and
p* = (Ep/c,0,|p|sing, |p|cosd). The
advantage is that in this frame the po-
larization tensors have the simple form

0O 0 0 0
et = 0 1 0 o0
Kb 0 0 -1 0
0 0 0 0
v
and
0 0 0 0
X = 0 0 1 0
ot 0 1 0 0 ’
0 0 0 0
i

see eq. (1.56). Then el plp’ =
~|p|*sin? 6 and e, ptp” = 0.

Similarly, an external graviton line is associated to the polarization
tensor e, (k) of the graviton, and the physical polarizations correspond
to the plus and cross polarization tensors efj;)(k) and efuxj) (k), that sat-
isfy the condition e, (k)k* = 0. As before, the Lorentz indices can be

saturated only by p#, so this factor contributes to the amplitude as*!
Z efj\g(k)p“p” = —|p|*sin® 4. (4.356)
A=, X

This produces a factor sin? 8 in the modulus squared of the amplitude,
and therefore in pgy (6), in agreement with eq. (4.348). ;
Coming back to eq. (4.346) and integrating over the solid angle we get

o 2
dE _ 26m’ {»ﬂ (6 - 4CL> s ”} . (4.35

dw 3rc v c—v
In the non-relativistic limit v — 0, this reduces to

dE 8 9 4
- ST Gm*v*, (v/c—0), (4.358)

while in the ultra-relativistic limit

dE 4 . 3log~? 1
~ —Gm2y? |1 — 2987 10 <?>} ., (v/e—=1). (435

dw ~ 3me

9)

This spectrum is flat up to the maximum frequency wmax ~ 27/At, and
the total radiated energy is therefore obtained multiplying by wmay.

4.5 Solved problems

Problem 4.1. Fourier transform of the chirp signal

In this problem we compute the Fourier transform of the amplitudes given in
eqs. (4.31) and (4.32). We consider first hy, and we write it in the form

ha(t) = Altret) cos D (tret) , (4.360)

1 /GM. 5/4 5 L/4 1+ cos?y.
Altrer) = " < 5 > (C(tc — tret)) ( 2 ) , (4‘361)

and, in this problem, ¢. is the value of retarded time at coalescence. The
Fourier transform is

where

he(f) = / dt A(tres) cO8 D (frey )€™ (4.362)
— —21~6i27rf7‘/c/dt1‘et A(tret) (ei’q)(tl'et> + 6—i®<tret)> eiQWftr"etv7

and now in the last integral we rename tet — t. We have not written explicitly
the limits of integration since we will compute this integral with the stationary

phase method. Then, all we need is that the stationary point be within the
integration domain t < t., and the fact that A(tret) diverges at the limit of
integration ¢ —t. becomes irrelevant, as long as the stationary phase method is
justified (see below). We take f > 0, since the value at f < 0 can be obtained
from ho(—f) = h3(f). Then, observing that ® = wgw(t) > 0, we see that
only the term proportional to e 1 OFTI 1as o stationary point, while the
term proportional to e!P(O+27ft 4g always oscillating fast, and integrates to a
negligibly small value. Therefore

ha(f) ~ %eizﬁf"/‘f / dt A(t)e'Brft=2®l (4.363)

Since log A(t) varies slowly in comparison with ®(t), the stationary point
t.(f) is determined by the condition 27 f = ®(t.), However ® = wgy, so this
condition expresses the rather natural fact that the largest contribution to the
Fourier component /34-( f) with a given f is obtained for the values of ¢ such
that the chirping frequency wgw (t) is equal to 27 f. Expanding the exponential

o order (t — t.)? we find

/2 poo 5
h () = Semirie g(p, ) flem st (2 do e . (4.364)
hi(f) = 5e (t.)e 5 i S

The latter integral is a Fresnel integral, and is given by

/ dz e = me T/t (4.365)
(see Gradshteyn and Ryzhik 1980, 8.25). Therefore
. 1 4 2 )1/ :
j AR , 4.366
W) = e A (- (4.366)
where
Uy =2 f(ts +1r/c) — O(ts) — (w/4). (4.367)

Using 27 f = wew (t+) and the explicit expression of wgw(t) given in eq. (4.19),
we can eliminate 7. = t. — t. in favor of f, obtaining
5 _ _

7. (f) = %-G(GMC/C?’) EAICT S RAN (4.368)

Inserting this into the expressions for A(7), given in eq. (4.361), and for o,
obtained differentiating twice eq. (4.30), we find

. o N2 75\ 1] e fom s/esfq/6 1—}—C082L>
2 (t) o(t.) T\ 24 w23\ 3 2 ’

(4.369)
and therefore we get the result given in the text, see eq. (4.34). Similarly,
inserting the value of t, = t.—7. given by eq. (4.368) into eq. (4.367) we get the
phase W (f) given in eq. (4.37). Repeating the same steps for hy we get the
same prefactor, apart for the different dependence on ¢, and ¥y = U+ (7/2).

To compute the energy spectrum we need the quantity

~ - - [ GMG 5/3
e (F)P + 1hx (DI = 57533 ( f7/?” 9(0), (4.370)
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where the function g(v) is defined in eq. (4.9). Using eq. (4.10), we see that

the angular average of |hy (f)? + |hx (f)]? is

1 (GM.)%/3

J B e OF e = s (T (4.37)

It should be observed that the stationary point approximation that we have
used is less and less good as f grows. In fact, as f grows, the stationary point
t. approaches the coalescence time t.. Since the function A(t) diverges as
t — tc, the approximation that log A(t) varies slowly in comparison with O(t)
becomes less and less accurate. To check the validity of the stationary point
approximation for fuﬁx( f), we compare the total radiated energy computed
using the saddle point approximation, eq. (4.43), with an exact numerical
evaluation of the time integral in the inspiral phase. Therefore we start from
the exact expression

7‘2(_’3

fa
e 2 2
ABpg = 70 / 40 / Ca (i iz (4.372)

which gives the energy radiated up to time ¢, and we compute numerically the
integral. Inserting into this expression the GW amplitude given by eq. (4.29)

and performing the integral over df2, we find
( G MC) 10/3

AFaq = W(GMC)W 3 (4.373)
o4 d, g P2fd, o 7
P 3 dt 5 {d_t(wg“' cos )| + 3 {Et(wgw sin (I))} .

We now compute the time derivatives, taking into account that wew depends
on ¢, and that d®/dt = wgw. The result can be written in the form

57/5 L1 78 12/5 g\ 7/5 1 /8\12/5
AFEypq o 237/5”[@6 0 <'5 a1 -+ 5 as — E (g as| ,

(4.374)
with
° dzx 7 2 1. 2
ai = /T* 75 <1€ cos”x + 3 sin L) , (4.375)
oo 1
as = /Xx % <1—75 sin® z + 3 cos” JL) , (4.376)
0 dr
az = / 7375 Sin 2. (4.377)
The lower limit of the integrals, z., is given by
A
Ty =2 <5C;3 ) 2% (4.378)

Taking M. ~ 1.21My (corresponding to two equal masses Mys = 1.4Mpg),
and 7. ~ 4.6 ms which, according to eq. (4.20), correspond to taking a cutoff
at fmax = 1 kHz, we have z, ~ 46.1. Computing numerically the integrals, we
find that a2 =~ 0.21 while a1, a3 = O(107°) are negligible. Since a1, as come
from the terms with wgw, the result could have been obtained more simply
neglecting the derivatives of wgw in eq. (4.373) (this is indeed the reason why
the stationary point approximation discussed in the previous problem works
well). Putting together the numerical factors, we finally arrive at AE,,q o
4.2 X 1072 Mge?, in full agreement with eq. (4.43).

Problem 4.2. Fourier decomposition of elliptic Keplerian motion

In this problem we compute the Fourier decomposition of the Keplerian motion
and of its second mass moment. Using egs. (4.63), (4.64) and (4.58) we write

z(B3) = alcosu — €), (4.379)
y(B) = bsinu, (4.380)

_ where the dependence of « on f is given implicitly by

f=u—esinu. (4.381)

As shown between eq. (4.83) and eq. (4.93), we can write

z(f3) = Z an cos(ng), (4.382)
n=0

y(B) = busin(nf), (4.383)
n=1

which can be inverted to give, for n # 0,
an = 2 /ﬂ dp x(f) cos(nf)
T Jo
-2 ) df (cosu — e) cos(nf), (4.384)
T Jo

and

by = 2 / " 48 y(B) sin(nf)

™ Jo
_ 2 / dp sinusin(nfg), (4.385)
™ Jo
while, for n =0, 1/
o = — / dpz(B). (4.386)
™ Jo

The integrals for n # 0 can be performed using the integral representation of
the Bessel function J,(z),

In(z) = / du cos(nu — zsinu), (4.387)
o T

(see e.g. Gradshteyn and Ryzhik 1980, 8.411.1). Then we have, for n # 0,

an = 2a 8 (cosu — e) cos(nf3)
o T

= Qn_a /07r ? (cosu — e)% sin(ng)

__2a [" ? [%(cogu — e)]sin(nf)

 Jo
__Za [Tdud sy e)sin(ng)
n 0 s du
_ 2a a sinusin(nu — nesinu) . (4.388)

n Jo ™
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We now use the identity 2sinzsiny = cos(x — y) — cos(z + y), and we get

a

an = — / au cos[(n — 1)u — nesinu] — cos|(n + 1)u — nesin u]
0

£ e,

™

(4.389)

where, in the second line, we used eq. (4.387). Using the Bessel functions

identity
In=1(2) = Jns1(2) = 2J,(2),

the result can also be rewritten as
2a
an = —J,(ne).
n

The integral for ao is instead elementary and gives ag
computation for b, is analogous to that of ay,
26 [T dp d

bn = - — si - 8
) smudﬁ cos(nf3)

20 (7 du dsinu
s
2b ™ du

— cos ucos(nu — nesin u)
n Jo T

= % [Ju—1(ne) + Jny1(ne)] .
Using the Bessel functions identity
Jnt1(2) + Jn—1(z) = 7Jn(z) ,
this result can also be rewritten as

brn, = E.Jn (77/6) .

(4.390)

(4.391)

—(3/2)ae. The

(4.392)

(4.393)

(4.394)

We next compute the Fourier decomposition of 902( ),yZ(ﬁ) and z(3)y(B).
)

Since z(3) is even under 8 — —3 while y(3) is odd, z*(
while z(8)y(8) is odd, and therefore we can write

2%(8) = 3" An cos(nf)

n=0

¥*(8) =) Bncos(nf3),

n=0

2(B)y(B) = Cusin(nf),

which can be inverted to give, for n # 0,

A= / " 48.2*(8) cos(nf)
Ba=2 [ dBy*(8)cos(np)
0]
Co=2 / dp 2(B)y(P) sin(n)
4]

and y* () are even

(4.395)

(4.396)

(4.397)

(4.398)
(4.399)

(4.400)

2
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The calculations are similar to those performed above for a,, and b, and the
result is

A, = gn— [Jn—2(ne) — Jni2(ne) — 2e(Jn-1(ne) — Jny1(ne))] , (4.401)

b2
Bn = — [Jn+2(ne) — Ju-2(ne)] ,

ab

(4.402)

Cr = . [Jny2(ne) + Jn_2(ne) — e(Jny1(ne) + Jn—i(ne))], (4.403)

while Ap = (1 +4e°)/2 and By = 1/2. Observe that these coefficients can be
rewritten in many equivalent forms using Bessel function identities.

Further reading

» The radiation from a binary system of two point

masses and their frequency spectrum was computed
by Peters and Mathews (1963). The Fourier ex-
pansion of the Kepler motion is discussed in Wat-
son (1966). The orbit circularization due to radia-
tion of angular momentum was computed by Peters
(1964). The chirp amplitude was first computed by
Clark and Eardley (1977), see also Thorne (1987),
Finn and Chernoff (1993), Cutler and Flanagan
(1994).

The fact that coalescing binaries can be standard
candles was discussed by Schutz (1986). The prop-
agation of GWs through a FRW background, in
the geometric optics limit, is discussed in Thorne
(1983), Section 2.5.4.

The production of GWs from rotating and precess-
ing rigid bodies is computed in Zimmermann and
Szedenits (1979), for axisymmetric bodies and for
triaxial bodies with small wobble angle. The radi-
ation from non-axisymmetric bodies rotating and
precessing is discussed in Zimmermann (1980) and
Van Den Broeck (2005). Rotating fluid stars are
studied in Bonazzola and Gourgoulhon (1996). The
back-reaction due to wobble radiation is discussed
in Bertotti and Anile (1973) and Cutler and Jones
(2001). In the latter paper one also finds the cor-
rect result for elastic, rather than rigid, neutron
stars.

e The production of GWs from a point-like parti-

cle falling radially into a black hole is discussed in
Dayvies, Ruffini, Press and Price (1971) and Davis,
Ruffini and Tiomno (1972), see also Ohanian and
Ruffini (1994). The frequency spectrum is com-
puted in Wagoner (1979). Detweiler and Szedenits
(1979) show that, allowing for angular momentum
of the test mass, can increase the power output by
a large factor, and higher multipoles become more
important. The suppression due to the tidal disrup-
tion of extended sources is computed by Haugan,
Shapiro and Wasserman (1982). Early simulations
of head-on black-hole collisions were performed by
Smarr (1979).

The radiation produced in the collision between
particles is discussed in Weinberg (1972), Sec-
tion 10.4. The calculation of the gravitational ra-
diation produced by an accelerated particle, using
Feynman diagram techniques, and the fact that
the radiation emitted in particle scattering is not
beamed, is discussed by Feynman (see Feynman,
Morinigo and Wagner 1995, Section 16.4), while our
purely classical derivation leading to eq. (4.348) is,
as far as we know, original.

Various examples of production of GWs are dis-
cussed in the textbook by Shapiro and Teukolsky
(1983), Chapter 16.



