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Preface

The physics of gravitational waves is in a very special period. At the
time of writing (2007) various gravitational-wave detectors, after decades
of developments, have reached a sensitivity where there are significant
chances of detection, and future improvements are expected to lead, in
a few years, to advanced detectors with even better sensitivities. As
a result of these experimental efforts, there are good reasons to hope
that the next decade will witness the direct detection of gravitational

waves and the opening of the field of gravitational-wave astronomy and,

possibly, cosmology. Stimulated by this intense experimental activity,
there has also been in parallel a vigorous theoretical effort. We now un-
derstand much better many potentially interesting mechanisms for the
production of gravitational waves, both in astrophysics and in cosmol-
ogy, while long-standing conceptual and technical problems, for instance
related to the production of gravitational waves by self-gravitating sys-
tems (such as coalescing binaries) have been solved. For these reasons,
it is now appropriate to attempt a summary of the knowledge that has
accumulated over the last few decades.

The theory of gravitational waves is a rich subject that brings to-
gether different domains such as general relativity, field theory, astro-
physics, and cosmology. The experimental side is as rich, with extra-
ordinary techniques that nowadays allow us to obtain sensitivities that,
intuitively, might seem totally out of reach. For instance, one can now
monitor the length L of the two arms of an interferometer (with L ~
a few kms), detecting a relative displacement AL many orders of mag-
nitude smaller than the size of a nucleus; or one can detect vibrations
corresponding to just a few tens of phonons, in a resonant-mass detector
which weights several tons. The aim of this book is to bring the reader to
the forefront of present-day research, both theoretical and experimental,
assuming no previous knowledge of gravitational-wave physics.

Part I of this volume is devoted to the theory of gravitational waves
(GWs). Here we assume an elementary knowledge of general relativ-
ity. Typically, we recall the most important notions when we use them;
nevertheless, it should be borne in mind that this is not a textbook on
general relativity. In some sections, we also require some knowledge of
field theory; in some cases, e.g. for the Noether theorem, we recall them
in some detail.

We have attempted to rederive afresh and in a coherent way all the
results that we present, trying to clarify or streamline the existing deriva-
tions whenever possible. Throughout this book, we try to go into suf-
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Ihe exception to this rule will be
Chapter 5, on the post-Newtonian gen-
eration of GWs. Here the computa-
tions are so long that they sometimes
required years of work by highly spe-
cialized teams. In this case, we explain
in detail the basic principles, we per-
form explicitly some lowest-order com-
putation, and then we quote the final
high-order results.

ficient detail, and we do our best to avoid standard sentences like “it
can be shown that...” or, even worse, “it is easy to show that...”, unless
what is left to the reader is really only straightforward algebra. In order
not to burden the main text too much with details, some more technical
issues are collected into a “Solved problems” section at the end of some
chapters, where we present the relevant calculations in all details.

The theory of gravitational waves is a domain where two different
traditions meet: one more geometrical, where one uses the language of

general relativity, and one more field-theoretical, where one uses the lan-

guage of classical and even quantum field theory. This is due to the fact
that, at the fundamental level, linearized gravity is just the field theory
of a massless particle, the graviton. At this level, the most appropriate
language is that of field theory. However, at the macroscopic level the
collective excitations of the gravitational field are described in terms of
a metric, and here the geometric language of general relativity becomes
the most appropriate. Between these two description there is no real

conceptual tension and, in fact, they complement each other very well.
The field-theoretical point of view often gives a better understanding of

some issues of principle; for example, the problem of what is the en-

ergy carried by GWs, which in the past has been surrounded by some

confusion, can be answered using the Noether theorem, a typical tool of
classical field theory, and is further illuminated looking at it from the
point of view of quantum field theory. On the other hand, for example,
the interaction of GWs with detectors is much more easily understood
using the geometric language of general relativity, making use of tools
such as the equation of the geodesic deviation. We will therefore make
use of both languages, depending on the situation, and we will often try
to discuss the most important conceptual problems from both vantage
points.

Part II of this volume is devoted to a description of experimental GW
physics. We discuss in great detail both resonant-mass detectors and
interferometric detectors. The former belong to “small-scale” science,
with experimental groups sometimes as small as half a dozen people,
and limited needs for funding. They have been important historically
for the development of the field, and they are remarkable instruments
by themselves, with their ability to detect variation in the length L of
a bar at the level AL/L ~ 107 or better, corresponding, for a bar of
length L = 3 m, to about 1072 fm. Interferometers rather belong to “Big
Science”, with collaborations of hundreds of people, and costs of several
hundreds millions of euros. At their present sensitivity, interferometers
are by now the main actors on the experimental scene, and give us our
best chances for detection, while advanced interferometers, planned for
the near future, have an extraordinary potential for discoveries. We will
also devote a chapter to data analysis for GWs, which is quite a crucial
issue. This is also a domain where the interaction between theorists
and experimentalists has been very fruitful, since in many instances (in
particular for coalescing binary systems) the theoretical predictions of
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the waveform are crucial for extracting a real GW signal from a noisy
detector.

A second volume, dedicated to astrophysical and cosmological sources,
i« currently in preparation, and I expect to complete it in a few more
years. The logic underlying this division is that Vol. 1 presents tl}e
ltools, theoretical and experimental, of GW physics, while Vol..2 will
describe what can we learn about Nature, in astrophysics and in cos-
mology, using these tools. An Errrata web page will be maintained at

http://theory.physics.unige.ch / “maggiore/home.html

Finally, a comment about the bibliography. Relevant papers are
quoted (and sometimes commented on) in a Further Reading section
at the end of each chapter. The principle that guided me in choosing
thern is not historical accuracy. Considering that I am summarizing de-
velopments that took place along many decades, at least from the 1960s,

it is beyond my competence to give a detailed account of who did what,
and who did it first. Rather, the papers that I quote are the ones that

I consider interesting reading today, and which I recommend for learn-
ing more about the subject. A number of these references will %mwe‘ver
provide the reader with a more accurate guide through the historical
development of the field.
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Notation

Constants and units. The Planck constant & and the speed of light
¢ are normally written explicitly. Occasionally there are sections where
we use units i = ¢ = 1, but in this case the use of these units is always
stated at the beginning of the section. The Newton constant G is always

written explicitly, and we never set G = 1. The solar mass is denoted
by M@.

Indices, metric signature, four-vectors. Greek indices, such as

o, B,... or u,v,..., take the values 0,...,3, while spatial indices are |

denoted by Latin letters, 4,7,... = 1,2,3. The totally antisymmetric
tensor €#¥P7 has €923 = +1. The flat space metric is

T}MV = (_7+7+a +) .

This is nowadays the most common choice in general relativity, while the
opposite signature is the most common choice in quantum field theory

and particle physics. We also define

0 0

= (z",x), x =ct,

0 1
O = Dt = <E 5'1;@:) )

dir = dz’d®z = cdid®z .

A dot denotes the time derivative, so f(t) = 8,f = cdof. Contrary

to widespread use in the literature on general relativity, we never use
commas to denote derivatives (nor semicolons to denote covariant deriv-
atives).

The four-momentum is p* = (E/c,p), so p,z* = —Et + p-x, and
d*p = (1/c)dEd3p. Repeated upper and lower indices are summed over.
When we have only spatial indices we do not need to be careful about
raising and lowering of the indices since, with our choice of signature,
the spatial metric is 8;;. Then we will also sum over repeated lower
spatial indices or over repeated upper spatial indices.

In Section 3.5.1 and in Chapter 5, where we study the multipole expan-
sion to all orders, we use a multi-index notation where a tensor with [ in-
dices 142 . . .1 is labeled simply using a capital letter L, so Fr, = Fy,4,..4,-
Various conventions related to this notation are explained on page 134.
There, we also used the notation (™ (u) = d™f/du™ to denote the n-th
derivative with respect to retarded time.

Riemann and Ricci tensor, Einstein equations. Our conventions
on the metric signature, Riemann tensor, etc. are the same as Misner,

.

Thorne and Wheeler (1973). We denote the curved space-time metric

by guv(®) and its determinant by g (so g < 0). The Christoffel symbol
is 1 )
FZV = §gpg<dau9m/ + al/gou - aag;u,) .

The Riemann tensor is defined as

Ru’upn - 6PFM - adr’u + ngrgo - FI(;’O'FS[) .

vo vp

The Ricci tensor is Ry, = R%ar, and the Ricei scalar is R = g"" Ry,
The energy-momentum tensor 7" is defined from the variation of the
matter action Sp; under a change of the metric g — guv + SGuws
according to

1 f —
(551\4 = Q—C/dlla’ ‘gT’u 59;1,1/~

The Einstein equations read

1 e
Rp,u - §g;wR = 7 11;11/ .

Fourier transform. Our conventions on the n-dimensional Fourier
transform are

P) = [ G P,
F(k) = / d"x F(z)e e

With our choice of metric signature this implies that, for a function of
time
* dw - )
F(t) = / — F(w)e ™!,

oo 2T
F(w) = / dt F(t)e™™?t,

J—o0

The Dirac delta satisfies

/dn'E ez'lc:r — (271')"5(77‘) (I{I) ,

so in particular

/dt 279t — 5(f).
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