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theory
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The geometric approach to
GWs

In this chapter we discuss how gravitational waves (GWs) emerge from
general relativity, and what their properties are. The most straightfor-
ward approach, pursued in Sections 1.1-1.3, is “linearized theory”, and
consists of expanding the Einstein equations around the flat Minkowski
metric 7,,. This allows us to see immediately how a wave equation
emerges (Section 1.1) and how the solutions can be put in an especially

simple form by an appropriate gauge choice (Section 1.2); then, using

standard tools of general relativity such as the geodesic equation and
the equation of the geodesic deviation, we can study how these waves
interact with a detector, idealized for the moment as a set of test masses
(Section 1.3).

We next turn to the issue of what is the energy and momentum car-
ried by GWs. Historically, this is a subject that has been surrounded
by much confusion, to the extent that for a long time even the existence
of physical effects associated with GWs was considered dubious. The
heart of the problem is that general relativity has a huge local gauge
invariance, the invariance under arbitrary coordinate transformations,
and one can easily fall into the mistake of believing that the effect of
GWs can be “gauged away”, i.e. set to zero with an appropriate co-
ordinate transformation. We will discuss these issues in details, paying
special attention to the conceptual aspects that are hidden behind the
derivations. In this chapter we will approach the problem from a geomet-
ric point of view, identifying the energy—momentum tensor of GWs from
their effect on the background curvature. This approach requires that we
depart from linearized theory (i.e. from the expansion over a flat back-
ground) and take a broader point of view, where GWs are introduced as
perturbations over a slowly varying, but otherwise generic, curved back-
ground, as discussed in Section 1.4. In Section 2.1 we will re-examine
these conceptual problems from the point of view of field theory. The
combination of the geometrical and field-theoretical perspectives gives
in general a deeper understanding of the subject. As a byproduct of the
study of the interaction between GWs and the background performed in
Section 1.4, we will also find the equation governing the propagation of
GWs in curves space, which is examined in Section 1.5. Finally, at the
end of the chapter we collect in a Solved Problems section some detailed
calculations and some more technical issues.
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4 The geometric approach to GWs

!The factor 1/c in eq. (1.2) compen-
sates the fact that d*z = cdtd®z, see
the Notation.

1.1 Expansion around flat space

The gravitational action is S = Sg + Sas, where
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SE /d4x\/—gR (1.1)
is the Einstein action and Sj; is the matter action. The Ricei scalar R,
as well as the Ricci tensor Ry, and the Riemann tensor R, p0 are defined
in the Notation section. The energy-momentum tensor of matter, T#",
is defined from the variation of the matter action Sps under a change of

the metric g, — g + 69, according to!

1
0SSy = % /d41‘\/-—gT“’"5guu. (1.2)

Taking the variation of the total action with respect to g,,, one finds
the Einstein equations,

1 871G
RMV - §QLWR = — T;u/ .

P (1.3)

General relativity is invariant under a huge symmetry group, the group
of all possible coordinate transformations,

a2t — ' (x),

(1.4)

where 2/* is an arbitrary smooth function of z#. More precisely, we

require that 2’*(x) be invertible, differentiable, and with a differentiable
inverse, i.e. '*(z) is an arbitrary diffeomorphism. Under eq. (1.4), the
metric transforms as
ox? Oz°
g (x) = g, (2") = 5o 90 Ipo () - (1.5)

We will refer to this symmetry as the gauge symmetry of general rela-
tivity.

As a first step toward the understanding of GWs, we wish to study
the expansion of the Einstein equations around the flat-space metric.
Therefore we write

Guv = Npv + h/w , ”1'/;1/] <1, (16)

and we expand the equations of motion to linear order in hy,. The
resulting theory is called linearized theory. Since the numerical values
of the components of a tensor depend on the reference frame, what we
really mean is that, in the physical situation in which we are interested,
there exists a reference frame where eq. (1.6) holds, on a sufficiently
large region of space. Choosing a reference frame breaks the invariance
of general relativity under coordinate transformations. Indeed, breaking
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2 local invariance is in general the best way to get rid of spurious degrees

of freedom and exposing the actual physical content of a field theory.
However, after choosing a frame where eq. (1.6) holds, a residual gauge

symmetry remains. Consider in fact a transformation of coordinates

ot .’E”j' = M + f”(.’lf) , (17)

where the derivatives |9,&,| are at most of the same order of smallness
as |huw|. Using the transformation law of the metric, eq. (1.5), we find
that the transformation of h,,, to lowest order, is

Py (@) — B, (27) = hyw (2) — (Ouéy + 0u€4) - (1.8)

If |0,y | are at most of the same order of smallness as |h,, |, the con-
dition |h,, | < 1 is preserved, and therefore these slowly varying diffeo-
morphisms are a symmetry of linearized theory.?

We can also perform finite, global (i.e. z-independent) Lorentz trans-
formations

ot — AF 2V (1.9)
By definition of Lorentz transformation, the matrix A#, satisfies
A,upAi/an,oa = N - (1.10)
Under a Lorentz transformation,
g}bl/ (x) - g;iy(x/) = A,U,pAI/ngo-(fE)
= AN (Moo + Tpe ()]
= Nuw + NN hypo (), (1.11)

where we used eq. (1.10). Therefore in the Lorentz-transformed frame
we have g, (') = 1 + hy,, (27), with

B (@) = Ay Ay b ()

v

(1.12)

This shows that Ay, is a tensor under Lorentz transformations. Rota-
tions never spoil the condition |h,,| < 1, while for boosts we must limit
ourselves to those that do not spoil this condition.

Besides, we see from eq. (1.5) that h,, is invariant under constant
translations, i.e. transformations z# — 2/ = 2# + a#, where a* is
not restricted to be infinitesimal, but can be finite. Therefore linearized
theory is invariant under finite Poincaré transformations (that is, the
group formed by translations and Lorentz transformations), as well as
under the infinitesimal local transformation (1.8). In contrast, full gen-
eral relativity does not have Poincaré symmetry, since the flat space
metric plays no special role, but has the full invariance under coordinate
transformations, rather than the infinitesimal version (1.8).

To linear order in h,,,, the Riemann tensor becomes

(B00phpuer + 0O hup — OpOphuo — ByOohyy) . (1.13)

1
R/u//)o = 5

1.1 Ezpansion around flat space 5

Symmetries of linearized theory

?The first corrections to the right-
hand side of eq. (1.8) are O(9EDE)
and O(h9¢). Note that corrections
O(€92¢), which appear in the interme-
diate steps of the derivation of eq. (1.8),
finally cancel, so it is not necessary to
require that |£#] themselves are small
but only that [0,€.| are small. The
condition |9,€,| <€ 1 is also all we need
to invert iteratively the relation x'# =
oH € (), writing ot = z'H — £ (z) =
2 (! ) o ' M (a!)+O(€E).
When the background metric is not 7,
we will also find a condition on |[£#], see
Problem 1.2.




6 The geometric approach to GWs

Equations of motion
of linearized theory

SMore generally, the harmonic (or
De Donder gauge) is defined, in a
curved background, by the condition
Ou(g""/=g) = 0. In this form, we will
use it extensively in Chapter 5. Writing
G = "YVAw + huw and expanding to lin-
ear order, the harmonic gauge reduces
to the Lorentz gauge (1.18).

The denomination “Lorentz gauge” de-
rives its name by the analogy with
the Lorentz gauge of electromagnetism,
OpA* = 0. It is amusing to observe
that this is in fact a misnomer. In elec-
tromagnetism, this gauge was first used
by L. V. Lorenz (without “t”, the per-
son who also invented retarded poten-
tials) in 1867, when the better known
H. A. Lorentz was just 14 years old!
(See J. D. Jackson and L. B. Okun,
2001.) However, this “misprint” has by
now entered universally into use, and
we will conform to it.

To make things worse, none of the
above denominations is historically cor-
rect. In general relativity, this gauge
choice was in fact first suggested to Ein-
stein by De Sitter, see Chapter 3 of
Kennefick (2007).

(We will prove this in Problem 1.1, where we perform explicitly the lin:
earization of the Riemann tensor over an arbitrary curved background),
Plugging eq. (1.8) into eq. (1.13) we see that, under the residual gauge
transformation (1.8), the linearized Riemann tensor is invariant (while,
under arbitrary diffeomorfisms in the full non-linearized theory, it is
rather covariant).

The linearized equations of motion are written more compactly defin-
ing

h=n"hu, (1.14)

and 1

Py = Py — §m“,h,. (1.15)
Observe that h = 7**h,,, = h —2h = —h, so eq. (1.15) can be inverted
to give

_ 1 _

h‘#’/ = h/-“/ - -2-77;“/}7/ . (116)
In linearized theory we use the convention that indices are raised and
lowered with the flat metric 7,,. Using eq. (1.13) we can compute with
straightforward algebra the linearization of the Einstein tensor G,
Ry — (1/2)gu R, and we find that the linearization of the Einstein

equations (1.3) is

167G

Ol + w020 hpy — 0P0y My — 0P0,hy, = — T | (L17)

We can now use the gauge freedom (1.8) to choose the Lorentz gauge
(also called the Hilbert gauge, or the harmonic gauge, or the De Donder |
gauge),®

" hy =0. (1.18)

To prove that, using the symmetry transformatiog (1.8), we can impose
the condition (1.18), we observe that, in terms of ,,,, eq. (1.8) becomes

Py — E’:.LIJ = huw — (046 + O — Muw0p€”) (1.19)
and therefore

0 R — (0" h) = 8Py — DE, (1.20)

where, in the context of linearized theory, O is defined as the flat space
d’Alembertian, O = 1,,0"0" = 0,0". (Recall also that in linearized
theory indices are raised and lowered with the flat metric 7,,.) There-
fore, if the initial field configuration hyuu is such that al’ﬁw = fu(:c),
with f,(z) some function, to obtain (0"h,,)" = 0 we must choose &, (z)
so that

Dgu = fp(a') (1.21)

1.2 The transverse-traceless gauge 7

This equation always admits solutions, because the d’Alembertian op-
orator is invertible. If we denote by G(z) a Green’s function of the
d’Alembertian operator, so that

0,G(z —y) = 6%z —y), (1.22)
then the corresponding solution is
Eule) = / d'z Gz —y) fuly).- (1.23)

In this gauge the last three terms on the left-hand side of eq. (1.17)
vanish, and we get a simple wave equation,

167G

Ohyy = ————Tou .
(2% A T

(1.24)

Observe that eq. (1.18) gives four conditions, that reduce the 10 indepen-
dent components of the symimetric 4 X 4 matrix h,, to six independent
components. Equations (1.18) and (1.24) together imply for consistency

0T, =0, (1.25)

which is the conservation of energy—momentum in the linearized the-
ory. This should be contrasted with the conservation in the full theory,
D¥T,, = 0, where D is the covariant derivative.

Physically, the approximations implicit in the linearized theory can be
summarized as follows: the bodies that act as sources of GWs are taken
to move in flat space-time, along the trajectories determined by their
mutual influence. In particular, for a self-gravitating system such as a
binary star, the fact that the background space-time metric is n,,, means
that we are describing its dynamics using Newtonian gravity, rather
than full general relativity. The response of test masses to the GW h,,,
generated by these bodies is rather computed using g = v + Ao,
and neglecting terms O(h?) when evaluating the Christoffel symbols or
the Riemann tensor.

1.2 The transverse-traceless gauge

Equation (1.24) is the basic result for computing the generation of GWs
within linearized theory. To study the propagation of GWs as well as
the interaction with test masses (and therefore with a GW detector),
we are rather interested in this equation outside the source, i.e. where
T =0,

Ohyy =0 (1.26)
Since O = —(1/c?)82 + V7, eq. (1.26) implies that GWs travel at the
speed of light. Outside the source we can greatly simplify the form of

the metric, observing that eq. (1.18) does not fix the gauge completely;
in fact, we saw in eq. (1.20) that, under the transformation (1.7), 0" hu,

(outside the source) .




8 The geometric approach to GWs

4This closely parallels the situation in
electrodynamics. The classical equa-
tion of motion obtained from the vari-
ation of the Maxwell Lagrangian with
an external current is 9, F*" = j¥, i.e.
Op(OFAY — OV A*) = j¥, and it be-
comes UAY = j¥ when we impose the
Lorentz gauge 9, A* = 0. The Lorentz
gauge still leaves the residual gauge
freedom A, — A, — 8,6 with 00 = 0.
Outside the source we have j* = 0,
and therefore OA# = 0, so the resid-
ual gauge freedom, i.e. the function 6
which satisfies 08 = 0, can be used to
set A® = 0. When A° = 0, the Lorentz
gauge Oy A* = 0 becomes a transver-
sality condition on A%, ;A = 0. If
instead ;9 # 0, we have 0A° £ 0 and
we cannot remove AY using a function
0 which satisfies 06 = 0.

transforms as in eq. (1.20). Then, the condition 9"h,,, = 0 is not spoiled
by a further coordinate transformation z# — z# 4 &* with

0¢, = 0. (1.27)

If O¢,, is zero, then also 0O¢,, = 0, where

gp,u = a,ufu + 8l/£u - npuapfp y (128)

since the flat space d’Alembertian O commutes with 9,,. Then eq. (1.19)
tells us that, from the six independent components of EW, which satisfy
Ohyu = 0, we can subtract the functions &, which depend on four
independent arbitrary functions ,,, and which satisfy the same equation,
D&, = 0. This means that we can choose the functions £, so as to
impose four conditions on h,,. In particular, we can choose {0 such
that the trace h = 0. Note that if A = 0, then Ay, = h,,. The three
functions £¥(z) are now chosen so that h%(z) = 0. Since A, = hy, the
Lorentz condition (1.18) with p = 0 reads

9°hoo + 0'ho; = 0. (1.29)

Having fixed hg; = 0, this simplifies to

9%hgo =0, (1.30)
S0 hpg becomes automatically constant in time. A time-independent
term hgg corresponds to the static part of the gravitational interaction,
i.e. to the Newtonian potential of the source which generated the grav-
itational wave. The gravitational wave itself is the time-dependent part
and therefore, as far as the GW is concerned, 9°hgy = 0 means that
hoo = 0. So, we have set all four components ho, = 0 and we are left
only with the spatial components h;, for which the Lorentz gauge condi-
tion now reads &7 hi; = 0, and the condition of vanishing trace becomes
h*; = 0. In conclusion, we have set

holb = 0, h/j’i O, 3jl2/7;]~ =0.

(1.31)

This defines the transverse-traceless gauge, or TT gauge. By imposing
the Lorentz gauge, we have reduced the 10 degrees of freedom of the

symmetric matrix h,,, to six degrees of freedom, and the residual gauge
freedom, associated to the four functions £# that satisfy eq. (1.27), has

further reduced these to just two degrees of freedom. We will denote the
metric in the TT gauge by ]zE;T.

Observe that the TT gauge cannot be chosen inside the source, since
in this case DBW # 0. Inside the source, once we have chosen the
Lorentz gauge, we still have the freedom to perform a transformation
with 0O, = 0, and therefore 0, = 0. However, now we cannot set to
zero any further component of 77,#,,7 which satisfies Oh,,, # 0, subtracting
from it a function &,, which satisfies 0¢,,, = 0.* ‘

e s e e

Equation (1.26) has plane wave solutions, hj;"(z) = e;;(k)e™™, with
i = (w/c, k) and w/c = |k| (and the usual convention that the real part
is taken at the end of the computation). The tensor e;;(k) is called the
polarization tensor. For a single plane wave with a given wave-vector k
(or for a superposition of plane waves with different frequencies but all
with the same direction of propagation i = k/|k|), we see from eq. (1.31)
that the non-zero components of h;grl are in the plane transverse to n
since, on a plane wave, the condition 07h;; = 0 becomes n'h;; = 0.
Choosing for definiteness i along the z axis, and, imposing that h;; be
symmetric and traceless, we have

he hy O
l‘z/;r'?lT (t,z2)=1| hx —=hy O coslw(t — z/c)], (1.32)
' o 0 o0/,
or, more simply,
W@y = (P ) st — /)] (1.33)
ab Ao hyx  =hy ], ’

where a,b = 1,2 are indices in the transverse (x,y) plane; hy and hy
are called the amplitudes of the “plus” and “cross” polarization of the
wave. In terms of the interval ds?,

ds® = —c2dt? + dz* + {1 + hy cosjw(t — z/c)]}dz? (1.34)

+{1 — hy coslw(t — z/c)|}dy* + 2hx cos|w(t — z/c)]dzdy .

Given a plane wave solution h,,(z) propagating in the direction n,
outside the sources, already in the Lorentz gauge but not yet in the
TT gauge, we can find the form of the wave in the T'T gauge as follows.
First we introduce the tensor

This tensor is symmetric, is transverse (i.e. n'P;;(n) = 0), is a projector
(ie. PPy = Pyy;), and its trace is Py; = 2. With the help of P;; we
construct

N 1
Aiji(R) = PPy = 5 Pij Paa (1.36)
This is still a projector, in the sense that
Aij et Aktmn = Nijmn - (1.37)

Furthermore it is transverse on all indices, niAij,kl = 0, ninj,kl = 0,
etc., it is traceless with respect to the (4,7) and (k,!) indices,

Asigr = A pe =0, (1.38)

1.2 The transverse-traceless gauge 9

Projection onto the TT gauge; the
Lambda tensor
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SThis is the same tensor Ajj ri defined
in Weinberg (1972), eq. (10.4.14). How-
ever, Weinberg only uses it in an equa-
tion where it is contracted with the ten-
sor TH Tk which is symmetric under
i« 7 and k < ! and then he replaces
the term njn;8;1 +n4ny 85 in eq. (1.39)
by 27Ij71151jk.

Plane wave expansion

and it is symmetric under the simultaneous exchange (4, j) < (k,1). In
terms of N, its explicit form is

R 1. . -
A,ij,;ﬂ[(n) = 5ik5jl — ~2~Oijokl — N0, — N0

1 R
+—nkmoij +

: (1.39)

1 T
inmjékl + §nmjnk.ng .
We shall meet A;; 4 often, and we call it the Lambda tensor.’ We can
now show that, given a plane wave h,, in the Lorentz gauge, but not
yet in the TT gauge, the GW in the T'T gauge is given in terms of the
spatial components h;; of h,, by

]7,3;1‘ = Aq;jyklhk] . (1.40)

In fact by construction the right-hand side is transverse and traceless in
(4,7) while, from the fact that h,, was a solution of the wave equation
in the vacuum and that it was in the Lorentz gauge, it follows that

Dh;l;-T = 0. (Observe that it is important that hyuw be in the Lorentz

gauge already, otherwise the equation of motion that it satisfies would
not simply be Oh,,, = 0.)

In general, given any symmetric tensor Sij, we define its transverse-

traceless part as
ST = N Sua -
Observe that S}yfT is still symmetric.
For later calculations, it is useful to spell out clearly our conventions

and definitions for the plane wave expansion. In the TT gauge the
equation of motion is D]‘L;ST = 0 and therefore hl-TjT can be expanded as

T, A3k
1) = [ e

The four-vector k#, with dimensions of inverse length, is related to the
frequency w and to the wave-vector k by k* = (w/c, k), with |k| = w/c =

(1.41)

(Aij(k)e™™ + A;‘j(k)e"ikx) ) (1.42)

(27f)/c and k/|k| = . Therefore d*k = [k|2d[k|dQ = (2r/c)3 f2dfdS2,

with f > 0. We denote by d’fi = d cos 0d¢ the integration over the solid
angle, so the above equation reads

L[~ " o —2mif(t—hx/c
BT () = Eg/o dff2/d2n (A () e 270 0=85/9) 4 o)

(1.43)
Observe that, inside the parentheses, both the contribution written ex-
plicitly and its complex conjugate refer to a wave traveling in the direc-
tion +n, since they depend on ¢t and x only through the combination
(t—n-x/c). Observe also that, in this form, only “physical” frequencies
f > 0 enter in the expansion.
The TT gauge conditions (1.31) give A%;(k) = 0 and k*A;j(k) = 0.
Of course, in a superposition of waves with different propagation direc-
tions, hyj(z) does not reduce to a 2 x 2 matrix; for instance, hio gets

e e

S R B e e

AT R R A e

1.2 The transverse-traceless gauge 11

contributions from the waves with k3 # 0, hiz gets contributions from
the waves with k2 # 0, hog from the waves with k' #£ 0, etc. This will
be important when we consider stochastic backgrounds of GWs. How-
ever, when we observe on Earth a GW emitted by a single astrophysical
source, the direction of propagation of the wave, fig, is very well defined
and we can write

Aij (k) = Ay (f) 6 (8 — o). (1.44)
The transversality condition now states that the only non-vanishing com-
ponents are those in the plane transverse to the propagation direction
fig. We label by a,b = 1,2 the indices in the transverse plane and we
omit, for notational simplicity, the superscript TT, since the fact that we
are in the T'T gauge is already implicit in the use of the indices a,b = 1,2
instead of 4,7 = 1,2,3. Then

lL(L’)(ta X) = / df (%ab(f, X)e—*Zﬂij',g + ﬁ:,b(fa X)€21rift) ’ (145)
0
where
2 . A
ha.b(fa X) = %’3‘ /dzfl Aa,b(fa ﬁ) 627T1fn~x/c
f? -
- ?Aab(f) eQTr'Lfn(,Ax/c . (1.46)
C

As we will see when we discuss the detectors, for resonant bars and
ground based interferometers the linear dimensions of the detector are
much smaller than the reduced wavelength X = A/(27) of the GWs
to which they are sensitive. In this case, choosing the origin of the
coordinate system centered on the detector, we have exp{2mifn-x/c} =
exp{ifi - x/X} ~ 1 all over the detector. If we are interested in the GW
at the detector location, we can therefore neglect all x-dependences and
write simply

hap(t) = /O e (iz,&b( Fe~2mift 4 px ( f)e%ift) , (1.47)

with ﬁab( = flab( fyx = 0). Of course, the dependence on x must
be kept when we compare the GW signal at two different detectors
(e.g. when we consider the overlap reduction function in a two-detector
correlation, see Section 7.8.3) or when we need spatial derivatives of
hap(t,x) (e.g. when we compute spatial components of the energy—
From eq. (1.33) it follows that

'i?'—k (f) hix (f) (1.48)
The + and x polarizations are defined with respect to a given choice of
axes in the transverse plane. If we rotate by an angle v the system of

momentum tensor).
half) = ( hx(F) —he(f) )ab |
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60f course eq. (1.52) could have been
written directly setting x = 0 from
the beginning and writing a tempo-
ral Fourier transform. However, this
derivation makes it clear that negative
frequencies are not ‘“unphysical”, but
are simply a way of rewriting the com-
plex conjugate term indicated by c.c.
in eq. (1.43), and that this contribu-
tion refers to a wave traveling in the
+f direction, exactly as the contribu-
tion with f > 0.

axes used for their definition, we show in Problem 1.1 that hy and hy
transform as

hy — hycos2y — hysin2y,
Ry — hy sin2i + hy cos 2.

(1.49)
(1.50)
Observe that, until now, only physical frequencies f > 0 entered our
equations. However, eq. (1.45) can be rewritten in a slightly more com-

pact form, extending the definition of hav(f,%) to negative frequencies,
by defining

}Nla,b(_fa X) = E’Zb(f> X) ) (151)
so that eq. (1.45) becomes® (we do not explicitly write the x dependence)

hap(t) = / df hap(f) e 2™t (1.52)

S %

The inversion of eq. (1.52) is .
s (f) = / it has(t) 270 (1.53)

Another useful form for the plane wave expansion is obtained by in-
troducing the polarization tensors e;‘}(ﬁ) (with A = +, x labeling the
polarizations) defined as

with @, ¥ unit vectors orthogonal to the propagation direction i and to
each other. With this definition, the polarization tensors are normalized
as

-
i
&

el (B)e™ Y (i) = 26447 (1.55)
In the frame where f is along the 2 direction, we can choose 0t = X and
vV =1y, S0
1 0 0 1
e:{b:<0 41> , e(fb:<1 O) , (1.56)
ab ab

with a,b = 1,2 spanning the (z,y) plane. In a generic frame, we can
define the amplitudes ha(f,h) from

L Ag(f) = 3 half, @) ). (1.57)

A=+,X

Equation (1.43) then becomes

hap(t,%) = Y / df / d*f hoa(f, )el (f) e 2mif t=hx/e)

A=+, x "7

~ ~ (1.58)
where again we have defined ha(—f,0) = hj(f, B).

SR
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1.3 Interaction of GWs with test masses

In the previous section we have seen how to describe a GW. .In this
cection we discuss the interaction of GWs with a detector, idealized for
the moment as & set of test masses. This is an issue that hides some
qubtleties because, even if the physics must finally be invariant under co-
ordinate transformations, the language that we use to describe the GWs
and the detector, as well as the intermediate steps of the computations,
do depend on the reference frame that we choose.

In general relativity, the mathematical procedure of choosing a gauge
com'eéponds./ physically, to selecting a specific observer. We have seen
that GWs have an especially simple form in the T'T gauge, so we want to
understand which reference frame corresponds to the T'T gauge. We will
also see that the description of the detector is more intuitive in another
frame, the detector proper frame. It is therefore important, when we
discuss the interaction of GWs with the detector, to be aware of which
reference frame we are using, and to understand which is the appropriate
Janguage in that frame. .

Two important tools for understanding the physical meaning ofa given
gauge choice are the geodesic equation and the equation of the geodesic
deviation. We briefly recall these basic concepts of general relativity in
the next subsection. We will then explore the interaction of GWs with
test masses in different frames, in particular in the TT frame and in the
detector proper frame.

1.3.1 Geodesic equation and geodesic deviation

In this subsection and in the next we recall some elementary notions
of general relativity, referring the reader, e.g. to Misner, Thorne and
Wheeler (1973) or to Hartle (2003) for more details and proofs. Consider,
in some reference frame, a curve z* (), parametrized by a parameter A
The interval ds between two points separated by dA is given by

ds? = gwdm”dm”
dx* dz¥ \2

_ dztde” 1.59
I =axn dA (1.59)

All along a space-like curve we have, by definition, ds? > 0, and we can
use
1/2

ds = (guudztdz”) (1.60)

to measure proper distances along the curve. A time-like curve is rather
defined by the condition that all along it ds* < 0, and in this case we
can define the proper time 7, from

2dr? = —ds* = ~g,wd7;“dx” . (1.61)
The proper time 7 is the time measured by a clock carried along this

trajectory. It is therefore natural to use T itself as the parameter A
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"More precisely, each geodesic is para-
metrized by its own proper time 7, and
&M(T) connects point with the same
value of 7 on the two geodesics.

which parametrizes the trajectory, so that z# = z#(7). Observe, from
eq. (1.61), that

dxt dz”
Q;WFF = —c?, (1.62
The four-velocity u* is defined as
dz#
ut = = 1.
W i (1.63
so eq. (1.62) reads
Guutu’ = —c*. (1.64

Among all possible time-like curves that satisfy the fixed boundary con-
ditions x#(74) = 2§ and z*(r5) = ', the classical trajectory of a
point-like test mass m is obtained by extremizing the action

Kz
S = ——m/ dr. (1.65)
TA -
This gives the geodesic equation,
d*zt dz¥ dar .
W —(—I\ffp(fﬁ) dr dr =0, (166) »

which is the classical equation of motion of a test mass in the curved
background described by the metric g,,,, in the absence of external non-
gravitational forces. In terms of the four-velocity u#, the geodesic equa-
tion reads

du* o vop

o + I, u"u? =0.

Consider now two nearby geodesics, one parametrized by z#(7) and the

(1.67)

other by a#(7) + £*(7).” Then 2#(7) satisfies eq. (1.66), while z#(7) +

EM(T) satisfies

dz(x/b +£;1,) d({L’V +€1/> d(rﬂ +§p)
dr? dr dr

If |¢#] is much smaller than the typical scale of variation of the gravi-
tational field, taking the difference between egs. (1.68) and (1.66), and
expanding to first order in £, we get

d2en dz” d&P dz” dx?
dr?

2T+ —
+ "”(x) dr dr dr dr

This is the equation of the geodesic deviation. We can rewrite it in a
more elegant way by introducing the covariant derivative of a vector field
V#(x) along the curve z#(7),

+ T8, (z+&) =0.

=0.

+ €70, () (1.69)

Dve dvH dz?
= e vy . .
Dr i e dr (1.70)
Then, eq. (1.69) can be written as
D2gr dz¥ dz°®
- 5 — _RMV Lo Pr— )
Dr? b dr dr (1.71)

:
f%
|
g

(1.68)
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or, in terms of the four-velocity u#,

DEE;_L
D2

_R“l/po‘ §puyua . (172)
This equation shows that two nearby time-like geodesics experience a
tidal gravitational force, which is determined by the Riemann tensor.
Writing explicitly the geodesic equation or the equation of the geodesic
deviation in the reference frame of interest we can understand how test
masses behave for the corresponding observer. We consider the most
relevant examples in the next subsections.

1.3.2 Local inertial frames and freely falling frames

Before discussing the T'T frame and the detector frame, it may be useful
to recall some basic facts about the construction of local inertial frames

and of freely falling frames.

It is a standard exercise in general relativity to show that it is al-
ways possible to perform a change of coordinates such that, at a given
space-time point P, all the components of the Christoffel symbol vanish,

It (P) = 0. In such a frame, at P the geodesic equation (1.66) becomes
d?z+

- =0, 1.73

ar? | (173)

so in this frame a test mass is free falling, although only at one point in
space and at one moment in time. Such a frame is called a local inertial
frame (sometimes abbreviated as LIF), and gives a realization of the
equivalence principle.

An explicit construction of the corresponding system of coordinates
can be done as follows (see, e.g. Hartle 2003, Section 8.4). At the point P
we choose a basis of four orthonormal four-vectors, e, where o« = 0,...3
labels the four-vector. We choose them orthogonal to each other with
respect to the flat-space metric 7., 0 Ny ehe = 1o5. Consider now the
spatial geodesic that starts at P, in the direction of a space-like unit four-
vector n. We parametrize the geodesic using the proper distance. Let Q)
be the point reached from P, moving along this geodesic, after a proper
distance s, and let (n°,n',n% n®) be the components of 7 in the basis
{ea}. Then we assign to @ the coordinates zg = (sn’, sn!, sn?, sn?).
Thus, for example, if we send out a geodesic along the direction e3,
and we meet a point ) after a proper distance s, the coordinates of @
are g = (0,0,0, s). Similarly, we send out a time-like geodesic in the
direction of a time-like unit four-vector n, we parametrize this geodesic
using proper time, and we assign the coordinates (7n®, rnt,7n? mn?) to
the point that we reach after a proper time 7.

We fill all of space-time with time-like or space-like geodesics (null
geodesics can be approximated to arbitrary accuracy with time-like or
space-like geodesics and therefore can be obtained by continuity), so all
points are reached by at least one geodesic.
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In a sufficiently small region of space, geodesics do not intersect (which
of course is no longer true on large regions of space, as vividly shown
for instance by the phenomenon of gravitational lensing), so each point
in this small region is reached by one and only one geodesic. Thus,
the above method allows us to assign coordinates unambiguously to all
points of a sufficiently small space-time region around P. This coor-
dinate system is known as Riemann normal coordinates. We can now
check that it indeed gives an explicit realization of a local inertial frame.

First of all, the fact that g, (P) = n,, follows simply from the fact
that the coordinates are referred to the basis {en}, built at P, which
by definition is orthonormal with respect to the flat space-time met-
ric, nuvehel = nap. To show that we also have I'} (P) = 0 in this
frame, consider the geodesic equation (1.66). Since, by definition, the
coordinates are linear in proper time (if they are reached by a time-like
geodesic; or linear in proper distance if they are reached by space-like

geodesics, in which case in the geodesic equation (1.66) 7 must be re-.
placed by s), the term d*az*/dr? (or d*az*/ds? for space-like geodesics)

vanishes, while da# /dr = n#*. Then the geodesic equation becomes

T

Lo(P)n'n? =0, (1.74)

and, since this holds for all n#, we conclude that

Iy,(P)=0.
Riemann normal coordinates therefore provide an explicit example of a
local inertial frame.

In a local inertial frame a test mass moves freely only at one point
in space and at one moment in time. We can however do much better
than this, building a reference frame where a test mass is in free fall all

along the geodesic. Such a frame can be built observing that a freely
spinning object (like a gyroscope) that moves along a time-like geodesic

a#(7) obeys the equation

ds*
dr

dx?
I# s¥— =
+ vp S dr 0 )

(1.76)

where s* is the spin four-vector, i.e. the four-vector that in the rest frame
reduces to s# = (0,s). This equation is the covariant generalization of
the equation ds”/dr = 0 that expresses the conservation of angular
momentum in flat space-time. We start by constructing a local inertial
frame at P, as before, but using three gyroscopes to mark the direction
of the spatial axes. We then propagate this reference frame along the
geodesic, always orienting the spatial axes in the direction pointed out by
the gyroscopes (while the time axis is in the direction of the four-velocity
along the geodesic). By definition, then, in this frame the gyroscopes do
not rotate with respect to the axes since they define the orientation of
the axes. Then, ds*/dr = 0 along the entire time-like geodesic and, from
eq. (1.76), we see that T

vp
and not just at a single point P. Such a reference frame is called a freely

vanishes along the entire time-like geodesic,
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falling frame, and its coordinates (Riemann normal coordinates with
axes marked by gyroscopes) are known as Fermi normal coordinates.
A freely falling frame is therefore a local inertial frame along an entire
geodesic.

Such a frame is practically given by drag-free satellites, in which an
experimental apparatus is freely floating inside a satellite, which screens
it from external disturbances (e.g. solar wind, micrometeorites, etc.).
The satellite senses precisely the position of the experimental appara-
tus and adjusts its position, using thrusters, to remain centered about
it: As we will see, these drag-free techniques are crucial for a space
interferometer.

1.3.3 TT frame and proper detector frame

The TT frame

We have seen that there exists a gauge where GWs have an especially

simple form, the TT gauge. We denote the corresponding reference
frame as the T'T frame and we now ask what it means, physically, to be
in the TT frame.

Again, the answer can be found by looking at the geodesic equation,
eq. (1.66). If a test mass is at rest at 7 = 0, we find from eq. (1.66) that

; dz¥ dxP
=T ()
=0 }: ’/P(‘T) dr dr :|T0

- {rz’m (2—7)] .

7=0

d2 I’i
dr?

(1.77)

where in the second line we used the fact that, by assumption, at 7 =0
we have dz'/dr = 0, since we took the mass initially at rest. Writing
G = N + hy and expanding to first order in A, the Christoffel
symbol I'*  becomes

l/ﬂ
1
e, = wa (Ovhpo + Ophue — Oshup) (1.78)
and therefore )
00 = 5(25()}?/01' — O;hoo) - (1.79)

However, in the TT gauge this quantity vanishes, because both hgg and
hy; are set to zero by the gauge condition. Therefore, if at time 7 = 0
dz'/dr is zero, in the TT gauge also its derivative d?z’/dr? vanishes,
and therefore dz®/dr remains zero at all times. This shows that in the
TT frame, particles which were at rest before the arrival of the wave
remain at rest even after the arrival of the wave.®

In other words, the coordinates of the T'T frame stretch themselves, in
response to the arrival of the wave, in such a way that the position of free
test masses initially at rest do not change. A physical implementation
of the TT gauge can be obtained using the free test masses themselves
to mark the coordinates. We can use a test mass to define the origin

8Strictly speaking, this is true only to
linear order in hy, since, if we also in-
clude the terms O(h?) in eq. (1.78), T},
no longer vanishes. However, given that
on Earth one typically expects GWs
with at most h = O(1072!), going be-
yond the linear order is here of no in-
terest.
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9Ty avoid misunderstandings, observe
that &€ is a coordinate distance, since
it is the difference between the coor-
dinates of two test masses. It is not
a proper distance. We will see below
what happens if we consider proper dis-
tances.

10Ac’cuadly7 this is true up to irrelevant
correction O(h*) since dz(r)/dr =
O(h?). Compare with Note 8.

of the coordinates, a second one to define, e.g. the point with spatial
coordinates (z = 1,y = 0,z = 0), and so on; then, we state that, by
definition, these masses still mark the origin, the point (z =1,y =0, 2
0), etc. even when the GW is passing.

If the coordinates of test masses initially at rest remain constant, also
their coordinate separation must remain constant, for arbitrary finite
separation and therefore, of course, also when the separation is small
with respect to the typical length-scale of variation of the GW, which is
its reduced wavelength. In this limiting case, the equation of the geo-
desic deviation applies, and it is instructive to check explicitly, from the
equation of the geodesic deviation in the TT frame, that the separa-
tion ¢ between the coordinates of two test masses initially at rest does
not change. To this purpose, we use the spatial component (p = %) of
eq. (1.69). Since, at 7 = 0, dz'/d7 = 0 by assumption, while d2°/dr = ¢,
we get o )

i ‘
Zfz =— [z;ri diT +c2¢7 9,

However, we already saw that in the TT gauge I'f; vanishes identically
(at all values of space and time, since in the TT gauge ho; and hgg
vanish everywhere), and therefore in the first term in bracket, T'} o is non-
vanishing only if p is a spatial index, while in the second term 9,If, = 0.
From eq. (1.78), in the TT gauge I'y; = (1/2)8phi;. Therefore, in the
TT gauge, the equation of the geodesic deviation gives

d2£i {: df?:!
= — h,z'j—— s
7=0 dr 7=0

dr?
and therefore, if at 7 = 0 we have d¢'/dr = 0, then also d?¢!/dr? =
and the separation £° remains constant at all times.”
Observe also that, since in the TT gauge we have hgg = ho; = 0, the
proper time on a time-like trajectory z#(7) = (2°(7),2%(7)) is obtained
from

Op d (1'80)

7=0 7=0

(1.81)

Adr? = Adt* (1) — (645 + /’L;ET)d:zf"’(T)d:L‘j (1)
x* dad
= dt* (1) — (645 + h?ﬁ)%% dr?, (1.82)
where we write 2°(7) = ct(7). However, we have seen for a test mass
initially at rest that dz®(7)/dr = 0 at all times. Then, in the TT gauge
the proper time 7 measured by a clock sitting on a test mass initially at
rest is the same as coordinate time #.1°
The T'T gauge illustrates in a particularly neat way the fact that, in
general relativity, the physical effects are not expressed by what hap-
pens to the coordinates since the theory is invariant under coordinate
transformations. At first sight one might be surprised that in the TT
gauge the position of test masses does not change as a GW passes by. Of
course, this does not mean that the GW had no physical effect, but only
that we used the freedom in choosing the coordinate system to define the

coordinates in such a way that they do not change. Physical effects can
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instead be found monitoring proper distances, or proper times. Consider
for instance two events at (¢,21,0,0) and at (¢, z2,0,0), respectively. In
the TT gauge, the coordinate distance zo — x1 = L remains constant,
even if there is a GW propagating along the z axis. However, we see
from eq. (1.34) that the proper distance s between these two events is

s = (z2 — 21) [1 + hy cos(wt)]*/?

~ L1+ %th cos(wt)], (1.83)
where in the second line we only retained the term linear in h.. There-
fore, the proper distance changes periodically in time because of the
GW. More generally, if the spatial separation between the two events is
given by a vector L, the proper distance is given by §% = L2 +h;(t)L; L,
and, to linear order in h, we have s ~ L + h;;(L;L;/2L), implying

L;

7L (1.84)

. 1.
s~ 5 ;’lij

Writing L;/L = n; and defining s; from s = n;s;, we get
B 1.
S; =~ 5 hiij
1

~ 3 (1.85)

hl} S5,
where in the second line we used the fact that, to lowest order in h, we
have L; = s;. This is the geodesic equation in terms of proper distances,
rather than coordinate distances.

If these two test masses are mirrors between which a light beam travels
back and forth, it is the proper distance that determines the time taken
by the light to make a round trip, so the fact that GWs affect the proper
distance means that they can be detected measuring the round-trip time.
We will see in detail in Chapter 9 how to analyze an interferometric GW
detector in this way.

The proper detector frame

The TT frame has the advantage that GWs have a very simple form in
it. However, it is not the frame normally used by an experimentalist
to describe its apparatus. In a laboratory, positions are not marked by
freely falling particles; rather, after choosing an origin, one ideally uses
a rigid ruler to define the coordinates.!! In this frame we expect that
a test mass which is free to move (at least along some direction) will
be displaced by the passage of the GWs, with respect to the position
defined by the rigid ruler and by the test mass which defines the origin.
This is different from what happens in the TT frame, where the positions
of the test masses are, by definition, unchanged by an incoming GW.
Conceptually, the simplest laboratory to analyze is one inside a drag-
free satellite, so the apparatus is indeed in free fall in the total gravita-
tional field, both of the Earth and of the GWs which might be present.

Hp rigid ruler is of course an idealiza-
tion. When we study resonant bars, in
Chapter 8, we will see that a bar (and
hence also a ruler) is stretched by an
incoming GW. We denote by £o(t) the
oscillation amplitude of the fundamen-
tal elastic mode of a bar (or of a ruler)
of length L, and by wg and g the fre-
quency and the dissipation coefficient
of this elastic mode (with vo <« wp),
respectively. We will find in eq. (8.32)
that, when the bar (or the ruler) is
driven by a monochromatic GW with
frequency w and amplitude hg,

£o(t) = (2Lhow? /m?)

(w? — w2) coswt — yow sin wi

(W? — w§)? + Yfw?

For a resonant bar, one chooses the fre-
quency wo of the fundamental elastic
mode as close as possible to the fre-
quency w of the GW that one is search-
ing, so the denominator becomes very
small (typically, in a resonant bar vo =
wo/Q with Q ~ 108) and &(t) is en-
hanced. A ruler is instead rigid, with
respect to a GW with a frequency w, if
it has wg > w; then the above equation
becomes £o(t) =~ —(AL) coswt, with

ALJL = (2/7%) ho (w/wo)?.

Then wp > w implies that AL/L < h.
We will see in eq. (8.14) that wg =
wvs /L, where vs is the speed of sound
in the material. Thus, a rigid ruler can
be obtained taking L small. Observe
also that all experiments do not mea-
sure the absolute length of the appara-~
tus, but rather the length variation in-
duced by a GW. Therefore a very small
rigid ruler is all that is needed.
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128ee Ni and Zimmermann (1978), or
eq. (4.1) of Thorne (1983).

This means that, if we restrict our attention to a sufficiently small regig

of space, we can choose coordinates (¢,x) so that even in the presen
of GWs, the metric is flat,
ds® ~ —c2dt® + (5¢jdw"7d$j . (1.8

We have seen in Section 1.3.2 how to explicitly construct such a free
falling frame along an entire geodesic, using Fermi normal coordinate

To linear order in |z*| there are no corrections to this metric, sin
in a freely falling frame the derivatives of g,, vanish at the point
around which we expand. Pursuing the expansion to second order, an
expressing the second derivatives of g, in terms of the Riemann tens
(using again the fact that the Christoffel symbol vanishes at the poi
P around which we are expanding), the result is

ds? =~ —c?dt? [1 + Rolb'ojx?"xj] (1.8

(2 ik P I 1 y
—2cdt dx* <§Roﬁ;¢mjm’”> + dz'dax? {Oij - gRiMml"xl} ,

where the Riemann tensor is evaluated at the point P. We see that,
L is the typical variation scale of the metric, so that Ry, = O(1/ LZB
the corrections to the flat metric are O(r?/L%), where 7 = z'a’.

For an Earthbound detector, the situation seems more complicate
since it is not in free fall with respect to the Earth’s gravity (that i
it has an acceleration a = —g with respect to a local inertial frame
and furthermore it rotates relative to local gyroscopes (as illustrated f
instance by a Foucault pendulum). The metric in this laboratory fram
can be found by explicitly writing the coordinate transformation fro
the inertial frame to the frame which is accelerating and rotating, an
transforming the metric accordingly. The result, up to O(r?), is'?

L2 1 1 y
ds? ~ —c2dt? {i + ELE x + C—4(a x)? — c~2(ﬂ><x)2 + Roio;x :ch}
i |1 k2 i,k
+2cdt dx —F,ijkgjéb‘ — gRjSk-,iEj{L'
c

+Cllzdrj {(SU — %Rmﬂl’kl’[} s (188
where a’ is the acceleration of the laboratory with respect to a local fre
falling frame (i.e. ' is minus the local “acceleration of gravity”) and €
is the angular velocity of the laboratory with respect to local gyroscope
The term 2a-x/c? in eq. (1.88) gives the inertial acceleration. Th
term (a-x/c?)? is a gravitational redshift. The term (2xx/c)? giv
a Lorentz time dilatation due to the angular velocity of the laborator
The term (1/c)e;;72% is known as the Sagnac effect. Finally, th
terms proportional to the Riemann tensor contain both the effect o
slowly varying gravitational backgrounds and the effect of GWs.

The frame where the metric has the form (1.88) is called the prope
detector frame, and is implicitly used by experimentalists in a laborator

D
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on Barth: first of all, at zeroth order in 7/Lp, this metric reduces to

eq (1.86), L.e. as long as we focus on regions of space smaller than the

typical variation scale of the background, we live in .the flat space-time
of Newtonian physics. This should be contrasted with the TT gauge,
where the GW is always present in the background space-time (and
110 simplification appears when performing an expansion in r/Lp; the
metric in the TT gauge is not an expansion in r/Lp). Next, in the
propel" frame there are corrections linear in r/Lp. Their effects can

be described in terms of Newtonian forces (Newtonian gravity, Coriolis

forces, centrifugal forces, etc.). In fact, writing the geodesic equation
corresponding to the metric (1.88), and neglecting the terms O(r?) in
the metric, we get

d?z’

= —a = 2(Qxv) + o +O(z*).

72 (1.89)

I‘he term —a’ is the acceleration of gravity while —2(Qxv)? is the Corio-

is acceleration, and we also added an external force f* which represents,
for instance, the suspension mechanism that compensates the acceler-

ation of gravity. Including the terms O(z'z?) in the metric, we get
corresponding terms O(z) on the right-hand side of eq. (1.89), such
as a term —[Qx (Qxr)]* which gives the centrifugal acceleration, ete.'®
Details aside, the point is that in this frame the evolution of the coor-

 dinate 2 (1) of a test mass is described by the equations of motion of

Newtonian physics, i.e. in terms of forces.

At quadratic order there are also the terms proportional to the Rie-
‘mann tensor, to which both the slowly varying gravitational field of the
Barth, and the GWs contribute. The effect of the GWs is therefore

_entirely in the term O(r?). In principle, GWs must therefore compete

with a number of other effects, like static gravitational forces, Coriolis
forces, etc., that practically are many order of magnitudes larger. What

: _can save the situation is the fact that GWs can have high frequencies,

compared to the typical variation time-scales of all other effects. In prac-
tice, as we will see when we discuss the various Earthbound detectors,

 GWs with frequencies lower than a few Hz are hopelessly lost into a sea

of much higher Newtonian noises. At higher frequencies, however, it is
possible to have a frequency window'* where sufficient isolation from

_external noises is possible, and an interesting sensitivity to GWs can be

obtained.

To isolate the effect of GWs, we can therefore focus on the response of
the detector in this frequency window. The acceleration a' is compen-
sated by the suspension mechanism, and all other effects produce slowly
varying changes. We can then neglect all terms in eq. (1.88), and we only
tetain the part proportional to the Riemann tensor. This means that
we can use eq. (1.87), i.e. the metric in the freely falling frame, and we
deduce from it the geodesic equation. It is understood that we restrict to
the components of 2*(7) in the direction in which the test masses are left
free to move by the suspension mechanism, and that we consider only
the Fourier components of the motion in a frequency window where the

138ee eq. (20) of Ni and Zimmermann
(1978), for the full expression including
relativistic corrections.

14Sufﬁciently high frequency is neces-
sary to overcome the slowly varying
Newtonian noises, as well as the seismic
noise. However, we will see that above a
certain frequency, other types of instru-
mental noise begin to dominate, and
therefore only a frequency window is
available for GW detection.
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detector is sensitive to GWs. In this frequency window, we will assum
that time-varying Newtonian gravitational forces are sufficiently smal
so that only GWs contribute to the Riemann tensor.

Rather than using the geodesic equation, it is actually simpler to us
the equation for the geodesic deviation, in the form (1.69). We use the
fact that ' , vanishes at the expansion point P. Furthermore, since th;
detector moves non-relativistically, dz'/dr can be neglected with respect
to da®/dr, and eq. (1.69) gives

¢, (da®?
£ o (22) <o,

(1.90

The metric (1.87) depends quadratically on the distance z? from the
point P around which we are expanding, while it depends on ¢ onl
through the Riemann tensor. In eq. (1.90), 8,1}, is evaluated at th
point P, ie. at ' = 0. Since g, = ., + O(z'2?), a non-zero contr
bution comes only from the terms in which the two derivatives on th
metric present in d,I, are both spatial derivatives, and act on ziaz
In particular 9T}, evaluated at P gives zero, so £7 0,1, = &18;Th,
Furthermore, using the fact that, at the point P, both I = 0 and "
GoTh; = 0, we have Riojo = 8;Th — 8oT'h; = 9; T, so eq. (1.90) be-
dQ&i

comes
dz0\?
=-Riop& (Z=) .

dr? J dr

If a test mass is initially at rest, it acquires a velocity da'/dr = cO(h)
after the passage of the GW. Therefore

1 dat da
dt? = dr? {1%»—%16“ }

(1.91)

2 dr dr

=dr? [1+0(h?)] . (1.92)
On the other hand, in eq. (1.91) the Riemann tensor R'pjo is already
O(h), since we are neglecting all effects of the background and we are
considering only the GWs. Therefore, if in eq. (1.91) we limit ourselves
to linear order in h, we can write t = 7, so dz®/dr = ¢, and eq. (1.91)
becomes , . f
£ =~ Rlnjoé?, (1.93)

where the dot denotes the derivative with respect to the coordinate time
t of the proper detector frame. :

Next, we should compute the Riemann tensor Riojo due to the GWs_
in the proper detector frame, where eq. (1.93) holds. However, as we
discussed below eq. (1.13), in linearized theory the Riemann tensor is
invariant, rather than just covariant as in full general relativity, and we
can comptite it in the frame that we prefer. Clearly, the best choice is to
compute it in the TT frame, since in this frame GWs have the simplest
form. Then, from eq. (1.13) we immediately find

Rloj0 = Rigjo =
j i0; 9e2

—— hi . (1.94)
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In conclusion, the equation of the geodesic deviation in the proper de-
tector frame is

I —
§=ghiy ¢ (1.95)

This equation is remarkable in its simplicity, since it states that, in the
proper detector frame, the effect of GWs on a point particle of mass m
can be described in terms of a Newtonian force

F=5 hi &0, (1.96)
and therefore the response of the detector to GWs can be analyzed in
a purely Newtonian language, without any further reference to general

_relativity.

 This means that, in practice, an experimenter in a laboratory on Earth

_ can describe the situation as follows:

o He/she lives in flat space-time, where Newtonian intuition applies.

e There are a number of static or slowly varying Newtonian forces.
The acceleration of gravity is compensated by a suspension mech-
anism, so an Earthbound detector is not free to move in the z
direction. Still, it is free to move in the (x,y) plane, or at least
in one direction in this plane, depending on the suspension mech-
anism and detector geometry, and the effect of GWs can show up
in the motion of the detector in this free direction. Other slowly
varying Newtonian forces perturb the experiment, and one takes
great care to minimize their influence. This can be possible at
most in a frequency window [fumin, fmax), where fmin is sufficiently
large that slowly varying Newtonian noises are under control (as
well as the seismic noise, which from a practical point of view is
more important at low frequencies), and fiax is not too large,
otherwise other noises (e.g., as we will see, the shot noise in an
interferometer) begin to dominate.

e Even the effect of GWs on test masses is described in terms of a
Newtonian force, given by eq. (1.96).

Before exploring the consequences of eq. (1.95), it is worthwhile to
add a few more remarks on its meaning and to stress its limit of validity.

* We have defined &% to be a coordinate separation (rather than a
proper distance), since it was introduced as the difference between
the coordinates of two nearby geodesics, see egs. (1.66) and (1.68).
With this definition, we have found that eq. (1.95) holds in the
proper detector frame. It does not hold in the TT frame, where
the geodesic equation is eq. (1.81), and d?¢*/dr? is proportional
to d¢'/dr, rather than to £ (consistent with the fact that, in the
TT gauge, if d¢*/dr initially vanishes, the coordinate separation
¢' does not change).
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Nevertheless, in eq. (1.95) the GW in the TT gauge, /7,;51., enters.
This comes out because the Riemann tensor is invariant, and we

can compute it in any frame, and in particular in the TT gauge,
where the GW has the simplest form. Thus, eq. (1.95) combines

two nice features: it holds in a frame where our Newtonian intu.

ition is valid, and therefore the description of the detector is more
intuitive; at the same time, the Newtonian force due to GWs is

expressed in terms of h;; in the TT gauge, where the form of the

GW is simpler.

- In the proper detector frame, to a first approximation coordinate

distances are the same as proper distances, since the metric is

flat, up to O(r?/L%). Since proper distances are an invariant con.

cept, eq. (1.95) also describes the evolution of proper distances
in any other frame (as long as 7 = ¢ to lowest order in h, and

the spatial velocities are non-relativistic, otherwise we must use

the most general form of the equation of the geodesic deviation,
eq. (1.71)). In particular, if we substitute ¢* with the proper dis

tances s, eq. (1.95) holds also in the TT gauge, as we indeed foun:

in eq. (1.85).

In deriving the equation for the geodesic deviation we have ex-

panded the Christoffel symbols to first order in £, neglecting all

higher orders, see egs. (1.68) and (1.69). This is valid as long as

I€%| is much smaller than the typical scale over which the gravita-
tional field changes substantially. For a GW, this length-scale is
the reduced wavelength X. Thus, if a detector has a characteristic

linear size L, we can discuss its interaction with GWs using the

equation of the geodesic deviation, if and only if

L <. (1.97)

As we will see in the chapters on experiments, this condition is sat-
isfied by resonant bar detectors and (in a first approximation) by

ground based interferometers. It is not satisfied by proposed space-

borne interferometers such as LISA, nor by the Doppler tracking

of spacecraft.
In the former case it is possible to study the detector and its inter:
action with GWs using a simple and intuitive description in terms

of Newtonian forces, supplemented by the “GW force” (1.96). In
the latter case, a full general relativistic description, usually per-

formed in the TT frame, is necessary.
One should observe that, in general, analysis in the T'T gauge can
be more subtle, since in this frame our intuition can be misleading.

For instance, in certain GW detectors (e.g. microwave cavities) one
can have objects which are natural to treat as having rigid walls.
However, this description is correct only in the proper detector

frame. In fact, when a GW passes, the relative position of a freely

falling mass and of an object which is not free to move (like the
endpoint of a rigid ruler) changes; since, in the TT frame, the
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coordinates are marked by freely falling masses, an object which is
described as rigid in the proper detector frame, gets a deformation
AL/L = O(h) in the TT frame when a GW passes.

We can now use eq. (1.95) to study the effect of a GW on test masses.
We use the language of the proper detector frame, which is more intu-
itive, so we consider a ring of test masses initially at rest in the proper
detector frame and fix the origin in the center of the ring. Then &' de-
«cribe the distance of a test mass, with respect to this origin (coordinate
distance or proper distance, since we have seen that in the proper detec-
tor frame, on a sufficiently small region of space, they are the same). We
then use eq. (1.95) to see how these positions change under the effect of
a GW. (Alternatively, as discussed above, if we wish to take the point
of view of an observer in the T'T frame, then eq. (1.95) describes the
evolution of proper distances.)

We consider a GW propagating along the z direction, and a ring of test

‘masses located in the (z,y) plane. First of all, for a wave propagating
in the z direction, the components of AJT with i = 3 or j = 3 are zero

and therefore we see from eq. (1.95) that, if a test particle is initially at
2 = 0, it will remain at z = 0, and the displacement will be confined
to the (x,y) plane. Therefore, GWs are transverse not only from a
mathematical point of view (i.e. they satisfy 0;h;; = 0), but also in
their physical effect: they displace the test masses transversally, with
vespect to their direction of propagation.®
To study the motion of the test particles in the (z,y) plane, we first

consider the + polarization. Then, at z = 0 (choosing the origin of time
so that h,T =0 at t = 0),

0

%)

and, as usual, a,b = 1,2 are the indices in the transverse plane. We
write &, (1) = (wg + 6z(t), yo + 0y(t)), where (zo,yo) are the unperturbed
positions and dz(t),dy(¢t) are the displacements induced by the GW.
Then eq. (1.95) becomes

hET = hysinwt ( (1) (1.98)

8% = -—%(:{:0 +82)w? sinwt, (1.99)
oy = +h’7+(yo + 6y)w? sin wt . (1.100)

Since dz is O(hy ), on the right-hand side, to linear order in h, the terms
0z, dy can be neglected with respect to the constant parts zg,yo, and
the equations are immediately integrated, to give

dx(t) = %xo sinwt (1.101)

oy(t) = —h%yo sinwt . (1.102)
Similarly, for the cross polarization, we get

ox(t) = h%yo sinwt, (1.103)

15 These two properties are however
logically distinct. The condition
O;hi; = 0 can be imposed ezactly, as a
gauge condition, and (as we will see in
detail in Section 2.2) is basically a con-
sequence of the fact that the graviton
is described by a massless spin-2 field.
The fact that the Newtonian force is
transverse is valid only because we took
a test mass at rest, i.e. u# = (¢,0,0,0).
If we consider test masses with non-zero
velocity, the geodesic deviation has a
longitudinal term, although suppressed
by a factor v2/c? with respect to the
transverse term. For example, if we
have two test masses with initial spa-
tial separation € = (0,0, &, ), both mov-
ing with velocity v along the z axis, so
that u# = (1/7)(¢, v,0,0), and the GW
propagates along the z direction, the
equation of geodesic deviation gives

g 2
&= v Rozzabs,

where the dot is the derivative with re-
spect to coordinate time (recall that
in this case dr = ~dt). For a
GW propagating along z, Rigza =
—(1/2)8%hge = —(1/2¢hy, and
therefore

22

éz = —2§}IL+€Z;

so the relative displacement of two test
masses in the direction of the GWs
changes. This is easily understood by
performing a boost with velocity —v; in
the transformed frame the particles are
at rest, but the propagation direction
of the GW now has both a component
along z and a component along .



26 The geometric approach to GWs

;O
72 (:)C}
- O

375/27 {:}Q}

Fig. 1.1 The deformation of a ring
of test masses due to the + and x
polarization.
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Fig. 1.2 The lines of force corre-
sponding to the 4 polarization. The
arrows show the direction of the
force when sinwt is positive. The
force reverses when sinwt is nega-

tive.
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Fig. 1.3 The lines of force corre-
sponding to the x polarization.

h
Jy(t) = —2—X~$0 sinwt .

The resulting deformation of a ring of test masses located in the (z,y)

plane is shown in Fig. 1.1. From eq. (1.96) we see that

m

_ KTT 5
O F; = ”é‘ hij 5%] )

and this vanishes, because hz-TjT is traceless. Thus, the Newtonian force

(1.96) has vanishing divergence, V-F = 0. We can have a pictoria,

representation of F drawing its lines of force in the (z,y) plane (defined
so that at each point (z,y) they go in the direction of the force, and their

density is proportional to the modulus |F| of the force). The conditio
V-F = 0 then implies that there are no sources nor sinks for the fiel
lines, just as for the magnetic field in classical electrodynamics. Th
lines of force in the (z,y) plane obtained from eq. (1.96), for the h, an
for the h, polarization, are shown in Figs. 1.2 and 1.3. The symmetr:

axes of these lines of force have a typical quadrupolar pattern, with the
shape of a + and of a x sign, respectively, and this is the origin of the

denominations “plus” and “cross” polarizations. Observe that Fig. 1.
is obtained from Fig. 1.2 by performing a rotation of 45 degrees, i
agreement with eqgs. (1.49) and (1.50).

1.4 The energy of GWs

Our next task is to understand the energy and momentum carried by
gravitational waves. The fact that GWs do indeed carry energy and mo-
mentum is already clear from the discussion of the interaction of GWs
with test masses presented above. We have seen that, in the proper de-
tector frame, an incoming GW sets in motion a ring of test masses ini-

tially at rest (and, in fact, the action of the waves on nearby test masses

can even be described in terms of a Newtonian force, see eq. (1.96)),
so GWs impart kinetic energy to these masses. If, for instance, we
connect these masses together with a loose spring with friction, this ki-
netic energy will be dissipated into heat. Thus, GWs can do work, and
conservation of energy requires that the kinetic energy acquired by the
test masses must necessarily come from the energy of the GWs. To get
the explicit expression of the energy-momentum tensor of GWs we can
follow two different routes, one more geometrical and the other more
field-theoretical:

(1) Since, according to general relativity, any form of energy con-
tributes to the curvature of space-time, we can ask whether GWs
are themselves a source of space-time curvature.

(2) We can treat linearized gravity as any other classical field theory,
and apply Noether’s theorem, the standard field-theoretical tool
that answers this question.

(1.104)2

(1.105)

In this section we pursue the former approach, while in Section 2.1
we discuss the latter, and we will see that they both lead to the same

answer.

1.4.1 Separation of GWs from the background

To discuss whether GWs curve the background space-time we must
broaden our setting. Until now, we have linearized the Einstein equa-
tions expanding around the flat metric 7,,,,. In this setting the definition
of GWs is relatively clear: the background space-time is flat, and the
small fluctuations around it have been called “gravitational waves”. The
term “waves” is justified by the fact that, in a suitable gauge, b, indeed
satisfies a wave equation. However, to study whether GWs generate a
curvature, we cannot define them as perturbation over the flat metric

N, otherwise we exclude from the beginning the possibility that GWs

curve the background space-time. Rather, we must allow the background
space-time to be dynamical, which means that we would like to define
GWs as perturbations over some curved, dynamical, background metric
(), and write'

|huw| < 1. (1.106)

Guv (1/) - @W(Sﬂ) + h;u/(x) 5

However, a problem arises immediately. How do we decide which part
of g, is the background and which is the fluctuations? In principle, in
eq. (1.106) we can move z-dependent terms from hy,,, to g, or viceversa.
The problem did not arise in linearized theory, where the background
metric was chosen once and for all to be the constant flat-space metric
N ]

As we will see in this section, this problem is not just an abstract issue
of principle. On the contrary, the answer to this question allows us to
understand properties of GWs such as their energy—momentum tensor,
and to get rid of ambiguities concerning whether GWs can be “gauged
away” or not.

In the most general setting, there is no unambiguous way to perform a
separation of the type (1.106). The total metric g, (x) can receive con-
tributions which change, in space and in time, on all possible scales due,
for example, to the time-varying Newtonian gravitational fields of nearby
tmasses in movement. The situation is quite similar to that of waves in
the sea. In principle, there is no unambiguous way to state which part
of the vertical movement of the surface of the water belongs to a given
wave, and which part belongs to a “background” originated by the in-
coherent superposition of perturbations of varied origin. Nevertheless,
there are obviously situations where a description of the perturbation
of the sea surface in terms of waves is useful, at least at the level of an
effective description.

In particular, a natural splitting between the space-time background
and gravitational waves arises when there is a clear separation of scales.
For example, a natural distinction occurs if, in some coordinate system,
we can write the metric as in eq. (1.106), where g, has a typical scale
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8 The condition lhuv| <€ 1 assumes
that we are using a coordinate system
where the diagonal elements of gy, are
O(1), on the region of space-time in
which we are interested.
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YFor a function f(z) oscillating as e?*®
with & = 27/A = 1/X, the typical
length-scale is X rather than A, in the
sense that |df /dx| = (1/X)|f].

In the next subsections we will address these two questions. First we

remark that, traditionally, the separation of the metric into a smooth
packground plus fluctuations is discussed using the condition (1.107),
and the method is called the short-wave expansion. It should be ob-
served, however, that from the point of view of GW detectors, the con-
dition (1.108) is fulfilled instead. Consider for instance a GW with a
frequency f ~ 10? — 10® Hz, corresponding to a reduced wavelength X =~
500-50 km, which are typical GWs that can be searched by ground-
pased detectors. The Earth’s gravitational potential is not spatially
smooth over a scale of tens of kms, compared to the GW perturbation.
On the contrary, fluctuations in the metric due to local density varia-
tions, mountains, etc. are many orders of magnitude bigger than the
expected GWs: the Newtonian gravitational potential at the surface of
the Earthis in fact |hoo| = 2GMg/(Rac?) ~ 1077 while, as we will see,
(\Ws arriving on Earth are expected to have at most h ~ 1072 so even
a spatial variation of just one part in 102 due to local inhomogeneities,
is large compared to the expected GWs.
_ On the other hand, these Newtonian gravitational fields are essentially
static, and it is much more difficult to find important temporal variations
at large frequency scales, e.g. at f ~ 1 kHz, since it requires relatively
large masses moving at these frequencies. A distinction between back-
ground and gravitational waves based on the condition f > fp becomes
therefore possible.

Indeed, ground-based GW detectors have a size which is much smaller
than the wavelength of the GWs that they are searching. A GW with fre-
quency f ~ 102102 Hz has a reduced wavelength X ~ 500-50 km, which
is much bigger than the size of the detector. Therefore, GW detectors
do not monitor spatial variations of the gravitational field on length-
scales L >> X. Rather, their output is a time series, which is analyzed in
Fourier space looking for temporal variations in their output induced by
_a passing GW. As we will see in Chapter 9, after suitable isolation, the
residual noise due to seismic motion and Newtonian gravitational fields
is important only at lower frequencies, say below O(10) Hz. Therefore,
we are actually searching for fast temporal variations in the detector
output due to GWs, over a background which is slowly varying in time.

Amplitude

A 7 s

Fig. 1.4 A situation that allows us to separate the metric into a low-frequency
background and a small high-frequency perturbation. The background is defined as
the part with frequencies f < f and the GW as the part with f > f. This definitio
is largely independent of the precise value of f.

of spatial variation Lpg, on top of which small amplitude perturbations »»
are superimposed, characterized by a wavelength X such that

X< Lg, (1.107)

where X = \/(27) is the reduced wavelength.'” In this case &, has the
physical meaning of small ripples on a smooth background. Alterna
tively, a natural distinction can be made in frequency space, if Juv has
frequencies up to a maximum value fg, while Iy is peaked around a
frequency f such that

F>fs. (1.108

In this case Ay, is a high-frequency perturbation of a static or slowly
varying background. The situation (1.108) is illustrated in Fig. 1.4.
We will see below that in this case h,,, in a suitable gauge, obeys a
wave equation, and as a consequence its characteristic wavelength and ‘
frequency, A and f, are related by A = ¢/f. However, the scales Lg
and fp that characterize the background are a priori unrelated, so the
conditions (1.107) and (1.108) are independent, and it suffices that one
of them be satisfied. :

We can now ask two questions:

1.4.2 How GWs curve the background

We therefore consider the situation in which, in some reference frame,
_we can separate the metric into a background plus fluctuations, as in
eq. (1.106), and this separation is based on the fact that there is a clear
distinction of scales either in space, in which case eq. (1.107) applies, or
in time, in which case eq. (1.108) applies.

As discussed above, our aim is to understand how the perturbation
. propagates, and how it affects the background space-time. To ad-
dress these questions, we begin by expanding the Einstein equations
around the background metric §,.. In the expansion we have two small
parameters: one is the typical amplitude h = O(|h|), and the second

» How this high-frequency (or short wavelength) perturbation prop
agates in the background space-time with metric g,,. The answer
to this question will justify the fact that the perturbation Dy is E
called a gravitational “wave”. ‘

e How this perturbation affects the background metric itself. The
answer to this question will allow us to assign an energy—momentum
tensor to GWs.
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1875 be more precise, we should take
into account that RW is non-linear in
Guwv. If k separates the low frequency
from the high frequency modes, then
v has only modes up to a typical
wave-vector kg =~ 27/Lp with kg <
k. The Christoffel symbols of the back-
ground are quadratic in the background
metric and therefore have modes up to
2kp. Terms quadratic in the Christoffel
symbols, such as those which appear in
the definition of the Ricci tensor, there-
fore have modes up to ~ 4kg. In any
case, if the separation of scales between
the background and the GW is clear-

cut, we still have 4kg < k. In this

sense R, contains only low-frequency
modes.

is either X/Lp or fp/f, depending on whether eq. (1.107) or eq. (1.10
applies. The situation in which X/Lg < 1 and the situation in whic
fB/f < 1 can be treated in parallel, with the appropriate change
notation, and we will refer generically to both cases as the short-wa;
expansion.

As a first step, we expand to quadratic order in h,,,. It is convenie
to cast the Einstein equations in the form

In the next subsections we will closely examine eqs. (1.111) and (1.112).
We will see that, from eq. (1.111), we can understand what the energy-
_momentum tensor of GWs is, while eq. (1.112) is a wave equation that
describes the propagation of h,, on the background space-time.

First we discuss, from the vantage point of the expansion over a generic
curved background, why the expansion over flat space-time presented in
Section 1.1 cannot be promoted to a systematic expansion. Consider
Grst the situation in which there is no external matter, 7}, = 0. In
egs. (1.111) and (1.112) we have equated terms of different orders in
the h-expansion. The reason is that we have a second small expansion
parameter, which is XN/Lp (or fp/f; as usual, the two cases can be
treated in parallel with just a change of notation, and for definiteness
we use X/ L p), which can compensate for the smallness in h. The relative

strength of these parameters is therefore fixed by the Einstein equations
themselves. We use the notation h = O(|h|), while we take g,,, = O(1)
(in a limited region of space, we can always set g,, = O(1) with a
suitable rescaling of the coordinates).
 Since we set Ty = 0, we see from eq. (1.111) that R,L,, is determined
only by [R/([D’V) JFo%. From the explicit expression (1.114) we see that RE,%)
is a sum of terms of order (90h)? and of terms of order hd?h. Let us an-
ticipate that, when we compute the projection onto the low modes, these

two terms give contributions which are of the same order of magnitude,
 and one finds that [RELQJ Lo is of order (9h)? (compare with eqgs. (1.125)
and (1.133) below). Then, in order of magnitude, eq. (1.111) in the
absence of matter fields reads

8rG 1
RNV = c—4 <TMV — *2*gHVT> s (110

where T}, is the energy—momentum tensor of matter and 7T its trac
and then we expand the Ricci tensor to O(h?),

Ruy = Ry + RS+ R + .. (1.11

v

where R;w is constructed with g, only, REL],) is linear in h,, and R,(L
is quadratic in h,,. The crucial observation now is the following. Th
quantity R, is constructed from Guv and therefore contains only low
frequency modes.’8 R by definition is linear in hy.., and therefore con
tains only high-frequency modes. R,(f,,) is quadratic in h,, and therefore
contains both high and low frequencies: for instance, in a quadratic term
~ huhpe & mode with a high wave-vector k; from hy, can combine
with a mode with a high wave-vector ky ~ —~k; from h,, to give a low
wave-vector mode. Therefore the Einstein equations can be split into
two separate equations for the low- and high-frequency parts, ’

—

_ 871G 1 Low »» Ry, ~ (8h)?, (1.115)
Ry, = —[RA) + — <TW — 59“”T> : (1.111) "
 and expresses the fact that the derivatives of the perturbation h,,, affect
and the curvature of the background metric g,,. The scale of variation of
High g is Lp, while that of h is X; therefore, in order of magnitude,
(1) _ _(p@Hign | 37C ! ;
R W [R u/] + Tlu/ QW/T - (1112) i
2 f C4 2 ‘ - 1
‘ 0w ~ 7= (1.116)
The superscript “Low” denotes the projection on the low momenta, (i.e. B
long wavelengths) or on the low frequencies, depending on whether (recall that we took g, = O(1)), while
eq. (1.107) or eq. (1.108) applies, and similarly for the superscript “High”.
The explicit expression for Ry, is computed in Problem 1.1, and is O ~ h (1.117)
5

1, - - I _
(1 _ = o « Do _ : _
Ry = 2 (D*Dyhva + D*Duhyo = D" Dalysy = DyDyh) ;- (1.113) Since the background curvature Ry, is constructed from the second
= derivatives of the background metric, eq. (1.116) implies that
where D), is the covariant derivative with respect to the background atives oL the grout »eq. ( ) imp

metric. At quadratic order one finds, after some long algebra, _ _ 1
R,uz/ ~ 029/1,1/ ~ L—2 . (1118)
1 1= - - _ _ B
R = 557767 | s DuhpaDuhop + (Dohua)(Dohyp — Dahyo)

_ L o o o while eq. (1.117) gives (8h)* ~ (h/X)?. Therefore eq. (1.115) gives the
+hpa(D,,DMh05 + DﬁDO’h‘MV — DﬂDth — DﬁD,uhua)
1

relation )
L ~ (ﬁ> , (1.119)

+(5Dohpo — Dphw)(D,,hug + Dyhyg — Dghyy)| . (1.114)

O
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19y, special cases one can find ex-
act wave-like solutions of the full non-
linear Einstein equations, see, e.g. Mis-
ner, Thorne and Wheeler (1973), Sec-
tion 35.9, and then there is no need
to perform a separation between the
background and the waves. However, it
would be hopeless to look for exact so-
lutions for the gravitational waves emit-
ted by realistic astrophysical sources.

that is, In-the context of general relativity and gravitational-wave physics, the
asefulness of introducing some averaging procedure was understood in
B~ s 7 (curvature determined by GWs). (1.12 ¢the 1960s. To put it into a broader theoretical framework, i_t is useful
B . . realize that what we have done is basically a special case of a general
for g

technique, which is known as a renormalization group transformation,
and which is nowadays one of the most important tools both in quan-
tum field theory and in statistical physics. The basic idea is to start
from the fundamental equations of a theory and to “integrate out” the
fuctuations that take place on a length-scale smaller than [, in order to
obtain an effective theory that describes the physics at the length-scale
Z; These renormalization group transformations can be performed in co-
ordinate space, which is the language that we used above; in momentum
space, integrating out the high-momentum modes, in order to get the
corresponding low-energy effective action; or in frequency space, in or-
der to eliminate the fast temporal variations and to obtain the effective
_dynamics of the slowly varying degrees of freedom.

_ We now define an effective energy-momentum tensor of matter, that
we denote by T, from

Consider now the opposite limit where T}, is non-vanishing, and t
contribution of GWs to the background curvature is negligible compared
to the contribution of matter sources. In this case the total backgrou
culvatm will be much bigger than 1hc COlltllbuthll of GWs, 1/L%

/?K + (matter contribution) > h? /?(

X
h << —,

7 (curvature determined by matter) .
B

(1121
At this point we can understand why the linearized approximation:of
Section 1.1 cannot be extended beyond linear order. If we force the
background metric to be 1, we are actually forcing 1/Lp to be strictly
equal to zero, and therefore any arbitrarily small, but finite, value of
necessarily violates the condition h SX/Lp, and the expansion in powers
of h has no domain of validity. This means that the linearized expansion
of the classical theory cannot be promoted to a systematic expansion,
and if we want to compute higher-order corrections we cannot insist on
a flat background metric. ‘
We can also understand from egs. (1.120) and (1.121) that the notion
of GW is well defined only for small amplitudes, h < 1. If h becomes
of order one, eqgs. (1.120) and (1.121) tell us that X/Lp also becomes at
least of order one. Since the separation between X and Lp is at the basis
of the definition of GWs, when h becomes of order one the distinction
between GWs and background vanishes. In a general context, there is
nothing like “a GW of arbitrary amplitude”.!? '
We consider now eq. (1.111). When there is a clear-cut separatlon
between the length-scale X of the GWs and the length-scale Lp of the
background, there is a simple way to perform the projection on the long-
wavelength modes: we introduce a scale [ such that ¥ < [ < L B, and
we average over a spatial volume with side /. In this way, modes with
a wavelength of order Lp remain unaffected, because they are basically
constant over the volume used for the averaging, while modes with a
reduced wavelength of order X are oscillating very fast and average to
zero. Similarly, if h,, is a high-frequency perturbation of a quasi-static
background, we can introduce a time-scale ¢ which is much larger than
the period 1/f of the GW and much smaller than the typical time-scale
1/fp of the background, and average over this time £, i.e. over several
periods of the GW. We can therefore write eq. (1.111) as

1
—.9;1-1/T>

= 1 -
9 =T — §g/wTa

<T/,W - (1123)
where T = g, T"" is the trace. By definition, T+ is a purely low-
frequency (or low-momentum) quantity, and is a smoothed form of the
matter ener gy—momentum tensor T),,; for instance, when the separa-
{ion has ])LCll done on the basis of the condition X <« Lg, we can visu-
alize it as a “macroscopic” (with respect to the scale X) version of the
energy—-momentum tensor, while T}, is the fundamental (“microscopic”)
quantity.?%
We also define the quantity £,, as

4

tu = < R(®

87TG ny “g# R( )>

(1.125)

where
R®
21

=g" R}, (1.126)

atd we define its trace as
LV
t= gl f/u/

ot

— 2

87TG g

0 go from the first to the second line, in eq. (1.127), we used the

fact that g“”(R,(E,,)) = (g ’“’R( )) since g*” by definition is a purely low-

frequency quantity, as well as the obvious identity g” Guv = 4. Inserting

_€q. (1.127) into eq. (1.125) (and using again the fact that g, is constant
under the averaging procedure, 50 (G, R?) = g,, (R?))) we see that

887G 1
= 04 tl'“/ — 59,,,1/1, .

(1.127)

81z 1

c4 <Tuu - _Q;WT> ,

B = —(BE) + .

) (1.122)
where (...) denotes a spatial average over many reduced wavelengths X,
if eq. (1.107) applies, and a temporal average over several periods l/f
of the GW, if rather eq. (1.108) applies.

(1.128)
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01 a typical situation, the fundamen-
tal energy—momentum tensor TH" gen-
erated by a macroscopic matter distrib-
ution will already be quite smooth, so it
will be approximately constant on the
scale used for averaging. In this case

1 1
<’TI“’ - ag;ulT) ~ Tp.u - 5(!];1,1/)7-\
1 .
— Tu,u - 5_@;1,1/’1‘, (1124)

and therefore T/u/ o~ T},,. However, the
definition (1.123) copes with the most
general situation.

2LObserve that, since Rf?u) is already
quadratic in hy., we have
2 _ 2
[_LVR,(LU) (q,u,l/ +h ,LLU)REW)
=g R +O(h?)
and, since we are working up to O(h2),
it is irrelevant whether we define the

traces of R;f,, and of ¢,, contracting
with g*¥ or with ghv.
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22Recall however that we limited our-
selves to an expansion of Ryy up to
quadratic order in hy,, so all higher-
order non-linearities in hyw have been
neglected. We will come back to these
non-linear terms in Section 2.2.3 and
especially in Chapter 5.

So, we can rewrite eq. (1.122) as
_ &G 1 87G /- 1.
R/,u/ = —CT <tuu - 5guut> + 0—4 <Tuu - §QMUT> )

or, in an equivalent way,

| —
R,u,z/ - ‘2‘g;wR = a1 (Tuu =+ t/,w) .

. (1.130)

This can be appropriately called the “coarse-grained” form of the Ein-
stein equations. These equations determine the dynamics of g,,, which
is the long-wavelength (or low-frequency) part of the metric, in terms
of the long-wavelength (or, respectively, low-frequency) part of the mat-
ter energy-momentum tensor, 7, and of a tensor t,,, which does not
depend on the external matter but only on the gravitational field itself,
and is quadratic in h,,.*
We can then swmmarize the results of this analysis as follows.

o At a “microscopic” level, there is no fundamental distinction be-
tween a background metric and fluctuations over it. The gravita-
tional field is described by all its modes, and its dynamics is fully
accounted for by the Einstein equations (1.3).

o If some fluctuations h,, are clearly distinguishable from the back-

ground because their typical length-scale X is much smaller than

the typical length-scale Lp that characterizes the spatial variations
of the background, it becomes useful to introduce a “macroscopic”
level of description, i.e. an approximate description which is valid
at a length-scale [, such that X < I (but still | « Lg). This is
obtained “integrating out” the short-wavelength degrees of free-
dom, which, in practice, can be obtained by performing a spatial
average of the Einstein equations over a box of size [, i.e. over
several wavelengths X.

If the separation between fluctuations and background is based on
the condition fp < f instead, we integrate out the fast-varying
degrees of freedom, performing a temporal average over several
periods 1/f, and we are left with an effective dynamics for the
slowly varying degrees of freedom.

o The result of this procedure (which, basically, is a renormalization
group transformation) is summarized by eq. (1.130), together with
the definitions of ¢, and T}, given in eqs. (1.123) and (1.125).
The left-hand side of eq. (1.130) is the Einstein tensor for the
slowly varying metric g,,. On the right-hand side we find, not
surprisingly, a smoothed version of the matter energy—momentum
tensor, T -

The most interesting aspect of eq. (1.130), however, is that it shows
that the effect of GWs on the background curvature is formally
identical to that of matter with energy-~momentum tensor t*¥. We
are therefore able to assign an energy—momentum tensor to GWs.

o It is useful to observe that t,, comes out automatically in an av-
eraged form. This averaging procedure is not something that is
imposed by hand afterwards. It comes out this way because, to
derive the effect of GWs on the background, one is passing from
a fundamental, “microscopic”, description, to a coarse-grained,
“macroscopic” description.

1.4.3 The energy - momentum tensor of GWs

We now compute explicitly ¢,,, using eq. (1.125) with RELQV) given in
eq. (1.114). We are interested in the energy and momentum carried by
the GWs at large distances from the source (e.g. at the position of the
detector), where we can approximate the background space-time as flat.
In this case we can simply replace D" — 0" in eq. (1.114), so we get

: y l 1 X, (23 (83 (83 .
RO = 5 bauha,ga,,h-ﬁ + hP0,0,hap — h*P8,05ha, — hP0,05hay

R0 0h + 0°hC Oty — 0P hEOahsy, — O3hP 0, hay,
1 1
+05h"Pdghy — 05h*P0hew — 50" h0ahyy + 50 hO,hay,

%0%@,%4 . (1.131)
As we saw in Section 1.2, the 4 x 4 symmetric matrix h,, has 10 degrees
of freedom, out of which eight are gauge modes and two are physical
modes. Correspondingly, in ¢, one can have in principle contributions
both from the physical modes and from the gauge modes. The left-hand
side of eq. (1.130), i.e. the Einstein tensor of the background metric
Guv, is of course a quantity that depends on the coordinate system,
since it is a tensor. Thus, in principle there is nothing wrong if, on the
right-hand side, we have both physical contributions and coordinate-
dependent contributions, i.e contributions from gauge modes. The issue
is how to distinguish the contribution to ¢,, due to the physical modes
from the contribution of the gauge modes. The former will give the
energy—momentum tensor of the GWs, and describe physical effects that
cannot be gauged away, while the latter will be associated with ripples
in space-times that are due to the choice of the coordinate system, and
that can be made to vanish with an appropriate gauge choice.

The most straightforward way to get the contribution of the physical
modes is to make use of the Lorentz gauge condition (1.18). This imme-
diately eliminates four spurious degrees of freedom, leaving us with the
two physical degrees of freedom contained in hiTT and the four gauge
modes ¢, which satisfy 0¢, = 0, as discussed in Section 1.2. We also
choose the £, so that h = 0 (so that only three independent gauge modes
remain). Then h,, = h,, and the Lorentz gauge condition becomes
0*h,, = 0.

We can now drastically simplify R,(LQ,,) in eq. (1.131) observing that,
inside the spatial or temporal average, the space-time derivative O, can
be integrated by parts, neglecting the boundary term.?® Performing in-
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230n generic functions, an integration
by parts of 9: is possible only if we
have performed an integral over time,
while an integration by parts of 9; re-
quires a spatial integral. Recall how-
ever that in the Lorentz gauge, out-
side the source, the equation of motion
is a simple wave equation Ohy, = 0.
So, for a solution propagating for in-
stance in the z direction, all quanti-
ties are functions of the combination
2V — z, where ¥ = ct. In expressions
such as [dzg(z® — 2)00f (20 — 2) we
can replace dgf with —3d,f, integrate
0. by parts and then replace again 9.g
with —dpg. Therefore, for solutions of
the wave equation, a spatial average al-
lows us to integrate by parts not only
the spatial derivative but even the time
derivative, and similarly for a time av-
erage.

Observe also that, in the integration by
parts, the boundary terms vanish only
when the size of the box used for the
integration is infinitely larger than X.
A more precise statement is that the
non-zero terms are of higher order in
X/Lp. However, we will only need the
result to leading order.
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2AThe fact that this result holds only
to leading order in X/L g (see Note 23)
is not surprising, since it is only in this
limit that the notion of GW is well de-
fined. If X/L ;3 approaches one, the dis-
tinction bBetween the background and
the perturbation fades away, and cor-
respondingly one can no longer assign
a gauge-invariant energy—momentum
tensor to the perturbations.

tegrations by parts and making use of the gauge conditions 9*h,,, = (
and h = 0 and of the equation of motion Dh.s = 0, it is immediate
to see that all terms in eq. (1.131) collapse to zero except the first two,
which are related to each other by an integration by parts, giving

1, , .
(RE) = = Ophapdsh”). (1.132)
while <R(2)> vanishes upon integration by parts and using the equation

of motion Ohyp = 0. Recalling the factor —c*/(87G) from eq. (1.125)
we finally find

4

— (0uhasd BT .

t;w = 397G (1133)

We can now verify that the residual gauge modes &, do not contribute
to this expression. In fact, under the gauge transformation (1.8), the
variation of £, is

(34
327G

A X o ,
= 5o [(Ouhapdn(0°€° + 0°€)) + (u o v)]
c?

= 7 [(Ouhapds0°€%) + (= v)]
and this vanishes since, inside (...), we can integrate by parts 9%, and
then we can use the Lorentz condition 8“hag = 0.2* Therefore t,,, de-
pends only on the physical modes h;ST , and we can simply replace
in eq. (1.133) with the metric in the TT gauge. In particular, the gauge-
invariant energy density is

Oty = Raﬂhaﬁ&/(CShMB» + (@ = ’/)}

(1.134)

00 s TT
0= garg My b )
(where the dot denotes 9, = (1/c)dg) or, in terms of the amplitudes Ay
and hy,

(1.135)

2

00 ¢
167G

(h% +h2). (1.136)

For a plane wave traveling along the z direction, h,;l;T is a function of
t = z/c, and therefore t%' = % = 0 while 9,h]]T = —9oh ;" = +9°hL"
and therefore .

98 =199, (1.137)
An alternative way of extracting the gauge-invariant part from Ly is o
start from the full expression (1.131) without performing any prior gauge
fixing, and consider its variation under a linearized gauge transformation
(1.8), where now &, are generic, rather than being constrained to satisfy
B¢, = 0. Then, with straightforward algebra one finds that

f//u./ — t/.LI/ + a/)U;/fI/ N (1138)

with U/}, some tensor. The additional term is a total divergence, and
we.would like to trow it away inside the average, as we have done above.
Here however we must be careful because, since we have not fixed the
Lorentz gauge, the metric now does not satisfy a simple wave equation
quch as Ohy, = 0. Thus, the argument discussed in Note 23, which

_allowed us to integrate by parts 0, inside a temporal average, or inside

a spatial average, no longer goes through. However, we can integrate by
parts 0, inside a space-time average, that we denote as ((...)). Then
({0,U},)) vanishes and ((tuv)) is gauge invariant (again to leading order
in X/Lp). Thus, an equivalent way to single out the gauge-invariant
part of £, is to average it over space-time, and the result gives again
eq. (1.133).2°

Finally, observe that in eq. (1.130) the left-hand side is covariantly
conserved with respect to DH, i.e. D“‘(RN,, — %.(7,“,1_%) = 0, because of
the Bianchi identity. Therefore, we have

DM(Tp + tuw) = 0. (1.140)

The fact that the covariantly conserved quantity is the sum of T}, and
tuw, rather than each one separately, reflects the fact that there is in
general exchange of energy and momentum between the matter sources
and GWs. At large distances from the source the metric approaches
the Mat-space metric, so D* approaches 9", while outside the source
T, = 0. Then, far from the sources, eq. (1.140) reduces to

Oty =0, (1.141)

The energy flux

Having obtained the energy-momentum tensor carried by the GWs, it
is now straightforward to compute the corresponding energy flux, i.e.
the energy of GWs flowing per unit time through a unit surface at a
large distance from the source. We start from the conservation of the
energy-momentum tensor, 9,t* = 0, which implies that

dS.’,U (807500 + aitio) =0 5

v

(1.142)

where V' is a spatial volume in the far region, bounded by a surface 5.
The GW energy inside the volume V is

By = / Pt (1.143)
Jv
S0 eq. (1.142) can be written as
1dE o ,
g f/ dPx 9;t%
c dt v
= _/ dAn;t%, (1.144)
5
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2576 make the proof simpler we worked
at large distance from the source, where
the background metric can be taken
as flat. The argument can however
be repeated in a generic background
Juv, although it becomes technically
more involved. In this case one makes
use of the fact that, inside a space-
time average, to lowest order in X/Lp:
(i) Covariant divergences can be inte-
grated by parts discarding the bound-
ary term. In particular, expressions
such as ((D,Uf,)) vanish. (i) Covari-
ant derivative commutes. Then one
finds, from the full expression (1.114),
that

tl_u/ - tp,u + prﬁ,p ) (1139)

and therefore ((¢,.,)) is gauge invariant,
to leading order in X/Lg. A further
technical subtlety is that, in curved
space, the sum of tensors at different
points in space-time is not a tensor, so
the result of integrating a tensor is also
not a tensor. Thus, before integrating
over d*z, one must carry the tensors
tuw(x) back to a single common point
using parallel transport along geodes-
ics. Details can be found in the Appen-
dix of Isaacson (1968b), and references
therein.

In principle, the same parallel transport
procedure should be applied to the spa-
tial and to the temporal averages that
we introduced in Section 1.4.2. How-
ever, we will always end up comput-
ing these averages very far from the
sources, where the background space-
time can be taken as flat.
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NMore precisely, we take as volume

V' a spherical shell centered on the
source but far away from it, so that
both its inner boundary S; and its
outer boundary S2 are in the far region,
where the gravitational field is given
simply by gravitational waves. Then in
eq. (1.143) we can limit ourselves to the
energy-momentum tensor t%0 of GWs,
neglecting the energy-momentum ten-
sor of the quasi-static gravitational
fields, as well as the energy—momentum
tensor of matter. Therefore the time
derivative of Ey is given by two terms:
the energy flowing in through Sy minus
the energy flowing out from So. We are
interested in the energy flux through a
unit surface at a given distance from
the source (say, in the energy flowing
through a unit surface of our detector),
which for definiteness we choose to be
on the outer surface Sz, so in the fol-
lowing we simply take S = S5.

where n? is the outer normal to the surface and dA is the surface ele In terms of hy and Ay, we can rewrite the result as

ment.?S Furthermore, outside the source, we can impose the T'T gauge
Let S be a spherical surface at a large distance r from the source. If
surface element is dA = r2dS), and its normal # = # is the unit vecto
in the radial direction. Then eq. (1.144) gives

dEv

de 8
dAdt — 167G
The total energy flowing through dA between ¢ = —oco and ¢ = 400 is
1;herefore27

(1.154)

(b2 + 2.

dE

L = —c [ dAt, 1.145 dt (h% + h? 1.155
dat / | T 160 ERR (1.155)
where 4 P As discussed in the previous Sectlon, in the situations relevant for GW
or 32C G <8Oh1TJTa—hTI> . (1.146 detectors the average (...) in eq. (1.155) is a purely temporal average,
T

over a few periods. Then in eq. (1.155) we can first perform the integral
over dt from —oco to +o0, eliminating therefore any time dependence,
and the subsequent temporal average is just the average of a constant.
Therefore the average in eq. (1.155) can be omitted, and

dE S - :
o dt (h2 +h2) .
dA 167G /_Oo (72 +2)
52) and

Inserting the plane wave expansion of hy «(t), given in egs. (1.5

A GW propagating radially outward, at sufficiently large distances r
has the general form
/—;}}T (t,r)

= %fij(t—r/c), (1.147

where fi;(t —r/c) is some function of retarded time t,o =t — r/c. Wi
will prove this result in Section 3.1, but it is in fact completely analogou
to the result for electromagnetic waves. Therefore

(1.156)

;_h?jT(t,r) S 12 fijt —7r/c) + %fzj(t—r/c). (1.148) (1.48), we ge
dE o0 - , )
On a function of the combination ¢ — r/c we have T L df (27 1)? ([x’?,+(f)|2 (P )
0 ‘ 1—8 3 o] R ~
arfi]( F/(') __0?‘ ii( T/C) (1'149 _12 </700dff2 (1h+(f)12+1h/><(f)|2) ) (1.157)

and therefore ) . L .
) Since the integrand is even under f — — f, we can restrict it to physical
frequencies, f > 0, writing

-a\—h,gr(t,r) = fﬁohgT(t,T) +O(1/r?)

or
Then, from eq. (1.146), we see that at large distances, 9" = 40 (which 0
could also have been derived more simply from eq. (1.137), observin Therefore IE
that an observer sitting at large distances from the source sees a plan = f2 (|h+( HIF+ fﬁx (f)]z) . (1.159)
wavefront), and the energy inside the volume V satisfies dAdf 2G

We will always use the convention that the energy spectrum dF/df is the
quantity that gives the total energy when it is integrated over the positive
frequencies, rather than between —oo and +oo. Writing dA = r2d€, and
integrating over a sphere surrounding the source, we find the energy
spectrum

dE—V = —c /dAtOO.
dt

The fact that By decreases means that the outward-propagating GW
carries away an energy flux
dFE

(1.151

T +ct? (1.152 N
_ @ rrgrr e v /dQ (1R (DP + e (DP) (1.160)
= 5an0 i i) @

or, writing the surface element dA = r2dQ,
In the same way we can compute the flux of momentum. The momentum

of the GWs inside a spherical shell V' at large distances from the source

is given by )
P = Z /d?’xto’“.
Jv

c3r?

dE s e
— = dQ (hiThETY .
dt 327G EA (1.161)
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2" The integration over t from —oo to
400 is necessary if we want to resolve
all possible frequencies. In an exper-
iment one will integrate a signal only
over a certain time interval At and one
has a corresponding resolution in fre-
quency Af ~1/At.
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Considering again a GW propagating radially outward, and repeatin
the same steps leading from eq. (1.142) to eq. (1.154), we get

c@oP‘l}:/ d*x 9t
v

—/dAtOk,
S

and therefore the momentum flux carried away by the outward-propagat

GW is
dP*

dAdt
Inserting the expression (1.133) for t%, we get

= 1%

(1.163

dP*
= /dQ (hiT o RETY . (1.164

dt 327TG

Observe that, if t° is odd under a parity transformation x — —X, the
the angular integral vanishes.

1.5 Propagation in curved space-time

In the last section we have examined the consequences of the low-mode
equation, eq. (1.111). We have seen that it determines the dynamics o
the background metric g,,, and that it allows us to identify the energy
momentum tensor of huu
We now turn our attention to the high-mode equation (1.112). Firs
of all, we examine it in the limiting case of no external matter, T =0
so eq. (1.112) becomes
R;(Llu) — 7[R(2)}H1gh .

v

We are interested in the leading term in X/Lp (or in fg/f; for definite-
ness we use X / Lp). We therefore first perform an order of magnitude

1)

estimates of le and of {R(Z)]ngh‘ In principle, in the short-wave ex-

pansion we have two small parameters, i = O(h,,,) and X/Lg. Recal

however, from eq. (1.120), that when 7),,, = 0 the Einstein equations fix
these two scales to the same order of magnitude. Therefore, in this case

we have a single small parameter, that we denote by e,

e=0(h) =0(X/Lg).

To simplify notation, we use units Lg = 1 when we estimate the order

of magnitude of the various terms, so that b ~ X ~ e. From eq. (1.113),

the leading term of wa) is

h 1

—-——N—

~Oh o~

R{) 2 (1.167)

€

(1.162

(1.165)

(1.166)

while

h2
R ~ 0% ~ = ~ 1. (1.168)
X

5 {Ru)]n‘gh is at most O(1) and can be neglected in eq. (1.165), com-

pared to the leading term of R,W, which is O(1/¢). Thus, if we limit

ourselves to the leading term, eq. (1.112) simply becomes

(R =0, (1.169)
where [...]i/e means that we must extract the O(1/e) part. Equa-
tion (1.169) can be written explicitly as

’I']pg (apayhua + 8,08;Lh1/0 - aua,uhpa - (9/,80/7,NU) jad 0, (1170)

since the O(1/¢) part is obtained substituting the covariant derivatives
with ordinary derivatives, and at the same time §f? in front of the
_parenthesis can be substituted with 7”7, again to leading order in €. This

just a propagation equation for the field A, in a flat background, and
it is the same equation that governs the propagation in the linearized

_ theory discussed in Section 1.1, so we can again introduce h,, = by, —

(1/2)1,uh, impose the Lorentz gauge, and eq. (1.170) is nothing but

Ohy ~ 0, (1.171)

where O = 9,0 is the flat space d’Alembertian. So, this is the same
as eq. (1.24) with the matter energy-momentum tensor 7, = 0. We
therefore discover that the high-frequency equation (1.112) is a wave
equation for h,,. We find that the propagation of GWs at O(h) is
the same as in the linearized theory because we considered the limit in
which GWs are the only source of curvature. We now turn to the more
interesting case in which external matter is present and dominates the
curvature, so the low-frequency equation (1.111) becomes

1 G

g,uu C4

R — 5 Ty - (1.172)

_Toexpand the high-frequency equation (1.112), we recall from eq. (1.121)

that in this case h < X/Lp < 1, so the expansions in h and in X/Lp

are different. We keep only the terms linear in A (terms quadratic in

h; in a typical situation involving GWs, are utterly negligible), and we

expand the result in powers of X/ Lp. If we limit only to the leading and

next-to-leading order in X/Lg, eq. (1.112) becomes simply?®
RY =0.

g

(1.174)

Now g,,,, is determined by T}, and is not close to flat, so R( )isa fully
covariant quantity with respect to a non-trivial background metric. As
we show in Problem 1.1, in a curved background the equation R,(W =0,
written explicitly, reads

§°°(D,Dyhye + DpDyhye — DyDyhpe — DpDohyy) =0, (1.175)

The discussion of this equation parallels exactly that of Section 1.1,
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2811 fact, in eq. (1.112), [Rfﬁg]mgh

is negligible with respect to RE}U) , be-
cause it has one more power of h.
To estimate the order of magnitude of
(T — §guuT)High, we observe that,
if Ty, is smooth, as we expect for
macroscopic matter, its high-frequency
part will come from the fact that the
energy—momentum tensor T}, depends
in general on the metric g, , and there-
fore will have a high-frequency com-
ponent O(h). Besides, also gu,T =
(Guv +hpw)T has a high-frequency part
O(h) which comes from multiplying g,
with the O(h) high-frequency part of T,
and another high-frequency part O(h)
which comes from multiplying by, with
the low-frequency part of 7. So,

1 High
(T;w - §9HVT) = O(h/L )
(1.173)
Instead, RYY ~ 82h ~ h/X°. Then
(T — g;WT)H’gh is smaller than RS,,)

by a factor O(X /1152 ) and, to leading
and next-to-leading order in X/Lp, it
does not contribute.
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with 7, replaced by g,,. The equation becomes simpler introducin
29There is a slight notational clash A = g’“’hw and??
here. The bar over g, denotes the - _
background metric, while over hy, it h;u/ = h;u/ - igpwh- (1-176
denotes the combination (1.176). ‘

we raise and lower the indices with g,,, ), which generalize the flat-space
pair of Maxwell equations 9,F*” = 0. One imposes on the four-vector
potential A* the curved-space generalization of the Lorentz gauge,

S
We now impose the gauge condition DyAf=0. (1.182)

from the definition of covariant derivative, D,LD”A—“ = D¥D, A* +
RV, A", where R”, is the Ricci tensor. The term D”D, A* vanishes
because of the gauge condition, so eq. (1.181) becomes

D¥hy,, =0, (1.177

that we still call the Lorentz gauge. In this gauge the equation RS,} =

becomes

DPD,A* — RF,AP = 0. (1.183)

(eometric optics is valid when X is much smaller than the other length-
scales in the problem. So we must have X < Lpg, with Lp the typical
scale of variation of the background metric, and also X « L., where
L, is the characteristic length-scale over which the amplitude, polariza-
tion or wavelength of the electromagnetic field change substantially. In
particular, X must be much smaller than the curvature radius of the
wavefront.

Under these conditions, we can use the eikonal approximation, which
consists in looking for a solution with a phase 6 rapidly varying, i.e. 8
changes on the scale X, while the amplitude changes only on the scale
Ly or L, (whichever is smaller), so it is slowly varying. To perform the
expansion systematically it is convenient to write

DPD ok + 2R e b’ — Ryphf — Ryph? = 0. (1.178

Outside the matter sources, where TW = 0, the Einstein equation fo
the background, eq. (1.172), tells us that R,, = 0. More precisely, using
D (2)1Low

v |

eq. (1.111), Ry, gets a contribution only from the term [R , SO

R = O(h? /7‘(2). Then, to linear order in h we can drop the term
Ryphf and Ry,hf in eq. (1.178). Furthermore, R,,p,0h?” = O(h/LY%
while D?D,h,, = O(h/x"). Thus, since we have already restricted
ourselves to the leading term and next-to-leading term in X/Lp (see
Note 28) we simply have

DPDyhyy, =0. (1.179 AM(z) = [a"(z) + eb"(z) + 2 () + .. Je?@/e (1.184)

where € is a fictitious parameter, to be finally set equal to unity, that
reminds us that a term to which a factor € is attached, is of order
(x/L)", where L is the smallest between L and L.. An expansion of the
form (1.184) is just an ansatz, and its validity is verified by substituting
it in the equations.

Since R#,AP = O(A/L%), where A is the typical amplitude of A%,
while DPD,A* = O(A/?(Q), to leading and next-to-leading order in
A/Lp we can neglect R*,A?, and the equation of motion is simply

Equations (1.177) and (1.179) determine the propagation of GWs in th
curved background, in the limit X <« Lp. In conclusion we find that
after separating the Einstein equations into a low-frequency part and a
high-frequency part, the low-frequency part describes the effect of GWs
and of external matter on the background space-time, while the high
frequency part gives a wave equation in curved space, which describe
the propagation of f,,,. This curved-space equation can be solved using
the eikonal approximation of geometric optics, as we now discuss.
DPD,A* = 0. (1.185)
1.5.1 Geometric optics in curved space Defining the wave-vector k,, = 9,0 and plugging the ansatz (1.184) into

Electromagnetic waves ed. (1.182) we get, to lowest order,

We first recall how geometric optics works for electromagnetic waves Juvkta” =0. (1.186)
30We follow Misner, Thorne and in a curved space with metric Gu-2Y The action of the electromagnetic

Wheeler (1973), Section 22.5. field in this curved space is _From eq. (1.185) we get instead, to lowest order,

g
S = —% / Az /=G GuaGus F* F*7 (1.180) G 7R =0 (1.187)

‘ This is known as the eikonal equation. From this it also follows that
0 = D,(k,k") = 2kFD,k, (recall again that indices are raised and
lowered with g,,). Since 6 is a scalar, and on a scalar the covariant
derivatives commute, we have f),,@,ﬁ = D,,DNO = DMD,,H = D,ﬁ,ﬂ,

and its variation gives the equations of motion

D, (DFAY — D" AM) =0 (1.181)
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31\Writing k# = dz*/d)\, where A is
the affine parameter along the geodesic,
eq. (1.188) gives the geodesic equation,
in the form
d2 e
dA?

p da¥ dz’f

YN AN

so we can interchange the indices, D, k, = D,k,, and the conditio
k*D,k, = 0 becomes

KDk, = 0. (1.188

This is the geodesic equation in the space-time of the background metr
Guv,3t so eq. (1.188) states that the curves orthogonal to the surface
of constant phase (the “rays” of the geometric optics approximation
travel along the null geodesics of g,

To next-to-leading order in €, eq. (1.185) gives

2k,D?a" + (DPk,)a" = 0. (1.189)
It is convenient to introduce the real scalar amplitude a = (a*a},) /2
and the polarization vector e* defined from a* = ae”, so ete;, =1. An
equation for the scalar amplitude is obtained observing that, on the one
hand, one has the trivial identity k*d,(a?) = 2ak"d,a. On the other
hand, on a scalar such as a®, 9, can be replaced by D,,, so k*8,,(a%) =
ktD,(afa}) = —(DPky,)a?, where we used eq. (1.189). Comparing these
two results, we get an equation for the scalar amplitude,
kH0,a = ~%(Duk“)a. (1.190)
Finally, to obtain an equation for e, we substitute a* = ae* into
eq. (1.189) and we use eq. (1.190). This gives
kPDyet =0. (1.191)
Expanding the equations to still higher orders we could determine the
corrections by, ¢, . .. to the amplitude in terms of a,,. Equations (1.186),
(1.187), (1.188), (1.190) and (1.191) are the fundamental results of
the geometric optics of electromagnetic waves in curved space. Equa-
tions (1.187) and (1.188) states that light rays (or photons, in a quantum
language) travel along the null geodesics of g,,,. Equation (1.186) states
that the polarization vector e/ is orthogonal to the propagation direc-
tion, kye# = 0, and eq. (1.191) states that it is parallel-transported
along the null geodesics. Finally, eq. (1.190) expresses (in the quan-
tum language) the conservation of the number of photons in the limit of
geometric optics. This can be seen rewriting it in the form
DH(a?k*) = 0. (1.192)
This shows that the current j* = a?k* is covariantly conserved. Its
associated conserved charge, according to the Noether theorem that we
will recall in Section 2.1.1, is the integral of a2k® over a spatial surface
at constant time. In a plane wave, the energy density is proportional to
|E|? + |BJ? = 2|E|?. In the gauge Ay = 0, the electric field is E = dpA,
so its amplitude is k%a, and the energy density is proportional to (k%)%
Since each photon carries an energy k°, we see that k%a? is proportional
to the number density of photons, so eq. (1.192) expresses the fact that,
in the limit of geometric optics, the number of photons is conserved.
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(ravitational waves

We can now discuss the eikonal approximation for GWs. We make the

ansatz

Py () = [Au(z) + By () + .. ]ef@/e (1.193)

Again we define k, = 0,0, and we write 4,, = Ae,, where the po-
larization tensor ey, is normalized as e“”e,";l, =1, and A is the scalar
amplitude. Substituting this ansatz into eqs. (1.177) and (1.179) and re-
peating basically the same steps as for the electromagnetic case, we find
that k&, still obeys egs. (1.187) and (1.188), so gravitons travel along the

null geodesic of g,,,,. Just as for photons, the scalar amplitude satisfies
1

kHO,A = —3

(D, k")A, (1.194)

which can be written as D*(A%k*) = 0, and gives the conservation of

the number of gravitons. Finally, the polarization tensor satisfies

(1.195)
(1.196)

ke =0,
k°D e, =0,

50 it is transverse and is parallel-propagated along the null geodesics.

_ Since gravitons propagate along null geodesics, just as photons, their
propagation through curved space-time is the same as the propagation
of photons, as long as geometric optics applies. For instance, they suffer
cravitational deflection when passing near a massive body, with the same

_deflection angle as photons, and they undergo the same redshift in a

gravitational potential.>?

One practical difference concerning the lensing of gravitational and

electromagnetic waves is however worth observing. Both type of waves

can in principle be lensed by a large mass situated between the source
and the observer. When the different images of the source cannot be
resolved we are in the regime of microlensing, where we have a single
image which is magnified. The amplification factor A in the energy
density, computed within geometric optics, is>3
A= u? + 2 1

Cowvii 4w’
where u = (/0g, (3 is the angle of the source with respect to the observer-
lens axis (see Fig. 1.5), and 0 is the Einstein angle, given by

., 2Rgdsy
B dop(dst, + dov)

where Rg is the Schwarzschild radius of the lens and dgr, and dor, are
the source-lens and observer—lens distances, respectively. The second
equality in eq. (1.197) holds when v < 1, i.e. when the source, lens
and observer are well aligned, and in this case the amplification factor
isdarge. In fact, it even becomes formally infinite if v = 0, i.e. when the
source, lens and observer are perfectly aligned. However, the geometric

(1.197)

9 (1.198)

32The redshift of gravitons in a FRW
cosmological model will be discussed
explicitly in Section 4.1.4.

33See e. g. Binney and Merrifield
(1998).
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Fig. 1.5 The geometry for the lens-
ing of gravitational or electromag-
netic waves.
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Fig. 1.6 The focusing of GWs from
a source.

34 A more accurate estimate can be ob-
tained taking into account the detailed
internal structure of the lens, see Bontz
and Haugan (1981).

optics approximation breaks down near the caustics, i.e. when the ligh
rays coming from the source cross each other, since there the scale
variation of the wavefront is no longer small compared to X.

The actual behavior near the caustics can be obtained taking into a
count diffraction (or, in a quantum language, the uncertainty principle
In order of magnitude the effect can be estimated as follows. Conside
a circular ring of rays, which is part of a plane wavefront, arriving wit
impact parameter b on a star of mass M which acts as a gravitation
lens, as in Fig. 1.6. The deflection angle due to the gravitational fiel
of the star is given by the classical Einstein result, § = 2Rg /b, wher
Rg = 2GM/ ¢? is the Schwarzschild radius of the star. The whole ci
cular ring of rays with impact parameter b is then focused on a singl
point, at a focal distance dp given by b/dp = tand ~ 6, i.e. ‘

b2
~ —2RS .

k ostimate, recall that the mean free path [ of a particle scattering off an
ensemble of target with number density n and cross-section o, is given

by
l=—. (1.203)

no
For a graviton of energy E, the scattering cross-section off a target of
mass m is (using units & = ¢ = 1) 0 ~ G%s, where s is the square
of the center-of-mass energy.> Consider for instance the scattering of
4 graviton with four-momentum k* = (E,0,0, E) off a nucleon at rest,
with four-momentum p* = (my,,0,0,0), where the mass m,, ~ 1 GeV.
Then the square of the center-of-mass energy is s = —(p + k)? = m2 +
‘ Qm,,LE‘ For all astrophysically plausible values of the GW frequency
fow, I = Hwgy is totally negligible with respect to m.,. For instance, if
faw = 1 kHz, we have hwg,, = O(1072!) GeV; so s ~ m?2 and

dr (1.199) o~ GEm?2 . (1.204)
The fact that a one-dimensional surface is focused onto a point is respon
sible for the formal infinite enhancement of the luminosity. In practice
however, diffraction forbids such a perfect focusing. Indeed, when w
state that a photon has impact parameter b, we are implicitly assumin
that the error Ay on its transverse position is smaller than 5. Then
by the Heisenberg principle, it has an uncertainty on the transverse mo
mentum Ak, 2A/b, and an angular spreading

e can now compare the absorption of electromagnetic and of gravita-
_tional waves, for instance from the Sun. For photons in a neutral plasma,
such as the Sun, the most important process is the Thompson scat-
tering on electrons, which has a cross-section o = 8ra?/(3m?), where
o ~ 1/137 is the fine-structure constant, and we use units A = ¢ = 1.
Inserting the numerical values, we see that the Thomson cross-section
for scattering of photons on electrons is larger than the gravitational
cross-section for scattering of gravitons on nucleons, eq. (1.204), by a
huge factor O(10%%). The number density n. of electrons in the Sun
(which is relevant for computing the electromagnetic mean free path
due to electron—photon scattering) is about the same as the number
density of protons, relevant to compute the gravitational mean free path
due to proton—graviton scattering, so the mean-free path for gravitons
in the Sun is larger by a factor O(108%) compared to that of photons!
Using the value of n, of the Sun, one finds that the photon mean free
path inside the Sun is O(1) cm. Using this value of [, one can show that
a photon produced by thermonuclear reactions in the Sun core takes
_about 3 x 10 yr to reach the surface of the Sun and finally escape.3¢
For a graviton the mean free path inside the Sun is O(10%9) cm, which
15 huge even compared to the observable size of the Universe (consider
that 1 Gpc ~ 3 x 10?7 ¢m). Therefore, for a GW the Sun is completely
fransparent.

Significant absorption of GWs can take place if the wave impinges on
a black hole. In this case, we can use the result for the capture cross
section of a relativistic particle by a black hole with Schwarzschild radius
Rg, 0 = (27/4)mrR%.3" Another possibility is that the GW impinges on
a neutron star, just with the right frequency to excite one of its normal
modes. In this case, the wave interacts coherently with the neutron star
(while, in the above estimate of scattering in the Sun, we computed
the incoherent scattering off the single protons). However, as we see in
microlensing experiments, the probability that a compact object lies on
the path from an astrophysical source to the Earth is very small.

Ak, _ X
Ab, ~ ]f” 2% (1.200

Propagating to a distance dp this induces a transverse spread

xb
ys >~ dp ANl 2 —— . .
Ays ~ dp Re (1.201

The focusing is substantial only if Ays; < b, which gives
X < 2Rg. (1.202

For a lens with a mass of order Mg, this means that a substantial fo
cusing is possible only for waves with X < O(6) km, i.e. a frequenc
f > O(10) kHz.3* For electromagnetic waves in the visible spectrum
this condition is very well satisfied, and microlensing is indeed com:
monly observed. For GWs, however, we will see that no astrophysica
source is expected to produce waves with frequencies much larger tha
O(10) kHz, and no significant amplification can be obtained for thes
waves from typical stellar-mass lenses.

1.5.2 Absorption and scattering of GWs

Finally, GWs are insensitive to absorption and scattering, during thei
propagation from astrophysical sources to the observer, because of th
smallness of the gravitational cross-section. To make a quantitativ
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35This can be shown most easily using
the field-theoretical methods of Chap-
ter 2, observing that the graviton-
matter-matter vertex is proportional
to G]l\,/z. In the Feynman diagram
for the graviton-matter scattering there
are two such vertices, so the amplitude
is proportional to G and the cross-
section to G’f\, The dependence on s
is then fixed by dimensional arguments
observing that, in units A=c=1, Gn
is an inverse mass squared, as well as
from Lorentz invariance, that dictates
that the energy dependence is through
the Lorentz-invariant quantity s. This
is the same result that holds (at ener-
gies ' < M) for neutrinos, with the
Fermi constant G'p replacing Newton’s
constant G .

365ee e.g. Exercise 1.2 of Maggiore
(2005).

373ee e.g. Landau and Lifshitz, Vol. II
(1979), Section 102.
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38We make use of the identity
[Dv, Dalhy® = h®** Reppy — by Rew

which follows from the definition of co-
variant derivative, see e.g. Weinberg
(1972), eq. (6.5.3). Pay attention to
the fact that Weinberg has the opposite
sign convention for the Riemann tensor.

1.6 Solved problems

Problem 1.1. Linearization of the Riemann tensor in curved space

In this problem we compute the Riemann and Ricci tensors, linearized to
first order in h,. over a generic curved background gu.. The inversion of

G = Guv + hyy 18 g" = §* — K" + O(h?). Then it is straightforward ¢
find that, to O(h), the linearization of the Christoffel symbol gives

LY, = Tty + 56" (Duhpo + Dyhvo = Dahy)

The calculation of the Riemann tensor at a given point x is enormously sim_i
plified if we perform it in a coordinate system where I'j,(z) = 0 (paying

attention, of course, to the fact that the derivatives of T 4, are non-zero!) We
see from eq. (1.205) that in this frame I', = O(h) and therefore the terms
~ T'T in the Riemann tensor are O(h?), so they do not contribute to O(h
and we simply have R¥, o = 9,4, — 0,1, + O(h*). Furthermore, substitut-

ing eq. (1.205) for I'l,, we only need to keep the terms where the derivative

acts on the background Christoffel symbols l:“,jp, since background Christoffe]

symbols on which no derivative act give zero. Since I'#,(z) = 0, in the final
expression (l.e. after having performed all derivatives) we are free to write
derivatives as covariant derivatives with respect to the background, and we

obtain an expression valid in all coordinate systems.
Then, in the frame where '), (z) = 0, we get

R[“/p[f = R,u,upo- + % (DpDuhp,d + DUD;L}LUp - DpDuhuU - DdDuhp.p
+hpTRTz/pcr - h/uTRT;LpO) .

We have performed the computation in a special frame. Since, however, the
final result is expressed in terms of covariant quantities, this expression holds

in any frame. The linearization of the Ricci tensor is then obtained using
Ruy = QaﬁRauﬁv = (gaﬁ - haﬁ)(Rauﬂu + Ru)

apfy
Ry is Rf},} = g“ﬂRi}:gy — h*P Ry pp0. Then we get™®

L (D*Dyhva + D*Duhyuec — D" Dahy — Dy Dyh)

where h = g‘wha’g‘ Observe that D,,D,,,h = Dyf)uh = 0,0uh — Iﬁ“ﬁ}ﬁph is
symmetric under the exchange p < v, and therefore thl,) is also symmetric,

as it should be.

If the background is flat, g.. = 7., the covariant derivatives become or-
dinary derivatives and therefore commute. If we impose the Lorentz gauge
condition 8" h,, = 0, i.e 8 hu = (1/2)0,h, the linearized Ricci tensor takes

a very simple form,

(flat background).

1
RY) = ~50hu

(1.205)

), so that the part linear in

(1.207)

(1.208)‘

(1)

_problem 1.2. Gauge transformation of h,, and R/,

_In the text we showed that, when the background space-time is 7)., the re-

sulting linearized theory has a gauge symmetry given by eq. (1.8), and that
the linearized Riemann tensor RELI,,),,U is gauge-invariant. It is interesting to
see how these results are modified when the background space-time is curved.
Under the coordinate transformation z* — z/* = z* + &#(z), the usual
transformation law of the metric is
P Hy®
9 () = Gl (@) = 5 D2 gy (). (1.209)

Writing g, (2) = g, (z' — §) and expanding to first order in &, we have

i () = g (2') — €70 glus - (1.210)
Combining this with eq. (1.209) we get
G (%) = guv(®) — (Dpéu + DuEL), (1.211)
where the covariant derivative is
Dby = 0,& — 1,8, (1.212)

Equation (1.211) gives the lowest-order term in the small parameter |D,¢,|.
Similar to what we have done in linearized theory, we restrict ourselves to
|Dwév|Sh, where h = O(Jhuw|). Since I'f, = O(8g,) = O(1/Lg), where Lg
is the typical variation scale of the background metric, the condition |D,&,|Sh
means that both

[0l Sh, and

£ShLy, (1.213)

must be satisfied. (We use the notation & = O(]¢*]).) In the case of a flat

background metric, discussed in Section 1.1, we have Lg = oo and therefore
we found only the condition |0¢|Sh.

A generic function £ has both low-frequency and high-frequency modes,
without a clear separation between them, and therefore in the transformed
metric g, (z) the separation between the background and the GW in general
disappears. It is therefore more useful to restrict ourselves to functions &~
which maintain a clear-cut separation between low- and high-frequencies. In
particular, we can consider a function £ that has only high-frequency modes.
We observe that

Dués + D&y = (Duéy + Duéu) + €7 (Dphup + Duhyp — Dphy),  (1.214)

where we have used the expansion (1.205) for the Christoffel symbol. Since
LY, is a purely low-frequency term, and & has only high frequencies, the
terms D¢, are purely high-frequency, and therefore contribute to the trans-
formation of hu rather than of g,“,.?’g Therefore under such a transformation
we have g, (z) = gu.(z) and

Ry (2) = By (2) = (Dpés + Duty), (1.215)

under the condition that £* contains only high-frequencies and that it satisfies

[Duéu| < lhpwl . (1.216)
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39Note that, since |9¢|Sh  and
|€|ShLp, the terms £€Dh in eq. (1.214)
are at most O(h?Lp/X). When the
curvature is dominated by matter we
found in Section 1.4.2 that h < X/Lp,
and therefore in eq. (1.214) the term
¢Dh is negligible with respect to the
term Dﬂ&/. In the opposite limit of
curvature dominated by GWs we have
h ~X/Lp and the term &£Dh becomes
of the same order as D, , but not
larger; therefore, even in this limit,
the order-of-magnitude estimates given
below are not affected when neglecting
the term &Dh.
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Equation (1.215) has the form of a gauge transformation for a symmetric
tensor field h,, on a curved space described by g... In this sense, we have g
gauge theory for a spin-2 field in a curved background. We next compute how
the linearized Riemann tensor transforms under this gauge transformation
We write

Ryuvpo = Ryvpo + R0 + O(h?), (1.217)

where Ry,0 is the Riemann tensor of the background and we raise and lower
indices with g... The explicit calculation performed in Problem 1.1 gives

2R)p0 = DyDuhyo+DoDyhup—DpDyuhuo—Do Dyhppthy Brvpo —hy™ Repipg

(1.218)
which generalizes eq. (1.13) to a curved background. Under the gauge trans:
formation (1.215) the variation of R,(},,)p, is given by

OR(ps = € Dr Ruvpo + Brvpo Dut” = Reupo D’
+R,u.u-rpDafT - R/.w-ron&T . (1219)

Therefore, if the background is not flat, Rﬁ,ljp, s no longer gauge invariant
under the gauge transformations of linearized theory. However, let us estimate
the order of magnitude of the various terms. For the background we have

1

Ruupo ~ 82,(7/“/ ~ L_2 > DrR;.wpn ~ asgp,u ~ (1220)
B

Ly’
Equation (1.216) gives instead £ ~ hLg, D& ~ h and we therefore see that

h

SRy ~ = (1.221)

This means that the variation of R;(}u)pa is much smaller than thll,)pg itself,
since b

RS o ~ 8% h ~ = (1.222)
and therefore
*2
1 1
SR{pe ~ ToRiidps (1.223)
B

We conclude that Rf}l,)p(, is approximately gauge-invariant in the limit X/Lp <
1. More precisely, its leading term in an expansion in powers of X/Lp is gauge-
invariant. Therefore, in the limit X/Lp <« 1, which was used from the very
beginning to define h,.., we can see h,, as a gauge field, with a gauge-invariant
field-strength tensor given by the leading terms of REBPU, as obtained from
eq. (1.218).

Further reading

¢ Classical textbooks on general relativity are Wein-

berg (1972), Misner, Thorne and Wheeler (1973),
and Landau and Lifshitz, Vol. IT (1979). Among
the more recent books, we suggest Hartle (2003)
(at a rather introductory level, and with a very
physical approach), and Straumann (2004) (more
advanced).

For discussions of freely falling frames, Riemann
and Fermi normal coordinates, TT frame and the
proper detector frame, see Misner, Thorne and
Wheeler (1973), Sections 13.6 and 37.2, Hartle
(2003), Section 8.4, and Thorne (1983, 1987). The
metric of an accelerated, rotating observer is com-
puted to quadratic order in z* by Ni and Zimmer-
mann (1978).

The energy—momentum tensor of GWs and the
short-wave expansion are discussed by Isaacson
(1968a, 1968b), Misner, Thorne and Wheeler
(1973), and Thorne (1987). The fact that per-
forming a space-time average one obtains a gauge-
invariant energy-momentum tensor was already
discussed in Arnowitt, Deser and Misner (1961).

The geometric optics approximation in curved
space-time is discussed in Isaacson (1968a, 1968b)
and Misner, Thorne and Wheeler (1973) (see
in particular Section 22.5 for photons, and Sec-
tion 35.14 and Exercise 35.15 for gravitational
waves). See also Thorne (1983, 1987). Diffraction
and lensing of GWs is discussed in Bontz and Hau-
gan (1980) and in Section 2.6.1 of Thorne (1983).

A definition of GWs based on the asymptotics of
the gravitational field at null infinity was given by
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Bondi, van der Burg and Metzner (1962) and Sachs
(1962), and was also important historically for re-
solving the controversy on the reality of gravita-
tional radiation. A geometric description of the
asymptotic fall-off of radiative solutions, using the
notion of asymptotically simple space-time, was
given by Penrose (1963, 1965).

The development of the concept of gravitational
wave has a very interesting history. The notion
even predates Einstein general relativity (the term
“gravitational wave” was used by Poincaré as early
as 1905, referring to the fact that, even in a gravi-
tational theory, the interaction must propagate at
a finite speed). With the advent of general rela-
tivity, gravitational waves were introduced by Ein-
stein in 1916. However, the existence of phys-
ical effects associated with them has been ques-
tioned many times, with Einstein himself chang-
ing his mind more then once. Eddington is as-
sociated to the ironic remark that “gravitational
waves propagate at the speed of thought”, imply-
ing that they are gauge artifact. (Actually, he was
referring only to the transverse-longitudinal and
longitudinal-longitudinal components of h;;, which,
indeed, are pure gauge modes. Concerning the
transverse-transverse part, he rather showed that it
carries energy, and even corrected an erroneous fac-
tor of two in Einstein’s early version of the quadru-
pole formula.) The controversy on the existence of
GWs was not settled until the early 1960s. A very
interesting book on the history of the research in
GWs is Kennefick (2007), see also the review article
Kennefick (1997).



