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Further reading

e For the quantum field-theoretical approach to grav-
itation see the Feynman Lectures on Gravitation by
Feynman, Morinigo, and Wagner (1995) (which col-
lects lectures given by Feynman in 1962-63), and
also DeWitt (1967) and Veltman (1976). For ex-
plicit computations of graviton—graviton scattering
see Grisaru, van Nieuwenhuizen and Wu (1975).
The possibility of deriving Einstein equation from
an iteration of linearized theory is discussed, among
others, by Gupta (1954), Kraichnan (1955), Feyn-
man, Morinigo, and Wagner (1995), and Ogievet-
sky and Polubarinov (1965). An explicit and el-
egant iteration leading from the equations of mo-
tion of linearized theory to the full Einstein equa-
tions was performed by Deser (1970) using a first
order Palatini formalism. The ambiguity concern-
ing boundary terms is discussed by Padmanabhan
(2004).

Phenomenological limits on the graviton mass are
discussed by Goldhaber and Nieto (1974). The dis-
continuity as the graviton mass goes to zero was
found by Iwasaki (1970), van Dam and Veltman
(1970) and Zakharov (1970). Massive gravitons
have been further discussed by Boulware and Deser
(1972). The fact that linearized theory becomes
singular as my, — 0 was discovered by Vainshtein
(1972). The radiation of massive gravitons in lin-
earized theory is discussed by van Niewenhuizen
(1973). Discussions of the fate of the discontinu-

ity are given in Deffayet, Dvali, Gabadadze and
Vainshtein (2002) and in Arkani-Hamed, Georgi
and Schwartz (2003). The difficulty of perform-
ing the matching to an asymptotically flat solu-
tion, and the possibility of matching to a De Sitter
solution, is discussed in Damour, Kogan and Pa:
pazoglou (2003). The fact that beyond linearized
theory the trace i becomes a ghost is discussed
by Boulware and Deser (1972) and, in full general:
ity, by Creminelli, Nicolis, Papucci and Trincherini
(2005).

Lorentz-violating mass terms for h,, are discussed
in Arkani-Hamed, Cheng, Luty and Mukohyama
(2004), Rubakov (2004) and Dubovsky, Tinyakov
and Tkachev (2005). In this case the mass of the
scalar perturbations can be zero while the mass of
the graviton 1771,1 can be non-zero, and the bounds
on the graviton mass derived from the Yukawa fall-
off of the gravitational potential only refer to the
scalar sector. Furthermore, these models do not
suffer of the vDVZ discontinuity and do not have
ghosts.

A bound on the mass that refers directly to h;I;T
can be obtained from pulsar timing, as recognized
in Damour and Taylor (1991) and discussed quanti-
tatively in Finn and Sutton (2002). The possibility
of bounding the mass of h};-T from the observation
of inspiraling compact binaries is discussed in Will
(1998) and Larson and Hiscock (2000).

Generation of GWs in
linearized theory

We now consider the generation of GWs in the context of linearized
theory. This means that we assume that the gravitational field generated
by the source is sufficiently weak, so that an expansion around flat space-
time is justified. For a system held together by gravitational forces,
this implies that the typical velocities inside the source are small. For
instance, in a gravitationally bound two-body system with reduced mass

1 and total mass m, we have Fii, = —(1/2)U, i.e.
1 45 1Gum
Sp? = - 3.1
Q'M] 2 r (3.1)
and therefore ) 5
v_2as, (3.2)
c? 2

where Rg = 2G'm/c? is the Schwarzschild radius associated to a mass
m. A weak gravitational field means Rg/r < 1 and therefore v < c.
Thus, for a self-gravitating system, weak fields imply small velocities.
On the other hand, for a system whose dynamics is determined by
non-gravitational forces, the weak-fleld expansion and the low-velocity
expansion are independent, and in this case it makes sense to con-
sider weak-field sources with arbitrary velocities, as we do in this chap-
ter. This will allow us to understand, in the simple setting of a flat
background space-time (and therefore Newtonian or at most special-
relativistic dynamics for the sources), how GWs are produced. In Sec-
tion 3.1 we will derive the formulas for GW production valid in flat
space-time, but exact in v/c. Then, expanding the exact result in pow-
ers of v/c, we will see that for small velocities the GW production can
be organized in a multipole expansion (Section 3.2). In Section 3.3 we
discuss in detail the lowest order term, which is the quadrupole radia-
tion. In Section 3.4 we discuss the next-to-leading terms, i.e. the mass-
octupole and the current quadrupole radiation, and in Section 3.5 we
present the systematic multipole expansion to all orders, using first the
formalism of symmetric-trace-free (STF) tensors, and then the spheri-
cal tensors formalism. Finally, in a Solved Problems section we discuss
some applications of this formalism and we collect additional technical
material.

The most interesting astrophysical sources of GWs, such as neutron
stars, black holes or compact binaries, are self-gravitating systems. In
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102 Generation of GWs in linearized theory

I'More precisely, the retarded Green'’s
function is selected by imposing the
Kirchoff-Sommerfeld “no-incoming-
radiation” boundary conditions, i.e.
one imposes

. 0 ad .
Jim [ 24 2 )0 =0,
where the limit is taken along any sur-
face ¢t + r = constant, together with
the condition that 7‘71,“,, and 7'6,)7”“, be
bounded in this limit. Physically, this
means that there is no incoming radia-
tion at past null infinity.

this case, if we want to compute corrections in v/c¢, we must take into
account that, because of eq. (3.2), space-time cannot be considered flat
beyond lowest order, and therefore the dynamics of the sources can no
longer be described by Newtonian gravity. The corresponding formalism
is the GW generation from post-Newtonian sources, which will be the
subject of Chapter 5. Still, the results derived in the present chapter
will be useful also as a first step toward the understanding of the post-
Newtonian results.

3.1 Weak-field sources with arbitrary
velocity

In linearized theory the starting point is eq. (1.24), that we recall here,

_ 167G
Ol = A Ty s (3.3)
where T}, is the energy-momentum tensor of matter. Recall also that
we are in the Lorentz gauge, 0"h,, = 0, and that T, satisfies the
flat-space conservation law 9T, = 0. Equation (3.3) is linear in h,,
and can be solved by the method of Green’s function: if G(z — z’) is a
solution of the equation

0,G(x — 2') = 6*(x — 2'), (3.4)
(where O, is the d’Alembertian operator with derivatives taken with

respect to the variable z), then the corresponding solution of eq. (3.3) is

167G
1 (3.5)

By (z) = — /d4x’ Gz — 2T ().

The solution of eq. (3.4) depends of course on the boundary conditions

that we impose. Just as in electromagnetism, for a radiation problem
the appropriate solution is the retarded Green’s function,

L 0
drjx — x/|

Gz —2')=—

0

where 2'" = ct’, 2%, = ctyet, and

|x — x|
trep =t — ——t
C

is called retarded time. Then the solution of eq. (3.3) is

- 4G [ 1 —x'
hwj(t,x) = —cz /ddx/ ]—;(—‘_“X—/] Tl“’ (t - li%"?X/) . (38)

Outside the source we can put this solution in the TT gauge using
= Nijrih (in the last equality we used the

eq. (1.40), hii" = Agjpih
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property (1.38) of the Lambda tensor). Therefore, outside the source,

4G
TT _ . 3
hiy (t,x) = oy Ajj () /d x =

1 . 7
7, <t_M,X/>,
- x/| ¢

(3.9)

where we use the notation X = 0, and we will also denote |x| =
Ohserve that h,LTjT depends only the integrals of the spatial components
Ti;. The underlying reason that allowed us to eliminate Ty, and Tyg is
that they are related to Ty by the conservation of the energy-momentum
tensor.? If we denote by d the typical radius of the source, at r >> d we
can expand

d2
x —x'|=r—x"- n—I—O(r), (3.10)
see Fig. 3.1. We are particularly interested in the value of 2" at large

distances from the source, where the detector is located, so we take the

limit 7 — oo at fixed ¢,® and we retain only the leading term in eq. (3.9).

This is a term O(1/7), obtained setting |x — x’| = r in the denominator

of eq. (3.9), so at large distances
14G d

]’I/E;T(t,}() =T T Nij, k(1) /dgx’ T (t -=+ T x> . (3.11)

plus terms O(1/r%) that we neglect. We now write Tj,; in terms of its
Fourier transform,*

d4k ' —iwt+ik-x
Thu(t, x) = W'—Zki(W,k)e . (3.12)
Then
/d3$'Tkl (t—r/c+x"-ffe,x)
dw d3k - . ) N ,
3’ T k —iw(t—r/c) ji(k—wi/c)x
/ / 27e (2 ) wilw ke ¢
dw dBk 7 —ww(t—r/c -
- / 2me (27r) Ta(w, ke e (27T)36(3) (k —wn/c)
= / "2;?5 T (w,wit/c) e T/ (3.13)
and we get
14G R dw it
hE?T(t,X) = ; C—5 Alj)k{(n)/ ngl(w wn/c)e (t T/C) .
(3.14)

2Indeed, when performing the mul-
tipole expansion below, the lowest-

order result will be re-expressed in
terms of 700 only, using again energy—
momentum conservation.

Fig. 3.1 A graphical illustration of
the relation given in eq. (3.10).

31n linearized theory, GWs are studied
at spatial infinity, i.e. r — oo at fixed t.
We will see in Chapter 5 that, beyond
linearized theory, it can be more conve-
nient to work at future null infinity, i.e.
r — oo with ¢ — r/c fixed.

40ur convention on the factors of ¢ is
that the four-dimensional wave-vector
is k* = (w/c, k), and therefore d*k =
(1/¢)dw d3k. Since z# = (ct,x), we
then have kjz# = —wt + k-x. Observe
that k has dimensions of the inverse
of length. The spatial momentum of a
particle with wave-vector k is p = hk.
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5To compare with Weinberg (1972),
Section 10.4, observe that we define the
Fourier transform with respect to fre-
quency using dw/(27) (see eq. (3.12), or
the Notation section) while Weinberg
uses dw; on the other hand, we both use
d3k/(2m)? in the spatial Fourier trans-
form. Therefore our T(w, k) is equal to
o T Weinberg (oJ, k)

So¢ course, at the latest this divergence
is cutoff by the back-reaction due to
GW emission. For example, a spinning
neutron star with non-vanishing ellip-
ticity emits GWs. The energy of these
waves is taken from the rotational en-
ergy of the star which therefore grad-
ually slows down, as we will compute
in detail in Section 4.2. (Actually, in
this case electromagnetic effects dom-
inate and slow down the neutron star
even earlier.)

"More precisely, we have seen in Chap-
ter 1 that the GW energy is only de-
fined by averaging over a few periods,
so this is really the average power radi-
ated over one period of the source mo-
tion.

In general, the Fourier components of the energy-momentum tensor of
the source will be large around a typical value w,, and the characteristic
speed at which there is a bulk movement of mass across the source is
v ~ wsd. For the moment we have made no assumption on the relative
values of w,; and d, and in particular we have not assumed wyd < c.
Therefore eq. (3.14) is valid both for relativistic and for non-relativistic
sources, as long as linearized theory applies, and we are at a sufficiently
large distance r from the source.

From eq. (1.156), setting dA = r2dS2, we see that the total energy
radiated per unit solid angle is

) TT; TT
dthg; hi; .

dE recd [
(3.15)

a0 327G |

— 0

Inserting here the expression (3.14), using T'(—w, ~k) = T*(w,k) and
the property (1.37) of the Lambda tensor, we find®

dr G

e LY /O 0 T (w0, wht /) T (w, i)

(3.16)
and the energy spectrum is therefore
dE Guw? o R = .
o = o /dQ Agj ()T (w, wn/e)Th (w,win/c) . (3.17)

A typical source will radiate for a characteristic time A¢. In the ide-
alized case of an exactly monochromatic source, the radiation lasts for
At = oo and the total radiated energy is formally divergent.® Thus, for
a monochromatic source the instantaneously radiated power is a more
useful quantity. For such a source, radiating at a frequency wy, we write

Tij(w, k) (for positive w) as

Ti]'(o.),k> = 6U<u},k) 27(5(&) —u)())., (318)
and eq. (3.16) becomes
dE  Gu? . . ¥ .
50 = T—JO Aijra (1) 05 (wo, wott/ )05 (wo, wotr/ )T (3.19)

We have used 2md(w = 0) = T, where T is the total (formally infinite)

time. Dividing by T" we obtain the power radiated instantaneously,”
dP  Guwj
aQ  wcT

The total power is obtained by integrating over d). To perform the
integration one can use the identities

/@QWW_E&
dr 3T

ijﬁl(fl) Qij(WO,WQﬁ/C)QZl (wo,woﬁ/c) . (320)

(3.21)

dQ 1
/ P A T (8ij 0kt + Oikdj1 + Sudk) -

These identities, as well as their generalization to an arbitrary number
of n's, can be found as follows. For an odd number of n; the integral
vanishes because the integrand is odd under parity. For an even number
of n, we use the fact that the tensor n; n, ...n;,, is totally symmetric
and therefore its integral can only depend on the totally symmetrized
product of Kronecker deltas. Once the tensor structure is fixed, the
overall constant is obtained by contracting all indices. This gives

(3.22)

CdQ) 1
/ E Ngy oo Ny, = ———_(213 n 1)” (51'17;251'31’4 A 61‘2“1'&'21 + .. ) s (323)

where the final dots denote all possible pairing of indices.

3.2 Low-velocity expansion

Just as in electrodynamics, the equations for the generation of radiation
are greatly simplified if the typical velocities inside the source are small
compared to the speed of light. If wy is the typical frequency of the
motion inside the source and d is the source size, the typical velocities
inside the source are v ~ wsd. The frequency w of the radiation will also
be of order® w, and therefore w ~ ws ~ v/d. In terms of X = ¢/w,

x~ <4
v

(3.24)

In a non-relativistic system, v < ¢ and the reduced wavelength of the
radiation generated is much bigger than the size of the system:

non-relativistic sources = X > d. (3.25)

When the reduced wavelength is much bigger than the size of the system,
it is physically clear that we do not need to know the internal motions
of the source in all its details, but only the coarse features matter, so
the emission of radiation is governed by the lowest multipole moments.®

To perform the multipole expansion for gravitational radiation we
start from the expression of h;f[;-T at spatial infinity given in eq. (3.11),
that we recall here, .

x' - A

14G .
]L;I;Tﬁ,x) = (74 ‘CT Aij,kl(n)/dBJT/ Tkl (t - E -+

, x’) . (3.26)

and we write T} in terms of its Fourier transform,

, r x'-A d*k - o PN
Tt <t o E + T’ X/> _ / WTkl(w;k)e iw(t—r/c4x"-0/c)+ikx ]
(3.27)
For a non-relativistic source, Tjy (w, k) is peaked around a typical fre-
quency ws (or around a range of frequencies, with maximum value wy),
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8A])a,rt from numerical factors which
depend on the multipole moment in-
volved and on the details of the mo-
tion of the source. We will see below
that for a non-relativistic system the
dominant contributions come from the
lowest multipoles, and for these the nu-
merical factors are O(1); for instance,
we will see that a source performing
a simple harmonic oscillation at fre-
quency ws emits quadrupole radiation
w = 2ws.

9A typical example is the electro-
magnetic radiation from the hydrogen
atom. The velocity of the electron in-
side the hydrogen atom is v/c ~ a,
where a ~ 1/137 is the fine-structure
constant, and the reduced wavelengths
of the transitions between the levels of
the hydrogen atom are of order X ~
rgp/a, where rp is the Bohr radius.
Since a <« 1, we have X > rp, and
the multipole expansion is adequate.
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0ne could have directly written the
expansion (3.30), as a formal Taylor
expansion in the parameter x’.f/c.
However, the above derivation empha-
sizes that the assumption behind this
expansion is the condition wsd < ¢,
with ws the typical source frequency.

N observe that, contrary to most of the
literature on general relativity, we never
use commas to denote derivatives (nor
semicolons to denote covariant deriva-
tives).

with wgd < ¢. On the other hand, the energy-momentum tensor ig
non-vanishing only inside the source, so the integral in eq. (3.26) is re-
stricted to |x/| < d. Then the dominant contribution to hi;" comes from
frequencies w that satisfy

w
AS
c

<1, (3.28)

olE

and therefore we can expand the exponential in eq. (3.27),

—tw(t—r/ct+x"a/c) —iw(t—r/c)

e =€ (3.29)
2 ..
{1 - z%x n' 4 = 5 < z%) 2z nind 4 .
This is equivalent to expanding

(3.30)

1
0Ty + 502 2" & nin OF Ty + .
where all derivatives are evaluated at the point (¢ — r/c,x’).20 We now
define the momenta of the stress tensor 79,

SU(t) = /ddx T (t, %),
S (1) = / 0% T, x) o*
S'j’j’kl(t) = /d?’:cTij(t,x) zhrt

and similarly for all higher order momenta. In this notation, a comma
separates the spatial indices which originates from 7% from the indices
coming from 2% ... 2'~¥ ! The energy—momentum tensor of matter that
appears in eq. (3.3) is the one obtained from the variation of the matter
action with respect to the metric, so it is in its symmetric form, T% =
17", Then, its momenta are symmetric separately in the first type of
indices and in the second, e.g. SF = Itk or SUkl — GiBlk hyt not
necessarily under the exchange of two indices of different type e.g. in
general S¥WF £ Gik.J
Inserting the expansion (3.30) into eq. (3.26) we get

(3.31)
(3.32)

(3.33)

1 4G

hi (6, x) = = g (B)

3 1 1 S
Skl C Skl m 4 2_§nmnpskl,mp 4.

ret

(3.34)
where the subscript “ret” means that the quantities S*, & klam Gklmp,
etc. are evaluated at retarded time ¢ —r/c. This equation is the basis for

the multipole expansion. From the definitions (3.31)—(3.32) we see that,
with respect to S*, S has an additional factor 2™ ~ O(d), while each
time derivative brings a factor O(w;). So, with respect to S, the tensor
kL™ has an additional factor O(wsd), i.e. O(v), where v is a typical
velocity inside the source. Then the term (1/¢)n,,S¥™ is a correction
O(v/c) to the term S¥, and similarly the term (1/¢®)n,n,SHmP is a
correction O(v?/c?), etc.

The physical meaning of the various terms in this expansion becomes
more clear if we eliminate the momenta of T in favor of the momenta
of the energy density 7°°, and of the momenta of the linear momentum,
T%/c. We define the momenta of 7%°/c? by!?

M = 215 / d3x T%(t, %), (3.35)
M= 612 d3z TO(t, x) «* (3.36)
M = = [ B T, %) 22 (3.37)

C
MUk = ! &z T, x) 'l 2® | 3.38
Cz

and so on, while the momenta of the momentum density (1/c)T% are
denoted by

. 1 .
Pt = / ddx TO(t, %), (3.39)
Phi = / d3z T (t,x) 27 (3.40)
pidk — / Bz Tt x) 2l 2k | (3.41)
C

and similarly for the higher momenta. The time derivatives of these
quantities and of the momenta of T% satisfy relations which follow from
energy—momentum conservation. Recall that we are working within lin-
earized theory, which means that the energy-momentum tensor of mat-
ter TH satisfies the flat-space equation 9,7 = 0, as we have seen in
eq. (1.25), while non-linearities such as those written schematically in
eq. (2.113) are neglected. This means that we are also neglecting the
back-action of the GWs on the source.'®

To obtain these identities, we take a box of volume V larger than the
source, and we denote its boundary by OV (so T}, vanishes on 9V).
Using 9, T#° = 0, that is

9T = —5,7" (3.42)

(and recalling that M = M/t = cOyM) we have

bt = [ daopT®
v

—/ dg.'IZ &TO’
|2
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12Dimensionaﬂy T90/c? is a mass den-
sity but of course, besides the con-
tribution due to the rest mass of the
source, it contains also all contribu-
tions to 700 coming from the kinetic en-
ergy of the particles which make up the
source, contributions from the poten-
tial energy, etc. For sources that gen-
erate a strong gravitational field, such
as neutron stars, the gravitational bind-
ing energy will also be important. Only
for weak-field sources and in the non-
relativistic limit, 79°/c? becomes the
mass density. However, since the mul-
tipole expansion of the linearized the-
ory assumes weak fields and is a non-
relativistic expansion, to lowest order
in v/c we can actually replace 70 /c?
with the mass density.

13 The inclusion of these non-linearities
will be discussed in Chapter 5.
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My, particular, the momenta of 77,
Le. {S%, 5%k 1 depend on the dis-
tribution of the stresses inside the body,
which might be difficult to determine,
while the total mass of a body, its mass
quadrupole, etc. can be measured more
easily.

ov

—0. (3.43)

The last equality follows from the fact that 70 vanishes on the boundary
dV, since we have taken the volume V larger than the volume of the
source. Of course, a physical system that radiates GWs loses mass.
The conservation of the mass M of the radiating body, expressed by
eq. (3.43), is due to the fact that in the linearized approximation the
back action of the source dynamics due to the energy carried away by
the GWs is neglected. Similarly, we obtain the identity

c]\?[i:/ d*x x* 0T
Vv
—_ / P 20,70
. 1%
- [ @@y
’

= / d*x 8% T%
v

=P (3.44)

In the same way one derives similar identities for the higher momenta
of T9 and of T%. For the first few lowest-order momenta of 7% we get

M =0,
M= P*,
MU = phi 4 pj‘,i’
]\Iijkt _ Pi,jk +P‘71ﬂ +Pk,1j’
while the lowest-order momenta of 7% satisfy
Pi=0,
Phi — g4 ,
Phik — giik 4 Stk
The equations M = 0 and P? = 0 are the conservation of the mass and
of the total momentum of the source. Another interesting identity is
P4 — Pit = §i — 53" = (), which follows from eq. (3.50) using the fact
that S% is a symmetric tensor, and is the conservation of the angular
momentum of the source.
- We can now combine these identities to express the momenta S¥,
S%Fete., that appear in the multipole expansion, in terms of the
two sets of momenta {M, M* M"Y, ...} and {P* P% ...} which have
a more immediate physical interpretation.'* Taking the time derivative
of eq. (3.47) and using eq. (3.50), as well as the fact that S = $7% we
obtain the identity

SU = —Q‘MJ. (3 r2)

If we combine eq. (3.48) with eq. (3.51) instead, we get
AT = o(ik 4 Gk 4 Gk (3.53)

From eq. (3.51) it also follows that Phik = §#%k 4 &7 Using this
relation and eq. (3.53) we can verify that

Sk — éM " + 3 (pwk + piik _ 2Pk’”> . (3.54)

Equations (3.52) and (3.54) relate S¥ and S%*  which are the two
lowest-order momenta appearing in the multipole expansion (3.34), to
the momenta of 79 and of 7%. One can proceed similarly with the
higher-order terms. In the next two sections, we examine the leading
and the next-to-leading terms, while in Section 3.5 we discuss system-
atically the expansion to all orders.

3.3 Mass quadrupole radiation

3.3.1 Amplitude and angular distribution

Using eq. (3.52), the leading term of the expansion (3.34) is
. 12G ok
(hiT (8, x)] quad = ?Aij,ki(n)]\/j (t—r/c). (3.55)
From the point of view of the rotation group the tensor My, as any
symmetric tensor with two indices, decomposes into irreducible repre-

sentations as
1
M* = <M“ - éékiz\@) + 50" My, (3.56)

where M;; is the trace of M;;. The first term is traceless by construction,
and is a pure spin-2 operator, while the trace part is a scalar. Since
the Lambda tensor A;; 11 gives zero when contracted with dg;, only the

traceless term contributes. We use the notation

1

_ 00
p=5T%. (3.57)

To lowest order in v/c, p becomes the mass density, see Note 12. We
also introduce the quadrupole moment

QY = MY — (69 My

_ / Prplt,x) (') = 225), (3.58)
and eq. (3.55) becomes
12G N
[R5 (%) == S A (B) Qe — 7/c)
J quad r o (3 59)
12G - '
= a ;I]‘-T(t—r/c).

3.3 Mass quadrupole radiation
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Angular distribution of
quadrupole radiation

15We write the result in terms of the
second mass moment M;;, rather than
in terms of the quadrupole moment
Qij. Since Ay kiQui = Ayj My (be-
cause Ay; 110y = 0, see eq. (1.38)), in
the equations below we could use M;;
or Q;; equivalently. Typically, it is
slightly more practical to use M;; when
one makes explicit computations.

In order to obtain the waveform emitted into an arbitrary direction #,
we could in principle plug the explicit expression (1.39) of the Lambds
tensor into eq. (3.59), and perform the contraction with Q. It is how.
ever more instructive to proceed as follows. First we observe that, when
the direction of propagation h of the GW is equal to z, P;; is the di-
agonal matrix diag (1,1,0), i.e. Fj; is a projector on the (z,y) plans,
Writing Ay & in terms of P; using eq. (1.36) we have, for an arbitrary
3 x 3 matrix Ay,

1
Aij i Ap = | PPy — §P~ijpkl Ap
1
= (PAP); = 5P, Tr (PA). (3.60)
When P has the form
1 0 0
p=10120174, (3.61)
0 0 0
we get
A Ap O
PAP=| An A 0 |, (3.62)
0 0 0
while Tr (PA) = Ay + Agg. Therefore
Ay A O A A 1 0 0
Aij i A = A21 A22 0 - %—2—3 01 0
0/ . 0 0 0 /..
1Y) 17
(A1 — Agp)/2 Aqo 0
= A21 —(A11 —A)/2 0 (3.63)
0 0/ .
ij
Thus, when f
. (Mn — M3)/2 My, 0
Nij My = Moy —(Myy — My2)/2 0 (3.64)
0 0 0 i

From this we directly read the two polarization amplitudes, for a GW
propagating in the z direction,

1G
h+ = ; I (Mn — MQQ) (365)
26, .
h’X r C4M12> (366)

where it is understood that the right-hand side is computed at the re-
tarded time t — r/c. To compute the amplitudes for a wave that, in
a frame with axes (x,y, z), propagates in a generic direction f, we in-
troduce two unit vectors i and v, orthogonal to fi and to each other,

_ frame observing that in the (z/, 7/, z

chosen so that ixv = i (so, when n = 2, we can take 1 = X and
i = ¥), see Fig. 3.2. Then in the (2/,v/, 2) frame, whose axes are in the
directions (11, ¥, 1), the wave propagates along the 2z’ axis and we can
use the previous result to read hy and Ay,

N 1 G .

hy(t,n) = (Mn My,), (3.67)
N 2 G

hy (t,0) = . C4M1 (3.68)

where M/ ;j» are the components of the second mass moment in the frame
(z/,y',2").'% These can be related to the components Mw in the (z,y, 2)
z') frame the vector i has coordinates
= (0,0,1), while in the (x,y, z) frame it has coordinates

(3.69)

Then the components n; and n} are related by a rotation matrix R such
that n; = Rij'”;, whose explicit expression is

n; = (sindsin ¢, sinf cos ¢, cos §) ,

cosgp sing 0 1 0 0
R=| —sing cos¢ 0 0 cosf sinf (3.70)
0 0 1 0 —sinf cosf

Similarly, a tensor M with two indices has components M;; in the
(x,y, 2) frame and M;; in the (2,3, 2’) frame, related by

Mij = Rix R My , (3.71)

or, solving for M', M}, =
Inserting R from eq. (3.70), and plugging the resulting values of M
egs. (3.67) and (3.68), we get

(RTM7R);j, where R” is the transpose matrix.
into

[ Mii(cos® ¢ — sin® ¢ cos? )
+M22(51112 ¢ — cos? ¢ cos® )
—Mgg SiIl2 g
— M2 5in 26 (1 + cos® §)
+Mi3 sin ¢ sin 26
+My3 cos ¢ sin 26]

% [ (M1 — May) sin2¢ cos 6

1G
hi(t;0,0) = ey

(3.72)

h>< (t7 97 QS) - -
+2Mj4 cos 2¢ cos b
-21\}113 cos ¢ sin f
+2Mos sin ¢ sinf)] .

This equation allows us to compute the angular distribution of the
quadrupole radiation, once M;; is given.
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6 Recall that hy and hy are defined in
terms of the components of h;; in the
plane transverse to the propagation di-
rection. Therefore these are “the” po-
larization amplitudes, and are denoted
by h4 and hy, rather than h,’+ and R/ .

z*

b

Fig. 3.2 The relation between the
(%,9,2) frame and the (1,V,R)
frame. The vector 11 is in the (X, §¥)
plane, while ¥V points downward,
with respect to the (%X,¥) plane.
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Absence of monopole and dipole
gravitational radiation

We see from eq. (3.59) that the leading term of the multipole expansion
is the mass quadrupole. There is neither monopole nor dipole radiation
for GWs. This can be understood in two different ways. First of all;
observe that a monopole term would depend on M and a dipole term on
P? (the mass dipole moment M* can be set to zero with a shift of the
origin of the coordinate system). Furthermore, hgT depends on deriv-
atives of the multipole moments, since a static source does not radiate.
However, M and P! are conserved quantities, so any contribution from
M or P* must vanish.

Actually, M and P? are conserved only at the level of linearized theory:
a radiating system loses mass and, in general, also linear momentum
(see page 130). However, the absence of monopole and dipole radiation
holds more generally, and is not restricted to linearized theory. One can
verify this observing that, even when we include all non-linear terms,
as in eq. (2.113), the right-hand side of the wave equation must still
be conserved, to be consistent with the Lorentz gauge condition. We
will see explicitly in Section 5.2 how to write the equations in such a
form. Using that expression, see in particular egs. (5.69), (5.71) and
(5.72), one can verify that the derivation of the absence of monopole
and dipole radiation goes through even in the full non-linear theory. The
difference with linearized theory is that the lowest-order multipole that
contributes, rather than being the quadrupole moment of the energy
density of matter, 7%, is the quadrupole moment of a more general
quantity 7% that includes also the contribution of the gravitational field.

However, there is no need to enter into the details of the non-linear
theory: the absence of monopole and dipole radiation is simply the ex-
pression of the fact that the graviton is a massless particle with helicity
+2. We already showed in Problem 1.2 that it is impossible to put a
graviton in a state with total angular momentum j = 0 or j = 1. This
emerged as a consequence of the fact that the graviton is a massless
particle with helicities &2, and it therefore obeys gauge conditions that
eliminate the spurious degrees of freedom. Indeed, these conditions al-
lowed us to reduce the five degrees of a traceless symmetric tensor Ay,
which would be appropriate for describing a massive spin-2 particle, to
the two degrees of freedom of a massless particle, as we discussed in
Section 2.2.2. ,

Since it is impossible to put a graviton in a state with total angular
momentum j = 0 or j = 1, we can have neither monopole nor dipole
radiation, since they correspond to a collection of quanta with j = 0
and j = 1, respectively. The situation is completely analogous to elec-
trodynamics, where the photon is massless and has helicity £1, so it is
impossible to put it in a state with total angular momentum j = 0 (see
Problem 1.2, or Landau and Lifshitz, Vol. IV (1982), Section 6), and
therefore monopole radiation is forbidden. In electromagnetism, the
leading term of the multipole expansion is therefore dipole radiation.

3.3.2 Radiated energy

Inserting eq. (3.59) in eq. (1.153) and using the property (1.37) of the
Lambda tensor, we find the power radiated per unit solid angle, in the
quadrupole approximation,

L

d2 quad 327TG K Y
G e
T Mg (1) (@ Q)

8mcd

(3.73)

where, as usual, the average is a temporal average over several char-
acteristic periods of the GW, and it is understood that QL] must be
evaluated at the retarded time ¢ — r/c. The angular integral can be
performed observing that the dependence on fi is only in Ay; . Using
eqs. (3.21) and (3.22) we find

2T

/ a2 Aij,kg = 15 (lléik(Sjg — 451‘_7(5“ + 5il(5jk) . (3.74)
Then, the total radiated power (or, in notation used in astrophysics,
the total gravitational luminosity £ of the source) is, in the quadrupole
approximation,

Pqua.d = @(Qy;@zg) 3 (375)

where, again, Qw must be evaluated at the retarded time ¢t —r/c. This is
the famous quadrupole formula, first derived by Einstein.'” Sometimes,
in explicit computations, it is more practical to use M;; rather than Q;.
Substituting Q;; = M;; — (1/3)8;; M, in eq. (3.75) we have

G 1
Pyuag = —5;5<M¢3‘M%3‘ - ‘3“(]\4kk)2)~

(3.76)
The same result could be obtained by observing that eq. (3.73) is still
valid if we replace Ajjri@;; @ by Aijyk;].\'/f zJ]\/I kl, Since the contrac-
tion of Ayjp with d;; (or with dy;) gives zero. However, when we use
Ayj M3 My, after integrating in d€2, on the right-hand side of eq. (3.74)
the term —406;;0; (which gave zero when contracted with Q” QM) now
contributes, since M;; is not traceless, and we find eq. (3.76) again.
The energy radiated per unit solid angle is obtained by integrating
the power, eq. (3.73), with respect to time. We write the quadrupole
moment in terms of its Fourier transform,

© g B ]
Q0= [ 5E Qe

— o0

(3.77)

and, integrating eq. (3.73) with respect to time, we get

n

dE G e -
(85> q ~ 8n2c Aij () /0 dw w° Qi (W) Qi (W)
qua
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17 Observe that some authors, e.g. Lan-
dau and Lifshitz, Vol. IT (1979), define
the quadrupole moment with a differ-
ent normalization,

@) = [ e plt (300l 125

where the superscript “LL” stands for
Landau and Lifshitz. This is larger
by a factor of 3 than our definition,
eq. (3.58). In term of this quantity, the
quadrupole formula therefore reads
G 5 A \LL
Pquad = 1565 ((Qlj QLJ) > )

and all other equations involving Q;
must, be rescaled similarly.
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8, compare this equation with the
results in the literature, beside checking
the factor of 3 in the normalization of
Qij, one must also check whether or not
the Fourier transform is defined using
dw/(2m), as we do, or simply dw, as,
for instance, in Weinberg (1972) or in
Straumann (2004).

(3.78)

where the integral in dw from —00 to +o00 llas been written as twice an
integral from zero to co using Qi;(—w) = Q7;(w). Integrating over the
solid angle we find the total radiated energy,

G

E vad = T F
4 5mcd

| e e, (3.79)

and therefore the energy spectrum, integrated over the solid angle, is!®

e\ G -
<%>quad N 571'05 v Q,LJ (O))Qij (C«)) ' (380)

For a monochromatic source, radiating at a frequency wg > 0, we proceed
as in Section 3.1: we write, for positive w,

Qij (w) = g;j 276 (w — wp) , (3.81)

insert this into eq. (3.78), and again use 27d(w = 0) = T, where T is
the total (infinite) time interval. The instantaneous power generated by
the monochromatic source is obtained by dividing by T, so

dP Gw§
AQdw = 75 (A4 ) 6w — wo). :
<dew>quad Tros (Migmdisaia) 6w — wo) (3.82)

As for the linear momentum, inserting eq. (3.59) into eq. (1.164) we get

dP? G T o
=—— [dQ "Qup -
dt 8med / @ap 0" Quy

(3.83)

Under reflection, x — —x, the quadrupole moment is invariant while
9" — —0'. Therefore the integrand is odd, and the angular integral
vanishes. There is no loss of linear momentum in the quadrupole ap-
proximation. A non-vanishing result can be obtained by going beyond
the quadrupole approximation, from the interference between multipoles
of different parity, as we will see in Section 3.4.

3.3.3 Radiated angular momentum

The angular momentum carried away per unit time by GWs can be
obtained by plugging the expression for h?}T in the quadrupole approx-
imation, eq. (3.59), into the general formula for the rate of angular
momentum loss, eq. (2.61). Recalling that the first term in eq. (2.61)
is the contribution form the orbital angular momentum L* of the GWs
while the second comes from the spin S* of the field configuration, we
write

dJi dLi | dS'

I _C‘ll_f—+ P (3.84)

For the orbital part we have

i 3 " . .
(d; ) =g [ dar (o nT).
quad

(3.85)

We then substitute AL (t,x) = (2G/rc*)Aap,ca(0)Qea(t — r/c) and we
perform the angular integral. The explicit computation is slightly in-
volved, but we find it useful to perform it in detail. The uninterested
reader can jump to the result, eq. (3.93).

When we compute 6lh:be , the derivative 8 acts on Aqp,ca(nd) (since nt =
z'/r) as well as on Qeq(t — r/c). However,

o or d =
@ch(t —r/c)= (@) 7 Qealt —7/c)
1
x 1 ...
=—— = t— . 3.86
r Cch( ’I’/C) ( )
In eq. (3.85) this therefore gives a contribution proportional to Pkl = 0.

The only non-vanishing term is obtained when 8 acts on Aqb,ca(), and

dL? G gy A /@
<W>quad—"%gf (chQf.c;). dn

where it is understood that the derivatives of the quadrupole moment are
evaluated at the retarded time ¢t — r/c. We observe that

on™ 0

on™ 9 fa™
dzt ot

T
6lm xlxm,

Aavyea @0 Nab 7g » (3.87)

r 73

_ lpim ,

. (3.88)

where P'™ = §'™ —n!n™ is the projector first introduced in eq. (1.35).*° Then

on™ 0

l —_— e ——
0 Aav,rg = Ozt Onm Aav.rg
1 _tm O
_lpm 9 3.89
P S Aabrg (3.89)
Using Aqp, fg in the form (1.36) together with
gi (™ 4 57, (3.90)
which follows from the definition of P¥, we find the identity
m 6
P Aappg = — (5 Aabig + TgMabis +naliv,rg + moBiafg) . (3.91)

on™

The last two terms give zero when contracted with the factor Ags, cq in eq. (3.87),
since the Lambda tensor is transverse on all indices, nqeAqb,ca = npAap,ca = 0.
Then

art G i, )
( 7 )quad = 55 € M (Qea@ro) / 2 Dabied (1 Aab,tg + NgMab,iy)

a ..

=5 € MQDuaQrg) / 2 (s hedig + ngMears) .

|

(3.92)
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Yas always, we do not need to be care-
ful about raising and lowering spatial
indices, since the spatial metric is §;;.
Otherwise, we should write n™ /9z! =
a/rypr.
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The angular integral can now be computed by inserting the explicit form of

the A tensor (1.39) and using the identities (3.21) and (3.22) (the term with

six factors A is proportional to n*n’ and vanishes when contracted with %!
so we only need the integrals with two and with four factors ).

dL? _2G
At ) quaa  15¢°

The calculation of the spin part gives

dSi) c’ ik'l/ 2
=" d2 (h,
<dt quad 167G (i’ i)

; s
- -6M<anch>/4ﬂ_

The result is

e (QraQya) - (3.93)

Aal,mnAak:,cd . (394)

Using eq. (1.36) we can prove the identity

1
‘-PmnA/cl,cd .

Aal,mnAak,cd = PlnAmk,cd - 5

The second factor gives zero contracted with ¢ and, again using the

identities eqs. (3.21) and (3.22), the remaining angular integration is
straightforward,

ds ) 49
< dt > ;6 ManQ(d/ })lnAmkh,cd
"/ quad

e
T 15¢5

Summing the spin and orbital contribution, we finally get the angular
momentum carried away, per unit time, by the GWs,

()
dt quad

where we recall again that the derivatives of the quadrupole moment are
evaluated at the retarded time ¢ —r/c.

M Qra@q) - (3.96)

2G
55

M (Qralia) (3.97)

3.3.4 Radiation reaction on non-relativistic sources

We have seen that gravitational radiation carries away energy and an-
gular momentum. Ultimately, this energy and angular momentum must
come from the source. We therefore expect that the energy and angular
momentum carried by the GWs, at a large distance r from the source

and at time ¢, were drained at retarded time ¢ — r/c from the energy

and the angular momentum of the source. In the full non-linear theory
of gravity (so, in particular, when dealing with self-gravitating sources),
one must however take into account non-linear effects in the GW prop-
agation from the source to infinity (such as back-scattering of gravitons

(3.95)

.
.
.
.

on the background space-time, graviton—graviton scattering, etc.). We
will see in Section 5.3.4 that, as a result, at higher orders in the post-
Newtonian expansion part of the gravitational radiation is delayed, and
the total GW consists of a wavefront, which travels at the speed of light,
and a “tail”, which arrives later. Thus, it is not at all obvious that there
is an exact equality, to all orders in the post-Newtonian expansion, be-
tween the instantaneous power radiated at large distances at a given
time ¢, and the rate of energy loss of the source at the corresponding
retarded time. We will discuss the issue in Section 5.3.5. However, as
long as we are in linearized theory, the background space-time is flat, the
wave propagates at the speed of light, and this energy balance argument
is inescapable.

For v/c < 1, the leading term is given by quadrupole radiation, so
the instantaneous rate of decreases of energy and orbital?? angular mo-
mentum of the source must be given by eqs. (3.75) and (3.97), i.e

dEsource G A e
P A LR (3.98)
dL! 2G n
SOUI(C — L “ . 9
e = — 5 € (Qrala) (3.99)

We have required that dFEsource/dt, computed at retarded time t — r/c,
be the negative of the power radiated at a large distance r in GWs, at
time t. Since the latter is expressed in terms of (Q” Q“) evaluated at
retarded time, as in eq. (3.75), we have obtained an equality between
dFsource/dt and —(G/ 505)<Q%7 Q”), both evaluated at the same value of
retarded time or, equivalently, at the same value of time (and similarly
for the angular momentum).

The multipole expansion assumes that the sources are non-relativistic
s0, at least to lowest order, the dynamics of the source is governed by
Newtonian mechanics, and it should be possible to describe the back-
reaction of the GWs on the source in terms of a force F. Then, we
expect that it should be possible to write eq. (3.98) in the form

%— — (Fwy), (3.100)
or more precisely, for an extended body,
quource 3 dF
—_— = d’x 3.101
dt = / av ( )

where dF;/dV is the force per unit volume. Similarly, we expect that
eq. (3.99) can be written as

dLt

Usource

s — (7%,

(3.102)

where T is the torque associated to the force per unit volume dF;/dV.
The average (...) takes into account the fact that the energy and angu-

lar momentum of GWs are notions well defined only if we average over
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20 Gravitational waves, as any feld,
carry away a total angular momentum
J* that, as we saw in Section 2.1.2,
is made of a spin contribution and of
an orbital angular momentum contribu-
tion. This total angular momentum is
drained from the total angular momen-
tum of the source which, for a macro-
scopic source, is a purely orbital angu-
lar momentum.
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several periods. The expression for this force, in the quadrupole approx-
imation, can be found as follows. Since inside (...) we can integrate by
parts (compare with Note 23 on page 35), we rewrite eq. (3.98) as

dEsource - __Ci<dQZ] dSQij
dt b dt  dt®

). (3.103)
From eq. (3.58) we have

dQi; " 1,2

73 - / d*z’ Oyp(t,x') <z;1; — §T/ dij) :

The term proportional to d;; gives zero when contracted with d°Q;;/dt>.
For a Newtonian source with 7°°/c? = p and T%/c = pv®, the conser-
vation of the energy—momentum tensor gives the continuity equation

(3.104)

Op + Ok(pvr) =0.

We then replace d,p by —0k(pvx) in eq. (3.104) and we integrate by

parts. The boundary term at infinity vanishes, because the body has a
finite extent, so p = 0 beyond some value r > a. Therefore

/dsa?’ Oep(t,x")wjal = /dax’p(t,x/)i:%(éikx; +dx)),  (3.106)

and

dEsource _ ﬁ dISQij

3.7 ! o
wer 20 [ pte )il

Of course, d°Q;;/dt° is a function only of time, and does not depend on
the dummy integration variable 2’. Then it can be carried inside the
integral, and eq. (3.107) can be written as

(3.107)

dEsource - / 3 /dFi ./
—a g

with a force per unit volume

(3.108)

2G

—TEP
5¢5

dF;

av’

d°Qy;
; dt® #(t).

(t,x")z (3.109)

Therefore the total force is

2G d°Qy;

Bo= =55

/dgzr:’p(t,x’):r’j, (3.110)

5¢5

Defining the center-of-mass coordinates by

z;(t) = ~/d3m'p(t,x'):1; , (3.111)
we find 0 50
— , ij
Fy =~ tma; “20 (3.112)

s A S A RS

(3.105)

S

We have deduced this gravitational force on the source considering the
GWs at infinity and imposing the energy balance. However, the mo-
tion of a particle under the effect of gravitational forces is completely
determined by the value of the metric and its derivatives at the par-
ticle location. Thus, it should be possible to deduce the hack-reaction
force (3.112) also looking directly at the metric in the near-source re-
gion, without invoking the energy balance. In other words, if one solves
for the gravitational field everywhere in space, in correspondence to a
GW solution in the far region, there must be terms in the metric in
the near region which, acting directly on the source motion through the
geodesic equation, produce exactly the effect that we have inferred from
the energy balance argument, i.e. provide the force (3.112). This corre-
spondence between the GWs in the far region and the metric in the near
region will be discussed in Chapter 5 in the appropriate context, which
is the post-Newtonian formalism. The result is that, indeed, in the near

region, among other terms that describe post-Newtonian corrections to

the static potential, there is also a correction to the metric coefficient
hoo of the form

20
Bhoo = ——5, (3.113)
with
G d®Qi;
(I)(f, X) = —5-25 TiZj dtSJ (t) . (3114)

This is known as the Burke-Thorne potential,?!

tonian force

and generates a New-

F, = —mo;®, (3.115)
in agreement with eq. (3.112).22 As we will discuss in detail in Chapter 5,
this term is singled out, and associated to radiation reaction, thanks to
the fact that it is odd under time reversal. Terms associated with conser-
vative forces are invariant under time reversal. In contrast, the emission
of radiation breaks time-reversal invariance through the boundary con-
ditions, since we impose that there is no incoming radiation (technically,
at minus null infinity, see Note 1 on page 102), while at plus null infinity
we can have outgoing radiation.

We now check that the force (3.112) also correctly accounts for the
angular momentum loss. The torque on a unit volume located at the
position xz; is

drl; dFy,
v =gy
2 &PQu
= ~FE qjkp(t,x)x]‘$lw s (3116)
where we used eq. (3.109). Then
2G d®
T, = “t5 Gz'jk“% /d?’a; p(t,x)z 2 . (3.117)
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21Higher—order corrections to the back-
reaction force are given in egs. (5.190)
and (5.191). When comparing these
results with eq. (3.114), observe that
egs. (5.190) and (5.191) are written in
terms of the variable hy, defined in
eq. (5.69) (which in the linearized limit
reduces to —huy), rather than in terms
of hyy.

220bserve that there is here an abuse
of notation. In eq. (3.114), z* is the
generic spatial variable. After tak-
ing the derivative with respect to a’
in eq. (3.115), we evaluate the force
on the actual location of the particle,
i.e. on the position z*(t) defined by
eq. (3.111), and this gives eq. (3.112).
For instance, for a point-like mass u
the quadrupole moment is Q;;(t) =
plzs () (t) ~ (1/3)8:;1x(2)|?], where
z(t) is the actual trajectory of the par-
ticle, rather then the generic spatial
variable z;. So Q;; is a given function
of time only, and 9; in eq. (3.115) does
not act on it.
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In the last integral we can replace z;x; by ;2 — (1/3)8;;7?
term ~ d;; gives zero contracted with €y d°Qp /dt°, so

, since the

QG d° Qi
7= €k qu a’

(3.118)
In eq. (3.102) actually enters <Ti>. Inside the average, we can integrate
by parts twice, and we get

20 .
— €inl(QraQyq) -

DCo

(T;) = — (3.119)
Comparison with eq. (3.99) shows that we have indeed correctly repro-
duced the expression for the angular momentum loss of the source.

It should be observed that this is also by far the quickest way to
derive eq. (3.97), without going through the formalism of Noether’s the-
orem and the more complicated algebra of Section 3.3.3. However, the
derivation from the Noether theorem is more general, since it holds
independently of the multipole expansion, and of whether or not the
back-reaction of GWs on the source can be described by Newtonian me-
chanics. It is also conceptually more satisfying, since it stresses that
the angular momentum carried by GWs is an intrinsic property of the
gravitational field, independent of the description of the source, that can
be computed by applying the standard methods of classical field theory,
as is usually done in all other field theories.

Finally, we expect that the change in linear momentum should be
given by dP'/dt = (F'). This is proportional to (z;(t)d5Qq;/dt5(t)).
Since the quadrupole moment is even under parity while z; is odd, the
integrand is odd and, for a periodic motion, its average over one orbital
period vanishes and therefore (F;) = 0. This is in agreement with the
fact that, in the quadrupole approximation, linear momentum is con-
served, see the discussion below eq. (3.83).

Gravitational radiation and the equivalence principle

The above results also allow us to clarify an apparent paradox related to
the equivalence principle. Consider, for simplifying the setting, a mass
p orbiting a mass M, in the limit M/p — oco. Thus, the light mass
p is accelerated by the gravitational field of the heavy mass M and,
according to our computations, it radiates GWs (while M is static and
does not radiate.) An observer at large distance from the source, well
into the far region, would then in principle be able to detect the waves
emitted, and would conclude that the mass p indeed emits gravitational
radiation.

Examine now the same situation from the point of view of an ob-
server freely falling together with the mass p. According to the equiv-
alence principle, for this observer, in a sufficiently small region around
the mass pu, the gravitational field vanishes. We have indeed seen ex-
plicitly in Section 1.3.2 how to construct such a freely falling frame all
along a geodesic. In this frame the mass p is not accelerated, and the

corresponding observer should then conclude that the mass ;o does not
radiate, contrary to the findings of the observer at infinity.

This apparent paradox can be understood recalling that the equiv-
alence principle holds only locally, i.e. in a region around the mass p
much smaller than the typical scales of spatial variation of the gravita-
tional field. One such scale is the length X, over which retardation effects
become important (and which determines the wavelength of the GWs
detected by the observer at infinity.) Then, conclusions based on the
equivalence principle can be valid only up to a distance r from the mass
., much smaller than X.23 This means that the equivalence principle at
most gives us informations on what happens in the near zone r < X;
GWs rather appear in the far zone r > X, so there is no paradox in the
fact that, using arguments valid only for r» < X, one does not see them.
The presence of gravitational radiation at infinity is reflected, in the
near zone, in the existence of the force given by egs. (3.114) and (3.115).
However, in the near region retardation effects are negligible, so this
term just gives a correction to the static gravitational force, which fur-
thermore is hidden behind other, much larger, corrections. We will see
in fact in Chapter 5 that, in an expansion in v/c, the radiation-reaction
force is of order (v/c)® (as it is already clear from the factor 1/c° in
eq. (3.114)), while the Newtonian gravitational field receives general-
relativistic corrections, corresponding to conservative forces, already at
orders (v/c)? and (v/c)*. All these tidal-like terms, however, in the far
region decrease much faster than 1/7, leaving us with the radiation field
only.

3.3.5 Radiation from a closed system of point
masses

For a point-like particle moving on a given trajectory xo(t), in flat space-
time, the energy-momentum tensor is?*

x) = 27" (3.120)

ym

T (t, ~ 5 (x —x0(t)),

where v = (1 —v?/c?)7Y/2, and p* = ym(dzl/dt) = (E/c,p) is the
four-momentum. If we have a set of point particles labeled by an index
A, moving under their mutual influence on trajectories a4 (¢), the total
energy—momentum tensor of the system is therefore

Parh -
TR (%) =Y =254 63 (x — x4 (1))

T ATA
dxA dzA @)
=D ama T A xa), (3120
and in particular
Teon (%) Z’YA"”AC 63 (x —x4(t)). (3.122)

A
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231 fact, » must also be much smaller
than the scale of spatial variation of the
quasi-static tidal gravitational fields
near the mass p, which in turn is much
smaller than X.

24See, e.g. Landau and Lifshitz, Vol. II
(1979), eq. (33.5), or Weinberg (1972),
Section 2.8. In curved space-time the
expression for THY must be further mul-
tiplied by 1/4/=g, see, e.g. Straumann
(2003), eq. (5.83).



122 Generation of GWs in linearized theory

Z5Recall from eq. (3.37) that M% is ac-
tually the second moment of 790/c2.
However, since we usually compute it in
the non-relativistic limit, with an abuse
of language we will often call it the sec-
ond mass moment.

If the system is closed, i.e. no external forces are acting on it, the
total energy-momentum tensor of the system is conserved, and we can
consistently use eq. (3.121) on the right-hand side of the wave equation
(3.3). It is important however to realize that, if we consider a single
particle moving on a pre-assigned trajectory zo(t), we cannot compute
the gravitational radiation that it generates by simply plugging 2o(t)
into eq. (3.120) and then using eq. (3.9). Such an energy-momentum
tensor is in fact not conserved, as a consequence of the fact that, if
the particle moves on a path that is not a geodesic of flat space-time,
there must be external forces acting on it. To have a conserved energy-—
momentum tensor, we must also include in our description all objects
that generate a force on the particle.

Since the conservation of the energy-momentum tensor in flat space-
time Is a consequence of the invariance under space-time translations,
an equivalent way to pose the problem is to ask what happens to the
multipole moments if we perform a shift of the origin of the coordinate
system. To understand this point it is sufficient to restrict ourselves to
the non-relativistic limit, i.e. to the quadrupole approximation, and to
ask what happens to the quadrupole moment if we change the origin of
our coordinate system. For a set of non-relativistic particles, labeled by
an index A, we see from eq. (3.122) that the second mass moment is?®

MY (t) = "ma / o a'e's®) (x — x4(t))
A

= ZmAmQ(t)wi(t). (3.123)
A

Under a constant translation, z° — 2 4+ a’, MY acquires an additive
contribution

MY(t) — MY (t) + o' ZmAa;i;(t) +d’ Z??%Awi;(t) +a‘a’ ZmA ;
A A

A
(3.124)
s0 its value depends on the choice of the origin. However
MY — M +a° ZmAmeX +af ZTWALEfgi
A A
= M"Y +a'PL, +ad'Pt,, (3.125)

where Pl = 3 , mad?, is the total momentum of the (non-relativistic)
system. For a closed system, P, is constant and therefore M% is in-
variant. Since h,};T depends on the second time derivative of M;;, the
gravitational radiation is not affected by a shift of the origin, as it should
be, since hiTjT (as any other field, in any field theory) is a scalar under
translations. It is important, however, that we have a closed system
where all particles have been included, and no external force is present.
In the presence of external forces, the energy—momentum tensor of mat-
ter is not conserved, or equivalently the multipole moments and all their
time derivatives depend on the choice of the origin of the coordinate sys-
tem, and the whole formalism that we have developed is not consistent.

However, the procedure of taking a given trajectory xo(t), plugging
it into eq. (3.120), and computing the corresponding GW production,
becomes correct when xg is the relative coordinate of an isolated two-
body system in the center-of-mass frame, and x¢(t) is the actual time
evolution of xg, as determined by the mutual interaction between the two
bodies. To understand this point, we define as usual the center-of-mass
coordinate by

mi1X1 + MaXa

XoM = (3.126)

my + Mo
and the relative coordinate xg = x; — X2, and we denote by m = mj+mas
the total mass and by u = myms/m the reduced mass. Then, for a non-
relativistic system, the second mass moment can be written as

MY = myaiz] + mezhal

= mabyrhy + p(Th ) + thyah) + pahrd . (3.127)
Therefore, if (and only if) we choose the origin of the coordinate system
at xcm = 0, the quadrupole moment becomes the same as that of a
particle of mass p described by the coordinate zg(t). If we rather opt
for an origin with non-vanishing xc, then the first term in eq. (3.127)
is a constant and does not contribute to the production of gravitational
radiation, but the second is non-vanishing and time-dependent, since
x = zo(t), and therefore contributes.

Thus, if we describe the system using x; and X», we can fix the origin
of the reference frame at will, since P{, is conserved, and therefore the
quadrupole moment is invariant under a shift z° — z* + . Alterna-
tively, we can adopt the CM point of view, and we are left with a single
effective particle of mass p and coordinate x§(¢). This is formally iden-
tical to working with x; and x», S0 it is a consistent and correct way of
computing GW production. However, in this case we no longer have the
freedom to shift the origin of the reference frame, since this description
is only valid in the CM frame, where xcm = 0. In the CM frame, the
mass density is then

p(t, %) = 18 (x — x0(t)) | (3.128)
the second mass moment is
MU (t) = pab(Hai(t), (3.129)
and the mass quadrupole is
. . . 1 i
@) = (a0 — 33007 (3.130)

Having understood this point, it makes sense to ask about the radiation
emitted by a two-body system whose relative coordinate performs a
given periodic motion, say simple harmonic oscillations. Suppose that
the relative coordinate xo(t) performs a simple periodic motion with
frequency ws, say along the z direction,?®
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261 a one-dimensional motion this ex-
ample would be quite unrealistic, since
the two bodies would go through each
other whenever coswst = 0. How-
ever, this is just an example to illus-
trate what happens to a typical oscil-
latory mode of a system. For instance,
one can consider an elliptic motion on a
plane, which is the combination of two
simple oscillations along the two axes.
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20(t) = a1 coswst . (3.131)
Then
MU (t) = 6693 puzg ()
R pJa,Q
= §13§93 f (1 4 cos 2wqt). (3.132)

Since the GW amplitude depends on the second derivative of M . the
constant term does not contribute and the only contribution to h;.f.T
comes from the term proportional to cos2wgt. From eq. (3.55), we see
that the corresponding waveform hiTjT oscillates as cos 2wgt. This shows
that o non-relativistic source performing simple harmonic oscillations
with a frequency ws emits monochromatic quadrupole radiation ot w =
2wWs.

However, the fact that the quadrupole radiation is at twice the source
frequency is only true if the source performs a simple harmonic motion.
For instance, if the motion of the source is a superposition of a periodic
motion and of its higher harmonics, e.g. if

zo(t) = a1 coswgt + ag cos2wst + ..., (3.133)
then 22(t) contains the term
a2 cos? wyt = al }iczi%j—éf , (3.134)
considered above, plus a term
a2 cos? 2wt = a li%—s% : (3.135)

which gives radiation at wgy = 4ws, etc., but also mixed terms such as

2a1as cos(wst) cos(2wst) = aras (coswst + cos 3wst) . (3.136)

Therefore in this case quadrupole radiation is emitted at all frequencies
nw, for all integers n, both even and odd, including n = 1. We will see
an example of this type in Section 4.1.2, when we study the radiation
emitted from a mass in a Keplerian elliptic orbit.

An even simpler example is given by a system of two masses connected
by a spring with rest length L (see Problem 3.1). In this case the relative
coordinate satisfies

20(t) = L + acoswst, (3.137)

and in z2(t), besides a constant and a term (a*/2) cos 2w,t, we also have
a term 2Lacoswst, so the spectrum of gravitational radiation has two
lines, one at w = wy, and one at w = 2w,. As we have discussed above,
the whole procedure of computing GWs from a source on a preassigned
trajectory zo(t) is consistent only if zg(t) is a relative coordinate in the
center-of-mass frame. Therefore we do not have the freedom to shift
the origin of the coordinate system, which otherwise would allow us to
eliminate L.

:
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3.4 Mass octupole and current quadrupole

We now examine the next-to-leading term of the expansion (3.34),

1 4G A Skl,m
(hi5") = = N (B)nm SHT(E —1/c)

next—to—leading roc®

(3.138)

By definition Sklm i symmetric in kI, and it has no special symmetry
with respect to the exchange of k with m. We have seen in eq. (3.54)
that

l]’\jklm n 1 (Pk,lm 4 plkm _ 2}'jm,kl) )

Svk'l,m —
6 3

(3.139)

Therefore $¥™ separates into a totally symmetric tensor 1™ plus a
tensor with mixed symmetry. The meaning of this separation from the
point of view of group theory is explained in Problem 3.4, in the Solved
Problems section. The totally symmetric term generates mass octupole
radiation, while the term with mixed symmetry is called the current
quadrupole.

Mass octupole

We consider first the mass octupole radiation. The mass octupole OFklm
is defined removing all traces from A ijk

Oklm — ]\/[klm _ é <5kl]\4—k/};'m + 5km]wk/zk’ + (Slkak/k/) ‘ (3.140)

Using the fact that Ay () is transverse and traceless, we see that the
contraction of the trace part with Ay m (R)n, gives zero, and we can
use MFm or @K™ interchangeably in the expression for h,;l;T. Therefore
the mass octupole contribution to h,;g-T can be written as

(W), = % %Amm ()@ . (3.141)
Similarly to the case of quadrupole radiation, the use of OF™ s nicer
from a group-theoretical point of view, since it is a pure spin-3 tensor,
see Problem 3.4, while the use of M%7 k ig simpler in actual computations.
We will use M*™ and OF™ interchangeably in eq. (3.141).

Observe that, when we consider quantities quadratic in h;»I]‘-T, as for
instance the radiated energy, there is no interference between the mass
quadrupole and the mass octupole terms because they have different par-
ity. Under a parity operation, x — —X, the mass density is a true scalar,
and therefore the quadrupole is invariant while the octupole changes
sign (for the same reason, in electrodynamics there is no interference
between dipole and quadrupole radiation.) More generally, we will see
in Section 3.5 how to systematically organize the multipole expansion
50 that there are no interference terms to all orders.

Comparing the mass quadrupole and the mass octupole we see that,
while the contribution to the GW amplitude from the mass quadrupole
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is proportional to the second time derivative of M%, the contribution

from the mass octupole is proportional to (1/¢) times the third time

derivative of M**. If d is the typical dimension of the source, the tensor
MUk differ from M%¥ by a factor O(d). Each time derivative carries

a factor O(ws), where w, is the typical frequency of the movement of

matter inside the source, so (1/¢) M = O(wed/c)M¥. Since wyd ~ v
is the typical velocity inside the source, the octupole contribution to kLT
is smaller than the quadrupole contribution by a factor O(v/c), and the
contribution of the mass octupole to the radiated power is smaller than
the contribution of the mass quadrupole by a factor O(v?/c?).

Consider now a two-body non-relativistic system whose relative coor:
dinate in the center-of-mass frame is described by a function z}(t), and
has a reduced mass u. Then, similarly to eq. (3.129), to lowest order in
v/c (e.g. replacing 7% /c? with the mass density), we have

MIR(E) = purh(8)a (£)h (1),

Suppose now that zo(t) performs simple harmonic oscillations with fre-

quency ws. Then, each factor :cé(t) is the superposition of a term oscil-
lating as €™** and of a term oscillating as e~™s*, so M™% ig the sum
of terms oscillating as e¥™s* and of terms oscillating as e*3*s*, There-
fore a source performing simple harmonic oscillations at o frequency ws
emits octupole radiation ot w = ws and ot w = 3ws.

If a non-relativistic source performs simple harmonic oscillations, then
its energy spectrum is made of a stronger line due to quadrupole radi-
ation at w = 2wy, plus two smaller “lateral bands” due to the octupole
at w = ws and at w = 3wy, as we will see in more detail in Problem 3.3.
Recall however from Section 3.3.5 that periodic trajectories that are
not simple harmonic motions produce a more complicated spectrum, in
which the quadrupole can already contribute to all frequencies nwsy, for
all integer n.

The power emitted per unit solid angle by the octupole moment is
computed inserting fL?;J-T, obtained from eq. (3.141), into the expression
for the power given in eq. (1.153). This gives

32

Poct = m ds) <(;L3;T)(3Ct(i?,;gl‘)ocﬁ
S 4G2 JAOkm d40k’l'm'
T 327G 90\ttt
Using the property (1.37) of the Lambda tensor, together with A;; =

Agiij, we have Aj; i = Agpr. Then, renaming the indices, we
get

(3.143)

>/dQAij,klAz'j,k/l’77/mnm’-

G d40ijm d40klp A
T\ ai / AN (B
To integrate over the solid angle we need the identities (3.21) and (3.22),
together with eq. (3.23) with [ = 3,

dQ 1

- NNt My — —=
4 Y 105

Poot = (3.144)

<5ij5kl5mp +...), (3.145)

(3.142)

|
.
.
.
.

where the dots denote the other 14 possible pairings of indices. Using
the fact that OY* is totally symmetric and traceless, the contractions
are straightforward, and we get

G d40ijk d40ijk

Poc -
CTI89CT Y dtt gt

(3.146)

Current quadrupole

The current quadrupole is given by the second term in eq. (3.139). Its
physical meaning can be understood observing that, from the definition

(3.41),
Pk,lm + Pl,km = QPm,ki
— -1-/d3.73 [TOkCL‘l:L“m + TOixkxm . 2T0m.’12kxl]
c

1 . 3 3 3
- /ddl {ZL‘I(ZL’mTOk _ kaOm) + xk.(l,mTOZ _ xlTO’")]
C

= /d3$ [ll]mk_’_xk 'mi] ,

(3.147)

where

; 1
gk
J c

(2 T% — 2799 (3.148)
This is the angular momentum density associated to the (4,%) plane.
We write 57% = €/%j! where j! is the I-th component of the angular
momentum density vector, and we define

JH = / &z jtal (3.149)

so J49 is the first moment of the angular momentum density (i.e. the
dipole moment of the angular momentum distribution). Then we get

Pk,lm + Pl.,km _ 2Pm,kl — €mk;on,l =+ 6mlpl]p,k ) (3150)
Therefore the current quadrupole is the first moment of the angular
momentum density of the source, symmetrized over the indices k,[. Its
contribution to the GW amplitude can be written as

146G

curr quad ; 3cd

(57)

i A it (D)1, (emkap’l + emlpJp’k) . (3.151)
We will indeed see in the next section that the full multipole expansion
can be organized systematically so that it is determined by two types
of objects: the momenta of the energy density of the source (which, to
leading order in v/¢, are the same as the momenta of the mass density),
like the mass quadrupole Q%, the mass octupole Q%% etc., and the
momenta of the angular momentum density of the source, such as the
current quadrupole.
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The power associated to the current quadrupole is computed just as
we have done for the mass quadrupole and mass octupole: we write

cPr? P TT P TT
Pcm‘r quad — 327TG /dQ <(]LLj )Curr quad(h’ij )curr quad>

3 2
c®  16G
= 327G 010 / A A e
T ,
[ P " [ 1 g7 IR TW 7o
% <(€mkp’]'p,l + EmlpJp,k) (6171 k'p JP N + Emv U'p JP k )> 7

(3.152)

where we used again Ajj plij e = Mgy The angular integration is
performed using the identities (3.21) and (3.22). Observe also that the
term in the Lambda tensor with four factors of n, i.e. ngnmnpny (see
eq. (1.39)) does not contribute since, together with the factors n,n., in
eq. (3.152), it gives a totally symmetric tensor n,n;nm,ng nyny,,, which
vanishes upon contraction with e or ™7,

When performing contractions, we also make use of the fact that J*J

is traceless, since
J'L,i — /dBIL’lﬂ'jz
1

== /d% gtk i TR = 0 (3.153)
c.
(the sum over ¢ is understood). Then, we get
16G TP
Pcurr quad — 2130—7 <j J j J> s (3154)

where we introduced the traceless symmetric matrix
Jbd o Jid

E -”—'2—— 5

that is, the symmetrization of the dipole moment of the angular momen-

tum density. Putting together the power radiated by the mass quadru-
pole, current quadrupole and mass octupole, we therefore get

Ve (3.155)

e 1 16 o o
P=—=12(QuQy) + 5 7= (Jij Tuj)
c |5 c? 45 (3.156)
L1 O a0 (1 '
tasy VTam am )|

where O(v*/c*) denotes the contributions from higher orders in the mul-
tipole expansion. In this formula, one must be careful to include in @y
also its first corrections O(v?/c?), since it gives a contribution to the
power of the same order as that due to the mass octupole and current
quadrupole. This means that Q);; here is not simply the quadrupole of
the mass distribution. Rather, we must go back to its original definition
in terms of 7%, see eq. (3.37) and include in 7% not only the terms of

.
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order pc?, where p is the mass density, but also the terms of order pv?.
Furthermore, the time-dependence of the leading term must be com-
puted using the relativistic equations of motion, including corrections
up to O(v?/c?).

It is quite difficult to imagine a realistic physical system for which
the time derivative of the mass quadrupole vanishes, but still the mass
octupole is time-varying. For this reason, the mass octupole is always a
correction to the leading term. However, there are interesting physical
situations where both the mass quadrupole and the mass octupole are
constant in time and therefore do not contribute to GW production,
while the current quadrupole still contributes, so it becomes the leading
term. To have M* and M'* constant, in fact, it suffices that the energy
density 7% be constant. Then all the mass momenta are constant, see
e.g. eqgs. (3.35)-(3.38). Still, the angular momentum density and its
momenta, such as its dipole J%7, are not necessarily constant. Consider
for example a ring in the (z,y) plane with a uniform mass density p,
rotating around the z axis. Even if any single volume element of the
ring rotates, this rotation does not induce any temporal variation in
the density p since the ring is spatially uniform, so all mass moments
are constant.?” However, this ring has non-vanishing angular momentum
along z. To obtain a system with a dipole moment of angular momentum
J, we can simply take two rings, both rotating around the z axis, but
one counterclockwise and one clockwise, as in Fig. 3.3. The upper ring
has a positive J* while the lower one has a negative J#, so it is clear
that the whole system has a non-vanishing dipole moment J*7%.28

If the rotational velocities of the rings are not constant, this dipole
moment of the angular momentum is time-dependent. A physical ex-
ample of a system of this type is provided by the torsional oscillations
of a neutron star. It is possible that, either because of some external
perturbation, or because of a “corequake”, the upper hemisphere of a NS
suffers a clockwise torsion while the lower hemisphere receives a counter-
clockwise torsion (with the equator which, by symmetry reasons, stays
fixed). Then the two hemispheres will start oscillating back and forth in
opposite directions, so that when one rotates clockwise the other rotates
counterclockwise, and vice versa. This system will then emit current
quadrupole radiation, but not mass quadrupole nor mass octupole radi-
ation. Another important example of this type is the r-mode of neutron
stars, which will be discussed in Vol. 2.

It is therefore worthwhile to study the current quadrupole radiation in
more detail, and derive its angular distribution. First, we compute the
amplitude of the GWs radiated in the z direction. This is quite simple,
since we just have to substitute n = (0,0, 1) into eq. (3.151). Using the
explicit expression for the Lambda tensor, eq. (1.39), and recalling that,
for a wave traveling along z, h1; = hy and his = hy, we obtain

1 4G . .

1]7,+ = ; 3—65“ (JI,Q ‘!‘ J2,1) ; (3157)
1 4G . .

hx = - -= (JQ;Q — Jl,l) . (3158)

r 3¢
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2T0ne might wonder how it is possi-
ble that there is no quadrupole radi-
ation from the whole ring, given that
every single mass element is in rotation
and therefore radiates GWs. From this
“microscopic” point of view, the answer
is that the total amplitude is the sum
over the contribution of all the mass el-
ements, and these contributions inter-
fere destructively, so that the total GW
amplitude h;; vanishes.

281t also has a non-zero J®%® and JVY

(consistent with the condition J%? =
0). This can be seen by drawing the di-
rection of the angular momentum vec-
tor 6J = (dm)r x v of various mass
elements, where r is measured from
the origin of the coordinate system, see
Fig. 3.3. We see for instance that both
the infinitesimal mass elements labeled
a and ¢ have JY < 0 and are at a coordi-
nate y > 0, therefore their contribution
to JY'Y is negative. Similarly, for the
mass elements b and d we have JY > 0,
but they have a coordinate y < 0, so
their contribution to J¥¥ is again neg-
ative.
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Fig. 3.3 T'wo rings, both with uni-
form mass density, one rotating
counterclockwise and one clockwise.
The arrows show the direction of the
angular momentum §J = (§m)r x v
(with r measured from the origin of
the coordinate system, rather than
from the center of each disk) of four
infinitesimal mass elements, labeled
a,b,c,d.

29001nparing with eq. (3.72) we see
that the angular dependence is the
same as for the mass quadrupole, if we
replace M;; by J; ;, and we exchange
the roles of hy and hy (with an ad-
ditional minus sign for (Ax)curr quad-
This was already clear from a compar-
ison of egs. (3.157) and (3.158) with
egs. (3.65) and (3.66), and from the fact
that both M;; and J;; transform as
rank-2 tensors under rotations.

To obtain the amplitudes h, and hy for a GW propagating into an arbi-
trary direction, we proceed as we did for the mass quadrupole, between
eqs. (3.67) and (3.72). We first write

1 4G
he= =2z (Jiot Jo1)s (3.159)
1 4G
= —J! 3.160
h’>< r 305 ( 1, 1) ( )

where J/ ; are the components of the angular momentum dipole in the
(4, ¥ n) frame defined in Fig. 3.2. Since J;; is a spatial tensor with
two indices, it transforms under rotation just as we found for M;; in
eq. (3.71), i.e. Ji ; = RiiRuj ik, with R given by eq. (3.70). Performing
the matrix multiplication, we get

(850, 0) | ousr quaa = % gg [ (J11— Jaz2)sin2¢cosd
+(J1 9+ J2 1) cos 2¢ cos
(J1 3+ Js 1) cos ¢sinf
+(J23+J3 2) Singbsin@}, (3,161)

—J1.1(cos? ¢ — sin® ¢ cos® 6)
—Jg,g (sin® ¢ — cos? ¢ cos® )
+J3.3 sin? @

+(Jio+ Jo1)sindcos ¢ (1 + cos? 0)
—(J1,3+ Js.1)sin ¢sin 6 cos O
*(jz}g + js,z) cos ¢ sin @ cos 6] .

G
N (t; 0, ¢)!curr quad — . 5 {

(3.162)
This gives the angular distribution of the current quadrupole radiation,?
for JbJ arbitrary (but satisfying the zero-trace condition Ji; + Jo 2 +
J3,3 = 0). To check these equations we can plug them into the expression
(1.154) for the angular distribution of the power in terms of Ay and hy,

aP A2

bl 3.163
df) 167G ( )

Performing explicitly the integral over d2 = d¢df | sin 6], we verify that
we get eq. (3.154) back.

Linear momentum losses

Finally, it is interesting to observe that the leading term contributing
to the loss of linear momentum comes from the interference between
the quadrupole term and the next-to-leading term (i.e. the octupole
plus current quadrupole). In fact, recall from eq. (1.164) that dP*/dt is
proportional to

(3.164)

kg

/dQ hTTa RET .

3.5
Using egs. (3.59) and (3.138) we write
h ;TJT {hFT]quad + [hiTjT]next~to—leading
12G
= A { ij anS;,IJ“En , (3.165)

where ng = Az-j)le.'kl,m. In the product hg‘jTﬁkhg;T we have diagonal
terms and interference terms between the quadrupole and the next-to-
leading term. The diagonal terms are proportional to

/ dQ QL o QL" (3.166)

for the quadrupole, and to

/ ds2 (71;5’53) Ok (nmSgﬂl) ,

for the next-to-leading term. Because of parity, these angular inte-
grals vanish if the integrand is the product of an odd number of factors
ni. Therefore, we need to count the number of i in these expressions.
The TT projection is performed with the Lambda tensor, which has
an even number of factors fi. As for the derivative 8 which appears
in egs. (3.166) and (3.167), recall that, on a function of r, 9 f(r) =
(Opr) df /dr = n*df /dr, while Oyn' = O(a'/r) = (1/r)(6F — nink).
Therefore the effect of J is always to lower or to raise by one the num-
ber of factors nt, i.e. to transform a term with an even number of fi in
a term with an odd number, and vice versa.

Then, we see that the diagonal terms in egs. (3.166) and (3.167) have
an odd number of factors n, so their angular integral vanish. In the
interference terms, such as

(3.167)

/ A5 o (ST ) (3.168)
the integrand is even in fi and in general is non-vanishing. So, while the
radiated energy only gets contributions from the diagonal terms (as we
will verify to all orders in the multipole expansion in the next section),
the radiated momentum only gets contributions from the interference
between multipoles of different parity, in order to compensate for the
minus sign acquired by the derivative d; under 1 — —1.

3.5 Systematic multipole expansion

In eq. (3.34) the multipole expansion has been organized in terms of
tensors such as Sk, gkhm & klmims “ete. which have two sets of indices
(separated by a comma), the first always made by two indices k, [ and the
second made by a generic number of indices, m1,...,mx. These tensors
are symmetric under the exchange of £ and [, and are also symmetric
under the exchange of indices in the mq, ..., my set. However, they have
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no special symmetry property under the exchange of indices between the
two sets (and they are in general not traceless under contraction of pairs
of indices). At next-to-leading order, we separated by hand the term
SEL™ into two contributions, one corresponding to mass octupole and
one to current quadrupole. The reason underlying this separation is
group-theoretical. As we discuss in Problem 3.4, this corresponds to
a decomposition into irreducible representations of the rotation group.

To generalize such a construction to arbitrary orders in the multipole.

expansion, we must introduce a complete set of representations of the
rotation group, for all multipoles. There are two particularly convenient
ways of doing that. One is to consider tensors which are symmetric
and trace-free (STF) with respect to all pairs of indices. This formalism
will be introduced in Section 3.5.1, and we will use it extensively in
particular in Chapter 5. A second possibility is to introduce the spherical
components of tensors and the tensor spherical harmonics, which is the
approach that we discuss in Section 3.5.2

To illustrate these two different approaches, it can be useful to begin

our discussion by recalling how the multipole expansion works in the

simpler case of a static situation, governed by a Poisson equation of the
form
Vi = —drp, (3.169)

which would be the case, e.g. in electrostatics or in Newtonian gravity.
We consider a stationary source with density p(x) localized in space, so
p(x) =0 if r > d, where d is the source size. The most general solution
in the external region r > d can be written as

0 l
o) =dn 3 3 2 Yiml89),

; I+1
=0 m=-—1 20+1 T

Vi (6, 6)
2 Im\Y, o
v {—Tm““} =0,

(3.170)

In fact, for r > 0,
(3.171)

as can be seen immediately from the expression of the Laplacian in

spherical coordinates,
1 0 [ ,0¢ L2
2, - P2 _
Vi (x) 72 Or <r (9r>

), (3.172)
.

together with the property 12y, = 1(I+1)Y},, of the spherical harmon- .
ics. Then, in the external regionr > d, all terms in the sum in eq. (3.170)
are separately solution of the vacuum equation V¢ = 0. The fact that

eq. (3.170) is the most general vacuum solution follows from the fact
that the spherical harmonics provide a complete set of representations
of the rotation group. On the other hand, the solution of eq. (3.169)
(subject to the boundary condition that ¢ approaches zero as r — o)
can be written in terms of the Green’s function of the Laplacian, as

009 = [ Py

p
Ix —y]

(v),

(3.173)

3.5

which is valid both for x inside and outside the source. Outside the
source we have |x| > |y|, and we can use the addition theorem for

spherical harmonics®® in the form
1 L R
|X — yl = 47TZ Z 2l £ 1 pi+l 1/l;k’n,(QI) ¢),)Yim(07 95) s (3174)
1=0 m=—1

where we used the notation |x| = r and |y| = r/; (6,¢) are the po-
lar angles of X and (¢,¢') of y. Inserting this identity in eq. (3.173)
and comparing with eq. (3.170) we find the expression for the multipole
coeflicients (Qy, in terms of the source density p(x),
. « l

le = /dgy ng(ﬁl, (,b/)T’/ p(y) . (3175)
So, eq. (3.170) gives the most general solution of the vacuum equation,
and eq. (3.175) fixes the coefficients @, in terms of the density of the

source.
An alternative way of performing the multipole expansion is to write

1 _ 1 4 1 1 i,,7 1
byl TR R
©(—1) . . 1
-3 ( z') v o, "'a”m‘ (3.176)
1=0 ’

We then make use of the fact that, for » > 0, and therefore in particular
outside the source, we have V2(1/|x|) = 0, as can be checked again from
eq. (3.172).31 Then, in eq. (3.176) we can replace 3%/ with the traceless
combination yiy’ — (1/3)6¥|y|?, and similarly we can remove all traces
from the tensors y* ...y%. Then, inserting eq. (3.176) into eq. (3.173),
we get

(%) —i CY b0yt (3.178)
- e i! 11 21 Y1 k23 ‘X[ b -
where
Qiy.dy = /dg’y y<i1 o yil) o(y), (3.179)

and the brackets in ¢ ... y* means that we must take the symmetric-
trace-free (STF) part of the tensor y* ...y%. We therefore have two
equivalent formalisms for the multipole expansion of a scalar field that
satisfies the Poisson equation (3.169), either in terms of spherical har-
monics, or in terms of STF tensors.

For applications to electrodynamics or to gravitational waves, we need
to generalize the above results in two ways. First, we do not have a
scalar field but rather a vector field A, or a tensor field iL,L,,. Second,
we do not have static fields governed by a Poisson equation, but rather
time-dependent fields whose wave equation involve a d’Alembertian op-
erator, such as OA, = —(4n/c)J, in electromagnetism, and eq. (3.3)
for GWs. For dealing with non-stationary fields, a possible route is to
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3OSee, e.g. Jackson (1975), Section 3.6.

31 More generally,

1

v2m = 47BN (%), (3.177)
X

ie. G(x—y) = —1/(4n|x — y|) is the
Green’s function of the Laplacian.
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Multi-index notation

321, general, it can be shown that the
irreducible tensor representations of a
group are those that give zero when
contracted with the invariant tensors
(i.e. with the tensors whose form is
unchanged by a group transformation).
For SO(3) the invariant tensors are
8;; and €;55. In fact, if Ry; is rota-
tion matrix, &;; transforms as §;; —
RikRjidr, as for any tensor with
two indices. However, R Rjip =
RikRjr = &i5 because R is an orthog-
onal matrix. Similarly €;; is invariant
because the determinant of R is equal
to one. The condition that the con-
traction of any two indices of a tensor
with an epsilon tensor gives zero sin-
gles out totally symmetric tensor, and
the condition that the contraction with
d;; gives zero gives the condition of zero
trace, for any pair of indices.

perform a Fourier transform in time (but not in space), thus reducing
the d’Alembertian operator Dé(t,x) to (V* + k*)dy(x), so that outside
the source the field satisfies a Helmholtz equation (V? + k?)¢y(x) = 0.
For vector or tensor fields this can be combined with the use of vector
and tensor spherical harmonics, respectively. In electrodynamics, this is
the approach discussed in Chapter 16 of Jackson (1975). However, this
approach does not make explicit the time integration linking the mul-
tipole moments to the actual evolution of the source, and furthermore
yields somewhat complicated final expressions. Thus, in Section 3.5.1
we rather follow an elegant approach, based on ST tensors, which gives
a simple and unified treatment of scalar, vector and tensor fields. This
formalism will be used extensively in Chapter 5, in the study of post-
Newtonian sources.

The generalization of the approach based on spherical harmonics to
the vector and tensor case leads to a more complicated formalism, which
nevertheless can be useful in various instances (e.g. for classifying the

extra polarization states of GWs in alternative theories of gravity), and \

we study it in Section 3.5.2.

3.5.1

We begin by introducing a useful multi-index notation, due to Blanchet
and Damour, where a tensor with [ indices 4142 ...%; is labeled simply
using a capital letter L,

Symmetric-trace-free (STF) form

Fr, = Fiyiy. i, - (3.180)

Similarly, G,z denotes a tensor with {1 indices, Gz = Gy 4y...4,, While,
e.g. Fip_1 is a notation for Fj,i,..4,_,. Furthermore, J is a notation
for 9;, ...0;,, and we will also use the notation zp, = @i, 24, -+~ 25, and
Ny = N, Ny -+ Ny, Where ng = x;/r is the unit vector in the radial
direction. In expressions such as FrGp, with repeated L indices, the

summation over all indices 41, %9, . .., % is understood, so
FrGr = g Fi Gy - (3.181)
i1

We use round brackets around indices to denote the symmetrization, e.g.
agig) = (1/2)(aij+ajz:), and we denote by a hat the symmetric-trace-free
(STF) projection. That is, the notation K means that, starting from
the tensor with ! indices Ky, ;, we symmetrize it over all indices, and
remove all the traces. The operation of taking the STF projection can
also be denote by brackets around the indices, so K, can be equiva-
lently written as K (ry. The latter notation allows us to write compactly
the STF operation between indices belonging to different tensors, e.g.
€ij(kAL—1y;, means that we perform the STF operation among the index
k of €;5; and the first [ — 1 indices of Ay, 414

A STT tensor with [ indices (i.e. of rank ) A4;, .. ; has 2+ 1 indepen-
dent components and is therefore a representation of dimension 2/ + 1
of the rotation group SO(3). The crucial point is that these representa~
tions are irreducible.?? On the other hand, we know from the theory of

.
-
|
.
.
-
|
|
:
.
é
.

representation of the rotation group that the irreducible representations
of SO(3) are labeled by an integer value [ = 0,1,,..., and have dimen-
sion 20 +1, so we see that the set of all STF tensor, for all possible ranks
I, gives a complete set of representations of SO(3).

A generic tensor does not provide an irreducible representation of the
rotation group, and can be decomposed in irreducible representation, i.e.
expressed in terms of STF tensors and factors §;; and €;;5. The simplest
example is the decomposition of a generic tensor with two indices T7;.
Writing

1 1
Ty = 5(Tij + Tji) + 5 (Ti — Tja)
we have decomposed Tj; into its symmetric part S;; and its antisym-
metric part A:L'j. Deﬁning Ak = €ijkA/ij’ we have Aij = (1/2)€zjkAk
Furthermore, defining S as the trace of S5, i.e. S =S5y, we can rewrite
eq. (3.182) as

1 .
gSOij) , (3183)

1 1
Tij = gSéw -+ §€¢jkA;g + (Si,? -

which shows explicitly the decomposition of a generic rank-2 tensor T;;

into a scalar S, a vector Ay and a rank-2 STF tensor S;; — (1/3)56;;.%
We now examine separately the application of the STF formalism to

the multipole expansion of relativistic scalar, vector and tensor fields.

Scalar fields

Consider a scalar field ¢ satisfying the relativistic wave equation

O¢ = —4mp, (3.184)

where the source p(t,x) is in general time-dependent, but is localized
in space, so it vanishes if |x| > d. In the region outside the source, the
most general solution can be written as

st =Y S0, [Fxti=rs).

! r
1=0

(3.185)

where we have used the multi-index notation explained above. This
result follows from the fact that, for 7 > 0 and £, an arbitrary function
of retarded time v = ¢ - r/c,

Fr(t—r/ c)]
SEASERYAARY

- (3.186)

as can be checked immediately with the help of eq. (3.172). Therefore
each term of the sum in eq. (3.185) is separately a solution of the vacuum
equation O¢ = 0. The fact that this is the most general solution follows
from the fact that the set of tensors Fr,, with all possible ranks [, provides
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33Observe that scalar and vectors are
trivially STF tensors of rank zero and
one, respectively.
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34he computation is performed in de-
tail in Appendix B of Blanchet and
Damour (1989).

35 Observe that the argument u+z|y|/c
in eq. (3.188) can be changed to u —
zlyl/ec, since §;(z) = &;(—=2).

a complete set of representations of the rotation group. So, eq. (3.185) is
the generalization of eq. (3.178) to fields governed by a relativistic wave
equation, with a non-stationary source. On the other hand, eq. (3.184)
can be solved exactly using the retarded Green’s function (3.6), which
is the appropriate Green’s function for a radiation problem, so

1 Ry

Comparing this expression, which holds everywhere and therefore in par-
ticular outside the source, with eq. (3.185), we can obtain the relativistic
multipoles F, in terms of the source density p. The result is%*

(3.187)

1
Fr(u)= [ @®yir | dzéi(z)p(u+ zlyl/c,y), (3.188
—1 )

where, according to the multi-index notation discussed above, §j, is the
STF projection of yz,. The function §;(z) is defined as

() — (2D

2IF+1]] (
and satisfies the identities

1
/ dzd(z) =1,
—1

llim 0i(2) = 6(2),

_ Z2>l’

(3.190)

and
(3.191)

where §(z) is the usual Dirac delta. Physically, the integration over dz in
eq. (3.188) performs a weighted time average, different for each multipole
moment [, and originates in the different time delay of the radiation
emitted from different points inside the source. Equation (3.191) implies
that, for sufficiently large {, this time delay becomes negligible.?®

Vector field

We next consider the electromagnetic field A* which, in the Lorentz
gauge 9, A" = 0 (and unrationalized units for the electric charge), sat-
isfies the wave equation

=

- (3.192)

and again we consider a source J# = (¢p,J) which is time-dependent
but localized, so it vanishes if |x| > d. Each component of A* can be
treated just like the scalar field of the previous subsection, and therefore
in the external source region we find

A%t x) = i (*l!l)]aL {Fﬁf“)} , (3.193)
=0
Al(t,x) = f: (“ul)laL {Glfr(“)} (3.194)

(3.189) \

L

|
?E

where u = t — r/c. The explicit expression of Fy(u) in terms of the
source density is given again by eq. (3.188), while

Gir(u) =/d3y3?L/ dz61(2)Ji(u + zlyl/cy) - (3.195)

-1
This is not yet the most convenient final form of the result, because
the tensor Gyr is symmetric and traceless with respect to the indices
i1, .. .11, since it depends on ¢, but not under exchange of the index 7
with one of the indices i1, ..., so it is not irreducible. It can however
be decomposed in irreducible STF tensors as follows,

[ 20 -1

Gir =Uir + l_’__lﬁai(itcl/—wa to

where Ur 11 = G(r41), Cr = Gap(r—1€i)a0 and D1 = Gaar—1. Then,
AY(t,x) is given by the sum of three STF terms. It is convenient to
perform a gauge transformation A, — A, — 9,0 (with 08 = 0 in order
not to spoil the Lorentz gauge) which removes the last term in eq. (3.196)

from A?, at the price of adding a new contribution to A°. The final result
36

dii Dr—1y (3.196)

is
SRRy
At x) =" ( ;) ar {@7@] : (3.197)
1=0 ’
0 IR (1) " B
Az(f>x) = _% Z ( l}> 8L~1 |:QZLT1(? ) + lileiabaa (Mbjjrl(u))] 3
=1 :

where QEIL)-—I denotes the first derivative of @;;,_1 with respect to re-
tarded time.3” The explicit expression of the moments Q7 and My in
terms of the source is

1
= [y [ a {wm plu+ lyl/e,) (3.199)

1 20+1

—— 0 Din I (u+ 2lyl /e, ,
20T D13 11(2)0inJ; 7 (u yl/e.y)

where [ > 0, and

1
Mu) = [ [ dsa@ig it elyljay), (3200

-1
where [ > 1 and m; = €;;1y;Jr is the “magnetization density”. These
results show that the electromagnetic field outside the source can be
expressed in terms of two families of STF time-dependent multipole
moments, the “electric moments” Qp(u) and the “magnetic moments”
M L(’U,)

Gravitational field

We now consider the linearized gravitational field ﬁ,u, that, in the Lorentz
gauge (1.18), satisfies eq. (1.24). Again, we assume that the source T},
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36The computation is performed in de-
tail in Damour and Iyer (1991a).

37For a function f (u) of retarded time,

we will use the notation
d'ﬂj‘
(n) =
Fr) =

(3.198)
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383ee Damour and Iyer (1991a), where
it is performed in all detail.

has compact support. Then, in the exterior source region the same argu:
ment used above for scalar and electromagnetic fields allows us to write

the most general solution of the vacuum equations, as

(1, x) = % <_l,1)laL _FLT@} , (3.201)
=0 ' -

R (, x) Z G"'LT(“)} , (3.202)
E u ~

h9(t,x) = 45 ( “1) L H”jj( ')} (3.203)
1=0 ' -

The computation proceeds similarly to the electromagnetic case, but is
technically more involved.’® We first decompose G, in STF tensors,

just as we have done in eq. (3.196). Similarly, we decompose Hir in

STE tensors. After performing a suitable gauge transformation (that
preserves the gauge condition 9,h*" = 0), the result can be written as

joo _ | 4G S (_1)15 M (u)
c? L r '

=0

i A (1) MDD (w) g Syr—1(u)
A — iL—1 ) bL—1
e = I P11 { T * I+ lelabaa < 7 > ’
hi 4GS () T .
h,] = 4 : l' 6[1,2 [;MijL*Z(u) l+ 18 ( €ab(15(.)12L_2(u))}, c
=2

The result therefore depends again on two families of STF tensors, M},
and Sz. Their explicit expression in terms of the energy-momentum
tensor of the source can be written introducing the “active gravitational-

mass density” o
_ 1 00 i
0= [T +17%] . (3.205)

and the “active mass-current density”,
1 )
o; = ZTOZ, (3.206)

as well as 0;; = T%. Then
AL+ 1o (z) . @

/dg /dz{‘s’ DO BT @+ 3) D

20+ Déiga(z) .
(l+1)(l+;;<21+5) ”Wff)} (u + 2[x| /¢, x) ,(3.207)

/d3 / dz €qp(; {61( YEr_q ya0b

(20 +1)5 )
02_(1%:—12))([2—%5*3)_)1 >acf715c)}(“+ZEX1/c x). (3.208)

(3.204)

This result holds at the level of linearized theory. In Chapter 5 we will
study the full non-linear theory and we will discover that, remarkably,

the exact solution of the full general-relativistic problem is constructed
using a quantity hi” that is obtained from egs. (3.204)—(3.208) by means
of a very simple modification, that is, with the replacement of the energy
momentum tensor of matter 1, by an effective energy-momentum ten-
sor T, that includes also the non-linearities of the gravitational field,*®
see eqs. (5.135) and (5.136). Thus, egs. (3.207) and (3.208) already
contain the blueprint of the solution to the full non-linear problem.

The integration over z can be computed, in an expansion in powers
of 1/¢, using the formula

! (204 )N x| 8

/—1 dz 6,(2) f(u+2|x|/c,x) = Z R 2 T T (101 8u> flu,x).

(3.209)
From this we see that, in egs. (3.207) and (3.208) (as well as in the
analogous formulas for the scalar and vector fields), the integration over
7 allows us to take into account, in a compact way, an infinite series of
derivatives.

Finally, we can use these multipolar expressions for h,,, to compute the
total power radiated in GWs. We use eq. (1.40), plug it into eq. (1.153)
retaining only the terms O(1/7) in h;gT, and we perform the angular
integration.4? The result is

B X G (I4+1)(1+2) (1+1) (1+1)
a2 {(z “ Ty o M WM W)
=2

41(1+2)
=D+ D2+ 1)

<S$“)<u>s§f“><u)>}. (3.210)

Similarly, for the linear momentum losses one finds

dP, X @ [ 20+2)(+3)
At ; 22 {1(1 +1)!1(20 + 3)!!
8(1+3)
A1+ 1)1(20 + 3)!
8(1+2)
(l — l)(l -+ 1)'(2l + 1)”

(M ()M ()

(59 () SIH (u)) (3.211)

_|..

1+1 (1+1
+ (s S ).
Observe that the linear momentum losses come from the interference
between multipoles of different rank, such as the mass quadrupole/mass
octupole mixed term, as we already saw on pages 130-131.4!

3.5.2 Spherical tensor form

In this section we discuss an alternative formalism for performing the
multipole expansion to all orders, which is based on the generalization
of the notion of spherical harmonics to a spin-2 field.
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3gTogether with a prescription for ren-
dering finite the integral, since the
source Ty no longer has compact sup-
port.

40Py power is quadratic in fliT,jT and
therefore in the multipole moments.
However, mixed terms of the form
M7y, Sy, give vanishing contribution, af-
ter the angular integration, because of
parity, while terms My M, or SpSp:
contribute only if L = L’. In fact,
if [ > I, the indices in Mj, ; can-
not be all contracted with the indices
of Mi1~-iu , and the remaining indices
of the 41 ... 1; group are necessarily con-
tracted among them, via the Kronecker
deltas that come of from the angular in-
tegration, see eq. (3.23).

415ee Thorne (1980), eq. (4.23) for the
corresponding expression for the angu-
lar momentum losses.

This section is quite technical, and can
be omitted at a first reading.
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42Here, according to the standard def-
inition of spherical harmonics, the an-
gle ¢ is measured from the x axis, so
for instance the unit vector in the ra-
dial direction fi has components ng, =
sinfcos¢g,ny = sinfsing and n, =
cos . Observe that this definition dif-
fers from that used, e.g. in Fig. 3.2 and
in equations such as eq. (3.72), where ¢
is measured from the y axis.

Spherical components of tensors

To introduce spherical tensors we first consider the quadrupole moment
or, more generally, any traceless symmetric tensor with two indices,
whose Cartesian components we denote by @Q;;. As a first step we in-
troduce a basis in the space of traceless symmetric tensors with two
indices, which is chosen so to have a simple relation with the | = 2
spherical harmonics.

We recall that the spherical harmonics Y™ (0, ¢) with | = 2 are*2

15 1/2 B
Y2(0, $) = <32ﬂ> (€' sin 9)? (3.212)
, 15\ Y%
Y0, ¢) = — <§> e'?sinfcos (3.213)
E o\ 1/2
Y20, ¢) = <1;7r> (3cos?0 — 1), (3.214)

while the expressions for negative values of m are obtained using

Ylv_""’ = (_l)’7'7’byl7n* (3215)

Consider now the unit radial vector fi. In polar coordinates we have
Ny = sinf cos ¢, ny = sinfsin g, n, = cos, and therefore

sing = n, + iny, cosf=n,. (3.216)

Plugging this into the explicit expressions for the spherical harmonics
Y27 and using the fact that n;n; = 1, we see that we can write

Y28, ¢) = Virnn,

(3.217)

where me is independent of 8, ¢, and the sum over 7, j on the right-hand
side is undelstood The above equation fixes the part of y2m which is
symmetric in (7, j), and we complete the definition of me requiring that
the antisymmetric part vanishes. The explicit form of the tensors me
is then

1 4 0
1
R IR R
7 327\ g ¢ 0
ij
0 0 1
15
V3= 200 g | (3.218)
J 327 1 0
ij
5 -1 0 0
20
20_ /2 | 0 -1 0|
YV e 0 0 2
ij
together with yz"m = (- )m(yZm)*. We see from the explicit expres-

2,m

sions that the ﬁve matrices J;; ™ are traceless in the (4, 7) indices. This

3.5

could have also been understood by integrating eq. (3.217) over the solid
angle and using [dQY?™ = 0 and [ dQn;n; ~ &;;. From the explicit
expressions, we also see that the five tensors yj;n are an orthogonal
basis, in the sense that

2 27 15 mm’
Zy mYEY = —4 (3.219)
L
It is sometimes useful to invert eq. (3.217). The result is

1 2

ning — g(sij = D qYI™0,9), (3.220)
m=—2

where 8

=1z Vi (3.221)

This can be proved multiplying both sides of eq. (3.220) by yfjm, sum-
ming over 7,5 and using eqgs. (3.221) and (3.219), which gives back
eq. (3.217). Since V7™ is traceless, the coefficient of the term propor-
tional to d;; on the left-hand side of eq. (3.220) is not yet fixed in this
way, but we can fix it by observing that the right-hand side of eq. (3.220)
is traceless, so also the left-hand side must be traceless.

The five symmetric and traceless matrices y%m with m = —2,...,2,
are linearly independent and therefore are a basis for the five-dimensional
space of traceless symmetric tensors ¢;;. This means that we can expand
an arbitrary traceless symmetric tensors ()i, as

2
> QmV" (3.222)
m=—2
The quantities @, are called the spherical components of @;;. Multi-
plying by n;n; and using eq. (3.217) we obtain
2
Qining = > QumY>™(6,0). (3.223)
m=—2

(As always, the summation over the repeated i, j indices is understood;
instead, we write explicitly the sum over m.) This equation could also
have been obtained directly by observing that @;;n;n; is a function
of 8,¢ (with the dependence hidden in n;(f, ¢), while @Q;; is a con-
stant tensor) and therefore can be expanded in spherical harmonics as
Zlm Qun Y™ (0, ¢). However, Q;; is symmetric and traceless, so it is a
spin-2 operator and therefore in the expansion in spherical harmonics,
only [ = 2 contributes.

The five independent components of the symmetric traceless tensor
(s; are therefore expressed in terms of the five independent quantities
Qm, with m = —2,...,2. If Q;; is real, as in the case of the mass
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431 this section we prefer to write ex-
plicitly the indices 4y ...¢;, rather than
using the multi-index notation defined
on page 134,

quadrupole, the five complex quantities Qp, satisfy @, = (—1)"Q_p,

. A yim = (—1)™(YLh=™)* for m < 0. The notation [({ —m)/2] denotes
because of eq. (3.215). Using eq. (3.219) we can invert eq. (3.222), ar (—=1)™( ) [ )/2]

the largest integer smaller or equal to (I —m) /2, and the coefficients are

8 P given by
Qm = 1= Qi (Vi) (3.224 . 1 (= m)\?
c" = (—1) I U , (3.232)
or, explicitly, 7 (I+m)!
_ —1)k (21 — 2k)!
1/2 lm __ (
2 ap" = : . (3.233)
Q2 = (Tg) (@11 — Q22 F 2iQ12), F AR R) (- 2R)!
1/2 Comparing with eq. (3.216) we see that Y™ ig the sum of a term contain-
Qi1 =7F (8_7T> (Q13 F iQa3) ing ! factors n;, a term containing | — 2 factors n;, a term containing [—4
15 ) factors n;, etc. Using n;n; = 1, a term with [ — 2 factors ng, ... 74,_, can
A\ M? 11;5 be rewritten trivially as a term with [ factors n;, as GijMuiy + o My _y MM,
Qo =~ (?) (@1 + Q2). 1 and similarly for all terms with [ — 2k factors. Then we can write
We can now write the power emitted by the quadrupole radiation, given % Y0, ¢) = yjinu My« Ty (3.234)

in eq. (3.75), in terms of the spherical components Q,,. Using eq. (3.223) .

we write _ where the tensors Y/ ;, are independent of 6, ¢, and the sum over the

[ indices 41 ...%; is understood. We will not need the explicit form of
yim ., which anyway can be read from eqs. (3.231) and (3.216). Just as
in the case | = 2 discussed above, one can show that the tensors yim
are a basis in the space of traceless symmetric tensors with [ indices.
This means that we can expand

2
Qumang = > @ Y*™(0,9), (3.226)
m=—2

and we take the squared modulus,

£
%
Gy Qumingmeny = > Qn @Y™ (0,0)Y*™ (0,6).  (3.227) {
m,m’ 1

% Toii= 5 T, (3.235)

|

|

é

|

i

m=—1

Integrating over dQ with the help of eq. (3.22) and using the orthogo- |
nality of the spherical harmonics,
and this defines the spherical components Ty of the tensor Ty, .4, Mul-

/dQ yim® (g, ¢)Yl/m/ 6, 9) = S gmam’ (3.228)  tiplying by n4, - - - ny, we have the identity
we get : Im

8T ver .en 2 Ty iy My » o My = Z TimY" (Hd)) ) (3‘236)

TE;QM Qyy = Z Q- (3.229) m==l
m==2 which expresses the fact that in the expansion in spherical harmonics of
Therefore, eq. (3.75) becomes ;% the left-hand side contribute only the spherical harmonics whose angular
5 % momentum [ is equal to the number of indices of Tj,..;. This is a
P = 3G Z 15, 12) __consequence of the fact that both a STF tensor with / indices, and
auad = g5 —r mie (3.230)  the spherical harmonics y!m provide an irreducible representation of

e dimension 2{ + 1 of the rotation group.

Using the orthogonality of spherical harmonics we can invert eq. (3.236)
and we obtain the spherical components T} in terms of the Cartesian
components Tj, . 4,

We can now generalize the above construction to traceless symmetric.
tensors with an arbitrary number of indices. We consider a (real) STF
tensor with [ indices, T3, 4 43 A basis in this tensor space can be ob-
tained by observing that the spherical harmonics Y™ (8, ¢) with m > 0

. Iy *
are given explicitly by Tim = Ty / dQ(Y™) e, ey (3.237)

Ylm(g, d)) _ Clmeimcz)le(COS 9) =Ti .. 4 (y;?j;’z)* /dQ Ty =+ Mgy gy~ Ty

[(1—m)/2]
= O™ (e sin )™ Z a?”(cos g)l-m—2k  (3.231) where in the second line we used eq. (3.234). The integral can be per-
k=0 formed using eq. (3.23). Since y;fmjl and Ty, i, are traceless, in the
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4por this reasons, the spherical com-

ponents find a typical application in
quantum mechanics, for writing selec-
tion rules in atomic transitions.

sum over permutations in eq. (3.23) the terms with Kronecker deltas of
the type &;,4,, or 0j,j,, give zero, and the only contributions come from
the term &;,, . .. 6;,;, and from its permutations. Since yj;nj is totally
symmetric, these [! permutations all give the same result, so

1

1 *
Tim = 47 n T iy (yiT.l..'iz) :

)
[ES (3.238)

For [ = 2, we recover the result obtained in eq. (3.224). Finally, a useful
identity which generalizes eq. (3.229) is obtained taking the modulus
squared of eq. (3.236) and integrating over df2 with the help of eq. (3.23).
This gives

l
[! o
47T——‘T,I'il..,ilT“m“ _ Z 1Tlm12‘

(204+1) (8.239)

m=—1

The transformation properties under rotations of the spherical compo-
nents of tensors are fixed by the transformation properties of the spher-
ical harmonics. For instance, consider a rotation by an angle ¢ around
the z-axis, ¢ — ¢ + . The left-hand side of eq. (3.236) is a scalar so
it is invariant, while on the right-hand side Y, — e"?Y),,,. Therefore
Ty transforms into itself, as**

Tlm - 64manlm .

(3.240)

More generally, under arbitrary rotations the 20 + 1 components of Ty,
with m = —1[,...,l and [ given, transform among themselves in the same
way as Y5 (60, 9).

Vector and tensor spherical harmonics

The spherical components of tensors, introduced above, are one of the
tools useful for the construction of a systematic multipole expansion.
Here we introduce another necessary ingredient of this formalism, the
tensor spherical harmonics. In the same way as the usual (scalar) spher-
ical harmonics are useful to describe the angular dependence of a scalar
field, tensor spherical harmonics are useful for describing the angular
dependence of a field with spin.

We denote by L the orbital angular momentum operator, by S the
spin operator and by J = L+ S the total angular momentum. All these
quantities are measured in units of 7, so for instance, as operator acting
on functions, L = rx (—iV). Since the operators J2,J2, L% and S? com-
mute, we can diagonalize them simultaneously. The eigenfunctions are
the tensor spherical harmonics and are denoted by lej‘?z (0, $). Therefore,
by definition, the functions lefz (6, ¢) are the solutions of

Y =0+ DY, (3.241)

ls . ls
LY} =10+ 1Yj;, (3.243)
(3.244)

SYf; = s(s+ DY}

.
&
f

é
.
'

3.5

Their explicit form can be obtained coupling the (scalar) spherical har-
monics Yy, to the spin function xss,, with the appropriate Clebsch—
Gordan coefficients which gives a state with total angular momentum

j, /Z> 5

l s
Yi0,8)= > > (sls:lljje) Yu. (6, 8)xss. - (3.245)
l

s=—108$=—8

It is easy to check that this expression indeed satisfies egs. (3.241)-

. (3.244). For instance, the operators L; act only on the variables 0, ¢

of Yi1.(8,$), and then eq. (3.243) follows from L2Yy, = I(l + 1)Yy,.
Similarly, eq. (3.244) follows from the fact that the spin operator acts
only on the spin wavefunction x, with S?xss, = $(s + 1)xss,. Finally,
the Clebsch—Gordan coefficients (sls;l.|jj.) couple a state with orbital
angular momentum |Il.) to a state with spin [ss.) to give a state with

total angular momentum |5j,), so that egs. (3.241) and (3.242) follow.

Depending on the value of s, one has spinor spherical harmonics
(s = 1/2), vector spherical harmonics (s = 1), spin-2 tensor spherical
harmonics, etc.*?

Tensor spherical harmonics describe the angular distribution and po-
larization of particles of spin s, in a state with definite values of the
total angular momentum 7, of j,, and of the orbital angular momentum
|. For gravitational waves, we are interested in spin-2 tensor spherical
harmonics. Observe that, beside the indices [, s, j, j, written explicitly,
Yﬁ: carries also an index which depends on the nature of the spin wave-
function y; e.g. a spinor index for s = 1/2, a vector index for s = 1,

_a pair of spatial indices (i,#’) for s = 2 (with (Y/7 ) symmetric and

traceless in 7,1'), etc.

Let us first examine the vector spherical harmonics. The spin wave
function y in this case is a vector, and we denote it by £ The wave-
functions with a definite value of s, = 0,41 can be constructed from
the unit vectors e, e, and e, as

3D = q:% (ex £ie,), &9 =e,. (3.246)
Then the vector spherical harmonics are
!
YL (0,0)= Y > (Us.lljgs) Yi.(6,6) €5 (3.247)

l,=—1 s,=0,%£1

Observe that in S(s") the index s, = 41,0 tells us which vector we
must consider, according to eq. (3.246); the spatial components of the
vector are instead denoted by fisz . Correspondingly, Y;-jz is a vector
with components (Y}, );. Note also that we have written Y%z simply as

Jj=
Yé since the fact that s = 1 is already implicit in the vector notation
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450ne should not be misled by this
nomenclature. Of course, the proper-
ties of Y under rotations depend on
the value of the total angular momen-
tum 7, not on the spin s, so for instance
a vector spherical harmonics YJI}lz with
j = 2 (and therefore | = 1,2 or 3)
has the transformation properties of a
spin-2 operator, not of a vector, just
as the usual scalar spherical harmonics
Y} transform of course as a spin-l op-
erator, not as a scalar.

Vector spherical harmonics
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46Using the explicit expression of the
spherical harmonics, we can verify im-
medmtoly that Ymg(O) — Y11£( B
Yi- 15 is proportional to n =
(sinf cos ¢,sin@sin ¢, cos ).  On the
other hand, apart from a proportion-
ality factor, the combination Yip& ©
Yu£<’1) - Y1,1£(+1> is just the com-
bination (3.247) with the Clebsch—
Gordan coefficients necessary to pro-
duce a state with 5 = 0 from { = 1
and s = 1. Thus, the vector spher-
ical harmonics Ybo is proportional to
N, and is therefore proportional to Y%
(obsewe that Yoo = 1/(4m)V/2 is just a
constant.) In this way we have taken
into account the only vector harmon-
ics that exists for j = 0 while, for each
7 2 1, we have three vector harmon-
ics, with | = j,7 — 1,7 + 1. The one
Wlth I = j is rewritten as Y&, while
the two with [ = j + 1 are com{alned to
form Y”z and YHZ7 with 7 > 1.

I eqgs. (3.254)—(3.256), in order to
conform to the most common nota-
tion used in electrodynamics (for vec-
tor spherical harmonics) and in the
gravitational-wave literature (for the
spin-2 tensor harmonics), we have
changed the labeling of the indices of
Y YZ and YT from j, j. tol,m. It is
however important to understand that
these indices refer to the total angular
momentum, and not to the orbital an-
gular momentum.

By construction, the vector spherical harmonics are eigenfunctions of
L2
3
2 (1
L7 (Y55 )i

=11+ 1) (Y, (3.248)

and therefore are useful in solving an equation of the form OV = 0,
where O = AGS + V2 is the flat space d’Alembertian and V a vector
field. In fact, using the expression for the Laplacian in spherical coordi-
nates, eq. (3.172), we can separate the radial and the angular dependence

writing
Z fijg. (r

INNE

(r,0,¢) = )Y (6,0). (3.249)

Observe that the vector spherical harmonics are orthonormal,

The vectors Y, (0,¢) can have j
if | = 0, (that is, the possible quantum combinations of spin s = 1
and orbital angular momentum (). For generic values of [ and j within
this range, they have no special property with respect to the radial
unit vector n, that is, they are neither purely transverse nor purely
longitudinal. We can however observe that the full set of vectors Yé Jes
with j =1 —1,0,1+ 1 (if l #0), or j = 1 if [ = 0, can be expressed in
terms of the following combinations,

Vv
Y],jlz)* = 5[['61315723;

. —_ . i—1
YE = (2j+ 1) [+ )Y
B _ NI
Y5 =iy,

YR =@+ )72 7Y - Gy

+ Y], (351
(3.252)
(3.253)
with j > 1, together with Y2, = Yoofi. Observe that, since s = 1, a

given value of j > 1 can be obtained with { = 7 — 1,7 or 7+ 1. In
egs. (3.251) and (3.253) we have combined the vector harmonic with

l=7—1 and the vector harmonic with [ = j + 1, while Y . 1s made
with [ = j.4
Since YJ% and YRZ are superposition of vector harmonics with dif-

ferent values of [, they are no longer eigenfunctions of L?. However,
using the properties of spherical harmonics, we can rewrite the above

definitions in terms of the scalar spherical harmonics Yy, as*’
YE =11+ 1)) r VY, (i>1), (3.254)
Y5, = [ +1)] 1 LY, 1>1), (3.255)
Y, = Yim o (1>0). (3.256)

From these expressions we see that Ylm is a longitudinal vector, since
it is proportional to f, while Ylm and Y im are transverse. In fact, the
operator L has only components in the g and qB directions and, since Y},
depends only on 6, ¢ and not on r, also VY, has only components in

=110l +1G1#0),0rj=1

3.5

the 6 and QAﬁ directions. Furthermore, since L = rx(—iV) = —imxV,
we have

Y2, =naxYE . (3.257)

Therefore an, and Yﬁn are transverse with respect to n and are orthog-
onal to each other. Under a parity transformation Y£ and Y pick
a factor m = (—1)!. This is the transformation propelty of the electric
field, so this is called an electric-type parity. Instead th picks a factor
m = (—=1)!*! so it has a magnetlc type parity.*®

The vector functions Ylm, zm and Y£7n are called “pure-spin vector
harmonics” because they are appropriate for describing the polariza-
tion states of a vector field, while the vector functions Y,m given in

q. (3.247) are called “pure-orbital vector harmonics” because they are
eigenfunctions of the orbital angular momentum.

The pure-spin vector harmonics are orthonormal,

/dQ Y}in(Yiv’?;n’)* = 6JJ’6ll’5nzm’ s (3258)

where J = F, B, R. The angular dependence of an arbitrary vector field
can be expanded in pure-spin vector harmonics as

o] l
V{tr0,0) =3 3 Rm(t,1)Y0(0,¢) (3.259)
=0 m=—1
oo l
+5°S [Bunlt,r)YE(8,8) + Bunlt,7)YE, (8,6)] -
=1 m=—1

Observe that, in the second line, the sum over ! runs only over [ > 1
since the corresponding pure-spin vector harmonics start from [ = 1.4°

A massive spin-1 particle has three degrees of freedom, and we see
that these degrees of freedom are described by Ey,., By, and Ry, re-
spectively. If we want to describe a massless vector particle, however, the
situation is different. A massless vector particle has only two physical
degrees of freedom (see the discussion of the Poincaré representations
in Problem 1.1), with helicities h = +1. If we perform a rotation by
an angle # around the n axis the two transverse vectors Y{fn and Yl]fn
transform among themselves (see eq. (3.257)) so Y£, £4iY7 are mul-
tiplied by exp{£if}. Comparing with eq. (2.197), we understand that
they describe the two components of a massless particle with helicities
h = +1. Instead Y{ , being proportional to 1, is invariant under rota-
tions around the f axis, and therefore, again from eq. (2.197), we see
that it has h = 0 which, for a massless particle, implies s = 0; so Y},
describes a spin-zero massless particle.

In electrodynamics, the longitudinal degree of freedom described by
Yllﬁ1 is eliminated by gauge invariance, and electromagnetic radiation is
purely transverse. Therefore in the expansion of the vector potential A
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BWe define parity reversing the ori-
entation of the axes of the reference
frame while keeping the vectors fixed
(compare with Note 34 on page 98).
With respect to the Cartesian basis vec-
tors (eg, ey, ez ), a vector spherical har-
monic Y, has components (Yp,)i,
that is Yy,, = (ng)te1 Under pax—
ity, the components (Y# ); and (Y )i
pick a factor (—1)!*+1, with (=1)! com-
ing from the scalar spherical harmonic
Y)m and a further minus sign from &;
and from n;, respectively. However,
YE = (YE )ie; transform with a fac-
tor ( 1)! because of the further mi-
nus sign from the transfor matlon of the
base vectors e;. Instead, (Y72 ); picks
only the factor (—1)! from the scalar
spherical harmonics, because angular
momentum is a pseudovector and its
components L; are unchanged under
parity, and then Y = (Ylm)lei is
multiplied by m; = ( l)l

49Recall that we have changed notation
between eq. (3.253) and eq. (3.254), see
Note 47, and the quantity that we are
now labeling by [ is the total angular
momentum, previously denoted by j.
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Spin-2 tensor harmonics

Table 3.1 The coefficients
which enter in the definition of
pure-spin ¢ = 2 spherical har-

monics (from Thorne 1980).

arl
a1
ais
a1
a22
as3
asl
asz
ass
b11
b1z
bay
bag

+

(oS

2 +1)
(3(2jjl7)l()2j+3>)1/2
H =T 71)(27]“))1/9
( 25 (J+2)
2]+1)(27+3

~(@=rET
j—1)(25+3)
27 -1 (J+1)
(25— 1) (25+1)
G=1); )1/9
2(27+1)(2j+3)
3G —1)(j+2) )1/2
(275—-1)(25+3
(J+1)(j+2) )1/2
2(27— 1>(§J+1)
J

+(
+(5
(7
(
+(27+ 21
(&5
—(353
(

[N

1/2

i
)
)

we have Ry, = 0,

e} 1
A(t,r,8,4) = Z Z Epn(t,r Y[m(e ¢) + Bun(t,")Y (0, 8)] .

(3.260)
For each value of the total (recall Note 47) angular momentum [ =
1,2,... the electromagnetic field is therefore characterized by two po-
larization states with opposite parity, described by the wavefunctions
FEn and By, called electric and magnetic photons, respectively. Their
linear combinations give rise to the two helicity states of the photon.
The state with total angular momentum [ = 0 is instead absent.

The fact that, for a massless particle with helicities +1, such as the
photon, the state with total angular momentum [ = 0 is absent while
for all other values of the total angular momentum we have two states
with opposite parity agrees with the analysis that we performed in Prob
lem 1.2.

We can now introduce the spin-2 tensor harmonics, which are relevant
for the description of gravitational radiation. First of all we need the
spin wavefunction for s = 2 with a definite value of s,; this wavefunction
is a traceless symmetric tensor, that we denote by t(k >, and is obtained
taking two spin-1 wavefunctions {(m‘ and &, (mz) , and combining them
with the appropriate Clebsch—Gordan coefficients,

1
o) = ST (1mamaf2s,) €M) (3.261)
my,mo=—1

>, with s, = 0, +1,+2, are symmetric and traceless

and play the role that the three vectors §§SZ) with s, = 0, =1 played
for vector spherical harmonics, that is, we combine them with the scalar
spherical harmonics to obtain the spin-2 tensor spherical harmonics,

The five tensors 7‘5;2

(T}, )i = (le-2 Jik

Z Z (21s.1.174.) Yu. (0, §) ¢ m

ly=—1 8=~

!

(3.262)

Just as in the vector case, (T_]}'jz)z'k are by construction eigenfunctions
of the L? operator (and for this reason are called pure-orbital s = 2
tensor spherical harmonics), but have no special property with respect
to the radial unit vector n. Similarly to the case of vector harmonics,
we can however observe that the full set of tensors T] ;.o with j > 0 and
J=1+2 111l 22)orj=1,23il=1o0r7=2ifl] =

(that is, the possible quantum combinations of spin s = 2 and orbital
angular momentum /) can be expressed in terms of combinations, called
the pure-spin s = 2 tensor spherical harmonics, with definite properties
under rotations along the radial directions. For j > 2, these are given

T = an T} +anTj; + a7, (3.263)
TP = an T/ + axe T, +aT);?, (3.264)
Tff = aa1 Tijz +az T;:jz + (1'33T‘J7:j:2 , (3.265)
TH! = by i T+ bipd T (3.266)
TF2 = bar iT)) " + b dT); (3.267)

where the coefficients are given in Table 3.1. These combinations can

be expressed in terms of the scalar spherical harmonics as follows®?
(T30)ij = [ning — (1/3)85]Yim , (3.268)
(TEY)ij = e (r/2)(n:0; + 10:) Vi | (3.269)
(TEY)y = otV (i/2)(niLj + 15 Li)Yim (3.270)
(TE2)is = o 12 Nigyiy (8)0y 0 Yiem (3.271)
(TE2)ij = e rhijarys (8)(1/2) Oy Lje + Oy Lt i, (3.272)

where, as usual, Ay; ;5 is the tensor that implements the TT projection,
see eq. (1.36), and

A complete set of s = 2 sphelica.l harmonic is given by eqs. (3.268)—
(3.272) where T70 has [ > °1 and TE! have I > 1, while T2 and
Tﬁyf have [ > 2.°! The above tcnsors are all symmetric and traceless
by construction. On a traceless-symmetric tensor hyj, the transversality
condition n;h;; = 0 eliminates three degrees of freedom, and indeed we

see from the explicit expressions that only Tﬁ;% and TZBW% are transverse,

(3.273)

ni(TE)i =0,  ni(TH2)i; =0. (3.274)

The five pure-spin s = 2 tensor harmonics are appropriate for describing
the five independent components of a massive spin-2 particle. However,
as we discussed in Problem 1.1 a massless particle with quantum number
s has only two components rather than 2s + 1, with helicities h = s.
Under a rotation by an angle # around the n axis, (T}9);; is invariant
since it depends only on n;, n] Therefore in the massless case it describes
a spin-0 particle. Instead (TZ!);; and (T2!);; have one index (i or j)
proportional to n; or n;, Whl(,h is invariant, while the other index is
carried by a vector in the transverse plane. Therefore they combine
to give the two eigenvectors of helicity with h = 41 and describe a
massless vector particle. Finally, the transverse and traceless tensors
(Tﬁg),j and (TP?),; have two transverse indices and combine to give
rise to the states with h = +2 which make up a massless particle with
§ = 2. Therefore, even if we use the name “spin-2 tensor harmonics”,
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50 As in the vector case, we now switch
notation from j,j, to I,m, but one
should be aware that these indices refer
to the total angular momentum; we re-
serve instead the notation (i, 7) for the
spatial indices of vectors.

51Various useful ways of rewriting
qs. (3.268)—(3.272) can be found in
eq. (2.30) of Thorne (1980). Observe
also that, using the explicit form of
the spherical harmonics Y},,, T,}j - and
TEL as defined in egs. (3.269) and
(3.270), vanish for | = 0, while TZ2
and TP2, as defined in egs. (3.271) and

(3. 272) vamsh for I =0 and for I = 1.
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it is important to understand that they can be used to describe either
the five polarization states of a massive spin-2 particle, or to describe 5
massless field; in the latter case these five degrees of freedom decompose
into the two degrees of freedom of a massless particle with h = +2, the
two degrees of freedom of a massless particle with A = +1, and one
degree of freedom corresponding to a massless scalar particle. Observe
that the labels 0,1 or 2 in S0, £41, B1, B2, B2 refer to the (absolute value
of the) helicity carried in the massless case.

In particular, in standard general relativity the graviton is a massless
particle with helicity £2 or, equivalently, the tensor h;";T that describeg
GWs in the TT gauge, beside being symmetric and traceless, is also
transverse. Therefore in its expansion enter only TE? and T[m, while
the other components are eliminated by gauge invaxiance, as discussed
in Sections 1.2 and 2.2.2. In the wave zone, where h decreases as 1/,
the most general form of h T(t,r,0,¢) is then

[ulm (Tl,Enf)ij (9, ¢) + vlm(Tﬁf)ij (9, ¢)] )

(3.275)
where uyy, and v, are functions of retarded time ¢ —r/c, and the factor
G/ ¢! in front is a useful normalization of Ulm, Uim. The other pure-
spin s = 2 tensor harmonics can enter in extensions of general relativity
in which further degrees of freedom are present, and the condition of
transversality no longer holds. Furthermore, in scalar—tensor extensions
of general relativity, h;; is not even traceless and there is a sixth degree
of freedom corresponding to the trace of h;;, which is a scalar field. So,
in the most general case we must include all five spin-2 tensor harmonics
(3.268)-(3.272), and we must further add 6;;Y,,, which is not traceless
and accounts for the scalar field corresponding to the trace part. The
function 6;;Y,, can be combined with (T30);; to give a purely longitu-
dinal and a purely transverse (but not traceless) tensor harmonic,

1
T2
with I 2 0. The coefficients in eqs. (3.268)-(3.272) and in eq. (3.276)
are chosen so that the pure-spin harmonics are orthonormal,

(Tlm)lj =n 7Lj}/27717

(Th)is (65 — ning)Yim,  (3.276)

/dQ (Tlm)u (Tl’m )1*7 = (Sjjldll’dmm’ )

where the label J takes the values L0,T0, E1, B1, E2, B2. Finally, we
observe from the explicit expressions that Tle, T[m, T]m and TzEn% have
“electric-type” parity m = (—1)! while TE! and TP? have “magnetic-
type” parity m = (—1)1,

Equation (3.275) is the main result of this subsection. It is the gen
eralization to the spin-2 field hy; of the more usual expansion of the

(3.277)
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solution of the wave equation for a relativistic scalar field in the wave
zone, in terms of (scalar) spherical harmonics,

Z Z cl'valm(g ¢)

1=0 m=—1

o(t,7,0,¢) = (3.278)

with ¢;m functions of t — 7 /¢, in the wave zone. Comparing egs. (3.275)
and (3.278) we see the following important differences: (1) a scalar field
has only one spin degree of freedom and therefore, at each angular mo—
mentum level I, m, it is described by a single function ¢, (t — r/c). A

gravitational wave, instead, has two hehmty states. Therefore there are
two sets of tensor spherical harmonics, TE? and TF2, and correspond-
ingly two sets of functions uim (t—7/c) and vy, (t—7/c). These states are
transverse, see eq. (3.274), one with electric-type parity and the other
with magnetic-type parity. Because of eq. (3.277), the pure-spin harmon-

_ics provides an orthonormal basis for these modes. (2) The expansion
of ]’L;‘ST starts from total angular momentum [ = 2. It is impossible to

construct a GW with total angular momentum [ = 0 or { = 1. This
counting of degrees of freedom is in full agreement with the discussion
of graviton states in Problem 1.2.

Our next task is to relate the coefficients wym,, vy, in eq. (3.275) to
the appropriate multipole moments of the source, as we do in the next
subsection.??

Relation with the source moments

In eq. (3.34) we found the solution of the equation of motion for h;»ro
the wave zone r >> d, in the form

1 4G
- TAij,pq

pIT -
T C

T 1 .
I:SP‘I + znil S}D(Iﬂl + @nilnizqu’“m 4+ ..

o0

1 4G 1 o i
- FAz'j,pq Z o (80 SPan a) iy = Mg,
a=0

I

(3.279)

where it is understood that all the SP%% - are functions of t — r/c.
On the other hand, in the previous section we have seen that the most
general expansion for hLT in the wave zone is given by

where again it is understood that uy, and vy, are functions of ¢ —r /e.
Comparing the two expressions, we can determine uy, and v,. To
obtain w,, we multiply both sides of eq. (3.280) by (T/?);; and we
integrate over df). On the right-hand side, using the orthonormality
condition (3.277), we single out Uy, while on the left-hand side we insert
the expression (3.279) for hiTjT. Similarly, to obtain v, we multiply by

l
20 [T+ v (T ]

(3.280)

‘sl»—-*
MQ

52Recall that all our discussion holds
in the context of linearized theory, i.e.
in a flat background space-time. The
determination of the GW at infinity in
terms of the source moments in the full
non-linear theory is a much more dif-
ficult problem, whose solution will be
given in Chapter 5. In the non-linear
case, we will find that the STF formal-
ism is much more convenient, and in
fact the final result that will be given in
egs. (5.135) and (5.136) is a simple gen-
eralization of egs. (3.207) and (3.208).
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531y general, if one wishes to compute
the total radiated power consistently to
a given order in v2/02, one cannot stop
to the leading order in v?/c? in the
computations of u,,. For instance, the
subleading terms in the mass quadru-
pole wugy, are of the same order, in the
radiated power, as the leading term of
the mass octupole u3z,,. Furthermore,
for self-gravitating sources, we cannot
use the expansion over flat space as we
have done in this chapter, and the com-
putation must be performed using the
post-Newtonian formalism presented in
Chapter 5.

(T50)5-

m

Then we get

Nig s

(561317%11.

4
Ulm = § -
(07

/ dQ Tlm w,pqnil T
a=0

oo

4 o
Yim = Z a (agqu,llmla) /do (Tlm)z AiJ»T)qYLil T Mgy -

a=0

Since the Lambda tensor projects on the transverse and traceless part
of a tensor, and TIET,% and TE? are already transverse and traceless, we
have
Joyx
(Tlm)iinj,PQ (Tlm)pq )

(with J = E2, B2), and we can simplify the above expressions,

Q/l
a=0

=y = 1 (ap g )/dQ (Th)imis - nio s (3.283)

o0

4 \
Vi = Z a,' (6(()'\‘57/'}’“”' Q) /dQ (Tlm>1 iThiy =0 iy - (3284)

=0
The computation of the integrals is involved, but can be performed order
by order in v/c. To leading order in w/c, we perform it in detail in
Problem 3.5.%3 The result is
167 l 1/2 o
20 =11 1)(1 9 !m*‘ 81_25“12’13”‘”
G 307 Da+Da+)] v

pro(Z))

We now want to write the time derivatives of %1% in terms of the
derivatives of the momenta of 790, as follows. From the conservation of
energy-momentum tensor, 8,7 = 0, we have the relations 9,T° =
—~0;T" and 9,T% = —8;T7". We can combine them to get 9370 =
0;0;T%. Then, integrating twice by parts,

411 /dB QQTOO . ,'Ll
- / 2 (8,0, Tz - ..z
= / Pz TY9;0;(x™ -z,

Uim, =

(3.285)

(3.286)

For I = 2, as in our case,

878] (th N ~{L‘i1) = (8iajxi1xi2)xi3

cegh + ...
:(521(5;2 3

+ 5;25;1)w13 ozt , (3_287)

where the dots denote the other similar terms; in total there are [(I—1)/2
terms of this type. Therefore

MR = gt Y (3.288)

(3.281) |

(3.282)

where the dots denote all other /(I —1)/2 pairing of indices (the permu-
tation of the first two indices 4, j in S kL g already taken into account
by the overall factor of 2). This is the generalization to arbitrary [ of the
relation M¥ = 28% found in eq. (3.52). Once we contract the left- and
right-hand sides of this equation with yz’jn* i,» Which is totally symmetric,
all these permutations give the same result, so

1

gm,*_ 1112,23,. 0 l'm* ]\/[7,] 3.289
yLl.H'Ll’S’ ](Z . 1) y ( )
Therefore, in eq. (3.285),
1 1 d oo
* -2 383, — Ik I el )
YimE gf RSt = a0 Vil g (3.290)
__ Then we get
- dl
Upm = Eﬁjhn s (3291)
where, to leading order in (v/c)?,
1 16r  [(+D0+2)]Y? 4
Iin = — yime Mt (3.292)
T2 (0 + )1 20(1 - 1)

Similarly, repeating the same analysis for vy, (and using results dis-
cussed in Problem 3.5), we get

dl
dt!

Vim =

Sim » (3.293)

where, again to leading order in (v/c)?,

1 32 I(1+2)
Shn = (

1/2 .
Ims Pk
A1 20+ Dl |2 11)(i+1)} Vit i ’
(3.294)

where PPFki--ii-1 gre the momenta of the linear momentum.?*

Comparing with eq. (3.238) we see that Ij, and S, are just the spher-
ical components of the tensors M™% and ¢;;;, PHFa-tt-1, respectively,
apart from an [-dependent normalization. The tensor M% % represents
the moments of 7%°/c?; if the source is non-relativistic and has a negli-
gible self-gravity, T9°/c? is the same as the mass density. Instead, from
eqs. (3.40) and (3.41), we see that e;;, PP is the angular momentum,
and that e, P»*%-1 are the momenta of the angular momentum.

Writing explicitly

]\42’1.“'& — 1 dg.L'TOO i1 “‘./Bil

C2

BrTOrpi . it (3.295)

c2
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54The expressions that we have com-
puted in this section for I, and Sp,
are valid only to leading order in v/c,
i.e. they are Newtonian expressions.
The full expansion in v/c is studied in
Thorne (1980), Section V.
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and using eq. (3.234), we can rewrite eq. (3.292) as

16 L+ 1)(1+2)]Y?
Ilm = 7T I:( + )( i )J /dSL’ETZTOOle:n>

P20+ 1N 2(1—1) (3.296)

again to leading order in v?/c?. Similarly we find

1 32r +2) 142
20+ 1)l {2(l~1)(l+1)}

X €jpg / d>z TOp(leI? g )it i (3.297)

Slm -

This expression can be written in terms of the vector spherical harmonic

Y2 defined in eq. (3.255). In fact, inserting eq. (3.234) in the definition :

of this vector harmonic, one finds

;o\ 12 o )
(Yi5,)i = <l+_1> €ipht, gm0t (3.298)
and therefore, to leading order in (v/c)?,
1 32 [+2]7 . )
Sp, = ~ ol 1)” [2(1 — l)jI / d3r TlTO’L(Ylan)i ) (3.299)

The coefficients of the expansion of hET have therefore been written
as integrals over the source of quantities which depend on the energy—
momentum tensor.

Radiated power

We can finally write the radiated power to all orders in the multipole ex-
pansion. In eq. (3.275) we have expressed hTT in the basis of le:,%, T32

Inserting eq. (3.275) into eq. (1.153) and usmg the orthonormality rda—
tion (3.277), we find

fo'e] 1
s 1 G? .

/ ORGHT = 2 2 [l 1o (3:300)

=9 me=—1
Therefore

dl+1[l’m dl+ISlm 2

dt 327TC5 Z Z } dti+1 ! dit+1 >> (3301)

=2 m=-1

5

i
;
%
z
g
|
|
z
E

where Ijm and Spy, are functions of retarded time ¢t — r/c. The power is
therefore a sum of terms each one associated with a single mass multipole
or angular momentum multipole, and there are no mixed terms.

As a check of the above result, we can verify that we reproduce the
mass quadrupole and the current quadrupole radiation. We start from
the mass quadrupole. Equation (3.292), with [ = 2, gives

167

5v3
167

T 53

where we could replace M;; by Q;; since Y™ is traceless in the (%, j)
indices. From eq. (3.301), the power radiated by the quadrupole is

21 %
I2m - y” Mz]

VI Qg s (3.302)

G 167\ . o
P, = = — .. ) y?m* 2m. 3.303
uad = 3o (5\/§> <Q23Qki> m=Z_2 i Vil ( )
 We now use the identity®®
: 15 2
Z yZZJm*me — Ton (51‘3953‘:! + 5ii5jk: — g‘sijékl) , (3304)
m=—2

and we correctly recover eq. (3.75). The current quadrupole is checked
similarly: from eq. (3.294) we have

1 64w

52171 = 15\/— y27n* @jkPj’kl . (3305)
Since
eijkPj’kl = €k /dgzc T3 kgt
—/dga: (eikj:ckTOj):cl
— _/dejixl
=-Jh, (3.306)
we get L 64
SQvn - i y:?:m*']z,] (3307)

Then, using again the identity (3.304), and recalling that .J; ;6;; = 0,

G 64 \? g 2 s~ 2
327 \15v3 <i,jk,l>zyy

8G

45 45¢7

8G e
= 5 (Jij(Jij + Jjs))

16G

= (T3 i)

in agreement with eq. (3.154).

FPeuer quad =
m=—2

(JijTr) (Bindsi + 6adix)

(3.308)
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55This identity could be proved us-
ing the explicit expressions (3.218) for
:))%7". However, the simplest way to de-
rive it is to observe that, after sum-
ming over m = —2,...,2, there is no
longer a dependence on the direction
chosen as quantization axis for j., so
the right-hand side of eq. (3.304) can
only depend on combinations of Kro-
necker deltas, i.e. it must be of the
form ad;6;; + bdydjr + cdij0y. Since
the left-hand side of eq. (3.304) gives
zero when contracted with d;;, we must
have (5,,;]* (als,;k(;jgij(Sﬂ(%k +C5ij6k;l) =0,
which fixes ¢ = —(1/3)(a + b). Then a
and b are fixed comparing the left and
right-hand side of eq. (3.304) for two
different values of the indices, using the
explicit expressions (3.218).
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[N}

Fig. 3.4 A source oscillating along
the z axis (double arrow), and the
lines of force of the GW emitted in
a direction with 6 = /2.

3.6 Solved problems

Problem 3.1. Quadrupole radiation from an oscillating mass

As a first simple application, we compute the quadrupole radiation emitted

by a non-relativistic system with just one degree of freedom, that performs
harmonic oscillations along the z axis,

zo(t) = acoswst, (3.309)

with aws < ¢ and ws > 0. As we explained in Section 3.3.5, the whole
formalism that we have developed for computing the emission of gravitational
radiation is consistent only if we have a closed system, on which no external
forces are acting. So, in this case the actual physical system that we have in
mind could be made for instance of two masses connected by a spring, and
zo(t) is the relative coordinate in the center-of mass system. For the moment
we consider the case where the rest length of the spring is zero (which is not

realistic for a one-dimensional spring, but is representative of a number of

situations where some degree of freedom performs a simple harmonic motion):
The mass density is then

p(t,x) = po(z)d(y)é(z — z0(t)),
where p is the reduced mass of the system, and the second mass moment is
MY (t) = /d3m plt,x)z'a’

= uaf(1) 59"
5 1 + cos 2ws

(3.310)

At on o
=pa’ —— = §357% (3.311)

Inserting this into eq. (3.72), we obtain

1G - .2
hi(t;0,9) = = M3ss(trer) sin” @

2 2

= QG“% sin” 0 cos(2wstret) (3.312)
rc

x(t:0,¢) =0. (3.313)

Therefore we have monochromatic radiation at a frequency w = 2w, with a
purely plus polarization, see Fig. 3.4.

The angular distribution is independent of ¢ (reflecting the cylindric sym-
metry of the source), and has a maximum at 8§ = 7/2, i.e. in the direction
orthogonal to the axis along which the source oscillates. Observe that the
radiation vanishes along the z axis. This reflects the fact that only the com-
ponents of the motion of the source transverse to the line-of-sight contribute
to the production of GWs. This is a general result, which follows from the
fact that Aijykmk’ = Ai,j,;(.,m[’ = 0. That is, the Lambda tensor projects the
motion of the source onto the plane transverse to the propagation direction.

Observe also that the pattern of lines of force of the GW shown in Fig. 3.4
is a physical result, independent of our conventions. The fact that we call it a
“plus” polarization, instead, is related to our choice of axes (1, V) with respect
to which the plus and cross polarizations are defined. With our definition,
(@, V) are obtained from the (%, y) axes applying the rotation matrix R given

E
-
é
.
i
:

in eq. (3.70), see also Fig. 3.2. Thus, in Fig. 3.4, for the particular propagation
direction for which the lines of force are shown (i.e. for a direction n such that

0= m/2), we have ¥ = —2z, while 1 is along the intersection of this transverse

plane with the (z,y) plane. If, in this transverse plane, we instead used (i, V)
axes rotated by 45 degrees to define Ay and Ay, we would rather call the
pattern of Fig. 3.4 a purely cross polarization, compare with Figs. 1.2 and 1.3,
while for axes rotated by a generic angle 1 we would have a mixture of plus
and cross polarizations, according to eq. (2.194).

The radiated power is computed from eq. (3.73),

ar = ric’ (/72)
Q) oa 167G T

- Grlatw? .

4
- in” @,
2me’

(3.314)

where we used (cos?(2wst)) = 1/2. Alternatively, we can recover the same
result using eq. (3.73) in the form

<§£>C}uad = 87?3: Asa z3(B) (M33) , (3.315)
and observing that, from eq. (1.39),
Asz33 = %(1 —n3)?
- %Sin49’ (3.316)

since n3 = cosf. In Fig. 3.5 we show this angular distribution, in the (z, z)
plane. The integration over the solid angle gives
16 G}LQ 4 6

Pyuad = — T4 Ws .
! 15 ¢b s

The total energy radiated over one period T' = 27 /ws of the source motion is
therefore

(3.317)

321 Gl 5
(Bauad)T = 7 =3 a'wy . (3.318)

This result becomes physically more transparent if we rewrite it in terms of
v = aw, (which is the maximum speed of the source),

327 G’,u (3)5 .

Eua'*
(Baquad)r 15 a c

(3.319)

Observe that Gu?/a is of order of the gravitational self-energy of an object of
mass 4 and size a. In the quadrupole approximation, the energy radiated over
a cycle is suppressed, with respect to this energy scale, by a factor (v /0)5.

Finally, it is instructive to consider the case of two masses connected by a
spring with a rest length L, so their relative coordinate obeys

zo(t) = L + acoswst . (3.320)

Observe that L has an invariant meaning, because zo(t) is the relative position
between the two masses (compare with the discussion in Section 3.3.5), so we
cannot set it to zero with a choice of the origin. Now we get

2
2

z25(t) = %— cos 2wst + 2La cos wst + const. , (3.321)

3.6  Solved problems 157

Fig. 3.5 The angular distribution of
the quadrupole radiation, for a mass
oscillating along the z axis. We rep-
resent the angular distribution plot-
ting the function p = sin*#, where
(p,0) are the polar coordinates in
the (z,z) plane and 0 is measured
from the z axis. The full three-
dimensional pattern has cylindrical
symmetry around the z axis.
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and eq. (3.312) becomes
2G pw?

hi(t;0,9) = sin® 0 [a” cos(2wstret) + La cos(wstret)] ,

while still hx = 0. Thus, beside having gravitational radiation at wgw =
2ws, we also have radiation at wgw = ws. Observe that, in the power, there

(3.322)

is no interference between these two terms because {cos®(2w,t)) = 1/2 =
(cos® (wst)), but
(2 cos(2wst) cos(wst)) = (cos(3wst) + cos(wst)) = 0. (3.323)

Problem 3.2. Quadrupole radiation from a mass in circular orbit

In this problem we consider a binary system with masses m; and mg, and
we assume that the relative coordinate is performing a circular motion. We
assume for the moment that the orbital motion is given, and we neglect any
back-reaction on the motion due to GW emission. In this form, this is just
a simple exercise, propedeutic for understanding a real self-gravitating binary
system. In Section 4.1 we will include the effect of the GW back-reaction
within linearized theory. Furthermore, beyond lowest-order in v/c, we cannot
keep the space-time as flat when describing a self-gravitating system, and the
correct formalism for computing the v/c corrections will be the subject of
Chapter 5.

So, for the moment, we rather assign ourselves the trajectory. We choose
the (z,y, z) frame so that the orbit lies in the (z,y) plane, and is given by

20(t) = Rcos(wst + g) 7
yo(t) = Rsin(wst + g)
zo(t) =0.

(3.324)

(The phase 7 /2 is a useful choice of the origin of time.) We denote by p =
mama/(mi 4+ ms2) the reduced mass of the system. From eq. (3.129), in the
CM frame the second mass moment is M"Y = pzd(t)z)(t), so

1 — cos 2wst

My = pR> -C—C;SL , (3.325)
1 Yt

Mas = pR? J“C—OQS“’_ 7 (3.326)

1
Mz = —3 pR? sin 2w,t, (3.327)
while the other components vanish. Therefore we have
My = 2uR*w? cos 2wt ,
]\“412 = 2/_LR2w§ sin 2wst |

(3.328)
(3.329)
and Moy = —Mj1. Plugging these expressions into eq. (3.72) we get

1 4G uwiR? <1 +cos? @

hi(t;0,¢) = (3.330)

2

i > cos(2wstrer + 2¢)

AG w2 R?

R (t:6, ) =+ 22H5

c0s 0 8in(2wstres + 2¢) . (3.331)

R

dEiiid e

Thus, the quadrupole radiation is at twice the frequency ws of the source. It is
interesting to observe that the dependences hy ~ (1 + cos? f) and hy ~ cosf
are a general consequence of eq. (3.72), whenever M1z = Ma3 = M3z = 0 and
Mas = —Mi;. These conditions are satisfied also in other problems (e.g. a
rigid body rotating around one of its principal axis), so we will meet again
this type of angular dependence.

As for the dependence on ¢, it can be clearly understood physically: con-
trary to the oscillating mass of the previous problem, now the source is not
invariant under rotations around the z axis, since at any given value of ¢ the
mass [t is at a specific point along the orbit, which is changed by a rotation
around the z axis; therefore hi and hyx have a dependence on ¢. However,
since the orbit is circular, a rotation of the source by an angle A¢ around the
7 axis is the same as a time translation At with wsAt = A¢, and therefore the
dependence of hy and hx on ¢ is only through the combination wstiet + ¢.

From the observational point of view, we have only access to the radiation
that a binary star emits in the direction which points from the star toward
us. The angle 6 is therefore equal to the angle + between the normal to the
orbit and the line-of-sight (see Fig. 3.6). The distance r to an astrophysical
source is, for most practical purposes, a constant.’® As long as, during the
observation, we can neglect the proper motion of the source (which however
sometimes is not the case, as we will discuss in Section 7.6), also the angle ¢
is fixed, so we have wstrer + ¢ = wst + o, with a = ¢ — wer/c a fixed constant.
Then we can shift the origin of time so that 2wst + 20 — 2wt plus an integer
multiple of 27, so cos(2wst + 2a) — cos(2wst) and sin(2wst + 2a) — sin(2wst).
Therefore, this observer can write the GWs received by a binary system (as
long as the approximation of a fixed circular orbit is valid, see Section 4.1) as

2 52 2
ho(t) = & 2GR (1 +cos ”) cos(2wst)
e 2 (3.332)
1 4Guw?R? -
hy(t) = = ——>— costsin(2wst) .
T C

If we see the orbit edge-on, ¢ = 7/2, then hy vanishes and therefore the GW
is linearly polarized. Instead, at « = 0, h4+ and hx have the same amplitude;
in this case, since the former is proportional to Sin(2wst,-et) while the latter
to cos(2wstret), in the plane (h4, hy) the radiation describes a circle parame-
trized by t, that is, the radiation is circularly polarized. To understand what
this means in more physical terms, we consider the pattern of lines of force
corresponding to a circular polarization. If we have a purely plus polarization,
hy = AL cos 2wst, according to eq. (1.96) we have a force field

F, = —2uw’ Ay vy cos2wst, (3.333)
where the vector field v4(x,y) has components (z,—y). This force field is
shown in Fig. 1.2. If instead we have a purely cross polarization of the form
hx = Ay sin 2wst, according to eq. (1.96) we have a force field

Fy = ~2uw§ Ax vx sin 2wst, (3.334)

where the vector field vy (z,y) has components (y,z). This force field is
shown in Fig. 1.3. If we have both hy = A, cos2wst and hx = Ay sin 2wst,
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56 A5 we will discuss in Section 7.6,
there are situations in which we must
take into account corrections due to
motion of the Earth around the Sun,
or more precisely around the Solar Sys-
tem Barycenter (SSB). So, more gener-
ally, we can take r to be the distance
from the source to the SSB. This how-
ever is only important for observations
lasting at least few months. We will see
in Section 4.1 that, in ground-based in-
terferometers, the gravitational waves
emitted by a binary system are observ-
able only for about the last 15 minutes
before the system coalesces.

4

—

=y

7

X

Fig. 3.6 The geometry of the prob-
lem in a frame (z,y,2’) where a
fixed observer is at large distance
along the positive 2z’ axis. The nor-
mal to the orbit makes an angle ¢
with the 2z’ axis.
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and furthermore Ay = Ax = A, we have Problem 3.3. Mass octupole and current quadrupole radiation from

a mass in circular orbit

F = —2uw? A[vy cos2wst 4+ vy sin 2wst]. (3.335)

In this problem we compute the mass octupole and current quadrupole radi-
ation generated by a binary system of reduced mass p, whose center-of-mass
coordinate describes a circular trajectory.

Before applying these results to a real binary star, it is important to repeat
the caveat already made in the previous problem: in binary systems held to-
gether by gravitation, when we wish to study the higher-order terms in v/c, we
can no longer take the space-time as flat. For instance, the general-relativistic
corrections to the 1/7% Newton’s law produce modifications to the trajectory,
of higher order in v/c. As we will see in Chapter 5 when we study the post-
Newtonian formalism, this and other effects produce corrections O(v?/c?) to
the power radiated in the quadrupole approximation. Since the octupole radi-
ation is itself suppressed by a factor v?/c? compared to quadrupole radiation,
_ if we wish to compute the total radiated power to this order, a consistent treat-
_ment requires the inclusion of these relativistic corrections to the trajectory,
__and will be deferred to Chapter 5.
 The purpose of this exercise is therefore only to illustrate, in a simplified
but somewhat academic setting of a circular orbit in flat space-time, some
interesting features of mass octupole and current quadrupole radiation, which
will be useful for understanding physically some aspects of the correct results
for self-gravitating systems, that will be discussed in Chapter 5.

With this caveat, we can now assign the orbit and proceed with the com-

Observe that v and vy are orthogonal, v-vyx = 0, and therefore the pattery
of lines of forces described by eq. (3.335) is the same as the pattern of Fig. 1.2,
that rotates uniformly so that at wst = 0 it is the same as Fig. 1.2, at wit = /4
it is the same as Fig. 1.3, and so on.

At intermediate values of ¢ the amplitudes for sy and hy are different and
therefore we have elliptic polarization, i.e. in the plane (hy,hy ) the radiation
describes an ellipse parametrized by t. We see that, from a measurement of
the degree of polarization, i.e. of the relative amplitude of Ay and hx, we can
deduce the inclination ¢ of the orbit.

The angular distribution of the radiated power, in the quadrupole approx-
imation, is obtained as usual using eq. (3.73),

dP 7‘203 . . .
qu

Inserting here eq. (3.332), and using (cos®(2wst)) = (sin®(2wst)) = 1/2, we get
Fig. 8.7 The function g(#) in polar
coordinates. The angle 6 is mea- ap _ 2G " R*w )
sured from the vertical axis. <m) quad - mch 9(0), (3.337)

where putation. If we want to compute the radiation emitted from the star in the
2 N2 direction of the observer, it is simpler to use the geometrical setting of Fig. 3.6
g(8) = <1+C7099> + cos?d. (3.338) (labeling now the axes of this figure as (z,y, z) rather than (z’, v/, z').), in Wlﬁch
2 the observer is along the z axis. The equation of the orbit in this frame is
C . . . 20(t) = Rcoswst
The radiation is maximum at 8 = 0, i.e. in the direction normal to the o) o

yo(t) = Rcosisinwst, (3.341)

20(t) = Rsincsinwst,

plane of the orbit. A polar plot of g{(f) is shown in Fig. 3.7. Observe that,

contrary to the angular distribution found in Problem 3.1, g(f) never vanishes

since, whatever the angle # at which an observer is located, there is always a

component of the source motion orthogonal to the observer’s line-of-sight.

Integrating eq. (3.337) over the solid angle we get the total power radiated

571f one is interested only in the total in the quadrupole approximation,

and is obtained from an orbit lying in the (z,y) plane, performing a rotation
by an angle ¢ around the z axis. We set the observer in the z direction, so we
compute the radiation emitted along i = (0,0, 1). For the octupole radiation,
eq. (3.141) gives

power, rather than in the angular dis- 2 1 2G

tribution, it is actually simpler to de- P _ 32 GLR‘le 3.339 (h;I;T) == ——-—5~Aij,kt(ﬁ)Mkl3. (3.342)
rive it directly from eq. (3.75): we use auad 5 ¢ 7 7F (8.339) ot T.SC. . ijk

again the reference frame where the or- 1 Gi? s (As usu;pl, in actual computations, it is more convenient to use M*" rather
bit is given by eq. {3.324), so =10 & Rw”, than O%*) We found in eq. (3.63) that, when A = (0,0,1), in the multi-

plication of a matrix M xi3 by the Lambda tensor the components of M ki3
with £ = 3 or [ = 3 do not contribute, so we just need to compute Mgz with

Mi; = 4pwd R? . , . o
where w = 2w, is the frequency of the GW.”" The energy radiated in oné

—sin2wst  cos 2w . . . . .. . . . .
% ( Ccs);ngwt; 2?1? 5:;: 8 > ‘ period T' = 27 /w; of the source motion is therefore, writing v = we R, a,b=1,2. With the trajectory given in eq. (3.324) we find, for a,b =1, 2
0 00y - _64n Gp® S s | Mo = pza(za(t)2(t) (3.343)
Since this is traceless, it is also equal to (Bquad) 7 = 5 R (E) ) (3.340) _ 3. ’ cos? wit €OS 1 Sin wWst cos wst
Q;;. Plugging this into eq. (3.75), we o . = w R sinsinw, Cos ¢ Sin wst cos wst cos? vsin® wt
recover eq. (3.339). Similarly to the result found in eq. (3.319), this is suppressed by a factor (v/c)® ab

According to eq. (3.63), when A = (0,0,1) the contraction with the Lambda
tensor amounts to replacing Miiz with (1/2)(M113 — Maos) and Mags with
(=1/2)(Mi1s — Mazs). Therefore

with respect to the energy scale Gu?/R.

Aav,ca(B)Megs = ,uR“% sin ¢ sin wgt X (3.344)
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[
N
W

Fig. 3.8 log,y[P(w)/P(2ws)], as a
function of w/ws, for v/c = 1072,
including the contributions of the
mass quadrupole, of the mass octu-
pole, and of the current quadrupole.
The line at w = 2w, is due to the
mass quadrupole and each of the two
lines at w = w,; and w = 3w, is the
sum of the contributions of the mass
octupole and current quadrupole.

22
» 2 (cos® wst — cos? 1sin® wet)
COS ¢ Sin wst cos wst

COS L Sin wst CoS wst
1 2 .
— 5 (cos® wst — cos” Lsin? wgt)
ab

Taking the third time derivative we find

1 GuR*w]

(ht)oes = - % sine [(3cos” L — 1) coswst — 27(1 + cos® ) cos 3wst]
1 GuR W

(hx)oct = - —ch;)i sin 2¢ [sinwst — 27 sin 3wit] . (3.345)

As expected, we have radiation both at w = ws and at w = 3ws. The current
quadrupole radiation can be computed similarly; actually, it is even simpler to

compute first the sum of the mass octupole and current quadrupole radiation,

which is obtained dirvectly from S*"™ see eq. (3.54). For a non-relativistic

point particle of mass p (or, equivalently, for a two-body system in the center-
of-mass, with reduced mass u), egs. (3.32) and (3.120) give

N skl m
Skl,m = pats x’m ,

(3.346)

and the radiation along the z axis is

- 1 4G o\ Ak
(,@r) = = = Aij e (R)SH2,

oct+cq roc?

(3.347)

where the subscript “cq” stands for “current quadrupole”. The computation
is completely analogous to the one that we just performed above, and gives

1 GuR*w? |

(h+)octteq = o sint [(0052 v — 3) coswst — 3(1 + cos® L) cos 3w,,~t] ,
1 GuR*w?
(hx)oct-req = - -ﬁ265—w sin 2¢ [sinwst — 3sin 3wst] . (3.348)

Therefore also the current quadrupole contribution, which is the difference
between eqs. (3.348) and eqs. (3.345), is a sum of terms with frequencies ws

and 3ws. The contribution to the total radiated power from the mass octupole
and the current quadrupole is

r2eB 1 iy
Pocttoq = e 271" ) decose (hy + hy)
424 Gp? 5 g
=105 o TWs- (3.349)
It is interesting to compare the power at w = ws,3ws (both generated

by the mass octupole plus the current quadrupole), with the power at w =
2ws, generated by the mass quadrupole (and which also receives corrections
O(v?/c?) from a post-Newtonian treatment of the orbit). From eq. (3.348) we

find
19 rsv\2
Plus) = o= (E) P(2w,), (3.350)
d
. P(3w,) = 532 (9>2 P(2w,) 3.351)
<) = 951 \& Ws)> (3.

where P(2ws) is the leading-order quadrupole result, eq. (3.339). In Fig. 3.8
we show the relative intensity of the three spectral lines at w = w;, 2w, and
3ws, for v/ec = 1072, Observe that the vertical scale is logarithmic.

Problem 3.4. Decomposition of S*L into irreducible representa-
tions of SO(3)

We have seen that the next-to-leading term in the multipole expansion is pro-
portional to Sk n this problem we discuss the decomposition of $¥4™ into
irreducible representations of the rotation group SO(3), and we will under-
stand the group-theoretical origin of the mass octupole and current quadrupole
terms.

Let us recall that the irreducible representations of Lie groups, as for in-
stance O(N) or U(N), are conveniently expressed in terms of Young dia-
grams. A Young diagram is a set of n boxes, organized into r lines of length
N1, N2y, Np, Withny 2 n2 2 ... 2 np and n1 + ... + n, = n. In each box
we put an index 1,...,%,. For O(NN) each index takes the values 1,..., NN,
which is the dimension of the vector representation. The irreducible tensor
representations can be obtained antisymmetrizing first over the indices in the
columns and then symmetrizing over the indices in the lines.’® For O(N) we
must also remove the traces on all pairs of symmetric indices. For exam-
ple, a generic tensor with three indices k,!,m is decomposed into irreducible
representations of O(N) as follows. First of all, we remove from the ten-
sor all the traces. Let us call 7™ the resulting traceless tensor, so that
hmm = pmim — pkkm — ) (repeated indices are summed over). Then the
decomposition of T*™ is shown in Fig. 3.9. The Young diagram (a) repre-
sents the tensor obtained symmetrizing 7% over all indices; the diagram (b)
represents the tensor obtained antisymmetrizing first over (k,m), which gives
Tk 7™k and then symmetrizing over the pair (k,1). This gives

diagram (b) . Ticim, + le?n . Trnlkt _ T'mlcl . (3352)
The tensor corresponding to the diagram (c) is obtained similarly, antisym-
Y.

metrizing first over (k,[) and then symmetrizing over (k,m), and gives

diagram (c) :  TF™ 4 pmtk _ plhm _ plmk (3.353)
Finally, the Young diagram (d) represents the tensor obtained antisymmetriz-
ing T%"™ over all indices.®® Counting the independent components we see that
a traceless, but otherwise generic, tensor with three indices k, [, m, each taking
the values 1,2, 3, has 18 components, and that the diagram (a) represents a
tensor with seven components, (b) and (¢) with five components each, and
(d) has one component, so we get 18 = 7+ 5+ 5 + 1. Recall that the rep-
resentations of the rotation group can also be labeled by the spin s, and the
representation labeled by s has dimension 2s + 1. Then, the representation
with dimension seven, i.e. the diagram (a), corresponds to s = 3, while the
representations with dimension five corresponds to s = 2. Denoting by s the
representation with spin s, and by & the direct sum of representations, the
decomposition of Fig. 3.9 reads

M e3@20201. (3.354)

We can now understand the decomposition given in eq. (3.139), in terms of
Fig. 3.9. Our starting point is the tensor S**™. This is symmetric in (k, 1),
and has no special symmetry with respect to the other indices. Therefore, it
I8 not an irreducible representation of SO(N).

First of all observe that, in eq. (3.138), we can replace $**™ by the tensor in
which all the traces have been removed. In fact, subtracting from S*>™ a term
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581t is more common to first Sym-
metrize over the lines and then anti-
symmetrize over the columns (see, e.g.
Hamermesh (1962), Section 10.6). The
two procedures are however equivalent
and for our purposes the former is more
convenient.

591f, rather than O(N), we consider
SO(N), we must also take into account
that there is a globally defined anti-
symmetric tensor €1-*~ . In this case
the representations obtained one from
the other contracting antisymmetric in-
dices with the e tensor are equivalent.
In particular, for SO(3) we have the
tensor €7k, So, for instance, an anti-
symmetric tensor with two indices A*!
is equivalent to a vector A; = €5 AR
while a totally antisymmetric tensor
ATk s equivalent to a scalar A through
the relation A = eijkAijk. Since the in-
dices take the values i = 1,..., N, we
cannot antisymmetrize over more than
N indices, and there are no diagrams
with more than N lines, for O(N). For
SO(N) a column with N box is equiv-
alent to a scalar, as we see contract-
ing with the totally antisymmetric ten-
sor, and can be eliminated. Therefore a
Young diagram of SO(N) can always be
reduced to an equivalent diagram with
no more than N — 1 rows.
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Fig. 3.9 The Young diagrams corresponding to irreducible tensor representations
with three indices k,I, m.

proportional to oy we get in eq. (3.138) a factor proportional to Aij kinm
which vanishes because Aqjkr = 0, while subtracting from SEL™ o term pro-
portional to gm or to 0, we get a factor proportional to Asj g = 0. We
can therefore consider S¥™ as a tensor from which all traces have already
been removed (this is analogous to the fact that, in the quadrupole term, we
could substitute M% with Q%).

Figure 3.9 gives the decomposition in irreducible representations of a generic
traceless tensor TF"™ . However, S*"™ is not generic, but is symmetric in (k, 1)
(and of course remains symmetric also after we remove all its traces). Then;
when we decompose SELT i jrreducible representations as in Fig. 3.9, the di-
agrams (¢) and (d) do not contribute, since the are obtained antisymmetrizing
first over (k,l) which, applied to Sk sives zero. Therefore, in the decom-
position of $¥™ only two irreducible representations appear:

e diagram (a), which is the totally symmetric and traceless combination;
and therefore has the symmetries of the mass octupole;

e diagrams (b), which has the structure given in eq. (3.352). For a tensor
TH™ symmetric in (k,1), the structure of indices given in eq. (3.352)
simplifies to

QTA:I,'m, _ T'mllc . Tm,kl ) (3355)
Identifying 75" with P™* (which is indeed symmetric in (k, 1)), we
see that this is precisely the structure of indices of the current quadru-
pole term in eq. (3.139).

We therefore understand that the algebraic identity (3.139) expresses the
decomposition of %™ in irreducible representations of SO(3). The mass oc-
tupole corresponds to the Young diagram (a) in Fig. 3.9, and is a spin-3 repre-
sentation, while the current quadrupole corresponds to the Young diagram (b)
in Fig. 3.9, and is a spin-2 representation. The representations corresponding
to the Young diagrams (c) and (d) instead do not appear, because S*0™ is
symmetric in (k, ).

The fact that P 4 pbrm _ 9Pkl is 4 spin-2 tensor is the origin of its
name “current quadrupole”: the term “quadrupole” refers to the spin-2 nature
of the operator, and the term “current” refers to the fact that is is obtained
from the momenta of the momentum P°. ’

|
.
.

Problem 3.5. Computation of fdﬂ (Tfff‘B‘? b T 1

In Section 3.5 we have seen that the coefficients of the multipole expansion,
wim and vy, are given in terms of integrals over the solid angle of the quantity
(Tﬁf);}nh c Ny, fOT U, and (TH2)5n4, + - Ny, for v, see egs. (3.283) and
(3.284). In this problem we compute explicitly these integrals. As a first step,
we consider

/ AQY nay oy (3.356)
with [, a arbitrary integers. Using eq. (3.234), we can write it as
Vi) /dQ gy * Ty Ty Mg, - (3.357)

We can now perform this integral using eq. (3.23). If < [, in the prod-
uct of Kronecker delta of eq. (3.23) there are not enough indices of the type
i1, ..., %a to be contracted with the indices of the type j1,...7;, and therefore
necessarily we have at least one Kronecker delta involving two indices of the
group Ji,-..Jji, €.g. terms containing &;,4,. Then, since y,’;’jm is traceless,
the result is zero. Therefore the integral in eq. (3.356) can be non-vanishing
only if o > I. If o = [, we found below eq. (3.237) that

u o
G G (3.358)

Now, observe that u;,, is expressed as a sum over « of terms containing the
a-th time derivatives of S*" " see eq. (3.283). In order of magnitude, if d
is the size of the source,

/dQYlfnml coeng, = 4w

aoa+1 otfi] . datas wsd
dghr Sz],zl talat+l ., c agsbj,l,l, 7a’
UV na @ifyit...ia
= - 855" , (3.359)
C

since 8y = (1/¢)8/0t and each time derivative brings down a factor ws, where
ws is the typical frequency of the source, while the addition of the index iq41
corresponds to the insertion of a factor z*+1 inside the integral in d°z over
the source volume, which therefore gives a contribution O(d). Therefore, in
the limit v/c < 1 in which the multipole expansion is useful, the dominant
term in egs. (3.283) and (3.284) is the one with the smallest value of « for
which the integral is non-vanishing. Recall from egs. (3.265) and (3.267) that

Thre = as1 Tp)2 + as2 Tim + a3z T (3.360)
TE2 = by iTH ! 4 bog 4L L (3.361)

where the coefficients are given in Table 3.1. Since Téjz is proportional to
Yy, see eq. (3.262), the integral [dQ (T}, %)5ni, -+ ni, is proportional to

JdQY 5 .ni, -+ ns, and therefore the lowest value of a for which it is non-

a

vanishing is o = [ — 2, while for the integral of T!  we need at least o = [
and for the integral of Ti:;z we need at least @ = [ + 2. We conclude that
in eq. (3.283) the smallest possible value of a which gives a non-vanishing
contribution is obtained from Tf;f and is amin = [ — 2. Similarly, for v, the
leading contribution is obtained from T;;nl and is amin = [ — 1. Therefore

4 —2 gt g —2y%
Ui % 053 7 (8é 2gum H) /dsz (T3 my - nay_y
(3.362)
4 —1 iy i T
Vim = —ibzzm (aé 15’ 75?1 171> /dQ (Timl)ijnil Mgy
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times a factor [1 + O(v?/c*)]. Now we use the identities

(Tl"—z)_ = _.__ll_:_l_)___ v Y nng (3.363)

Ilm 717 (Zl o 1)(2l + 1) 1321 ...0p g 'YL 1] -2 % «

-1 . 20(1-1) 2 Im .
(Tlm )ZJ =1 {(l F 1)(21 T 1) 67)(1(@'323')?771.4.1'1*2 TipTliy " Thiy_g (3364)

where the parentheses on the indices, in eq. (3.364), denotes the symmetriza-
tion over the indices 4,7 (i.e. Ay = (1/2)(Ai; + Aji)). These identities can
be obtained (with quite some work) inserting eq. (3.234) into the definition of
the spin-2 tensor harmonics. Inserting the explicit values of ass, bz from Ta-
ble 3.1 (and recalling the change of notation j — I that we made in between,
see Note 47), we get

(I+ 1)1 +2) J”Z 4 [ I(l—1)
o (

1/2
thm = {2(21 —1@i+1 L=2)0 (2l =D+ 1)}
1/2 4 1
l(l—l)(l+1)(l+2)J (I—2)! 2l =1)(2l+1)
4

1=2 idyin.oig_g ) sl '
X (80 S G TN B¢\ OX 1 FHIIY (PR (¥ MR ¥ N
1—2 @if,ip...4) o Lrnos
(= 2)! ((90 S Yijiy.iy_q

“ =3y
16r 1
CEI {5

N —

1/2 G
=1+ 1)+ 2)} (65“25”’““‘”*2> VERE ia s -
(3.365)

where the final intégral as been performed using eq. (3.23). The integral for

Ui 18 performed similarly using eqs. (3.363) and (3.364), with the final result

given in the text.

Further reading

e The quadrupole radiation is discussed in all gen-

|
f;
z
o
.
|
|
.
.
|
|

|
|

e The multipole expansion for time-dependent fields k

eral relativity textbooks, see in particular Wein-
berg (1972), Misner, Thorne and Wheeler (1973),
Landau and Lifshitz, Vol. IT (1979) and Straumann
(2004).

The radiation from sources with arbitrary veloc-
ity is discussed in Weinberg (1972), Section 10.4.
Gravitational wave generation is also discussed in
detail in the reviews Thorne (1983) and (1987).
Radiation reaction for slow-motion sources is dis-
cussed in Misner, Thorne and Wheeler (1973), Sec-
tions 36.8 and 36.11.

in terms of STF tensors was introduced by Sachs

(1961) and Pirani (1964). Thorne (1980) derived
the slow-motion expansion of the mass and spin
multipole moments, both in STF and in spherical
tensor form. The closed-form expression for these
moments in STF form is derived in Damour and
Iyer (1991a). A detailed review of the multipole ex-
pansion for GWs, as well as a historical overview of
the relevant literature, is Thorne (1980). A phys-
ical discussion of current quadrupole radiation is
given in Schutz and Ricci (2001).

Applications

In this chapter we apply the formalism that we have developed to var-
ious instructive problems. The systems that we examine here are still
somewhat idealized, compared to real astrophysical sources. This allows
us to understand the essence of the physical mechanisms with a mini-
mum of complications, and forms the basis for a more detailed study of
realistic sources, which will be the subject of Vol. 2.

We begin, in Section 4.1, with the study of binary systems, taking the
bodies as point-like and moving at first on a Newtonian trajectory. We
will compute how the back-reaction of GWs affects the motion of the
sources, inducing the inspiral and coalescence of the binary system, and
we will see how this, in turn, affects the emission of the GWs themselves.

In Section 4.2 we will compute the radiation emitted by spinning rigid
bodies, which are a first idealization of rotating neutron stars.

In Section 4.3 we compute the radiation emitted by a body falling
radially into a black hole. A full resolution of this problem requires
expansion over the Schwarzschild metric, rather than over flat space-
time of linearized theory, and will be deferred to Vol. 2. However, we
will see that the low-frequency part of the spectrum can be computed
using a flat space-time background, so we can perform here this part
of the computation. We will also compare the situation in which the
infalling particle is point-like with that of a real star, which can be
disrupted by the tidal gravitational force of the black hole. This is
particularly instructive because it allows us to compare the coherent
and the incoherent emission of GWs.

In Section 4.4 we study the radiation emitted by a mass accelerated
by an external force. It will be interesting to compare the results with
the electromagnetic radiation from an accelerated charge. We will see
that, while the electromagnetic field of a relativistic charge is beamed
into a small angle in the forward direction, this does not happen in the
gravitational case. Finally, some computational details are collected in
a Solved Problems section, at the end of the chapter.

4.1 Inspiral of compact binaries

In this section we consider a binary system made of two compact stars,
such as neutron stars or black holes, and we treat them as point-like,
with masses mj,m2, and positions r; and rp. In the Newtonian ap-
proximation, and in the center-of-mass frame (CM), the dynamics re-
duces to a one-body problem with mass equal to the reduced mass

4.1

4.2

4.3
4.4

4.5

Inspiral of compact
binaries

Radiation from rotating
rigid bodies
Infall into a black hole

Radiation from
accelerated masses

Solved problems

167

200
215

224
230




