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The field-theoretical
approach to GWs

In the previous chapter we investigated GWs using the geometric in-

terpretation which is at the core of general relativity. This geometrical
.

perspective emphasizes that g, = gu + hy is the metric of space-
time, and therefore an incoming GW h,,,, induces perturbations in the
space-time geometry. In this approach, the interaction of GWs with test
masses is described by geometric tools such as the equation of the geo
desic deviation, and the energy—momentum tensor of GWs is determined
by examining how h,, contributes to the curvature of the background
space-time.

General relativity can also be seen as a classical field theory, to which
we can apply all standard field-theoretical methods. In this chapter we
therefore go back to linearized gravity, writing g,.,, = 1, + hy., and we
treat it as a classical field theory of the field A, living in flat space-time
with Minkowski metric 7,,,,. In this approach we are actually forgetting
that h,, has an interpretation in terms of a space-time metric, and
instead we treat it as any other field living in flat Minkowski space.

The fact that the beautiful geometric interpretation of h,,, is hidden is
compensated by the fact that we can put the conceptual issues discussed
in Chapter 1 into the broader theoretical framework of classical field
theory, and compare it to what happens in other field theories, such
as classical electrodynamics. The geometric and the field-theoretical
perspectives are indeed complementary; some aspects of GW physics
can be better understood from the former perspective, some from the
latter, and to study GWs from both vantage points results in a deeper
overall understanding.

We will begin in Section 2.1.1 by recalling a basic tools of classical field
theory, the Noether theorem, and we will see how we can reobtain the
results of Chapter 1 using this standard field-theoretical tool. Besides
providing a complementary understanding of various conceptual issues,
the Noether theorem is also a very practical tool for explicit computa-
tions, and in particular we will see that it also provides the simplest way
of deriving another important result, namely the general expression for
the angular momentum carried by GWs.

In Section 2.2 we will pursue this field-theoretical approach further,
discussing linearized gravity from the point of view of quantum field
theory, and we will see how the notion of the graviton emerges. Ac-
tually, all astrophysical mechanisms of GW production, as well as the
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interaction of GWs with a detector, are fully accounted for by classical
general relativity. In actual calculations, the notion of the graviton will
not surface until we examine some cosmological production mechanisms
(in particular, mechanisms related to the amplification of vacuum fluc-
tuations), in Vol. 2. Nevertheless, we will see that also at the quantum
level, the field-theoretical approach is illuminating for many conceptual
aspects.

We will conclude this chapter with a more advanced section, which
investigates whether gravitons can have a small mass. This, from the
field-theoretical point of view, seems to be one of the most natural gen-
eralizations of Einstein gravity. We will see however that a field theory
describing massive gravitons can have problems of internal consistency
which, to date, are not yet fully understood.

2.1 Linearized gravity as a classical field
theory

Noether’s theorem

We begin by recalling some basic facts of classical field theory and in
particular Noether’s theorem.! We consider a field theory living in flat
space-time, with fields ¢;, labeled by an index 7. The action S is the
integral of the Lagrangian density £,

S = /dtdsm L(¢:,00:) . (2.1)
In our case the fields ¢; will be the independent components of the metric
by, but it is useful to be more general, since we will also be interested
in comparing with for instance classical electrodynamics, or any other
clagsical field theory. We will denote collectively the fields ¢; simply by
b.
A transformation of the coordinates and of the fields is an operation
that transforms the coordinates z* into new coordinates z'", i.e. 2# —
2", while at the same time the fields, denoted collectively by ¢(z), are
transformed into new functions of the new coordinates, ¢(z) — ¢'(z').
To define the transformation means to state how z’ is related to z and
how ¢'(z') is related to ¢(x). For an infinitesimal transformation, we
can write

ot — ' =t AR (), (
qbz(l) - ¢;,<$I> = ¢z($) =+ Ea i,a(¢) (9(]5) } (

and the transformation is specified assigning A¥(x) and F; ,(¢,0¢). In
general, the function F;, depends on the collection of fields ¢ and on
their derivatives, and will also mix different fields, so the transformation
of a single fleld ¢; can depend also on all other fields ¢; with j # . The
above transformation is parametrized by a set of infinitesimal parameters
€, witha=1,...,N.

)

2.2
2.3)
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YWe refer the reader to the textbook
Maggiore (2005), Section 3.2, for fur-
ther details and proofs. Note that in
the present book, in order to follow
the most common convention in gen-
eral relativity, we are using the signa-
ture uw = (—, +, +,+), while in Mag-
giore (2005) we use Ny = (+, —, —, —),
which is the most common convention
in quantum field theory. This is the
origin of some sign differences between
that textbook and the following equa-
tions.
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Equations (2.2) and (2.3) define a symmetry transformation if the
leave the action S(¢) invariant, for any ¢. A symmetry transformatio
is called global if it leaves the action invariant when the parameters ¢¢
are constant, and local if it leaves invariant the action even when €? ay
allowed to be arbitrary functions of z.

Noether’s theorem states that, for each generator of a global symmetry
transformation, that is, for each of the parameters e® with q — 1,...,N
there is a current j# (which is a functional of the fields ¢) which, when
evaluated on a classical solution of the equations of motion ¢°, is con.
served, i.e. satisfies

(8,38) |p=ger = 0. (2.4)
The corresponding charges @, are defined as the spatial integral of the
1= 0 component of the currents

Qo = /dejg(X, t). (2.5)

Current conservation (in the sense of eq. (2.4)) implies that Q, is con-
served (in the sense that it is time-independent). In fact

aOQa:/dsanjg(xat)

S / APz 8 (x,1) . (2.6)

This is the integral of a total divergence, and it vanishes if we assume
a sufficiently fast decrease of the fields at infinity. More generally, in a
finite volume the variation of the charge is given by a boundary term
representing the incoming or outgoing flux.

The explicit form of the current can be written in full generality in
terms of the Lagrangian density £ of the theory and of the functions
Al(z) and F; . (¢, 04) that define the symmetry transformation (2.2),
(2.3), and is given by

w_ 0L v .

Ja = m (A7 ()0, i
The simplest application of this very general machinery is to the sym-
metry under space-time translations, and leads us to energy—momentum
tensor. Under space-time translations we have z# — g/* = z# + e” and
by definition all fields transform as ¢.(z) = ¢;(z), independently of their
properties under Lorentz transformations; that is, a point P has the co-
ordinate z in a frame and the coordinate #’ in the translated frame, but
the functional form of the fields changes so that the numerical values of
the fields at the point P is invariant. So we write the transformation as

— Fia($,00)) ~ AL@)L.  (27)

ot — ' =gt e
=zt + "M (2.8)
$i(x) = ¢i(z') = ¢s(z). (2.9)

Observe that the index a appearing in €* in this case is a Lorentz index.
Comparing with egs. (2.2) and (2.3), we see that A* = 0% and F, , = 0.
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_ The four conserved currents 6+, = —j5# ., form a Lorentz tensor, known

as the energy—momentum tensor. Using eq. (2.7) and raising the v index,

g = n"PO* ,, we get?

oL
0" = — e < 0" + " L. 2.10
5@ (2.10)
Equation (2.4) becomes
9,0m =0, (2.11)

_on the solutions of the classical equations of motion. The conserved

charge associated to space-time translations is, by definition, the four-
momentum P¥, and therefore®

cP’ = /d3:c9°°, (2.12)

cP! E/dBIGOi. (2.13)
This is the definition of four-momentum in classical field theory. A field
configuration, solution of the equations of motion, carries an energy
E = ¢PY and a spatial momentum P* which can be calculated using
egs. (2.10), (2.12) and (2.13).

Observe that in general relativity the energy—momentum tensor of
matter, defined by eq. (1.2), is automatically symmetric in the two in-
dices p,v, since it is obtained by taking the functional derivative of
the action with respect to the symmetric tensor g,,. In contrast, the
energy—momentum tensor defined from Noether’s theorem, eq. (2.10), is
not necessarily symmetric in the two indices pu, v.

In fact, it is important to understand that the formal machinery of
the Noether theorem, without some further physical input, is unable

_ to uniquely fix the energy-momentum tensor, and more generally the

Noether currents. For instance, consider what happens if we add a total
four-divergence to the Lagrangian density,

L'=L+0,K" ). (2.14)
A total divergence, when integrated over dz, gives a boundary term.
The equations of motion of the classical theory are obtained from a varia-
tion of the action, holding fixed the value of the fields on the boundaries.
Therefore the equations of motion obtained from the variation of the ac-
tion S = [d*z L' are the same as those obtained from the variation
of § = [diz L, so these two Lagrangians define the same classica) field
theory. However, the currents obtained from eq. (2.7) using L’ or using
L are in general different, and their difference is such that 49 changes
by a total spatial divergence, so that the charge in eq. (2.5) changes
by a boundary term. Therefore the Noether currents are not uniquely
defined; however, the Noether charges, computed integrating over a spa-
tial volume V, are well defined if, and only if, the fields inside V go
to zero sufficiently fast when we approach the boundaries of V', so that

’In order to minimize the number of
factors of ¢ in the equations, we have
defined the flat-space Lagrangian den-
sity £ from

S = /dtd%c,

rather than from S = [dizLl, as
done, instead, in Landau and Lifshitz,
Vol. II (1979). Recalling that, di-
mensionally, an action is (energy)x
(time), in this way £ has the same di-
mensions as 0", i.e. energy/volume.
With our notation, for instance, the
Lagrangian density of the electromag-
netic field is (—1/4)F,, F*¥, rather
than (—1/4¢)F,, FHv.

3The factor ¢ provides the correct di-
mensions, recalling that P = E/c, see
the Notation.
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all boundary terms can be neglected, and the ambiguity in the currents

becomes irrelevant.

To illustrate this point, before computing the energy—momentum ter.
sor of GWs it is instructive to recall what happens in the more familiay
case of classical electrodynamics. In this case the Lagrangian density ig

1 w
Lem - —ZFMUFl 5

where F,, = 9,A, — 9,A,. With our signature 7, = (=4, +,4),
the relation of F),, to the electric and magnetic fields is F% = E? and

FU = ¢k Bk Equation (2.10) gives

oL
9,;1; = S BVA/) + nwjﬁem .

50, 4) (2.16)

The functional derivative is easily computed,

i <_1Fa/3Faﬁ> _ _Lpas OFas

0(0u4p) \ 4 2 000uA,)
— _Frxﬁ a(aaAﬁ)
9(0,4,)

— P, (2.17)

Therefore

1
ghy = FHPOV A, — Zn‘“’F2 . (2.18)
At first sight, this result is surprising. Recall in fact that classical elec
trodynamics is invariant under gauge transformations,

Ay — Ay — 0,0, (2.19)

as we can see observing that under eq. (2.19) F),, is invariant, and
therefore also the Lagrangian (2.15) is invariant. However, the energy—
momentum tensor (2.18) depends on A, not only through the gauge-
invariant combination F,,, but also through the term 8”A4,, which is

not invariant, and under gauge transformations 8% changes as

G — G1 — TRV 0,0

(2.20)

Apparently, we seem to be driven to the conclusion that the energy
density 8% of the electromagnetic field (as well as the momentum density
%) is not gauge invariant. To deal with this problem, one first of all
rewrites the energy—momentum tensor as follows,

Ol = FHP(D" Ay — D, A% + 0,A”) — EWFQ
v 1 Y2 el v
= (FMFY, — Znu },2) + FrP9, A

1
= (FMPFY, — ZnWFQ) + 0,(F*P AY). (2.21)

(2.15)

(In the last line we used the equation of motion 9,F"? = 0.) Therefore
we have

Ot = Thy + 0,C°* (2.22)
_where 1
ThY = FHPEY, — ZnWFz, (2.23)

while CPHY = FHPAY ig a tensor antisymmetric in the indices (p, u).
Now, TH (which is sometimes called the “improved” energy-momentum

__tensor) is a gauge-invariant quantity, and its 00 component gives the

usual form of the energy density,*

700 () — %(EQ +B)(2).

Tem

(2.24)

The term 0,CP* instead is not gauge invariant, and we would like to
get rid of it. The argument that is used to discard it is based on the

_ following observations:

o If X is conserved, also THY is conserved: in fact

9,0,C7" =0 (2.25)

automatically, whenever C'**" is antisymmetric under p < p, as is
our case.

e The difference between the charge cP” computed with 642 and
that computed with T/ is given by

/ d32.0,CP% = / B 5,0 .
\4 |4

where we used the fact that C°%” = 0, which follows again from
the antisymmetry of CP*” under p <> u. This is the integral of a
divergence, and vanishes if the fields go to zero sufficiently fast at
the boundaries of the volume V. Therefore the four-momentum
PY computed with 84 is equal to that computed with T/, and
is gauge invariant.

(2.26)

What we learn from this example is that the expression for the energy—
momentum tensor derived from the Noether theorem, eq. (2.10), is not
necessarily a physical observable (in the case of electromagnetism it is
not even gauge-invariant!).® Rather, it is just a mathematical expres-
sion that, when integrated over space, gives unambiguously the total
energy and momentum of a classical field configuration, as long as this
field configuration goes to zero sufficiently fast on the boundaries of the
integration region.

Equivalently, instead of speaking of the total energy of a localized
object, we can divide by the volume and say that the expression in
eq. (2.10) is a quantity that can be used to compute the average value
of the energy-momentum tensor over a region of space sufficiently large,
so that all boundary terms vanish, and any ambiguity related to total
divergences disappears. Then, for instance, from eq. (2.22) we have

(090) = (T90) +(B:C™%),

em

(2.27)
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4The use of the Lagrangian (2.15)
implies that we are using Heaviside—
Lorentz units (also called rationalized
c.g.s. unit) for the electric charge; in
unrationalized units the factor (—1/4)
in eq. (2.15) becomes (—1/167), and
the factor 1/2 in eq. (2.24) becomes
1/(8m).

5 Another way of understanding the ex-
istence of such an ambiguity in a gauge
theory is the fact that, in principle,
one can allow that the gauge field, un-
der space-time translations, does not go
simply into itself, as in eq. (2.9), but
into a configuration related by an arbi-
trary gauge transformation.
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where the bracket represents the average. On a volume such that bound-
ary terms give zero, we have (9;C*°%) = 0 and therefore the average is
unambiguously defined,

{Oom) = (Tom)
= %(E2 +B?). (2.28)

Whether one of the many equivalent integrands, in the expression for
cP? can be promoted to a physical observable, thereby providing a
definition of a local energy density, is a physical question that cannot be
answered using only the mathematics of the Noether theorem, without
any additional physical input. We will discuss this issue at the end of
the next section, and we will see that in fact the answer is in general
different in electromagnetism and in general relativity.

2.1.2 The energy—momentum tensor of GWs

Now we can return to our original problem, which was the computa-
tion of the energy carried by GWs. We consider a wave-packet with
reduced wavelengths centered around a value X. In this case, according
to the discussion above, the Noether theorem can give us an unambigu-
ous answer for the energy density of the wave-packet, averaged over a
box centered on the peak of the wave-packet, and with size L > X. In
this case the field is negligible on the boundaries and, using eq. (2.10),

oL

By
= S Ghag)

O hap + 1 L) (2.20)

where (...) is a spatial average over several reduced wavelength (which,
for plane waves, is the same as a temporal average over several periods),
and £ is the Lagrangian that governs the dynamics of f,.

As discussed in the previous subsection, the Noether theorem instead
gives us an ambiguous answer if we ask what is the local energy and
momentum density. Actually, we already saw in Section 1.4 that the final
form of the energy—momentum tensor of GWs is indeed expressed as an
average over several reduced wavelengths (or over several periods), and
that this comes from a very fundamental reason, i.e. in order to discuss
the back-reaction of GWs on the background, we need to perform a
coarse-graining of the Einstein equations. Thus, we already know that
it will not be possible to do better than this, and we cannot define a
local expression for the energy and momentum density. Nevertheless, it
is interesting to understand the reason also from a purely field-theoretical
point of view; this will be discussed at the end of this section. First, we
compute t** from eq. (2.29), and we check that it agrees with the result
that we derived in Section 1.4.

In order to use eq. (2.29) (and also to derive the angular momentum
of GWs from Noether’s theorem), we need the Lagrangian £ or, equiva-
lently, the action governing the dynamics of the field h,,. To reproduce

the Binstein equations to linear order in h,, we must expand the Ein-
stein action to quadratic order in Ay, while the linear term in the action
vanishes, as always when we expand around a classical solution (in this
case around the flat metric 7n,,, since we consider Einstein equations in
vacuum). We therefore start from the full Einstein action,

/ d*z/—gR, (2.30)

3

S8 = Tonc

and we expand g, = Nuw + by We observe that
R=g" Ry = (1 — b + O(h?)) (Rf}} +R?) + 0(h3)) . (2.31)

where R,(,,l,/) is linear in A and R,(f,, is quadratic in h. RE}V) and R,(f,,) can
be obtained by specializing eqgs. (1.113) and (1.114) to a flat background

metric 7u,. The expansion of \/—g can be computed by writing g/} =

O+ hl = (I + H)y, where [ is the identity matrix and H a matrix

v

_whose elements are h¥. Since g, = 1,595 and detn,, = —1, we have

—g = det(I + H). Using the identity log(det A) = Tr(log A), valid for
any non-degenerate matrix A, and expanding the logarithm,
det(I + H) = exp{logdet(I + H)}
= exp{Trlog(I + H)}
= exp{Tr[H + O(H?)]}
=1+ TrH + O(H?)
=1+h+O0(h2,), (2.32)

where h = hf, = n""hy, is the trace of h,, . Since we are expanding over
flat space, the lowest non-zero term in R is already O(h), see eq. (2.31),
so the terms O(h?) in \/—g give a contribution to the action O(h?), and
can be neglected. Performing straightforward algebra we then obtain,
after some integration by parts,

3
Sp=——" / d'e [0uhapd*h®® — 8,h0"h
+20,h* O h — 20,h*" 0, hL)]
and the corresponding Lagrangian density is (see Note 2)
4
L= WESKLCTG [ap,haﬁa”haﬁ — 0,hO*h + 20,0 0, h — 28,Lh‘“’(')ph,’j] .
(2.34)

We can now compute t*, using eq. (2.29). We evaluate the result di-
rectly in the gauge

O hy, =0, h=0. (2.35)
Therefore, after computing the derivative §£/(9,hag) in eq. (2.29), we
impose the gauge condition (2.35). We observe that the second, third
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and fourth terms in brackets in eq. (2.33) are quadratic in quantities that
will be set to zero by the gauge fixing and, after taking the functiona]
derivative, they give contributions which are linear in & or in 8#h,,,, and
therefore vanish when we impose eq. (2.35). So the only non-vanishing
contribution comes from the term 8,iaz0*h*?, and we get

4
_0L S
8(8uhaﬁ) O+ hyy=h=0

5o C (2.36)
We next evaluate the term (£) in eq. (2.29), in our gauge. We recall
that inside the average we are free to perform integration by parts (com-
pare with Note 23 on page 35). Then, since in our gauge h,, satisfies
the equations of motion Oh,, = 0, even the term 9,ha3d"h*” gives
zero because, after an integration by parts, it becomes »hagtlhaﬁ and
vanishes upon use of the equations of motion, so (£) = 0.
In conclusion, we obtain

C4

By _
t 327G

(0" hB G hog) . (2.37)

As expected, the result agrees with eq. (1.133).

We can now come back to the problem of the localization of the en-
ergy of GWs. In the field-theoretical description, the issue is whether
one of the many equivalent integrands, in the expression for PY, can
be promoted to a physical observable, thereby providing a definition
of a local energy density. In electromagnetism there is a very natural
candidate, the tensor T#% of eq. (2.23), which is conserved and gauge
invariant, so it can be sensible to identify (1/2)(E? + B?) with the local
energy density of the electromagnetic field. No such answer is possible
for the gravitational field. The quantity O*h*? 3" h,s which appears in-
side the average in eq. (2.37) is not gauge-invariant. It is futile to search
for another local expression, whose integral gives the energy, but which
is already gauge invariant before integration: the equivalence principle
tells us that, at a given point, we can always find a locally inertial frame
(see Section 1.3.2), such that at the point in question the gravitational
field vanishes. Therefore any candidate expression for a local energy
density can always be set to zero at a given point with a coordinate
transformation, so it cannot be gauge invariant. This is an important
difference between gravity and electromagnetism. In electromagnetism,
at least if we consider a slowly varying electromagnetic field, it makes
sense to assign to each point a local energy density (1/2)(E? + B?).

When we consider waves, however, concerning energy localization
there is no real difference between gravity and electromagnetism. In
both cases, all that can be really measured is the energy averaged over
several wavelengths or periods. This can be understood even more easily
at first by looking at the problem quantum-mechanically even if, as we
will see below, the argument is really classical.

From the quantum point of view, a plane wave describes a collection

of massless quanta (gravitons with helicity » = £2 for gravitation, and

2.1 Linearized gravity as a classical field theory 61

photons with helicity £1 in electrodynamics). Consider a collection of
guch free particles. To determine the energy of this system in a volume
V we must know how many quanta of the field are within V at a given
time, and the energy of each. If we take a volume with sides smaller than
the reduced wavelength X of a photon or of a graviton, in order to know
whether a given photon (or graviton) is inside the box we must measure
its position with an error Az < X and then, by the uncertainty principle,
we have Ap > /X, which is larger than the momentum p = A/X of
a quantum with reduced wavelength X. Thus, we have completely lost
information about the momentum p of the particle, and therefore (given
that we are considering free particles described by simple plane waves),
we lost information about its energy E = c|p|, which means that we
cannot localize the energy density better than to a few wavelengths.
Alternatively, we can localize the energy in space if we delocalize it in
time, according to AEAtzh. Clearly photons and gravitons do not
show any difference in this respect.® In fact, even if we phrased it in
a quantum language, this argument is really classical, and follows from
the fact that the position z of the peak of a classical wave-packet, and
its typical wave-vector k satisfy AzAk > 1, and in this form is simply
a property of the Fourier transform. In quantum theory, one identifies
the momentum p with hk, and AzAk > 1 becomes AzAp > h.

In conclusion the field-theoretical approach, based on Noether’s theo-
rem, gives us an unambiguous recipe for computing a spatial (or a tem-
poral) average of the energy—momentum tensor of GWs. The fact that,
for GWs, we cannot do better than this, i.e. that the energy of GWs
cannot be localized in space (or in time) with a precision better than a
few wavelengths (or a few periods) can be understood as a consequence
of the equivalence principle, but it is in fact also a general property of
any wave governed by a massless wave equation, which at the quantum
level translates into a limitation required by the uncertainty principle.

2.1.3 The angular momentum of GWs

We next compute the angular momentum carried by GWs. Angular
momentum is the conserved charge associated to invariance under spatial
rotations. A symmetric tensor h,,, from the point of view of spatial

rotations, decomposes into koo and the spatial trace h¢, which are both

scalars under rotation and therefore are spin-0 fields, hg; which is a
spatial vector and therefore has spin 1, and a traceless symmetric tensor
hi;, which is a spin-2 field and has five degrees of freedom. To describe
the GW we go to the TT gauge, so we have hg, = 0 and we are left only
with the field h,;-[j‘-T., which satisfies (hTT)¢ = 0 and Bih;-lj‘-T = 0, compare
with eq. (1.31). Observe that A;" has only two degrees of freedom,
corresponding to a massless particle with helicity £2.7 As before, the
last three terms in eq. (2.33) give a contribution to the Noether current
that vanishes when, after taking the functional derivatives, we impose
the gauge fixing condition. Then, for the purpose of computing the
Noether current in this gauge, we can use as Lagrangian the first term

6The fact that, as a quantum field the-
ory, general relativity is not renormal-
izable plays no role here. As long as
we are at energies much smaller than
the Planck mass, linearized theory can
be promoted to a well defined effective
quantum field theory, describing weakly
interacting gravitons, as we discuss in
more detail in Section 2.2.

7 As we will recall in Section 2.2.2 and
in Problem 2.1, the physical represen-
tation of the Poincaré group are of two
types: massive representations, char-
acterized by their spin j and having
27 + 1 states, and massless representa-
tions, which have a quantum number
7 but only two states, corresponding to
helicities h = +j. We will use the name
“spin-j field” to denote generically a
field that can describe either a massive
particle with spin j or a massless par-
ticle with helicities o = #£j (in which
case, it will be subject to constraints
that eliminate the extra states, see Sec-
tion 2.2). The name “spin-j particle”
will however be reserved to a massive
particle with spin j and therefore 2j+1
degrees of freedom. A massless particle
with quantum number 7 will be referred
to as “a massless particles with helicity
+357.
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in eq. (2.33), and we can keep only the physical degrees of freedom h,};.T,

C4

L=—%mo

Ouhig' 0" BT . (2.38)

A rotation of three-dimensional space is described by a 3 x 3 orthogonal
matrix R, which transforms the coordinates according to ¢ — R zi

(observe that, since our signature is (—,+, +,+), we do not need to

be careful about raising or lowering spatial indices). An infinitesima]
rotation can be written as

RY = §9 4 )4 | (2.39)
and the condition that R is an orthogonal matrix gives w¥ = —wii,
Therefore rotations can be parametrized by the three independent quan-
tities w!?,
egs. (2.2) and (2.3). So, for rotations eqs. (2.2) and (2.3) become

Tt — b 4 ZwklAzl , (2.40)
k<l
hz‘l;’T - hz'TjT + Zwleij,kl , (2.41)
k<

and the sum goes over the independent parameters w® with k < [.
Observe that, in Fj; , the first pair of indices, (,7), is the label that
identifies the field h};-T, and therefore plays the role that the index i had
in eq. (2.3), while the second pair (k, 1) plays the role of the index a in
eq. (2.3). In particular, Fy; 4 is symmetric with respect to the pair (z,7)
and can be taken to be antisymmetric with respect to the pair (k,1).
The total angular momentum carried by the GWs is then given by

. 1 ..
Jb = "G”k«]k‘z.

5 (2.42)

where Jy; is the conserved charge associated to rotations in the (k,1)

plane,
1 .
Jet =~ /ddfv]gu

(the factor 1/c provides the correct dimensions) and Noether’s theorem
gives

(2.43)

oL

0] — v 8yhTT
ki _—a(aoh;l;T)[ Kl ij

— Fyjn] — ALL. (2.44)
To find the explicit form of A%, and Fj; ;; we compare the generic formu-
las (2.40) and (2.41) with the actual transformation properties of ziand

hZTjT under infinitesimal rotations; A};l is easily computed observing that

b — RYgd = gt 4 9y
=zt 4 Zwkl(ézkxl _ 5zlxk),
k<l

(2.45)

w'® and w?®, which play the role of the parameters ¢® in \

s0, comparing with eq. (2.40),

Al = ot gtk (2.46)

As for AY,, since time is unchanged under spatial rotations, we have

Ay =0. _ .
The quantity Fj; . is determined by the properties of h;le under ro-
tations. Since h.;FjT is a spatial tensor, it transforms as

hit — R R;'h" (2.47)
= h?;T + wjlh};T + wi’gh;ff
= hET 43 W (GuhfT — Sab + Suhiy T — S
k<l
Comparing eqs. (2.41) and (2.47), we see that

Fz‘j,kl = 52‘;9]'L;5T - 521;"1;[\;? -+ 53‘;9/1;[1\’1‘ — 5]'1/13;? . (2.48)
We can now plug these results into eq. (2.44). We also observe that
oL
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= O°hET

9(oh;") 32rG Y
_ O g (2.49)

327G Y

and (renaming the indices (4, j) — (a,b)) we get

3 © e . ~ .
0= e | IR (200" — 2 OFYRG + 203 (Guhal + Suhiy)

B (2.50)

From egs. (2.43), (2.44) and (2.42), the total angular momentum of the
GW ig therefore

Ji= (2.51)

2 - . . .
320 G/dgz {—6"’klh;f§xk8’!hgr+2€lklh'5,;rh:£lT] .
T

To understand the physical meaning of the two terms in bracket, it is
useful to recall the analogous results for spin-0 and spin-1 fields.® For a
real scalar field, applying Noether’s theorem, one finds that the angular
momentum carried by a field configuration ¢ is
J= ~€ik1/d3x (Bop) 20" . (2.52)
We see that this has the same structure as the first term in eq. (2.51) (af-
ter rescaling hl;l by a factor (327G/ ¢*)/2; as we will see in Section 2.2,
this rescaling gives to ALl the standard field-theoretical normalization).
The physical meaning of this term can be understood observing that,

for a real field ¢ satisfying the massless Klein-Gordon equation O¢ = 0,
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8Tor explicit proofs, see Maggiore
(2005), Section 3.3.1 for spin-0 fields,
and Section 4.3.1 for the electromag-
netic field. Pay attention to the fact
that this reference uses the opposite
metric signature (following the most
common convention used in field the-
ory, while here we are following the
most common convention used in gen-
eral relativity), and units A =c = 1.
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one can define the scalar product between two field configurations ¢ and
i/
2

(ple) = %/ RTINS (2.53)

B

where, on any two functions f and g, we define Ou by fOug = fOug —
(0,.f)g. Since ¢ and ¢’ are functions of ¢ and x, and in eq. (2.53)
we integrate over d3z, the result is a priori still a function of time,
However, this scalar product is actually time-independent, if ¢, ¢y are
solutions of the Klein-Gordon equation. It is then not so surprising
that the conserved charges of the scalar field theory can be expressed
as expectation values of suitable operators, with respect to this scalar
product.

Consider in particular L' = —ie* k9!, which is the orbital angu-
lar momentum operator (in units of /). The expectation value of this
operator, with respect to the scalar product (2.53), is

G

(6] L7]¢) = %/dBT [(/)f}iaoqs_ (aogzﬁ)f/'gb]
1

= ;e““l/d‘gx (920" 00 ~ (Boi)z"0'¢]

= —¢' / &’z (Bop)abd'e, (2.54)
where, going from the second to the third line, we integrated by parts
A" in the first term. Comparing with eq. (2.52) we see that the total
angular momentum carried by a scalar field configuration ¢ is equal to
the expectation value of the orbital angular momentum operator ﬁi,
with respect to this scalar product,

-
.
-
.
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Jt= (p| L) . (2.55)
Observe also that, for a scalar field, there is no additional contribution,
and the total angular momentum is given by the expectation value of
the orbital angular momentum operator.

Consider now the spin-1 case. If one computes, using Noether’s theo-
rem, the angular momentum carried by the electromagnetic field in the
radiation gauge, where the electromagnetic field is transverse, 9; A* = 0,
and satisfies DA’ = 0, one finds

Ji = /dSIC [—eik’l((r‘)oAj) xké)zAj + EiklAkaoAl] . (256)

Again, since the equation of motion is 0A; = 0, we can define a scalar
product

(4]4") = %/d% A; Dy AL (2.57)

which is conserved on the solutions of the equation of motion. Then,
we see that the first term in eq. (2.56) is again the expectation value of
L' = —ethlyh gl with respect to this scalar product, so it is the contri-
bution from the orbital angular momentum. In the derivation based on

-
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the Noether theorem, this term is determined by the transformation of
the coordinates = under spatial rotations, (i.e. it comes from the term
proportional to A% in eq. (2.7)), so it is clear that it has the same struc-
ture for all fields, independently of their spin. The second term instead
depends on the specific properties of the field under spatial rotations (ie.
it comes from the term proportional to F; , in eq. (2.7)) and therefore
it is the spin part. Defining

St = ¢kt / Pz Apdp Ay,

the explicit computation® shows that, in second quantization, the cir-
cular polarizations states of the photons are eigenvectors of the helicity
operator S-p (where p is the unit vector in the direction of propagation),
with eigenvalues £1, as required for a massless particle described by a
vector field.

We can now understand the meaning of the two terms in eq. (2.51).
Since h," satisfies DR = 0, the conserved scalar product is defined as
in the Klein-Gordon or in the electromagnetic case,

(h|1'y = % / &z hET gy h'TT . (2.59)

After rescaling L' — (32rG/c®)/2RLT (which, as we will see in Sec-
tion 2.2.2, is the rescaling needed to give to hy. the canonical normal-
ization to the kinetic term in the action) the first term in eq. (2.51) is
the expectation value of the orbital angular momentum operator with
respect to this scalar product, while the term 2e*'ATTATT is the spin
contribution. The factor of 2 in this term correctly reproduces the fact
that the gravitational field has spin two, and therefore gravitons are
eigenvectors of the helicity with eigenvalues +2.

In the previous section we learned that the Noether currents cannot
be localized better than a few wavelengths, so the physical density of
angular momentum, j¢/c, is the integrand of eq. (2.51), averaged over a
few wavelengths,

1

y c?
S =
C

332G
Consider now a GW propagating outward from a source. At time ¢
we consider a portion of the wave front, at radial distance r from the
source, and covering a solid angle d€2. At time ¢ + dt this portion of the
wave front has swept the volume d®z = r2drdQ = r?(cdt)dS). Since the
angular momentum per unit volume is (5%/c), the angular momentum
carried away by the GW is dJ* = r?(cdt)d2 (j*/c). Therefore the rate
of angular momentum emission due to GWs is

(—eM AL TR R + 2 RTTRTTY | (2.60)

dJs 3

Rk (2.61)
dt 327G

/ r2dQ (€t jz,gg$k8lh,zl? + 2¢tM hETlle) .

9See Maggiore (2005), pages 98-99.
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This section is intended for readers with
some knowledge of quantum field the-
ory. In this section and in the next we
use units

h=c=1.
It can be useful to recall how dimen-
sional analysis works in these units.
Since ¢ = 1, velocities are pure num-
bers while, dimensionally,

energy — momentum = mass .

Recalling, from the uncertainty princi-
ple, that a length times a momentum
has dimensions of A, in units A =c =1
we also have

length = (momentum)~! = (mass)~".

Then the dimensions of any quantity
can be expressed as positive or neg-
ative powers of mass. For example,
and energy density is energy/volume
= (mass)?,

2.2 Gravitons

All astrophysical processes which generate GWs, as well as the interac-
tion of GWs with detectors, are adequately described in the framework
of a classical field theory of gravitation. Nevertheless, it can be instruc-
tive to discuss some conceptual issues using the vantage point provided
by modern quantum field theory.

In this section we will see that, at the quantum level, gravity must be
mediated by a massless particle with helicity £2, the graviton. Its free
action, in flat space-time, is fixed by field-theoretical considerations,
and reproduces the linearization of the Einstein action. Consistency
with gauge-invariance then requires the introduction of non-linear cou-
plings between the graviton, with three-graviton vertices, four-graviton
vertices, etc., and a full non-linear structure emerges. Finally, we will
briefly mention some of the issues involved in the quantization of gravity
and we will discuss why, even in the absence of a full quantum theory
of gravitation, general relativity makes sense as an effective field theory
below the Planck scale, and the notion of graviton is well defined.

2.2.1 Why a spin-2 field?

In quantum field theory all interactions are mediated by the exchange
of bosons, i.e. particles with integer spin. Since a flat space-time back-
ground is an excellent approximation in many situations, it make sense
to look for a relativistic quantum field theory living in flat space-time,
that in the non-relativistic limit reduces to Newtonian gravity. Such
a theory should be mediated by a boson which propagates in this flat
space-time.

Gravity is the interaction that in the non-relativistic limit couples to
the mass. To obtain such a coupling from a local quantum field theory,
we need to couple the field that mediates gravity to a local quantity (i.e.
a quantity which is function of the space-time point z) whose spatial
integral, in the non-relativistic limit, becomes the mass.

Mathematics alone is not sufficient to obtain uniquely a consistent
theory that gives back Newton's law. We will also use as guiding princi-
ple the deep insight of Einstein that in the full theory of gravitation not
only the mass is a source for gravitation but, more generally, all forms of
energy. In a local field theory, we therefore look for a coupling between
the field that mediates gravity and the energy density.

Since, from the point of view of Lorentz transformations, energy den-
sity is the (00) component of the energy—momentum tensor, consistency
with special relativity requires that we couple our gravitational field to
the energy—momentum tensor 7},,(x). As long as we work at linearized
level, we can neglect the contribution of the gravitational field itself to
TH”, so we can take as T"¥ the energy-momentum tensor of the matter
fields only. Since we are assuming a flat background, at linearized level
T obeys the flat-space conservation law

8,T" = 0. (2.62)

e .

We will come back later to the inclusion of the non-linear terms.

The simplest possibility that one can examine is that gravity is me-
diated by a spin-0 boson, described by a scalar field ¢. A scalar field
¢ carries no Lorentz index, so the only possibility is that it couples
to the trace of the energy—momentum tensor, T = T}'. Therefore the
Lagrangian density which describes the dynamics of this hypothetical
scalar gravitational field and its coupling to matter, in linearized theory,
must be of the form

L=~ 5(0ub0"9+ W6) + 94T, (263)

where ¢ is a coupling constant, and g is the mass of the scalar field
(more generally, we could also add a potential V' (¢), that however does
not influence the following discussion). In order to see if this theory
reduces correctly to Newtonian gravity in the non-relativistic limit, we
can compute the potential induced by the exchange of a ¢ boson between
two static particles of masses my and mg. Let us recall that in quantum
field theory the static interaction potential V(x) is a derived concept,
which makes sense only in the non-relativistic limit. To obtain it, one
must compute the 2 — 2 scattering amplitude Mjy; at tree level, taking
the initial state equal to the final state, and then the potential is given
byl()
il © d3q M (e

(x) =— ms M q)e’ ™.
The energy—momentum tensor TH" is quadratic in the matter fields, so
the vertex g¢T' involves two matter-field lines and one ¢ boson, and to
compute My; we must evaluate a Feynman diagram of the type given
in Fig. 2.1 (plus a possible exchange graph for identical particles), with
g = (¢°,q), setting ¢° = 0 because the potential is obtained in the static
limit. In general, the details of the computation depend on the form of
T(z), i.e. on the specific type of matter field considered. However, if
the matter field is massive, we can take the non-relativistic limit, and in
this limit we can treat T'(x) as an external classical field. In this case,
the interaction vertex of this theory becomes as shown in Fig. 2.2, where
the cross denotes the insertion of 7(q). Then the diagram of Fig. 2.1
reduces to that shown in Fig. 2.3, and the amplitude My; is given simply

(2.64)

iMyi(q) = (—ig)*Ti(q)D(q)Ta(—q), (2.65)

S 2.66
¢+ (26

D(q)

is the propagator of the scalar field ¢ (recall that we are using the sig-
nature 7, = (—,+,+,+)), and T1,T% are the traces of the energy—
momentum tensor for particles of masses m; and mq, respectively. In
the static limit, ¢* = —(¢")? + @® — g2, and the propagator becomes

D(q)

—1

= 2.67
q* + p? (267
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=

Fig. 2.1 The Feynman diagram that
gives the scattering amplitude at
tree level.

10gee e.g. Maggiore (2005) (Section 6.6
and eqgs. (7.56)—(7.59)), for the deriva-
tion of this result and for explicit com-
putations of the potential induced by
the exchange of scalar or vector parti-
cles.

q

4aVaVaVa VoW

= —igT(g)

Fig. 2.2 The Feynman diagram that
gives the vertex, when T(z) is
treated as an external field.
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q

Fig. 2.3 The Feynman diagram
that gives the scattering amplitude,
when T'(z) is treated as an external
field.

Hore precisely, for a particle in xi,
T(x) = ~m3® (x - x1), so T(q) =
—mexp{—iqxi}. In the field theoreti-
cal language, the factors exp{—iq-x1}
from Ti(q) and exp{-+iqx2} from
Ta(—q) comes from the wavefunctions
of the external legs, and in eq. (2.68)
they have already been taken into ac-
count by the term exp{iq-(x2 — x1)},
where xo — X9 = X.

l2()bviously7 this rules out the possibil-
ity that the main contribution to grav-
ity comes from spin-0 fields. It says
nothing about the possibility that there
are additional gravitationally interact-
ing scalar fields, which give small cor-
rections to general relativity either be-
cause they are massive or because their
gravitational coupling is suppressed
with respect to Newton constant G. In-
deed, additional scalar fields enter in
most extensions of general relativity.

Spin-1

Equation (2.64) then gives

Ve = -ie” [ G h@D@Eae. (26

For a relativistic classical particle moving on the trajectory xo(t), the
energy-momentum tensor is given by (see, e.g. Landau and Lifshitz,
Vol. 1T 1979)

oV

TH (x, 1) = %}ﬁ’— 53 (x — x0(t)), (2.69)

where p* is the four-momentum. Using p#p, = —m? and, for a particle

at rest, p¥ = m, the trace of the energy—momentum tensor of a heavy

source becomes T'(x) = ~m 6 (x), which in turn gives T(q) = —m.!!
Therefore

V(x) = —ig*mimaD(x). (2.70)

If the mass p vanishes,

dSq — g
209= | G <

=t (2.71)

drr’
where 7 = |x|, and therefore we get the correct Newtonian potential

Gmims

V(r) = (2.72)

”
once we make the identification g?/(4m) = G. If instead the mass u is
non-vanishing, we get a Yukawa potential

G'mima

V(x) = e (2.73)

,
This result shows that, as far as the non-relativistic Newtonian limit is
concerned, a spin-0 massless scalar field is a viable possibility.

However, a spin-0 field fails when we come to the new predictions of
this theory of gravitation in the relativistic regime. In particular, we see
from eq. (2.23) that the energy—momentum tensor of the electromagnetic
field is traceless,

1 ;
Tem - Fupr,/) - Z:(SﬁFZ =0. (274)

Therefore, in this theory, photons do not couple to gravity. Experi-
mentally, the gravitational bending of light rays from massive objects is
very well established (it was in fact the first experimental confirmation
of general relativity and nowadays, in the form of gravitational lensing,
it is a beautiful routine tool in astrophysics). Therefore a spin-0 theory
of gravitation is ruled out.'?

The next possibility is a spin-1 field, just like in electrodynamics.
In order to get a long-range potential, we need again a massless field,

R e S

but a massless vector field A, can be coupled consistently only if we
respect gauge invariance. In electrodynamics this can be obtained with
a coupling 4,7, imposing that j# is a conserved current. In fact, under
a gauge transformation, A, — A, — 0,0 and, after an integration by
parts, the term —(0,0)" — 00,5" = 0, so the action is invariant.

Therefore, a coupling between such a vector field A4, and the energy-
momentum tensor of the form A, A, T is immediately ruled out, be-
cause it is not gauge invariant (and furthermore, the simultaneous ex-
change of two gauge bosons gives a potential 1/r® rather than 1/r.) A
derivative coupling (9,4, )T is also not viable, since after integration
by parts it gives zero, because of energy-momentum conservation.

If we limit ourselves to the level of first quantization, we could write
down a coupling of a vector field to a point-like particles in the form

‘ 4 d"Lg (3) £
/d :L'Aﬂ(:c)m?h—é (x —xo(t)), (2.75)

where zf(7) is the particle world-line. However, in quantum field theory
the four-vector j#(z) that, in the limit of point-like particle, reduces
to m(dal /dr)0®) (x — x0(t)), is a U(1) current. Then Q = [d®z;°
is equal to the mass m times (number of particles minus number of
antiparticles), so it is not positive definite, and [ d3z j° cannot be in-
terpreted as the mass (unless we assign a negative gravitational mass
to antiparticles). Furthermore, even if we ignore this problem and in-
terpret 50 has a mass density, still this attempt to construct a spin-1
theory of gravity fails because, as we know from classical electromag-
netism, the interaction mediated by the photon between two particles
of the same charge is repulsive. Technically, this comes out because the
term T1(q)D(q)T2(—q) in eq. (2.68) is now replaced by

3 (@) Dy (@) (—a) (2.76)

where D, (q) is the propagator of the massless vector field A,. In
momentum space,

. —

Dyuw(q) = Z (2.77)
In the static limit ¢ = —(¢°)? + g® — @7, and the propagator becomes

. —i

Dyy(a) = & (2.78)

Because of the factor 7,,,,, the propagator of the spatial components 4; is
equal to that of a scalar field, but the propagator of Ag has the opposite
sign. In the non-relativistic limit j# — (5°,0). Then in eq. (2.76) only
the component Dgg contributes, so we get the opposite sign compared
to the scalar case, 1.e. a repulsive potential between positive masses. In
conclusion, also spin-1 is ruled out.

Values of the spin j > 3 are also ruled out: the need for a long-range
force requires again a massless field, which can be coupled consistently
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only to a conserved tensor. Except possibly for total derivative terms;
there is no conserved tensor with three or more indices, so massless pars
ticles with j > 3 cannot produce long-range forces, neither gravitational
nor of any other type. v

The only possibility which is left is j = 2, and we examine it in the
next section.

2.2.2 The Pauli-Fierz action

The considerations of the previous section lead us to study the action
for a spin-2 massless field. To identify the field that describes a mass-
less particle with helicity £2, let us first recall some elementary facts
about the representations of the Lorentz and Poincaré groups, and their
decomposition under representations of the rotation group.

Massless particles in field theory

The irreducible tensor representations of the Lorentz group are given by

tensors that, with respect to any pair of indices, are either symmetric and
traceless, or antisymmetric. An irreducible representation of the Lorentz
group provides of course also a representation of the rotation subgroup
SO(3). However, a representation that is irreducible with respect to the
full Lorentz group, will be reducible if we limit ourselves to the rotation
subgroup (except for the trivial case of the scalar representation), so
it decomposes into the direct sum of irreducible representations of the
rotation group. For instance a four-vector A, is an irreducible represen-
tation of the Lorentz group, but from the point of view of rotations it
decomposes into a scalar Ag and a vector A, or

A, €051, (2.79)

where we denote by @ the direct sum of representations, and by s the
representation of the rotation group corresponding to spin s (so 0 is
the scalar and 1 is the vector representation). The representation s has
dimension 2s + 1, so in particular the scalar is one-dimensional and the
vector is a three-dimensional representation. When we consider tensors
with two indices, an antisymmetric tensor A* decomposes as

Awelel, (2.80)
while a traceless symmetric tensor S*” decomposes as
S 02102, (2.81)

Therefore, the simplest tensor that contains a spin-2 is the traceless
symmetric tensor, and a spin-2 can be described using S, and imposing
conditions that eliminate the extra degrees of freedom. Equation (2.81)
states that the nine independent components of a traceless symmetric
tensor with two indices decompose into a scalar, the three components
of a spin-1, and the five (25 4+ 1 with s = 2) components of a spin-2.

A further complication arises if we want to describe a massless particle.
As we recall in more detail in Problem 2.1, particles are representations
of the Poincaré group, and the physically interesting representations of
the Poincaré group are of two type. (1) Massive representations, with
—~P, Pt = m? > 0, labeled by the mass m and by the spin j, which
takes integer and half-integer values, 7 = 0,1/2,1,.... The dimension of
these representations is 25 + 1. (2) Massless representations, P, P* = 0,
which are two-dimensional (actually, one-dimensional, but become two-
dimensional if we also require that they are representations of parity)
and are characterized by two helicity states h = £7.

In particular, a massive spin-1 particle has three degrees of freedom,
and a massive spin-2 particle has five degrees of freedom. In contrast,
a massless particle with j = 1 and a massless particle with 7 = 2 both
have only two degrees of freedom, the former with helicities A = &1,
and the latter with A = 4+2. This means that, in the case of a massless
spin-1 field, a four-vector field A, contains two redundant degrees of

 freedom, while for a massless spin-2 field the nine components of S*”

contain seven redundant degrees of freedom. The way to eliminate these
spurious degrees of freedom is to introduce a gauge-invariance. For elec-
tromagnetism, one imposes that the theory is invariant under

Ay — Ay — 0,8 (2.82)

It is a standard textbook exercise to show that we can choose 6(x)
so to set Ag = 0. A residual gauge-invariance remains, due to the
possibility of performing a further transformation with a function 6(x)
independent of time and (making use of the Maxwell equation in vacuum
V-E = 0) it can be used to set V-A = 0, so we eliminate also the
longitudinal component of a plane wave solution, and we are left with
only two degrees of freedom, at least at the classical level. Then, one can
quantize the free theory and verify that one obtains a massless particle
with two helicity states, the photon.

The graviton and its action

We want to do the same for a massless particle with j = 2, that we
call the graviton. The strategy is therefore to start from a traceless
symmetric tensor, to impose a local invariance, and to write down a
Lagrangian that respects this local symmetry. Then (using the equations
of motion derived from this Lagrangian) we can see how many degrees
of freedom remain in the theory. In fact, it is even technically simpler to
start from a tensor h,, which is symmetric, but not traceless, so from
the point of view of Lorentz symmetry it decomposes into the trace and
the symmetric traceless part, and from the point of view of rotations
hu, €06 (00 1@ 2). We therefore want to impose an invariance that
eliminates eight spurious degrees of freedom.

In order to generalize eq. (2.82) to the case of a field h,, with two
indices, we must assign a Lorentz index to the function that parame-
trizes the gauge transformation. Let us call £, (x) this function. Since
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we must respect the fact that hy, is symmetric in (p, ), the natural
generalization of eq. (2.82) is

b (@) — hp () = (0,8, + 0,E,) (2.83)

that we still call a gauge transformation. Observe that this is nothing
but the symmetry (1.8) of linearized Einstein gravity, so we are on the
good track for recovering the linearization of general relativity.

Next, we want to construct a gauge-invariant action, for the free the-
ory. Remarkably, the condition of gauge-invariance fixes this action
uniquely. In fact, by inspection we see that the possible terms that one
can write down, quadratic in h,, and with two derivatives, are

Oply 0P R S Dyl OV PP 0, OP by, Oh* a b, "R, N,
(2.84)
where h = hl; is the trace of h,,. Terms of the schematic form hddh
are related to those written above by a single integration by parts. Fur-
thermore, the second and third term in eq. (2.84) are related by two
integrations by parts, that swaps the two derivatives. Therefore, the
most general form of the free action is

S = [d*x [a10,, 0P B* + as0,h, 0" 1P + agdyh™ 8,k + a0 h),h ,
ol o f f

(2.85)
where the label in Sy stresses that this quantity is quadratic in Py . We
now impose invariance under the gauge transformation (2.83). This fixes

all the coefficients aq, ..., a4, except of course for an overall normaliza-
tion. We then obtain (choosing the normalization a3 = —1 /2; the sign

is fixed requiring that the energy is positive definite),

Sy = % /d4x [—0phyw 0PI + 20,h,,,0" W#P — 20, Oy h 4 OFhO,h)

' (2.86)
This is the Pauli-Fierz action. Comparison with eq. (2.33) shows that
we have indeed recovered the Einstein action of linearized theory, after
a rescaling

P — (327rG)*1/2h,u,, (2.87)

and taking into account that the last term in eq. (2.33) is equal to the
second in eq. (2.86) after swapping the two derivatives with integrations
by parts. We have therefore found that the linearized Einstein action is
the unique action that describes a free massless particle with helicities
+2, propagating in flat space.

We can now repeat the considerations already made in Sections 1.1
and 1.2, see in particular the discussion around egs. (1.26) and (1.27): we
can use the gauge-invariance (2.83) to choose the Lorentz gauge (1.18).
This eliminates four of the 10 degrees of freedom in hyw, and still leaves
a residual gauge invariance, i.e. the transformations (2.83) with func-
tions &, that satisfy 0¢, = 0. In the vacuum, where T = (), using
the Lorentz gauge, the equations of motion derived from the linearized

Einstein action are D/"LW = 0, and therefore four functions fﬂ that sat-
isfy D&, = 0 can be used to eliminate four components of 1., so we
remain with two degrees of freedom, and we arrive at the TT gauge,
eq. (1.31). The requirements of gauge invariance therefore fixes uniquely
the linearized action, and leaves us with a massless spin-2 field with two
transverse degrees of freedom, the graviton.

For the interaction term, we can write

Siut = %/ d4.’13 h’l},uT,“/ . (288)

The coupling constant x will be fixed below. Observe that this inter-
action term is invariant under the gauge transformation (2.83) because,
after an integration by parts, the term (9,,&, + 9,€,)T*" vanishes, using
ONT/U/ — 0 .

Just as in electrodynamics, to find the graviton propagator we must
add a gauge-fixing term to eq. (2.86), since otherwise the quadratic form
is not invertible. The Lorentz gauge can be obtained adding the gauge-
fixing term

Set = — / d*z (0”0’
. 1 2
S / d*z <8"h,_w — Qnﬂya"h> (2.89)
1
— / diz <~8ph/W8”f’#‘"’ + O W O,k — Za“l‘zaulz) ,

where in the first term we swapped the derivatives integrating by parts.
The overall numerical coefficient in eq. (2.89) has been chosen so that
the terms d,h,,, 0" h** and 0, h!* 0, h cancel between Sy and Sgf, s0 t.his
choice corresponds to the Feynman gauge in electrodynamics. Putting
everything together, we find

S =Sy + Sgr + Sing

1 , (2.90)
= / diz [—%aﬁ,hwaﬂw + 10" hdh + —gh,“,T” .

The equations of motion obtained performing the variation of this action
are

- K
Dh;,w - 7”2_1—2—1”1/ 5 (291)
or, equivalently .
K
Dh'/,u/ = *‘2_ (Tpu/ - iquuT) . (292)

Comparing with eq. (1.24) and taking into account the rescaling (2.87),
we get (in the units ¢ = 1 that we are using in this section),

k= (327G)/2. (2.93)
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13Alterna‘cively, we can define the 10
fields ¢y, ¢ = 1,...,10, by ¢ =
hoo,¢2 = ho1,...,¢10 = hzz. We
then write the kinetic term in the form
AijOudi0*¢;, and we invert the 10 x 10
matrix Agy.

M The overall factor depends of course
on the overall normalization of the
action, i.e. on the normalization of
huw.  With our choice the field hgg
is not canonically normalized, since its
propagator has an extra factor 1/2
with respect to the usual normaliza-
tion. In contrast, writing ¢, = hyw —
(1/4)nuvh, the field ¢, is canonically
normalized. Observe that ¢, is a pure
spin-2 field since it is traceless, while h
is a spin-0 field.

The graviton propagator

We now find the graviton propagator. Integrating by parts, we have

1 1
/ diz {~%c‘)ph/u,,8”h“” + Z@“h/auh} -5 / A4z W™ Ay pe 02hP7

(2.94)
where

1
Apvpo = ) (MupMve + Nuovp = MuuTpo) - (2.95

The graviton propagator in this gauge is obtained inverting this matrix.
Observe that

1
A/waﬁAaﬁﬁU = 5(77up77va + Mo Nvp) - (2.96)

The right-hand side is nothing but the identity matrix, in the space of

tensors symmetric in (u,v) and in (p,0). Therefore in this space the

inverse of A is A itself,'® so the propagator is given by
) g

~ 1 —i
Dul/pv(k) = 5 (77u/)77l/<7 + NuaMvp — 77W77/)0) <m> ) (297)

where, as usual, the ie prescription selects the Feynman propagator. In
particular, Dogoo (k) = —i/(2k2) and Dogoo(r) = —1/(87r).1* Comparing
with eqs. (2.66) and (2.78) we see that the propagator of hgg has the
same sign as the propagator of the scalar field (and the opposite sign of
the propagator of Ag), since (190)® = +1. Therefore, in the static limit
hoo mediates an attractive gravitational potential. Using the interaction
terms (2.88) and repeating the same steps performed for the scalar field,
we get

K2 d3q =00 = =00 iq-
Ve = i% [ @ Do (@) T8 —a)e >
HZ
= —’i*4— mamaoDoggo (%)

K% myme
_——— . 2.98
32T r ( )

This gives again x = (327G)'/?, in agreement with eq. (2.93) (of course,
this numerical value depends on the choice of normalization made for
h,,“,), and we have recovered the Newtonian limit.

2.2.3 From gravitons to gravity

We can now understand, from a field-theoretical point of view, that the
simple action (2.90) cannot be the whole story, and that the correct
field theory of gravitation must develop a full non-linear structure. The
reason is that, as we have seen, the theory of a massless particle with

helicities &2 must necessarily be gauge invariant. We have shown that
we can use gauge-invariance to impose the Lorentz condition

Dhy =0, (2.99)

and that in this gauge the equations of motion read

- K

Dh,w/ = _iTy,u . (2100)

BEquations (2.99) and (2.100) together imply that the energy—momentum

tensor of matter satisfies the flat-space conservation law 9,7 = 0. In
integrated form, this conservation laws reads

4 / d3xT°°=—/ d3z 0; T, (2.101)
at Jy v

and states that any change in the energy of the matter field in a volume
V is due uniquely to the flux of matter field flowing inside or outside

this volume. However, this can be true only as long as we consider T#"
as a given classical external source. As soon as we replace it with the
energy—momentum tensor of dynamical matter fields, there will neces-
sarily be an exchange of energy and of momentum between matter and
the gravitational field. For instance, there will be gravitational radiation
emitted by the matter and going off to infinity, draining energy from the
matter sources. Therefore the equation 0,7 = 0 is untenable in a full
dynamical theory, and eq. (2.100) cannot be exact.

In the full theory what should be conserved is not the energy and
momentum of the matter alone, but that of matter plus gravitational
field. To remedy this we could try to perform, on the right-hand side of
eq. (2.100), the replacement

Ty = T + tfu) J

(2.102)

where tffu) is the energy—momentum tensor of the gravitons, obtained
from the Pauli-Fierz action using the Noether theorem. Using eq. (2.10),
we see that a Lagrangian quadratic in h,,, such as the Pauli-Fierz
Lagrangian, produces an energy-momentum tensor quadratic in hy,,
of the type, symbolically, dhdh. In eq. (2.102) we added to t,, the
superscript (2) to emphasize that it is quadratic in h,,. Then, we are
led to try B .

Oy = =5 (T + 2y, (2.103)

and the gauge condition 9", is consistent with the conservation of the
graviton plus matter energy-momentum tensor,

(T +13)) =0, (2.104)

However, this cannot yet be the end of the story. The equation of motion
(2.103) has a term, (—1/ Q)Rt,(f,,) , which is quadratic in h,, (and linear in
k) and to derive it from an action principle, we must add to the action
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Fig. 2.4 The three-graviton vertex.
Two lines carry a contribution pro-
portional to their momentum.

a term cubic in h;, and proportional to . Symbolically (i.e. omitting
Lorentz indices), 75,(,,, ~ 0hdh and a term of this type in the equations of
motion can be obtained adding to the action a term of the form hohonh,
or, restoring Lorentz indices,

S5=1 / iz b,y SH (), (2.105)

where S#(9h) should be of the general form

S (Oh) = ARPTEE09, ]

800 Pys (2.106)

and the tensor AMP7eP79 ig a product of flat metric factors. At this
stage, the action of the matter plus gravitational field must therefore be
of the general form

S =59 + Sgr + Sint + 53
‘ 1
= / d*x [—%ap;-waﬂw + 0" hduh + gthw n gthW(ﬁh)} :

Observe that S#(dh) is not equal to The energy—momentum tensor tfw)
In fact, the variation of a term h“”t“,, (h) in the action would produce,
in the equations of motion, a term

hOE )] =t + b [(BOw], (2a08)

i |
5o there would be an extra term due to the variation of tég(h) There-
fore, in the action A, couples to matter through the energy—momentum
tensor of matter, but the coupling to itself is through a different ten-
sor. In other words, the equivalence principle means that the energy—
momentum tensor of GWs enters on the same footing as the energy—
momentum tensor of matter in the equations of motion, not in the ac-
tion.

The cubic term in the action means that gravitons have a non-linear
coupling to themselves and, in the language of Feynman graphs, corre-
sponds to a vertex as shown in Fig. 2.4. It is instructive to compare
this situation with electrodynamics and with Yang-Mills theories. In
electrodynamics, the photon mediates the interaction, but carries no
electric charge. Therefore it does not couple directly to itself, and it
does not contribute to the electric current. In Yang-Mills theories, in-
stead, the gauge bosons are charged with respect to the gauge group,
and therefore they couple non-linearly to themselves, and in the theory
there are three-boson vertices and four-boson vertices. The situation

for gravitons is analogous. Here the role of the current is played by the

energy-moientum tensor, and the gravitons couple to their own energy—
momentum tensor (in the equations of motion; or to the corresponding
functional S*(9h) in the action). We see that, with the inclusion of the
cubic term in the action, our gauge theory of a massless particle with
helicities =2 begins to resemble to a non-Abelian gauge theory.

(2.107)

This suspicion is confirmed observing that the action (2.107) is no
longer invariant under the linear gauge transformation (2.83) that was
our starting point, since the term A, T*" is invariant only if 9,7* = 0,
which is no longer true. Rather, under the transformation (2.83),

5 / d%%th’“’ . / i (8,6, )T
= —K /d4m &, 0,TH
= +K / dha &, 8,13
=—K / d*z (9,6,) @ (2.109)

However, we have seen that the presence of a local gauge invariance

_is crucial to eliminate the spurious degrees of freedom in A, and we

cannot afford to lose it at higher orders in x. To remedy this, one can

_ observe that this extra term can be canceled, at O(k), promoting the

linear gauge transformation (2.83) to a non-linear transformation of the
generic form
(0u& + 0,E,) + KO(RIE) . (2.110)

Py = Iy —

Then the transformation of the graviton kinetic term produces a term
O(k), and it is possible to choose the tensorial structure of the O(hJE)
term so that it cancels the extra term coming from eq. (2.109). Thus,
eq. (2.83) is the gauge symmetry of the theory only at the infinitesimal
level, and at the finite level a non-linear gauge transformation emerges,
just as in non-Abelian gauge theories. With the hindsight coming from
the fact that we know already that the full theory of gravitation is general
relativity, we recognize in eq. (2.110) the expansion up to next-to-leading
order of a finite diffeomorphism.

It is clear that the iteration procedure does not stop here, neither in
the action nor in the gauge transformation. Once we add to the action
the term Ss, which is cubic in h,, and proportional to &, this produces
(through Noether’s theorem) a contribution to the energy-momentum
tensor of the graviton again cubic in h,, and proportional to x. We
find useful to display the powers of x explicitly, so we denote it by nt(g)
Noether theorem, applied to the action (2.107), now gives

(T + 3 + 1ty =0.

nr v

(2.111)

Therefore, consistency with 6”/3,,L,, = 0 now requires to replace eq. (2.103)
by

_ K 3

Oy = —5 (T + t2) + ktd). (2.112)

In turn, the action which generates this equation of motion, that has a

term cubic in A, and proportional to %2, must have an additional term

quartic in h,, and proportional to k2, so also its associated energy—
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5Nor the general covariance of the the-
ory. Since boundary terms in the ac-
tion do not affect classical physics, a
classical theory is invariant under a
given transformation even if its action
changes by a boundary term. This typ-
ically happens, for instance, in super-
symmetric theories, where under a su-
persymmetry transformation the action
changes by a boundary term,

momentum tensor has a further term quartic in the fields and propor:
tional to k2, that we denote by HQtEfLV) , and then

(2.113)

v

Ohyy = *g(T/“’ + tl(f),,) + /@tl(fy) + 12t 4 9,

where the dots indicate that the iteration continues to all orders. We

recognize the full non-linear structure typical of Einstein gravity, with

arbitrarily large powers of hy,, and a non-linear gauge invariance. In-
deed, there exists a simple and explicit resummation algorithm, due to

Deser, which gives back the Einstein equations. This algorithm uses the
first order Palatini formalism, where the action becomes a cubic polyno-
mial in the variable \/~g g,, and in the Christoffel symbol (which in a

first order formalism are varied independently), and the iteration stops
at finite order, see the Further Reading section. So, general relativity
can be inferred “bottom up”, i.e. starting from gravitons. However,
some aspects of this reconstruction procedure are not unique. In partic-
ular the full Einstein action includes a boundary term, since it can be
written as

N 1 4
58 = T6rG ,/d“ g
1
= m d4.73 [:\/ -—g [:2 — QMK“] s (2114)

where

LQ = g/”/ (Fgquy - I‘zl/rgﬁ> (2115)
is quadratic in the first derivative of the metric (it is usually called the
‘I'T” Lagrangian}, and

¥ = =g (g TS, — g™ Try).

The latter term is a total divergence and therefore does not affect the
equations of motion.!> However, boundary terms are relevant in the
quantum theory, and in particular the boundary term in eq. (2.114)
becomes physically relevant in semiclassical quantum gravity, in connec-
tion with black hole thermodynamics. It is clear that boundary terms
are beyond the reach of the iterative procedure that starts from the
Pauli-Fierz action, since at each stage of the procedure we have ambi:
guities connected with the possibility of dropping boundary terms. For
instance, from the very beginning, we might have chosen to retain the
third term in eq. (2.84) rather than the second term. More formally,
expanding g, = 7., + khy,, L2 has the structure (we drop all Lorentz
indices, since we are only interested in the dependence on k)

1
32n(

‘ 1
/d4x«/_~g Lo~ = /d% [52(0h)? + K*hOROL + .. ]

- / d'z [(Oh)? + KhOROh + O(x2)] |, (2.117)

(2.116)

and therefore is analytic in x. On the contrary,

1

1
Foe d*z 0, K" ~ o) /d4x 9*(n + Kh)

~ l/d‘lwazh.
K

Therefore this term is non-analytic in x and cannot be obtained unam-
biguously from the resummation of an expansion in powers of &, without
further physical input.

Alternatively we can proceed top-down, starting from Einstein action
and expanding it in powers of /., obtaining all non-linear interaction
terms. Observe that in this section we have given to h,, the dimensions
of mass that are canonical in field theory, and the dimensionless metric
huv is recovered with the rescaling (2.87). Therefore, the expansion that

(2.118)

we are performing in this section can be written as

G = N + (327G Y2,

=Ny + Khyw (2.119)
where hy, has the canonical dimension of mass and &, dimensionally, is
the inverse of a mass. Given the cubic, quartic, and higher terms in the
action, one can read the corresponding vertices and compute scattering
amplitudes using the Feynman rules. For instance, the 2 — 2 graviton
scattering amplitude is obtained from the s-channel graph of Fig. 2.5
(together with the corresponding u-channel and ¢-channel graphs), and
from the four-graviton vertex of Fig. 2.6, so this amplitude is O(x?), i.e.

0(G).16

2.2.4 Effective field theories and the Planck scale

In units 7 = ¢ = 1, the Newton constant has the dimensions of the
inverse of a mass squared, and therefore £ ~ G2 is the inverse of
a mass. The fact that the coupling constant x has dimensions of the
inverse of mass means that the quantization of gravity should give rise
to a non-renormalizable theory. This is expected first of all on the basis
of simple dimensional considerations. For instance, we have seen that
the three-graviton vertex has the generic form xkhdhdh. The fact that

_ there are two derivatives is dictated by dimensional analysis. In fact, the

dimensions of any term in the Lagrangian density £ must be (mass)?,
5o that the action [d*z L is dimensionless (recall that in this section
we are using units & = ¢ = 1, and then in particular a length has the
dimensions of (mass)™!, see Note 2). The kinetic term is, symbolically,
(0h)?, and since 9, = 1/length = mass, we see that h,, must have
dimensions of mass.

The three-graviton vertex therefore must necessarily carry two pow-
ers of the momentum: in fact khhh ~ (mass)?, and to get something
trilinear in h and proportional to x we must add two derivatives, so we
must have something of the form khdhOh. In momentum space each
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Fig. 2.5 A diagram contributing to
the 2 — 2 graviton scattering am-
plitude.

Fig. 2.6 The four-graviton vertex.

16 pe explicit expression for the three-
graviton vertex, and the (discourag-
ingly long) four-graviton vertex can be
found in egs. (2.6) and (2.7) of DeWitt
(1967). To compute a 2 — 2 gravi-
ton scattering amplitude in the Born
approximation it is however sufficient
to know the three-graviton vertex with
two gravitons on-shell and only one off-
shell, while in the four-graviton ver-
tex all lines are on-shell. Then in the
on-shell lines we can impose 0¥ hy, =
0 and h = 0, and the vertices be-
comes more manageable, see Grisaru,
van Nieuwenhuizen and Wu (1975).
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Fig. 2.7 The insertion of an inter-
nal graviton line among two exter-
nal lines. The blob denotes all the
remaining (unspecified) part of the
Feynman graph.

Tnore precisely, in the background
field method one expands Gur = Guv +
huv, where g, is a classical solution of
the equations of motion and huv is a
quantum fleld which, in the path inte-
gral formulation, is integrated over. Af-
ter integrating over the quantum fuc-
tuations h,,, we are left with the coun-
terterms evaluated on gu,. For pure
gravity, i.e. when we neglect mat-
ter flelds, Ry, evaluated on any clas-
sical solution g,. gives zero, and there-
fore the one-loop divergences disap-
pear. This miracle does not repeat at
higher orders, and does not take place
even at one loop if we also have matter
fields (in pure supergravity the diver-
gencies cancel even at two-loop order,
but not to higher orders).

derivative gives a power of momentum, and we can see, writing explic.
itly some Feynman graphs, that with more and more insertions of this
vertex we get Feynman graphs which (barring cancellations) are more
and more divergent. Consider for instance the insertion of an interng]

graviton line in a Feynman graph, obtained adding two three-graviton

vertices on two external lines, and connecting them by a graviton prop-

agator, as in Fig. 2.7. Denote by ¢* the momentum of this internal line.

Adding this internal line we have created a new closed loop, which gives
an integration over d*q. There are three propagators in the loop, and
at large ¢ each of them is ~ 1/¢%. Finally, each of the two vertices gives
a factor g,q,. Then, barring cancellations, the insertion of two vertices
brings a further factor that, in the ultraviolet, is of order

1
K2 / d4q W 9.9v9pY0 (2120)

and so is quadratically divergent. Therefore, adding two vertices we

have introduced a new divergence in the graph. Inserting more vertices
worsens the situation further and we get stronger and stronger diver-
gencies. The same happens with insertions of the four-graviton vertex,
five-graviton vertex, etc.

This lack of renormalizability, however, is not at all a problem as long
as we study processes taking place at sufficiently small energies. The
problem with non-renormalizable theories is a matter of predictivity,
not of mathematical consistency: in the language of counterterms, the
divergences are canceled adding to the Lagrangian terms that have a
different functional form, compared to the only term /—gR present in
Einstein gravity and, as we increase the number of loops, more and more
counterterms are required. For instance, to one-loop order one must add
to the Lagrangian a term proportional to R, R* and a term propor-
tional to R?, to two-loop order we have for instance terms proportional
t0 Ryupo RPTP Ry 5" | ete.!'” Therefore the divergences cannot be reab-
sorbed into a renormalization of the Newton constant and of the fields.
Rather, the coefficients of all these terms have a divergent part which is
chosen so that it cancels the divergencies coming from the loops, and a
finite part that must be fixed by comparison with experiments. Thus,
we end up with a theory which, by definition, is finite, but apparently
is left with very little predictive power, since we must fix an infinite
number of amplitudes by comparison with experiments.

However, this loss of predictivity is not important at low energies.
In quantum gravity, we have seen that the coupling constant is x =
(327rG)1/2. Defining the Planck mass Mp, (in our units i = ¢ = 1) by

1
G=p (2.121)
Pl
we have 2012
g 8207 ]VZI . (2.122)

The perturbative expansion in quantum gravity, which is an expansion
in k2, is therefore an expansion in powers of 1/M3,. After renormalizing

the theory, each scattering amplitude with N external legs, computed
up to order (k?)™ ~ 1/MZ}, has the generic form

2 E4 E2n
/L\T(E):A?V(E) <1+C1]V—1,1%“1+C2?\.‘4—]§1+...+Cn@> , (2123)

For simplicity we assumed that there is only one relevant energy scale
in the amplitude (which in principle depends on all the Lorentz-invariant
quantities that one can make with the external momenta). The non-
renormalizability of the theory means that, whatever the value of NV,
we can always find a sufficiently large order n in perturbation theory,
where a genuinely new divergence appears, which is not automatically
cured by the renormalization of Green’s functions with a smaller number
of external legs. Therefore, the coeflicients ¢1,c¢,...,¢,—1 are finite
and calculable once we have renormalized the Green’s functions Ajs
with M < N, but the coefficient ¢, must be fixed by comparison with

_experiment, and this is the origin of the lack of predictivity.

However, as long as F < Mp, terms suppressed by powers of E/Mp)
are completely irrelevant, and the lack of predictivity due to the fact that
¢y, should be fixed by comparison with experiment is more apparent than
real. As long as we study, say, a graviton-graviton scattering process at
a center-of-mass energy F < Mp), all higher-loop corrections are totally
insignificant. Given the huge value of the Planck mass,

Mpy =~ 1.2 x 1019 GeV, (2.124)

this means that the lowest-order effective action, i.e. classical general
relativity, is completely adequate in all “normal” situations. To see the
effect of higher-order terms in the perturbative expansion, we should
for instance perform a scattering experiment at center-of-mass energies
of order Mp;, or, equivalently, we should probe the structure of space-
time at length-scale of the order of the Planck length, Ip; = 1/Mp; ~
10733 cm. In accelerator physics, this is beyond any conceivable future
development. Possibly, our best chances of exploring this extremely en-
ergetic region is through the observation of some relic of the Big Bang,
and in particular stochastic backgrounds of relic GWs, as we will discuss
in Vol. 2. However, as long as we consider “normal” astrophysical sit-
nations, the lack of predictivity at the Planck scale becomes irrelevant,
and general relativity is a totally adequate low-energy effective field the-
ory. The fact that the expansion (2.123) blows up as E approaches Mp)
signals that at this point a new theory must set in.

2.3 Massive gravitons

In Section 2.2 we introduced the notion of graviton, and we saw that it is
described by a massless spin-2 field. From a particle physicist’s point of
view, one of the most natural extensions of Einstein gravity consists in
adding to the graviton a small mass term. However, as we will see in this
Sectioh, the introduction of a mass term for the graviton turns out to be
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This section lies outside the main
theme of the book, and can be omitted
in a first reading. As in the previous
section, we use units A= c = 1.
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1856e Binney and Tremaine (1994), Ta~
ble 10.1.

9gee Binney and Tremaine (1994),
Section 10:2.1.

quite subtle from a field-theoretical point of view. In particular the limit
mg — 0 1s very delicate, up to the point that one is led to discuss whether
the graviton mass should be identically zero. Before entering into these
considerations, however, we discuss at a simpler phenomenological leve]
the bounds on the graviton mass.

2.3.1 Phenomenological bounds

In general, we expect that a boson with a mass my should mediate a
short-range force which, compared to the massless case, is suppressed by
a factor proportional to exp{—mg4r}. In the case of the graviton, such
an exponential would cut off the gravitational interaction at a distance r
larger than the reduced Compton wavelength X, = 1/my (or, reinstating
h and ¢, at distances larger than Xy = fi/(mgyc)).

However, we know experimentally that our Galaxy is held together by

gravitation, which means that, at least up to a scale rga1 ~ 10kpc, ther

is no sensible attenuation of the Newton’s law, so Ay cannot be much

smaller that 10kpc. Taking, for definiteness, A, > 2 kpc, this already
gives a bound my = 1/)\; < 3 x 10727 eV,

Actually, the experimental bound on the mass of the graviton is even
stronger, since we know that the gravitational interaction is not expo-
nentially suppressed even at the intergalactic scale. Our Galaxy has
a number of small satellite galaxies, bound by the gravitational force,
at distances up to 260 kpc.'® The Andromeda galaxy, at a distance of
730 kpc, is the nearest giant spiral galaxy, and is approaching the center
of mass of our galaxy with a speed v = —119 km/s. The most natural
explanation is that the relative Hubble expansion between our Galaxy
and Andromeda has been halted and reversed by the mutual gravita-
tional attraction.'® This tells us that X, cannot be much smaller than,
say, O(100) kpc. On the scale of hundreds of kpc to 1 Mpec, galaxies
are seen to be distorted gravitationally by their reciprocal interaction,
creating bridges and tails in their shapes. On the scale (1-10) ho Mpc,
where hg is the Hubble expansion rate in units of 100 km s~ 'Mpc~!
(the current values is hg = 0.73 £ 0.03), clusters of galaxies are held
together by the gravitational attraction, so we can infer that X, cannot
be much smaller than a few Mpc. Taking, conservatively,

Ag > 300 ho kpc, (2.125)
results in a bound

my <2 x 107 hyteV. (2.126)

This bound, of course, refers only to the lightest particle that mediates
the gravitational interaction. In some extensions of general relativity,
and in particular in theories with extra dimensions, the graviton is ac-
companied by a whole family of massive excitations (the Kaluza-Klein
modes). The bound (2.126) only refers to the lowest lying state, and
says nothing about the possibility of further massive gravitons, whose
effect vanishes on much shorter length-scales.

There is however a potential loophole in the above arguments. We
saw in eq. (2.98) that the static gravitational potential is determined
by Doooo, i.e. by the propagator of the component hgo of Ay, which
is a scalar under spatial rotation. Gravitational waves, instead, are
described by hiTjT, which is a spin-2 tensor under rotations. It is possible
to construct consistent models where Lorentz invariance is broken and
the masses of scalar, vector and tensor perturbations are different. In
particular, h;g-T can be massive while scalar perturbations (obtained from
gauge-invariant combinations of hoo and of the trace h) remains massless,
see the Further Reading. The bounds that we discussed above really refer
to the mass of the scalar perturbations, and is the same as the mass of
h;gT only if Lorentz invariance holds.

A direct bound on the mass of the tensor mode 75" can be obtained
from binary pulsars. A binary neutron star system looses energy because
it radiates GWs, and this changes its orbital period. The remarkable
agreement between the prediction of general relativity for the orbital
change, and the measured value for the binary pulsar PSR B1913+-16,
is in fact one of the great experimental triumphs of general relativity,
and also constitutes the first experimental confirmation of the emission
of GWs, and will be discuss in great detail in Chapter 6.

We can understand qualitatively how a bound on the graviton mass
emerges from the study of binary pulsars, as follows. The system emits
GWs at frequencies of order of its orbital frequency w,.?Y Then, first of
all we must have fmgc2 < Ofhws) or, in the units & = ¢ = 1 that we
are using in this chapter, my < O(ws), otherwise such massive gravitons
could not even be emitted. For m/ws small, one finds that the correction
to the energy radiated in GWs by the source are of order (m,/ws)?,
with respect to the massless case.?! Since the agreement between theory
and experiment is of order of 0.1% (see Chapter 6) we must actually
have, in order of magnitude, (m,/ws)? < O(1073). Given that the
orbital period of PSR B1913+16 is about 8 hr, we immediately get an
order-of-magnitude estimate of the bound, my, < O(1072%) eV. A more
quantitative analysis of the orbital decay rate of PSR B1913+16 (and
also of another binary system that will be discussed in Chapter 6, PSR
B1534+12) including a mass term for the graviton gives?>

my < 7.6x1072%eV, (2.127)

corresponding to a value of A, of the order of the size of the solar system.
Similar bounds on m, would also come from the direct observation of
the waveform of inspiraling compact binaries with interferometric detec-
tors. 23

The issue of the graviton mass has potentially important cosmolog-
ical implications, e.g. in connection with attempts of modifying Fin-
stein gravity at cosmological distances (which is largely motivated by
the problem of dark matter and dark energy). Furthermore, the whole
subject is quite interesting from a field-theoretical point of view. We
therefore discuss, in the rest of this section, the field-theoretical prob-
lems that arise when we attempt to give a mass to the graviton.
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20 As we will compute in Section 4.1.2,
for PSR B1913+416 the spectrum of the
radiation emitted is actually peaked to-
ward high harmonics of the orbital fre-
quency, because of the large eccentric-
ity of this binary system.

21 This comes out repeating the same
steps that we will do in Section 3.1, us-
ing a massive rather than a massless
wave equation for hy,,. Since a massive
Klein—-Gordon type equation depends
on mg, the first correction to the ra-
diated energy will also be proportional
to the second power of my.

22 This analysis has been done by Finn
and Sutton (2002) using a mass term
for the graviton which actually implies
the existence of six degrees of freedom,
the five associated to a massive spin-2
graviton plus an additional scalar field,
which however is a ghost, i.e. it has the
wrong sign of the kinetic energy (see
the discussion in Section 2.3.2 below).
Different mass terms, and in particular
Lorentz-violating mass terms, should
however give similar results.

23The basic idea is that, for a mas-
sive graviton, the dispersion relation is
fw = ymec?, where v = (1—v?/c?)~1/2
is the usual relativistic factor. Inverting
this for v, and using units A = ¢ = 1,
we get

v(w):“l—-j—j.

In the inspiral amplitude (that will be
studied in Section 4.1) the radiation
emitted earlier in the inspiral phase is
at lower frequencies, and therefore trav-
els slightly slower than the radiation
emitted at later times, resulting in a
potentially observable distortion of the
waveform observed at the detector, see
Will (1998).

(2.128)
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24Tor the purpose of our discussion, it
will not be important whether this mass
term has been added by hand, or if it
results from a Higgs mechanism.

25Actually, even if 9,7¥ # 0, we find
that AC is fixed in terms of 8,57, so we
have anyway eliminated one degree of
freedom. Current conservation is how-
ever crucial to ensure a smooth limit as
m~ — 0, as we will see below.

2.3.2 Field theory of massive gravitons

A warm-up: massive photons

We want to understand how to construct a consistent field theory for a.

massive graviton. As a warm-up exercise, let us first recall what happens
in electrodynamics if we add by hand a mass term to the photon. The

Lagrangian of a massive photon interacting with a conserved current j,

is
1 s 1 y . .
[ — ’ZFIWF“ _ 57773114/“4" — JuAt.

This is known as the Proca Lagrangian and is not gauge-invariant, be-
cause of the mass term.?* This is as it should be, because in the massless
case gauge invariance reduces the four degrees of freedom of A, to only
two degrees of freedom, the two helicity states of the photon, while we
want to describe a massive particle, and a massive particle with spin

(2.129)

j = 1 has 2§ + 1 = 3 degrees of freedom. Still, in order to describe
the three physical degrees of freedom of a massive photon with the four

components of A,, we need to eliminate one degree of freedom. Of
course, we cannot do it by imposing the condition J,A* = 0 in the
above Lagrangian with a gauge-fixing procedure, since there is no gauge
symmetry to be fixed. Rather, the condition 9, A" = 0 is recovered as
follows. The equations of motion obtained from (2.129) are
B " —m2AY =" (2.130)
Acting with 9, on both sides we find 9,0,F*" = 0, because 0,0, is
symmetric while F* is antisymmetric, and 9, j% = 0 because we have
coupled A" to a conserved current. Then, eq. (2.130) implies
m2 0,A" =0, (2.131)
and, if m., # 0, we get the Lorentz condition 9,4” = 0 dynamically,
and we have eliminated one degree of freedom. In momentum space this
gives k, A" (k) = 0. Since for a massive particle the rest frame exists, we
can choose the frame where k* = (m.,,0,0,0), so we have eliminated the
component Ag, and we remain with the three components of the vector
A that describe a massive spin-1 particle, as it should be.?

Still, it can be disturbing to observe that, apparently, the zero mass
limit is discontinuous, because the number of physical degrees of freedom
seems to change abruptly from three, for m, # 0, to two for m, = 0.
To understand this point, let us see what are the polarization states of a
massive photon and their coupling to the current j*. Consider first the
propagation of a free massive photon, i.e. eq. (2.130) with j¥ = 0,

Bu(OFA” — 0V AM) —mZAY = 0. (2.132)
Using 0, A* = 0, which follows from eq. (2.131), this becomes a massive
wave equation,

(O -m2)A* =0, (2.133)

whose solution is a superposition of plane waves of the form e*(k)e*®
with k2 = —m,zy, and of their complex conjugates. The condition (2.131)
implies

en(k)k" =0.

We choose a frame where k* = (w,0,0, k3), with w? = k2 + m?y. In this
frame two solution of eq. (2.134) are given by the transverse vectors

(2.134)

e (k) =(0,1,0,0), P (k)=1(0,0,1,0), (2.135)
which are the same as the usual transverse degrees of freedom of a mass-
Jess photons. For a massive photon there is however also a third physical
solution 1
e (k) = —(—k3,0,0,w). (2.136)
Moy
All three polarization vectors are normalized so that e, = 1. To

_ understand what happens to the polarization state (2.136) in the limit

m., — 0, we observe that we can rewrite it in terms of k, = (~w,0,0, k3),
as
. 1 w—k
€D (k) = ——k, + ——(1,0,0,1).

= — 2.137

My My ( )
The interaction of this state with the current j# is proportional to
ef,f”(/c)j“(k) If the current is conserved, k,j*(k) = 0 and the first
term in eq. (2.137) does not contribute. In the limit m. — 0, we expand
w = (k + m2)1/? ~ ks + m2/(2ks), and therefore

. ~ —k
e (k)" (k) = ==

M

[7°(k) + 7° (k)]

[1°(k) + 3 (R)] -

My
- M~y

~ 5 (2.138)

Therefore, in the massless limit, the longitudinal mode of a massive
photon decouples, and the limit m., — 0 is continuous.?® Observe that
current conservation has been crucial to show the decoupling of the
longitudinal state.

The continuity of the limit m, # 0, as far as physical observables
are concerned, can also be seen from the propagator, as follows. The
propagator of the massive photon is found from the quadratic term in
the action which, after an integration by parts, reads

1

S=3 / d*z A, [ (0% —m2) — 9*9”] A, . (2.139)

In momentum space, J, — ik, and we must therefore invert the matrix

M (k) = —nt (k* + m%) + EMEY . (2.140)

The inversion is easily performed writing M ! in the general form
(MY, = a(k)nu + b(k)k k. (2.141)

and fixing a(k) and b(k) from M#*?(M~1'),, = 6#. This gives a =
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2670 illustrate the continuity of the
physics as m~, — 0, consider the follow-
ing example. In a thermal ensemble,
each degree of freedom contributes to
the thermodynamical properties, such
as the internal energy or specific heat.
For instance, in a relativistic Bose gas
at equilibrium, the average energy den-
sity is p = (72/30)gT*, where g is the
number of polarization degrees of free-
dom. Therefore there is a finite dif-
ference between the energy density for
massless photons (g = 2) and massive
photons (g = 3). Apparently, from a
measure of thermal properties of such a
gas we should be able to decide whether
my = 0 exactly, or m~ # 0. How-
ever, in the limit m~ — 0, the lon-
gitudinal mode takes an infinite time
to reach equilibrium with the thermal
bath, because its interactions goes to
zero. Therefore any experiment lasting
a finite time will only be able either to
discover a positive mass or to put an
upper limit on it, but not to state that
m~ = 0 exactly.
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2TWe do not write explicitly the ie pre-
scription. In all cases, with our choice
of signature, it is obtained replacing
k? — k? —ie in the denominators.

—1/(k* +m2), b = a/m2.
i(M~"),. Then?”

The propagator is defined by Dw(k) =

—i kyk,
D, (k) = o <n,w + —7/712_> :

— 2.142)
. (
ms 3

The propagator of a massive photon is therefore singular in the limit
m~ — 0. However, the singularity disappears from physical observables,
because the amplitudes are proportional to

g5 (k) D (k) (K) (2.143)
Since the current is conserved, k*j,(k) = 0, and therefore the terms
kyky,/ m?Y in the propagator give zero. We can therefore simply take as
propagator of the massive photon the expression

~ -1

D/w(’lc) = Nuw » (2.144)
k2 4m2

and in the the limit m., — 0 we recover smoothly the massless pho-

ton propagator (2.77). The whole procedure required that the massive

photon is coupled to a conserved current j*.

Massive gravitons

Now that we have understood how to describe a massive photon, we can
come back to our original problem, the construction of a field theory
for massive gravitons. We start from the Pauli-Fierz action (2.86), and
we add a mass term. The most general Lorentz-invariant mass term
that one can add to the Pauli-Fierz action is a combination of the two
scalars h,, h*” and h2. Of course both terms break the gauge invariance
(2.83) of the massless theory, as it should, since we want to describe the
27+ 1 =5 degrees of freedom of a massive spin-2 particle, while we have
seen that gauge invariance reduces them to only two. Nevertheless, &
generic symmetric tensor h,, has 10 degrees of freedom so we expect

that the appropriate number of conditions to reduce it to five emerges

dynamically, similarly to what we have found for massive photons.

Of course, for massive gravitons we must start from the Pauli-Fierz
action (2.86) before gauge-fixing, since now there is no gauge symmetry
to fix. Adding the mass term, and writing also the source term, we have

L
S = / B2 Oy PR + 20,y 0 BHP — 20,hP7 8, h + OPhd,h

+erh? + colyw b + K hy, TR (2.145)
We denote the coupling of the massive theory by & since, as we will
see below, it need not be the same as the coupling x introduced in the
massless case. We can now obtain the propagator of the massive gravi-
ton repeating the same steps performed above for the photon, and we
discover that, if we add to the Pauli-Fierz Lagrangian a mass term with

coefficients ¢; and ¢y arbitrary, the resulting propagator in general has
ghosts, i.e. poles with the “wrong” sign of the residue, corresponding to
degrees of freedom with negative kinetic energy, which generates an in-
stability of the vacuum. The only combination that does not introduces
ghosts turns out to be hy, h*" — h2, which is called the Pauli-Fierz mass
term. Then, in linearized theory we are led to consider, as the action
describing massive gravitons,

1
{ S2=3 / Az | —0,huw @ B + 20,k 0" WP — 20,h 8,k

+O*houh + mg(hz — hy h?Y) + Rh, T .

(2.146)
Before discussing the propagator obtained from this action, it is instruc-
tive to count the number of dynamical degrees of freedom of the theory,
to see if they match with the five degrees of freedom of a massive spin-2
particle. We proceed in parallel to what we have done for a massive

photon, and we write the equations of motions derived from the action
(2.146),

ORMY — (0¥ 0,hHP 4 0HOph"P) + 0" 0,05 h*7 + O*0"h — 0" Oh

/’;.I L 27 vV
= *§T‘ +m§(h“ —n*h). (2.147)

Introducing on the left-hand side ?LW = hu —
write this as

(1/2)n,h, we can also

DA™ + 0 0P Y7 hpo — 8p8”77,“p — 898”5,”'0 = —%TW + mg(h”” —n*h).

(2.148)
In this form we immediately see that this equation reduces to eq. (1.17)
for my = 0. We can now apply 9, to both sides. The left-hand side
gives zero identically, while on the right-hand side 9,7"" = 0, since we
are working at linear order and then, as we saw in the previous section,
TH” is an external conserved source. Then we get

m?2 O (R —n""h) =0, (2.149)

which is analogous to eq. (2.131). Furthermore, taking the trace of both
sides of eq. (2.147), we get
v v l’%
20,0, (R* — " h) = 57~ 3mZh. (2.150)

When m, # 0, the left-hand side vanishes because of eq. (2.149), and
we get

E
—377?,3 h= §T. (2.151)

2.3  Massive gravitons 87




88 The field-theoretical approach to GWs

In particular in the vacuum, where T}, = 0, eq. (2.151) gives h = 0
and then eq. (2.149) gives 9"h,, = 0 or, equivalently (since h = 0),
0“/77,“1, = (. So we have five conditions that reduce the 10 components of
the symmetric matrix f,, to the five components expected for a massive
spin-2 particle. The Pauli-Fierz mass term is actually the only combi-
nation for which there is no term proportional to Oh on the left-hand
side of eq. (2.151). For all other choices, such a term does appear, so &
becomes a propagating degree of freedom, which furthermore turns out
to be ghost-like.

The limit my, — 0

As soon as we switch on the interaction, i.e. a non-vanishing 7,,,, the
limit my — 0 becomes quite peculiar. In fact, in the limit m, — 0, for
generic matter field with a non-vanishing trace of the energy-momentum
tensor, eq. (2.151) gives h — oo rather than h = 0 as in the free the-
ory. To understand the physical consequences of this result we ob-
serve that, inserting eqs. (2.149) and (2.151) (i.e. 9, = 0"h and
h = —KT/(6m?)) into eq. (2.147) we get

R 1 1
(== mg)hw =-3 (TW - gnWT + En—gaﬁa,,T) (2.152)
g
=S .

Comparing with eq. (2.92), we see that in the limit m, — 0 the left-hand
side goes smoothly into the massless limit, but on the right-hand side
there are two differences: the coefficient of #*¥T is —1/3 rather than
—1/2, and there is an apparently singular term ~ (1/m2)8#9"T. Both
find their origin in the fact that, according to eq. (2.151), mf]h stays
finite as my — 0.

To see the effect produced by these differences, we can consider the
effective matter-matter interaction, which is given by

Sep = g /d% P (2YTH (z) (2.153)
where hy,,(x) is the solution of eq. (2.152),
By (z) = / d*s’ Az — 2)S,, (2, (2.154)

and A(z — 2’} is a Green’s function of the massive Klein-Gordon equa-
tion, defined by

(Op —mAA(z —2') =W (z —2'). (2.155)

g

This gives

Seff -

b | X

/ d*zd*a’ T () Az — 2')S,, () . (2.156)

Using the conservation of the energy-momentum tensor we can show
that the singular term in S, drops from this expression. In fact, inte-
grating twice by parts,

o 0
4 L T % ) "
/d zd*z' TH (2)A(z — 2 )—aw'l" —ax,uT(m)
=— [ d*zd*' T (z) 0 Az — ') iT(ac’)
' Oz'r z'v

' 0 0
. 4., 34 L puy N /
= +/ d*zx d*x' T (x) [—aqu(:L x )] ax,yT(:c)

= — .dde‘ d*z’ *a—LT“V(’E) Az — ') _O,I/T(:L")
Oxt dx

=0. (2.157)

However, the fact that the coefficient of n*“T" is —1/3 rather than —1/2
gives a genuine difference in the physical amplitude,

K 1
Sogp = g /d4md4x’ T (2)A(z — ') [Ty (2") - gth,,T(x’)]
= g / drazd*a’ TH (2) D po (T — 25 myg ) TP (2) (2.158)
where
, Rt 1
A,uupa (33 - ;7ng) = A(l -z ) 5(??1;;)7?1/0 + "],uonup) - gnuunpa

(2.159)
The same result, of course, could have been obtained directly inverting
the quadratic part of the action to find the propagator, just as we did
for the massless graviton and for the massive photons. Repeating steps
analogous to those leading to eq. (2.142), we get

. 1 1 —1
D/,Ll/pd(k; 777/g) - §(Hupnu0 + H,u,ani/,o) - gHuVHpail <k2 T mg — 7€> s
(2.160)
where
k. ko
L, = nuw + # . (2.161)
g

Since the energy—momentum tensor is conserved, k,ﬂN’ m (k) = 0 and,
when contracted with T#*(—k)T?(k), the above propagator is equiva-
lent to

~ 1 1 —1
Duupcr<k; 7ng) = E(nupmﬂr + 77/10771//2) - gnuunpojl (W) .

(2.162)

Comparing egs. (2.160) or (2.162) with the massless graviton propa-
gator found in eq. (2.97) we see the following. The terms k,k, /m?],
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28Actually, it was discovered indepen-
dently by Iwasaki (1970), van Dam and
Veltman (1970) and Zakharov (1970).

that are singular in the massless limit, give a vanishing contribution to
the physical amplitudes, because /i, is coupled to a conserved energy—
momentum tensor. This is completely analogous to the situation for
a massive photon, where the terms &k, / m% disappeared because the
photon is coupled to a conserved current. However, there is difference
in the numerical coeflicient in front of 1,,7,, and, unlikely the case of
the photon, the propagator (2.162) does not reduces to the massless
propagator as mg — 0. Writing

1 1 1
5(77;@0771/0 + 77u<r77up> - gnlwnpzr = §(nup77ua F NpoNvp — 7/#!/77;70)
1
+67/,Wnpg , (2.163)

we see that

im T™(—k) Dy po (k;ymg)T7 (k) = T““(—k)Duupg(k)T""(k)

mg—0

(2.164)

where ﬁu,,pg(k) is the propagator computed directly in the massless
theory, eq. (2.97). The second term on the right-hand side corresponds
to the exchange of a massless scalar particle, coupled to the trace of
the energy-momentum tensor, and it is because of this additional term
that the limit my, — 0 of the massive theory does not reproduce the
result obtained in the massless theory. This is usually referred to as the
van Dam-Veltman—Zakharov (vDVZ) discontinuity.?®

Having identified the problem in the existence of an unexpected scalar
degree of freedom, we can now understand what happened. Recall that
a massive spin-j particles has 25+ 1 degrees of freedom, while a massless
particle with quantum number j has only two degrees of freedom if j > 0
(and if we demand that it is also a representation of parity, beside of
Poincaré transformations), and one degree of freedom if j = 0. For a
massive photon, we saw that the three degrees of freedom, in the massless
limit, decompose into the two transverse degrees of freedom of a massless
photon, which have helicities +1, plus the longitudinal component. The
latter, in the limit m., — 0, becomes a scalar particle and decouples,
since its coupling becomes proportional to d,j*, which vanishes. The
fact that the coupling is to 9,j" is dictated by the fact that this is the
only scalar that we can make with j* and with derivatives, which is
linear in the current. The decoupling of the spurious scalar mode is
therefore ensured by current conservation.

Similarly, in the limit my — 0, the five degrees of freedom of the
massive gravition decompose into two states with helicities 42, which
make up a massless graviton, two states with helicities 1, often termed

the graviphoton, and a scalar, called the graviscalar. The graviphoton, -

being a vector, must be coupled to a four-vector made with T,, and
possibly with derivatives, and linear in T},. The only possibility is
9,T*". However, this quantity vanishes and therefore the graviphoton

decouples. The graviscalar, on the other hand, can couple to the trace of
the energy—momentum tensor. This is in general non-zero, and therefore
the graviscalar does not decouple. It is, in fact, responsible for the
additional term in eq. (2.164) and therefore for the vDVZ discontinuity.

We can now compare some predictions of the massless and massive
theory. Consider first the Newtonian potential in the non-relativistic
limit. We found in eq. (2.98) that

2

Vix) = -?% m1mzDoooo (%) - (2.165)

In the massless theory, using eq. (2.97), we saw that
Doooo(k) = " (2.166)

o000(k) = 5 %2 .
This gives Dgooo(r) = —1/(87r), so
K2 mims

=—c— 2.167
V= (2.167)

and we recovered the Newtonian potential setting x? = 327G, In the
massive theory, instead, we see from eq. (2.162) that

—1

- 2
Doooo (k) = 3 ng’ (2.168)
and we get
4 (R mymg
Vix)=-3 (5%) = el -myr) (2.169)

The Yukawa potential was of course expected because a massive particle
mediates a short-range force. The result however differs also by an
overall factor 4/3 from the massless result, and the difference is due to
the additional attractive contribution of the graviscalar.

Ag far as the Newtonian limit is concerned, one can simply reabsorb
this difference setting, in the massive theory,

3 \ 327

Thus, at mgr <« 1, the correct Newtonian potential is obtained, at
the price that the coupling &% of the massive theory is smaller than
the coupling &2 of the massless theory by a factor 3/4. The problem
however comes when we consider the predictions of the massive theory
in the relativistic regime, in particular when we compute the deflection
of light by a massive object. In the massless theory, the deflection angle
of light skimming the surface of the Sun (and first detected, during a
total eclipse, by Eddington in 1919), is

_ 4GMe
=5

(2.170)

Af (2.171)
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29We follow here the treatment of Def-
fayet, Dvali, Gabadadze and Vainshtein
(2002), to whom we refer for more de-
tails.

where Mg and R are the mass and radius of the Sun. Since the energy-

momentum tensor of the electromagnetic field is traceless, when we re:

peat the computation in the massive theory, the additional term propor-
tional to T'(—k) (—i/k?) T(k) in eq. (2.164) vanishes. This means that
the result for the deflection of light in the massive theory, in the limit
mg — 0, is the same as in the massless theory except that, instead of k2
we have 2. Since 7% = (3/4)x?, the prediction for light bending in the
limit my, — 0 of the massive theory is smaller by a factor 3/4 than the
prediction of the massless theory, i.e. is Al = 3GMg/Rg. Nowadays
the experimental precision on the measurement of the bending of light
by the Sun is better than one part in 10*, and confirms the prediction
of the massless theory. Apparently, one then arrives at the amazing
conclusion that the mass of the graviton must be ezactly zero.

A loophole in the above argument was found by Vainshtein, consid-
ering the validity of the linearized approximation in the massive theory
To study the expansion in A, systematically, we should start from the
full Einstein action plus the Pauli-Fierz mass term,

1
167G

: L ,
/ dx /=g [R + ng (h* = huh™ + O3 )|, (2.172)

We then expand g, = Ju + hu where g, is the appropriate back-
ground metric and, to have the canonical normalization for hy,, we
finally rescale hy, — (327rG)1/2hW = kh,. Bosonic matter fields, as

usual, are coupled replacing in the matter action all ordinary derivative

with covariant derivatives. Actually, one can use any form for the mass
term that, in the linearized limit, reduces to the Pauli~Fierz mass term
(in particular, we can decide to raise and lower the indices in the mass
term with 7, or with g,,. The difference shows up only at cubic and
higher-order terms, that are not fixed anyway), so we also included the
possibility of non-linear corrections to the Pauli-Fierz mass term.

To compute the gravitational scattering by a fixed heavy mass M, we
expand around a metric g,, which is a generalization of the Schwarz-
schild metric generated by the heavy mass M, so it is computed from
the action (2.172), which includes the graviton mass. Naively one would
expect that, if m, — 0, this metric goes smoothly into the usual Schwarz-
schild metric computed in standard general relativity, with massless
graviton, for all values of . However, the explicit computation shows
that this is not true. We can search for the metric generated by an heavy
mass in the theory (2.172), writing®’

ds® = —e" ) at? 4 7P dp? 4 ) p2(50% 1 sin? Hdg?) . (2.173)
When the graviton is massless, the function u(p) can be set to zero
using coordinate invariance. In the theory (2.172), however, the repara-
metrization invariance is broken, and p(p) must be kept. One then
performs the substitutions

du 2
r=pet/?, = <1 42 —'u) e?H, (2.174)

2 dp

The standard Schwarzschild solution of the massless theory corresponds
to

(2.175)
p(r)=0. (2.176)

In the theory with massive graviton one rather finds, up to next-to-
leading order in G (therefore in Rg),

Rs Rs
1/(7‘) :——;— {1—{—0 (m;l'y'f’) +j| R (2177)
1 Rs Rg
) = 22 2.178
A =3 & [”O<mgr5>+ } (2.178)
1 Rg Rg
Y = T R 2.179
#(r) 2 37’3 [ 0 (?7737“5) + } ( )

If we limit ourselves to leading order, we observe that A(r) is smaller
by a factor 1/2 compared to the result in the massless theory. This
is the origin of the vDVZ discontinuity. However, the surprise comes
looking at the corrections, since they blow up if mgy — 0! In other
words, in the massive theory the linearized expansion becomes invalid if
we send mg — 0 at fixed 7. This does not mean that linearized theory
is completely useless: if we define the Vainshtein radius Ry,

1/5
Ry = (RsA;) ", (2.180)
where A\, = 1/m,, we see that the corrections are proportional to
(Ry/r)?. Therefore linearized theory is valid at 7 > Ry. We take

Ay > 200 kpe, in agreement with eq. (2.125) (with hg >~ 0.7), and we

consider the scattering of light from the Sun, which has Rg ~ 3 km.
Then we get Ry > 40 pc, i.e. Ry is at least 107 times larger than
the FEarth—Sun distance. Therefore, the Newtonian potential found in
eq. (2.169), and the result for the light deflection in the massive theory
discussed below eq. (2.169), are simply not applicable at the solar system
scale.

On the other hand, in the opposite limit » <« Ry, it is possible to
find a consistent expansion of the Schwarzschild solution in powers of
mg that, to lowest order, reproduces the Schwarzschild solution of the
massless theory, of the form3°

v(r) = 7%5_ +0 (mg R5r3> , (2.181)
Ar) = +¥ +0 (mgx/ Rs’f'3> , (2.182)
w(r) =14/ 8{;275 + O(mgr2) . (2.183)
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30The existence of such a solution de-
pends on the specific form of the non-
linear corrections to the Pauli-Fierz
mass term, see Damour, Kogan and Pa-
pazoglou (2003).
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3lpgy example, consider the function
fle,2) = e~</* If we expand it in
powers of € at fixed z we get f(e,z) =
1—(e/m)+(1/2)(e/2)? +. ... Of course,
this expansion is not suitable for study-
ing the limit z — 0, since the var-
ious terms are more and more singu-
lar. However, if one knows the full re-
summed expression 676/:6, one realizes
that, for € > 0, the limit o — 0% exists,
and is in this case zero. In our case the
role of € is played by Rg and the role of
x by myg.

Therefore, at » < Ry, there is no mass discontinuity. To prove that
there is no mass discontinuity altogether, one should be able to resum the
whole perturbative expansion (2.177-2.179), which is valid at r > Ry,

and it is in principle possible that, in the resummed expression, there is

no singularity as mgy — 0.! If one can show that such a resummed so-
lution, as we approach r ~ Ry, matches smoothly the solution (2.181)-
(2.183), which is valid at r < Ry, we have constructed a solution with
a smooth limit m, — 0, valid for all ». Observe also that, since the
linearized theory does not apply at the solar system scale, there is no
need to require £% = (3/4)x?. On the contrary, since at r < Ry the ex-

pansion in mg reproduces smoothly the massless limit, we must choose
K = K, and all the results of the massive theory, from the Newtonian

potential to the light deflection, go smoothly into those of the massless
theory. At 7 >> Ry, instead, where linearized theory can be trusted, we
get a gravitational potential

4 Gmymeo

Vir) = ~3

exp{—mgr}, (2.184)

since we have fixed & = k. In conclusion, in this scenario, inside the

Vainsthein radius a tiny graviton mass has negligible effects, while at
r > Ry the graviscalar becomes effective, and gives a further attractive
contribution to the gravitational potential.

To prove that this what actually happens requires to show that the
solutions found in the regimes » <« Ry and r > Ry do match. This
is a non-trivial problem, because the solution (2.181)-(2.183) is ob-
tained from an expansion in my while the solution (2.177)—(2.179) is
non-analytic in m,, since we have seen that it diverges as my, — 0. Con-
versely, the solution (2.177)—(2.179) is obtained performing an expan-
sion in G, while the solution (2.181)—(2.183) is non-analytic in G, since
w(r) ~ VRg ~ VG. Put it differently, the difficulty of the problem is
that, as we approach Ry from the large distance region, the graviscalar
becomes strongly coupled, and perturbation theory breaks down.

Numerical studies of the inward continuation of asymptotically flat
solutions indicate that, for small mg, they end up in a singularity at finite
radius, rather then matching a continuous solution inside the Vainshtein
radius. It is possible however that the matching takes place not for
asymptotically flat solution but for asymptotically De Sitter solution.
This would be physically acceptable, given the experimental evidence
for a cosmological constant, and also because for my sufficiently small
the value of Ry can be larger than the Hubble radius, in which case the
form of the solution at r > Ry is not physically relevant.

A further complication is that, in curved space, the trace degree of
freedom h, which in linearized theory is eliminated through eq. (2.151),
becomes dynamical again, so we have six degrees of freedom rather than
five, and furthermore it is a ghost. In fact, in the theory with action
(2.172), i.e. full Einstein gravity supplemented by a mass term, the
linearized equation of motion (2.147) is replaced by

R

G;u/ = =1

1
i §m§ [ahyu + bhny, + O(R2,)] (2.185)

where G, is the full Einstein tensor, rather than its linearization that
appears in eq. (2.147), and we also allowed for a generic mass term, in-
cluding higher-order corrections (the Pauli~Fierz mass term corresponds
to a = —b = 1). Using the Bianchi identity DG, = 0 as well as the
covariant conservation of the energy-momentum tensor, we get the four
conditions

ng"{ahW + bhnu, + O(h,zw)] =0, (2.186)

which replace their linearized version (2.149) and again allow us to elimi-
nate four degrees of freedom. The elimination of these degrees of freedom
is therefore a consequence of the Bianchi identity, or, equivalently, of the
invariance of the Einstein—Hilbert action under diffeomorfisms. On the
other hand, the elimination of A in linearized theory, eq. (2.151), is not
ensured by any symmetry, but is a consequence of the fine-tuning in the
mass term that leads to the Pauli-Fierz combination. Then, this con-
straint does not survive in curved space, and A becomes dynamical again

and it can be shown to be ghost-like, see the Further Reading section

for discussions.

Thus, presently the issue of the consistency of a field theory of massive
gravitons is not settled. If, in some form, a continuous solution indeed
exists, then the limit m, — 0 is smooth and it make sense to deform
Einstein gravity by adding a small mass term for the graviton, with a
value bounded experimentally by (2.126). Otherwise, one should accept
the (rather odd) conclusion that the graviton mass must be identically
zero. We finally observe that it is possible to add mass terms that break
Lorentz invariance (which indeed emerge quite naturally if one breaks
spontaneously the diffeomorfism invariance of general relativity), and in
this case there are neither ghosts nor the vDVZ discontinuity. Again,
we refer the reader to the Further Reading section.

2.4 Solved problems

Problem 2.1. The helicity of gravitons

We have seen that, for a given propagation direction 11, a GW is described by
a 2 x 2 matrix in the plane orthogonal to fi, with matrix elements given in
terms of the amplitudes hy and hx of the two polarization. The Lorentz trans-
formations that leave invariant the propagation direction f are the rotations
around the n axis and the boosts in the n direction. Under these operations
hy and hy will therefore transform between themselves. In this problem, we
compute explicitly the transformation of h+ and hx under rotations around
the i axis and under boosts in the f direction.

In general, under a Lorentz transformation z* — z'* = A, 2", a tensor
hu. transforms as

h’/“’ (QI) - h;u(ml) = AﬂpAudhpcr(w) . (2187)

Choosing fi = %, a rotation around the z axis and a boost along z are written
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respectively as

1 0 0 0
1 0 cos®p —sinyp O o
A= 0 sing  cosv 0 (rotation) , (2.188)
0 0 0 1
and
coshn 0 0 —sinhpy
0 1 0 0
A= o 01 0 (boost), (2.189)
—sinhnp 0 O  coshnp

where A denote the matrix whole elements are A,"; 1 is the rotation angle and
7 is related to the velocity v of the boost by v = tanh. Writing eq. (2.187)
in the TT gauge we have

Wy R,
GEY@ = (M) e (2.190)
ab

RS —hl

where

R R wendaf he  hx .
(h’x —hly ab‘A“ M s —hy )d (2:191)

and a,b take the value 1,2. Since kz = k'a’, where &’ is the four-momentum
in the new frame, we can also rewrite eq. (2.190) as

h! K, ik
}TT Ty — - X ik
0= ) e (2192
or, since z’ is generic,
TT N/ _ }L; hlx ik’ @ q
(hEFY (2) = e (2.193)
ab

7 7
Ny —hl

Using eq. (2.191), with A.® given by the 2 x 2 submatrix made by the sec-
ond and third rows and columns of eq. (2.188), and performing the matrix
multiplication, we get

Rl = hy cos 2 — Ry sin 21,

o [ (2.194)
hy = hysin2y + hy cos 2y .

Under boosts, the matrix A.° (i.e. the 2 x 2 submatrix made by the second
and third rows and columns of eq. (2.189)) is just the 2 x 2 identity matrix,
so by = hy and hx = kY. The GW amplitudes hy and hyx are therefore
invariant under boosts.

From eq. (2.194) we see that, under rotations around the z axis, the com-
binations Ay = thy transform as

(hx £ihy) — T2 (hy ihy). (2.195)

To understand the meaning of this transformation law, we recall some basic
results from the theory of representations of the Poincaré group (see, e.g.
Maggiore 2005, Chapter 2). The Poincaré group has two types of physically
interesting representations:

s massive representation, which are labeled by the mass m, with — P, P* =
m? > 0 (where P* is the four-momentum) and by the spin 7, which (in
units of 1) can take integer or half-integer values, j =0,1/2,1,.... The
representation with spin j has dimension 2j + 1. Physically, this follows
from the fact that for a massive particle exists the rest frame, and in
the rest frame the component along the z axis of the spin, for a particle
with spin j, can take the 2j + 1 possible values j, = —j,—7+1,...,7.
So, in particular, a massive spin-1 particle has three degrees of freedom
and a massive spin-2 particle has five degrees of freedom.

o massless representation, which are characterized by P,P* = 0 and by
a quantum number j, which again can be integer or half-integer. For
massless particles the rest frame does not exist and the previous argu-
ment about the existence of 25 4+ 1 states does not go through. Rather,
these representations are one-dimensional, and are characterized by a
definite value of the helicity, which is defined as the projection of the
total angular momentum on the direction of motion,?

h=Jq. (2.196)

The total angular momentum is the sum of orbital and spin angular
momenta, J = L + S. Of course L't = (x X p)0 = 0 since p = |p| 1,
and therefore the helicity is equal to the projection of the spin on the
direction of motion, h = S-A.

Under a rotation by an angle ¢ around the direction of motion a helicity
eigenstate |h) transforms as

|h) — "|h). (2.197)

Massless representations can have either h = +j or h = —j. Each

of these possibilities, separately, provides a one-dimensional representa-

tion of the Poincaré group: the states with h = £j do not mix between

them under (proper) spatial rotations, boosts nor translations. How-

ever, under a parity transformation i changes sign, while the angular

momentum is a pseudovector and is unchanged. Therefore the helicity

is a pseudoscalar, i.e. it changes sign under parity, h — —h. For this

reason, in a theory which conserves parity (like gravity or electromag-

netism) it is more convenient to define particles as representations of

the Poincaré group and of parity, that is, to assemble the two Poincaré

representations with 7 = +j and to consider them as two polarization

states of the same particle. The photon is then defined as a massless

particle with two helicity states A = %1, while the graviton is defined

as a massless particle with two helicity states h = £2. On the con-

trary, since weak interactions violate parity, in the limit in which the

neutrinos can be taken as massless (there is nowadays evidence for a

small neutrino mass from oscillation experiments), we reserve the name

neutrino to the one-dimensional massless Poincaré representation with

h = —1/2, while the antineutrino is defined as the representation with
h=+1/23

In the light of these results, we see that eq. (2.195), together with the fact

that h,rzi satisfies the massless Klein—Gordon equation Dhg}r = 0, means that

the quanta of the gravitational field are massless particles, and the combina-

tions hx Fiho are the helicity eigenstates and have helicities 2, respectively.
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32The symbol A is traditionally used for
the helicity, and of course it should not
be confused with the GW amplitudes
hy and hy.

33The fact that, for each massless rep-
resentation with a given helicity, there
is a corresponding representation with
the opposite helicity is a consequence
of the CPT symmetry, which is present
in any Lorentz-invariant quantum field
theory with a hermitian Hamiltonian.
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341y general, we can define parity ei-
ther changing the sign of vectors with
respect to a fixed reference frame, or
reversing the orientation of the axes of
the reference frame while keeping the
vectors fixed. Here we adopt the latter
point of view.

Problem 2.2. Angular momentum and parity of graviton states

In this problem we examine the possible angular momentum states of the
graviton. Let us first recall how such an analysis works for the photon, fol-
lowing Landau and Lifshitz, Vol. IV (1982), Section 6. After choosing the
radiation gauge Ag = 0 and V-A = 0, a photon is described by a vector
A(x) or, in momentum space, by A(k), subject to the transversality condi-
tion k-A(k) = 0. Let us at first neglect the transversality condition. The
vector character of A(k) then corresponds to spin s = 1, and the total an-
gular momentum j of a photon is given by the combination of s = 1 and of
the orbital angular momentum [, with the usual composition rule of angular
momenta in quantum mechanics. This means that a state with 7 = 0 can be
obtained in only one possible way, i.e. combining the spin s = 1 with [ = 1,
while there are three states for each j # 0, which are obtained with I = 5,7 +1
(for the purpose of this counting we consider a state with momentum j as one
single state, regardless of the 2j 4 1 possible components of j.).

To understand what is the parity of these states it is convenient to write
explicitly their wavefunction. Just as the angular dependence of a scalar func-
tion can be expanded in terms of the (scalar) spherical harmonics Y, (8, ¢),
the angular dependence of a vector function A(x) can be expressed in vector
spherical harmonics. As we will discuss in more detail in Section 3.5.2, see in
particular eq. (3.247), these can be written as

l
Yin(00)= > > (Usalljse) Yu.(0,6) €. (2.198)

ly=—1 5,=0,%1

where £2) is the wavefunction of a spin-1 particle with a given value s, of the
projection of the spin on the z axis, and (1ls.l.|jj.) are the Clebsch-Gordan
coefficient necessary to combine a spin state |$s.) with s = 1 and an orbital
angular momentum state |ll.), so to obtain a total angular momentum |54}
In terms of the unit vectors e, e, and e, of a Cartesian reference frame, the
explicit form of the spin wavefunction is

&(il) = q:% (ex L iey),

£ =e,. (2.199)
Consider a parity transformation, defined so that it changes the sign of the
orientation of the axes of the reference frame, e; — —e;.** Under this transfor-
mation, the state (2.198) picks a factor P = (—1)"** where the (—1)" comes
from the transformation of the scalar spherical harmonics and the further
minus sign comes from the spin wavefunction. Thus, we can summarize as

follows the possible states before imposing the condition kvA(k) =0,

j=0: one state, (I=1,P=4),

j=1: threestates, ((=0,P=-),(l=1P=+4),((=2,P=-),

J=2: threestates, (I=1L,P=+),(I=2P=-),(1=3,P=+),
(2.200)

and similarly we have three states for all higher values of 7. We now impose
the transversality condition k-A(k) = 0. This means that we remove a longi=
tudinal state of the form A(k) = ¢(k)k. The number of states of this form is
therefore the same as the number of states of a scalar particles with wavefunc-
tion ¢(k) (or, equivalently, of the scalar degree of freedom described by V-A).
When we develop ¢ in spherical harmonics, the total angular momentum j of

such a state is equal to the order [ of the spherical harmonic, and its parity
is P = (—1)7. Thus, at each level j we must remove from eq. (2.200) one
spurious state, with P = (—1)’. Therefore at level j = 0 we end up with no
physical states, while at all higher levels we end up with two physical states
of opposite parity. This shows that for the photon there can be no monopole
radiation, because there is no physical photon state with j = 0, while for all
other values of j we have two physical states. For instance, the states with
j =1 correspond to an electric dipole photon (P = —) and a magnetic dipole
photon (P = +).

Having understood the argument for the photon, we can adapt it to the
graviton. The graviton is described by a 2 X 2 traceless symmetric tensor
hi; (k) subject to the transversality condition k*h;j(k) = 0. Again, we neglect
at first the transversality condition. A symmetric traceless tensor corresponds
to spin s = 2, while the parity on a true tensor is P = (—1)%. Then, combining
the orbital angular momentum with the spin s = 2, we have the following
states

j=0: one state, (l=2,P=4)
j=1: threestates, (I=1,P=-),(=2,P=+),(l=3,P=-)
j=2: five states, (l=0,P=+4),(l=1,P=-),(1=2,P=+),
(l=3,P==),l=4,P=+4).
(2.201)
Similarly for all higher j there are five states, two with P = 4, two with
P = — and one more with P = (—1)Y. We now impose the transversality

condition. The most general traceless symmetric tensor which does not satisfy
the transversality condition has the form

Rig (1) = sk + a3 (ki + (k) (kiks — 385KI%) (2.202)
with k%ai(k) = 0, in order to respect the condition of zero trace. The most
general spurious state is therefore parametrized by a scalar b and by a trans-
verse vector a;. Exactly as with the scalar ¢ found above, expanding b in
spherical harmonics we have one state for each j, with parity P = (—1).
This eliminates the state with 7 = 0 in eq. (2.201), while at level j = 1 it
leaves us with one state with P = 41 and one with P = —1, and at all higher
j levels we are left with two states with P = +1 and two with P = —1. Fi-
nally, we must remove the spurious states described by a;(k). However this is
a vector, transverse to k, and therefore its states are the same as the photon
states discussed above. There is no state at j = 0, and two states, with oppo-
site parity, at all other j level. This remove the two states which were left at
j =1, and leaves us with two states, with opposite parity, at all higher levels.
In conclusion, for the graviton,

7=0: no state,
j=1: no state, (2.203)
j=2,3,...: two states, one with P = +, one with P = —.

Therefore, for gravitational wave there can be no monopole nor dipole ra-
diation, since these would correspond to gravitons with 7 = 0 and j = 1,
respectively. We will come back to the multipole expansion of gravitational
waves in Section 3.5.2, where we will show how to express the two states al-
lowed for j > 2 in terms of tensor spherical harmonics, and we will verify
again that states with j = 0 or j = 1 are not allowed.

2.4 Solved problems 99



100 The field-theoretical approach to GWs

Further reading

e For the quantum field-theoretical approach to grav-
itation see the Feynman Lectures on Gravitation by
Feynman, Morinigo, and Wagner (1995) (which col-
lects lectures given by Feynman in 1962-63), and
also DeWitt (1967) and Veltman (1976). For ex-
plicit computations of graviton-graviton scattering
see Grisaru, van Nieuwenhuizen and Wu (1975).
The possibility of deriving Einstein equation from
an iteration of linearized theory is discussed, among
others, by Gupta (1954), Kraichnan (1955), Feyn-
man, Morinigo, and Wagner (1995), and Ogievet-
sky and Polubarinov (1965). An explicit and el-
egant iteration leading from the equations of mo-
tion of linearized theory to the full Einstein equa-
tions was performed by Deser (1970) using a first
order Palatini formalism. The ambiguity concern-
ing boundary terms is discussed by Padmanabhan
(2004).

Phenomenological limits on the graviton mass are
discussed by Goldhaber and Nieto (1974). The dis-
continuity as the graviton mass goes to zero was
found by Iwasaki (1970), van Dam and Veltman
(1970) and Zakharov (1970). Massive gravitons
have been further discussed by Boulware and Deser
(1972). The fact that linearized theory becomes
singular as my — 0 was discovered by Vainshtein
(1972). The radiation of massive gravitons in lin-
earized theory is discussed by van Niewenhuizen
(1973). Discussions of the fate of the discontinu-

Generation of GWs in
linearized theory

ity are given in Deffayet, Dvali, Gabadadze and
Vainshtein (2002) and in Arkani-Hamed, Georg
and Schwartz (2003). The difficulty of perform:
ing the matching to an asymptotically flat solu-
tion, and the possibility of matching to a De Sitter
solution, is discussed in Damour, Kogan and Pa.
pazoglou (2003). The fact that beyond linearized
theory the trace h becomes a ghost is discussed
by Boulware and Deser (1972) and, in full general-
ity, by Creminelli, Nicolis, Papucci and Trincherini
(2005).

Lorentz-violating mass terms for h,, are discussed
in Arkani-Hamed, Cheng, Luty and Mukohyama

We now consider the generation of GWs in the context of linearized
theory. This means that we assume that the gravitational field generated
by the source is sufficiently weak, so that an expansion around flat space-
time is justified. For a system held together by gravitational forces,
this implies that the typical velocities inside the source are small. For
instance, in a gravitationally bound two-body system with reduced mass

(2004), Rubakov (2004) and Dubovsky, Tinyakoy {1 and total mass m, we have Ey, = —(1/2)U, i.e.

and Tkachev (2005). In this case the mass of the ]

scalar perturbations can be zero while the mass of } ;wQ — lgﬂ , (3,1)
the graviton /’L;l;T can be non-zero, and the bounds 2 2 r

on the graviton mass derived from the Yukawa fall-

off of the gravitational potential only refer to the and therefore 22 Rs

scalar sector. Furthermore, these models do not g = 2;“ s (3~2)

suffer of the vDVZ discontinuity and do not have
ghosts. where Rg = 2G'm/c? is the Schwarzschild radius associated to a mass
m. A weak gravitational field means Rg/r < 1 and therefore v < c.
Thus, for a self-gravitating system, weak fields imply small velocities.
On the other hand, for a system whose dynamics is determined by
non-gravitational forces, the weak-field expansion and the low-velocity
expansion are independent, and in this case it makes sense to con-
sider weak-field sources with arbitrary velocities, as we do in this chap-
ter. This will allow us to understand, in the simple setting of a flat
background space-time (and therefore Newtonian or at most special-
relativistic dynamics for the sources), how GWs are produced. In Sec-
tion 3.1 we will derive the formulas for GW production valid in flat
space-time, but exact in v/c. Then, expanding the exact result in pow-
ers of v/c, we will see that for small velocities the GW production can
be organized in a multipole expansion (Section 3.2). In Section 3.3 we
discuss in detail the lowest order term, which is the quadrupole radia-
tion. In Section 3.4 we discuss the next-to-leading terms, i.e. the mass-
octupole and the current quadrupole radiation, and in Section 3.5 we
present the systematic multipole expansion to all orders, using first the
formalism of symmetric-trace-free (STF) tensors, and then the spheri-
cal tensors formalism. Finally, in a Solved Problems section we discuss
some applications of this formalism and we collect additional technical
material.

The most interesting astrophysical sources of GWs, such as neutron
stars, black holes or compact binaries, are self-gravitating systems. In

A bound on the mass that refers directly to h}}T
can be obtained from pulsar timing, as recognized
in Damour and Taylor (1991) and discussed quanti-
tatively in Finn and Sutton (2002). The possibility
of bounding the mass of h;;-T from the observation
of inspiraling compact binaries is discussed in Will
(1998) and Larson and Hiscock (2000).
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