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Data m:m_u\mmm techniques

his chapter we begin our study of GW experiments. The functioning
nciples and the sensitivities of existing or planned detectors will be
tamined in great detail in the subsequent chapters. In this chapter we
jther introduce a number of general concepts which characterize any
detector, and we discuss the crucial problem of how to extract a
W signal from the (typically much larger) detector noise.
n Section 7.1 we will see how the various noise generated inside a
detector can be conveniently treated referring them to the detector
ut, and are characterized by a spectral strain sensitivity, which has
ensions 1/vHz. In Section 7.2 we introduce the pattern functions
t encode the detector angular sensitivity. We will then discuss in Sec-
on 7.3 the optimum filtering techniques that must be applied to the
tector output. The importance of this procedure stems from the fact
at, with existing detectors and with reasonable estimates of the GW
gnal, we expect that the GW signal will be buried into a much larger
ise. The fact that we try to extract a small signal from noisy detectors
ertainly not a new situation in physics. Rather on the contrary, it
‘a typical problem in many fields, e.g. in radio engineering where it
s been much studied in connections with radars, or in radio astron-
iy for application to pulsar searches, and standard filtering techniques
ve been developed. We will see how these techniques are adapted to
le problem of GW detection. The proper interpretation of the results
tained with matched filtering relies on notions of probability and sta-
tics, that we discuss in Section 7.4. Here, after an introduction to
e frequentist and the Bayesian frameworks, we discuss how to recon-
ruct the parameters of the source and how to examine the statistical
nificance of the observation of an event with a given signal-to-noise
tio. Then, in Sections 7.5-7.8, we will examine the application of these
oncepts to various classes of GW signals, i.e. bursts, periodic signals,
alescing binaries and stochastic backgrounds.

.1 The noise spectral density

he output of any GW detector is a time series, which describes for
stance the oscillation state of a resonant mass, or the phase shift of
he light recombined after traveling in the two arms of an interferometer.
Phis output will be a combination of a true GW signal (hopefully) and
f noise. To understand how signal and noise combine, it is useful to
hink of 2 GW detector as a linear system. At its input there is the GW
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Fig. 7.1 A schematic representation
of a detector as a linear system.
The full transfer function T'(f) is
the product of the separate transfer
function. Here T'(f) = TW(f)T2(f),
and fous(f) = T1(f)T2(fIne(f) +
To(Hme(f).

signal that we want to detect. More precisely, the input and output |
the detector are scalar quantities, while the GW is described by a tenso
hij. So, in general, the input of the detector will have the form

h(t) = D¥hy;(t), @

nd we can simply think of the detector as if s(t) were its output, com-
posed of a noise n(t) and a GW signal A(t),! and the detection problem
8 how to distinguish h(t) from n(t). In the following, when we speak of
the detector output, we will always refer to 5(t).2 If one has a theoretical
odel for a given source of noise n;(t), which appears at a given stage
the linear system, we can compare it with h(t) simply multiplying
t by the inverse of the appropriate transfer function, in order to refer
his noise to the detector input. Equivalently, of course, one could refer
th the noise and the signal to the true detector output, and com-
re Nout(t) to the quantity hoys(t) whose Fourier transform is given by
- (7.2). However, the great advantage of referring everything to the in-
t is that n(t) gives a measure of the minimum value of A(t) that can be
tected and h(t), apart from the geometrical factor D which is always
order one, depends only on the incoming GW. In contrast, hout (t) de-
nds on the transfer function of the system, and different detectors can
ve transfer functions which differ by many orders of magnitude. Thus,
e use of Neue(t) and hout(t) would be very unpractical when we want
compare the performances of different detectors.

So, in the above sense, we take n(t) to be the detector’s noise. If the
ise is stationary, as we assume for the moment, the different Fourier
mponents are uncorrelated, and therefore the ensemble average® of
e Fourier components of the noise is of the form

where D¥ is a constant tensor which depends on the detector geometry,
and is known as the detector tensor. For example, for a detector which .
driven only by the (x,z) component of h;; (which, as we will see, is t!
case for a resonant bar oriented along the z axis), DY = 1if i = j =1
and D¥ = 0 otherwise. We will later compute the explicit form of D
for interferometers and for resonant masses.

For a linear system, the output of the detector is a linear functio
in frequency space, of the input h(t), that is, the output hou(t) of ¢
detector (in the absence of noise) is related to the input A(t) by

Mno:nm.\.v = M..A.\.vmﬁ.\v 1’ A.N.

where T(f) is known as the transfer function of the system. Howe
in the output of any real detector there will also be noise, so the outp!
Sout(t) will be rather given by

.mo:nQv = NsocﬁQv + Nout Qv . A

More precisely, a detector can be modeled as a linear system with ma;
stages, labeled by ¢ = 1,..., N, each one with its own transfer functi
Ti(f), so the total transfer function is T(f) = [], 73(f). For examp
we will see in Chapter 8 that resonant-bar detectors are composed
a heavy aluminum cylinder which is set into oscillation by an incomi
GW,; its energy is then transferred to a lighter mechanical oscillats
coupled to the heavy bar, which works as a mechanical amplifier, thy
it is transformed into an electric signal by an LC circuit coupled to t
light oscillator, and then this electric signal is further amplified by o
or more SQUIDs, and recorded. Clearly, noise can be generated at ea
of these stages. Each noise will propagate to the output with a transf
function which depends on the point of the linear system at whic
first appeared, see Fig. 7.1, and will contribute to total noise noyt(t):
the output. It is convenient to refer each noise to the detector inp
defining the quantity n(t) from

kN 1

(A (NHR(f) = 86(f - F)55n(f)- (7.6)
he above equation defines the function S,(f). Since n(t) is real,
~f) = #*(f) and therefore S,(—f) = S,(f). If n(t) is dimension-
ess, as we will assume, S,(f) has dimensions Hz~!. Without loss of
enerality, we can also assume that

(n(t)) =0.

Dbserve that, for f = f', the right-hand side of eq. (7.6) diverges.
Jowever, in any real experiment we have a finite value of the time
used to measure 72(f), see Note 3. Restricting the time interval to
-T/2 <t < T/2 we have

(7.7)

T/2

§5(f =0) — \ dt eIt =T. (7.8)
i(f) = T7H(Fow(f), T/ f=0
where nout(t) is the total noise measured at the output. That is, n(f hen, from eq. (7.6) with f = f', we get
is a fictitious noise that, if it were injected at the detector input, a )
if there were no other noise inside the detector, would produce at t A |A(F)2 v =3 Sa(f)T. (7.9)

output the noise nqyt(t) that is actually observed. It is therefore t|
quantity that we can compare directly with h(t), i.e. to the effect d
to the GW. We then define

s(t) = h(t) +n(t), (7

or a function defined on the interval [-1'/2,T/2], the Fourier modes
ave discrete frequencies f, = n/T’, so the resolution in frequency is
iven by

Af = (7.10)

1
T

7.1 The noise spectral density

LOne often multi
put by T71(f) al
data acquisition, so
really the output of the data ne
system.

s detector

2Some more nomenclatu

thing, which deserves further ¢
At this stage, it could be due to a
or (much more likely) to noise.
event which is already assumed to have
been generated by a GW will be called a
“GW signal”. The letter s convention-
ally used to denote the detector output
s(t) = h(t) + n(t) does not stand for
“signal” (the signal in this nomencla-
ture is h(£)). It can rather be taken
to denote the “strain amplitude” of the
detector.

An

3The ensemble average is the average
over many possible “realizations” of the
system. In practice we have only one
physical system, our detector, but we
can follow it in time, so the ensemble
average is replaced by a time average
(this implicitly assumes that the sys-
tem is ergodic). Then the ensemble av-
erage is computed measuring the noise
n{t) over a given time interval T, and
considering this as a “realization” of the
system. From this we obtain 7A(f) (with
a resolution in frequency Af = 1/7T).
We then repeat the procedures over a
subsequent time stretch, again of du-
ration T and separated by a sufficient
time shift from the first realization, so
that the correlation between the noise
n(t) in the two stretches can be ne-
glected, and we define this as a second
independent realization of the system.
Finally, we average #i(f) over many in-
dependent realizations. It is useful to
keep in mind that a time-scale T is im-
plicit in this procedure, and will indeed
appear in the equations below.
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We can then write eq. (7.9) also in the form kponentially, R(T) ~ exp{—|7|/7.}. The limiting case is white noise, in
thich the noise at time ¢ and at any subsequent time ¢ + 7 are totally
ncorrelated, so for 7 # 0 we have (n(t + 7)n(t)) = (n(t+7)){n(t)) =0,
nd R(r) ~ (7).

The auto-correlation function therefore goes to zero very fast as 7 —
00, and it satisfies the requirements for performing the Fourier trans-

m. We can then define the (one-sided) noise spectral density S,(f)

55(F) = (IA(A)P) AF. (.

The factor 1/2 is conventionally inserted in the definition (7.6) of Sh(
s0 that (n?(t)) is obtained integrating S,(f) over the physical rai
0 £ f < oo, rather than from —oco to oo,

(n*(®) = (n*(=0) 25.()= \ ” dr R(r) 27 (7.15)
N .\loo Gf it Fn( e reality of R(7) implies Sn(—f) = S;(f), while invariance under
1/ e translations gives R(—7) = (n(t — T)n(t)) = (n{t)n(t + 7)) = R(7),
2/ 4 Sn(f) ich implies Sp(—f) = Sp(f). Inverting eq. (7.15),
= [ #s.m. G R(r) = {nl + n(t)
. 0 - .‘._h et —i2w fr
The function S,(f) is known as the noise spectral density (or the ngf T2 .\|8 4 Sn(f)e ! (7.16)

spectral sensitivity, or the noise power spectrum). More precisely, i
called a single-sided spectral density, to emphasize that (r2(t)) is
tained from it integrating only over the physical range of frequent
f > 0. Alternatively, we can write

in particular
R(0) = (n*(1))

-3 M 4f 5a(f)

ey = [ afsievess(y), -
i = [ asu. (r.17)

0

with Sdouble sided( £y — (1/9)S,.(f). Throughout this book, when we
use the term spectral density or power spectrum, we will always refer
the single-sided quantity.

Equivalently, the noise of a detector can be characterized by /9y
which is called the spectral strain sensitivity, or spectral amplitude,
has dimensions Hz~1/2. Note that, if the noise increases by a factor
n(t) — An(t), then Sp(f) — A%S5,(f) while the strain sensitivity s
linearly. \

Actually the definition (7.6), even if rather intuitive, is not ma
matically rigorous, because the function n(t) in general does not sal
the conditions necessary for having a well-defined Fourier transformi
instance, on the interval —0o < t < o0, n(t) does not necessarily g
zero at t — 00, so 7i(f) in general does not exist. A more precise d
ition of the spectral density is obtained considering the auto-correlal
function of the noise,

mparing this result with eq. (7.12) we see that, when 7(f) exists,
(7.6) and (7.15) are equivalent definitions of S,. Otherwise, only
(7.15) applies. Equation (7.15) is known as the Wiener-Khintchin
tion.

R(7) ~ 6(1), we see from eq. (7.15) that S,(f) is independent of
iquency and therefore we have white noise. If instead S,(f) depends
, one speaks generically of colored noise. A typical example is 1/f
se, which is a generic denomination for a noise where S,(f) has a
wer-law behavior, Sp(f) ~ 1/f7, over many decades in frequency.

Pattern functions and angular
sensitivity

om eq. (1.58), we know that a GW with a given propagation direction
n be written as

hist,x) = D efi(R) \ " dfha(f)emit-ao), (7.18)

A=4,x -

R(7) = (n(t+ m)n(t))

A Gaussian stochastic process n(t) is characterized uniquely by its &
age value (n(t)), that for a stationary noise is a constant and can b
to zero with a constant shift of n(t), and by its auto-correlation. f

tion. Typically, the knowledge of the noise at time ¢ gives us very 1 : jere et are the polarization tensors given in eq. (1.54). We take x = 0

information on the value of the noise at a subsequent time t + 7 wil he location of the detector. For a detector which is sensitive only
sufficiently large, that is, for |7| — oo, R(7) goes to zero quite fas .

Ws with a reduced wavelength much larger than its size, such as
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resonant masses and ground-based interferometers, we have 27 fii- x =
i -x/X < 1 over the whole detector, and we can neglect the spatial
dependence of hqp(t,%). So, to study the interaction of GWs with such
detectors we can write simply

hy;(t) = MU ef(n) \|8 df hoa(f) e=2mi0

hen, using eq. (7.23), we find

(5) (8)
(e3)' (0) =

he pattern functions F4 depends on the polarization tensors mm. through

e (R) cos 2 — e sin 24, (7.27)
mm.gv sin 21) + @m. cos 2% . (7.28)

ATtox q. (7.21). Since the detector tensor is a fixed quantity, independent of
_ M . m (B)ha(t). (7.19 , we find that in the new frame
A=+,x " (B) = Fy () cos 29 — F () sin 24, (7.29)
Combining this with eq. (7.1) we see that the contribution of GWs ¢ F (i) = Fy () sin 24 + Fy (fi) cos 24 . (7.30)

the scalar output of the detector can be written as

h(t)= Y D9ef(f)ha(t). (7.

A=+,%

ombining this transformation of the pattern functions with the trans-
rmation of hy, hy given in egs. (7.24) and (7.25), we see that h(f) in
(7.22) is independent of 9.

Of course, once a choice of the axes (i, ¥) used to define the polariza-
on is made, then the pattern functions F4 depends on 8§ and ¢ only.
owever, it is sometime useful to keep generic the definition of the (G, ¥)
es in the transverse plane, and to parametrize the possible choices by
he angle 9. In this case, the pattern functions depend also on ¥, and

20

It is then convenient to define the detector pattern functions Fa(i),

Fa(h) = DYefi(n).

The pattern functions depend on the direction fi = (6, ¢) of propagatio!

Fy (i) = Fy (;0) cos 2¢) — Fy (f; 0) sin 290, (7.31)
of the wave, and in terms of them eq. (7.20) becomes

Fy (;9) = Fy.(;0) sin 2¢ + Fy (11;0) cos 29 . (7.32)

A useful identity satisfied by the pattern functions, independently of
e specific form of the detector tensor b@., is? »me&.ic: (7.33) can be shown in full

(t) = by () F1 (0, 8) + hx () Fx (6, 6) -

generality writing

The above equations assume that we have chosen a system of axes (4, d*h ) .

in the plane orthogonal to the propagation direction fi of the wave, wi A Fr(h)F(n) =0, (7.33) \ d*h Fy () Fx (#1)

respect to which the polarizations k.. and hy are defined. It is interestin e

to see what happens if we change this system of axes, performin, ere as usual d’fi = dcosfd¢ is the integral over the solid angle. As = DapDea \ dhe g (Rl (D)
rotation by an angle 1 in the transverse plane. Then the axes (@, ?) a the integral over d*f of F} and of FZ, with a generic choice of the .4 using eq. (1.54), which shows that

gle 1) they are different. We will see for instance that one can choose e, (A)eX,(f) is a sum of terms such as

so that Fy vanishes while F is non-zero, or viceversa. However, if 0a0p0c¥q, which has three factors G
average over the mbmwm G we find and one factor ¥, and of similar terms
3

rotated to new axes (@', ¥') given by

& =1cosy — Vsiny,

with @@ — V. A simple way to see that

¥ = Gsiny + Y cosy, Aﬂ 2m dip 2m dy the integral over d?fi vanishes is then

\ pon mu.w Awmw \%v . —_— muvm Awﬂ SV . A.N.wnc to observe that, when we integrate over

where we used the same conventions on the sign of ¢ as in eqgs. (2.18 o 27 o 2w all possible values of 5, for each term

. {1400V ¢ there is also a corresponding
1 fact, inserting egs. (7.31) and (7.32) into eq. (7.34), the equality term obtained with & — —@ and ¥ —

lows from [ dysin 21 cos2¢ =0 and [ dip sin®1 = [ dypcos?¢p. From +¥ which cancels it.
s, it also trivially follows that

and (2.194). With respect to the (&, ¥) axes, the amplitudes of the p
and cross polarizations have values hy and hy, while with respect
the (@', ¥') axes, they have the values !, and h,. Equations (1.49)
(1.50) show that R/, and k% are related to iy and hx by

(F2(8;9)) = (FZ(8;9)), (7.35)
B, = hy cos2tp — Ry sin 29, 7 + x
by = hysin2y + hy cos2y. A vﬂ\w:@ @A v -
In the new frame, the definition (1.54) states that the polarization t B P7 ag ’

sors are given by r later use we also define the angular efficiency factor

(ef) (R) = 0T} — (¥ + Vi (7. F = (F2)+ (F2) =2(F%). (7.37)




342 Data analysis techniques

owever, with three interferometers we have five measured quantities,
he three functions k;(t), i = 1,2, 3, and two independent delay times,
we can solve for hy(t), hx(t),0 and ¢. The actual accuracy of the re-
tonstruction depends on the signal-to-noise ratio. For typical expected
gnals, at first-generation interferometers the angular resolution could
be of order one square degree.

Table 7.1 The pattern functions F(@, ¢;% = 0) for various detectors. For interfel
ometers, the arms are perpendicular and along the (z,y) axis, (6, ¢) are the usu,
polar angles defined using the z axis as polar axis and, for a wave propagating alon
the z axis, 9 is the angle in the (z,y) plane measured from the z axis, just as
For cylindrical bars, 8 is measured from the longitudinal axis of the bar and, if w
denote by z the longitudinal axis, for a wave propagating along the z axis, agai
¢ is the angle in the (z,y) plane measured from the x axis. For resonant spheres
the modes m == 0, l¢, 1s, 2¢, 25 are combinations of the five quadrupolar modes witl
m=—2,...,2, defined in Zhou and Michelson (1995). The angular efficiency factol
F is defined in eqgs. (7.36) and (7.37). Observe that the mode m = 0 of a sphere h
the same pattern functions as a cylindrical bar (apart from a constant), while th
mode m = 2c has the same pattern functions as an interferometer.

7.3 Matched filtering

e have seen above that the detector output will be of the general
orm s(t) = h(t) + n(t). Naively, one might then think that we can

Detector Fi(6,¢;% =0) Fy(0,¢;4=0) F stect a GW signal only when |A(t)] is larger than |n(t)]. This would
e very unfortunate since we will see that, with plausible estimates of
interferometers wﬁ + cos? §) cos 2¢ cos @ sin 2¢ 2/5 the expected GW signals bathing the Earth, and with the sensitivity of
e present generation of detectors, we will rather be in the situation
cylindrical bars  sin®¢ 0 8/15 (H)] < [n(t)].

The fundamental question that we ask in this section is then how can
e dig out the GW signal from a much larger noise. This is a classical
oblem in many fields of physics or in radio engineering, and the answer

resonant spheres

- s 2
m=0 ?\w\ 2)sin m. o. 2/5 ithat we can detect values of h(t) much smaller than the floor of the
m=ls —sinfcosfsing sinf cos ¢ 2/5 . 5
. o ise if we know, at least to some level of accuracy, the form of h(t).
m=lc sin @ cos @ cos ¢ sin 0 sin ¢ 2/5 L. . . .
1 2 understand the basic idea, we can first illustrate a simple version of
m = 2s —2(1+cos?*6)sin2¢ cosfcos2¢ 2/5 « R . . :
9 1 ANH 29) cos 26 9 sin 26 2/5 filtering” procedure, before moving to optimal filtering. Suppose
m= e z\L + cos™0) cos cosusin at s(t) = h(t) + n(t), and that we know the form of the GW signal

(t) that we are hunting for. Then we can multiply the output s(t) by
(t), integrate over an observation time T', and divide by T,

=%

ometers, in their respective chapters. We find useful to collect here
result that we will find for interferometers, cylindrical bars and reson
spheres; in Table 7.1 we give the value of F(,¢;¢ = 0) (with-apprg
priate definitions of the angles, discussed in the table caption an
more detail, in their respective chapters), and the values of the ang
efficiency factor F.

As we see from the above table, the pattern functions are relativ
smooth functions of the position of the source in the sky. On the g
hand, this has the positive consequence that GW detectors have a 1
sky coverage, of almost 4, except for some blind directions. This is
different from conventional astronomy, where a telescope must point
source very precisely to detect it. The reverse of the coin, however,
that with a single GW detector we cannot determine the position of ¢
source in the sky. A single detector has an output h(t) that, according
eq. (7.22), depends on four unknown: the two functions h.. «(t) and
angles (0, ¢) that give the source position. To disentangle these quan
ties we need a coincident observation by a network of detectors. Wi
two detectors we have at our disposal their two outputs hy(t) and h
and the delay time 715 between these two signals. These three quant ,
are not yet sufficient to solve for the four unknown h4.(t), hx (t),0 and e d 79 a typical characteristic time, e.g. the period of the oscillating

We will compute the explicit forms of F.y (6, ¢; %) for bars and interfe T T T
0 w +x(0439) v_ w \ dt s(E)h(2) nw. \ &%@?w \ dnOht).  (7.38)
0 0 0

e crucial point now is that A(t) and n(t), separately, are oscillating
ctions. However, the integrand of the first integral on the right-hand
de is definite positive; it might be for instance the integral of something
cos? wt, times a slowly varying function of time; this integral then
ws, for large T', as T". Its value averaged over a time T is therefore of
er one in T,

1 T
7 \o dt h2(t) ~ 2, (7.39)

ere hg is the characteristic amplitude of the oscillating function A(t).
contrast, since the noise n(t) and our chosen function h(t) are un-
related, the quantity n(t)h(t) is oscillating, and its integral will grow
y as T%/2 for large T (as is typical of systems performing a random
k), so

T

T
w \o den(ih(t) ~ () M2 oho, (7.40)
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5More precisely, we must know h(£) and
have an idea of the typical scales of vari-
ations of the noise, in order to exploit
their different behaviors.




344 Data analysis techniques

6We limit ourselves to linear filters, i.e.
filters in which § is linear in s(t), as in
eq. (7.41).

function A(t). Thus, in the limit T — oo, the second term on the rig
hand side of eq. (7.38) averages to zero, and we have “filtered out” #
contribution of the noise from the output. Of course, in practice we ca
not sent T to infinity, either because the signal h(t) itself has a limi
temporal duration or because we are limited by the total available
servation time. Still we see that, to detect the signal given in eq. (7.3
against the background of eq. (7.40), it is not necessary to have hg >
but it suffices to have kg > (79/T)*/?ng. For example, for a periodic s
nal with a period 75 ~ 1 ms, such as a millisecond pulsar, observed
T =1 yr, we have (1o/T)'/? ~ 10~5. We can therefore dig very dee
into the noise floor.

After having discussed the intuitive idea, let us see how the abd
procedure can be made more precise mathematically, and optimized

now ask what is the filter K(¢) that maximizes S/N, for a given

t). This variational problem is elegantly solved by defining the scalar

duct between two real functions A(t) and B(t), by

A(B()
2515\.&c§$8
A(NB(f)

tﬁs\ df Lo S0 (7.46)

ere Re denotes the real part, and the second line holds because we

e A(t) and B(t) to be real functions, so that A(=F) = A*(f) (recall
that Sp(—f) = S.(f)). Since S.(f) > 0, this scalar product is
itive definite. Then eq. (7.45) can be written as
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order to obtain the highest possible value of the signal-to-noise rat S (ulh)
We define — = (7.47)
e N~ )7
= \ dt (K (2), (.
~00 ere u(t) is the function whose Fourier transform is
éwmwm.wm (t) is called the filter function. We assume that we know whi 1 .
GW signal we are looking for, i.e. we know the form of h(t). We tki a(f) = m.w:C&NCJ : (7.48)

ask what is the filter function that maximizes the signal-to-noise rat
for such a signal. Since the filter function is chosen so to “match” f]
signal that we are looking for, the technique is called matched filterir

The signal-to-noise ratio (in amplitude) is defined as S/N, where
is the expected value of § when the signal is present, and N is the r
value of 5 when the signal is absent. Since {(n(t)} = 0, we have

S= \ T at (s K@)

this form, the solution is clear. We are searching for the “vector”
unit norm 7 = u/(ulu)'/?, such that its scalar product with the
ctor” h is maximum. This is obtained choosing 7 and h parallel, i.e.
f) proportional to h(f), so we get

h($)

K(f) = const. 3, CJ

(7.49)

S %
= \ dt h(t) K (t) e constant is arbitrary, since rescaling § by an overall factor does not
i ange its signal-to-noise ratio. Equation (7.49) defines the matched
= \ df h(HE*(F), (7 lter (or Wiener filter).” In vmﬁsoi@ﬁ if we are looking for a signal h(t)
—oo bedded into white noise, so that S,(f) is a constant, then the best

while

ZM

[ fliter is provided by the signal itself, which is the filtering discussed in
. (7.38). However, when S,(f) is not flat, eq. (7.49) tells us that we
tist weight less the frequency region where the detector is more noisy,

Il

[(8@®) = (3&)?]

= (g2
= (8*(t))r=0 very natural resuit. .
= h.
dtdt’ K (K (¢ 4 Inserting the solution (7.49) into eq. (7.48) we get & = const. x
\ (K (&) (n(t)n(t)) (7 ugging this into eq. (7.47), the overall constant cancels and we get the

= [t kK@) [ arar @ Gy, (5) = tam, (1.50)
Using eq. (7.6) we obtain N
{o o] H .
= [ a 3SR, r B P
oo 2 =4[ df T (7.51)
and therefore A v \, Sa(f)

hich is the optimal value of the signal-to-noise ratio. 8 The above equa-
ons are completely general, and independent of the form of A(f). In
ctions 7.5-7.8 we will apply them to some specific signals.

IR ahpRy) "

(1=, 0 asunIR PP

2w

71t is also common in the literature
to write eq. (7.41) in the form § =
Wooo dt s(t)G(—t), and to call G(¢) the
filter function. So G(t) = K( ~t) and

G(f) ~ R (£)/5n (1),

8Recall from Section 7.1 that our
Sn(f) is single-sided. In terms of the
double-sided spectral density, defined
after eq. (7.13), we have (S/N)? =
I, & IR(HI2/Sgoeble sided ().
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9See Note 2 on page 337 for the distinc-
tion between events, GW signals, and
detector output.

107 he kind of example that appears in
all textbooks: we toss a coin five times.
What is the probability of getting all
five times head (data), given that the
coin has 50% probability of heads and
tails (hypothesis)?

arameters take a given value, nor of the probability that a hypothesis,
r a theory, is correct. Hypotheses, or theories, are not the outcome of
repeatable experiment. Rather, they are correct or they are wrong,
nd similarly the true value of a parameter in a theory is what it is, and
hese are facts that are not subject to probabilistic analysis.

:In the Bayesian approach, instead, one is allowed to consider the
robability of a hypothesis, or of a theory, or the probability that a
arameter within a theory takes a given value. To define these prob-
bilities, one starts from the identities P(A N B) = P(A|B)P(B) and
BNA) = P(B|A)P(A), which follow from the definition (7.52) of con-
itional probability. On the other hand, AN B = BN A and therefore

P(B|A)P(A)
P(B)

ich is Bayes’ theorem. Observe also that, from the axioms of proba-
ty given above, it follows that

P(B) =" P(B|A:)P(4;), (7.54)

7.4 Probability and statistics

The matched filtering technique discussed above (as well as other tec
niques that we will meet later in this chapter) provide us with a way ta
optimize the signal-to-noise ratio, assuming that a given signal is indeed.
present in our data stream. The issue that the experimenter normal
faces (especially in the field of GW experiments) is however differen
We do not know a priori whether a GW signal is present or not in
given stream of data, and we know even less its waveform. We ¢
apply the matched filtering technique repeating it with many possib|
different filters, e.g. many possible starting times for the putative s
nal, many possible parameters describing a family of waveforms, et
and we will correspondingly extract from our data stream a number ¢
“events”,® with various values of the signal-to-noise ratio S/N. W
can we conclude from this? When can we claim detection of GWs? And
if we can claim detection, what can we learn from it, in particular hoy
can we reconstruct the properties of the source (such as, for an astrg
physical source, its direction, its distance, its mass, ete.), and with w
accuracy?

To address these questions we need to use statistical reasoning. Befo
looking into the technical aspects, it is however useful to discuss m
generally the statistical frameworks that one can use, as we do in ¢
next subsection.

P(A|B) = (7.53)

any B and for A; disjoints and such that U;A; = S. Therefore
(7.53) can be rewritten as
P(BJA)P(A)
P(AB) = =—r 7.55
(AP = 5= PBIA)P(A) (7:55)

7-4.1  Frequentist and Bayesian approaches the denominator is just a normalization factor. As long as A and B

An abstract definition of probability can be obtained by considering the outcome of a repeatable experiment, eq. (7.55) would be accepted
set S with subsets A4, B,..., whose interpretation for the moment 0 by frequentists. In the Bayesian approach, however, one applies this
left open, and defining the probability P as a real-valued function : = hypothesis (or parameters, or theory) and B = data. Then one
satisfies the Kolmogorov axioms: 1. For every A in S, P(A) > 0..4 lnds that

For disjoint subsets (i.e. ANB =0), P(AUB) = P(4) + P(B), an
P(S) = 1. Furthermore, one defines the conditional probability P(A4
(ie. the probability of A given B) as

pB) = £ vam ).

: P(hypothesis|data) ox P(datalhypothesis) P(hypothesis) . (7.56)

e probability of the hypothesis given the data is called the posterior
bability, and eq. (7.56) states that it is proportional to the product of
factors. The first is the probability of the data given the hypothesis
*honest” frequentist probability), which is called the likelihood func-
The second is the probability of the hypothesis, and is called the
or probability (or, simply, the prior). The latter cannot be determined
t by performing identical trials (so it makes no sense to a frequentist)
, in the Bayesian approach, one must make assumptions to determine
In fact, this prior probability in general can even depend on subjec-
factors, and on the state of knowledge of the person that makes
nalysis. In the Bayesian interpretation, P(hypothesis) can be seen
he “degree of belief” that the hypothesis is true, and eq. (7.56) de-
bes the evolution of this degree of belief due to the fact that we have
formed the measurement. The prior probability describes the degree
belief in the hypothesis before the measurement was made, and the
erior probability describes the degree of belief after.!!

"There exist two main approaches to probability, frequentist (also call
classical) and Bayesian, depending on the interpretations of the sub
A B,....

In the frequentist interpretation, A, B, . .. are the outcome of a rep
able experiment, and the probability P(A) is defined as the freque
of occurrence of A, in the limit of an infinite number of repetitiol
In this interpretation, the probabilities of obtaining some dats aré
course well-defined, and it also makes sense to consider the conditigy
probability of obtaining some data, given some hypothesis {or gf
a theory, or given the value of the parameters in a theory).*® Th
fore, quantities such as P(data/hypothesis) or P(data|parameters) mi
sense. However, one is never allowed to speak of the probability thal
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Hobserve also  that eq. (7.56)
is stated as a proportionality, so
P(hypothesis|data) must be nor-
malized summing over all possible
hypothesis (or theories) that we want
to compare, or integrating over a given
domain of values for the continuous
parameters.
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I 2 3 4 5 6 7 8 9 10

Fig. 7.2 The Neyman construction
for the lower limit z; of the confi-
dence interval. Here the measured
value was o = 5 and, to get the
interval at 90% C.L., we look for a
Gaussian distribution such that its
area at = > 5 (shaded region) is 5%
of the total area. This is a Gaussian
centered in z; =~ zg—1.64485¢5 (here
we used o = 1).

12 3 4 5 6 7 8 9 10

Fig. 7.3 The same as the previous
figure, for the upper limit z; of the
confidence interval. The Gaussian is
now centered in xz ~ o+ 1.64485¢.

This difference in approach implies also an important difference amo
the frequentist and the Bayesian notions of confidence interval and
confidence level (C.L.). The expression “confidence interval”, witho
further qualifications, refers to the frequentist definition, and has t
following meaning. Suppose that we are performing repeated identi
measurements of a physical quantity z. We want to express our resu
saying that, at a given confidence level, say 90%, =1 < z < z2. What
meant by this is the following. The true (unknown) value of z is a fix
number x,, which is always the same in all repetitions of the experimen
each repetition provides a different interval [zy,zs], that we want
construct in such a way that x; will be contained inside this interval
90% (or whatever the specified C.L.) of the repetitions, no matter wha
the true value z; is. This is the frequentist concept of coverage. There
a general construction, given by Neyman in a famous 1937 paper, t
allows us to construct the frequentist confidence intervals. We illustra
it in the simple case in which we know that the experimental apparat
provides values distributed as a Gaussian around the true value g, Wi
a standard deviation o,

Mo_ in this case we have a Gaussian distribution centered on zo (rather
an on 3 or on £y as in the Neyman construction), and we use it as a
f. for z;. The most probable value of z, is found by maximizing this
d.f., which of course gives z; = g, and the Bayesian 90% confidence
erval is defined as the interval which subtends an area equal to 90% of
e total area of the p.d.£.1% In the case of a Gaussian distribution, the
yesian and frequentist definitions give the same result for z; and z2,
en if the interpretation is different. However, in a general situation,
e two definitions do not agree. The frequentist confidence interval,
construction, always has the prescribed coverage, i.e. we are sure
lhat in the limit of a large number of repetitions, 90% (or whatever
he chosen C.L.) of the confidence intervals obtained by the different
petitions of the experiment will include (“cover”) the true value z;,
matter what z; is. This covering properties is not necessarily true
the Bayesian procedure, which in certain cases yields intervals whose
requentist coverage is less than the stated C.L. (i.e. they undercover).
his can happen in particular for event-counting experiments, that obey
Poisson statistics, when the data sample is small.
Beside the situation when we have small numbers, the other typical
uation where the Bayesian and frequentist approaches can give sen-
ly different answers is when the variable z, for physical reasons, has
bounded domain, and the measured values are close to the bound-
ies of the domain. An instructive example, that nicely illustrates the
fferent results that can be obtained with the Bayesian and the fre-
entist approaches in such situations, is the following.!® Nowadays, we
ow from oscillation experiments that the three neutrinos have a small
ass, with squared masses (more precisely, squared mass differences)
tween 1075 and 10~4eV2. Before these results, & number of other
periments attempted a direct measure of the mass m, of the electron
utrino (or more precisely, of m2) from tritium beta decay. In the early
90s the experimental situation was that various experiments reported
gative values for their best estimate of mZ. This is not surprising in
inciple since, if m2 were really zero, or anyway much smaller than
e experimental accuracy (as indeed it was), and if the distribution
the data is an unbiased Gaussian, on average half of the ensemble
the experiments should report negative values, and statistical fluc-
ations can drive the average over the experiments in the unphysical
gion m?2 < 0. However, these negative fluctuations happened to be so
rge that even the frequentist upper limit at 90% C.L. was negative,
d was m2 < —16eV2.1* To say the least, it is quite disturbing to set
a complicated experiment to come out with the conclusion that m2
'smaller than a negative value. The point is that this statement holds
it 90% C.L., so it should be false in 10% of the cases, and here we know
v sure that we are in this false 10%.15
possible alternative in this case is to include our prior information
fhat m2 > 0. This suggests to take a Bayesian approach with a prior
P(m2) which is zero when m2 < 0, and uniform for m?2 > 0, and to
the resulting posterior p.d.f. to set the bound on m2. Here however

1 T — Ty 2

AMﬁ.Q.NVH\m ®NUA|A 57 v v . A.N
Suppose that a given repetition of the experiment yields the value %
The Neyman’s construction (using for definiteness 90% C.L.) procee
by finding a value z; < zo such that 5% of the area under P(z|z;
at £ > zg. That is, we fix ; by requiring that a Gaussian distributig
centered on z3, only in 5% of the cases produces values of z higher t
Zo, see Fig. 7.2. If the true value z; were smaller than such zj, t
the value zo that we observed was due to a statistical fluctuation t
takes place in less than 5% of the repetitions, so choosing in this way.
lower limit of the interval, we are wrong at most in 5% of the cases.
upper limit of the confidence interval is obtained similarly, by findin
value z3 > zo such that 5% of the area under P(z|z;) is at © < zg,
Fig. 7.3. Observe that the probabilistic variables in this construct
are 71 and z3, while the true value z; is fixed (and unknown).

In contrast, the Bayesian approach constructs a probability distri
tion for the true value z;. This is obtained from the likelihood func
P(datalhypothesis) in eq. (7.56), where the hypothesis is that the
value of z is z; and the data is the observed value zo. We denote 4]
likelihood function as A(ze|z:). In our case, this is the same as
Gaussian given in eq. (7.57), so A(zo|z:) = P(zq|z:). As long
interpret it as the probability of obtaining the value zo, given tha
true value is z;, the likelihood function is a legitimate frequentist
cept. However, in the Bayesian approach, it is inserted into eq. (7
together in this case with a flat prior in z;, to get a probability dens|
function (p.d.f.) in the variable z, given the observed value zq,

1
prar |

P(@s]w0) =
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123uch an interval is selected uniquely
by imposing an extra requirement, typ-
ically that it is symmetric around the
maximum, or that it is the minimum
length interval. For a Gaussian dis-
tribution, these two conditions give of
course the same result.

13we follow the paper by Cousins
(1995), “Why isn’t every physicist a
Bayesian?”, where the reader can find
a very clear exposition of the difference
between the Bayesian and frequentist
approaches.

14gince the early 1990s, direct experi-
ments (i.e. experiments not based on
oscillations) on the electron neutrino
mass squared have improved, but still
their world average is negative, see Yao
et al. {Particle Data Group] (2006).

151t should be mentioned that a strict
application of the frequentist Neyman
construction can never produces an up-
per limit in the unphysical region, but
rather an empty confidence interval
(which is equally disturbing). There
is however a generalization of the Ney-
man construction that produces non-
empty intervals in the physical region,
see Feldman and Cousins (1998).
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16, fact, in the standard compilation
of experimental high-energy physics
data, the Particle Data Group (PDG)
“Reviews of Particle Properties”, essen-
tially all measurements and their statis-
tical uncertainties are reported within
the frequentist framework.

scribing the shape of the pulse. For a coalescing binary, among the pa-
meters we will have the time of entry in the interferometer bandwidth,
e distance to the source, the star masses, etc.

Therefore, we must consider a family of possible waveforms, or tem-

the problem arises as to whether, in the region m2 > 0, the prior sho
be uniform in the variable mZ, or in m,, or in logm,, etc. Of cours
a distribution P(m2)dm2 with P(m2) = const. is flat with respec
the variable m2 but, since dm2 = 2m,dm,, it is linearly raising wif
respect to m,. The issue is significant since the resulting upper bo tes, that we denote generically as h(t;6), where 8 = {#1,...,0x)} isa
depends on the choice. In this specific problem the consensus fina | lection of parameters. Correspondingly, we have a family of optimal
settled on using a flat prior in m2, which gave an upper bound, at 90! ers K (t;6), determined through eq. (7.49), K(f;8) ~ h(f;6)/Sa(f).
C.L., Sm < 26.6eV2. practice, this means that we must discretize the 0-space, and repeat
A physicist that is not too much interested in the philosophical , filtering procedure many times, once for each point of this discretized
pects of the debate, can take a pragmatic attitude and use a frequent ameter space (except that for some parameters the maximization pro-
or a Bayesian approach, depending on the kind of experiment to be ure can be done analytically, see below).
alyzed. In particular, elementary particle physics is very well suited he problem that we address in this section is the following. Suppose
the frequentist approach. This basically stems from the fact that in it a GW signal has indeed been detected, which means that for some
case it is the physicist that controls the parameters of the experime nplate h(t;6) the value of S/N, determined by the optimal Wiener
(e.g. the kind of particle used in the beams, the beam energy, etc.) ering (or by any other procedure that we specified in advance) has
can reproduce them accurately many times. We are therefore in eeded a predetermined threshold, and the signal satisfies further cri-
situation where the frequentist notion of repeated trials fits very we ia that we might have set for claiming detection, such as coincidences
The advantage is that this allows us to report objectively the outco ween different detectors (we will see in more detail in Sections 7.4.3
of the experiment, without the need of incorporating prior (and possi 7.5.3 some possible criteria that could allow us to claim a detection,
subjective) beliefs. a given confidence level). How do we reconstruct the most probable
On the other hand in astrophysics, and even more in GW astrophys lue of the parameters of the source, and how we compute the error on
the sources can be rare, they are not under the control of the ex € parameters?
menter, and each one is very interesting individually. If a single BH: his question is Bayesian in nature, so its answer is contained in the
binary coalesces, and we detect its signal in a GW experiment, we w terior probability. To compute the likelihood function, and hence
obviously be very interested in questions such as in which direction e posterior probability, we assume for simplicity that the noise n(t)
binary system was, at what distance from us, what were the ma stationary and Gaussian. From eq. (7.6) we see that the variance
of the two black holes, their spins, etc. A strict frequentist appr he Fourier mode of the noise with frequency f is proportional to
is inapplicable here. We do not have at our disposal an ensemb 2)5,(f), so the corresponding Gaussian probability distribution for
identical BH-BH binaries located in that position, with the same ‘noise is :
of the masses, etc. We just have that unique event, and we wanf 1 o Ifio(f)[2
get the maximum out of it. In this case, a Bayesian approach cai ) p(ng) = N exp ﬁ ~3 \ df § V , (7.59)
more appropriate, since it allows us to ask questions such as “What e "
the most likely value of the position, masses, spin, etc. of the B re N is a normalization constant. This is the probability that the
,Q:S,sEnwmwm~mmao§<mlmv$§§$~o Bmmuvwmﬁmm?mu

m,oHﬁEmHmmmoFéwmm:mmmﬁ,\mammz:m“ m?mumn@wmamaxmozﬁrm.
of GW signals, should normally be expressed in frequentist term: ization ng(t). The above result can be rewritten very simply in
Bmo:rmmoﬁmavaomzoﬁQ.pmvm\m:

discussion of parameter estimation from a given positive detection
which we turn next, should rather be performed within the Bayesl
framework. p(no) = N exp{—(no[no)/2} . (7.62)
¢ are assuming that the output of the detector satisfies the condition
claiming detection, i.e. it is of the form s(t) = h(t; 6s) + no(t), where
(t) is the specific realization of the noise in correspondence to this
t, and 6; is the (unknown) true value of the parameters 8. The
elihood function for the observed output s(t), given the hypothesis
it there is a GW signal corresponding to the parameters 6y, is obtained
gging no = s — h(6;) into eq. (7.62),

7.4.2 Parameters estimation

In Section 7.3, when we introduced the matched filtering techniqu
assumed that the form of A(t) is known. In practice, however, h(t
necessarily depend on a number of free parameters. For instance, i
is a short burst of GWs, among its parameters we will certainly have
time of arrival to. When searching for very short bursts we might sim
use a Dirac delta, so h(t) = hod(t — tp), but more generally we

also wish to include its temporal width At and possibly more parame

A(sl6e) nzmiiwa-%ﬁv_m-%i . (69)
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7 For simplicity, we limit ourselves to
the case of a single detector. The
formalism can however be extended
straightforwardly to multiple detectors.
In this case the definition of the noise
spectral density, eq. (7.6), is replaced
by

FELER) = 86 = 13150 Dlas

(7.60)
where the indices a,b label the detec-
tors. This definition takes into account
the possibility of correlated noise. Let
A(t) and B(t) be vectors whose com-
ponents Aq(t) and Bq(t) are output of
the single detectors, and let [S;; {20 de-
note the inverse matrix. The equations
of this section can then be generalized
to multipole detectors, using the scalar
product

(A|B) = 4Re (7.61)
\c i RIS A BAL)

which generalizes eq. (7.46). See the
Further Reading for details.
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1845 an example of prior information,
one of the typical parameters entering
in the waveform is the distance 7 to the
source, and we might be searching for
signals from a population of stars with a
known distribution in space, e.g. a dis-
tribution p(® (r)dr ~ r2dr for isotropic
sources, or p{0)(r)dr ~ rdr for sources
within a few kpc from us, in the Galac-
tic disk. Another typical parameter
is the mass of the star and, for neu-
tron stars, we know from astrophysi-
cal observations that their mass distri-~
bution is strongly concentrated around
1.35Mp.

5>mm..:a=m that the eccentricity can
be neglected, since the orbit should
be highly circular by the time the
signal enters in the bandwidth of a
ground-based detector, as we saw in
Section 4.1.3.

2 FRor details see, e.g. the statistics sec-
tion of Yao et al. [Particle Data Group)]
(2006).

2Las we already mentioned when dis-
cussing the example of the neutrino
mass on page 350, a distribution which
is flat with respect to the variables 6
is no longer flat if we make a non-
linear transformation of the parame-
ters. Therefore this prior distribution
assumes a definite choice of coordinates
in the parameter space.

or, introducing the short-hand notation h; = h(6,),
1 1
A(elo) = exp { el = 3l — 3t}

In the Bayesian approach, according to eq. (7.56), we also introduce
prior probability p(® (6;).18 Then, the posterior probability distributio
for the true value 6;, given the observed output s,

- Then, maximization of the posterior probability becomes the same as
naximization of the likelihood A(s|6;). The value of 6, that maximizes
(516:) defines the maximum likelihood estimator, and we denote it by
Me(s). It is the most widely used estimator in general situations.?? It
usually simpler to maximize log A. From eq. (7.64),

(7.64

log A(s/6e) = (hels) ~ £ (hulhr). (7.66)

Since we are working at fixed s, the term (=1/2)(sls) in eq. (7.64) is an
irrelevant constant, and we omitted it. Denoting 8/86% simply by §;,
the value of Oy, is found by solving the equations

he errors A@* can then be defined in terms of the width of the proba-
lity distribution function (7.65) at the peak.

Typically, (7.67) is a set of equations that must be solved numerically
except for some parameter such as the overall amplitude that can be
iminated analytically, see below). However, they have a rather simple
geometric interpretation. The set of all possible waveforms h(t;6) de-
es a manifold, called the manifold of the signals, parametrized by the
ordinates §°. This is a subset of zero measure in the space of all pos-
ble functions, so the addition of generic noise n(t) to a function h(t; §)
Il necessarily bring us out of this manifold. In Fig. 7.4 we illustrate
the situation with a two-dimensional manifolds of the signals. The point
beled f; represents the true value of the signal, and therefore lies on the
anifold. The addition of noise carries us outside this manifold. Since
are minimizing (s — h|s — h), see eq. (7.63), the maximum likelihood
imator actually searches the point on the signal manifold which is
sest to the output s, where distances are defined with respect to the
alar product ( | ).

To summarize, in the Bayesian framework 6y, is determined assuming
at prior distribution and requiring the maximization of the posterior
obability (7.65), i.e. maximizing our “degree of belief” in the hypoth-
s that there is a GW mwmmm_. A natural question, at this point, is
at is the relation between fyyy, and the value of § that provides the
ghest signal-to-noise ratio in the matched filtering. We now prove that
fact they are the same. To show it, we write the generic template as
8) = ah,(t;£), where g is an amplitude, and is a free parameter,
hile the normalization of k, has been fixed imposing some condition.
e have separated the parameters § into a and the remaining parame-
s, that we call £. The maximization with respect to a of log A can be
formed analytically since, from eq. (7.66),23

o2
log A(sla, §) = a(hals) — IMIQF__FL.

plOs) = N 206 exp { (1ls) — Fulh) }

where, since we are considering p(6¢)s) as a distribution in 6, for a fix
output s, we have reabsorbed into the normalization factor A the ters
(sls)/2 which appears in the exponential in eq. (7.64).

Once the prior distribution is given, eq. (7.65) gives the p.d.f. in &
parameter space, so in principle it contains all the information th
we need. However, in this form the information might not be vet
manageable. The 6-space will in general be a multi-dimensional space
large dimension. For example, for a binary coalescence the paramet;
¢ that determine the waveform, at the post-Newtonian level, are
distance, the source’s location (two angles), the orientation of the nor:
to the orbit (two more angles), the time at which the signal enters in tl
interferometer’s bandwidth, the orbital phase at that moment, the t
masses of the stars, and their spins, so 15 parameters in all.?® From f
probability distribution function (7.65) in such a complicated space
would like to extract some more approximate, but also more manage
information; essentially, we want the most probable value of the varial
6:, that we denote by 4, and also their corresponding errors.

There is no unique way of defining what is the most probable v
of 6;. A rule for assigning the most probable value is called an est
tor. The most important properties that an estimator must have are
(a) Consistency: the estimator must converge to the true value as
amount of data increases. This property is so important that it is
sessed by all commonly used estimators. (b) The bias b is defined as
difference between the expectation value of the estimator, E(6) (t
over a hypothetical set of similar experiments in which ¢ is constru
in the same way), and the true value 8;, b= E(4) — §,. When b =0
estimator is said to be unbiased. (c) Efficiency: we want the smal
possible value for the variance of 6, and (d) Robustness, i.e. the prop
of being relatively insensitive to small departure in the assumed p
due to factors such as noise.

Two choice of estimators seems especially reasonable. The firs
to define § as the value which maximizes the probability distribu
function (7.65). Another natural option is to define it as the averag (7.68)
0, over the distribution (7.65). We discuss these options below.

quiring dlog A/0a = 0, we get the maximum likelthood estimate for

. _ (hals)
B (8) = Thalha)

Maximum likelihood estimator

Let us consider first the situation in which the prior probability is f (7.69)
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wmmmm any textbook on statistics, e.g.
Lyons (1986), Section 4.4, for an in-
troduction to the maximum likelihood
method and its virtues. Observe that
the likelihood is a legitimate concept
also in the frequentist approach. The
most probable frequentist value is again
identified with the maximum of the
likelihood, and the confidence interval
is usually defined in terms of the point
where 2]og A decreases by one unit with
respect to its value at the maximum.
In the frequentist approach, however,
we cannot use the likelihood as a p.d.f.
for the true values of the parameters,
i.e. we cannot consider areas under the
curve, and of course we cannot include
priors.

g S0 0

9, .

>

ML

6

Fig. 7.4 The manifolds of the sig-
nals, parametrized by the coordi-
nates (61,62). The point 8, is the
true value of the signal. The addi-
tion of noise to () brings us out~
side this manifold, and the maxi-
mum likelthood estimator searches
the point on the signal manifold
which is closest to s.

237, keep the notation lighter, we
omit the subscript t (which stands for
“true”) from a and £. We are anyway
considering p.d.f. for the true values of
the parameters.
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24We also mention that another way of
understanding the meaning of the max-
imum likelihood procedure is in term of
the Neyman—Pearson criterium, which
consists in maximizing the probability
of detection, subject to a given false
alarm probability, and leads again to
the condition that log A be maximum.

251n the GW literature, the log of the
prior p°(8) is sometime added to the ex-
ponential in eq. (7.65), and the result-
ing exponential is called again the log-
likelihood function, log A, so the corre-
sponding estimator is called again the
maximum likelihood estimator. This
notation is however potentially con-
fusing. For instance, one might be
tempted to make a frequentist use of
such a “log A”, which is obviously in-
correct, since it involves a prior proba-
bility.

The maximization with respect to the remaining variables £ can be per-
formed substituting this expression for a into log A, obtaining

is not the case for the maximum likelihood or maximum posterior prob-
ability estimators. These issues motivate the consideration of the Bayes
1 (has)? estimator, in the next subsection.

s
log A(slg) = 5 772l (7.70

2 (helha) Bayes estimator

The maximization of this quantity amounts to maximizing the overlap
of the output s with the normalized template h,/(hqlh,) /2, where the
overlap is measured using the scalar product ( | ), defined in termg
of the noise spectral density S,(f). This is just the matched filterin
procedure discussed in the Section 7.3. Thus, the maximum likelihoo
method provides a way of estimating the overall amplitude a (which:
cannot be fixed just searching for the filter that maximizes the signal
to-noise ratio, since eq. (7.47) is unchanged by a multiplicative rescalin
of the filter u) while, for the remaining parameters, it returns the value
that maximize the signal-to-noise ratio according to matched filtering.

,‘F this case the most probable values of the parameters is defined by

Bi(s) = \ d06ip(ds), (7.71)

l.e. is the average with respect to the posterior probability distribution.
The errors on the parameters is defined by the matrix

z§ = [ als* ~ BN~ By (oNol0le), (7.72)

hat is, in terms of the mean square deviations from wm (s), where the
erage is taken again with respect to p(]s). Even when there is a
on-trivial prior probability function, the Bayes estimator is clearly in-
pendent on whether we integrate out some variable from p(]s), since
e anyhow integrate over all the #* when computing 6% and ¥3. Fur-
thermore, it can also be shown that, if one wants to minimize the error
the parameters, averaged over the whole parameter space, the Bayes
timator is the optimal one.
- The “operational” meaning of the Bayes estimator is the following.
uppose that, after a sufficiently long run, we end up with a large en-
Semble of detected signals, which correspond to actual GWs, and that
ong them there is still a large subensemble of GW signals that pro-
duced a given output s(t). Each of these waves will be characterized by
ifferent values of the true parameters 6, and therefore by a different
i(t; 0;) that, by combining each time with a different realization of the
ise n(¢), has produced the same output s(t). Then mw (s) is the value of
» averaged over this ensemble of signals, and ¥ is the corresponding
mMS error.
Thus, the Bayes estimator has a well-defined operational meaning, and
elcome mathematical properties, such as the independence on whether
e integrate out some variable and the fact that it minimizes the error on
sarameter estimation. Its main drawback is its computational cost, since
he evaluation of eq. (7.71) or of eq. (7.72) involves a multi-dimensional
tegral over the space of § variables which, as we have seen, could have
dimensionality of order 15 or larger, and furthermore at each point
f this parameter space we must compute the function p(8]s), given
N eq. (7.65), which requires the numerical computation of the integral
er frequencies that defines the scalar product ( | ). The choice of the
est estimator is therefore subject to various considerations, including
omputational cost, and depends on the specific situation. The use of
he Bayes estimator goes also under the name of non-linear filtering.
Of course, in the limit of large signal-to-noise ratio (which unfortu-
ately is not expected to be the appropriate one for GW detectors, at

Maximum posterior probability

In various situations we do have important prior information, and
might want to include it in the analysis, see Note 18 for examples.
this case, rather then maximizing the likelihood function, we must dete
mine the estimator by maximizing the full posterior probability p(f;
given in eq. (7.65), which takes into account the prior probability distr
bution.?® For a generic prior, of course, the maximum of the poster
distribution will change, so it will no longer coincide with the value thal
gives the highest signal-to-noise ratio in the matched filtering. Wh
happens is that the value suggested by matched filtering is weight
against our prior expectations (in a real sense, our “prejudices” ),
provide a new estimate of the most likely value for the true paramete

When we want to include non-trivial prior information, some concep
tual complication may appear (apart from the issue of how to chod
the appropriate prior). Suppose, for definiteness, that we have a tv
dimensional parameter space (61, 62), as in Fig. 7.4, and that we are

is the same, independently of whether we integrated or not over
However, once we include a generic non-flat prior probability p(®
this nice geometric interpretation is lost and, in general, if (8;,0;

the maximum of the distribution function p(f1,8a|s), it is no longi
true that the 8, is the maximum of the reduced distribution funct
Mbrls) = [dfsp(61,02]s), obtained integrating out 6s. Thus, th
is an ambiguity on the value of the most probable value of 01, whi
depends on whether we are interested or not in 3. Another poss;
drawback, this one common to both the maximum likelihood and t|
maximum posterior methods, is that we might want an estimator t
minimizes the error on the parameter determination, and this in gene
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least in the near future) these issues becomes irrelevant, and all con-
sistent estimators give the same answer. In this limit, there is also
very simple expression for the error on the parameters. If the SNR i
large, the error that we make on the parameter estimation is small. For
simplicity we assume that the prior p(® (8) is nearly uniform near 6 = 6
where § is the value produced by (any) consistent estimator, say for de
initeness the maximum likelihood estimator #yyp. That is, we assumé
that the prior information is irrelevant for reconstructing the parame~
ters. In eq. (7.65) we can then write §° = 8%, + A#, and, since Af
is small, we can expand the exponential in eq. (7.65) in powers of A6
The linear term of the expansion vanishes because 8%, is, by definitio
the maximum of the distribution, and to quadratic order in Af we ge

o eliminate Gaussian noise by setting a sufficiently large threshold for
he signal-to-noise ratio. Non-Gaussian disturbances, however, have in
eneral a totally different statistical distribution, characterized by long
ails at large values of S/N, which decay only as a power law.26
These noises cannot be eliminated just by setting a high threshold,
ince they can produce events with values of S/N that, in Gaussian dis-
ribution, would be inconceivably large. As a limiting case, any detector
haken by an earthquake will produce “events” with arbitrarily high val-
1es of S/N. Of course, these events cannot be eliminated just by setting
 high threshold in S/N. Rather, they should be identified and vetoed.
1 detectors are equipped with sensors which monitor various aspects
f the detector performance as well as environmental conditions (e.g.
ismometers), so that non-Gaussian disturbances are vetoed as much
possible. However, it is practically impossible to be sure that one
as identified and vetoed all possible non-Gaussian disturbances. So,
hile in principle one can study experimentally the noise distribution
d then set a threshold so high that even non-Gaussian fluctuations
uld be very rare, in practice this is not possible because the resulting
hreshold would be much too high, and therefore would considerably de-
_ rrade the sensitivity of the detector. Rather, the best way of eliminating
Ly = (8:hl0;h) , Y o
. n-Gaussian noise is to perform coincidences between two or more de-
evaluated at @ = 6Oy, This is called the Fisher information matriz ctors. This is among the reasons why various different detectors have
Then the expectation value of the errors A§? are given by yeen built, and they are operated as a network.
In the following, we first discuss the statistical significance of obtain-
ing a given value of the signal-to-noise ratio S/N, assuming that only
aussian noise is present. This will tell us how to fix the threshold in
N so that, at some confidence level, we know that higher values of
N have not been produced by Gaussian noise alone, and allows us to
nerate, from the data stream of the detector, a list of “events”. These
ents will then be subject to further scrutiny, using for instance coinci-
nces between detectors whenever possible, with the aim of eliminating
hose which are due to non-Gaussian noise, and retaining the GW sig-
als, if any. For the rest of this section we will be concerned only with
aussian noise, while coincidences and other techniques will be discussed
hen we examine the various type of signals, in Sections 7.5-7.8.
In egs. (7.42)—(7.45) we defined the signal-to-noise ratio in terms of
e expectation value of the signal. Here however we want to study the
1l statistical distribution, rather than just its expectation value, so we
fine

7

1 o
p(8ls) = N exp AIMH,&D%DQW , (7.73

where I';; = (8;0;h|h — s) + (0;h|0;h). Observe that, in the first term
we have h — s = —n and, in the limit of large signal-to-noise ratio, |n|
much smaller than |&|. So in this limit the first term can be neglecte
and we get

(AGPAGTY = (T7H)¥ (7.78

7.4.3 Matched filtering statistics

As we have discussed in the previous sections, a general data analys
strategy consists in performing matched filtering, applying many diffe
ent templates h(t;8) to the data. This will result in the generation of!
list of “events” (in the sense of Note 2 on page 337), defined by the fack
that the signal-to-noise ratio, in correspondence with some templat
raises over a predetermined threshold. Applying the maximum like
hood criterium (or the maximization of the posterior probability, if
want to include prior information), we can then get the most probab]
value of the parameters 8, under the hypothesis that a GW signal h{z;
was present. The issue that we want to address now is the followin
How well such hypothesis performed? In other words, what is the s
tistical significance of the fact that we found events at a given level
signal-to-noise ratio? ! . p=
The answer to this question depends crucially on the statistical pro;
erties of the noise so, first of all, it is important to realize that in any
detector we can distinguish between two kinds of noise: “well-behaved! L Where & is the filtered output defined in eq. (7.41) and N is given in
Gaussian noise, whose probability distribution is a Gaussian, and n (7.43), that is N is the root-mean-square (rms) of § when the signal
Gaussian noise, which is a mobmio denomination for anything else. absent. The definition of p is therefore analogous to the definition of
Gaussian distribution ~ e~% /2 drops very fast for large values of its atk he signal-to-noise ratio S/N, see eqs. (7.42)—(7.45), except that in the
gument z. The intuitive idea, that we will formalize below, is therefo umerator we have 3 rather than its expectation value (5). As a result,

(7.76)
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6 For instance, a large class of phe-
nomena, characterized by what is called
self-organized criticality, are such that
the number N of events that release
an energy E is distributed as dN =
E~7dE where, quite remarkably, the
exponent <y has approximately the same
universal value, vy ~ 1.6, in phenomena
apparently very different. Such a law,
together with the value v ~ 1.6, is in
fact observed in earthquakes from dif-
ferent seismic faults (in which case it
is called the Gutenberg—Richter law),
in soft y-ray bursts from highly magne-
tized neutron stars, as well as in numer-
ical simulations of fractures in solids.
The same distribution is experimen-
tally observed when searching for short
bursts in resonant-bar GW detectors,
where they are likely due to microfrac-
tures inside the bar, and give an ex-
ample of the non-Gaussian noise that
we will have to fight. Sce Dubath,
Foffa, Gasparini, Maggiore and Sturani
(2005), and references therein.
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Flg. 7.5 The probability distribu-
tion P(R|R), as a function of R, for
£ = 20 (solid line), & = 30 (dotted
line) and R = 50 (dot-dashed line).

the relation between p and S/N is S/N = (p). From sociated to the detector noise, a very natural result. In Fig. 7.5 we
how the form of the probability distribution P(R|R), as a function
f R, for different values of R. Observe that, while the average value
at R = 1+ R, the maximum of the distribution is at a somewhat
wer value. The corresponding distribution for R in the absence of
gnal is obtained setting B = 0 in eq. (7.81). In Fig. 7.6 we compare
he probability distribution P(R|R) when R = 10 with the probability
istribution in the absence of signal, P(R|R = 0).

The different behavior of the two distributions suggest that, when
earching for a signal with a signal-to-noise ratio R in energy, we can
iscriminate a true GW signal from a fluctuation due to Gaussian noise
ting a threshold in R, at a value R; that eliminates most of the noise,
hile retaining a large fraction of the signal distribution. Observe that
nyway there will always be a false alarm probability, given by

= \l M dt [h(8) + n(e)] K (2) .

we see that, when h is absent, p is a random variable with zero averag
and, since it has been normalized to its own rms, with variance equal
one. Thus, in the absence of a GW signal, the probability distributi

= Ly
plplh = 0)dp = Norh dp.
In contrast, if in the output there is a GW signal h with a signal-to-noi
ratio p, eqs. (7.76) and (7.77) give p = p+#/N, where #i = [ dt n(t) K (t)
Since IV is just the rms of 7, in this case p — P is a Gaussian variable
with zero mean and unit variance, so

1 )
plplp)dp = ~z= e~ =P*/2 gy (7

= pra = \ dR P(RIR = 0)

Ry

The variable p is the signal-to-noise ratio in amplitude. It is useful =2 \. * dp eP/2
introduce also R = p?, which is the signal-to-noise ratio in energy, sin Pt
the energy of GWs is quadratic in the GW amplitude. Observe th = 2erfc (p:/ ,\mv_ (7.84)

p, being proportional to h(t), is not positive definite, and runs betw
—o0 and +o00, while of course 0 < R < 0o. The probability distribut
for R, when there is in the output a GW signal with a signal-to-no
ratio in energy R = %, follows from eq. (7 .79) observing that a sin
value R is obtained from two values of the amplitude, p==+VR, so
probability of detecting an event with SNR in energy between R ap
R+ dR, when the SNR of the GW signal is R, is given by

here erfc (z) is the complementary error function. Furthermore, there
a false dismissal probability, i.e. a probability of losing a real GW
ignal, given by’

R,
prp = \o dRP(R|R). (7.85)

he threshold R; can be fixed deciding what is the maximum false alarm
evel that we are willing to tolerate. This depends also crucially on the
umber of trials that we do with different templates. For example, for
coalescing binary, one can estimate that of order 10% templates might
e needed to cover with good accuracy the possible range of values of
nasses and spins. Furthermore, to match the template to the signal one

P(R|R)dR = p(p|p)dp + p(—plp)dp, 7
evaluated at p = RY2. Writing dp = dR/(2RY/2), we get

= _dR 1 05?2 —(ar5)? an estimate in about 3 ms the maximum temporal mismatch between

P(RIR)dR = e PmP2 =t/ he two. In one year of data (~ 3 x 107 s), one must therefore try ~ 1010
2VR \/2n v

1 (RtR)/2 _ tarting values of time, and for each value of time we have 10° templates

= Wersa) e cosh T RR| dR. (7 o cover the masses and spin parameters, so overall one might have to

ry 1015 templates.?® Often the false alarm level is fixed so that the ex-
ected number of false alarms in a run will be of order a few. With a
ower threshold one would be flooded by spurious events, while higher
hreshold have of course the effect of increasing the false dismissal prob-
bility. The few events obtained will then be subject to further scrutiny.
hus, if we search for a coalescence in a single detector, with one year
f data and 10%° templates, we could chose a threshold in amplitude
¢ 2 8, since this gives ppa ~ 2.5 x 10715, However, performing coinci-
ences between two detectors the probability of obtaining a false alarm
imultaneously in the two detectors is the square of the single-detector

From this we can compute the average value of R for a given R,
te]
(R) = \ dRRP(RIR) =1+ R. .
0

If we write R = E/kT,,, where T}, has the physical meaning of an effect;
temperature of the noise after matched filtering, we can also rewr
eq. (7.82) as ,,

(E) =kT, + E. (7

Therefore the average value of the detected energy is the sum of ¢

enargy Ir deposited in the detector by the GW, plus the energy k& ase we might want [2erfe (p;//2)]? ~ 10~1%, which gives p; ~ 5.5.

probability, if the noise in the two detectors are uncorrelated, so in this,
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Fig. 7.6 The probability distribu-
tion P(R|R), as a function of R,
for R = 10 (solid line), compared
to the probability distribution in
the absence of signal, P(R|R = 0)
(dashed).

27In other words, whatever the value of
R, the distribution P(R|R) is such that
there is always some probability that
R be smaller, and even much smaller,
than R, and therefore the GW can
go undetected even when the thresh-
old R; was smaller than the value R
due to the GW alone. If one thinks
in terms of energies, it might be coun-
terintuitive that the energy released in-
side the detector can be smaller than
the value that would have been released
by the GW alone, in the absence of
noise. Recall however that GW detec-
tors really measure an oscillation am-
plitude, and the amplitude induced by
the GW combines with the amplitude
induced by noise with a relative phase,
so noise and signal can interfere con-
structively or destructively. In the lat-
ter case the overall output has a smaller
energy than that due to the GW signal
alone.

281We will see however in Section 7.7.1
that all these time shifts can be taken
into account simultaneously perform-
ing a single Fast Fourier Transform,
which makes the problem computation-
ally feasible.
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29 N

‘We reserve the capital letter P for the
distribution in energy, i.e. in R, and use
p for the distribution in amplitude, i.e.
in p.

In the above discussion, we assumed that the output of the detect

: . . » ore generally, if p? = 22 +...x2, performing a computation similar to
is a single quantity p which, in the absence of noise, has a Gaussi & Y, 1L p n P g p

hat presented above one finds®

two outputs z,y, each one with its Gaussian noise, which are combin

. _ 1/R (n—2)/4 _ _ _
in quadrature, so that p* = 2? + y2. In this case the correspondin Po(RIR) = Adv o BRI A mmv ‘ (7.92)

2\R

D2 Aﬂ_b =0) in the absence on signal (where the label 2 reminds us tha Fig. 7.7 we show the function P(R|R) given in eq. (7.81), which is

we have two degrees of freedom z,¥),%® we simply have ppropriate for the case of a single degree of freedom, together with the
de dy inctions P,(R|R) for n = 2 and n = 10 degrees of freedom, as obtained

pa(z, ylh = 0)dzdy = %mldmmxﬁ%id\ 2 m eq. (7.92). These distribution functions are known as the non-
40 (2m) ntral chi-squared densities with n-degrees of freedom. The average
= pdp ‘mﬂmlk\ 2, (78 ue of R with n degrees of freedom is

. . . . ~ R R
M@ﬁMmMS not interested in the phase § we simply integrate over it, an (R) = \ dRRP,(R|R) =n+R, (7.95)
0
.2
pa(plh =0)=pe=r /2, (7.8 ind therefore
which is called a Rayleigh distribution, or a x? distribution with twd (E) = n{kTn) + B, (784)

degrees of freedom. To compute the distribution in presence of sig
we start from the probability distribution of z,y, given that the tr
GW signal has the values Z, 7

ile the variance is given by

(R?) — (R)? = 2n + 4R. (7.95)

Pl gl Gy = 5 L g

u .5 Bursts

We pass to polar coordinates, z = pcosf, y = psinf, with p? =

so dzdy = bm&b% = (1/2)dRdf. To obtain the probability distributic

P,(R|R) we integrate over the phase 6, and we also integrate over
the values of Z,§ with the constraint 2% + 4% = R, that is,

e now begin to apply the general theory that we have developed, to
ecific classes of GW signals. We begin with GW bursts. A number of
rophysical phenomena, like supernova explosions or the final merg-
g of a neutron star—neutron star binary system, can liberate a large

2
Py(R|R)IR=c dk i do \. - dzdj (%2 +§° - R) mount of energy in GWs in a very short time, typically less than a sec-
2 Jo —o00 nd, and sometimes as small as few milliseconds. We will refer to such
1 1 1 GW burst d we denote their duration by 74. In Fourier
% i =2 a2 gnals as ursts, an e y g
2 exp{ w:& )+ -0}, (7.8 ce, a GW burst therefore has a continuum spectrum of frequency

where c is a normalization constant. The integrals are easily perform er a broad range, up to a maximum frequency fmax ~ 1/7g-

expressing also Z, 7 in polar coordinates, Z = rcos¢’, § = rsiné’, so

_ 27 27 o0
Py(R|R) = const. \ dé \ de' \ d(r)8(r* — R)
0 0 0

1 _ _
x exp{~5(R+ R) + VRR cos(f — ')}

5.1 Optimal signal-to-noise ratio

principle, if we know the form of mﬁ f), we can just plug it into
(7.51) to obtain the S/N for a given noise spectral density of the
etector. However, bursts come from explosive and complicated phe-
omena, and it is very difficult to predict accurately their waveform.
Ve can first of all make some simple order-of-magnitude estimates, dis-
nguishing two cases.

_ 21
= const’. mlﬁm.*mv\w do eV ER cosa , ’ A.Nw

0

where a = §—6'. The integral over « gives a modified Bessel function I
We fix the normalization constant requiring that %ooo Py(R|R)dR =

and we get arrow-band detectors

I this case the detector is sensitive only to frequencies in a bandwidth
Af, centered around a frequency fo, and we assume that Af is small

= 1 5 =
Py(RIR) = 5e"*R/2L, (VERR) . (7.9
: th respect to the typical variation scale of the signal in frequency space.
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wommm_ e.g. McDonough and Whalen
(1995), Sections 4.8 and 4.9.

Fig. 7.7 The probability distribu-
tion P(R|R) given in eq. (7.81)
(solid line) compared to P.(R|R)
with n = 2 (dashed line) and with
n = 10 (dot-dashed), as a function
of R, for R = 30.
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31 As we will see in Chapter 8, the band-
width of resonant-mass detectors has
subsequently evolved, reaching values
of order Af/fo ~ 0.1, but still, in a
first approximation, eq. (7.96) applies.
We will also see that, for resonant-mass
detectors, Sa(f) is not at all a slowly
varying function of f around the reso-
nance frequency fo, so in the estimate
(7.96) we must really take an average
of 1/8n(f) over the whole useful band-
width Af, and we cannot simply use

1/8n(fo)-

ines a dimensionless function of the frequency, numerically of order
e, and whose details depend on the precise waveform reg(t) chosen.

Actually, rather than using a function dreg(t) with a unit area, it can
more convenient to write h(t) = hog(t), with g(t) some function
aked at ¢ = 0 and with g(0) = O(1), so that the value of h(t) near

Outside this interval, the detector is blind and 1/S,(f) in eq. (7.51) bi
comes practically zero. Inside this small bandwidth A(f) cannot chan,
much, so our ignorance of the precise waveform becomes irrelevant, a
in the integrand in eq. (7.51) we can approximate A(f) with A(fo). T
eq. (7.51) becomes

5\’ = 2 Af fhe peak is of order hg (rather than hobreg(0) as in eq. (7.99)). A simple
Aav = 4}h(fo)] R (7.9 veform of this type is a Gaussian,
n
where 1/5, is an average value of 1/S,(f) in a bandwidth Af cente h(t) = ho R (7.101)
on fo. This was the typical situation of resonant mass detectors u
the 1990s, when the bandwidth Af was only of order a few Hz, aroun hose Fourier transform is
~ MwH ~

a frequency fo ~ 1 kHz. R(F) = hor, /\qumf??tm . (7.102)

waveform with a somewhat more realistic shape is a sine-Gaussian,

Broad-band detectors . a Gaussian modulated by a frequency fo,

In this case we get the signal in a bandwidth (fmin, fmax) Where fni _ . —t2/72

is the maximum frequency contained in the Mﬁm? if gvm detecto h(t) = ho sin(2m fot) e~ /s, (7.103)
sensitive up to frax, or otherwise is the maximum frequency to wh own in Fig. 7.8. Its Fourier transform is

the detector is sensitive. The detailed form of the signal is therefq 4

important, but a first order-of-magnitude estimate can still be obtai R(f) = hot sz\lm Tzaﬁ f—fo)iry _ o= (F+ ?urﬂ (7.104)
writing eq. (7.51) as Tt ’

d is shown in Fig. 7.9. If 4r?f3rZ > 1, near f = fo the second
rm in brackets is negligible with HmmUmg to the first (while close to
= 0 it cancels the first term so that 2(0) = 0), and we basically have
Gaussian in frequency space, centered at f = fg, and with a value at
maximum JE

[R(fo)| == horg 5 -

riting f = fo--Af we see that the width of the maximum A f is of order
77g), 80 Af /[ fo ~ 1/(mforg). For mforg < 1, R(f) becomes relatively
while for m fo7g >> 1 it is sharply peaked muo:sm fo. Using egs. (7.96)

(7.97) we can estimate the minimum value of the dimensionless
W amplitude ho that can be detected at a given level of the signal-
noise ratio S/N. For narrow-band detectors eq. (7.96) gives, using
t definiteness the value |A(fo)| = ho7y (v/7/2) appropriate for a sine-
aussian waveform,

.m. 2 xm,\_dmx
() ~ o=, ("

where A is a characteristic value of A(f) over the detector bandwi
and S, is a characteristic value of S, (f).

We can translate these order-of-magnitude estimates into limits on (7.105)
value of the dimensionless GW amplitude A(t) that can be measur
For this we assume for definiteness that the wave comes from a direct
such that Fy =1 and F = 0, so that A(t) is the same as the amplitt
h(t) of the + polarization. In the most general situation, we will
have a factor which depends on Fy and Fy and reflects the sensit
of the detector to the given direction and polarization of the wave
express eq. (7.51) in terms of h(t) we need a model for the signal. Fo;
GW burst of amplitude hg and duration 7,, a crude choice could be’

. h(t)=ho if [t| < 7,/2 7 RN
and A(t) = 0 if |t| > 7,/2. We can write it more compactly as (ho)min ~ — Aabzxv (S/N), (7.106)
h(t) = \Noﬂm Amnme\.v y . A
ile for broad-band detectors eq. (7.97) gives
where 8reg(t) has a rectangular shape of unit area, dreg(t) = 1/7g
[t| < 75/2 and beg(t) = 0 for |¢] > 7,/2. For Tg — 0, Sreg(t) becon 1 s 1/2
a Dirac delta. More generally, for a burst we can model h(t) as (ho)min ~ — AI:.IV (S/N). (7.107)
eq. (7.99), choosing for breq(t) a smooth function of unit area which Tg \Tfmax

to zero rather fast for |¢|27y.
gives

Performing the Fourier transform ¢ .
he precise numerical factors, of course, depend on the choice of the

[R(f)| ~ hory, (7.1 javeform, so to fix the numerical coefficients in egs. (7.106) and (7.107)
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Fig. 7.8 The sine-Gaussian function
2

mEAwﬂ?SmLM\@ , for 7, = 3ms and

fo = 500 Hz, as a function of ¢ (in

seconds).

0.002

0.001

Fig. 7.9 |R(f)] (in units of ho) for
a sine-Gaussian function with fo =
500 Hz, 7, = 3 ms (solid line} and
for a sine-Gaussian function with
fo = 500 Hz, 7, = 1 ms (dashed
line).
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3215 "the computation, we neglect
the torm” exp{~n3(f + f0)?72} in
eq. (7.104), which is small with respect
to exp{~x*(f = fo)372} and, when
we integrate eq. (1.169) over df, we
replace 2 exp{~#3(f ~ fo)?72} with
f8 exp{~nm3(f ~ fo)*73} and we extend
the resulting integral from —o00 to +oo.

where in the second line we normalized v to a value of order of the
istance to the galactic center. Recall that in the above we assumed
wave coming from optimal direction. For an ensemble of waves with
rbitrary direction and polarization, we must also take into account the
erage over the pattern functions of the detector. For an interferometer,
his is a factor 2/5 (see Table 7.1), so on average a burst coming from
bitrary direction, in order to produce a given signal h.ss in the detector,
£ had an energy larger by a factor 5/2, compared to eq. (7.112). We see
hat a burst at the kHz, with hres = 1079 Hz /2, carries away about
2 golar masses in GWs, if it comes from a source located at typical
lactic distances.

Taking 10"2Mpc? as a reference value for AFrqg (which, as we will
e in Vol. 2, is the maximum value that can be reasonably expected
cataclysmic events involving solar mass objects. Even larger energies
an be released in the merging of very massive black holes), we see that
detector must reach at least a sensitivity to hres of order 10-19 gz~ /2

we must know the shape of the signal A(f), use the exact form of the no
Sx(f), and perform the integral in eq. (7.51). We see from egs. (7.1
and (7.107) that in a narrow-band detector the minimum detectal
amplitude is higher by a factor (fmax/Af)Y/2, compared to a detectd
which is able to maintain the same typical sensitivity S, over a bro
bandwidth. This reflects the fact that the narrow-band detector hi
access only to a portion of the Fourier modes of the burst.

Rather than expressing the result in terms of hyg, it is also common
use the so-called root-sum-square (rss) amplitude hgs, defined by

O
hies = \ dth?(t)
—co
R -~
u\ FIRE. (7.10
—00
For the Gaussian (7.101) we have

m

wwmm = aw\@ -, (Gaussian) , o have some chance of detecting GW bursts from the galactic center.
2 To be able to see a burst which releases 1072 solar masses in the Virgo
while, for the sine-Gaussian (7.103), uster of galaxies, which is at r ~ 14 Mpc, one rather needs to be able
2 2 E 2,2 2 reach A = 6 x 10728 Hz /2 or, from eq. (7.110) with 74 = 1 ms, a
hies = hoTy /\W (1—e 2 fomy), (sine-Gaussian) . Tue of the dimensionless amplitude hg = 2 x 1072,
Observe that, dimensionally, s ~ (time)'/2, s0 Ry is convention
quoted in Hz~'/?, as the strain sensitivity. 5.2 Time—frequency analysis

To have an idea of the numerical values of k. (or, equivalently, of
that could be obtained from astrophysical phenomena, we can com
the energy released in GWs by an event which produced, at the det
tor, a given value of Arss. This can be obtained from the expression
dE/dAdf given in eq. (1.159). Observe however that, for a wave co
from an arbitrary direction and with arbitrary polarization, a detec
does not measure directly hi(f) and hx(f) but rather the combin
tion h(f) = Fyhy(f) + Fxhx(f), where Fy x are the detector patte
functions. For definiteness, we consider a GW coming from the optim
direction for the + polarization, so we take Fiy =1 and Fyx = 0, a
for hi(f) we take the sine-Gaussian waveform (7.104). We substitiif
this into eq. (1.159) and we get the total energy AE,,4 radiated by t]
source in GWs,32

he matched filtering technique that we have discussed in Section 7.3
orks well if we know the form of the signal, or if we can parametrize it
ith a limited number of free parameters, so that it becomes practically
asible to put a sufficiently fine grid in this parameter space, and repeat
he search for each point of the grid. As we will discuss in the next
ctions, this can be the case for the inspiral of compact binaries and,
artly, for the signals due to pulsars.

Concerning bursts, the situation is different. In general, bursts may
ome from complicated explosive phenomena, such as supernovae, or
om processes such as the final merging of coalescing binaries, which
e difficult to model. Tn a narrow-band detector, such as resonant bars,
/e only have access to a narrow range of Fourier components of the
gnal. Thus, in a first approximation it is reasonable to model the

ABag ~ AH 3/2 mr?c® h2r, f2 ignal as flat in frequency, ie. asa H.v:m.o delta in time and, as a next
2 G 970 tep, we can use more realistic modelizations such as the Gaussian and

_ nricd B2 2 Ye sine-Gaussian waveforms described above. However, in a broad-
G res/0 and detector, the difference between these simple modelizations and

he real waveform will become important. Thus, to exploit optimally
he capabilities of a broad-band detector, one is lead to consider also
ther methods, which are sub-optimal with respect to matched filtering
vhen the waveform is know precisely (since we have seen that, if the
aveform is known, matched filtering is the optimal strategy) but might
more robust in the absence of detailed knowledge of the signal.

Such search algorithms can be obtained working in the time—frequency

Inserting the numerical values,

N 5 2 £ 2 |
AFErq ~ 1x 5|w§®nm A v A TS 0
8kpc 10-19 gy~ 1/2 1kHz ) |
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33The information about time localiza-
tion, which is encoded in s(t), is of
course still encoded in 5(f), since from
5(f) we can get back s(f) uniquely.
However, it is lost in |§(f){?, since it
was contained in the phase relation be-
tween the Fourier components, and this
information is obliterated when taking
the modulus. A nice example (taken
from van den Berg (1999), a textbook
on wavelets) is obtained if we take s(t)
to be a classical symphony. Then its
power spectrum will immediately re-
veal the dominating keys: the ground-
tones and their harmonics. Suppose
now that we play the parts in a different
order, and we even interchange smaller
parts within the parts. The power spec-
trum would not change at all, while to
the ear, which actually makes a time—
frequency analysis, the result is very
different.

39 fix the idens, one can consider
that the assupling rate 1/At of an inter-
ferometer s typlcally of order 10 — 20
kHz.  We can imegino that we are
searching for bursts of duration 6t =
0.5 s, so frequeney space ls split into
bins of width 2 Ha. - Restricting the

search to the frequency range where in-
terferometers are most sengitive, which
corresponds to a bandwidth Af =
O(200) Hz around peak nensitivity, wo
have a total of O(100) bins in frequency,
for each value of the start time of the
segment.

plane. To understand the usefulness of the time—frequency represent;
tion, suppose at first that we have a function s(¢) defined on the whol
real axis —oo < ¢ < 0co. We can take its Fourier transform 3(f) and con
pute from it the power spectrum [§(f)|2. A plot of the power spectru
against the frequency will enable us to see immediately what are thy
dominant Fourier modes. However, this power spectrum knows nothin
about when things happened.3?

The simplest way to recover partly this information is to take th
Fourier transform not on the whole real line, but on segments of lengt
8t. When we Fourler transform the function s(t) on the interval 0 < ¢
&t and we plot the resulting power spectrum, we find the Fourier mod
that dominated the function, during this temporal span. We can the
repeat it for 8t < t < 24t, etc. Of course, on a finite segment of lengt]
d¢, the resolution in frequency is finite, and is 1/3t, so we are givi
up the fine details in frequency space, but we gain an understanding o
when things happened. That is, rather than working in frequency spa
with an arbitrarily good resolution, it can be convenient to work in t
time-frequency plane, making a good compromise between the accurac
in frequency and the accuracy in time.

This is particularly important when we are looking for transient ph
nomena, such as GW bursts. Suppose that we are unable to compute t
detailed waveform of a burst, as it is typically the case, but still we
give a reasonable estimate of its total duration dt, and of the frequeng
range fi < f < f, where most of its power should be concentrate
Then, a useful search strategy is as follows. .

First of all, it is convenient to work in a discretize space. Recall th
the output of a detector is sampled at some rate 1/A¢. Then, we ¢
split the output into time segments, and inside each segment the outp
s(t) is given by the discrete set of values

e Fourier transforms fix and Ay as in eq. (7.114). The discrete version
eq. (7.6) is obtained replacing the Dirac delta by a Kronecker delta,
1
(Pkfin) = Orkr M.@w , (7.117)
- “where we used the short-hand notation Si = S,(fx)- .
If the only theoretical expectation that we have about a signal is
that it should have a duration &t, and should have most of its power
a frequency band fi < f < fa, with f1 = ki /8t, f2 = ko/dt, and
—f1 = &f, we can form, for each possible start time fscare, the quantity

L[5l
E=4) =-, (7.118)

k1 Sk

hich is called the ezcess power statistic. We collect the values of £ for
possible start time and, if we find a value above some given thresh-
d, we record it as an event.3® To understand what is a statistically
nificant value of £, observe that £ is formed from k; — k; independent
mplex variables si. Since (kg — k1)/6t = fa — f1 = 6 f, the number of
dependent real variables is

N =25f6t, (7.119)

twice the area of the time-frequency plane explored. Therefore,
en in the absence of any GW signal in the data, the average value of
is of order A.3¢ This means that a real GW signal, in order to be
ible in £ against the noise with a signal-to-noise ratio of order one,
ust give a contribution to £ of order . From eq. (7.119), N' > 2
he uncertainty principle, in a quantum langauge) and, depending on
e situation, one can have A/ > 1. Comparing with eq. (7.51), we see
at, if we knew the waveform and we could make a matched filtering,
ch a signal would produce a value of S/N of order /2. In other
ords, using the excess power statistic, we can detect with a signal-
o-noise ratio of order one, a signal that with matched filtering would
fmerge with signal-to-noise ratio of order A"1/2.37 This is not surprising
ince we know that, when we have the waveform, the matched filtering
(7. haximizes the signal-to-noise ratio. However, the excess power statistic
nly needs very crude information about the signal, namely its duration

85 = .w@mnwln + QDS s A_NU:.

where %4 is the start time of the segment considered, j = 0,...,
and 6t = NAt is its length. We can then perform a discrete Fouri
transform over the segment §t by writing

i 271
3 = M wamﬁl,%lu.\nw )

=0

or N—1 d its typical frequency range, and is therefore much more robust.
G = n(t:) exp{ 2mi(t; — ¢ ) thermore, it can be proved that, if the only information on the signal
- WW (t5) exp{ami(t seart) fe} ( its duration and its bandwith, the excess power method is the optimal

where t; = ¢ + jAt and e -
7T e T A & From the above discussion, it is clear that the method is viable only

hen A is not too large. For instance, for the inspiral phase of a coalesc-
g NS-NS binary, as observed in a ground-based interferometer, we see
om eq. (4.21) that the signal enters the bandwidth of the interferome-
r, say at 40 Hz, when the time to coalescence is 7 = 25 s, and sweeps
frequency up to the kHz. Taking §f ~ 1000 Hz and &t ~ 25 s, we get
/ ~ 5 x 10% and N'/2 ~ 200, so the excess power method would allow

h=¥m =5 (
We see that frequencies are spaced by 1 /6t, up to a maximum frequene
equal to N/6t (since eq. (7.114) is periodic under k — & -+ N), whi :
of course is just the sampling frequency 1/At.3* We can write as usui
#¢ = n;+h;, where n; is the noise and h; a putative signal, and we defi
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35In the sense defined in Note 2 on
page 337.

36More precisely, in the presence of
Gaussian noise £ follows a x? distrib-
ution with A degrees of freedom, while
in the presence of signal it follows the
corresponding non-central x? distribu-
tion, see eq. (7.92).

3TFor a more accurate estimate of
the signal-to-noise ratio obtained re-
stricting the frequency bandwidth, i.e.
performing a band-pass filter, see
Section II of Flanagan and  Hughes
(1998a).
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38Ror fast spinning BHs the coalescence
time will be longer, since they must first
shed some angular momentum before
setting into their final state, in order
that the angular momentum of the fi-
nal BH does not exceed the maximum
value allowed for rotating BHs. The
estimate of A depends on the angular
momentum of the BHs, but a typical
value can be N'1/2 ~ 5. See Flanagan
and Hughes (1998a), Section IIIE.

3%n the literature on wivelots, this is
actually written as @™ 1/3g((t = ty) /n),
where a is a dimensionless quaitity that
rescales a characteristic frequency fm-
plicit in the function ).

us to detect signals only when their signal-to-noise ratio, with match
filtering, is of order several hundreds. Thus, for inspiraling binaries, t.
excess power method is not at all competitive. Furthermore it is n
needed, since in this case we have precise calculations of the wavefor
in the inspiral phase, as we saw in Chapter 5.

The situation is different for the merging phase of a BH-BH coal
cence. In this case the maximum value of f can be estimated to
of order fqnr, where fynr is the ringing frequency of the fundament
quasi-normal mode of the black hole. To include the power radiat
by the BH in its higher quasi-normal modes, an estimate of order 2,
could be more appropriate. Black hole normal modes will be discussed
Vol. 2, and we will see that fqn: can reach a maximum value (for rapid
spinning BHs of mass m) fonr = ¢3/(27Gm). Observe that this is qui
larger than the maximum frequency (4.39) at which the inspiral ph
ends, so we finally take 8f ~ 2fynr ~ ¢3/(7Gm). As for the mergi
time, we can roughly estimate that it should not be much larger th
TIsco/¢, where risco = 6Gm/c? is the radius of the innermost stab
circular orbit in a Schwarzschild geometry, see eq. (4.38). Taking
instance 6t ~ 2rigoo/c = 12Gm/c?, we get the estimate N'L/2 ~ 2
the loss in sensitivity with respect to optimal filtering is not large. T
is quite important, considering that the merging phase is very diffic
to model.%®

The time-frequency method discussed here can be generalized in va
ous directions. One possibility is to consider wavelets. These are gene
izations of the Fourier transform, in which to a function s(t) is associa
a function S(f,tp) of two parameters, of which f is the frequency
to is the position in time of the signal, 2

S(to)= [ " 0 0s(0).

ut, depending on the frequency scale of the signal. The other crucial
roperty is that it is possible to choose wavelets so that they form an
rthonormal basis, and the signal can therefore be decomposed uniquely
to its component with respect to this wavelet basis, just as in the
ourier transform. Wavelets are by now widely used in signal analysis
many branches of science, and many possible choices of wavelets are
vailable, depending on the problem at hand, see the Further Reading.

Another generalization of the time-frequency analysis discussed here
onsists in marking as “black” the bins in the time—frequency plane
here an indicator such as the excess power statistic goes above a thresh-
d value, and searching for structures of black bins, such as clusters.
his is basically a variant of the Hough transform that we will discuss
Section 7.6.3, in the context of periodic signals.

.5.3 Coincidences

iven that GW bursts can have a very short duration, even smaller
han a millisecond, the output of ground-based detectors are sampled
ith a very high frequency, typically O(10) kHz. In one year there are
bout 3 x 10'° ms, so even a fluctuation with a probability ~ 1070 is
ound to occur on average in one year worth of data. Then eq. (7.84)
uggests, for bursts, a threshold on the amplitude signal-to-noise ratio
f order p; ~ 6, in order to have just a few false alarms per year in
detector. However, this only eliminate Gaussian noise. GW bursts
e particularly well simulated by non-Gaussian events such as micro-
eeps in the materials or sudden external mechanical or electromagnetic
sturbances. In some cases the external disturbance can be identified,
nd the corresponding event is therefore vetoed, but in most cases this is
possible. To eliminate these non-Gaussian noise, the only possibility
to perform coincidences between different detectors.%®
Using two or more detectors in coincidence is a standard practice in
physics, at least since the early days of cosmic ray research. The idea is
hat, if two detectors are far apart, their noise are mostly uncorrelated,*
nd the probability of an accidental coincidence is small, while a GW
Fourier Transform, or Gabor transform, as it is called, is essentially wh ould excite both detectors nearly simultaneously. Below we discuss
we have used above (more precisely, we used its discrete version), wi ome of the issues that must be addressed in order to apply this idea to
a sharp window function. Other choices of window functions, such GW detectors.
Gaussian, are more commonly used in signal analysis.
A possible drawback of a choice such as eq. (7.121) is that the tef
poral window has a fixed size, independently of the frequency. In mi
type of signals, however, there is a correlation between the characteri
frequency of a given segment and the time duration of the segment, s
that low-frequency pieces tend to last longer. To take this into acco
the wavelet transform is defined by choosing a window function of
form ¥(f(t — tp)) (times a normalization constant +/f), which depe
explicitly on f.39 In this way, at high frequencies the temporal windo
shorter, so we have a better time resolution. In a sense, wavelets pro
& “microscope” that, at each point in time of the signal, zooms in

(7.1

The simplest example consists in taking
Sx_no QV = mls..?,@? - wov ’

where (t—to) is a window function centered around ¢. This Windowg

(7.1

elative orientation of the detectors

e have seen that the response of a detector to a GW depends on the
“relative orientation between the detector and the source. To perform
oincidences between two or more detectors, it is therefore optimal to
rient them, taking into account their difference in location, so that their
esponse to an incoming GW signal is the same, or at least as similar as
possible, for all of them. Otherwise, a real signal can be missed simply
ecause, when one detector was oriented favorably with respect to the
ource, the other had a very poor sensitivity for the same direction.*?
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0Observe that the use of coinci-
dent detectors also allows us to lower
the threshold necessary for eliminat-
ing Gaussian noise, since now the false
alarm probability, for uncorrelated de-
tector noise, is the square of (7.84).
For instance, in the example above, the
threshold ps =~ 6 valid for a single-
detector search becomes py ~ 4.5 in a
two-detector correlation (even neglect-
ing all consistency check discussed be-
low).

Awith some exceptions. For exam-
ple, seismic or electromagnetic distur-
bances might propagate from one de-
tector’s site to the other.

420n the other hand, detectors with
different orientation can perform inde-
pendent measurement of the signal, nl-
lowing to disentangle the polarizations
and the arrival direction of the wave,
see the discussion on page 342.
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43 This depends not only on the sam-
pling time of the detector, but also
on other factors, in particular on the
signal-to-noise ratio of the event, since
noise combines with the GW signal dis-
torting and broadening its shape.

Coincidence window ifferent detectors have an overlap, or at least that they are separated

. . n frequency by no more than a fixed window Af.
Each GW detector has its temporal resolution, which might for instanc: 4 v by f

be of the order of few ms.*® Given two detectors, with variances &
and o2 on the arrival time of their respective events, the correspondin,
variance in the coincidence search is 013 = /0% + 02, and therefore on
can ask that the events be coincident within & standard deviations oy,
(e.g. k=3 can be a typical choice). To this uncertainty one must ad
the light travel time (At)jighs between the two detectors since, depending;
on the source location, either the first or the second detector will be h
by the wavefront a time up to (At)iens before the other. So finally o
requires that the arrival times ¢; and ¢5 in the two detectors are withi
a coincidence window

ackground estimation

fter having applied all these cuts, we can still have accidental coinci-
dences that, by chance, passed them. However, the residual number of
ccidental coincidences can be estimated very reliably. First of all, one
an simply predict it from the observed event rate in a single detector,
suming that the noise is stationary. But in fact the most direct esti-
“mation of the background is obtained using a shifting algorithm which;
ogether with many other techniques used in GW research, was intro-
uced by Weber. The procedure consists simply in shifting the data
tream of one detector with respect to the other by a time step signif-
cantly longer than the coincidence window, say 2 s, and counting the
umber of coincidences obtained after shifting (subject to the same re-
uirements on the coincidence window and energy compatibility imposed
n the coincidences at zero time shift). These coincidences, of course,
e now all accidental, since the shift has been chosen much larger than
he coincidence window and therefore of the uncertainties in the arrival
imes. We then repeat the procedure with a different shift, say 4 s, and
e count again the number of accidentals. One can repeat the proce-
ure for many different shifts (the overall time shift must however be
hort compared to the time-scale over which the event rate in a single
etector changes substantially). We then average over these shifts, and
e have a rather accurate estimate of the average number of accidental
oincidences, its variance, and more generally their distribution (which
found experimentally to be a Poisson distribution, as expected when-
ver we count a number of discrete independent events), and we can also
tudy how these quantities depend on the energy of the events,

1/2
[t1 ~ tal < (Ab)igne + & (0F + 03) "

This typically results in a coincidence window of the order of a few ten
of ms.

Energy consistency

Another possible handle to discriminate between accidental coincidence
and true GW signals is the compatibility of the signal in the two
more) detectors. Ideally, if the GW signal is much larger than the noist
two detectors oriented in the same way should register the same
ergy flux, when a GW hits them. In contrast, two events due to no
which by chance happen simultaneously in the two detectors, sho
have uncorrelated energies. However, in practice, at moderate values
the signal-to-noise ratio the signal h(t) induced by the GW combi
with the noise n(t) and, depending on the relative phase of these ¢
tributions, the output h(f) + n(t) fluctuates and can be either larger
smaller than the value that would be induced by the GW. Therefo
as we computed in Section 7.4.3, one has a probability distribution f¢
the amplitudes (or for the energies) measured in the two detectors, a
the compatibility criterion must take into account this probability di
tribution. This procedure also requires that the two detectors hawv
sufficiently reliable calibration in energy.

.6 Periodic sources

While a burst source is typically radiating only for a period of less than
second, a periodic source emits continuously an almost monochroma-
ic signal, so the limit on its observation comes from the total available
bbservation time, which can be of order of years. Our intuitive discus-
jon of matched filtering showed that, if we can follow a signal for a
time 7', the minimum level of signal that we can extract from the noise
cales as 1/T%/2, see eqs. (7.39) and (7.40). This means that, for peri-
dic waves, we can extract from the noise a signal with an amplitude hg
uch smaller than the one that can be measured in the case of bursts.
his opportunity, however, also comes at the expense of some complica-
ions, since we must able to track carefully the signal for a long period.
e already met a'similar situation in Chapter 6, where we studied the
iming formula for the radio signals of pulsars, and we saw that there
re two main issue to address: the intrinsic changes of the frequency of
he source, and the modulation of the signal due to the motion of the

‘Waveform consistency

A broadband detector has rather detailed information on the waveforn
and a consistency condition between the waveforms observed in the t
detectors can be imposed. For instance, one of the algorithms used
LIGO for generating candidate events is based on the identification
connected regions (“clusters”) in the time—frequency plane where ¢
power is not consistent, statistically, with Gaussian noise, as discuss
in Section 7.5.2. Then each event is characterized by its bandwid
(fnins fmax), i.e. by the low and high frequency bounds of the clust
One can then require, for instance, that the bandwidth of events
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M por GWs, propagation effects be-
tween the source and the Earth, such as
dispersion in the interstellar medium,
are totally irrelevant, given the small-
ness of gravitational cross-sections.

Earth.#4
If, for a moment, we neglect these effects, a periodic source emitting:
GWs at a frequency fo produces in the detector a signal

nd therefore eq. (7.49) gives

K(f)=6(f - fo), (7.127)

part from an arbitrary constant, in which we also reabsorbed 1/S,,(fo).
f course, the Dirac delta is a mathematical idealization, and if we mea-
ure for a total observation time T we must replace it by a regularized

h(t) = Fi.(0,8) b (t) + Fx (8, ¢) hx (1), (7.123)

where

ha(2) = ho 4 cos(2r fot) (7.124) §Pirac delta,
hx(t) = ho,x cos(2m fot + a) . (7.125) o T2
X X %A.\.v N\ dt msw.i.u l\ dt msmﬁ.}w“ Aﬂ.wwmv
We take by definition fo > 0; Ao 4 are the real amplitudes for the twi —o0 ~T/2

polarizations (A = +, x), and « is their relative phase. We denote by
8, ¢ the angles that define the propagation direction f of the GW fro
the source to us, so the polar angles of the source, as seen from t
FEarth, are ;, = 7 — 6 and ¢; = ¢ + 7.

Assuming for the moment that the source is, intrinsically, perfectl:
periodic, still the motion of the Earth modifies egs. (7.123)—(7.125)
follows.

‘hich has a support over a range Af ~ 1/T and satisfies 6(0) = T
hen eq. (7.51) becomes

TN
S
N—
N
il

OO
[F410,8)ho.1 + P8, o e [~ ap 2S00
0 Sn(f)
—ice|? T

[F(0,90ho+ + Fe (@, d)haxe™|" s (7.129)
Jot surprisingly, the signal-to-noise ratio increases if we increase the
bservation time, and the dependence S/N ~ /T is what we already
und using heuristic arguments in eqgs. (7.39) and (7.40).
- In general, the frequency fy is not known in advance. However, for
n exactly periodic signal, we do not need to repeat the matched filter-
ng procedure separately for each value of the unknown parameter fo.

fact, from eq. (7.42), when K(f) = &6(f — fo) the signal is simply
' = h{fo), and the values of A(f) for all f can be computed at once per-
rming a single Fast Fourier Transform (FFT), which is a particularly
fiicient algorithm.
f this were the end of the story, the search for periodic signals would
imply consist in performing a single FF'T on a stretch of data of length
and looking for lines in the power spectrum. The signal-to-noise ratio
f these line should improve with the observation time as vT. We will
in Section 7.6.1 and especially in Section 7.6.2 that the full story is
re complicated.

o Because of the Earth’s rotation, the apparent position of the sour
in the sky changes, so the angles § and ¢ which appear in t
pattern functions change with time, and are periodic functions
sidereal time, with period one sidereal day. If we are track
a specific source in the sky, the time dependence of the patter
functions, F4(0(t),¢(t)), must therefore be taken into account
and this produces a modulation of the amplitude of the signal

o Because of the Earth’s rotation and of its revolution around t
Sun (or, more precisely, because of its motion with respect to t
Solar System Barycenter, as discussed in Chapter 6), the relati
velocity of the Earth and the source changes with time, and th
produces a time-varying Doppler shift in the frequency.

As a consequence, h(t) is not a simple monochromatic signal. We
come back to these amplitude and phase modulations in Sections 7.
and 7.6.2. For the moment, however, we restrict to an observation ti
T sufficiently short, so that these amplitude and phase modulations
be neglected. For the amplitude modulation due to the Earth’s rotati
this requires of course T < 1 day, while for the Doppler effect we wi
quantify this requirement in Section 7.6.2. In this limit h(t) beco
monochromatic, with a frequency fg.

In this simplified setting the form of the matched filter becomes ob
ous: we must limit ourselves to a bandwidth as small as possible arou
fo, since enlarging the bandwidth we accept more noise but we add r
further signal. If T is the total observation time, our resolution in f
quency is 1/T', see eq. (7.10), and therefore a bandwidth as small
possible means Af =~ 1/T. Formally, we can obtain the same resy
using eq. (7.49). From egs. (7.123)-(7.125) we have, for f > 0,

6.1 Amplitude modulation

s we pointed out above, the pattern functions depend on time because
f the Earth’s rotation, and are therefore periodic functions of sidereal
me, with a period of one sidereal day. In the matched filtering, we
ust take this into account, and this results in a different amplitude
nodulation for each possible source position. We will discuss in the
ext sections how to efficiently scan the parameter space, in order to
pke this effect into account.

f we want to estimate the effect of this modulation on the sensitiv-
, we can however simply observe that, for integration times T longer
han one day, the effect of this amplitude modulation can be taken into

W) = 8(f — fo) 5 [Fi (8, 9)ho+ + Fx (0, Yho,xe™] ,  (7.12

1
2
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Ammv rather than being interested in
the sensitivity to a specific source, one
wants to define an average sensitivity
for an ensemble of sources, then one
can improve this estimate taking care
of the fact that there is a statistical
preference for the angles and polariza-
tions that give a larger S/N, since these
can be seen to larger distances. This
modifies S/N by factors that can be
approximately estimated to be of order
(3/2)1/2 ~ 1.2, see Thorne (1987).

because of the apparent motion of the source in the sky, leading to the
mplitude modulation, and produces the angular efficiency factor (F2)
in eq. (7.134). .

An alternative reference quantity which is often used is hg/yr, which
s defined as the minimum value of hy that can be detected at a given
-value of S/N, integrating for T = 107 s (i.e. about 1/3 of a year),

account averaging eq. (7.129) over the apparent motion of the source in
one sidereal day, i.e. averaging over all values of the right ascension of
the source, and over a range of values of the declination which depend
on the specific orbit of the source. In a first approximation, we can
replace this average with an average over the solid angle and over thé
polarization angle %.** From eq. (7.129), using eqs. (7.33) and (7.35),

we then find S/N
7 - Ra/yr = % Sn(fo) x 10~"Hz. (7.135)
(%) = () % (
" 7.6.2 Doppler shift and phase modulation
where ven if an astrophysical source emitted exactly monochromatic GWs

ith a frequency fo, for a detector on Earth the instantaneous value of
he observed frequency f would change with time because of the Doppler
ffect. Recall that, to first order in v/c, the frequency measured by an
bserver with a velocity v with respect to the source is

\H?AH+MWV“ (7.136)

h§=hg 4 +hg -

The values of (F?} for various detectors are given in Table 7.1, recalli
that (F?) = F/2. We can also rewrite eq. (7.130) as

S

N  h,'

defining the dimensionless quantity Ay,

;H,ﬁ:H\N
\Nﬁl Am.u.nwvw\u A M;o v .

(7.13

here f is the unit vector in the direction of the source. If v - # were a
onstant, this would cause little concern, since it would just amount to a.
onstant offset in the frequency and, with a single FFT, monochromatic
ines at all possible frequencies are searched simultaneously. However,
he velocity of the detector with respect to the source changes in time
ecause of the Earth’s rotation and because of its revolution around the
un and this induces a time-dependence in the observed frequency. We
enote by (Av)y the change of the component of the velocity in the
irection of the source, in a time T. Then the frequency f changes on
he same time interval by an amount

Therefore h, is the GW amplitude that can be measured by the detect
for a periodic signal, at S/N = 1 (assuming that we have been able
correct for the phase modulation, see next section). More generally,
minimum amplitude that can be detected at a given value of S/N is

_ SN (Sa(fa)\
QNOVBE = % A]ﬂﬁhv .

AD,\.vUovv_mn = ,\.o MIDMIYH - Aﬂ.wwﬂ.v

When we integrate the signal for a time T, the resolution in frequency
s Af = 1/T. As long as (Af)poppler 18 smaller than this resolution,
Il the GW signal falls into a single frequency bin and the Doppler
ffect can be neglected. To estimate the maximum integration time
or which the Doppler effect is negligible, we consider first the effect
f the Earth rotation around its axis. At a latitude of 40 degrees, the
otational velocity of the Earth is vrot = wroeRg cos(40°) ~ 355 m/s,
here wyor = (27/24 br) and Rg ~ 6.38 x 10° m is the mean Earth
quatorial radius. This gives vret/c ~ 1.2 x 107%. During an integration
ime T', the Earth rotates by an angle A8 = wT and, if A < 1, in
rder of magnitude the change of the component of the velocity in the
irection of the source is given by (Av)r /v ~ A8, ie.

It is instructive to compare this result with the minimum burst ampl
tude detectable at a broad-band detector, eq. (7.107). Recalling t
Sn(f) has dimensions 1/Hz, i.e. dimensions of time, we must divide
by a time in order to obtain a dimensionless quantity, such as a G
amplitude. For bursts, we see from eq. (7.107) that this time-scal
the duration 7y = 1/ fyax of the burst, while for a periodic signal we &
from eq. (7.133) that it is the observation time 7'. Since T can be of
order of months or years, while Tg is typically between the milliseco;
and a second, the minimum value of h detectable for periodic signalg
much smaller than for bursts. On the other hand, a periodic signal
intrinsically much weaker, since a burst emits a. huge amount of ene
in a very short time. We will estimate in Section 7.6.3 the maximt
distances at which typical periodic signals can be seen. ‘

For bursts, we assumed that the wave came from the optimal directio;
and for this reason we wrote no angular factor in eq. (7.107). For period
siguals, an average over the source position is in any case. neces:

e

ADGV‘H ~ UrotWrot T A.N“_.wmv

The precise numbers, of course, depends on the exact direction of the
gource with respect to the detector.) Then (A f)poppler becomes of the
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“BFor frequencies fo > O(40) Hz we
have T <« 1 day, so the approximation
Af < 1 used to write eq. (7.138) is con-
sistent. Otherwise, a more accurate es-
timate is needed.

order of the frequency resolution if After an integration time of four months, i.e. T ~ 107 s, the frequency

esolution is Af = 107 Hz, which is many order of magnitudes smaller

fo Aewnv Wrot T ~ 1 ) (7.139) han the Doppler shifts (7.141) and (7.142). It is interesting to see what

. . s the form of the frequency spectrum when we are sensitive enough to
which gives " esolve the time-changing Doppler shift. To simplify the geometry, we
T ~ 60 min AH WENV (7.140) assume at first that the detector performs a simple circular motion, with

fo ’ ’ equency wn, and radius R, and that the source is in the plane of the

rbital motion of the detector, as in Fig. 7.10. Since the source is at a
ery large distance, we have a plane wavefront propagating along the y
xis, and therefore proportional to coslwe(t + y/c)], where wy = 27,
nd fp is the GW frequency. The y coordinate of the detector is a
ction of time; we choose for definiteness the origin of time so that
(0) = 0, and therefore y(t) = Rsin(wmt). Then the detector sees a
ignal proportional to

Therefore, for waves with fo ~ 1 kHz, the Doppler effect due to the
Earth’s rotation around its axis becomes important after about one
hour.“® Tt reaches its maximum value after about 12 hr (the precise
numbers, again, depend on the source position), when the detector has
inverted its velocity with respect to the source, Avy, = 2Urot, and in
this time span the frequency has changed by a total amount

Ur

(Af)t ~2fg— ~ 2.4 x 1073 Hz A fo v . G...K:

c 1kHz cos To AN + %z = cos|wot + Bsin(wmt)], (7.145)

We can repeat the same reasoning for the orbital motion of the Eart
around the Sun. For an order-of-magnitude estimate we can take th
orbit as circular, with a radius R = lau =~ 1.5 x 10! m and woy
27/(365 days), 50 vorb 2 3 x 10* m/s and vorn/c ~ 10~%. The maximu
frequency shift induced by the Earth revolution is then

h
ere Eo&w wp v
\Q - T T,
c Wm, €
ith v = w,, R. The parameter 3 is called the modulation index, and
m = 27 fm, where f,, is the modulation frequency. This signal can be

written as a superposition of monochromatic waves using the identity

(7.146)

(AT ~2f 20 ~ 021, A Jo v , (7.142 o
¢ 1kHz cosfwot + B sin(wmt)] = MU J(8) cosf(wo + kwm)t], (7.147)
and is much larger than that due to the Earth rotation around it k==
axis, given in eq. (7.141), because vorh > vir. However, the larg
drift (7.142) takes place over a six months period. In an integratio
time T much shorter than six months, the orbital motion induces
variation (Av)r ~ UorbworbT' and the corresponding frequency shift i
(Af)Doppler ~ fo (Vorb/€) worbT- Similarly to eq. (7.139), the time af:
ter which the orbital Doppler shift becomes larger than the frequenc
resolution is given by

where J(0) is the Bessel function.®” The signal is therefore split into a
arrier at the frequency fo, plus an infinite number of sidebands at fo +
fm, for all integer k, and the power in the k-th sideband is proportional
0 J, m (8). The qualitative form of this spectrum depends strongly on the
modulation index 8. For 8 — 0 and k integer we have Jx(8) ~ 8, so
when § < 1 most of the power is in the carrier (k = 0), with smaller
ower in the sidebands k = %1, even smaller power at k = +2, etc.
However, in our case § is given by eq. (7.146) and it is large. In fact,
or the rotation of the Earth around its axis, setting wm, = 2m/(24hr)
nd v/e ~ 1.2 x 1075, eq. (7.146) gives B =~ 100 (fo/1kHz), while for
he orbital motion 8 =~ 3 x 10% (fy/1kHz). Therefore, in the range of
frequencies relevant for ground-based interferometers (fo > O(10) Hz),
we are always in the regime G > 1.

The average number of sidebands into which the total power is dis-
ributed can be calculated using?®

Yoo K2JR(B)
Yhe—oo J2(B)
Qm
=— 7.148
¥ (7148)
o the power is distributed in O(8) sidebands, as shown in Fig. 7.11.
Once the frequency resolution 1/7 has become of the order of this

e H
fo A oo;v worsT ~ 77, (7.143

(7.144

1/2
T ~ 120 min A:mmwv .

fo

Therefore the Doppler shift due to the Earth rotation around its axi
is the first to become important, when we increase the integration tim
(after about 1 hr if, for instance, fo = 1 kHz). The orbital Dopple
shift becomes of the order of the frequency resolution shortly afterwards
after an integration times of about 2 hr for fo = 1 kHz, but then raise
steadily; after less than one day it becomes more important than th
contribution from the Earth’s rotation around its axis, and it continue:
to raise for a six months period becoming, on the long term, the largel.
dominant effect.

(k%) =
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Fig. 7.10 The simplified geometry
discussed in the text. The detector
D performs a circular motion in the
(z,y) plane. The source S is in the
same plane, along the y axis.

47This identity can be obtained
writing  cosf(wo + kwm)t, inside
the sum, as cos(wgt)cos(kwmt) —
sin(wpt) sin(kwmt), and using Grad-
shteyn and Ryzhik (1980), 8.514.5 and
8.514.6, recalling that, for k integer,
T-(2) = (“DEJy(2).

48gee Gradshteyn and Ryzhik (1980),
8.536.2.
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Fig. 7.11 The quantity JZ(8) for
B =50, as a function of k.

servation time T (recall that only the temporal variation is relevant,
herwise the Doppler effect would give just a constant offset in fy),
hile A is the angular resolution (in radians) on the position of the
urce.

If we take (Av)r ~ VorbworpT we find that, to apply the Doppler
rrection, we need to know the source location to an accuracy

Doppler line broadening, increasing 7' further does not improve su
stantially the signal-to-noise ratio. In fact, while a smaller frequency b
contains by definition less noise, it now also contains less signal, sin
the signal gets spread over many bins. However, if at this stage t
signal already emerged from the noise, increasing T further we impro
the resolution by which we are able to reconstruct the line shape (a
therefore the accuracy by which we can reconstruct the source positiol

1
Al <
see Zowm 49 ,c&o,.i.. o ) Fo(Oorn/C) worn T
Luckily, there is in principle a very simple way (borrowed from puls 7 N2
radio-astronomy) to correct for the Doppler shift. In the simple geom: ~ 0.1 arcsec Auo mv AH wmuv ) (7.151)
rical situation illustrated in Fig. 7.10, we just need to define a new ti T fo

variable ¢’ = t + y(t)/c. In terms of this variable the signal (7.145)
simply proportional to cos(wgt’) and, performing the Fourier transfol
with respect to t', all sidebands collapse into a single frequency. For
generic source location, the redefinition of time that does the job is

his expression is correct as long as the Doppler effect due to the orbital
otion dominates that due to the Earth rotation around its axis, i.e. for
21 day, and also as long as the angle wo,T is small, since otherwise
e approximation (Av)y ~ wverbWorbT should rather be replaced by
x(t)-# V)T ~ Vorb S worb T, S0 approximately eq. (7.151) is valid as long as
=t = c ! day < T <4 months.*?
If we are targeting a specific source whose position is known to this
curacy or better, as is the case for many pulsars, this requirement
es not pose special problems. However, as we will discuss in Vol. 2,
ere are many mechanisms that can produce periodic GWs, in partic-
ar in neutron stars, that are not necessarily associated to a strong
flectromagnetic emission or, as with pulsars, the electromagnetic emis-
n could be beamed in a direction that does not intersect the Earth.
b is in fact quite likely that most of the potentially interesting sources
periodic GWs have no detected optical counterpart. For example,
e closest observed neutron star is at a distance r ~ 100 pe; however,
pulation synthesis calculations indicate that the closest one should be
it a distance 7 ~ 5—~10 pc, and then in a sphere of radius 7 ~ 100 pc
ere should be O(103-10%) neutron stars. It is therefore of the great-
t interest to perform blind searches, i.e. searches for unknown sources
er the whole sky. In principle, this means that we should partition the
lestial sphere in pixels with a size given by eq. (7.151) (in fact even
aller, see Note 52 in the next section), and in each one we should ap-
y a separate Doppler correction. As we will see in the next section, for
egration times of months this is impossible, even with the maximum
esent or foreseeable computer power.
Furthermore, we have assumed until now that the intrinsic GW fre-
ency fo of the source is stable, within the experimental resolution
A % = 1/T, and that the only modulation comes from the relative mo-
n of the detector. This means that we are assuming a stability of the
urce frequency at the level

where x(t) is the position of the detector (measured for instance us
the Solar System Barycenter (SSB) as a reference frame) and f is the
vector pointing toward the source. Observe that this is just the Roety
time delay that we already discussed in Section 6.2.2. We can there
simply resample the output of the detector in terms of this new time,
we have corrected for the Doppler effect. The procedure has an add
bonus: it is quite likely that, in the Fourier spectrum of the output, the
will be monochromatic lines due to instrumental noise. If such a line
a frequency that is constant in time to a good accuracy, its signal-
noise ratio will increase as /T, just as for a W signal. However, wh
we apply the resampling procedure, a real GW signal, which was Spr
over many bins, is collapsed to a single frequency bin, an conversely
instrumental line which was monochromatic will be spread over m
bins, and will finally be diluted into the noise. In other words, we
using the Doppler modulation as a powerful signature that %moEBE
a real GW signal from instrumental noise. )
The simplicity of this solution comes however at a price: we need
know both x(¢) and £ with great precision. We can assume that
motion of the Earth is known to a sufficient accuracy (although, i
want to integrate for a time T' ~ 1 yr, we need to keep under con
effects that can produce shifts Af ~ 10~7 Hz, and for this we must a
include small effects like the oscillations of the Earth around the Ear
Moon barycenter, which however are precisely knowny), so the main
comes from the uncertainty on the angular position of the source.
eq. (7.136) we see that, in order to correct for the Doppler shift with

accuracy smaller than the experimental resolution 1 /T on f, we ne D% o _ 1
in order of magnitude, fo  Tho
_ 107s 1kHz
fo = (Av)r Af < L (7.1 ~1x10710 A|ﬂ v A T v . (7.152)

where (Av)r is the variation of the velocity of the Earth during | Quite remarkably, rotating neutron stars can sometime have this sta-
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»m.}oﬂ:m:.f one could turn the argu-
ment around and observe that, if we
are so lucky that there is a periodic
signal so strong that can be extracted
from the noise without correcting for
the Doppler shift then, following the
evolution of the frequency with time,
we will be able to reconstruct the po-
sition of the source to the accuracy A8
given by eq. (7.151). With present de-
tector sensitivities, however, this possi-
bility seems quite unlikely.



380 Dato analysis techniques

50The spindown age is of the order of
the age of the pulsar if, throughout its
lifetime, the pulsar frequency evolution
can be described by the equation

Ff=—af™ (7.154)
(where a is a constant) and if the brak-

ing index n > 1. In fact, integrating
the above equation we get

HG] I F ()
=a(n-—1)t, (7.155)

where ¢t = 0 is the time at which the
pulsar was born. If the frequency at
birth, f(0), was much bigger than the
frequency today, and if n > 1, we can
neglect the term [£(0)]~(*~1) and the
age of a pulsar is related to its present
values of f and f by
1

a{n — 1)1
T
(n— DI}

= (7.156)

n-—1

Experimontally, the braking index n
f¥pically hos values n o 23, depend-
ing tnt the apecific pulsar.

t=

bility. The main mechanism that produces a drift in their frequency i§
the fact that a rotating NS radiates, both electromagnetically and gravs
itationally, and therefore loses energy. This energy is taken from the
rotational energy of the NS, which therefore spins down. Pulsars are
characterized by their spindown age T,

S (7.153)

171’
where f is their rotational frequency. As we saw in Section 4.2.1, fi
rotation around a principal axis and in the quadrupole approximatiol
the GWs_emitted are monochromatic with a frequency fo = 2f, sa

= fo/|fol.%° During the observation time T’, a pulsar with spindowii
mmm 7 changes its GW frequency by an amount Afy = foT = — foT/
i.e. by

forces from all the other stars is known to produce frequency drifts
comparable to the spindown rate.

e Even a uniform proper motion can be important if, during the
observation time, it drives the NS out of the pixel in the sky where
it was initially. For instance, a pulsar at a distance r = 300 pc, with
a transverse velocity v = 10° km/s with respect to our line-of-sight,
in a time T = 107 s moves by Af = vT/r =~ 10~%rad ~ 0.2 arcsec
which, according to eq. (7.151), is of order of the accuracy Af that
we need, over such an integration time T, for a pulsar radiating
GWs at fo ~ 1 kHz.

In the next section we will discuss how one can try to cope with these
ifficulties.

.6.3 Efficient search algorithms

Afo T
B oherent searches

fo T

10%yr T
~-3.2x10 A = v Apoﬂmv .

Comparing with eq. (7.152) we see that, with an integration time T
107 s, for a millisecond pulsar with fo ~ 1 kHz, the effect of the spindow
is important if its spindown age is lower than 3 x 10° yr while, if fo°
10 Hz, spindown is important, again over T = 107 s, if 7 < 3 x 107 y£.
Therefore for many pulsars, and in particular for young pulsars, ov
such a long observation time the spindown must be taken into accoun
Actually in young pulsars the spindown rate can be so high that eve
the effect of the second derivative \o can become important.

For known pulsars the spindown can be measured and taken into a
count when we make the Doppler correction, while for blind searches
introduces new unknown parameters. Besides spindown, there are oth
reasons why the frequency of the GW emitted by a pulsar can change!

om the discussion of the previous section we know that, if we want to
ntegrate the signal for a long time, we must resample the output of the
etector in terms of the time ¢’ defined in eq. (7.149), plus further cor-
ection for the spindown or other effects that change the frequency. The
'Ws produced by a rotating NS, in the absence of spindown, has been
omputed in eq. (4.223). Including the Doppler effect of the detector
nd the spindown of the source we can write the signal received as

2

(7.15

14 cos?e

h(t) = F(B(t); :

P)ho cos ®(t) + Fx (1i(t); ¥)ho cose sin ®(t),
(7.158)
here hg is given in eq. (4.224), and ¢ is the angle between the spin
axis of the neutron star and the propagation direction n of the GW; of
ourse 1 = —F, where f is the unit vector pointing toward the source,
nd depends on time because of the relative motion Om the detector
nd source. The evolution of the accumulated phase ®(t) = 2r [ dtf(t)

o Pulsars exhibit glitches, i.e. sudden jumps in the frequency relat bserved by the detector can be described by a Taylor mﬁumbmSP writing
to rearrangements of their internal structure. These glitches
produce changes in the frequency as large as Afo/fo ~ 1076 a
occur erratically, at a rate which depends strongly on the specif
pulsar, but in general of the order one glitch every few years.

o A large fraction of the known millisecond pulsars are in binaj
systems. In this case, there will be an additional Doppler effet
due to the motion of the source, as we saw in Section 6.2.

o Pulsar are the remnant of supernova explosions, and at birth t
can receive a large kick; so their velocities can be larger than
typical velocities of the stars in their galactic neighborhood, a;
the pulsar proper motion can be important. Of course, if the m
tion is uniform, this only produces a constant shift in the frequenc
However, accelerations due to gravitational fields can be imp
tant. In particular, many pulsars are found in globular clust

In this case, the acceleration due to the Newtonian gravitatio

. 1.
F(E) = fo+ fol' = t0) + 5 folt' — 2+, (7.159)
here ¢/ is the resampled time given in eq. (7.149), i.e. the time of arrival
f the signal in the Solar System Barycenter (SSB),5! and t} is a fiducial
alue, such that ®(¢,) has the value ¢o. Then

®(t) = o + 27 | folt' — t5) + wx%\ —t5)% + w?@\ — )%+ .. M )
(7.160)
f course, a truncated Taylor expansion is useful only if the higher order
erms are small corrections during the whole observation time T'. This is
ot the case for a neutron star in a binary system, which rather performs
circular motion around the center-of-mass of the system, so eq. (7.160)
nly applies to isolated neutron stars.
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m~>ogm:3 the precise redefinition is

=gy XOF

+ Ao — Aso,

where Age and Agp are the solar sys-
tem Einstein and Shapiro time delays
discussed in Section 6.2.2. However,
given the detector and the source posi-
tions, the Einstein and Shapiro delays
can be computed, as we did explicitly
in Section 6.2.2, and introduce no new
free parameter.
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A 3@3 enareful argument shows that
un 4w gales like TP, because the ap-
i D) ~ vorpworpT used
7.181) does not hold si-
4the right ascension

me used to take the same data. To have an idea of the computational
equirements consider that, using 107 s of data to search for periodic
Ws with frequencies up to 500 Hz, requires the calculation of a FFT
ith 101° points, which takes about 1 s on a teraflop computer (assuming
hat all 1010 points can be held simultaneously in fast memory), and we
eed one such FFT for each point of the parameter space. It can be
sstimated5® that a coherent all-sky search of T = 107 s of data for slow,
1d pulsars (7 > 1000 yr, fo < 200 Hz, i.e. the “easier” target) requires
E% one spindown parameter and 109 independent points in parameter
ace, while for young, fast pulsar (frequencies up to fo ~ 1 kHz, 7 as
w as 40 yr) three spindown parameters and 8 X 10?! points in parameter
ace are required. Then, even in the “easy” case, the analysis of four
nths of data would require three centuries on a teraflop computer!
quiring that the data analysis does not last more than data taking,
ne finds that for slow, old pulsars the data stretch cannot be longer
an ~ 18 days, while for young, fast pulsar the limit is less than one
ay. The disappointing conclusion is that, even if a detector can in
inciple take good data for months or years, a coherent blind all-sky
arch for pulsar using fully these data is impossible.

If our target is a given pulsar whose position, proper motion and spins:
down parameters are known to sufficient accuracy, the form of the sign
(7.158) is fixed. Then we can simply demodulate the signal defining
new variable t” as

.\. 0 ’ .\. 0

w\oﬁ )2 + 7 & —t)+..., (7.161
so that eq. (7.160) reads ® = ¢y + 2w fot”. We resample the detecto!
output with respect to this variable, and then all we need to do is
perform a single Fast Fourier Transform (FFT) on this resampled stretc
of data, of length T. The number of spindown parameters fy, fo,... t
be included to have sufficient accuracy depend on the source, and on th
observation time T'.

If however we want to perform a blind all-sky search, the proble
becomes quickly intractable with increasing observation time T'. In fa¢
our parameter space is given by the angles (85, ¢s) of the source and b
the spindown parameters fo/ fo, fo/fo, etc. Observe that fo itself doe
not contribute to the dimension of the parameter space; the resampli
of time (7.149) is independent of fo, while eq. (7.161) depends only o
the ratios fo / fo, fo /fo, - - ., and not separately on fo, fo, fo,-... This
a crucial advantage of the resampling technique. If, rather 5@5 resa
pling the detector output, we directly used the Wiener filtering for t
waveform given in egs. (7.158) and (7.160), then fo would be an ad:
ditional parameter to be searched, and the computational cost woul
increase dramatically.

Then, what we should do is to discretize this parameter space, and
each point of this parameter space we should perform the appropriat
demodulation (7.161) and one FFT. This procedure is referred to as
coherent search. Its drawback is that, if we want to take advantage
the large integration time, the mesh in the discretized parameter sp:
must become finer and finer when we increase T'. For instance, e
in the simplest case in which the spindown parameters are negligible
and therefore the parameter space is given only by the angles (6, ¢,
still the number of patches in the sky that we must consider is at le:
Npatches = 4m/(A8)? and scales at least as T4, see eq. (7.151).52

More generally, the number of mesh points depends on the kind
search that we perform. For instance, old pulsars are less demandi
than young pulsars of the same frequency, since their spindown rate
lower and therefore it can be taken into account using a larger mesh
the spindown parameter space. Similarly, we see from eq. (7.151) t
slow pulsars (say, fo < 200 Hz) are easier to analyze that fast puls
with fo ~ 1 kHz.

Since the time needed for data analysis grows with a large power
T, increasing T' we necessarily reach a point where the data analys|
would take the same time as the observation time T and beyond t
point it would quickly becomes many orders of magnitude larger th
the observation time. We can therefore take as a limit the conditi
that the time required by data analysis does not exceed the observati

" = Q IwOV

coherent searches

solution to the computational problem discussed above is to split
Hhe total observation time T into N stacks of length Tgrack, With T =
Tyack. We choose Tyack 50 that a coherent search over such a time is
mputationally feasible. So the output of each coherent search over one
ack is a collection of function A(f), one for each value of the parameter
ace. For each point in parameter space we then add the quantity
(f)|? over the N stacks. Since in this way the phase information
stween the different stacks gets lost, this is called an incokerent search.
‘we denote by Tyack the time needed to perform a coherent search on
stack of data of length Tyiack, the time needed for the full incoherent
arch is Tine = N 7Tstack, While the time needed for a full coherent search
er the whole time T is Tcon = (T/Tstack) " Tstack = N ™ Tstack, SO

1
Tine =~ Na-1 Teoh » AﬂHmwv

ere the power n, as discussed above, is determined by the kind of
sars that we are targeting. Since n is large (at least n = 5, even
Uhen no spindown parameters are needed, see Note 52), it is clear that
coherent searches have a huge advantage in terms of computational
st and, for a given observation time T, taking M sufficiently large, i.e.
tack sufficiently small, the computation becomes feasible.

From the point of view of sensitivity, the value of (S/N)? obtained
om & single stack of length Tysack is given by eq. (7.130) replacing T
Tutack. Adding A of these spectra the variance is reduced by 1/vVN vN
hd therefore, for an incoherent search, eq. (7.130) becomes

- (557
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535ee Brady, Creighton,
Schutz (1998).

Cutl

er and



384 Data analysis techniques

roduce a number of interesting candidate signals, for certain values of
he parameters. These points in parameter space can then be examined
ore thoroughly with a directed coherent search.

We can now compare the experimental sensitivity given by eq. (7.164)
ith the signal expected from a rotating NS, given in eq. (4.224). We
hen find that the maximum distance r which a detector can reach in a
lind full-sky search for periodic GWs from rotating neutron stars is

et

_ 1 s T
=7 Am:cgv & (7163

and the minimum amplitude detectable at a given S/N, eq. (7.134
becomes

1/2

(hohmia =1 (2422

where we have defined an efficiency factor

10~28 Hy~V/? T N\
r = 5.8kpc A v
" w\wCﬂoV 3x107s
o N , (7.166)
n={(5/ Vﬂlvﬁ“ . (100 A € v L. fo
7 10-6/ \10%¥kgm? ) \ 1kHz / °

which takes into account the desired level of the signal-to-noise rat
S/N, the average over the orbit of the source, which produces the fact
(F2)1/2, and the need to separate the data into A stack for comput:
tional feasibility.

In practice, beside being forced by computational requirements, in
herent searches are also necessary because a detector never has mont
and not even weeks, of continuous good data taking. There are alws;
interruption due to maintenance, period of higher noise level that m
be removed, etc. and the experimental precision that one has on the ti
at which data taking resumed is not sufficiently good to recombine
herently different stacks of data. The incoherent method, of course,
be applied even when the single stacks have not all the same durati
and when they are not consecutive.

When performing an incoherent search each stack is demodulated
discussed in the previous section, using a mesh of points sufficient
confine the searched signal into a single bin. The individual power sp
tra, before being sumimed, must be corrected for their relative frequent
drift using a finer parameter mesh suitable for removing the phase m
ulation over the whole observation period. The simplest implementat;
of this method consists in choosing stacks of about 30 min, so that t
Doppler effect in each stack can simply be neglected, and within a s
gle stack no demodulation is needed. In this case a period of 107
of data is divided into A ~ 5000 stacks, and the minimum detectab]
value (ho)min in eq. (7.164) is larger than in a coherent search by a fact ges.5* In the Hough transform, as a first step, rather than summing
N4 ~ 8. With the difference, of course, that a blind full-sky incohe p the power in the corresponding bins, we fix a threshold in each data
ent search of this type is computationally feasible while a blind full-sk ack. A bin is deemed “black” if the power in it exceeds the threshold,
coherent search is not. nd “white” if it does not. In the time—frequency plane obtained align-

Alternatively, one can choose longer stacks, say of the order of hg in frequency (with no correction) the various stacks, we therefore
day. These will need demodulation, but a relatively coarse mesh ave a set of black pixels, as in Fig. 7.12.
parameter space will suffice to concentrate the whole signal into a sing In the case of Gaussian noise, where large fluctuations are unlikely, it
bin. Then we combine the separate stacks using a finer mesh. Of cou ould in principle be more convenient to sum up the power of the corre-
the longer the stack, the higher is the sensitivity, but the higher is al ponding bins, rather than reducing all the information to a set of zeros
the computational cost. Incoherent searches can also be used as a fi white) and ones (black). However, the Hough transform is more robust
stage in a hierarchical search: an incoherent blind all-sky search in the presence of non-Gaussian noise and large occasional external dis-

he reference value 7 = 100 corresponds to a search for a total time T' =
x 107 s divided into stacks with Tygacx = 30 min (so M = 1.7 x 10%), a
factor 1/(F#)}/? = /5 as appropriate for interferometers, see Table 7.1,
nd a value S/N ~ 4. The strain sensitivity mw\ % has been normalized
the value expected for an advanced interferometer.

he Hough transform

s we have seen above, in incoherent searches the observation time is
ivided into stacks, where the phase modulation due to Doppler effect
nd spindown is either negligible (if Titacks S 30 min) or anyway rela-
vely easy to correct for, so that a GW signal, if present, falls into a
pgle frequency bin. When we compare different stacks, the position
frequency of the bin that contains the signal changes, because of the
oppler effect and of the spindown. For each point in the parameter
pace (05, ¢s, fo / fo, fo/ fo,--.) we can compute how the position of the
in should change and we can correct for it, using the resampling tech-
ique discussed in the previous section. In this way, for each point of
arameter spaces, the bins are “realigned”, and the power in correspond-
g bins is summed.

An interesting variation on this scheme is given by the Hough trans-
rm, which is a technique used for pattern recognition in digital im-
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541t was developed in 1959 by Paul
Hough at CERN, to analyze the tracks
of particles in bubble chambers, and to-
day is also used in astronomical data
analysis.
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turbances, which is the case in a real detector. Consider for instanc
the situation in which instrumental noise gives a very large spike in fre<
quency, during a relatively short period, e.g. in only one stack. When
..f summing the power, this single disturbance can give a large effect o
= the total sum, while collapsing all the information to black/white i
contributes only to a single pixel. This method can therefore be appro«
uiene  Priate when we search for a signal that is small, but is there during the
“msmx Whole observation time, and is embedded in a noise that occasional
can be much larger than the signal.
The next step is to perform a pattern recognition procedure in th
Fig. 7.12 The time-frequency get of black pixels, to see if some of the black pixels lie along a specifie
plane, ~ with bins of length y,ve To simplify the setting, suppose that we are searching for straigh
Ww M HN\WMM”% :wz nmmmzmwwm lines in the (¢, f) plane of Fig. 7.12. (The generalization to more 852@
Bins where the power exceeds a CUrVeS is Q.uzom@gm:%_mﬁmwm&&oaéma,v The set of all straight lines i
given threshold are marked in black. this plane is parametrized by two parameters (a,b), as t = af +b. Wi
denote by ¥ the manifold described by the parameters (a,b); in oy
example of straight lines of course & = R?, but the notation is mori
general. Given a black pixel, we can find the set of points in the manifol
3 that are compatible with it; for instance, in our straight lines example,
if a black pixel is centered at (¢1, f1), the straight lines consistent with if
masuck  are those that satisfy t1 = af; + b, and the corresponding submanifo,
of X is the curve b = af; — t; in the (a,b) plane. More precisely, sinct
the pixels in the (¢, f) plane have a finite resolution, we will rather g
i a bunch of straight lines in ¥. The transformation that, to each bla
] pixel in the (¢, f) plane associates a submanifold in X, is illustrat
sk graphically in Fig. 7.13.
7 In the absence of noise, the submanifolds in ¥ obtained in this w
from all the black pixels would have a non-empty intersection, whi
would define the point in parameter space compatible with the obs
vations. Of course, in the presence of noise the intersection of all t
curves will be empty. Still, we can try to recover the most probable val
of the parameters in ¥ as follows. First, we discretize the manifold
Let us call C; the surface in ¥ obtained from the first black pixel.
then assign +1 to all the bins in ¥ that belong to C;. We repeat t.
same for the second black pixel, adding +1 to the the bins in ¥ ¢
belong to Cz, and so on for all the N black pixels. In conclusion, we havi
— constructed a map that, to the set of black pixels, associates a histogra
in the parameter space 2.

In the GW detection problem, the manifold 3 becomes the paramet,
space (85, ¢s, fo/ fo, fo/ fo, . ..) and the straight lines of our example a
replaced by the curves in the (¢, f) plane that describe how f chang
with time because of the Doppler effect and of the spindown. The poinf
in parameter space whose number count is above a certain threshold a;
the candidates for a possible detection and can be further investigate
for instance with a coherent search.

7.7 Coalescence of compact binaries

, i sk The coalescence of compact binaries, such as BH-BH and NS-NS bina-

ies, is a particularly interesting signal for broad-band GW detectors.
This comes from a combination of two facts: first, we saw in eq. (4.44)
hat, in the last stages of the inspiral, a binary system can radiate away
n GWs up to a few per cent of its total mass. This is a huge amount of
energy, so the signal from an inspiral is quite strong, compared to most
other GW sources. Second, the inspiral phase can be tracked for many
cycles in a broad-band detector. We saw in eq. (4.23) that a ground-
based interferometer can follow the inspiral phase of a compact binary
system for O(10%) cycles. Thus, matched filtering can be very effective
or extracting this signal from the noise. From eq. (7.40) and the discus-
sion below it we see that, in order of magnitude, with matched filtering
‘we can dig into the noise and catch the signal from a coalescence, even
when the typical amplitude of the GW signal inside the interferometer
bandwidth is smaller than the noise floor by a factor nH / wv where N is
the number of cycles for which we are able to track carefully the signal
with our template. Thus, we can gain a factor as large as /2 100
in amplitude, if our template is so good that we can follow closely the
signal from the time it enters in the interferometer bandwidth until the
inspiral phase terminates and the two objects merge. Since the GW
amplitude is proportional to 1/r, a factor O(100) in amplitude means
that we gain a factor O(100) in the maximum distance to which we can
detect a source. For these reasons, we will see that interferometers have
the potential of detecting coalescing binaries up to distances of order
of hundreds of Mpc, and advanced ground-based interferometers could
teach a few Gpc.

To exploit this opportunity we must however be able to follow closely
the signal with a template. This means, first of all, that for a given value
of the parameters of the binary system (time of coalescence, masses,
ins, etc.), one must know the waveform accurately. We already quan-
tified this requirement in Section 5.6, where we found that we need
compute the post-Newtonian corrections up to 3.5PN order. As we
w in Section 5.6, these remarkable computations have indeed been
erformed. The second aspect is that we do not know in advance the
parameters of the system, and therefore we must scan a potentially large
parameter space.

To leading Newtonian order we computed the waveform in eq. (4.29),
nd the corrections in the restricted post-Newtonian approximation were
iscussed in Section 5.6. Combining these results with the general ex-
ression h(¢) = Fyhi(t) + Fxhx, we see that the output h(t) for a
inary inspiral, in the restricted post-Newtonian approximation, is

Toci]

=

: i that to each
(tiales & submanifold

frce .

x 2/3
h{(t) = A4 ﬁ@g cos[®( few(t)) + B0

2/3
+Ax T\,rwﬁ Sn[@ (e () + B0, (7.167)
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5% axplicit expressions for ®(fgw) and

Jew{t) up to 2PN were given in
eq. (5.273), and in eq. (5.270) or
(5.272).

56Recall also from Section 4.1.4 that,
for binaries at cosmological distances,
i.e. at a non-negligible redshift z, the
masses m; and mg must be multiplied
by (1 + 2), and the distance r must
be replaced by the luminosity distance
dr(z).

mqunermnﬁo_.m, the angles (6, ¢) change
in time because of the Earth’s mo-
tion. For a ground-based interferom-
eter, which follows the coalescence only
for 10~15 minutes, this dependence can
be neglected. For a space-borne in-
torferometer, instead, it must be taken
iuto account.

where, as discussed in Section 5.6.3, ®(fgw) and fgw(t) are known up #
3.5PN order.%® We have esplicitly displayed the arbitrary constant &
in the phase, equivalent to the arbitrary constant wy in eq. (5.265), an
we have defined

matched filtering, the maximum mismatch in arrival time that we can
tolerate between the real signal and our template could be, say, of order
ms. If one should analyze one year of data (3 x 107 s) computing a dif-
erent scalar product every 3 ms, for each value of ¢ one should perform
101 times the computation of the scalar product h(t; 6, t.), while we see

4 5/3 2
Ay = AQNSV ﬁi?&@

- = (7.16 at just a single FET does the job.>® Thus, the arrival time ¢. is not
T\ ¢ 2 ally part of the parameter space that must be searched. Figure 7.14
4 (GM, 5/3 ows the result of a simulation in which the signal corresponding to
Ax = r A 2 v Fx(6,¢)cose. (716 e coalescence of two BHs, each with a mass of 10Mg, at a distance

5f 150 Mpc, is injected into the noise of the VIRGO detector. Perform-
g the Fourier transform, we see that we have a spike in correspondence
ith the time at which this signal has been injected (in the figure, t. = 1,
arbitrary units).

Two more parameters that appear in eq. (7.167), which can be elimi-
hated analytically from the matched filtering procedure, are the ampli-
jude A and the phase ¢ of the signal. We already saw in Section 7.3
that the optimal filter is defined modulo an arbitrary constant, so the
verall value of the amplitude A does not enter when we search for the
mplate that maximizes the signal-to-noise ratio. The maximization of
he SNR with respect to ¢ can be performed analytically, writing the
mplate (7.170) in the form

Writing Ay = Acosar and Ay = Asino, with A = (A2 + A2)Y/2 an
tana = Ay /Ay, we can rewrite this as

2/3
p0 =A| =] esip i) 4l (rarg

with ¢ = ®; — .56 Thus, in the waveform enter the distance r to thy
source, its location, specified by the angles (#, ¢) which appear in th
pattern functions, the orientation of the orbit with respect to the line
sight (two angle, one of which is ¢, and the other identifies the axes wi
respect to which the plus and cross polarizations are defined), the re:
ence time ¢, at which the signal enters in the detector bandwidth (wh
appears through ®(t) and fgw(t)), the constant phase ¢, the masses
the two stars, and in principle also their spins (which we neglected
eq. (5.273)). So, in total, we have 15 parameters.” However, a numbe
of simplifications are possible, as we discuss in the next subsection.

h(t) = he(t) cosp + hs(t)sing. (7.172)
s(t) is the detector output, after maximization of the log-likelihood
nction over the amplitude A, according to eq. (7.70) we want to further
aximize

7.7.1 Elimination of extrinsic variables (R|s)?

2logA =
SN ()

(7.173)
The variables that can be eliminated from the parameter space are genel
ically called extrinsic. First, we observe that all possible shifts in ti
of the signal can be obtained at once with a single Fourier transforn
Consider in fact the scalar product (h{(d,t.)|s) between the output
of the detector and the template h(t; 8,t.) where, from the paramete;
6%, we singled out explicitly the arrival time ¢., defined as the time w
the hypothetical signal enters into the interferometer bandwidth, say
few = 10 Hz. The waveform h(t;6,t.) is obtained from h{t; 6,t, =
with a time translation, so if we denote by h(f; ) the Fourier transfor
of h(t;8,1.) at t. = 0, the Fourier transform of h(t;6,t.) at t. gener
is simply h(f;@)e?"ft. Thus, from the definition (7.46) of the scal
product, we have .

(hels) + (ols)ton g
(helhe) + (hsths) tan® @ 4 2(helhs) tan g

his expression is easily maximized analytically with respect to tan¢p.
he result is simpler if we introduce two new templates

(7.174)
(7.175)

hy = hecosdy, + hssingy ,
hg = hecosdg + hssingg,

vhere the angles ¢, and ¢, are chosen so that h, and hyq satisfy (hplhq) =
ie. they are orthogonal with respect to the scalar product (1)
terms of these orthogonal templates the likelihood function, after
erforming the maximization over the amplitude A and over the phase

’

) m* w% z .
(h{0,t.)]|s) = 4Re \ df % it (7.1 p, takes the simple form , )
0 n _ (hpls)? | (hqls)
. 2logA = 5 + AT (7.176)
which is just the Fourier transform of h*(f;0)5(f)/Sn(f). Thus, pe (holhp) ~ (halha)

forming a single FFT we can immediately locate the value of ¢, whi
gives the highest signal-to-noise ratio. This is of course of great prac
cal importance. Typically we can expect that, to perform efficiently t

Therefore, the maximization with respect to the remaining variables is
equivalent to maximizing the sum in quadrature of the outputs of two
natched filters. In the absence of signal, the signal-to-noise ratio p

7.7 Coalescence of compact binaries 389

58 More precisely, if we have a time se-
ries with N samples, computing the in-
tegral which defines the scalar product
has a computational cost O(N), and if
one had to repeat it for all possible ar-
rival times, the overall cost would be
O(N?). With a single FFT, instead,
the computational cost is O(N log N).

10 oo e s

SNR {amplitude)

Arrival time

Fig. 7.14 The result of a simulation
in which the signal due to a BH-
BH coalescence, each with a mass of
10Mg, at a distance of 150 Mpc, is
injected into the noise of the VIRGO
detector. The arrival time is located
from the position of the spike in
the Fourier transform (7.171), which
here is at t. = 1. (Courtesy of A.
Viceré.)

Rayleigh Distribution

30 0 s T e

SNR.

Fig. 7.15 The distribution of the
signal-to-noise ratio, in the simula-
tion of Fig. 7.14. (Courtesy of A.
Viceré.)
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591t should also be observed that, for
coalescing binaries, non-Gaussian noise
should be much less important than for
short bursts, since it should be much
easier to have an impulsive disturbance
that simulates a short burst, rather
than a noise that lasts for about 15
minutes, simulating for all this time the
behavior of a chirping signal.

mo>2=w:$ the expression that we used
for hy. and hx assumes a given choice
of the axes with respect to which the
plus and cross polarizations are defined,
which is related to the orientation of
the orbit, see page 296. Since a pri-
ori we do not know the orientation of
the orbit, this will in general differ by
an unknown angle 1 from the defini-
tion of axes that the experimenter uses
to define the pattern functions. Corre-
ipondingly, the expressions for A4 and
hy must be rotated as in egs. (7.24)
and (7.25), so the function Q is actu-
ally Q(0,b;0,9). However this ¥ de-
: i, being an orthogonal trans-
ion, does not affect that compu-
of {IQI?) performed below.

is therefore a random variable which follows the Rayleigh distributio!
(7.87), while in the presence of signal it is a non-central x? distributio
with two degrees of freedom. Indeed, we see in Fig. 7.15 that, in th
simulation of Fig. 7.14, p follows a Rayleigh distribution (except,
course, for the presence of the single spike with S/N = 8 at £, = 1).%¢

7.7.2 The sight distance to coalescing binaries

The Fourier transform of the chirp amplitude, to Newtonian order, hag
been computed in Problem 4.1, while the result in the restricted P
approximation, up to 2PN order, is given in egs. (5.274) and (5.275)
Then we find, for the Fourier transform of h(¢) = hy Fy + hy Fx,

. 5\ 1
Svu@ T

where

GM, 5/6 _ ]
=) Q.40

(7.177

14 cos?.

QA%, ﬁqhv ”Nﬂ.TA%uﬁv 9

The phase ¥ is just the quantity denoted ¥y in eq. (5.275), and th
relative factor 7 between the two terms in Q is due to the fact th
Uy = ¥, + (/2).%° Plugging this expression into eq. (7.51), we ¢
write the signal-to-noise ratio for a coalescing binary as

2 2 5/3 Fraax -7/3
(%) =572 (ZE) wesar [ ol

™ T C 0 MSA.\. v
where fimax is the value of the GW frequency when the inspiral ph
terminates and the two stars merge. An estimate of fiax 1S fmax
2(fs)isco, where (fs)1sco given in eq. (4.39), and the factor of 2 is vali
as long as the emission is dominated by quadrupole radiation. For
wave coming from optimal direction (e.g. F. = 1 and Fy = 0),
with optimal value of the inclination of the orbit (cost = 1), the fun
tion Q(0,¢;¢) = 1. However, a more appropriate reference value f
|Q(8, ¢;1)|? is given by its average over all possible directions and inc
nations. Using (F2) = (F2) = 1/5 for interferometers (see Table 7.
we get (|Q(0, ¢;0)|*) = (1/5)g(c), where g(¢) was defined in eq. (3.33
and its average over the inclination ¢ is 4/5, see eq. (4.10). Therefor

+iFy(0,¢) coss. (

(7.17

19, 6:0P) 2 = 2,

where here (...) denotes the average over the angles and over the inclis
nation. Then we rewrite eq. (7.179) as

S _2(5\"* 1 ¢ (GMNY° (QE,0)2)
N 5\6 23 %v (2/5)
fmox  pery3] Y2
f
df —— .
X \o NG

This relation can be inverted to give the sight distance dsignt, i.e. the
maximum distance 7 at which we can see a binary coalescence, once we
have chosen a given threshold for §/N,5! assuming an average direction
and inclination,

1/2
(S/N)~2

2 /5 1/2 ¢ GM, 5/6 Fraax .\.lQ\w
dsight = 5 Amv 75 A 3 v \o df 0]

(7.182)

We will see in Chapter 9 the numerical values that can be obtained for
dsight 2t existing and advanced interferometers.

It is instructive to verify from these expressions that, in order of mag-
nitude, for a coalescing binary the matched filtering procedure gives a
gain ~ >\w /2 Ty this end, we assume that S, has a constant value Sy
between a minimum frequency fo and fmax, while it is essentially infi-
nite for f < fo. Then, neglecting all numerical factors (and using for
simplicity units ¢ = 1, and the notation M = GM./c?), we can perform
the integral in eq. (7.181), and we get

5 1 —1/2 ;—4/3
i H\Mgm\mmo \ 0 .

N
Trom egs. (7.167) and (7.168) we see that the GW amplitude is of order

(7.183)

1
ho~ 2/315/3

(7.184)

hile, from eq. (4.23), the number of cycles spent in the interferometer
andwidth is
. Ny~ M335553 (7.185)

Using eq. (7.184) to eliminate r from eq. (7.183), and eq. (7.185) to
eliminate M, we get
s ho

—_—

N (foS0)'/?
which shows indeed that, in order of Emwi?&? the signal-to-noise ratio
(in amplitude) is larger by a factor N2/? than for a burst with a char-
acteristic frequency fy (compare with eq. (7.107) with 7y = 1/fo and
fumax = fo). Of course, a more precise estimate requires the real form
of S,(f), as well as the exact computation of the integral in eq. (7.181).
This shows explicitly how the matched filtering procedure allows us to
dig deeply into the noise floor, as we discussed already on page 344.
Consider in fact the situation in which, after tracking the signal by
Nz > 1 cycles, we finally get S/N of order one, so we begin to see
the signal. According to eq. (7.186), this means that ho/( foSo)/? was
of order 1/N7 /2 However, ho/(foSo)'/? is the “instantaneous” value
“of the signal-to-noise ratio, i.e. the value of S/N over a single cycle.

N2, (7.186)
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61Recall however from page 359 that
the signal can combine with the noise
either in a constructive or in a destruc-
tive way, so the output p of the interfer-
ometer is a random variable whose av-
erage is S/N and which follows, in the
presence of signal, a non-central x? dis-
tribution with two degrees of freedom.
Therefore, at any distance 7, there is a
probability of missed detection, and the
fact that a source is at 7 < dgignt does
not mean that it will be certainly de-
tected. Conversely, there is also a non-
zero probability that the signal from a
source at 7 > dgignt combines with the
noise so that its S/N raises above the
threshold.
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62 e precise computation of the er-
rors on the parameters can be done us-
ing the explicit expression of the wave-
form to evaluate the Fisher information
matrix defined in eq. (7.74), and then
we can compute the errors on the pa-
rameters as in eq. (7.75). Using the
waveform with the post-Newtonian cor-
rections to the phase and assuming a
detection with S/N = 10 one finds
that, if one knew that the spins of
the star are negligible, then M, could
indeed be measured with a precision
of 0.01-0.1%, while the reduced mass
ft, which enters in the post-Newtonian
corrections, could be measured to 1%.
However, one in general has no a pri-
ori information on the spins, and the
measurements of masses and spins hap-
pen to be strongly correlated. This
degrades the accuracy on the mass
veconstruction, so one finally obtains
AMy /Mo ~ 0.1-1% (which, however,
ia 8t A quite remarkable accuracy) and
10 ~ 15% for NS-NS and NS-

dtars, the smaller is the
in the detector band-
siloscence takes place
¢ 80 the precision

Therefore, the integrated signal-to-noise ratio provided by the matched
filtering procedure can be of order one or larger, even when the instans
taneous signal is deeply buried into the noise.

Finally, an important issue is the precision that can be obtained in the
reconstruction of the source parameters. In particular the chirp mass
M_,, that appears in the phase of the waveform, can be estimated ver
precisely, since the phase can be followed accurately for N cycles. Thus,
any mismatch AM, between the true value of the source and the valug
used in our template will be amplified by a factor N, and we could
expect that

.8.1 Characterization of stochastic backgrounds

sing the plane wave expansion (1.58), we can write

hij(t, %)= \ df \ Paka(f, i) ef(h) e 2mift=hx/e),

A (7.188)
e work in the TT gauge, so hi = 0 and &7hy; = 0. The tensors e} (1)
e given in eq. (1.54). A stochastic background is a superposition of
aves with all possible propagation directions i, therefore the iﬂ.“:omm
j above take the values 1, 2, 3, contrary to the case of the GWs emitted
om a single far source, where we could label the GW in the TT gauge
hap With a, b, taking the values 1,2 and labeling the two directions in
he transverse plane. A stochastic background is defined by the fact that
he amplitudes ha(f, ) are random variables, characterized statistically
v their ensemble averages.®®
We will make the following assumptions on stochastic backgrounds of
Ws.

AM, 1

M, TN

Given that at a ground-based interferometer N, can be of order 103—10
see eq. (4.23), this would give a rather remarkable accuracy AM./M,
107%~1072. As for the reduced mass u, it appears in the 1PN correctio
to the phase, which are smaller by a factor O(v?/c?) than the leadi
term, so it can be measured less precisely.5?

o The background is stationary. This means that all correlators de-
pend only on time differences, and not on the absolute values of
time. So, for instance, the two-point correlator (h ABha ) can
depend only on t — ¢/, and not separately on ¢ and t'. Hu.m,ocﬁou
space, this means that (h%(f)ha (f')) must be proportional to
8(f = f'). This assumption is certainly justified. For a dwowmwo:a.m
created in cosmological epochs, the typical time-scale on which it
can change substantially is of the order of the age of the Universe
(for instance, its spectrum changes because it is redshifted). Dur-
ing the duration of the experiment, which is at most a few years,
it is very difficult to imagine that the properties of the background
could change appreciably.® .

o The background is Gaussian. This means that all N %owsn cor-
relators are reduced to sum and products of the two-point cor-
relator {ha(t)has(t')) (and of the vacuum expectation <&.cm .3 >.v
that however, as we have seen, can be set to zero). Gaussianity is
rooted in the central limit theorem, that states that the sum of a
large number of independent events produces a Ombmmwww_ mﬁomwmm-
tic process, whatever the probability distribution of the individual
events. This assumption is therefore expected to hold to a very
good accuracy for cosmological backgrounds. It would not hold
for astrophysical backgrounds, if the number of sources ﬁwﬁ.u con-
tribute is not that large, and we are on the verge of distinguishing
the individual contributions. In this case, further information can
be extracted from the higher-point correlators.

The stochastic background is isotropic. Experience with CMB in-

dicates that the early Universe was highly isotropic and, for the

photons, temperature fluctuations across the sky are at ﬂ.rm level

AT/T ~ 1075, It is reasonable to expect that a stochastic back-

ground of GWs of cosmological will also be in a first approximation

7.8 Stochastic backgrounds

In 1965 Penzias and Wilson discovered that the Universe is permeat
by the Cosmic Microwave Background (CMB) electromagnetic radiatio:
This radiation is a relic of the early Universe, and the microwave photo:
that compose it decoupled from the primordial plasma about 3 x 1
years after the Big Bang, and since then they have been propagati
essentially freely. This discovery, providing direct evidence for the B:
Bang, was one of the most significant in the history of cosmology.

Since then, the CMB has been subject to deep investigations. We no
know that its spectrum is a perfect black-body (in fact, the most perfe
black-body spectrum existing in nature). This background is, to a firg
approximation, isotropic. The observation by the COBE satellite |
temperature fluctuations over the sky, at the level AT/T ~ 107%, ha
been one of the most important discoveries in cosmology in the lag
decades, and the detailed investigation of the multipole moments of thes
anisotropies by COBE and various other experiments, and particularly
by WMAP, has opened up the field of precision cosmology.

There are good reasons to expect that the Universe is permeated also
by a stochastic background of GWs generated in the early Univers
Furthermore, a stochastic background of GWs can also emerge from thi
incoherent superposition of a large number of astrophysical sources, to
weak to be detected separately, and such that the number of sourc
that contribute to each frequency bin is much larger than one.

The mechanisms that can lead to the production of stochastic G
backgrounds in cosmology and in astrophysics will be examined in deta
in Vol. 2. Here we discuss how to characterize such a background i
general, and what are the optimal strategies for its detection.
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63 An ensemble average is the average
over many copies of the system. Our
system is in this case the Universe and
we do not have many copies of it! Of
course, the ergodic assumptions must
be used here, and the ensemble aver-
age is replaced by a temporal average,
compare with Note 3 on page 337.

645t ationarity also implies that (ha(t))
is a constant so, even if it were non-
zero, it would just contribute to the
vacuum energy density. As far as we
are interested in GWs, that is in the
time-dependent part, we can therefore
set (ha) =0.
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isotropic. Of course, after a first detection of a GW background;

it will be extremely interesting to investigate its anisotropies an

therefore to give up this assumption. In particular, in a cosmas
logical background we must expect a dipole term, dominated b
the Earth motion in the rest frame of the CMB, while higher mu}

tipoles could give extremely interesting information on the ear}
Universe.

We might have to give up completely the assumption of isotrop

when we study stochastic backgrounds of astrophysical origin.
particular a background of galactic origin will not be isotrop
but rather it will be more intense when we look in the directi
of the galactic plane, just as the electromagnetic background d

to galactic sources gives its characteristic appearance to the Mil ¥

Way. We will in fact discuss in Vol. 2 an example of this type, t
background created by galactic white dwarf binaries.
Weaves coming from different directions should be uncorrelated,

?. (f,8)has(f, 1)) should be proportional to a Dirac delta ov
the two-sphere, defined as

8%(f, ") = §(¢ — ¢')8(cos 8 — cos'),

where (8, $) are the polar angles that define f. Isotropy impli
that the proportionality constant must be independent of fi.

e Finally, we assume that the background is unpolarized, as it
natural both in a cosmological context and if it is the result of t
m:@m%o@;wou of many different astrophysical sources. This mea
that (h%(f, A)ha (f',8')) must be proportional to d44 and t
proportionality coefficient must be independent of the polarizati
index A.

(7.18

Under these assumptions, a stochastic background of GWs is uniquely

characterized by a single function Si(f), defined by

s aia (s = o7 - ) T 0H 5 Ls, ).

daar

The function Sy (f) is called the spectral density of the stochastic bac
ground, in analogy with the spectral density of the noise defined
Section 7.1. Just as for the noise spectral density, we use the conve
tion that Sp(f) is single-sided. It has dimensions Hz~! and satisfi

Si(f) = Sn(—f). The factor 1/(4x) in eq. (7.190) is a choice of moHwa
ization such that

| s 1
[ ERa Fa s mha (7 80) = 5(F - F)ban25n().
where, as usual, d’h = dcosfdp. We see that the factor 1 /2 in thi

definition of S, (f) has been inserted so that Si(f) is normalized in t
same way as the single-sided spectral density of the noise, see eq. (7.6

(7.19

Using eqs. (7.188) and (7.190), as well as >_4 €
from the normalization (1.55) of the polarization tensor ej;, we get

A A i
e =4, M\Eow follows

o0

(@5 @) =4 [ drSu(h)- (7192)
0

he sum over 1, j is understood, and h;;(t) = hi;(t,x = 0). The spectral
ensity of the signal, Si(f), is the quantity that allows us to perform a
irect comparison with the noise in a detector, which is characterized by
(f). However, to have a physical understanding it is much more con-
enient to think in terms of the energy density carried by the stochastic
ackground. According to eq. G.Hmmvv this is related to hy; by

Q:E:v (7.193)

Pgw = wwaQ
n cosmology there is a very natural unit of energy density, that is,
he energy density needed for closing the Universe. This critical energy
ensity is

3c?H?
= 7.194
Pc = mﬁ.Q s A v
here H, is the present value of the Hubble expansion rate. As we

nentioned on page 194, the value of Hp is usually written as Hy =
0x 100 km s~ Mpe~!, where ho parametrizes the existing experimental
certainty and is called the normalized Hubble expansion rate. The

‘most recent determinations give hg = 0.73(3). Numerically,

pe 21688 x 1078h2  ergem™. (7.195)

Normalizing pgw t0 pe, the intensity of a stochastic background wm grav-
tational waves can be characterized by the dimensionless quantity

Qgw = mws . (7.196)

Using eqs. (7.192) and (7.193), the energy dénsity can be written mw
an integral over dlog f of some spectral density, that we denote by®®

pov= [ dloe) 5% (7.197)
We also define
Qe (f) = Mn MWM\ (7.198)
50 Qg in eq. (7.196) is related to Qgw(f) by®
Qgw = = d(log f) Qgw(f) - (7.199)

f=0
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S5 There is a slight abuse of notation
here. Of course pgw, on the left-hand
side of eq. (7.197), is independent of the
frequency, so its derivative with respect
to f, or to log f, vanishes. On the right-
hand side, dpgw /dlog f is not the deriv-
ative of pgw Wwith respect to log f, but
just a notation for the spectral density
of pgw, which stresses that it is the en-
ergy density contained in a logarithmic
interval of frequency.

66 ere again there is a slight ambigu-
ity in the notation, because we use the
same symbol {gw for the normalized
energy density, on the left-hand side of
eq. (7.199), and for its spectral density,
on the right-hand side. This notation is
however standard in the GW literature,
and we will conform to it.
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quzmo_.ﬁcbmnm_%n we sometime use hg
also to denote a GW amplitude. Since
the reduced Hubble constant hg will
only appear in the combination rmbwi.
no confusion is possible.

The fact that we consider the energy per unit logarithmic interval
frequency, dpg./dlog f, rather than dpgy/df, is useful because in th
way Qgw(f) is dimensionless.

m/.\md if the experimental error on the Hubble expansion rate is b
coming smaller and smaller (just a few years ago values of kg betweel
0.4 and 1 where considered possible), still it is not very convenient
normalize pgy, to a quantity, p,, which is uncertain: this uncertaint
would appear in all the subsequent formulas, although it has nothing
do with the uncertainties on the GW background itself. Therefore one
rather characterizes the stochastic GW background with the n,ﬁmwsa
h3Qgw(f), which is independent of hg.57

We now compute the relation between Sy(f) and hfQe. (f). As di
cussed in Section 1.4.3, the brackets in eq. (7.193) denote a time averag
However (under the ergodic assumption, see Notes 3 and 63), this is jus
the ensemble average used above. We can then substitute the plane wav
expansion (7.188) into eq. (7.193), and compute the ensemble averag)
using eq. (7.190). The result is

As we will see in Vol. 2, this equation is useful in particular when one
computes the production of a stochastic background of GWs due to am-
plification of vacuum fluctuations, since this computation gives directly

.8.2 SNR for single detectors

he comparison of egs. (7.6) and (7.191) makes it clear that an isotropic
ochastic background of GWs is seen in a detector as an additional
urce of noise. This poses an important conceptual problem in the
entification of a stochastic GW background. In practice what will
happen is that, after a careful modeling of the detector and of its noise
urces, one would expect to have a certain value of the spectral den-
sity of the noise, S(f). When the detector is turned on, one measures
2(t)), where as usual s(t) = n(t) + h(t), with n(t) the noise and h()
e response of the detector to a GW signal. If one observes that (s(t))
larger than expected, the crucial problem is bow to tell whether this
really due to a GW background or, more trivially, to some source
£ noise that has not been adequately accounted for when estimating
(f). Similar problems were faced in the discovery of the cosmic mi-
crowave background; Penzias and Wilson found an excess noise in their
ntenna (a horn reflector that was meant for satellite communications)
nd worked hard for one year in order to exclude all possible sources of
errestrial and astrophysical noise, before writing a short paper with the
‘modest title “A Measurement of Excess Antenna Temperature at 4080
¢/s”, and concluding “From a combination of the above, we compute
he remaining unaccounted-for antenna temperature to be 3.5 & 1.0 K at
080 Mc/s”.

To cope with this problem, it is clear that in the search for stochas-
ic backgrounds of GWs with a single detector one must set at least
relatively high threshold on the signal-to-noise ratio; for instance, a
ignal-to-noise ratio S/N =5 on the amplitude could be a typical choice
while lower values of S/N could be used for the only purpose of putting
pper bounds). Further handles could come from an anisotropy of the
tochastic GW background, if it is due to unresolved galactic sources,
ince this would produce 2 sidereal time modulation due to the motion

2 [f==
Pew =gz o d(log f) F(27)*Su(f). (7.200
Comparing with the definition (7.197) we get

dpgw  wC?

dozf ~ 3G F2Su(f),

and

2
Qgo(f) = w|~ww. F25u(F)- (7.20;

Finally, it is interesting to express A2 (f) in terms of the number
gravitons per cell of the phase space, n(x, k). For an isotropic stocha
tic background n(x,k) = n; depends only on the frequency (which j
related to the momentum k by |k| = Aw/c = 2xhif/c), and not on th
direction k. Then, writing d®k = |k[?d|k|dQ — 4n(27h/c) f2df, an
df = fdlog f, and considering that a graviton of frequency f carries
energy fuw = (27 f), we have

Paw = 2 @ R(2rf)n f the detector. Another handle is the possibility that the dependence

(2mh)3 s £ the excess noise on the frequency is found to be in agreement with

_16m?R [ " ome theoretical prediction from a given cosmological or astrophysical
T3 \o d(log f) f*nys, mechanism.

To compute the minimum value of h3Qgw that can be measured at a

where the factor of 2 in front of the integral is due to the two helicit; given S/N, we observe that, if there is no signal, we have (see eq. (7.12))

states of the graviton. Therefore

Apew 16724

_rew _ - - 4
dogf - & Wi

{>°)
@) = ) = [ arsul), (7.206)
while, if a stochastic GW background is present, there is also a con-
tribution from h(t). For each propagation direction fi we can write

h(t) = hyFy + hy Fx, and therefore, taking the ensemble average and

and

4
o 30(36) ()
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58 Observe that here S/N is the signal-
to-noise ratio with respect to the GW
amplitude, just as we have defined it
for bursts, coalescence and periodic sig-
nals. For stochastic backgrounds, what
Is actually measured is an energy den-
#ity, and it make sense to introduce the
signal-to-noise ratio with respect to the
wiorgy density, which is quadratic in
the amplitude. If one prefers to reserve
the notation S/N for the signal-to-noise
- #ake i onergy, then on the left-hand
oabde of eq. (7.213) one must write S/N
B than (8/N)2

averaging also over i and over the polarization angle v, £ course the integration time T, which enters through Af, canceled

d2h dy 4?1 dyp eq. (7.213). Increasing the integration time, we decrease the size of
An o C.pmv = A \ T 5 Nu.wv ?w + awv. (7 he bins and therefore the noise in each bin, but we equally decrease
Tem he signal present in each bin. Therefore, in a single detector, as far

the signal-to-noise ratio is concerned, there is no gain in integrating
Wo signal in time. Either the signal stands out immediately as soon as
e switch on the detector, or it will always remain below the noise. If
owever the signal stands out, integrating it for a longer time we get a
nore detailed resolution of its frequency dependence.

In conclusion, the minimum value of Sp(f) measurable with a single
etector having a noise spectral density Sa(f), at a given level S/N of
ignal-to-noise ratio in amplitude, is

where we used the fact that the angular averages of Nu.w and of F2
equal, see eq. (7.35). For an isotropic background, the ensemble avera
(h?) that appears on the left-hand side of eq. (7.207) is independen
of the angles i and @, so the angular average gives one. The term o
the right-hand side of eq. (7.207), instead, can be written in terms
Sr(f) using eq. (7.192) and observing that, for any given propagatio
direction, we have h;;h% = 2(h% + h%). Then

o
h2) = o(F2 \ SN |
) =242 [ @ suto), (720 (51l = Sn(H L (7214)
where, with an abuse of notation, the brackets in (k%) denote the ex d correspondingly the minimum detectable value of Qg is
semble average while the brackets in (F7) denotes the average over d? 472 (S/N)?
W,EW &W.w In mnm. (7.37) w\m have defined the angular efficiency factg [Qgw (Nmin = 3H2 £25n(f) F (7.215)
= (F?) + (F7) = 2(F%), whose value for various detectors are giv 0

in Table 7.1. In particular, F = 2/5 for interferometers and F' = 8/

for resonant bars. Then very important feature of this expression is the factor f3. It tells us

at, if one is able to reach a given level in Sn(f) at low frequencies, it
ill be possible to reach a much better sensitivity in Qgw(f) compared to
hat can be obtained with a similar value of S,(f) at high frequencies.
f course, the experimental problems that one has to solve in order to
each a given value of S,(f) depend very strongly on the frequency f.
owever, at f = 10~% Hz, the space detector LISA aims at reaching
, strain sensitivity S2(F) = 4x 1072 Hz~1/2, while a ground-based
nterferometer at f = 107 Hz has ,m.w\uqv = 4 x 1072 Hz %, as we
il see in Chapter 9. Therefore, moving from f=12Hzto f =
0~3 Hz, we lose only four orders in magnitude in S..(f), but we gain a
actor (102/10-3)3 = 10'® thanks to f®. Therefore, it is much easier to
cach a small level for [Qgw(f)]min at low f rather than at high f. The
ther important question is in what frequency range should we expect
hat cosmological or astrophysical mechanisms produce an interesting
alue for Qgw(f). As we will see in Vol. 2, there is a large variety of
ossible mechanisms, which can produce stochastic GW backgrounds
verywhere from f = 107*® Hz up to f = 10° Hz. Their detection

therefore easier when they are large at low frequencies, since then
comparatively high value of the noise spectral density S, (f) can be over-
compensated by the factor f3, and becomes more and more difficult as
e go to high frequencies. Numerically, with normalizations useful for
SA, eq. (7.215) gives

W0 =P [ a5 (7.20

0
So, in the presence of signal,
(s*() = (n*(1)) + (R*(2)) :
= \o df [Sn(f) + FSu(f)] - (7.21

Therefore, if a stochastic background is present, one simply observes th
.A.wm vi is higher than the value expected from the noise, everywhere g
.E.mﬁ in some frequency range. More precisely, we can compare the outp
with the expected value of S,(f) in each frequency bin (with bins

size Af = 1/T after an observation time T'). To take the binning intg
account, we replace

\&S&lMﬁgﬁr

and

JEXGLED IR,

The signal-to-noise ratio in each bin is therefore®®

g\? 2 12 f ? i
Sh(fi W min = 1. B =
Amv =F %Ww‘w% a0 (£ )lmin = 1.1 310 Tamﬂv 4x 10-21Hg /2
_ Se(fe) 1/v5\ (S/N\?
5h) \ =% Alllm v . (7.216)
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Using normalization factors appropriate for ground-based interferom

ing eq. (7.21), we can write the GW signal iy in the k-th detector as
ters, we rather have

hi(txk) = \

A=, x ¥ T

(>}

d \ d®8 ha(f,B) e 2R/ FAGR)
M o0

(7.218)
here F* are the pattern functions of the k-th detector and xy is its
cation. As always, the size of the detector is taken to be much smaller
an X, so we can neglect the spatial variation of the GW over the
xtension of the detector. Passing to the Fourier transform, we have

. J; 3 gL/
heQew in =0.12 n
[ho (Hlemin =0 Auoo va 4 x 1028 Hz—1/?

() ()

F 5 )
In both cases we used a rather high value of the signal-to-noise ratig
as a reference value, S/N = 5, according to the discussion above. T
huge difference between the value h3Qgw ~ 10722 in eq. (7.216) and t
value h2Qgw ~ 0.1 in eq. (7.217) is due to the fact that LISA can re
a value of S, not far from that of ground-based interferometers, at
much lower frequency.

As we will see in Vol. 2, no cosmological or astrophysical backgroun
of GW is expected to exceed hZ{lgw(f) ~ 107°, independently of tl
frequency. Therefore eqs. (7.216) and (7.217) tell us that LISA has
extremely good sensitivity for stochastic backgrounds of GWs, w!
ground-based interferometers, used as single detectors, do not reach
interesting level for stochastic backgrounds. However, having at
disposal more than one ground-based detector (interferometers or ba

we can correlate their outputs, and the sensitivity improves dramatical
as we discuss in the next section.

hi(f) = M \ @2 ha(f, B)e2m BRI/ EA(R) (7.219)

A=4,%

here we denote hz(f,xx) simply as hi(f). To correlate the outputs
1(t) and sa(t) of the two detectors we define

T/2 T/2

Y = dt dt' s1(t)s2(tHQE — 1), (7.220)

-T/2 J-T/2
here T is the total observation time (e.g. one year) and @ a real filter
ction, analogous to the function K (t) in Section 7.3. ¥ is our signal,
nd we want to maximize its signal-to-noise ratio.
We limit ourselves to functions Q(t — t') that fall rapidly to zero for
arge |t — ¢/|. Passing to the Fourier transforms, we get

v — \+oo &.\.&\.\&.\5 %ch _ N:VQHA.\; _ %\\VWHA.DWMA.\.J@A.\.:V , AN.MMHV
7.8.3 Two-detector correlation

Optimal signal-to-noise ratio

T/2 ]
or(f) = \ di eIt
—T/2
With a single detector, it is impossible to adapt to stochastic ba sin{w fT) 299
grounds the matched filtering technique that we studied in Section = llﬂ&ﬂl > (7.222)

The reason is that, to perform the matched filtering, we need to know t|
form of the signal, but for stochastic backgrounds the GW signal hf
is an unpredictable randomly fluctuating quantity, just like the noi
n(t). However, if we have two detectors, we can use a modified form
matched fltering in which, rather than trying to match the output of
single detector to a predetermined signal h(f), we match the outpw
one detector to the output of the other.

To implement this idea we proceed as follows. We write the outp
sk(t) of the k-th detector as si(t) = hx(t) + ni(t), where k =
labels the detector. Observe that the scalar output hi(t) depend
general on the detector, because different detectors can have a differe
location and/or a different orientation and therefore a different pat
function. We are interested in the situation in which the GW si
hi(t) is mauch smaller than the noise ng(t), which is the realistic situa
for all ground-based detectors, as we have seen in the previous sect
Multiplying both sides of eq. (7.188) by the detector tensor DY 4

d becomes a delta function in the limit fT' — co. Evenona relatively
ort stretch of data with, say, T = 103 s, at f = 10 Hz we have
T = 10%. Over the whole useful bandwidth of ground-based detectors
e can therefore replace dr(f) by a Dirac delta, and eq. (7.220) becomes

+oo x

F\&WHS@S@S. s.ﬁwv
-0

ecall that, in the signal-to-noise ratio S/N, S is defined as the ensemble

verage value of Y when the signal is present, while N is the rms value of

when the signal is absent. Then, assuming that the noise in ﬁ.rm ﬁ.éc

etectors are not correlated (and averaging also over the polarization

gle ),
+oo - - -
5= \ df (R (Hha( ) G(F)
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e two dutectors of the same type
thils e 3 orlent them in the same
L wo-intorferometer correla-
are taken to cm along the

twoen o bar afd s wi n?&::;a? we
seo from the form of the pattern func-
tions given fn Table 7.1 that the opti-
wmal correlation 18 obtalned aligning the
longitudinal axis of the bay with one of
the arms of the interfarometar,

his definition, y(f) = 1 if the separation Az = 0 and if the detectors
are perfectly aligned. However, the use of I'(f) is more convenient when
Wwe want to write equations that hold independently of what detectors
interferometers, bars, or spheres) are used in the correlation.

We now find the optimal choice of the filter function Q(f) that max-

”\+00 df M\&mﬁ&ui &@ lwﬁ&%Am.xHIm~.XnV\n

AA7

< P (i ) F (85 9) (R4 (f, e? (£ Q). (7224

Using eq. (7.190), together with 6(0) = WA\,WN dt = T, this becomes mizes the signal-to-noise ratio. We need to compute
T [% ~ 2. [(Y2) - (V)2 (7.229
=3 [ #surmaw, (o) § V=100 )
- [ aaran@ )
where we have defined —oo

x (a3 (A2 (£ ()75 (F)) = (A3 (R (1) R ()7 (PN -

If the noise in the two detectors are uncorrelated, the mixed correlator
7% (f)R2(f)) vanishes, so the second term in brackets is zero, while the
first factorizes (7} (f)Aa(f)fa(f)R3(f)) = (AT (£ () (Ra(HAZ())-

Then we get

I(f) = \ &n \ M\m%@%@ se?i: Wv

(o

and Ax = Xp—X; is the separation between the two detectors. The fung
tion T' in called the (unnormalized) overlap reduction function. It ta
into account the fact that the two detectors can see a different grav
tational signal, either because they are at different location or beca
they have a different angular sensitivity. :
The difference in location is reflected in the exponential factor. In w
ticular, if 2w fAz/c > 1, i.e. if the separation Az > X, this exponent
is rapidly oscillating and suppresses strongly the correlation. This refleg
the fact that, when Az >> X, the two detectors are experiencing GV
signals that are uncorrelated.
The different angular sensitivity of the two detectors is instead r
flected in the term " , F{A(A)F{ (). It is also useful to introduce thy
quantity

N = [ i QO ORI EE ). 7230)
Using .
(A (FAk(f) = 8(F = F)55ni(F). (7.231)

here Snk(f) is the noise spectral density of the k-th detector, and
ing §(0) = T, we finally get

2 T ot A 202 39
—o0
here we have defined the combined noise spectral density

Sulf) = [Su1(£)Sn2 (Y - (7.233)

quations (7.225) and (7.232) show the same crucial feature that we al-
eady observed when we discussed the matched filtering for periodic sig-
als: the signal S increase linearly with the observation time T, while the
“noise N increases only as T/2. Therefore, the signal-to-noise ratio in-
reases with the observation time as T1/2. Putting together egs. (7.225)
nd (7.232) we have

Fig M\Mwﬂ) \ Mmﬂ?vﬁ%?v ’

aligned

where the subscript means that we must compute Fio taking the t
detectors to be at the same location and oriented one relative to
other so that the quantity Fis is maximized.®® Observe that, if the t
detectors are of the same type, e.g. two interferometers or two cylindri

bars, Fys is the same as the constant F defined in eq. (7.37). T s /2 i Sh(ATHA() (7.234)
(normalized) overlap reduction function v(f) is defined as N ?8 o 100 PS2 QL 2" .
()= ity (7.2 ) .
Fiz We can now find the filter function Q(f) that maximizes S/N. The

rocedure is analogous to what we have already done between egs. (7.45)
nd (7.51). For any two complex functions A(f), B(f) we define the
ositive definite scalar product

For instance, for the correlation between two interferometers, Fio = 2/ ¢
The factor Fi takes into account the reduction in sensitivity due to t,
pattern functions, already present in the case of one interferometer,
therefore v(f) separately takes into account the effect of the separatioy
Ax between the interferometers, and of their relative orientation. Wit

5= [ T a A (BHSE).- (7.235)
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700bserve that, for periodic signals
and for bursts, as well as for a single-
detector search of stochastic back-
grounds, we defined the quantity S/N
as linear in the GW, ie. if h(f) —
AR(f), then (S/N) — X(S/N), see
eq. (7.51) and eq. (7.213). For searches
of stochastic backgrounds with two-
detector correlations, we have rather
defined S/N as linear both in ky(t) and
in ha(t) and therefore S/N scales over-
all quadratically in the GW amplitude.
If we prefer to use a quantity that is lin-
enr in the GW amplitude we can define
8NR = (S/N)/2, so SNR is propor-
tional to T71/4, Of course, it is a matter
of conventions whether to use SNR or
(S/N).

Then eq. (7.234) can be rewritten as omparison of two-detector and single-detector sensitivities

A& TS,/ mmv o compare the sensitivity of a two-detector correlation with the sensi-
s — 2 N xr " ivity of a single detector we assume that we have two identical detectors
N (Q, Q)2 t a very close distance and with the same orientation, so that I'(f) be-

omes equal to the angular efficiency factor Fip = F. (This is the most
avorable situation; however in practice, if the detectors are too close,
here will be correlated noise.) To perform an order-of-magnitude esti-
ate, we approximate eq. (7.239) as

5\? 52
?.V ~ (TAfF g3,

As we already discussed below eq. (7.47), this expression is maximizt
choosing

50 — T(f)Su(f)
Q(f) = const. SIORR

(7.237

(7.243)
It is important to observe that the optimal filter depends on the si
nal that we are looking for, since Si(f) enters eq. (7.237). Pluggir
eq. (7.237) into eq. (7.236) we find the optimal signal-to-noise ratio,

5 _pn (2, 19)"

Lwoum Af is the useful bandwidth of the detectors, centered around
frequency f, and S, and Sy are typical values of Sn(f) and Swn(f),
espectively, over this bandwidth. Then the minimum detectable value

. f Sy, at signal-to-noise level S/N, is
(7.23 h 8518 /

207 G2
N Sh ' S2 () Sn (S/N) (7.244)
or, writing explicitly the scalar product,”™ h/min (2TAfY2  F )
7z d therefore
3 ﬁ \ * Sa(f)
=127 & 15#:; . 4r? 38, (S/N)
N o S2(f) (7.23 [Qew]min ~ w.mw @HDDH\& e (7.245)

here f3 is really a typical value of f* over the bandwidth. Comparing
. (7.244) with eq. (7.214) we see that, correlating two detectors, we
have gained a factor (27°Af)~1/2. Numerically,

Ly qo-s (150H2) Y7 (1yr)
@TANT? ~ Af T) -

herefore, integrating for one year the output of two detectors with a
bandwidth of 150 Hz, we can improve our sensitivity to Sk, and there-
ore to h2gw, by approximately five orders of magnitudes, with respect
%o the sensitivity of a single detector.”® It is interesting to compare these
esults with the matched filtering procedure discussed in Section 7.3. In
sction 7.3 we took advantage of the fact that we knew the form of the
gnal, in order to discriminate it from the noise. Here, instead, in a
ingle detector both the signal and the noise have the same statistical
‘properties, but we took advantage of the fact the signals in the two de-
tectors are correlated, while the noise are decorrelated. In particular,

In particular, for a two-interferometer correlation, I'(f) = (2/5)v(f) a

(%) . -lm[ aismmmﬁm .

For two cylindrical bars, instead, T'(f) = (8/15)v(f), while for the cofs
relation between an interferometer and a cylindrical bar, from the ex
plicit expressions of the pattern functions in Table 7.1, we get agali
T(f) = 2/5)7(f). |
Using eqgs. (7.233) and (7.202) we can also rewrite eq. (7.239) as

(7.24

(7.246)

S _3H} o0 Q2 e
N wq\o df T*(f) gv (/)

F88n1(f)Sn,2(f) ’

and in particular, for a two-interferometer correlation,

S 9 . 2 1/2 he measure of the correlation between the signals in the two detectors
A|v = 3Hy 9T \ df v¥( 3@2\5 s given by the overlap reduction function T(f) of eq. (7.226), which
N inthoims 1077 0 f65n,1(f)Sn,2(f) hows that the signals are indeed well correlated if the separation be-
(7.24 ween the detectors is much smaller than X, and if the detectors are well

We can now compare the measurements of stochastic backgrounds p:
formed with the two-detector correlation, to the measurement whi
uses a single detector, both from the point of view of sensitivity, and @
the ability to discriminate true GWs from noise.

riented with respect to each other. Technically, the assumptions that
he noise are uncorrelated entered in eq. (7.224), as well as when pass-
ng from eq. (7.229) to eq. (7.230), where we neglected the correlator

i (f)A2(f))-
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Tlhe precise numbers, of course, can
only be obtained once we have the form
of Su(f) and of Sn(f), carrying out
the integral in eq. (7.239). Observe
also that in eq. (7.214) appears (S/N)?
while in eq. (7.244) appears (S/N), but
this is simply a consequence of the fact
that, for the two-detector correlation,
we have defined S/N as a quantity
quadratic in the GW amplitude, while
for a single detector we defined it to be
linear in the GW amplitude. Once we
choose our criterion for fixing the confi-
dence level, e.g. a signal-to-noise ratio
1.7 in amplitude, the quantity that we
are denoting by (S/N)? here and the
quantity denoted by S/N in eq. (7.214)
have the same numerical value.
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. . ing th
Recall however that the optimal filter depends on the form of tii he same result can also be obtained more formally introducing the
signal. A stochastic background of cosmological origin, as we will see bservable MY

Vol. 2, is not expected to show strong spectral features in the bandwi Yiot = S (7.250)
Af ~ 1 kHz of ground based interferometers, so it should be adequ 1 d choos-
a simple power-law parametrization, where it is understood that the sums run over I =1,... ,m) an

ng the variables A; > 0 so that the signal-to-noise ratio of Yiot is maxi-
ized. From eq. (7.225), with T replaced by 17, we see that the Y7 have

y mean value

hgQew(f) = K f*

where K and o are two parameters, and o could be positive or ne
tive. For each value of o we can construct the optimal filter (the over
constant in the filter is irrelevant, as we have seen, so different val
of K give the same filter) and, given the noise spectral density Sy
eq. (7.239) gives S/N as a function of K and ¢, and therefore tells

Sy = (Y1) = uTr, (7.251)

vhere p = [;°df Sh(F)T(H)Q(F) is independent of I. For the noise,
from eq. (7.232) we have

o0
what region of this parameter space can be explored, at a given cof Ni= I df |O(HIPS2(F; 1)
fidence level. For astrophysical backgrounds, more elaborated para. 4 m..oo 7.252)
trizations of h3Qyw (f) might be necessary at broadband detectors. =Tyog - (7.

Non-stationary noise he signal-to-noise ratio S/N of Yot is obtained by writing

NI (7.253)

Until now, we have assumed that the noise in the detectors is station S = (Yiot) = it S
AN

and that it can be represented by a fixed function S, (f). However, sui
an assumption is not realistic, even more considering that we wish to
a very long observation time, of the order of months. Each detector
periods where it is more quiet and periods where, because of envir
mental or other disturbances, it is more noisy. Therefore the functig
Sn(f) changes with time, and we must know how to combine periods
which the detectors had different noise. To study this issue we can s
divide the total observation time T into n intervals of length Ty, whi
I =1,...,m labels the interval of data, and with T = > 7, T7.
choose the T so that within each interval the noise of the two detect:
can be considered stationary. To each of these intervals we can th
apply eq. (7.239), so the value of the optimal signal-to-noise ratio fr

this interval is
S\ _ ® erey py_Shlf)
W), - [ omogdy o

N? = [(Y2) = (Yot)*] 1o
T, Aoy (7.254)
) ,

here we assumed that noise in different intervals are uncorrelated, so
Y;Yy) = 817 N2. Therefore

S _ 2 G AT (7.255)
N2 YA otTt

he maximization of this expression with respect to the A; can be per-
ormed very simply, introducing the positive definite scalar product be-
ween two vectors with real components ay and br, .

Here S, (f;I) is the total noise spectral density during the I-th inter (a,b) = M arbro Ty . (7.256)
S2(fi 1) = Sl )Sna(f; I), where S, ;(f;I) is the noise spect 7

density of the j-th detector during the I-th interval. We now ask h

we should combine the (S/N); of the different intervals to form t Then g A\ o7?)

total optimal signal-to-noise ratio. The correct answer can be guesse A (7.257)

N =H A2’
: -2
This expression is maximized if the vectors with components Arand oy
are parallel, so Ay = 1/07 (apart from an irrelevant overall constant).

Physically, this means that more noisy periods are Smwmr.ﬁmm. less. Then
the variable Yo, whose signal-to-noise ratio is optimal, is given by

observing that the optimal (S/N)? is linear in T7, see eq. (7.248)
in the limit in which the noise is stationary over the whole observatiol
time T, we must find that the total optimal signal-to-noise ratio S/,
satisfies (S/N)? ~ T = ", Tt. This fixes uniquely the relation betw
the total optimal signal-to-noise ratio S/N and the (S/N);,
AMVN - M;u AMVM Py qwmwo (7.258)

N S \NJ; 2001

M\ovn =
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"In practice, 1t e b More conve-
pient to perform s FFT dver the seg-
ment and use the frequency apace ex-
pression (7.223).

and ; s
nd the value of the optimal S/N is given by _th interval, the support of Q(¢ — t') is entirely contained in the J-th

nterval.

g\ 2
A.@V =12 Aﬁlm, QMNV = 2 M WW , (7.250 From the set of Y7 at fixed I, one can construct the sample mean
I I n
. . H
which, using egs. (7.251) and (7.252), is equivalent to eq. (7.249), 1= n MUM\:, (7.263)
expected. Equation (7.239) then becomes J=1
d the sample variance
5= 2] ermsny. oo 1y
¥ %, 2 ST NP = oy 0 - S (7.264)

This is equivalent to saying that, in eq. (7.239), we must make th

replacement the I-th interval. We repeat this procedure for all intervals and,

ccording to eq. (7.249), the total signal-to-noise ratio is

AMVNHWWAMWV. (7.265)

I=1

T 13 Ty
S2(f) FM&QE.

HE.m way of composing the noise is very natural. It means that nois
periods contribute little to the total signal-to-noise ratio. If we perfor:

the same order-of-magnitude estimate as in eq. (7.245), we conclude th this §/N exceeds a predetermined threshold value one can state that a

tochastic background is detected, with a confidence level which depends

] n the threshold used.”™

(g (F))nin

1
{ Qew (f3 Do’

where _bm.s (f; Dlmin is the minimum value of Qg detectable using onl:
the data in the I-th interval, and [Qgw(f))min is the minimum value 6
Qg detectable combining the n intervals.

[
NgE

~
1l

ultiple-detector correlation

other interesting question is what happens if we correlate the outputs
f N detectors, with N > 2. For simplicity, we assume at first that we
ave N identical detectors, with the same noise spectral density Sn(f),
nd all running simultaneously for a time T

With N detectors we can form N (NN — 1)/2 independent two-point
orrelators

How the background is actually measured

We can now give an example of an operative way of measuring t
mﬁonwmmﬂo background. First of all, one divides the total observati
time T into intervals of length T7, such that within each interval ¢
detector noise is stationary. This scale is chosen based on observatio:
of the detector noise variation, and could typically be of order of on
to a m@% minutes. Within each interval, the spectral density S,(f;
can be considered constant in time, and is determined mﬁumaaoﬁmw_
We can now compute the filter function, using the measured value 6
Sn(f; I) and assuming a given form for Qg,,. For instance, Qg = con
can be the simplest choice, or one can use the parametrization (7.24
and repeat the procedure for various values of .

To have an experimental determination of S; = (¥7) and of N;
(Y2 — (Y7)2]'/2 one further divides each interval into segments of len,
At, labeled by an index J = 1,...,n, and with Ty = nAt (with At mu
larger than the light travel time between the detectors, which for the t
LIGO observatories is about 10 ms). The signal Y7 relative to the J-t
.mmmgoﬁ of the I-th interval is cormputed using eq. (7.220), with the tini
integration running only over the J-th segment of the I-th interval.”
Observe that the filter function Q(t — t') typically vanishes very fast fg
ft ~ ¢| larger than a few tens of ms, so in practice if ¢ belongs to th

T/2 T/2
Y = dt dt’ s;(t)s;(EHQE— 1), (7.266)
-T2 J-T/2
with i < j. (If the detectors have different noise spectral densities,
hen also the filter function depends on 4,7, and we write it Q;;(t —
").) Conceptually, for a stationary stochastic background, there is no
difference between the situation in which N(IN — 1)/2 identical pairs of
detectors run for a time T, and the situation in which a single pair of
m,—mﬁonnon runs for a time Tiota1 = T % N(N —1)/2. In the former case,
sampling the output of the detectors at times tx, with k= 1,..., kmax,
we get a set of values Y;;(t), for each of the N(N — 1)/2 pairs (i, 7). In
the latter case we directly get a set of values Y (tx) for the single pair
considered, with k taking values up to kmax X N(N — 1)/2. In both
ases we must then compute the average of Y over all these values, so
the result is the same and the difference is just a matter of notation. In
‘conclusion, the signal-to-noise ratio with N identical detectors can be
btained from eq. (7.239) making the replacement

N(N -1)
2

T — T. (7.267)
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73 A subtle point is that it can be shown
that, if we wait long enough, i.e. if
the total observation time is sufficiently
large, any predetermined fixed thresh-
old will be exceeded. In other words,
in the limit T — oo the false alarm
probability is 100%! To have a finite
false alarm probability even in the limit
T — 00, the value of the threshold must
increase with the number of intervals n
faster than loglogn.
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In contrast, for stochastic backgrounds we are never confronted with
re events. At any given moment the GW stochastic signal is always
uch below the noise, and is never responsible for large fluctuations of
e output. There are no rare events to be searched in coincidence, and
e only advantage of using more detector pairs is that the total amount
data available increases, which means that we have a longer effective
bservation time.

The situation does not change substantially if, rather than two-point
orrelators, we consider M-point correlators, with M smaller than or
qual the number of detectors IN. For instance, with four detectors we
an consider a four-point correlator (s1(f)s2(f)s3(f )s4(f)). Repeating
he same steps as above, one finds again that the signal-to-noise ratio
always defined to be quadratic in the GW signal, in order to compare
ith the same quantity as in two-detector case) scales as VT.

On the other hand, an advantage of multiple-detector correlations
5 that it might be easier to suppress correlated environmental noise,
especially if the various detectors are not close to each other.

If we amwpodm by [Qgw]min,n the minimum value of Q. measurable wit
N Emi_o& detectors and by [Qgw]min,2 the minimum value of €, d
tectable with two detectors, then

1/2
Qg sy = ?@.WIL Qg lminz - (7.208

In the more realistic case in which the detectors have different noise spec
.S& densities, or have different common time of operation, the situati
is formally identical to the case of non-stationary noise discussed abo
g&wam the observations taken during a time Tj; by each pair of detecto
Q, gv,.éx\& i < j, plays the role of the observations taken during t|
time intervals labeled by I in egs. (7.260) to (7.262). Therefore, t
signal-to-noise ratio is obtained from eq. (7.239) with the amﬁ_moma,ma

T T35

- j
— 7.26

S5~ & 5 ) A

where Tj; is the common time of operation of the dete : j
here T, : € 0 ctors ¢ and j,
S2(f3 ASVV = ,wJQw 1)Sn(f;7) is the product of the spectral densi
of the i-th and j-th detector. The order-of-magnitude estimate of t.

L orrelated noise and signal chopping
minimum detectable value of Qg eq. (7.262), becomes d

quation (7.239) shows that a true GW signal has a signature that in
vrinciple could allow us to distinguish it from the noise: increasing the
servation time, the signal-to-noise ratio in the presence of a real GW
ignal must increase as T/2.

Actually, this is a signature that only allows us to distinguish a sto-
hastic GW background from uncorrelated poise in the two detectors.
Tnfortunately, any residual correlated noise would still mimic the behav-
r of a real GW signal. The problem is therefore how to make sure that
rrelated noise are negligible, and this can be a hard task, particularly
¢ very long integration times. If two detectors are at the same site,
r very close, their overlap reduction function is maximized, but we will
ertainly have correlated environmental noise. We have seen that the
verlap reduction function suppresses the GW correlation if the detector
eparation is Az >> X. For instance, at f = 50 Hz, X ~ 1000 km. Most
nvironmental disturbances will decorrelate on a much shorter length-
cale, so it is possible that two detectors at a suitable distance are still
orrelated as far as the GW background is concerned, but they have
egligible correlated noise. However, beyond a given sensitivity level,
cismic noise or propagating electromagnetic disturbances might still
ive important correlated noise, and this is a difficult issue that will
ave to be carefully studied experimentally.

An interesting option offered by the two-detector correlation is the
ossibility of chopping the signal. Chopping is a general term for mea-
\rements in which we switch our detector between the quantity that we
want to measure and a reference quantity. It is a very powertful experi-
mental technique, that exploits the fact that in many situations one can
measure with a much better precision the variation of a quantity rather
than the quantity itself because, taking the difference, many uncertain-

1 1
—@méﬁ.\.v_wﬁsuz M —bmiﬁ.\.“ ASVV_WE: )

When all detectors are equal and have the same common time of o
eration, EméA £3(25))]min becomes independent of the pair i,j consi
MM,MWMMM vwm the quantity that we denoted by [Qgw]min,2, 50 we recoy

In a sense, this result is disappointing. We have seen in eq. Q.MA
gmﬁ passing from a single detector to a two-detector correlation
gain a factor 1/(2T°Af)/? in the minimum detectable value of Q, .,
.H =1 yr and f = 100 Hz, this means and improvement by a m@oﬂwn 1
in sensitivity. Passing from N = 2 to N = 3 detectors, instead, we §
from eq. (7.268) that we gain only a further factor ,\w.u ,

. This is very different from the situation for bursts discussed in
tion 7.5.3. In the case of bursts, the noise that compete with the sig
consists of large, relatively rare fluctuations. At any given moment
probability that, in a single detector and within a given time window, s
of order few tens of ms, a fluctuation with a signal-to-noise ratio mmvo
a large threshold takes place, is a small number e <« 1. The probabili
S&a a second detector has a simultaneous independent fluctuation abo
this threshold, within the same window, is O(e?), the probability of
gmm.m-aoﬁmgg coincidence is O(e?), etc. Then, for bursts, the gain
mnwﬁm.ﬁom_ significance passing from a single detector to a ,Zco-amemon
coincidence is that same as the gain passing from a two-detector to
three-detector coincidence. The crucial point is that for bursts, aff

ﬁ:;owma.mxmidm, we are left with short events with a large value @
S/N, which are rare. :

7.8 Stochastic backgrounds 411
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e classical example of this tech-

nique was the Dicke radiometer, which
was developed by Dicke during World
War II for application to microwave
radars, and measured the radiation
temperature of a radio source (i.e. the
temperature of a black body having
the same radio brightness). A direct
measurement was difficult: the signal
needed a large amplification, and fluc-
tuations in the amplifier gain resulted
in large errors. To overcome this dif-
ficulty, in the Dicke radiometer the
receiver switches quickly between the
source and a carefully calibrated black
body, whose temperature was chosen to
be of the order of the value expected
for the source. To tell when these tem-
peratures were equal was much eas-
ier than to obtain a direct determina-
tion of the source temperature. The
same principle of comparing with a ref-
erence black body was used by the
FIRAS spectrometer on board of the
COBE satellite to measure the black-
body spectrum of CMB. To measure
the CMB anisotropies, i.e. the varia-
tion of the black-body temperature over
the sky, the principle used by the DMR
detector on COBE and by the subse-
quent high-precision experiments such
as WMAP is to compare the tempera-
tures between two points in the sky.

compare the measurement in a situation where the signal is expected
to the situation where a null answer should come out. i

At first sight, it appears that a measurement of this type is imposs
ble for a stochastic backgrounds of GWs, since the background is alway
ﬁﬂmwm, and gravitational forces cannot be screened. It seems therefo
impossible to compare the output of a detector when no stochastic G
,vmnwmao:sm acts on it, with the output when the background is acting o
it. Remarkably, this is no longer true when we consider a two-detect
correlation. In fact, changing the relative orientation of the two di
tectors, the factor 3°, FA(R)F{(A) in eq. (7.226) changes, and it
therefore possible to modulate the signal. To illustrate ﬁEm, point,

ties, e.g. calibration uncertainties, cancel out.” In particular, one ¢
b
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this configuration with the result when the resonant bar is parallel
o one of the interferometer arms, which is the position that maximizes
he correlation. This chopping strategy has been used in the LIGO-
LLEGRO correlation. The ALLEGRO resonant bar (which has now

minated its activity) was located relatively close to the LIGO obser-
atory in Livingston, and was mounted on a platform that allowed to
otate it easily. (After a rotation, data taking of good quality resumed
n just half an hour.) The bar was therefore taken for a few months in
he “off source” position, and then rotated to the “on source” position
r a few more months.

compute Fi2 for a bar-interferometer correlation. Using Table 7.1 a

egs. Q.wC and (7.32) we see that, for ¢ generic, the pattern functio
of an interferometer are

(intf) 1
Fy70,¢5,9) = .w.ﬁ + cos? ) cos 26 cos 29 — cos @sin 2¢sin 2y,

(intf) 1
F™(0, d39) = mﬁ + cos? §) cos 2¢ sin 20 + cos fsin 2¢cos 29 .

(7.27
The pattern functions of the bar for 9 generic can also be obtained fro
Table 7.1 and eqgs. (7.31) and (7.32). We must however pay attention’
the fact that in Table 7.1, the variable denoted by 8 for resonant bars
Sy.m angle measured from its longitudinal axis, while for an interferomet;
with arms along the z and y axes, we denoted by § the polar ang
measured from the z axis, so these two angles are not the same unl
the .Umu is vertical. If instead the bar lies in the z,y plane, at an an
« with the y axis, and we denote by 6 the polar angles Bmwmcnmm frof
the z axis, then the pattern functions of the bar become :

M_.M.cmnv (8, ¢;,9) = [~ cos® 0 cos* (¢ — @) + sin? (¢ — )] cos 24
+[cos§sin2(¢ ~ )] sin 2¢

F®*)(9, ¢;,9) = [— cos®  cos?(¢ — a) + sin?(¢ — a)] sin 20

—[cos@sin2(¢ — a)] cos 29 (7.27

From this it follows that

dir dp (bar) p(intf 2
\mﬁm M}Umﬂ» 2 m.\mn ) = ~Zcos2a. (7.27

5

(The overall sign of Fi is irrelevant since I'(f) enters quadratically
the signal-to-noise ratio.) We see that the correlation is maximum when
the bar is aligned with one of the interferometer arms (i.e. when o = ‘
or o = 7/2). In contrast, when « = /4 we have Fis = 0. Therefore i
ﬂE.m configuration the signal obtained from the interferometer-bar corr :
lation vanishes. Even if GWs cannot be screened, the “composite dete
tor” whose output is the correlation between a bar and an interferomet
can be set in the “off source” position! We can then compare the resul

rther reading

e For a textbook discussion of matched filtering

and of detection of signals in noise see Wainstein
and Zubakov (1962) and McDonough and Whalen
(1995). For matched filtering and optimal signal-
to-noise ratio for GW bursts see Thorne (1987), and
Saulson (1994), Chapter 4. Statistical aspects of
parameter estimation are discussed in Finn (1992)
and in Cutler and Flanagan (1994), where the mul-
tiple detector case is also treated. For a review of
data analysis for interferometric GW detector see
Viceré (2000).

e Books on probability and statistics typically cover
many shelves in any physics library, and recommen-
dation are very much subjective. For an elementary
but very practical introduction to statistics (tuned
to the needs of particle physicists, but quite useful
also in the GW context), see Lyons (1986). A con-
cise and useful summary is given in the sections on
probability and statistics of the Review of Parti-
cle Properties, in Yao et al. [Particle Data Group)
(2006). A very nice discussion of Bayesian vs. fre-
quentist method, in the context of particle physics,
is given in Cousins (1995). A discussion of the fre-
quentist vs. Bayesian approach in the GW con-
text is given in appendix A of Cutler and Flanagan
(1994).

e The analysis of bursts of unknown shape using
band-pass filtering is discussed in Flanagan and
Hughes (1998a, 1998b), in the context of the
merging phase of black hole binaries. Time-
frequency techniques are further discussed in An-
derson. and Balasubramanian (1999), Anderson,

Brady, Creighton and Flanagan (2001) and Viceré
(2002). An algorithm based on clusters of pixels

in the time—frequency domain (termed TFCLUS-
TERS) is presented in Sylvestre (2002). A book
on the use of wavelets in physics is van den Berg
(1999). Application of wavelets to the analysis of
GW bursts can be found in Klimenko, Yakushin,
Rakhmanov and Mitselmakher (2004) and Kli-
menko and Mitselmakher (2004) (the WaveBurst
algorithm).

e Some sources, such as accreting neutron or quark
stars, as well as neutron stars stressed by large inte-
rior magnetic fields (magnetars), could emit repeat-
edly small bursts of GWs, with very characteristic
correlations, both in energy and in time, among
the different bursts, typical of systems displaying
self-organized criticality. These correlations could
give a further handle in their data analysis. These
“Q'W bursters” are discussed in Coccia, Dubath
and Maggiore (2004) and Dubath, Foffa, Gasparini,
Maggiore and Sturani (2005).

o The search strategy for GW bursts using the three
LIGO interferometers is discussed in Abbott et al.
[LSC] (2004b). The sensitivity of a network of in-
terferometers for reconstructing the source position
is studied in Giirsel and Tinto (1989). Searches
for GW bursts using coincidences between up to
fve resonant bars are described in Astone et al.
[IGEC] (2003a). Results with correlations among
three bars, with improved sensitivities, are reported
in Astone et al. [IGEC2] (2007).

o Introductory discussions of the search strategies for
periodic signals can be found in Saulson (1994),
Section 14.6 and Schutz (1991). More detailed
analysis are given in Brady, Creighton, Cutler and
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Schutz (1998) and in Brady and Creighton (2000).
The application of the Hough transform to peri-
odic GWs is discussed in Krishnan et al. (2004).
A search for periodic GWs from a single specific
source, using the LIGO and GEO detectors, is de-
scribed in Abbott et al. [LSC] (2004a). Limits on
28 isolated pulsar using the LIGO S2 run are given
in Abbott et al. [LSC] (2005b).

The importance of post-Newtonian corrections for
the data analysis of coalescing binaries is empha-
sized in Cutler et al. (1993). Detailed discussions of
data analysis procedure and parameter extraction
for coalescences is given in Cutler and Flanagan
(1994), Poisson and Will (1995), Krélak, Kokko-
tas and Schéfer (1995) and Flanagan and Hughes
(1998a). For computations of the waveform with
the PN formalism, see the Further Reading section
in Chapter 5.

Optimal template placement for inspiraling com-
pact binaries is discussed in Owen (1996) and Owen

and Sathyaprakash (1999). A comparison of tems
plates for binary inspiral is given in Damour, Iyer
and Sathyaprakash (2001). A particularly usefu
family of templates for BH-BH inspiral have beel
proposed by Buonanno, Chen and Vallisneri (2003
A description of the LIGO search strategy for ¢
alescences can be found in Abbott et al. [LSC}:
(2005a).

Resonant-mass detectors

he history of experimental GW physics began with resonant-mass de-
ctors. The pioneer was Joseph Weber who, in the 1960s, developed the
concept and built the first resonant bars. In the course of the subsequent
ur decades, resonant-mass detectors operated by various groups have
ached sensitivities better than Weber’s original bars by about four or-
ers of magnitudes in energy. Still, we will see in this chapter that these
nsitivities could allow the detection of only relatively strong signals in
our Galaxy or at most in our immediate galactic neighborhood, which
e expected to be rare. To gain access to sources at large extragalactic
istances it is necessary to build large interferometers, which will be the
ubject of the next chapter.

The passage from resonant detectors to interferometers implies a jump
from “small-scale” experiments, performed by groups which can be as
small as half a dozen people, to “Big Science”, with collaborations
f hundreds of people and financial costs which are higher by factors
(102-10%). As we will see in the next chapter, such a jump is justified
by the formidable discovery potential of interferometers and especially
vanced interferometers. We nevertheless begin our discussion of ex-
periments with resonant-mass detectors, both because they still have
he possibility of detecting rare or unexpected events, and also because
heir study is instructive in itself. Our emphasis will be on aspects that
have an intrinsic conceptual interest, such as understanding how a GW
nteracts with a macroscopic piece of matter, and on how it is possible to
etect vibrations of a macroscopic body which are incredibly small, with
amplitude many orders of magnitude smaller than the size of a nucleus.
We will see that, by themselves, resonant detectors are remarkable in-
struments; it is possible to measure vibrations in a two-ton object, such
as a typical bar, which corresponds to just a few tens of phonons, and
ariations AL of their length L, with AL/L ~ 10~19—10"18,

The optimal SNR in a two-detector correlatio
and the overlap reduction function are discussed i
Michelson (1987), Christensen (1992) and Flan
gan (1993). A detailed discussion of signal process-
ing strategies for stochastic backgrounds of GWs i

given in Allen and Romano (1999). Signal choppin
is discussed in Finn and Lazzarini (2001). Stochass
tic backgrounds of GWs are reviewed in Maggior
(2000). The search strategy of LIGO for stochasti
backgrounds of GWs is discussed in Abbott et al;
[LSC] (2004d) and (2005c).

8.1 The interaction of GWs with an
elastic body

8.1.1 The response to bursts

A typical bar is a cylinder of length L ~ 3 m and radius R ~ 30 cm, so
in a first approximation we can treat its vibrations as one-dimensional.
We orient the bar along the z axis, with the end-faces at +L/2, and we
study the dynamics of a volume element dV of the bar originally located

8.1 The interaction of GWs
with an elastic body

8.2 The read-out system
8.3 Noise sources

8.4 Resonant spheres
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Fig. 9.1 The layout of a simple
Michelson-type interferometer.

the wavenumber and the wavelength of the laser light. It is convenient
to use a complex notation for the electromagnetic field. Thus, a given
spatial component of the electric field of the input laser light is written

as .
m_omls.sr?I#r.x i Aw.uv

Interferometers

We denote by L. and L, the length of the two arms, where we have
oriented the x and y axis as shown in Fig. 9.1. Consider a photon that
arrives at the beam-splitter, coming from the laser, at some initial time
to.} The part of the electric field that goes into the z arm bounces on
the mirror at a distance L, and arrives back at the beam-splitter at a
time ¢ = tg + 2L, /c, while the part that went through the y arm comes
back at the beam-splitter at t' = ¢y + 2L,/c. Thus, the beam that
finally recombines at the beam-splitter at a given observation time ¢ is
‘the superposition of a beam that entered the beam-splitter at a time
&sv =t —2L;/c, and then went through the = arm, and a beam that
entered the beam-splitter at a different time &S =t—2Ly/c, and then
went through the y arm. Setting the beam-splitter at x = 0, the former
beam has an initial phase mxgls.eimnﬁ = exp{—iwrt + 2tk L}, and
the latter mxgls.Er&Sv = exp{—iwyt+2ikpLy}. The phase of the field
is conserved during the free propagation, while the fields acquire overall
factors from reflections and transmission at the mirrors.? So, the two
electric fields that recombine at time ¢ at the beam-splitter are given by

The idea of interferometric detection of GWs is in principle siraple and
elegant, and goes back to 1962, when it was first considered by twa
Russian theorists, M. Gertsenshtein and V. I. Pustovoit. Weber alg
considered it, and it was then pushed in the late 1960s by R. Forwarc
R. Weiss, R. Drever, and others. In practice, however, a large G

interferometer is an extremely complex instrument, with many degree
of freedom that must be kept under control with extraordinary accurac
Thus, their development up to the present scale has required the build
ing up of large collaborations, comparable in size to modern particl
physics experiments, as well as more than 30 years of preparation. Fol
lowing the general approach of this book, as outlined in the Preface,

will not discuss the interesting history of the development of this ide
referring the reader to the Further Reading section for reviews, and

will rather focus on the present understanding of these detectors. Wi
will begin in Section 9.1 with the most naive setting, a simple Michels

interferometer, and we will then add up successive layers of comple E, = 1 Epe~twrt+2ikils 9.2)
ity in Sections 9.2 and 9.3. Having defined the experimental set-up, ' 2

will be able to discuss the principal noise sources in Section 9.4. T and

existing detectors (LIGO, VIRGO, GEO600 and TAMA) are discuss By = .TH. Ege~twrt+2ikLy (9.3)
in Section 9.5.1 while advanced ground-based detectors, as well as thi T . .

The total electric field is Eqoye = Ey + Ea. Writing 2Ly = (Lz + Ly) +

space-borne alternative, are discussed in Section 9.5.2.
. (Le — Ly) and 2Ly = (L + Ly) — (Ly — Ly), we see that

9.1 A simple Michelson interferometer Eouy = —iBge™rttullet o) sinky (L, - Ly)] (94)
and the power measured by the photodetector is proportional to

|Bous|? = E¢sin®[kr,(Ly — Ly)]. (9.5)

A Michelson interferometer, of the type used in the classical Michelso
Morley experiment in 1887 to show the non-existence of the ether, is
extraordinarily accurate instrument for measuring changes in the tra:
time of light in its arms. The simplest conceptual scheme (which is n
exactly the one used historically by Michelson and Morley) is shown
Fig. 9.1, It consists of a monochromatic light source, which today is
course a laser, whose light is sent on a beam-splitter which separates t
light, with equal probability amplitudes, into a beam traveling in o
arms -and a beam traveling in a second, orthogonal, arm. At the e
of each arm we put totally reflecting mirrors. After traveling once bag]
and forth, the two beams recombine at the beam-splitter, and part ¢
the resulting beam goes to a photodetector, that measures its intensit
(while a part goes back toward the laser). We denote by wy, the frequen
of the laser (the subscript L distinguishes it from the frequency wey
the GWs that we want to detect), so ky, = wy/c and A\, = 2 [k ar

Therefore any variation in the length of a arm results in a correspond-
ing variation of the power at the photodetector. We now discuss how
to apply this general idea to GW detection. We saw in Section 1.3.3
that the interaction of a GW with a detector can be described in two
different languages, i.e. either using the TT frame, or using the proper
detector frame. It is quite instructive to understand the functioning of
an interferometer in both ways, as we do in the next two subsections.

9.1.1 The interaction with GWs in the TT gauge

Recall from Section 1.3.3 that, in the T'T gauge, the coordinates are
marked by the position of freely falling objects so, even when a GW
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10Observe that, until we discuss shot

noise, in Section 9.4.1, there is really
no need to introduce photons, and the
whole discussion could be done purely
classically, replacing the word “photon”
by “wave-packet”.

2As we will discuss in a more general
setting in Section 9.2.1, the reflection
off a 50-50 beam splitter can be mod-
eled multiplying the amplitude of the
incoming electric field by a factor r =
+1/+/2 for reflection from one side and
r = —1/+/2 for reflection from the other
side, while the transmission multiplies
it by t = 1/v/2, and reflection at the
perfectly reflecting mirrors at the end
of each arm multiplies the amplitude by
—1. Thus, overall one beam acquires a
factor (1/v/2) X (—1) x (1/v2) = —1/2
and the other a factor +1/2.
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30f course, there will also be some non-
static forces, such as those due to sus-
pension thermal noise or, more gen-
erally, to the coupling with the envi-
ronment, which will provide the back-
ground noise, and that will be discussed
in Section 9.4.

4The response to GWs with arbitrary
direction and polarization will be stud-
ied in Section 9.2.3.

Summing egs. (9.9) and (9.11) we get

3
to —to = mha +m \ &\:L&. 6.5
c 2 Ji
For a given value of tg, the time of arrival ¢ after a round trip in the
z arm is therefore fo + 2L;/c, plus a correction of order hg. In the
upper limit of the integral on the right-hand side we can replace ta by
ty + 2Lz /¢, since the integrand is already O(ho) and we are anyway

neglecting terms O(h}), so we get

MN\H 1 \wo.TNha\n
i

is passing, the coordinates of freely falling masses by definition do not
change. Of course, the mirrors of a ground-based interferometer are
not freely falling; rather, the Earth’s gravity is compensated by the
suspensions. However, as we already discussed in Section 1.3.3, these
forces are static, compared to the frequency of the GWs that we are
searching and, as far as the motion in the horizontal plane is concerned,
the mirrors can be taken to be in free fall, i.e. they follow the geodesics

of the time-dependent part of the gravitational field.? .

Thus, in the TT gauge description, the coordinates of the mirrors and
of the beam-splitter are not affected by the passage of the wave. We
define the origin of the coordinate system as the location of the beam-
splitter, while the position of the mirror which terminates the z arm
defines the point with coordinates (L, 0), and the position of the other
mirror defines the point with coordinates (0, Ly), and this remains trug
also when a GW is present.

In the TT gauge description, the physical effect of the GW is mani-
fested in the fact that it affects the propagation of light between these
fixed points. We assume for the moment that the GW has only the plus
polarization, and comes from the z direction. In the z = 0 plane of the
interferometer we therefore have

dt’ ho cos(wgwt')

¢ T3
2L, ho

“+
c 2wew

Using the identity sin(c+28) —sina = 2sin Bcos(c+ ), we can rewrite
this as

to —to =
o

{sinfwgw (to + 2Lz/c)} — sinwgwio} - (9:13)

s + hoLs sin(wewLs/€) coslwgw(to + La/c)] . (9.14)
c ¢ (wgwlz/c)

Observe that the difference t; —tg is a function of the time tg at which the

photon left the beam-splitter, because of the term cosfwgw (to + Lz/c)]-

Using eq. (9.6), we can also rewrite the above result as

ty —tg =

h(t) = ho coswewt,

and the space-time interval in the TT frame is given by

2L
c

sin(wgwla/c) . (9.15)

ds? = —c%dt® + [1 + hy (£)]dz® + [1 — hy ()]dy® + d22. 9.7) -
wewla

L
to —to = +I0N-Qo+hﬂ\ov

Photons travels along null geodesics, ds? = 0, so for the light in the z
arm we have, to first order in hyg,

The quantity o + Lz /c which appears in the argument of h(t) is, to
1 zeroth order in hg, the value of time #; at which the photon touches the
do = i+ cdt T B mw+ QL ’ (©.8) far mirror on the z arm. This result will be easily understood physically
in the next subsection, thanks to the Newtonian intuition that we can

use in the proper detector frame. The function

sinc Emﬁhv = mEAEmSH\nv G.wmv
¢ (wewL/c)
- goes to one when wegwl/c — 0. Therefore, when the period of the
CGW is large compared to Ly /c, the shift At in the travel time ta — o,
with respect to the unperturbed value 2Lg/c, is simply h{t1)Lefc. If
wewle/c > 1, At is suppressed. This is clearly understood physically:
if wgwLa/c > 1, during the travel time of the photon h(t) owmwmmm
.~ sign many times, so it contributes sometimes positively and sometimes
- negatively to At, and these contributions partially cancel out. A plot of
' the function sinc(z) is shown in Fig. 9.2.
In the y arm the analysis is similar, but now the sign of h(t) is reversed,
as we see from eq. (9.7), so we now have
2L, L

ty —tg = —2 — Z h(to + Ly/c)
¢ ¢ (wewly/<)

where the plus sign holds for the travel from the beam-splitter to the
mirror and the minus sign for the return trip. Consider a photon that
leaves the beam-splitter at a time #o. It reaches the mirror, at the fixed
coordinate z = Ly, at a time ¢; obtained integrating eq. (9.8) with the
plus sign,

t1
c
Ly = OQ\H - ﬁOv - M dt’ T\+ Q\v . Aowv
to
Then the photon is reflected and reaches again the beam-splitter at
a time iy obtained integrating eq. (9.8) with the minus sign, between

sﬂhemaaaﬂov

o um H

&&H Io\ &\ T I Lf@& v
Ly ty 2

(9.10

sin{wewlLy/C) (9.17)

12
FH%NLHTW\ dt' ha(t). (9.11)
t1
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Fig. 9.2 The function sinc(z) =
(1/x) sinz (solid line) and, for com-
parison, the function 1/z (dashed
line).




% ! 3 t 475
474 Interferometers 9.1 A simple Michelson interferometer 5

In practice we will be interested in the light that comes out of the beam«. & (L, + L,)/2, while in the terms ¢ — 2L;/c and ¢t — 2L, /c we still take
splitter at a given value of the observation time ¢, so it is useful to into account any small difference between L. and Ly, writing 2L, =
rewrite these relations holding fixed the value of the time ¢t = ¢ ab ¢ 2L + (L, — L,) and 2L, = 2L — (L — Ly). Then

which we observe the light that has recombined at the beam-splitter,

and computing the corresponding value of t5. In order to come bac E®@) = _1 Egetwnt=2L/e)igotidés(t) (9.24)
at the beam-splitter at time ¢, the light that went through the z arm w ) o
must have started its round-trip travel at a time &uv obtained inverting EW(t) = +mm,om|§17mh\ e)-idotitdy(t) (9.25)
eq. (9.15) to first order in hg, which means that At + L,/c) is replaced
by h(t — 2Lg/c+ Ly /c) = h(t — Ly /c), so where

o =ki(Le — Ly), (9.26)

2L, Ly
[ c

&av =t— h(t — Lg/c) sinc {wew Ly /) (9-18)

Apy = —A¢, and

and similarly the light that went through the y arm, in order to arrive
back at the beam-splitter at the same time ¢, must have started itg
round-trip travel at a different time t&¥) given by

H\@
[

Ay (t) = ho kL sinc (wgwL/c) coslwgw (t — L/c)]
[A¢s| cos(wawt + a) (9.27)

with & = —wgwL/c a phase. The total phase difference induced by GWs
in the Michelson interferometer is

Dﬂz:or = D&& - Dﬂv@ = wbﬁa - G.mmv

2L,

L T
c

h(t — Ly/c) sinc (wewLy/c) . (9
Again, we use the fact that the phase of the field is conserved duri
the free propagation. Setting the origin of the coordinate system at th
beam-splitter, and writing the electric field of the light as in eq. (9.
we see that the light that is at the beam splitter (x = 0) at time ¢
has a phase mxglgr&uvw. The free propagation along the arm do¢
not change this phase, while reflections and transmission at the mirro

SThe superscript (z) on E()(t) re- give an overall factor +1/2, see Note 2 on page 471, so®
minds us that this is the electric field of

the light that went through the z-arm, 1 i £®)
and should not be confused with the z- Mwnav S - Mm_cm sorte
component of the electric field vector.
Here we are considering a given spatial
component of the electric field.

The total electric field at the output is

E@(t) + EW(2)
—iEge™ L t~2L/) ginlghy 4+ Ads (t)] - (9.29)

Eiou(t)

I

The phase ¢g is a parameter that the experimenter can adjust, choos-
ing the best working point for the interferometer, as we will discuss in
Section 9.3.2, while A@,(t) contains the effect of the GW. In the limit
wewl/c < 1, eq. (9.27) reduces to

A¢(t) = h(t — Ljc) kL. (9.30)

Il

_ mmomleiﬁlmha\aibﬁu ()
M 3

where
Comparing with eq. (9.26) we see that, in this limit, the effect of the
GW on the phase shift is formally equivalent to a change of Ly — L,
given by

wy, \Uﬂ
C

Ay (t) = ho

sinc (Wgw Le/¢) coslwew(t — Le/c)],

w%ww similarly the field that went through the y arrms, at time ¢ has tha A(Ly — Ly) ~ h{t - LJe). (9.31)
L
mASS . +w Epe—iwntd The total power P ~ |Egot|? observed at the photodetector is modulated
Tl by the GW signal as
Y hn(e—2L,/o)+ine, (1)
= BT s P = Pysin®[go + Ada(t)]
where = Mw {1 — cos[2¢0 + 2A¢:(2)]}
L, . P,
Dy (t) = —hg aw Ysine (wgw Ly /¢) coslwgw (t — Ly/c)]. (9.23 = % {1 — cos[2¢0 + Admicn(t)]} - (9.32)

SExcept for a small asymwotry, the In general, L, and L, will be made as close as possible,’ in order
wmw%w%m“«ﬂawm%w, that we will dis-  eaneel many common noise in the two arms. Thus, in Ag, and Ag,
10! i -5 .
which are already of order ho, we simply replace L, and L, by L
05 ply rep. z y DY

Clearly, we want to have Adwich as large as possible. For a GW of a
given frequency wgw, we see from eq. (9.27) that the &m@mb.amuom on L
is given by the factor (wpL/c)sinc(wegwl/c) = (WL/wgw)sin{wgwL/c).




"More precisely, for the value of L given
in eq. (9.33), the time shift always keeps
the same sign for a photon whose time
of time of entry inside the cavity is
properly synchronized with the phase of
the GW. For larger values, there is at
least a partial cancellation, no matter
what is the relation between the phase
of the GW and the time of entry of the
photon.

SThis is correct ni far ns the fast-
varying part of the gravitational field
is concerned, while the static gravita-
tional field of the Enrth is compenanted
by the mirror suspensions, and other
effects related to the laboratory frame
(Coriolis forces, etc.) are negligible bo-
cause slowly varying, see the datailed
discussion in Section 1.3.3.

e

Thus the optimal length of the arms is given by wewl/c = 7/2, i,
L = Agw/4. In terms of foy = wgyw/(27), this gives

(9.

L ~750km AEV

%mi

For such a value of L, the time shift induced by the GW on the light hag
the same sign all along its round trip in a arm, so the effect adds uy
For longer arms, the GW amplitude inverts its sign during the roun
trip, so past this moment it starts canceling the phase shift that the liglit
already accumulated.” Arms of hundreds of kms are impossible to obtait
in a ground-based interferometer, for practical and financial reasons. Wé
will see in Section 9.2 how to “fold” this optimal pathlength of the ligh
into an interferometers of manageable size.

It is useful to realize that the effect of the GW on the laser light i&
to generate sidebands in the light propagating in each of the two arms;
Using eq. (9.27), and making use of the fact that A, is linear in kg, we
can expand E®)(t) in eq. (9.24) to order kg as

H . A .
E@)(f) = smm%ér?ws@i& [1 +4|Ads| cos(wewt + a)]

W.@ommm _Hmlﬁ.ErN + .M._DAVH_ Q&lewAErIEmivw

+W_>ﬂs~ mlQOls.AEr+EmivnH_ ,
with § an irrelevant constant phase. Thus, beside the original electro
magnetic wave at a frequency wy, (the “carrier”, in the language of radi
engineering), we have two more electromagnetic waves, at the freque
cles wy, + wgw (the “sidebands”). The modulus of the amplitude of t
sidebands is O(hg) with respect to the carrier, and is given by |A¢|/

9.1.2 The interaction in the proper detector frame

It is instructive to compare the above results, obtained in the TT fram
with the description obtained using the language of the proper detecto
frame. Recall from Section 1.3.3 that the proper detector frame is the
one implicitly used by the experimenter when he/she thinks about th
apparatus. In particular, here coordinates are not marked by freel
falling masses, as in the TT gauge, but rather are measured with
rigid ruler. We saw that in the proper detector frame the effect of th
passage of a GW is a displacement of the test masses from their origin
position and, if these test masses are at a distance small compared t
the reduced wavelength X, of the GW, this displacement is determine
by the equation of the geodesic deviation (1.95). At the same time, th
space-time metric can be taken as flat, at least in a region of space smal

compared to the scale of <@:mﬁos of the gravitational wave, which is zm
reduced wavelength X,

Thus, the proper detector frame description has the advantage of being
very intuitive, since in a first approximation we can use the language of
flat space-time, and the interaction of the mirrors with GWs is described
by the equation of the geodesic deviation, i.e. in terms of Newtonian
forces, so we can use our Newtonian intuition. However it must be kept
in mind that, contrary to the TT gauge description, which is exact, the
proper-frame description is approximate, and is valid only if the test
masses are at a distance small compared to the reduced wavelength Xg.
-of the GW, see eq. (1.97). Since for a Michelson interferometer the

istance between the beam-splitter and the end mirror of an arm is the
arm-length L, the proper detector frame description assumes I < Xgw,
that is, L

<1. (9.35)

c
Thus, we cannot expect to recover the full TT gauge result (9.27), which
s exact, but only its limit for small values of wgy L /c.

We first perform the computation in the proper detector frame to

lowest-order in wgwL/c. In this limit the space-time metric is exactly

flat, see eq. (1.86), while the effect of the GW on the test masses is given
by the equation of the geodesic deviation, eq. (1.95). Thus, the situation
s reversed compared to the TT gauge description. In the TT gauge, the
position of the mirrors is not affected by GWs, while the propagation
of light between the mirrors is affected. In the proper detector frame,
he mirrors are affected by the GWs, while light propagation is not.
We fix the origin of the coordinate system on the beam-splitter so, by
definition, the beam-splitter does not move, and we consider as before a
GW with only the plus polarization coming from the z direction, written
as in eq. (9.6). The equation of the geodesic equation for the mirror on
the z arm, described by coordinates (é;,&,), is then®
b= ghite, (9.36)
while &, (t) remains zero at all times if £,(0) = &,(0) = 0. Equation (9.36)
can be solved perturbatively in ho; to zeroth order we have £, = L, so
to O(ho) we get & = (1/2)hy L, which has the solution
hoL

2
where we choose the integration constants so that the average value of
&, over one period of the GW is equal to L, and the average value of
the velocity £, vanishes.

Since space-time is flat, a photon that starts at the beam-splitter at
time ¢, moving along the positive = axis, follows the trajectory z(t) =
¢(t—to), so it reaches the mirror at a time t; given by c(t1 —to) = & (t1)-
This equation is easily solved for ¢;, perturbatively in hg. To zeroth
order in hg we get the trivial result ¢; = to + (Lg/c). Inserting this into
coSwgwt in eq. (9.37) (which is already multiplied by ho), we get

hoL

£:(t) = Ly + —— coswgwt, (9.37)

L.+

e(ty —tg) = = coswgw(to + Lz/c)] . (9.38)

2

9The fact that here appears the form
of hyy in the TT gauge, even if we are
working in the proper detector frame,
is a consequence of the fact that the
right-hand side of eq. (9.36) is really
—c? Rigjoé?, seeeq. (1.93). Recall from
Section 1.1 that, in linearized theory,
the Riemann tensor is invariant under
coordinate transformations, so we are
free to compute it in the frame that we
wish, and in particular we can use the
form of hyy in the TT gauge.
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The round-trip time is twice as large, so the photon gets back at the Writing

beam-splitter at a time ¢y given by
2L, holLas

+
c c

coSwywt' = cos{wew(t’ — to) + wewto] (9.44)

tg—tg = cosfwgw (to + Lz /)] - (9.39) = cos{wgw (t' — to)] coswewito — sinfwgw (8’ — t0)] sin wawto s

the integral over t' can be performed exactly. Consistently with the order
to which we are working, we then expand the exact result to the first
non-trivial order in wegy (t—to) (which, in the final result, will correspond

to the first non-trivial order in wywl/c), and we get

This coincide with the result that we got in the TT gauge, eq. (9.14), ex-
cept that the function sinc (wgwl/¢) = [sin(wgwL/c)}/ [wewl/c] has been.
replaced by one, which is the lowest-order term of its Taylor expansion.
This is as expected, since the proper-frame computation just performed
is valid only to lowest order in wgwL/c.

It is instructive to compute also the next term in the expansion in
wgwlL/cin the proper detector frame, and verify that we correctly recove
the next term in the expansion of sinc (wgwL/c). In principle, we have
two kinds of corrections. (1) Corrections to the equation of motion of th
mirrors, since the geodesic equation that we have used is the first tern
in an expansion in L/Xgw = wgwl/c, as it is clear from the derivatio

2

Qﬂws (t — to)® coswgwto . (9.45)

The time ¢; at which the photon reaches the mirror is now obtained
solving the equation z(t1) = £(t1) iteratively in ho. This gives

z(t) ~ et — t) + ho

hoLs Wiy

L2 cos(wewto) -

leading from eq. (1.66) to eq. (1.71). (2) Correction to the propagatio ety ~to) = Lo + 2 cos{wgw(to + La/€)] = ho 12¢?
of the photons, since the space-time metric is no longer flat. (9.46)
Actually, the former type of correction in our problem vanishes a Observe that (writing € = wgwLs/c)
107his can be shown by observing that  next-to-leading order.!® The first correction to the photon propagatiol . .
the geodesic equation (1.66) for a mir-  can be computed using the metric (1.87). For the propagation along coslwgw (to + La/c)] = cos(wgwto) cos ¢ — sin(wgyto) sin.e (9-47)

ror moving non-relativistically is simply - . . . - — :
£ = —Tig(£). Expanding it fo second trajectory with y = z = 0 (and therefore with dy = dz = 0), recallit

order in £, with I (¢ =0) =0, we get  that the Riemann tensor is antisymmetric in the first and second pal
of indices, eq. (1.87) reduces to

= {1 4+ O(e?)] cos(wgwto) + O(€) sin{wgwto) ,

so0 in the last term of eq. (9.46), which is already a factor (wgwlz/c)?
smaller than the second term, we can replace cos(wgwto) by coslwgw(to+
L./c)], since the difference is of higher order in wgw Lz/c. Then we finally
get

€ = ~E0;Tho— ;" AbiTh +O(EY), A

. ds? = —c2dt*(1 + Ro1012°) + dz?. (9
where the derivatives of I'f, are com-
puted at £ = 0. The first term gives  We can compute the Riemann tensor using the form of Ay, in the

the equation of motion that we already . - - .
used. For a mirror along the ¢ arm S2UEe (compare with Note 9) which gives, for a wave with only the pl

& = (£,0,0), so the second term is polarization,
proportional to 81(81T3;). A plane

hoLg
2

2
cosfuwga(to+L/0)] T.xﬁzl%av . (9.48)

GA.: |ﬁ0v = H\Hn_u

. > b 1 -

t = e . . .
Msmm,mﬁwmwwﬂww wowm,wrw NmMMHMMHWM Roio1 = ) h+ Writing similarly the equations for the round trip we find that, to this
Rlemann tensor, as well as (8115,), is w2 order in wgwls/c, the round-trip travel tp — to is twice {1 — 0. In the
“J%vesas; of z, and 6;(81T%,) van- = m ho coswgwt , 9 last bracket we recognize the first two terms of the expansion
shos, :

see eq. (1.94). Light propagation is obtained imposing ds®> = . sinz el +0(z%). (9.49)
eq. (9.40); then, to next-to-leading order, the position z(f) of a phas ) x 6

ton propagating along the z arm is obtained integrating

We have therefore verified that the analysis in the proper detector frame
orrectly reproduces the leading and the next-to-leading terms of the TT
gauge result given in eq. (9.15). It is also clear from this discussion that,
hile the description in the detector proper frame is more intuitive,
since it allows us to think in terms of Newtonian forces acting on the
‘mirrors, and of light propagating (in a first approximation) in the flat
-space-time of Newtonian physics, still the TT gauge description is much
‘more powerful, since it allows us to get the exact closed form of the
dependence on wgywLz/c. In the detector proper frame the computation
of still higher-order corrections becomes more and more involved and,
without the hindsight from the TT gauge analysis, it would be difficult
to imagine that the whole series resums to such a simple closed form.

2
dr = £cdt |1+ M.ww\.smevo COSWewt | , (9

while the motion of the mirrors is still given by eq. (9.37).
Consider a photon that leaves the beam-splitter at time ¢y and pro
agates along the positive z direction. To lowest order in kg we have thi
trivial result z(t) = c(t — o). Inserting this into the right-hand side o
¢q. (9.42) we find the solution to order hy, .

2 3

cw
M& dt’ (t' — to)? cos wewt' . (9.43
to

a(t) = c(t —to) + ho
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Zm,:nﬁumnaoav this scheme turns out
to be quite sensitive to the problem
that some part of the light is scattered
inside the interferometer off the nomi-
nal path, and this light interferes with
the main beam.

Fig. 9.3 The situation in which
the incoming field comes from the
denser medium.

Fig. 9.4 The situation in which the
Jncoming field comes from the rarer
Coagedivn,

requires

9.2 Interferometers with Fabry—Perot

e P+ =1, (9.51)
cavities

and 7?44 = 1.12 Between {r, t) and (', t') we have so-called reciprocity
- relations, which can be obtained as follows. Consider the arrangement
shown in Fig. 9.5, in which the incoming electric field arrives from the
left, and there is a gap of width d of a less dense medium between two
layers of the more dense medium. We denote by Ecsy and E.,,, respec-
tively, the right-moving and left-moving electric fields in the gap, close
to the first interface. Then, by definition of reflection and transmission
coefficients, at the first interface we have the two relations

We have seen in eq. (9.33) that, to measure GWs with frequencies of
order of a few hundreds Hz, the optimal choice would be an arm-length
L of several hundreds kms. For Earth-based interferometers this is in
practice impossible (consider, among other things, that the arms of the
interferometers must be enclosed in a very high vacuum system, as we
will see in the Section 9.4). Taking into account technological and fi-
nancial constraints, LIGO has arms of length L = 4 km and VIRGO of
3 km, while GEO600 has L = 600 m and TAMA has L = 300 m. The:
idea is therefore to “fold” the optical path of light, making it bounce
back and forth many times in each arm, before recombining the twg
beams. A solution that was first considered is the so-called “delay line”
In this case, in each arm the light beam goes back and forth betwee
two mirrors along trajectories that do not superimpose, and which mak
different spots on the mirrors. However, to reach an effective path lengt
of order 750 km out of arms of order 3—-4 km we need O(100) bounces.
the delay line scheme, this leads to unpractically large mirrors.’* Thug
the solution which has been adopted in LIGO and VIRGO is that o
transforming each arm into a Fabry-Perot cavity. In the next subse¢
tion we will discuss the principles of operation of a Fabry—Perot (F
cavity, and in Section 9.2.2 we will discuss its interaction with a GW,
and we will see how it improves on the simple Michelson scheme.

Ecay = tEin + .\.\.m\MmE s Awmmv
Ereg = 7Ein + n\mmp< - Awmwv
We now take the limit d — 0. In this case Fc.y and E.,, are also the

right and left-moving fields, respectively, at the second interface. Thus,
we also have the relations

e

E;= %@n% ) Aw.m%v
E. ., =7 Egy. (9.55)

cav

On the other hand, if d — 0, there is no gap, and we must have

E, = Ep, (9.56)
. . . Eren =0. (9.57)
9.2.1 Electromagnetic fields in a FP cavity
. Combining the six relations (9.52)-(9.57) we find the two conditions

Reflection and transmission coefficients )

r=—r, (9.58)
t—rr'=1. (9.59)

First of all we recall from elementary electromagnetism that, at the in
terface between two media with different index of refraction, the relati
between the incoming field FEi,, the reflected field Fi.g and the tra

mitted field FE, can be written as Inserting egs. (9.58) and (9.51) into eq. (9.59) we get ¢ = ¢. In conclu-

sion, we have

Erea =rEin, E, =tEpn, Awmo
v =7, t'=t. (9.60)

where 7 and t are called the reflection and transmission coefficien
respectively, and are in general complex numbers. We consider for thi
moment the transmission and reflection across a sharp boundary. Af
a sharp boundary there is no physical mechanism that can produce:}
phase shift, so in this limit 7 and ¢ are real. More precisely, (r,t) ar
the reflection and transmission coefficients when Ej, comes from th
first medium, say the denser (from the left in Fig. 9.3). Similarly,
denote by 7' and t' the reflection and transmission coefficients whe
FEin comes from the second medium, i.e. from the right in Fig. 9
Between these coefficients hold useful relations. In particular, since thi
energy associated to the electric field is proportional to |E[?, and on.:
sharp boundary there are no losses and r, t are real, energy conservatior

_For a perfectly reflecting mirror, reflection from the less dense to the
more dense medium is associated to a factor v = —1, while from the
denser to the less dense medium we have r = 1.

Reflected, transmitted and interior field in a FP cavity

We can now apply the above results to the study of a Fabry-Perot
cavity. A Fabry—Perot cavity consists of two parallel mirrors, that for
the time being we assume plane and of infinite transverse extent. We
consider a component Ei, of the incoming electric field. Part of the
ncoming field is reflected and partly transmitted, see Fig. 9.6. The

9.2 Interferometers with Fabry-Perot cavities 481

2More precisely, the energy density is
actually proportional to E-D, where D
is the displacement vector. If we define
the coefficients r,% in terms of E, we
should then write r2 + t?(n1/na) = L.
We can however simply reabsorb n into
the definition of E to keep the equations
in simpler forms such as eq. (9.51). In
any case, the issue is irrelevant for a sit-
uation such as that shown in Fig. 9.6,
where we are interested in the fields in
the vacuum, on both sides of the mir-

Fig. 9.5 A gap of a less dense
medium between two layers of
denser media.

Fig. 9.6 A schematic Fabry-Perot
cavity.
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sziﬁv_m reflections inside the sub-
strate can be suppressed by using anti-
reflection coatings, but are really elim-
inated only by giving to the exter-
nal face of the mirror a wedge-shaped
form, so after a few bounces the photon
is simply lost, rather than reentering
the main beam with a different phase
(which would result in noise). It should
however be observed that all these cou-
plings of the phase of the light to the
geometry of the optics (such as multiple
reflections, phase shifts at the coatings,
etc.) are channels from which noise can
enter.

Fig. 9.7 A symmetric mirror, with
a field A coming from the left and a
field B incoming from the right.

transmitted field Ecav(0) propagates to the far mirror, where it is partly
reflected and partly transmitted. The reflected part goes back to the first
mirror, where again it is partly reflected and partly transmitted, and so
on. The total reflected, interior and transmitted fields are therefor
determined by the superposition of many beams, corresponding to the
multiple bounces.
The light from the laser comes from the left in Fig. 9.6. The mirrorg
are set with their high-reflectivity coating on the interior of the cavity,
Before reaching the high-reflectivity coating, light enters from the le
face of the mirror and passes through the substrate, so in general
acquires a further complex phase shift, both from the substrate and
from the coating, and can also suffer losses. A beam which enters the
cavity and, after a number of round-trips, is reflected back, travers
once more this substrate, acquiring a further phase. The important
point, however, is that these phase shifts are the same for all bean
independently of the number of bounces made inside the FP cavity, &
they just give an overall phase factor, independent of the length L ¢
the cavity, to the reflected (and transmitted) fields. This phase facto
is compensated by the experimenter, moving the position of the mirrof
until the interference pattern of the interferometer is on the desire
working point (the dark fringe, as we will see), so we can simply forg
about them.’® We can therefore simply model the two mirrors of th
FP cavity stating that, for the first mirror, we have real reflection a
transmission coefficients ry and ¢; when the incoming field propagal
from the interior of the mirror toward the cavity, and r| = —r; an
t} = t; when it is going from the cavity toward the mirror. We th
take into account the losses in the mirror writing

B' = zpA+ 2gB. (9.63)

Requiring the energy balance |A’|*> +|B|2 = (1 —p)(JA|? +|B}?), we get
the condition Re (2r2}) = 0. A possible solution is zg
where 7 and ¢ are real and satisfy 72 + 2 =1—p

These different modelizations of the mirrors of a cavity of length L
can however be compensated by a constant shift AL of some fraction
of wavelength. For instance, with the modelization ' = —r, we will
find below that a Fabry—Perot cavity resonates at 2k, L = 2mn, with n
integer. Repeating the computation for zp = ir, equal for both sides,
one would rather find resonances at 2k, L = 2nx(n + 1/2). In practice,
the experimenter tunes the position of the mirrors until he/she finds a
resonance, and all that matters is the behavior around resonance, which
is the same in the two cases, so the modelization chosen for the mirrors
becomes irrelevant. Similarly, using zg = ir and zpr = {, instead of
eq. (9.5) one would find |Eou|? = E2 cos?[ky(Ly — L)), but again the
experimenter simply adjusts the lengths Ly and L, until he/she finds
the desired working point, such as the dark fringe. For definiteness, we
will always use the modelization leading to eq. (9.60).

We can now compute the reflected and transmitted fields, and the
field inside the cavity, as follows. We choose the coordinates so that the
left mirror is at = 0 and the right mirror at £ = L. From the laser
we send light with an electric field of the form Fjexp{—iwrt + ikLz}.
Let ¢t = tp be the value of time at which a given wave-packet reaches the
mirror, at £ = 0. Thus, the corresponding electric field is simply

MONISEFND .

=1ir, 2zr = L,

(9.64)

Part of this beam will be immediately reflected back from the mirror,
ith amplitude +ry, giving rise to a reflected beam with field

0 -
m_mmmw = ﬁw.@ow wrto .

m4+ti=1-p, (9.6

where p; (typically of order of a few parts per million) represents th (9.65)

losses in the first mirror. We similarly introduce coefficients (rs, ts) an
(ry = —ra,ty = t2) for the second mirror, with 72 + 2 = 1 — py,
again a field that propagates from the cavity toward the mirror and
reflected back gets a factor —ry.

Other modelizations of the mirrors are possible. In particular, or
could treat the reflection and transmission from the two sides of th
mirror symmetrically so that, if a field A is coming from the left, th
reflected field is Ag = 2pA and the transmitted field is Ar = zps
where zg and 27 are the reflection and transmission coefficients, whid
now a priori can be complex because of the finite thickness of the mirro
and which satisfy |zg|? + |2r]? = 1 ~ p. Similarly, if a field B is comi
from the right, the reflected field is Br = zzB and the transmitted £
is By = zrB, with the same zpg, zr. In the presence of both a field
coming from the left and a field B coming from the right, as in Fig. 9.
we have

This field will interfere with a beam that was send toward the mirror
earlier, which entered the cavity, was reflected back at the second mirror,
and then was transmitted from the first mirror, see Fig. 9.8. In order to
arrive back at the first mirror at the same time tg, it must have entered
_the cavity at time to—2L/c. So, its initial amplitude when it entered the
mirror for the first time, arriving from the laser, was Ege~wu{to—2L/¢)
that is Ege~*vLtoe?®Ll  After transmission from the first mirror it gets
a factor ¢1, reflection at the second mirror gives a factor —ry and finally
transmission from the first mirror gives again ¢;. Thus, at time ¢y the
total reflected field gets also a contribution

B = [try ehut] Bpe=ionto. (9.66)

This beam has a relative amplitude —r5 & compared to the incom-
ing laser field given in eq. (9.64).1* Then, we have the field that entered
the cavity at time to—4L/c, and went twice back and forth in the cavity.
It comes out at time #5 with an amplitude

m , |.
m,_mmm = Tjﬁw% MEFJ Ege™ it

g2tk L

A ' =z2pA+ 2rB Aw.mﬂv
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Fig. 9.8 The building up of the re-
flected field from the interference of
the directly refiected beams and of
beams that vatered the cavity at
earlier times and made a number
of bounces inside the cavity. For
clarity, the various path have been
drawn as if they were spatially sep-
arated.

M This result is ofton collogquinlly ox-
plained stating that the field haa ace
quired a phase e**td from the free
propagation, and the fautg

flection. This is misloading. O
a wave does not acquire niy P
tor m,oB its free pr :vaxamir

the vrmmm factor kyx - E_L v 5_‘ ﬁﬁa&
is mymo constant Eo:a :.u frew: :@m&p

and transmission from the i f1ef
in our case this gives the factor kw,
The factor e¥LL relative 1o eq. (4,04}
is there because the beam that we are
considering entered the cavity carlier,
at a time to — 2L/c, nnd apent a time
2L/c going back and forth in the cav~
ity. Thus, this sccond beaw slready
had from the start a phase different by
a factor e2*¥LL | compured to the Held
(9.64) that arrives at time fo directly
from the laser.
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Finally, since the solution inside the cavity is given by plane waves, the
field Eeay(t, z), which represent a right-moving wave, is proportional
to exp{—i(wrLt — krz)}, while E., (¢, z), which represent a left-moving
wave, is proportional to exp{—i(wrt + kpz)}. Thus the cavity fields at
z = L and at = = 0, at equal value of time, are related by

More generally, the field that entered the cavity at time to — n(2L/c)
and performed n round trips comes out at time ¢ with an amplitude

B = [—rplrgd 2rikil] Bpemivnto (9.68)

The total reflected field is therefore given by

nto | g . Eeay(L) = €0 Ecar 0), (9.77)
mnmm - Mwomlsﬁrwo Ty — mw m iw«luﬁmsmmﬁswrh .m_mm<AN\V — mlw#rhmMm<AOv . Awﬂmv
) I ) . ) Then we have six equations, egs. (9.73)~(9.78), that we can solve for
— [ o—iw 2. 2ikLL ™ ’
= Ege™ ™t |y w2520 MU (rirpe?el) the six quantities Ere, Ex, Bcav(0); Beav(L), Blay (0), Blay (L), in terms of
- mﬁn% Eiy = Ege~*tt, With straightforward algebra we get back the solution
—iw, <L . . o s

= Epe~™tto | — 2, HIIIN:FIL , (9.69) - found above. For instance, combining egs. (9.76), (9.77) and (9.78) we

L —Time get .
or, using t2 =1—p; — 1%, E((0) = —r2e®™ Y Eey (0) . (9.79)

—— - Substituting this into eq. (9.73) we get
1 — 721 — p1)e*™ ,

1-— \:ﬁmmwiarh

— 3wt .
Eren = Ege™ "% (9.70 Eeav(0) = ty Eip + rir2e?™ L B, (0), (9.80)

from which the solution (9.72) for Ec,(0) follows, and similarly we get

The transmitted field is computed similarly, Boon and E,
3 re! -

)
E = mwomlmErS tits Mﬁﬂwﬂmvzmtﬂrhﬂmql.d
n=0
wﬂwmm

Resonant FP cavities

ikL L - We see that the reflected, transmitted and interior fields are all pro-
ortional to the factor 1/[1 — rirze?#L]. When 2k.L = 2mn, with
n=0,41,+2, ..., this factor becomes 1/(1 — rir2) and, if the reflection
oefficients r; and 5 are close to one, this is large. We therefore have a
et of resonances. Physically this means that, for 2k, L = 27n, the var-
ous beams that bounce back and forth interfere constructively, so the
field inside the cavity raises to a very large value. Correspondingly, the
transmitted field also gets large. As for the reflected field, for assessing
- its strength we must also take into account the dependence on kpL of
he numerator, which describes the interference between the field that
s reflected after having entered the cavity and made one or more round
- trips, and the field that is immediately reflected. We first consider the
power P, ~ |E;|? of the transmitted field (or, equivalently, of the inte-
rior field, Ecay, since |Ey| and |Eg,y| differ just by a constant factor t2).
From eq. (9.71),

= Epe~trto (.

The field inside the cavity, at the left mirror (z = 0), again at time ¢
is

o
.@ow<AOv — mcmls.Ernc t Mnﬁuﬁwv.@mmﬁ;rh
n=0
31

— MOQI&EF."Q

total reflected, transmitted and cavity fields as shown in Fig. 9.6. The

just as in egs. (9.52) and (9.53), using r{ = —ry and t; = #;, at the fir 243

mirror we have E? = E? . .
|| Eo 1+ (rim2)? — 2r1ro cos 2k, L (9.81)
Eeav(0) = t1 Bin — 11E,,(0), (9.78 This is plotted, as a function of 2k, L, in Fig. 9.9. Writing ki, = wy,/c,
Eren = 1B, + 11 E,,,(0). (9.74 the distance between the maxima is
Similarly, at the second mirror we have Awy, = W . (9.82)

E; = mm.m_nmzmhv 3 Amﬂw

) This is called the free spectral range of the cavity. Expanding the de-
.@nmkc.‘\v = l.q.m.m.omkﬁhv . Awﬁw

nominator in eq. (9.81) to quadratic order around a resonance, we find
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Fig. 9.9 |E4|? , in units of (Fot1t2)?,
as a function of 2k, L, for rir2 = 0.8.
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that the full width of the peaks at half maximum is

bwp, = = ——mt (9.83)

The finesse F of the cavity is defined as the ratio of the free spectral
range to the full width at half maximum, F = Awy,/éwy, so

Fe w\/T1T2

T (9.84)

To understand the physical meaning of these results it is useful to com-~
pute the storage time, i.e. the average time spent by a photon ins
side the cavity. For simplicity we take r3 = 1, so each photon has
an amplitude probability A(n) of making n round trips, and finall
comes out from the first mirror. Recall that the number density o
photons is proportional to the modulus squared of the electric field
so the factors —r; and —ry acquired at the reflections from the mi
rors are the quantum-mechanical probability amplitudes, while the
squared modulus is a probability. Thus, the amplitude for perform
ing n round-trips and then coming out from the first mirror is given b:
A(n) = t3(=1)*(—r1)"! = constant x r}, since each reflection at the
far mirror has a probability amplitude —1 and at the first mirror (—ry
Thus, if a photon enters the cavity, the probability that it comes out
after n round-trips is

2n
1

ﬁgvni_ w.m
Yo T (
where the denominator normalizes the total probability to one. Th
average number of round-trips is therefore

o 1
np(n) = ——. 9.8
2 =1 (

Since each round-trip lasts for a time 2L /c, the storage time of the cavit;
i.e. the average time spent inside by a photon, is ’

2L 1
To= ey (9.8

5 -
c 1—ry

If 71 is close to one we can write 1 — 7% = (1 — r)(1 + 1) = 2(1 — -

and we can express the storage time in terms of the finesse, as
LF
Te o = . (9.88)
cw

We see that, in the limit of high finesse, light is trapped in the FP cavi
for a long time. If we illuminate the cavity and then we suddenly sh
off the laser at ¢ = 0, light will still continue to come out from th
cavity for a long time. According to eq. (9.85), the intensity of the lig
coming out after n round trips is proportional to r2" = exp{nlogr?
Fot ry close to one, logr? = log[l — (1 —r2)] = ~(1 — r%). Therefore t}
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intensity of light decreases with n as exp{-—n(1 —r#)}. Since the light
that performs n round trips comes out at time ¢ = (2L/c)n, for r; close
to one and r = 1 the intensity of the reflected light decreases with time

as exp{—t(c/2L)(L — r2)} = exp{~t/7}, with 7, given in eq. (9.87),
confirming the interpretation of 7, as a storage time. A .
We consider now the reflected field. We write Ereq = | Ereale ™1t €',

and we find from eq. (9.70) that the phase ¢ can be written as ¢ =

$1 — $2, where

ﬂ.wﬁ. — N:v mwaw\ahN\v
ry —r2(1 — p1) cos(2kr L)’
T17T2 mmdﬁw\abhv

—— 9.90
1 — 7179 cos(2kr,L) ( )

(9.89)

tan %w =

tan ¢o

- A plot of ¢ as a function of 2k, L is shown in Fig. 9.10. Two aspects
- of this graph are interesting. First, away from the resonances (which,
as we have seen, are at 2k L = 27n), ¢ is almost flat as a function of

2k1, L, and is basically equal to zero (mod 27). So, here the phase of the
reflected light is insensitive to changes in the length L of the cavity or
of the frequency of the laser light. However, close to the resonances this
dependence suddenly becomes very sharp. Writing 2k, L = 27n + € and

“expanding for small €, egs. (9.89) and (9.90) give (setting for simplicity
7o =1 and p; = 0 and neglecting O(e?)) 8¢/8¢ = (1 +r1)/(1 —r1) or,

aking ry close to one,

~

®le

2F
o (9.91)

We can compare this with the result (9.2) for one arm of a simple Michel-
son interferometer which, in the present notation, reads ¢ = ¢. When r;
s close to one, the sensitivity of a FP cavity to changes in 2kLL is en-
hanced by the large factor (2/7)F, compared to the arm of a Michelson
interferometer.

The result for generic values of 71,7 (but still such that F > 1) can

' be conveniently written observing that, for large F, eq. (9.84) can be

inverted to give

T 72
rireg =1— ,Ium + O Amv . Amwmv
We define p from
A -p)ry=(1~p), (9.93)
. and we introduce the coupling rate o,
-7
o="" (9.94)

From the condition r2 = 1 — p? — t3 < 1 —p; it follows that rfr§ <1—p
and for small p (typical values in VIRGO and LIGO are p ~ 2 X 1079)

Fig. 9.10 The phase ¢ of the re-
flected field, as a function of 2kiLL,
setting ry = 0.9, 12 = 1, p1r = 0.
‘We have defined ¢ so that it is a
continuous function of 2k;, L, rather
than reporting it always to the in-
terval [0, 2r).
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15This at first sight can be surprising.
If for instance r; = 0.99, almost all
the incoming light is reflected back im-
mediately and is not so intuitive that
the total reflected field can be zero.
What happens is that the small amount
of light that enters the cavity eventu-
ally builds up a sufficiently strong in-
terior cavity field, and the part of it
that finally leaks back from the first
mirror has a large enough amplitude,
and the appropriate phase, to cancel
the promptly reflected field.

I_-2---%

Ll

Fig. 9.11 The phase ¢ of the re-
flected fiold, a8 & function of € =
2k L - 2mrn, for an overcoupled cav-
ity with o = 0.06 (solid linc) and
for an undercouplad envity with o =
1.05 {dashed line).

we have r173 <1 — (p/2). Using eq. (9.92) we then obtain

9.2.2 Interaction of a FP cavity with GWs

- We have seen that the effective storage time of light, which in the arm of
a Michelson interferometer is 2L /¢, becomes (L/c)F/m in a Fabry-Perot
- cavity, i.e. is enhanced by a factor F/(2n), and the sensitivity to a phase
hift is enhanced by a factor (2/7)F. Since we finally measure a phase
hift, we can expect that the same response to GWs of a Michelson in-
erferometer with arm-length of hundreds of kms, as would be optimal
or GWs with frequency few = O(10%) Hz, should be obtained replacing
he arms by Fabry-Perot cavities with a length of a few kms, and a fi-
nesse F = O(10%). Thus, our next approximation toward a realistic GW
interferometer is as in Fig. 9.12. In this section we study the response of
a FP interferometer to GWs, and we will see that the above expectation
s indeed correct.

We want to compute how the reflected field of a FP cavity is affected
by an incoming GW. We consider a FP cavity oriented along the x axis
and a GW with only the plus polarization propagating along z, as in
q. (9.6). We begin with a description in the proper detector frame. As
Observe from eq. (9.70) that, at the resonances, the reflected electrig. ¥ we saw in Section 9.1.2, in this frame we can easily obtain the result
field is o lowest order in wgwl/c by making use of the fact that, even in the
presence of GWs, light propagates along the geodesics of flat space-
ime, while the mirrors are shaken by a force exerted by GWs, so that
heir motion is given in eq. (9.37). Therefore the length L of the cavity
changes as

IR 5
1-Zz<1-7, (9.95)

which, in terms of ¢, gives o < 2. Since of course & > 0, we have

0<o<2. (9.96)

Writing 2k1,L = 27n + ¢ and expanding for small ¢, egs. (9.89) and
(9.90) become tan ¢y = (Fe/m)/(1 — o) and tan gy = —Fe/m, s0 ¢ =
—7 + arctan(Fe/m). For ¢ = ¢y — b2 we get

Fe 1 Fe
¢ =n +arctan | — ——| 4-arctan | — | .
. T l-0o T

When o > 1 this is rewritten more conveniently as

¢ = arctan ﬁm ! Q + arctan ﬁmw .
T o~1 T

mam — momls,ﬁrnc T — iwﬁ_. [BHV
1- T172

In particular, if r; = (1 — p1), at resonance there is no reflected ligh
from the cavity. Physically, what happens is that the light that is i
mediately reflected back interferes destructively with the light that i§
reflected after one or more round trips in the cavity.!® This situation
is called the optimal (or critical) cavity coupling. Of course, it is ops
timal from the point of view of the transmitted field since, except fo
the losses, all incident light finally leaks out from the second mirro
For the arms of a GW interferometer, we will see that we are intereste
in the reflected signal and therefore we do not want this situation.

AL(t) = % CoSWewt - (9.101)
This induces a change A¢, in the phase ¢, of the field reflected from
- the cavity along the z arm, which is obtained from eq. (9.91), i.e. from

Ay = (2F [m)e, setting € = 2k, AL,

4F
r1 > 12(1 — p1) the cavity is undercoupled, while for r; < r2(1 —p1) th A¢y = r kLAL
cavity is overcoupled. In terms of the coupling rate, using the definition oF
(9.94) and neglecting O(n?/F2) in eq. (9.92), we have = ky,Lho cos wewt - (9.102)

ri—ra(l—-p;) o-1

The phase shift of a FP cavity along the y arm is obtained reversing
1- T17T2 T2

he sign of hg (see eq. (9.7)), so the total phase shift in the Fabry—Perot
- interferometer of Fig. 9.12 is A¢pp = A¢y — Agy = 2A¢,. We write
- Adrp(t) = |Adrp| coswgwt, sO

) (9.100

so optimal coupling corresponds to ¢ = 1, while for 0 < ¢ < 1 th
cavity is overcoupled, and for 1 < ¢ < 2 the cavity is undercouple
Observe that Fig. 9.10 refers to an overcoupled cavity. For undercoupl
cavities, instead, the region where the phase of the reflected field
very sensitive to changes in 2k,L becomes smaller and smaller, and
disappears completely when o — 2. A comparison of ¢, as a function o
¢ for 0 < 1 and for o > 1 is shown in Fig. 9.11. Clearly, the sensitivit
to a change of 2k L is higher for an overcoupled cavity. For the arms o
VIRGO and LIGO, the losses are such that p ~ 2 x 1075 and the fines
I8 F 2 50 for VIRGO and F ~ 200 for LIGO, so we have ¢ ~ 3 x 10~
for VIRGO and ¢ ~ 1073 for LIGO. Therefore these cavities are we)
overcoupled. -

4F
|Agpp| = - kpLhg. (9.103)

- This is the change of phase that would be induced in a Michelson in-
terferometer with arm-length (2/#)F L. Similar to what happens in a
Michelson interferometer, we expect that, when the storage time 7, given
in eq. (9.88) becomes comparable to the period of the GW, the sensi-
tivity degrades because we are summing over contributions with both
positive and negative sign, so the above result is really the lowest order
in an expansion in wewTs. To compute the result for wgw7s generic, we
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beam
Laser splitter

photodetector

Fig. 9.12 The layout of an interfer-
ometer with Fabry-Perot cavities.
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16Recnll that thie Ruparposition of car-
rier and sidebands:giveniu eqs. (9.104)
and (9.105) derives frém:the expansion
of a phase factor, se &g, (1.24) and
(9.34).

already know from our discussion in Section 9.1.2 that we cannot work
in the proper detector frame, and we must rather switch to a TT gaug
description.

First, it is useful to observe that, for a FP cavity, we can repea
without any modification the derivation done in eq. (9.34) for an arm o

Again to order hg, we can simply replace the terms hge “@rEws«)to in
eq. (9.107) by hge~HwrEwen)(t-2L/¢)  Collecting terms with the same
time dependence in eq. (9.107) and comparing with eq. (9.105) we get a
matrix relation B; = X;;A; (with ¢ =0,1,2), where

a Michelson interferometer, and we again conclude that, if a GW induces - Xoo 0 0
a phase shift Ag;(t) = |Ad.| coswyyt in the field reflected from a cavity X=| X50 Xu 0 . (9.109)
along the z axis, this produces in the reflected field sidebands with X0 0 Xop

frequencies wy, + wgw and an amplitude, relative to the carrier, who
modulus is |Adg|/2 in each sideband. Thus, to compute the phase shifi
[A¢z| of the reflected field, to all order in WewTs, We can compute in the
TT gauge the amplitude of the sidebands of the reflected field. This can
be done generalizing the computation of pages 483-485 as follows.

The diagonal elements describe the free propagation of the carrier and
of the sidebands, while the X3¢ and X0 term describe the fact that a
round-trip of the carrier produces further contributions to the sidebands.
Using eq. (9.108), the explicit expression of the matrix elements is

Consider the electric field coming on the first mirror of the cavity Xogo = e2iorli/e
from the laser, as in Fig. 9.8. This incoming field is monochromatic, and X1y = p2iwL—wg)L/c
oscillates as e"*vt, When it enters the cavity and bounces once back and n= mm. L/ ’
forth, besides acquiring the usual transmission and reflection coefficient Xpp = e¥lerreet/e, (9.110)

X1o = dkr, L sinc (wgw L/ c)e?Por—wal/c
Xa0 =tk Lsinc ?wﬁh\&mxmsiewzvb\n .

when a GW is present it also acquires a phase modulation, so that whe
it comes back to the first mirror it consists of the carrier at frequeng
wp, plus the two sidebands at wy, + wWew. These three monochromat
fields are partly reflected, with the usual coefficient —ry, and can mak
one more round trip in the cavity, and so on. So, we need to know hg
a generic field with carrier plus sidebands is modified by a round tr
We therefore consider a right-moving electromagnetic field which, at th
left mirror, has the time-dependence

For a Fabry-Perot cavity along the y axis the same expressions hold,
inverting the sign of hg (see eq. (9.7)) or, equivalently, inverting the sign
of X319 and of Xoq.

This result allows us to generalize eq. (9.80) to the case when GW's are
present, simply replacing the factors e**1L with the matrix X. Thus,
we can write the fields B = (Bg, By, B2) inside the cavity, at z = 0, in

; 1 . 1 ]
Alt) = Age™rt 4 mg}mi@ifv“ + m\,i%léifx , (9.104 matrix form as

: : =t A XB, 9.111
while we denote by B(t) the right-moving field at the end of the roun B =t1Ain + 12 ( )
trip, where Aip, = (Ep,0,0). The solution is

WQV = momls.ﬂru + Wbomﬂmlm?rlsmi: + W?ommﬁlm?r.f&min . (9.105 B=(1— \Jﬁmuc..ﬂwu.\r: . (9.112)

This is the right-moving field at the first mirror (the equivalent of what
we denoted by Ecay(0) in the absence of GWs, see Fig. 9.6). The left-
moving field (E.,,(0) in Fig. 9.6) in the absence of GWs is obtained from
Ecav(0) using eq. (9.79). In the presence of GWs, we have seen that the
factor e?#1L is replaced by the matrix X, acting on the vector space
of the amplitude of the carrier and of the sidebands, so the left-moving
field is now

If we denote by ¢ the time at which the field terminates its round-tri
the time o at which it started is given by (compare with eq. (9.18))

2L L :

to=1t— ~ ho coswgw (t — L/¢)] sine (wewL/c) . (9.106

Since during free propagation the phase is unchanged, we must havi

(apart from the reflection coefficients at the mirrors that we will ad

separately) B(t) = A(tg),'® that is B = —ryXB, (9.113)

and the total reflected field, which includes also the promptly reflected

. ) 1 )
m@v - \wcml:crwo+WF0>HWISAEUIEEL8+M\so\wm®|2€r+€msvwo ) Aw.HOﬂ
part, is given by

Using eq. (9.106) and developing to first order in hg,
) ) _ Areg = r1Ain — 8172 XB
e iwpto e iwr, (t~2L/c) 9.108 refl 1Ain
1 . . ( =fr1 —r2(1 = p)X]( — 172 X) " A, (9.114)
+=ho ik L sine (wgw L/ ¢)et3wnwew)L/e g—ilwr —wgu)t
2 which replaces eq. (9.70). Setting A, = (1,0,0), we can now compute

+W:o ik L sinc (wgw L/ c)e?(2rtesm)b/e gmilvntuwgn)t Arent = (Ao, A1, Az). According to eq. (9.34), and taking into account
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the factor ho/2 in the definition (9.104), the phase shift |A¢s| in a single
Fabry—Perot cavity along the z axis, is given by
Ay

Ao

We are interested in particular in the situation when the FP cavity is"
locked on resonance, so €#%LL = 1. In this case, with straightforwarc
matrix algebra (easily performed with the help of any symbolic manip-
ulation program) we get

1 1
M_DQL =zho

5 ) (9.115)

A Qiwgw L r2(1 —p) —rirs
AL o i . 1 , 9.116
A 10€ (eZwewlic r1r2)ra(l — p) —71] ( ‘
50
. ro(1 — 72 — p) 1
Ady| = hokr L L i
180l = Rk Lsine (o /0 ¢ o] oo =iy
. ro{l ~ 7% —p)
= hokr Lsinc (wywL/c
kL (g \:Sﬁlﬁvli_
1

X . 11

[1+ (r172)2 — 2r17y cos(2wgw Ljc)]1/2 ®
If weset p=0and rp = 1 (eg. the present value for VIRGO is
r2 = 0.99995) and we take r; close to one, the first fraction becom

simply 1+ 7y =~ 2. So, we write

r2(1—7rf —p)
[ra(1 —p) — 4]

=2[1 +e¢(r1,72,p)], (9.118

where, in the typical experimental situation, €(ry,72,p) < 1. Then

sinc (wgwL/c)

(14 (rire)2 — 2rym9 OOmAMEmsh\MVT\V
9.11

The dependence on wgywL/c can be simplified observing that we wan
to have FL/c comparable to the wavelength of the GW, so FugwL/c
O(1). However, we achieve this by using a large value of 7, so wewl/c
much smaller than one in the region where the interferometer operat
For instance, if fgw = 100 Hz and L = 4 km, wgyL/c ~ 1072, We cal
therefore replace sinc (wgwL/c) = 1 in the numerator, and we expani
c03(2wgw L/c) in the denominator. Then we get

_Dﬂﬁ_ - \N\O M\ﬂhh : + m?ﬁ\ﬁm,ﬁi

Hlen.\.Huﬁwqﬁv 1
1—1rirg : + Ilrmlmﬁlﬂﬁ“,ﬂ& ANEWEN\\vaT\N
F 1

~ ho 2k [ —
O Wt @ fper 2

|Ady| =~ hg 2k L

(9.120

where, in the last line, we wrote the result in terms of the finesse F.
given in eq. (9.84), and of the storage time 7, of the cavity, given in
. (9.87), and we neglected in the numerator terms that are small when

EE———— T
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T2,71 — 1. The phase shift of a FP cavity along the y arm is obtained
changing the sign of ko, so A¢, = —Ad¢y, and the difference between
them is Adrp = Ady — Agy = 2A¢,.

We rewrite the result introducing the so-called pole frequency,

1
o= prg (9.121)
or, from eq. (9.88), . 2 ——
c - N ST
~ 3 @.HMM B Lot e [T XS PSS SV St
.\.ﬁ %NHN\ A v 200 400 600 800 1000 1200 1400

S (Hz)

- For initial LIGO, L = 4 km and F ~ 200 this gives fp =~ 90 Hz. For

VIRGO, L = 3 km and F =~ 50, 8o f, = 500 Hz. The phase shift in a Fig. 9.13 A plot of the function
Fabry-Perot interferometer can then be written as [L+ (f/fp)?]"2, (solid line), com-
pared to the function |sinc (f/fp)|
(dashed line). We have taken f, =
(9.123) 90 Ha.

4F 1
|Adpp| ~ hg — ki L

T V1t (few/fo)? .

For few < fp we recover the result found in the proper detector frame,
eq. (9.103), as expected.l” At few > fp, eq. (9.123) shows that the 7Recall that eq. (9.91), and therefore

sensitivity degrades linearly with fy,. This formula holds as long as €a (9-103), were obtained In the limit

: r2 =1, p =0 and r{ close to one. If we

wgwl/c <1, ie keep 1 generic, still setting rq = 1 and

p =0, in eq. (9.91) the overall fuctor of

Few € < 2 is replaced by 1 4 r;, and the same
& ™ oL result is obtained from eq. (9.117).

RSEN A%v . 6.5&

Above this frequency the factor sinc (wewL/c) in eq. (9.119) can no longer
be approximated by one, and cuts the response further, reflecting the
fact that in each round-trip the GW changes sign.

In Fig. 9.13 we show the function 1/[1 + (fgw/ /)22, and we com-
pare it with the function |sinc (f/f,)], which is the corresponding quan-
tity for a Michelson interferometer whose length Lyicn = (2/7)FL is
chosen so that, in the limit fgw — 0, its response function is the same
as a FP cavity of length L and finesse F.

It is useful to write eq. (9.123) in the form

|Adpp| = hoTrp(f), (9.125)

where (writing ki, = 27/AL)

Trp(f) ~ YL .

M VIF Fel TR (9.126)

is the transfer function of an interferometer with Fabry—Perot cavities.
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Source

Fig. 9.14 The geometry used in the
computation of the pattern func-
tions. The apma of the interferome-
ter are along the # and y axes.

18When comparing with the calcula-
tion for resonant bars on pags 423, ob-
serve that here we defing @ o4 the angle
from the 2 axis, rather than from the
axis.

9.2.3 Angular sensitivity and pattern functions The rotation that brings the («',3',2) frame onto the (z,v,2) frame
is given by a rotation by an angle § around the y axis followed by a

Until now we have restricted ourselves to a GW with plus polarization, rotation by an angle ¢ around the z axis, i.e.

propagating along the z axis. We now compute the response of an

interferometer to GWs with arbitrary direction and polarization. As cos¢ sing 0 cosf 0 sind
discussed in Section 7.2, this is encoded in the pattern functions Fy (6, ¢) R=| —sing cos¢ O 0 1 0 . (9.132)
and Fy(6,4). We first consider the limit wgwL/c <« 1. In this case 0 0 1 —sind 0 cosf

we can use the proper detector frame, so the motion of the mirrors is
governed by the geodesic equation, The GW in the (z,y,2) frame is then given by the transformation law

of a tensor with two indices, hij = RitRjihy,. From this we obtain

H...

& = —hy 8. 9.127
2 ( ) haz = hq.(cos® 8 cos® ¢ — sin? @) + 2k, cos fsin cos b, (9.133)

For the mirror located at &7 = (L, 0,0), we are interested in its displace- hyy = hy (cos® §sin® ¢ — cos ¢) — 2hx cosfsingcosp, (9.134)

ment along the z direction, which is given by

;1 1 1
& haalL . (9128) mgua - Ryy) = MFAH + cos® 0) cos 2¢ + hy cosfsin24,  (9.135)
This equation governs the change in the length of the z-arm of a Michel«
son interferometer, as well as the change in the length of a FP cavity
lying along the z axis. For the mirror located at & = (0, L,0), we arg
rather interested in its displacement along the y direction, which is given

by ;

and therefore

1
FL(6,¢) = mﬁ + cos? ) cos 2¢
Fy(8,¢) = cosOsin2¢.

(9.136)

1.
& = ShyL. (9.12

The relative phase shift between the z and y arms is therefore drive
by (1/2)(hzz — hyy). When the wave comes from the z direction we
have hyg = hy and hae = —hy, 50 (1/2)(hee — hyy) = hy, but in t}
most general situation we must replace iy by (1/2)(hgs — hyy) in the
computations of the phase shift in a Michelson or in a FP interferomete
performed in the previous sections. In other words, the detector tenso
(defined in eq. (7.1)) for an interferometer with arms along the % and
directions is

We see that GW interferometers have blind directions. For instance,
for a GW with plus polarization, the direction with ¢ = /4 is blind,
since Fy = 0. This is due to the fact that this wave produces the same
displacement in the z and in the y arm, so the differential phase shift
vanishes. If we change the definition of the axes with respect to which
the polarizations hy and hy are defined, rotating them by an angle ¢ in
the (z', ') plane, the pattern functions transform as in eq. (7.30).

Equation (9.136) has been obtained in the limit wgwL/c < 1. To
compute the pattern functions for wgy,L/c generic we must perform the
computation in the TT gauge, so we should repeat the computation
leading to eq. (9.15) for a GW coming from arbitrary direction. Consider
the arm of a simple Michelson interferometers, with the beam splitter
at £ = 0 and the far mirror at x = L, (or a FP cavity with mirrors at
z=0and z = L;). Then eq. (9.9) is replaced by

Dy = WQ@U@. - ¥i¥;) - (9.130
We compute hz; and Ay, in terms of hy,hy for a wave coming fro
arbitrary direction. The computation is similar to that performed fo
resonant bars on page 425. The geometry is illustrated in Fig. 9.14: w
have a frame (z,y, z) such that the arms of the interferometer are alor,
the z and y axes. We introduce a second reference frame (2, v/, 2') suc
that the propagation direction of the GW coincides with the 2z’ axi
With respect to the (z,y, 2) frame, the 2" axis has polar angles § and ¢
defined as in the figure.!8
The polarizations hy and hx are defined with respect to the (z/,y
axes, so in the (¢’,y/, 2’} frame the GW has the form

?
Lo = clt; — to) — m dt’ hao(t', %) . (9.137)
2o

If we denote by fi the propagation direction of the GW, we have b, (t) =
heg cosjwgw (t — fi-x/c)], and we must evaluate x on the trajectory x(t)
of the photon, so along the z arm we have

hy he 0

By=| hx —hy 0] . 9.131

& ¢ o o/ ( has(t) = hag cos T? ATPN.@z (9.138)
ij
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which replaces eq. (9.6). To lowest order in hs, the trajectory of a
photon is just the unperturbed one, so inside the cosine we can set -
z(t) = c(t — to), while fi can be written in terms of the angles 0,0 as
fi = (sinfcos ¢, sinbsin g, cosd). Therefore, beside the dependence on
(8,4) in hyy and hy,, that we already computed in egs. (9.133) and
(9.134), there is also an angular dependence through the term n, in
eq. (9.138), and a similar term ny, for the y arm. In particular, eq. (9.137)
becomes

9.3 Toward a real GW interferometer

In this section we discuss a number of issues that are more technical,
but are important for understanding how a real interferometer works.

9.3.1 Diffraction and Gaussian beams

Until now we have considered idealized FP cavities with mirrors of infi-
nite transverse extent, so we could neglect any dependence of the electric
field on the transverse coordinates. For a cavity along the z axis, we
have then treated the interior electric field as a plane wave, with a de-
pendence on z,t of the form exp{—iwy(t & z/c)}, and no dependence
on the transverse coordinates x| = (y,z). Of course, in practice the
mirrors have a finite extent, and the beam has a profile in the transverse
direction.

A beam of finite transverse extent is subject to diffraction. If, at some
point in space, a photon of wavelength Ay, (and therefore longitudinal
momentum p = i/Xy) is localized within a transverse width Ax, =
a, by the Heisenberg principle it has an uncertainty on the transverse

3 .
Fuoﬁlgvx .m.? \ & G.as
to

x cos [(1 — sin 6 cos ¢)wgwt’ + wgwio sinf cos @] .
The return trip can be treated similarly, with the unperturbed photon
trajectory given now by z(t) = L — ¢(t — 1), so eq. (9.11) is replaced b;

ta
Ly =clta —t1) — ma& dt (9.140)
ty
% cos [(1 + sin 6 cos dwewt’ — wew(ts + L/c) sinfcosd] .

Summing the two equations we get

2L, 1 totla/c , momentum Ap ~ fi/a, so the beam will widen, filling a cone of angle

t2=1to + e masa i dé’ coslw-t' + go] A8 = Apy/p ~ Xp/a. After traveling a longitudinal distance z the
1 to+2Lo/c ° beam has become larger, in the transverse direction, by zA8 ~ zxy/a.

R Y- dt’ coslwit’ — ¢2), As long as £X1/a < a we are in the regime of Fresnel diffraction, and

2 to+La/c the broadening of the beam is negligible. When 2X1,/a > a, or, in terms

where we introduced the short-hand notation of kp =1/%y,

Wi = Wgw(l L sinfcosg), > kpa?, (9.146)

$o = wewto sinf cos @, we are in the regime of Fraunhofer diffraction, and the beam has become

much broader than its original size. For interferometers such as LIGO
and VIRGO, the wavelength of the laser is typically

2 = Wewto sinf cos ¢,
f5

and in the limits of the integral, as well as in ¢2, we can use t; = to+Lg
and to = tg + 2L, /c. For the y arm we have similar expressions, wi
L, replacing Ly and ny = sin @ sin ¢ replacing n, = sinf cos ¢.

It is now in principle straightforward to perform the integrals amn
compute how t2 — tp depends on the propagation direction of the G
Carrying out the integrals, however, we see that all terms which depe
on 6, ¢ are multiplied by the factor wgw L, /c. For instance, § and ¢ enty
in terms such as :

AL >~ 1lum. (9.147)

The border between these regimes is at a = (2X)'/2 which, for z =
4 km and Ay = 1pum, gives a ~ 2.5 cm. This means that, for a laser
beam whose initial width is smaller that 2.5 cm, the broadening of the
beam becomes important already after a single one-way trip through
the cavity. Furthermore for cavities with a finesse O(100), as we need
for GW detection, the beam is supposed to perform O(100) round trips
and, if the mirrors were flat, at each one-way trip the beam would widen
further, as illustrated in Fig. 9.15, and would be finally dispersed on a
region of transverse size larger than the mirrors.

Thus, it is clear that diffraction effects are important, and the naive
scheme of a narrow beam (as typically obtained from a laser) bouncing
between two flat mirrors cannot work. As a first step, we must under-
stand in more detail the propagation of a beam of finite transverse extent
over large distances. The tool that we need is the parazial propagator,
that we introduce in the next subsection.

2c
For a FP interferometer we saw that wgw Lz /c is small, typically O(10~
in LIGO and VIRGO, and therefore the function sinc in eq. (9.145)
essentially unity, and its dependence on 6 and ¢ is negligible, at leas!
as long as the condition (9.124) is satisfied. Then, we can neglect tl
dependence on the GW direction in the travel time t; — to and the on
angular dependence comes from he, and hy,y, as computed in egs. (9.133
and (9.134), so for the pattern function we can use, to a very goo
approximation, the expressions given in eq. (9.136).

sinc Tmsha (1 Lsinfcos¢)]| . (9.14
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Fig. 9.15 The widening of a beam
due to diffraction as it bounces be-
tween two flat mirrors.
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9.3
The paraxial propagator N o,
P propag; @&ﬁn _H\y&w\&\u\ E(x =0y, e~ Py +ipoz'
A given spatial component of the electric field, propagating in the vac- 2m 2m
uum, obeys the equation x g PyyHipzz— TF»IuNHM 2z
19 V2| E(t,x) =0. (9.148) = \&\&N\ E(z =0;4y,2")
c? 92
dp., d: _ un +p2
We take a single monochromatic component, which we write in complex x [ ZEuZPz giny vy Hipe (-2 ) it (9.157)

. 2n 2
notation as E(t,x) = E(x)e~ "%, so E(x) satisfies i

) ) The integrals over dp, and dp, are Fresnel integrals, that we already
[V2+ kK ]E(x) =0. (9.149) met in eq. (4.365), so we finally get

We want to compute the propagation across a long distance in the z
direction, so x is the longitudinal coordinate and x; = (y,2) are th
transverse coordinate, and we search for solutions of the form

M\AE?NVH\&\&N\Q?ﬂcienmln\vw@l 0y, 2), (9.158)

E(x) = E(z;y, 2)e™7, (9.150
where

where E(z;y, 2) is a slowly varying function of z, in the sense that

10:€] < kvlE]. (9.151

I.w w
Qﬁﬁel@nul\vn wwﬂ&r mx@ *% ?@ lw\vw‘TANI N\vdw
Therefore E(t,x) = £(z;y, 2) exp{—iwLt +tkLz} is in a first approxima
tion a plane wave, with a slower dependence on z, which manifests itsel
only on scales © >> Ar,. Plugging the ansatz (9.150) into eq. (9.149) wi

get

(9.159)

is called the paraxial propagator. Equations (9.158) and (9.159) allow us
to compute the field at = generic, once we have its value on a transverse
surface £ = 0.

V2 E + 20k 8, + 92 =0,

where V2 = 82 + 82. Because of the condition (9.151), we can negle¢
o2¢ é;r Hmmvog to wrm £, so in this approximation we write

Fraunhofer diffraction

V2E 4 26k18,€ = 0. (9.15 L . Lo
As a first application, we consider a plane wave of infinite transverse

extent that arrives on an aperture S on a plane opaque screen and
we compute the image on another screen at a large distance z, and
at transverse coordinates (y,z), see Fig. 9.16. Then, at z = 0, we
have £(z = 0;/,2') = & if (3, 2’} are inside the aperture S, and zero
otherwise, so

‘We now perform the Fourier transform with respect to the transvers
variables,

&N& 4D WAH.EQ“ENV Py Tipaz

E@y,2)= | 5=

In terms of €(x; 1y, p.), €q. (9.153) reads

. . - —iky, ikpx I kL .2 "2
—(p2 + p2)E(z;py, p:) + 2ik1.8:E(x; py,p2) = 0. E(w,y.2) = 5> boe W exp (i iy - )+ (2= 2
_ 2,2
The z dependence can be integrated, and we get - mwﬂw&r & exp *wr T + %@ W (9.160)

N N +p?
E(x; py, pz) = E(z = 0; py, p2) exp l@ﬁﬂ% x\m&\%\ mxl = (yy' +§v+S L (y® N\Jw.

Fraunhofer diffraction is defined by the condition (9.146), érona a is the

Then eq. (9.154) becomes
mea- ( ) size of the aperture. In this limit, we can neglect the term ky,(y'% +2'%)/z

; - a2 0 2 2
dpy dp, . iy y+ipsz— L in the exponential. Furthermore we observe that, if y* + 22 < 2%, the
E(@iy,2) = on o E(z = 0;py, pz) ™ i term 2 + (y* + 22)/2z in the first exponential is just the first-order
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Fig. 9.16 An aperture S on a
opaque screen. The plane of the
opaque screen is parametrized by co-
ordinates (y',2’). The image is ob-
served on & screen at a distance z,
parametrized by coordinates (y, z
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i result was first derived by Airy
in the 19th century, and this intensity
distribution is known as the Airy pat-
tarn, \T/
Jox) e SN
2Jy(x) Ix e

\

0.6
Q.4

@2

Fig. 9.17 The'funetion 2., (z)/z.

where a is a real constant. The result, written in terms of E(z,y,z) =

expansion of the distance r = (2 + y% + 22)'/? from the observation b ;
eLTE(zy, 2}, is

point to the center of the aperture, since

2 4,2\ /2
Aaw+@w+muv<wua?+|@ .MNV £ .
v E(z,y,2) = —mmeee e~ 7 +2)/07(2)
2 2 1 2 /p2
>z A:mmw%.v. (9.161) vitat/b . (9.167)
z
X exp A&or T + m'.l# - s.mnoﬁmia\@vw ,

Similarly, to lowest order we can replace 1/z with 1/r in eq. (9.160), 2R(z)
Then we get the well-known formula for the Fraunhofer diffraction by

an aperture, where the Rayleigh range b is defined by

¥ : 1

; ikLr _1 9

E(z,y,2) = ~iboky, e \ dy'dz' e~y +z)/r (9.162) b= gkwp, (9.168)
S

2w r

the width w(z) is given by

w(z) = wor/1 + 22/b2, (9.169)

and the curvature radius B(z) is

Consider for example a circular aperture of radius a. In this case the inte
gral can be performed exactly in terms of the Bessel function J;. Writin
Yy = pcosy,z = psinyp, and similarly ¢’ = p'cos¢’, 2’ = p'siny’, we ge

@m

a 2
du'dy’ e~ vy’ +z2")/r H\, 'do’ do e—ilkL/m)ee cos(o—¢')
\m ver 0 poe 0 v R(z)=z+ P (9.170)

aQ
=27 \ p'dp' Jo(kLpe'/7)
0
2mar
kpp

Writing p/r = sin6 and recalling that limy—o J1(u)/u = 1/2, we s
that the intensity of light, which is proportional to the squared modul
of the electric field, is distributed in the scattering angle 8 as'®

This shows that a beam which at z = 0 has a Gaussian profile, remains
Gaussian at all z, with a z-dependent width given by eq. (9.169). Ob-
serve that, since wp is the initial transverse size, b given in eq. (9.168)
is the parameter that separates the Fresnel regime (at = < b) from the
Fraunhofer regime (at-z > b), compare with eq. (9.146). In agreement
with the discussion above eq. (9.146), at |z| < b we find that there is no
appreciable widening of the beam, while at |z| >> b the width increases

Ji(kLpa/r).

2J1(kpasin 6) z linearly, w(x) ~ wg|z|/b, as demanded by the uncertainty principle. Us-
1(6) = 1(0) kLasing ’ ing the definition (9.168) of the Rayleigh range b, we get
A plot of the function 2J1(z)/z is shown in Fig. 9.17. I(8) has its firs |z| AL
zero at kpasing = 3.8. Taking this as an estimate of the angular widt, w(z) = T (lz[ > ). (9-171)

A of the beam we get (for X < a) Af =~ 3.8X/a, which is consiste!

with the uncertainty principle bound, but does not saturate it. Actually Gaussian beams saturate the uncertainty principle, i.e. they

have the minimum possible spreading.

The term arctan(z/b) in eq. (9.167) is called the Gouy phase, and is
an extra phase factor compared to the plane wave propagation. The
surfaces of constant phase are obtained requiring that

Propagation of Gaussian beams

Consider now a beam that, at « = 0, has a Gaussian profile in th
transverse direction,
~(*+2%) /wh . k v t b

E(z =0;y,2) = &e o, (9.165) L T + gu_ — arctan(z/b)

Its profile at z generic can be computed by inserting this_initial valu
into egs. (9.158) and (9.159). The resulting integrals can be comput

exactly, without resorting to the Fraunhofer approximation, using

8 -
|C+N.JMII,\|M| w Y
\H,Bm nel T i mxwﬁlmmnoﬁmunv “ (9.166

be constant. For a typical GW interferometer, with \p, = 1 pm and wy
of order of a few cm, b is of order of several hundred meters. Thus,
- if we want to compute the surfaces of constant phase in a region close
to a point on the optical axis, i.e. in a region with coordinates (z =
zo+ 4,y = by, z = 62), with dz, 6y, 5z of the order of a few cm, we can
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Fig. 9.18 A surface of constant in-
tensity of the Gaussian beam (solid
line) and surfaces of constant phase
(dashed lines).
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Dppe solution (9.167) holds also at
@ < 0; in this case both the term
kL2 and R(x) in the exponential change
sign, and the radius of curvature is as
shown in the figure.

9.19 A wavefront
lines) that propagates toward a
spherical mirror is reflected back
and focused toward the waist. After

Fig. (dashed

passing the waist it expands again
toward the other mirror.

Fig. 9.20 The sehome 6far interfer-
ometer with Fabry-Pérot cavities,
with Gaussian beams anel spherical
mirrors.

. For arms of length I = 4 km and a wavelength of the laser light )\ =
. 1.0 um this gives wy =~ 2.5 cm, to which corresponds a value w(L/2) =

- (2X.L)Y? ~ 3.6 cmo. A suitable mirror radius for such a beam can
therefore be O(10) em.?! Observe that, since the waist wg is much larger
than the wavelength X, the paraxial approximation that we have used
is well justified.

The Gaussian beams that we have considered are by definition solu-
tions of the paraxial evolution equation (9.153), since we obtained them
- evolving an initial condition on the surface z = 0 with the paraxial prop-
agator. Of course, we can also verify this by direct substitution in the
equation. Actually, the Gaussian beam is just one of many possible so-
lutions. As can be checked by direct substitution into eq. (9.153), there
is a complete orthonormal set of solutions called the Hermite-Gauss
modes, given by

neglect the variation of R(z) and of the Gouy phase, so at a given mg
we simply have the condition

dy% + 622

————— = t.
2R Asov constan

dz + (9.172)
This equation describes a portion of spherical surface with radius R(zo),
as we can check immediately by expanding the equation 22 +y%+22 = R?
around £ = R+ 0z,y = 6y,z = 6z. Therefore the wavefronts of a
Gaussian beam are spherical to an excellent approximation (as long as
the transverse distances are much smaller than b = O(10%) m), and
R(z) is their curvature radius. The shape of the beam is therefore as
shown in Fig. 9.18.20 The characteristic length wg, which determines the
transverse size at £ = 0, is called the waist of the beam.

When the beam bounces many times between two mirrors, we wan
to avoid that at each trip it widens further, as in Fig. 9.15. This cal

be obtained shaping the mirrors so that their surfaces match exactly: Cmn — (42 +22) w0 (z) yV2 /2
surfaces of constant phase of the beam. For Gaussian beams we have Umn(2, Y, 2) = 1+ 22/ € Hm w(z) Hp w(z)

seen that the wavefronts are spherical, so we must use spherical mirrors,: =
When the expanding wavefront of a Gaussian beam reaches a spheric
mirror located at a position o and with radius of curvature R(zo), i
direction of propagation is reversed, and the beam is focused back an
converges toward the waist at = 0, before re-expanding again for z < ()
If we have another spherical mirror at = = —x¢ the beam bounces bagl
and forth between them, and at each reflection its wavefronts are force
to converge back toward the waist, as shown in Fig. 9.19, so the bea
does not increment its transverse size at each bounce.

Gaussian beams have two advantages over other shapes. First, the
have the minimum spreading compatible with the uncertainty princi:
ple. Second, their wavefronts are spherical, and mirrors with a spherié
shape are easy to manufacture. For these reasons, they are the choi
used in present GW interferometers. Thus, we can replace the schemi.
given in Fig. 9.12 with the more realistic scheme of Fig. 9.20. Alter
natively, rather than using two spherical mirrors with the waist in thi
middle of the cavity, we can put a flat mirror in the position of t
waist and, at a distance L, a spherical mirror with curvature radiu
R = L + b%/L. Presently, the former option is used in LIGO and th
latter in VIRGO. With the waist of the beam chosen in the middle o
the cavity, the value of w(z) at the position of the mirrors z = £L/2 i
given by

v+22]
+ g% —tm+n+1) maodmdﬁa\@vw ,

(9.175)

X exp Aiﬁ T

where ¢y, are normalization constants and H,(£) are the Hermite poly-

nomials, defined by
& n
NN:.AMV - mm~ AIM&MV mlm~ .

In particular, Ho(€) = 1, H1 (&) = 2¢, and Ho(¢) = 4¢%2 — 2. For these
modes, both the electric and magnetic fields are transverse to the propa-
gation direction, just as plane wave in free space, so they are also denoted
as TEM ., modes. Comparing with eq. (9.167) we see that the Gaussian
beam is just the mode TEMg. In Figs. 9.21-9.23 we show the intensity
[umnl? of the modes TEMgg, TEMo; and TEM;;. Alternatively, one
- can use as a basis the so-called Laguerre-Gauss modes LGy, which are
- written in terms of Laguerre polynomials. The fundamental mode LGqg
is again the Gaussian beam.

Since the Gouy phase for the mode TEM,,,, is (m+n+1) arctan(z/b),
- see eq. (9.175), the resonance condition in a FP cavity depends on {m, n).
The laser emits predominantly in the TEMoo mode, with a contamina-
tion typically less than 10% from higher modes (mostly TEMp; and
TEMjp). To eliminate these residual higher modes, which would not be
resonant and would just produce noise, before sending it to the beam
splitter the laser beam is sent into a Fabry-Perot cavity operated in
. transmission, called the mode-cleaner. Since the Gouy phase for the
mode TEM,,, depends on (m,n), we can choose the length of the mode
- cleaner so that only the (0,0) mode is in resonance and is efficiently
transmitted.

(9.176)

2
WAEL/2) = w? + »% .
wh

(9.173

In order to be able to use mirrors of manageable size, we want to hav
w(+L/2) small. Minimizing eq. (9.173) with respect to wo we find nr
optimal value of the waist,

mvSBE — A.Mhhvy\w . (9.174
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215 small spot allows us to keep down
the mirror size. However, it also re-
sults in large intensity gradients, in re- .
gion of high intensity of the electro-
magnetic field, inducing thermal defor-
mations of the mirrors that must be
compensated. An alternative possibil-
ity, that has been studied for advanced
interferometers, is the use of so-called
“mesa beams”, l.e. beams with a flat
, which average more effectively
thermoelastic fluctuations,
rescu and Thorne (2006).

Fig. 9.21 The intensity of the mode
TEMgo as a function of the trans-
verse variables (y,z), at a given z.
(in units such that w(x) = V2).

4

Fig. 9.22 The same as Fig. 9.21, for
the mode TEMg; .

!

Fig. 9.23 The same as Fig. 9.21, for
the mode TEM ;.
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Filg. 9.24 The power P(¢)/FPs. The
nnlve working point is marked as 1,
andd thedark fringe as 2.

operation point where we have no DC contribution, but no sensitivity
to GWs either.

There is however a very elegant way out of this dilemma. The idea
is to apply a phase modulation to the input laser light.?? This can be
obtained by passing the incident beam through a Pockels cell, which
is a crystal or a block of dielectric material whose index of refraction
depends on an applied electric field, Fappi = |Fappi| c05moat. The
speed of the response that can be obtained with appropriate materials
is quite high, and the index of refraction oscillates with the frequency
fmod = Qmoa/(27), for values of fmos up to tens of MHz. Passing
through a material with a time-varying index of refraction, the laser
beam acquires a time-varying phase, so the beam which reaches the
beam-splitter has the form

9.3.2 Detection at the dark fringe

Michelson interferometer

We have seen that the passage of a GW in an interferometer, whether
of the simple Michelson type or with Fabry—Perot cavities in the arms,
produces a phase shift A¢gy(t). We now ask how to extract this phase
from the output of the detector. The issue, as we will discuss in this
section, is quite non-trivial. The origin of the problem can be seen as
follows. We consider first for simplicity a Michelson interferometer. We
saw in eq. (9.32) that the power at its output is given by P(¢) = Pysin’® ¢
where ¢ = ¢g + Adgw(t), and ¢ is a phase that can be adjusted at
will by the experimenter. A plot of P(¢)/F, is shown in Fig. 9.24,
Naively, one might think from this figure that the best working point for
the interferometer is at ¢p = /4, since there the derivative 9P/8¢q i
maximum, and the sensitivity to a small displacement ¢g — go+Adgw(t)
due to the passage of a GW is highest. Unfortunately, such a strategy
would be doomed to failure. In fact, at this working point we are als
very sensitive to fluctuations in the power Py of the laser. Since a
that we measure is the power P = Pysin®¢ at the photodetector,

E, = mcm(iErn+ﬁmm=biom$ , AOH.N.NV

where I is called the modulation index, or the modulation depth. This
expression can be expanded in Fourier modes as

Ein = BEy[Jo(T)e ™%t 4 Jy (D)e Her+0moa)t _ (Mg~ Hewr—Tmoadt ]

is impossible to tell whether a given variation in the measured powet (9.178)
is due a variation ¢g9 — ¢ + Adgw(t) induced by the passage of where J,, are Bessel functions and the dots denote terms with frequencies
GW, or to a variation Py — Py + APy(t) due to a fluctuation in t wr, & nQped, with n = 2,3,.... For I « 1 this expression can be

laser power. In particular, a GW with frequency fgw = O(102~10%) Hy
induces variations in the power P with a frequency f = 2fgw, whic}
therefore must be compared with the power fluctuations of the laser
the same frequency range. With present lasers, the latter turns out
be much larger than the signal that we expect from GWs.

From a more general point of view, whenever we are looking for ve,
small effects a sound experimental strategy is to build a null instrument,

simplified using Jo(I') ~ 1—(I'?/4) and J;(T") =~ T'/2. (In thelimit T <« 1
this expansion is obtained more simply expanding directly eq. (9.177)
in powers of I'). Therefore, the effect of the phase modulation is to
generate sidebands.?® For small T, higher sidebands are suppressed by
higher powers of T, so we will limit ourselves to the carrier, which has
frequency wy, and wavenumber k;, = wr,/¢, and to the first two sidebands,
with frequencies

that is an instrument that, when the signal is absent, records a zero ou wi = wr, £ Unod , (9.179)
put. This makes the instrument insensitive to calibration uncertainti

that would otherwise overwhelm the tiny signal that we are searching. A and wavenumbers

prototype of a null instrument is the Dicke radiometer that we discussed Wi 1 1

in Note 74 on page 412. At the naive operation point marked as 1 ky = = 2n AMM * Amo av : (9.180)

Fig. 9.24, the interferometer is not a null instrument. Even in the &
sence of a GW, the photodetector measures a large power. In this stat
small variations in the power due to GWs should be read against th
large DC contribution, and would be overwhelmed by its fluctuations.

This suggests that the best working point should be the dark fring
marked as the point 2 in Fig. 9.24. There the output in the absence
GWs is zero, and we are insensitive to fluctuations in the laser powe
Unfortunately, at the dark fringe not only P = 0, but even 0P/8¢ =
Since A¢gy, = O(h), this means that at the dark fringe the change in the
output power induced by GWs is AP = O(h?). Given that we expe
(GWs with amplitude h at most O(10~2!), an effect quadratic in h is
course invisible. So, apparently the choice is between operation pointg
whure the response of the interferometer is linear in k, but we hav
large DC contribution whose fluctuations overwhelm the signal, and af

Consider now what happens to the carrier and to the sidebands in a
Michelson interferometer with arms of length L, and Ly. For the carrier
the incoming electric field has amplitude EoJo(T') so, from the discussion
in Section 9.1, the electric field at the output of the interferometer is
1 X ) )

(Eout)e = mcﬁmm:ﬂvha — roe?ilvy By Jo (M)~ ®ont | (9.181)
where 1, 73 are the reflectivities of the two end-mirrors. Taking perfectly
reflecting mirrors, r; = ro = —1, we have

(Bowt)e = —iEoJo(T) e~ ™t ttthLllatle) sinlky (I, — Ly)] (9.182)
Ly — ﬁ

—iEgJo(I) e~ worttikL{latly) gin Tﬁ 3
L
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22 Another possible solution would be
to control so well the laser fluctua-
tions, that a detection scheme of the
type discussed above becomes possible
(typically at a working point which is
slightly displaced from the dark fringe).
This solution is under investigation for
Advanced LIGO.

28For AL = lpm we have wy,/(21)
300 THz, while typically $2,,,04/(27)
30 MHz, s0 Qpod K wi,»

1R
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?4Purthermore, the torm O(h) is mul-
tiplied here by AL, and AL < L.

compare with eq. (9.4). For the sidebands the calculation is the sama
but of course now ki, is replaced by k+ and wy, by w., and the amplitude
of the incident field is +J,(I')Eq. Thus, writing L, — L, = AL, the
electric field of the sidebands at the output is

When we compute |(Eout)tos|? we therefore have three terms. (1) The
- squared modulus of the first term, which is O(h?), and therefore unob-
-servable. (2) The squared modulus of the second, which is independent
- of h, and proportional to

1
mr + c08(2moat — 20)] . (9.190)

Therefore it is the sum of a DC term and a term which oscillates with a.
requency 20moed. (3) Finally we have the mixed term, i.e. the beatings
- between the carrier and the sidebands, which is

4E2 Jo(T)J1 D)k Lh(t) sin(2r AL/ Amoa) €o8(Qmoat — ).  (9.191)

(Bout)x = FiBoJy(T') e #ttiks (LatLo) gin(k, AL) (9.188)-
= FiEyJy () e~ wettihaLatly) gip Ta Abh + AL i .
v,r \/Boa

8%5:6% —-a)=

Now comes the crucial point. If we take L, = L, both the carrier and
the sidebands are on the dark fringe, (Eout)e = (Eout)x = 0. Howeve
instead of choosing L, = Ly, we can set L, — L, equal to an integ
number of laser wavelengths, i.e. AL = n)y. Then, as far as the carri
is concerned, we are still on the dark fringe, while the sidebands are ni
longer on the dark fringe. Rather,

This term is linear in h and oscillates with a frequency Qmoq.%% Therefore
n the output we have a term linear in h, even if the carrier is on the
ark fringe. This term can be extracted from the total output |(Eout Jtos|?
using a mixer, which is a non-linear device which takes at its input two
- voltages, and produces an output voltage proportional to the product of
he two input voltages. Then, we can multiply the voltage produced by
(Bout)tot]? in the photodetector by a voltage Vosc cos(Qmoat — ). The
' time-averaged output of the mixer selects the part of |(Eout)tos]? Which
- oscillates as cos(Qmoat — ¢), while the DC part and the part oscillating
- as cos(28moat —2cx) average to zero. The result (9.191) can be optimized
choosing AL/Axoa = m + 1/4, with m any integer.

In this way we have an output which is linear in h, and is insensitive
to the power fluctuations of the carrier, which is on the dark fringe. In
_principle, we are still sensitive to power fluctuations of the laser because
. the sidebands are not on the dark fringe. However, apart from the fact
hat the electric field of the sidebands is smaller since it is O(I'), the
_crucial point is that now the signal has been encoded in a term which
scillates as co8(Qmodt — @), so it must no longer compete with the
fluctuations of the laser at a frequency fgzw of the GWs that we are
searching, but rather with the fluctuations of the laser at a frequency
- fmod which is much higher, typically 30 MHz. The power fluctuations
of the laser is an example of a 1/f noise (see page 339), and at high
- frequencies it is small. In conclusion, we have achieved two results with
this technique: (1) We are using the interferometer as a null instrument,
since when h = 0 the output of the mixer, i.e. the term in the output
power oscillating as cos(Qmeat — ), vanishes. (2) The signal is linear in
the GW amplitude and is encoded into a high-frequency term, so that
it must now compete with much smaller 1/f noise.

(Bout)+ = —iEpJy(T) e ™= Latlo) in (07 AL Apoa) . (9.18

This choice of asymmetric arms is called the Schnupp asymmetry. Co
sider now what happens when a GW arrives, taking for simplicity a p
polarization with optimal direction, and wgwL/c < 1. Then eq. (9.
gives Ly — Ly + hLy/2 and Ly — Ly, — hL,/2, so

(Le — Ly) = (Lg — Ly) + LA(t), (9.18¢

where L = (L, +L,)/2 and, to lowest order in wgwL/c, we could repl
h(t — Ly/c) and h(t — Ly /c) by h(t). Then we see from eq. (9.182) .
the electric field of the carrier is shifted from the value (E,y)e = 0 0
the dark fringe to the value

(Bout)e = —iEgJo(T) e~ nit2ibel kLLh(t). (91

This is linear in h and, if this were the total electric field, the po
|(Eout)e|® would be quadratic in &, as we saw above. However, now
also have the field of the sidebands, and the total electric field is

Am.o:nvnow = Amninvn + Amocnv;‘ + A.WOcnvl . Ame
From eq. (9.184), in the absence of GW we have

A.m_ocnv+ + A@ocevl = —2iFyJy AH,.V m!s.Eru+wiorh
X 8in(2n AL/ Amoa) c08(Qmeat — @),

(9.18

where o = 47w L /Amod is a phase. In the presence of GWs this is modifi
by the fact that AL — [1+ O(h)]AL. However, here we can negle
the term O(h) because, as we will see below, it is the term O(1) tha
combines with the carrier, giving a term proportional to h in |(Bgys )to
that will encode the Q<<. signal.?* Thus, the total electric field at thi
output, in the presence of GWs, is

Interferometers with Fabry—Perot cavities

We now discuss how to apply this technique to an interferometer with
Fabry-Perot cavities in the arms. In this case we consider two FP cavi-
ties both with the same length L, and the Schoupp asymmetry consists
in the fact that the distances of their respective input mirrors (i.e. the
mirror first encountered by the beam) from the beam-splitter are [, and
ly respectively, with Iy # I,.

(Bout)sor = —iBge Lt 2Ll 1o (T Ey Lh(t) 9.1
+2J1(T) sin(2mAL/Amog) €os(Qmoat — )] -

25More precisely,
tional to coswywl,

quencies Qyod + wow.
0O(10) MHz and fyu

wgw K Qod-
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¢ :Qv is propor-

< o(l) kHz,
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the Schnupp asymmetry Al is equal to an integer times Ap, and also
Al/Amod = m + 1/4 for some integer m, so that sin(27Al/Amed) = 1.
Thus, in the absence of GWs, (Eoyt)e = 0 while

The field at the output of the photodetector can be computed using
eq. (9.70), which states that, as far as the reflected field is concerned, :
for light with wavenumber & a FP cavity is equivalent to a mirror with :
a reflectivity :

1 —ra(1 — p)e*E (Bout)+ + (Bout)~ = 2tEoJ1(T) e v 25ul gos(Qnoat — ), (9.197)

1 — ryrpeZkL
Again we modulate the laser light with a Pockels cell, so the light incident
on the beam-splitter is composed of a carrier at the laser frequency wy,
and two sidebands at wy, = Q0q. We choose the cavity length L so ths
the carrier is resonant. The modulation frequency fmod = Qmod /27 g
much larger than the width of the resonances of the FP cavities. I

R(k) = (9.192)
with & = 47l/Amod. Consider now what happens in the presence of a
GW, as usual with optimal orientation and wgwL/c < 1. The effect of
the GW is to change the reflectivities Ry and R, of the Fabry-Perot
cavities. Consider first the carrier. The passage of the GW induces a

phase shift A¢, in the reflected field given in eq. (9.102), so we get (for

instance, for L = 4 km and F = 200, egs. (9.82) and (9.83) give a width o<l Ralk) = —(1 — 0)eib (9.198)
at half maximum 6f = O(200) Hz, while the modulation frequenc s ’ ’

is in the MHz region. Therefore, the modulation frequency Qmoq cal with oF

be chosen so that the sidebands are not resonant, and fall roughly it A¢y = — ki Lh(t). (9.199)

between resonant peaks. From egs. (9.99) and (9.100) we see that, fd
an overcoupled cavity, setting ro = 1, at the resonance R = ~(1 -}
so the phase ¢ = arg(R) is equal to x. In contrast, for a generic vali

For the cavity along the y arm we have an opposite phase shift, A¢, =
—Agz, 50 Ry(kr) = —(1 ~ 0)e *49=. Then eq. (9.194) gives

of 2kL far from the resonance (using 7 = 1 and ¢ < 1), eq. (9.19 ) ) . . .
gives R = 1 + O(c?), so in particular arg(R) = 0 (mod 27), wmﬁém § (Bout)e = IWG ~ o)(ehdeetihile _ gmib0n kLl ) ot
also from Fig. 9.11. Thus, as far as the reflected field is concerned, a F! ) ) Al
cavity is equivalent to a mirror with a reflectivity R which is differen = —i(1 — 0) BgJo(T)e~*r+%#ulgin Tﬁ ot D&L -(9.200)
for the carrier and for the sidebands, L
R(k) = A ~(1-0) (if k= k) (9.193 On the dark fringe Al/A;, = n and sin Ta%m + D&L = sin(Ady) ~
1 +1 (if &£ is not close to k). ’ Ad¢;. Thus, in the presence of a GW the electric field of the carrier at

i E, =0 to the val
The total electric field at the photodetector is the superposition of t the photodetector shifts from the value (Eouc)e © the value

field that propagates in the z arm for a length I, and is then reflect
by the Fabry-Perot cavity with a reflection coefficient R, and of £
field that propagates in the y arm for a length ly, and is then reflect
by the Fabry-Perot cavity, with a reflection coefficient Ry. In the
sence of GWs we have R; = R, = R, with the appropriate value of
depending on whether we consider the carrier or the sidebands. Thi
as in eq. (9.181), the field at the output is

(Bout)e = —i(1 — o) EgJo(T)e~twrt+2ikel mmlq kL Lh(t). (9.201)

As we already saw for the Michelson interferometer, the modification of
the electric field of the sidebands due to the GWs is negligible, since
it gives a corrections 14 O(k), but it is the term O(1) which, beating
against the term O(h) in the carrier, gives a term linear in A in the
output. In conclusion, we can write the total (carrier plus sidebands)
Bows = WQ«& e2ikls _ Ry %;E By e it (9.194 electric field at the output as

— &\\Nmmuml&En+m&wN meQnDC , Amo:«vn.ua — |w&.@omls.€r~+uiai Awwowv

‘ﬁ
where 20 = Iz + 1y, Al = I; — I, and (k,w) are equal to (k,wy) for ¢ x (1= Qv.\oﬁjvﬂ kL Lh(t) — J3(T) cos(Qmoat — @) | -

carrier and to (k+,ws) for the sidebands. Thus, for the carrier we ha
(Bout)e = —i(1 — ) B Jo(D)e ™ ™rt+2helgin(on Al/Ar),  (9.19
and for the sidebands

- The situation is now the same that we already discussed for a Michelson
- interferometer: taking the modulus squared, the term which oscillates
as coS({lmoqt — @) is linear in h and is demodulated with a mixer. We
_ therefore have an output that is linear in h(f) even if the carrier is
- on the dark fringe, and is encoded in a term which oscillates at the
. frequency Qmodq, so 1/ f noise such as laser power fluctuations are small.
: This procedure is a special case of the Pound-Drever-Hall locking, see
Section 9.3.4.

{(Bout)+ = FiEoJy (T) e~ twat+2ikl giy Ta AR + Al v_ . (9196
v,b yaoa %

Just ns we did for the Michelson interferometer, we choose as workiiil
point the dark fringe of the carrier, that is we choose I, and ly so tha!
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9.3.3 Basic optical layout

input mode cleaner R.=3500m
L=143 F=1140 r =0.99995

. —

P

We can now complete the description of a realistic GW interferome- ﬂ
ter. One further improvement with respect to the scheme that we have i3km, F =50
discussed is the power recycling. The basic observation is that, since :

%Ewsmv r=0.388

we have chosen as working point the dark fringe for the carrier, in the Laser
i . N . Nd:Yag
absence of GWs no light at all emerges from the beam-splitter in the di- A =1.064 g
=L

rection of the photodetector, at the carrier frequency. This means that
all the light at frequency wy, that circulates in the arms is eventually

0

|

. s Po=20W pOoM - Jane e N
reflected by the beam-splitter back toward the laser and, in this sense, 6.2 MHz e plane,  R.=3500m
is wasted. When we discuss the noise sources in the next section, and in ’ = r=088  r=0.99995
particular the shot noise, we will see that we want to have the highes L= %%m_,
possible laser intensity circulating in the arms. However, the power of F=50 g photodetector

a continuous (and very stable) laser is currently limited to O(10) watts
which could become O(100) W in the near future. To increase the powe
circulating in the interferometer, the idea is to “recycle” the light tha
comes back toward the laser, placing a mirror (the power-recycling mir
ror) that reflects the light back toward the beam-splitter. As far as th
light reflected toward the laser is concerned, we can model the whol
interferometer as an equivalent mirror, with a reflectivity that account&
for the total reflected field. The addition of the power-recycling mir
ror between the laser and the beam-splitter creates a new Fabry-Pero
cavity, made of the power-recycling mirror and the “equivalent inter:
ferometer mirror”. If this cavity is arranged so that it is resonant fo
the input laser light, the total intensity of the light that circulates
the interferometer is enhanced. Indeed, in this way a gain of O(100
can be obtained (the maximum gain that can be reached is inverse
proportional to the losses inside the interferometer), so the power circi:
lating between the power-recycling mirror and the beam splitter rai
to about 1 kW. Inside the Fabry—Perot cavities in the arms, this pows
increases further because it is resonant, and in initial LIGO and VIRG(
it reaches a value of order 15 kW. .

A second feature of a real interferometer is an output mode cleaner
Even if the initial beam has been accurately prepared in the TEM
mode thanks to the input mode cleaner, various imperfections in th
mirrors, as well as misalignments, regenerate higher modes inside thi
interferometer. These higher modes are not on the dark fringe, an
therefore simply produce a noise that lower the contrast at the outpu
The output mode cleaner, placed between the beam-splitter and th
photodetectors, filters out these higher modes, enhancing the contras
and therefore the sensitivity.

Putting together all these elements, we arrive at the optical lay:
out shown in Fig. 9.25 where, for definiteness, we have used the p
rameters of VIRGO. The laser, a continuous Nd:Yag with wavelengt
AL = 1.064 ym, provides 20 W of power. The laser beam passes throug
an electro-optic modulator, i.e. a Pockels cell, which generates sideband
at Qnaa/(27) = 6.2 MHz. The beam is then passed through the inpu
mode cleaner. This is a long cavity with very high finesse, and a triax

Fig. 9.25 The basic layout of a GW interferometer. EOM = Electro-optic modulator
(Pockels cell); PR = power recycling mirror; OMC = output mode cleaner; b.s. =
beam splitter. The curvature radius R. and reflectivity r of the various mirrors are

indicated. For definiteness, we used the values for the initial VIRGO interferometer.

gular shape that forbids reflection back toward the laser. The beam that
comes out of the input mode cleaner is very nearly a TEMoo mode, both
in the carrier and in the sidebands. It is transmitted through the power
. recycling mirror and enters the interferometer. The Schnupp asymme-
- try is realized choosing {; ~ 6.4 m and [, ~ 5.5 m for the distances
between the beam splitter and the input mirrors of the two Fabry—Perot
. cavities. After going back and forth in the Fabry-Perot cavities, with a
length of 3 km and a finesse F = 50, the beams are recombined on the
beam-splitter. Since we work on the dark fringe, at the beam-splitter
. the carrier is entirely reflected back toward the laser, and then finds the
power-recycling mirror, that sends it back to the interferometer. When
the carrier is displaced from the dark fringe, for instance because of the
passage of a GW, the beating between the carrier and the sidebands
goes toward the photodetector. It first passes through the output mode
. cleaner, a single crystal of 3.6 cm, where again makes a triangular path,
- and then goes to an array of photodetectors, and it is finally demodu-
lated and detected.?®

9.3.4 Controls and locking

This section is slightly technical, but is meant to give at least a flavor
of the problems that must be overcome to turn the beautiful theoretical
idea of a GW interferometer into a working instrument.

The scheme that we have discussed above reaches its high sensitivity
because the laser light is resonant in the Fabry—Perot cavities. On res-
onance, a FP cavity is extremely sensitive to changes in its length L,
but as soon as we move away from the resonance, it becomes “dead”,
and the phase of the reflected field loses essentially any dependence on

9.3 Toward a real GW interferometer 511

wmﬁmﬁm 9.25 is still somewhat gimpli-
fied. For instance, there are also lenses
that are used to match the lnser beam
into the mode cleaner. A Fuaraday iso-
lator is used to protect the laser from
back-tracking light from the interfer-
ometer. A mode-matching telescope
is used to blow the input laser beam,
which has an initial transverse size of
just a few millimeters, to the waist ap-
propriate for the Fabry-Perot cavities
which, as we have seen, is rather of or-
der 2-3 em. Further mirrors are used
to pick up signals that are needed for
control purposes.
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L, see Fig. 9.10. This means that the mirrors of the FP cavity must be
hold still, and in the right position, so that ki, L = mn for some integer
n. To estimate the precision needed we observe from eq. (9.81) that
the half-width of the resonance peak, as a function of L at fixed ki, is
reached if L shifts from the value that fulfills the resonance condition to
a value L + 8L, with

Another simple but important conceptual point is that, actually, we
do not need to know the value of the length L of a FP cavity down to
a precision 107*° m. All that we need, in order to have a FP cavity
which works properly, is that it is on one of its resonances, i.e. 2k;L =
2mn, or L = Apn/2, for some integer n. Since 2L/A, = O(10'%), the
corresponding value of n is very large, but we do not need to know it. All
that we want is that the FP cavity be on some resonance, corresponding
to some unspecified value of n, and does not move away from it by more
than 6L ~ 107*\p. Once the two FP cavities in the arms are resonant,
w we must arrange their relative position so that the interferometer is on
some dark fringe. Again, we do not need to know on which one.

So, what we need is to “trap”, or lock, each FP cavity in some of
its resonances, and to lock the interferometer on some dark fringe. The
general strategy is the one common to all feedback control systems. In
general terms, this consists of a sensor and an actuator. The sensor
detects the value of the quantity of interest and produces an error signal,
which measures the difference between the actual and the desired value.
to a precision much smaller than Ap. Finally, our detection schem - The actuator then provides a feedback, which corrects the error, driving
requires that the interferometer be on the dark fringe, again within the observed value closer to the desired one.
small fraction of wavelength. Typically, a value 6L ~ (1076-10"*)Ay, i For a FP cavity, the error signal is obtained using the Pound-Drever—
required for good performances. With A;, = 1pm, this means that th Hall locking scheme. This is a widely used technique, originally invented
relative position of the mirrors must be kept fixed, at a distance L o  for stabilizing the wavelength of a laser, using as a reference the length
order a few kms, within a precision L of a Fabry-Perot cavity. Suppose that we have a FP cavity whose

e length is fixed, to a sufficiently good precision. The wavelength of an
8L ~ (10712-10"") m, (9:204 laser has in general mzoﬁcmﬁowm,m and if we want to stabilize M a mMEEM
idea is to shine it on a FP cavity of the appropriate length L, chosen
so that the desired value of Ay is resonant, and look at the transmitted
light. As shown in Fig. 9.9, we have a series of narrow peaks as a
function of Ap. If the wavelength of the laser has a slight mismatch with
respect to the resonant value, we are just slightly displaced from the
. peak, so the transmitted intensity is lower. We could then use this as an
error signal, and correct for this error with a feedback mechanism. This
- scheme however has two drawbacks. First, from the fact that the power
First of all, one could make the possibly naive remark that a mirrg decreases we cannot tell in which direction the wavelength fluctuated,
does not have a smooth surface down to 10~1° m, since at this level w and therefore we do not know the sign of the correction to be applied.
resolve the individual atoms, and even more so at 10712 m; thus, o - Second, we om.usg disentangle wavelength fluctuations from intrinsic

might object that the notion of the length L of the cavity is not ev power mcﬁ:.mﬁo.dm of the laser. ) ) i
well defined down to these scales. However, we must keep in mind tha The solution is to use modulated light, so the electric field entering
the laser beam at the mirror locations has & transverse size of a f - the FP cavity has the form (9.178), with the carrier at the resonant
centimeters. This means that what the laser beams actually senses i ?m@zms@m Upon umm.moﬁo? ﬁmﬁmm o <1, we see from eq. @.va S.S.e
2T0f course, any lmpesfection in the the position of the surface of the mirror, averaged over a macroscopi  the carrier takes & minus sign while the sidebands get a plus sign. de.m
mirrors will create noise, sueh ns seat-  seale, of order a few cms. Thus, the individual atomic fluctuations can nr.m fact that Jo(-T) = Jo(I) .&.a J; HAJE == Q., ), we see that this
tered light in tho Intetferometer, w0 oo] oyt at least to a first approximation®” and, in this averaged sensé still has the form of modulated light, with modulation index —I". Thus

their micro-roughness cannol exceed . o the reflected power is simply |Fo|?, i.e. it contains a DC term and no
rure O(107 HY 5 ¢ the notion of the length L of the cavity is well defined, even down to . P 0" 1
too much the figure 010~} 1 found £ term at the modulation frequency Qmeq. In this sense, we have a null

above. The mirrors of LIGO and  such small scales. This is a simple but fundamental point to keep i : 0d- » e

VIRGO are polished so that thelt s nind to understand the statement that interferometers (or, as we saw i umnwzgmwﬁ the signal that we use, which is the part oscillating as Qmod,

micro-roughness is about 0.5A, that ls Chapter 8, resonant bars) are finally able to detect displacements whic vanishes in the absence of perturbations. Suppose now that a fluctuation

50 times larger than 10710 m, AT . changes the wavelength )\ of the laser, with r t to the I h L
are much smaller than the size of a nucleus. 3 gth Ap e laser, with respect to the lengt

AL .

6L = i (9.203)

(Compare with egs. (9.83) and (9.84), where we computed the full width
at half maximum in wy, at fixed L.) With a finesse F = O(200) this
means that we need to keep the length L of the Fabry—Perot cavitics
fixed, within a precision better than 6L ~ 1073\, Similarly, the power-
recycling technique that we have discussed allows us to gain a factor
0O(100) in laser power, but again the power-recycling mirror must be
located in a precise position, in order to satisfy the resonance condition i
the power-recycling cavity, i.e. in the cavity made by the power-recyclin
mirror and the equivalent interferometer mirror. Again, this must hol

which is less than the size of an atom! Last but not least, all these length
are measured with respect to Ay, so we also need a laser whose frequeng
is stabilized to great precision. At first sight, the idea of controlling t
length of a 4-km cavity down to an accuracy of 107° m might see
preposterous. Indeed, it is here that a large part of the complexity
GW interferometers resides. However, by now this is routinely achiev
in the large GW interferometers, and it is quite interesting to understa;
how this is possible.
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of the cavity. The carrier, which is on resonance, is very sensitive to
this perturbation, while the sidebands, which are far from resonance,
are completely insensitive, see Fig. 9.10. Thus the reflected field of
the carrier is multiplied by a factor exp{iA¢}, while the sidebands are
unchanged. In the power |E,eq|?, the beating between the carrier and
the sidebands now produces a term oscillating at a frequency Qo4 and
linear in A¢, which can be demodulated with a mixer. This is a way to
obtain an error signal which, at least close to the resonance, is linear in
the deviation A¢. We can therefore use it to lock the laser wavelength
to the length L of the cavity.

If we assume for a moment that the laser frequency is already suffi-
ciently stable (we will come back below to this point) and the cavity is
not rigid, as in a GW interferometer, we can turn the argument around,
using Ap, as our standard of length, and lock the cavity length L to the
wavelength Ap of the laser. We now realize that the detection scheme:
on the dark fringe that we discussed in Section 9.3.2 is nothing bu
a variant of this Pound-Drever~Hall locking scheme. In the originak
Pound-Drever—Hall method the need for a signal linear in A¢ arises be
cause we want to know the sign of A¢ in order to correct for it in th
proper direction, while in the detection scheme for GWs it arises firs!
of all from the fact that the shift A¢ is O(h), and a quantity O(h?
would be undetectably small. Observe that, even if the interferomete
is always on the dark fringe, the information on the value of h can the
be read from the fact that we know the feedback that we had to va
to keep it there.

For the control of the interferometer, one generally collects all t
beams that come out from it (including the little light that comes out i
transmission from the end-mirrors of the arms) and uses all the informa
tion contained in this modulated light to perform a Pound-Drever-H
locking of the three FP cavities of the interferometer (the two arms an
the power-recycling cavity). Actually, if we had a laser sufficiently st
ble in frequency, we could use as GW detector a single arm with a Fl
cavity, and the sensitivity of the detector would degrade only by a fac~
tor of two (given that, for optimal orientation, the contribution of th
GWs in the two arms is summed up). However, lasers of the require
stability do not exist. So, the above procedure can be seen as locking:
first the laser to the length of the FP cavity in one arm, and then using
the laser wavelength so stabilized, to lock the second arm cavity to-if
so we are really measuring the displacement in one arm in units of th
length of the other arm. More precisely, we lock the laser to the commo)
mode, where the two arms move symmetrically, and we detect GWs §
the differential mode, where the two arms move anti-symmetrically.

The Pound-Drever-Hall locking ensures that all the FP cavities ai
operating on resonance. Then, we must ensure that the two beamg =
combine at the output of the interferometer so that they are on thé
dark fringe. This is done using as error signal the one generated by tl
Sehnupp asymmetry. We discussed it on page 506, considering the pha:
shift Ad induced by a GW, but the same argument can be repeated fi

the phase shift induced by the noise. Again, using modulated light and
asymmetric arm lengths, we get a signal linear in A¢ at the frequency
Qmod, that we can use as error signal. This technique is called Schnupp
locking.

Experimentally, once the interferometer is at its working point, it is
not so difficult to keep it there for very long time. The most difficult
part is the so-called lock acquisition, i.e. bringing the instrument from
the free state down to a controlled state. In the absence of controls, the
mirrors are typically swinging with an amplitude of a few microns, there-
fore a factor O(10*) larger than what we can tolerate, and have typical
speeds of a few microns per second, so they are sweeping across many
resonances. Thus the control system must be fast enough to “grab”
a mirror when it passes close to a resonance, and keep it there, using
magnetic actuators. Moreover, we have stringent conditions on the align-
ment of the mirrors; for instance the input mirrors of the Fabry—Perot
cavities must be aligned within 60 < O(1078) rad. Such efficient control
systems have by now been developed by the collaborations running the
large GW interferometers, and locking and correct alignment are by now
obtained quite routinely.

9.4 Noise sources

Having defined the experimental setup, we can now investigate the sen-
sitivity that can be obtained. The sensitivity at which a GW inter-
ferometer must aim, to have good chances of detection, is extremely
ambitious. We saw in Chapter 7 that the GW amplitude that can be
detected depends crucially on the kind of signal (burst, periodic, coales-
cence or stochastic) that we are searching. As a first benchmark, we can
consider a burst that releases in GWs an energy of 1072 solar masses,
taking place in the Virgo cluster of galaxies. As we saw on page 365,
this gives a GW amplitude on Earth of just hg ~ 10721, As we have
seen in this chapter, the corresponding displacement of the mirror of the
interferometer is AL = (1/2)hoL (for wgwL/c < 1), so for L = 4 km,
we have

AL ~2x107%¥m, (9.205)

which is smaller that the size of a nucleus by a factor 103! Impressive as
it might be, this figure is however somewhat misleading because, as we
have repeatedly emphasized, we must not forget that this is a coherent
displacement of all the atoms of a macroscopic body such as a mirror. A
better figure is given by the corresponding phase shift, which for a simple
Michelson interferometer is Admicn = (47/AL) hoL, see egs. (9.27) and
(9.28). Setting Ay, = 1 um gives Aduich ~ 5 X 107 rad. We have seen
however that for an interferometer with Fabry—-Perot cavities we gain a
factor 2F /7 in A¢, see eq. (9.102). For F = 200 this is a factor ~ 130,
which means that we aim at measuring a phase shift

Agpp ~ 1078 rad. {9.206)
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In the following subsections we examine the dominant noise sources,
to see what sensitivity can be reached. The sensitivity is conveniently
expressed in terms of the strain sensitivity .m.w\ mA f), with dimensions
Hz~/2. From its value we can then obtain the sensitivity to all type of

signals, such as bursts, periodic signals, etc., as discussed in Chapter 7,

9.4.1 Shot noise

The first source of noise that we consider is the shot noise of the laser,
This originates from the fact that the laser light comes in discrete quanta,
the photons. Let NV, be the number of photons that arrives on the pho-
todetector in an observation time 7. Then the average power measured
at the photodetector during this observation time is

1

P= 7 Ny by, . (9.207)
When we measure the average output power, we are actually counting
the number of photons that arrived in a time 7. Whenever we count &
number of discrete independent events the set of outcomes follows the
Poisson distribution, :
1

NI
where N is the average value of N. Since this is the probability distrit
ution when we count a number of independent events, it is also knows
as the counting statistics. For large N the Poisson distribution become
a Gaussian, with standard deviation equal to V/'N. Therefore, the flug
tuation in the number of photons is given by

AN, =./N,. (9.20

It is worth stressing that this is a fundamental limitation due to thi
corpuscular nature of light. This produces a fluctuation in the observ:
power given by

p(N; Ny = —NNe V| (9.208

1
Abwvmroﬂ = m

1/2
HAEV , (9.210

N2y,

T
where in the second line we eliminated 2@\ % using eq. (9.207). We wan|
to compare this result with the power fluctuations induced by a GW.:

To make the setting simpler, we first consider a Michelson interferom:
eter, with no Fabry—Perot cavities in the arms. We neglect the moduls
tion of the laser light and for the moment we work at a generic point ¢g
Then, according to eq. (9.32), in the absence of GWSs the output pow
P is related to the input power Py by P = Pysin® ¢, so eq. (9.210) ¢ ¢
becomes

hon Y2 :
(Pt = (2 75)  Jsingol (921

On the other hand, again from eq. (9.32), the variation in power due to
a GW is

(AP)ow = 2| sin2gol (A)wser (9212)

We consider a periodic GW with frequency f, with only the plus po-
larization and coming from optimal orientation, and at first we take
for simplicity 2rfL/c < 1. According to egs. (9.21) and (9.28), the
amplitude of the phase shift A¢uen is then

4nL
|Admicn| = gLt (9.213)

so the power fluctuations induced by this GW have an amplitude

Py, . 4rL
(AP)gw = M._m_bw&o_ |>wlvo (9.214)
The signal-to-noise ratio (defined, as in Chapter 7 to be linear in the
amplitude kg of the GW) for this periodic GW, when the only source of

noise is the shot noise, is then

S _ (AP)ew
N Abwvmwg
BT\Y? 4nL
- Alfv = holcosdo) (9.215)

For definiteness, we compute the shot noise at the naive working point
where cos ¢o = 1/+/2 (the point 1 in Fig.:9.24),28 5o

S P \Y? 4rL
(9.216)

¥ \Ghar) T e

On the other hand, we see from eq. (7.129) that, for a periodic GW

of frequency f, coming from optimal direction and observed for a time
T, the signal-to-noise ratio is written in terms of the strain sensitivity

2(F) as

S_ ﬁ T jw ho. (9.217)

N LSa(f)

Comparing egs. (9.216) and (9.217) we see that 7%/2 and Aq cancel, and
we get the strain sensitivity due to the shot noise,

S2(f)

A 2R\ P
shot - .R_.IH\ A wo v ) Awwh_.mv

For an interferometer with Fabry-Perot cavities, the result can be ob-
tained replacing |A@mich| in eq. (9.213) by |A¢rp|. For an interfer-
ometer with power recycling, the input laser power P, in eq. (9.220)
must be replaced with the power circulating in the recycling cavity, so
Py — CPFy, where C is the factor gained with power recycling (typically
C = O(50—100) with present detectors, so that CPp = O(1) kW). We
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mm\wo«:m:% eq. (9.215) i3 muximized
when ¢g = 0, i.e. on the dark fringe.
Thus, even in the absence of phase
modulation, the dark fringe would be
the optimal working point, if the only
noise were the shot noise. However, this
comes out because both the GW sig-
nal and the shot noise vanish at the
dark fringe, with a finite ratio which
optimizes S/N. Since there are other
noise, such as test mass movements,
that do not vanish at the dark fringe,
in the absence of phase modulation the
dark fringe is not an acceptable working
point.
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also take into account the efficiency of the photodetector, which reduces
the effective power used to extract electrons at the photodiode by a
factor i (a typical value can be n = 0.93), so Py — nF.

Furthermore, we do not want to limit ourselves to the static limit, but
we take into account the dependence on the GW frequency. Thus we
use eq. (9.123) for |Adppl, and eq. (9.217) is replaced by

S _ Aaomﬁvﬂ\w 8FL, 1 (0.219)
N\ 2hor Y e T -

and (writing wy, = 2we/AL) eq. (9.218) becomes

1 4rhALe 1/2 2
b T EFL A:l]iug v 1+ /)2,

where P, = CP, is the power on the beam-splitter after recycling.
An instructive way to rephrase the above computation is as follows.
According to eq. (9.32), the variation in the output power of a Michelsor

SY2(f)

interferometer induced by a GW, choosing as working point ¢o = 7 /4, is
AP = Py A¢mich/2. Since all we measure is the power at the photodes
tector, the power fluctuation eq. (9.210) has the same effect as a phase

shift A¢micn induced by a GW, with ;
LRy Ausen = 75 NI 2huo, . (0.22
2 T 7
On the other hand, at ¢ = 7/4, we have P = Py/2, so Py =
2N, hwy, /T, which, inserted in eq. (9.221), gives
1
VN,
This is the rms value of the equivalent phase shift. To compute i
spectral density Sag(f) we proceed as follows. Let A(t) be any randon

Aduich = (9.22

variable, such that :

(AR)A(E)) = Agd(t —t'). (9.223]

This is the case of shot noise, since there is no correlation between t
fluctuations of photon number at different times. As we saw in eq. (7.16
the (single-sided) spectral density Sa(f) of any quantity A is in gener
defined from

o0

g@kﬁ\vv - W\.S df .m.\»qvwl.mi@zi )

é_rm: eq. (9.223) holds, we see that Sa(f) is independent of f, an

has the value S4 = 24¢ (as we already saw below eq. (8.122)). On th

other hand, setting ¢ = ¢ in eq. (9.223), we get (A%(¢)) = Agd(0)

(9.220)

(9.224)

(1/2)546(0). If we do not have an instantaneous resolution in time, but
rather we perform a coarse graining over an observation time 7T, the
Dirac delta must be replaced by its regularized version (with unit area),
defined by 6(t) = 1/T if —T/2 <t < T/2 and §(t) = 0 if ¢| > T/2, so
0(0) = 1/T'. Therefore

(42(2)) = 5. (9.226)

Thus the strain sensitivity mw\ ? can be obtained from the rms value of A,
(A%(1))'/2, multiplying it by (27)!/2. In particular the spectral density
of the phase shift, Sag, is given by

2T
gz (2T
ay-) 24
_ [2hay,
=/ 5= (9.226)

To pass from the spectral density of A¢ to the spectral density of the
noise n(t), which is the quantity to be compared with the GW signal
h(t), we use eq. (9.125), i.e. we divide by the transfer function (9.126).
(In the language explained at the beginning of Chapter 7, dividing by the

transfer function we are referring the noise to the input of the detector).
This gives back eq. (9.220).

Observe that S/ MA Flshot is flat up to the pole frequency, and then

rajses linearly in f. This is due to the fact that the shot noise in itself

is independent of the frequency, while the transfer function, i.e. the
sensitivity of a FP interferometer to GWs, degrades linearly with f
beyond fp. Inserting the numerical values we get

50\ /3km) /1kW\Y?
~15x 1078/ (20 (3w
L 15X 1077 Hy 7 7 =

X\ 1+ (F/ )%, (9-227)

SY2(£)

where we set Ay, = 1 um, and we used reference values appropriate for
the initial VIRGO. Recall that (at the initial detector stage) for VIRGO
fp =2 500 Hz and for LIGO f, ~ 90 Hz.2°

9.4.2 Radiation pressure

Equation (9.220) indicates that, to beat the shot noise, we should in-
crease the power Py, either increasing the input laser power or increasing
the recycling factor C. However, a beam of photons that impinges on
a mirror and is reflected back exerts a pressure on the mirror itself. If
this radiation pressure were constant, it could simuply be compensated
by the mechanism that holds the mirrors in place. However, since the
number of photons arriving on the mirror fluctuates as in eq. (9.209), the
radiation pressure fluctuates, too, and generates a stochastic force that
shakes the mirrors. We see from eq. (9.210) that this stochastic force
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290ur discussion is simplified, since we
have not, taken into account the effect of
the phase modulation of the laser light.
Numerically, this gives a strain sensitiv-
ity higher by approximately a factor of
(3/2)1/% compared to the one obtained
in eq. (9.220), see the Further Reading
section.
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30More accurately, when a suspended
mirror oscillates there is a restoring
force due to gravity, so it should be
really treated as a harmonic oscilla-
tor, with resonance frequency wp and
dissipation coefficient v (defined as in
naw. (8.20)). Then the factor (27f)% =
w?* in the denominator of eq. (9.230)
must be replaced by |w? — W + iywol,
coi ¢ with eq. (8.23). However, the

31 Another way to deseribe the same
phenomenon is In terms of vaeuum fluc-
tuations of the slectromagnetic flold en-
tering the interferometear feotn the out-
put port, see Caves (1980, 1981).

Consider next an interferometer with Fabry-Perot cavities. In this case
the result depends on the finesse F of the arm cavities. Physically,
this dependence can be understood observing that, in a FP cavity with
finesse 7, light is performing on average N’ = 2F/x bounces. Then
each photon hits the mirrors O(NV) times, so the rms value AL of the
length of the cavity is O(N) times larger than the value when the light
make only one bounce. Furthermore, when the cavity is at resonance,
a given value of AL produces a phase shift in the reflected light larger
by a factor Trp(f) = O(N), compared to the one-bounce case. Overall,
the total effect on the phase shift induced by the radiation pressure is
therefore O(A?). However, to compare with the effect of a GW (i.e. to
refer the noise to the detector input, in the language of Chapter 7) we
must divide by the transfer function of an interferometer with Fabry-
Perot cavities, which is again Typ(f), and we are left with &, single factor
OW).

In other words, a given displacement AZ(f) of a mirror due to radia-
tion pressure results in a phase shift Ag¢pp(f) which is much larger than
for the single-bounces case, since now the transfer function is Trp(f),
. given in eq. (9.126), which is proportional to F or, equivalently, to the
number of bounces. However, in order to refer the noise o the detector
input, we must divide by the same transfer function, so the two effects
. cancel. The fact that each photon performs O(N) bounces results in the
fact that the power inside the cavity is larger by a factor O(N) than the
- power Fys at the beam-splitter. Indeed, from eq. (9.72), at resonance

the power inside the cavity is

grows as v/Pps while, from eq. (9.220), shot noise decreases as 1/v/Frq.
If, in order to beat the shot noise, we increase the power Pys, beyond
a certain limiting value the fluctuations in the radiation pressure will
become important, and will dominate over the shot noise.
To compute the strain sensitivity due to radiation pressure we proceed
as follows. Consider a laser beam with power P that impinges perpen-
dicularly on a mirror. At reflection each photon changes its momentumn
from +p to —p, so it transfers a momentum 2|p| to the mirror. Since
the photon energy is E, = |p|/c, the force that a beam of power F*
exerts on the mirror is F = 2P/c. The rms fluctuations of the force in &
time T are therefore related to the power fluctuations by AF = 2AP/¢.
Using eq. (9.210),
B, P
T
The fluctuation in the number of photons is independent of the free
quency, so the spectral density of the force, Sp(f), must be flat in fre«
quency and, using eq. (9.225), is given by

AF =2

(9.228)

1/2 _ 2kwy, P
i =24/ =5~ (9.229
This stochastic force F' acts on a mirror that, in the horizontal plane,
otherwise free, so we have F = M%, where M is the mass of the mirro
and z its coordinate. In Fourier space, this means F(f) = — M (27 f)*&
s0 the spectral density of the displacement of the mirror is3®

#
A“_. fand ﬁ:.mvm ’

2 2hwy, P

.m.w\wcﬁ.v = g[@.qﬂ.\lvm 2 . Amwwo Peay = wvm

(9.232)

Consider now what happens in an interferometer. We consider first
simple Michelson interferometer, taking the beam-splitter much heavier:
than the end-mirrors (so we can neglect its recoil). When a phot
arrives on the beam-splitter, it is scattered randomly into one or th
other arm. As a result, in each arm the distribution of photons is
Poissonian. The important point is that the distributions in the twi
arms are anti-correlated. One more photon into one arm means o
less in the other. In the differential mode of the interferometer t
contributions due to radiation pressure in the two arms therefore adi
up, so the radiation pressure in an interferometer is obtained multiplying
eq. (9.230) by a factor of two (while correlated fluctuations in the &
arms, such as intrinsic laser power fluctuations, cancel out).3!

To express the result in terms of the equivalent noise spectral densi
we must divide by the transfer function that relates AL to the GW
amplitude h. For a simple Michelson interferometer, at f <« fp we havi
AL = hL, so the transfer function is simply L, and the strain sensitivity &
s/ MA f) due to radiation pressure is

Setting for simplicity r; = 1 and t2 =1 —r2 —p; ~ 1 — 2, this gives
Feav = Pos(1+71)/(1 — 1) which, for r; close to one, can be written as

2F
Peoy o Py . (9.233)

Therefore a fluctuation APy of the light arriving on the input mirror
induces a fluctuation of the field inside the cavity AP.y, =~ APy (2F /7).
Actually, if the mirror vibrates at s frequency f, the cavity is displaced
off resonance, and the power inside the cavity is reduced by a factor
[1+ (£/fp)?], as we see from eq. (9.81), together with the definitions
(9.84) and (9.122). As a result (writing wy, = 2me/AL in eq. (9.231))

16V2F [ R 1
- _l6v2 % (9.234)

1/2
S = 772G V3w T T+ (752

This result answers a question that might have been asked when we
realized that the response to GWs of an interferometer with Fabry-
Perot cavities, with arm-length L and finesse , 18 equivalent to that

4 2hwr P
rad pres - ghﬁwﬁ.\vw c2

SYA(F) (9.23
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1

10 SN\Q.S 10°
Fig. 9.26 The strain sensitivity
SYA(F) (in units Hz™Y?) due to
shot noise (dashed), to radiation
pressure {dotted) and the total op-
tical read-out noise (solid line). For
definiteness, we have used numeri-
cal values of the various parameters
typleal of the initial VIRGO inter-
ferometer.

32%We already met o similar situation
for resonant bars in Sections 8.3.3 and
8.3.4, where we found that, without
quantum non-demolition technliques,
the best one can do is to detect vibra-
tions in the bar corresponding to O(1)
phonon. We have seen that present bar
sensitivities are not that far from thia
limit.

of a simple Michelson interferometer with arm-length (2/7)FL. Given
that very high finesse cavities are not difficult to build (e.g. the moda
cleaner has a finesse O(10%)) why bother to construct a km-sized arm,
with all the financial and technical problems that this implies (e.g. the
very high vacuum in such a long arm, see below)? We could think that
it is sufficient to build a table-top interferometer with a sufficiently _Smm :
finesse.

The answer is that the response of the detector to GWs, encoded in
the transfer function (9.126), is only one side of the issue. What really
matters is the signal-to-noise ratio, and we must also ask how the various
noise scale with A/ and L. For instance, shot noise is independent of Ai
When divided by the transfer function, which is O(N), the signal-t
noise ratio therefore scales as 1/N = O(1/F). To beat down such
noise we could in principle keep L small, as long as we use a cavity wit;
a sufficiently high finesse. However, we have seen that radiation pressul
noise rather scales as N2, so after dividing by the transfer function wi
have a dependence proportional to N, i.e. to F. In this case a v
large finesse would be harmful. Below, we will see that displacemen
noise, such as mirror thermal noise, scale as N, so after dividing by t
transfer function we get a the signal-to-noise ratio which is independen
of F (but still proportional to 1/L), so in this case a high finesse dot
not help to beat it down, and we need a large arm-length L. So, |
general we still want to keep L as large as possible, compatibly witl
technological and financial constraints. :

9.4.3 The standard quantum limit

Consider now the combined effect of shot noise and radiation pressy
that we denote as optical read-out noise. Its spectral density is

Sr(opt = SnlFlsnot T S (f)lraq -

A plot of this expression, and of the separate shot noise and radiat
pressure contributions, is shown in Fig. 9.26. The shot noise contributio
is proportional to Nulw\ % while the radiation pressure to P, H\ 2,

here the zuomﬁmwu&\. EEQ@K in action. The situation is ao:nmwﬁc
similar to the Heisenberg microscope. We are using photons to meas
the position of an object. The photons impart non-deterministical
recoil to the object, here in the form of fluctuations of the radiat
pressure, and this recoil disturbs the measure that we are performi
It is amazing that a quantum effect due to the uncertainty principle ¢
be important in the measurement of the position of a macroscopic bo
like the mirror of an interferometer, which typically weights O(20) -
However, for GW detection we need such an extreme accuracy in t
determination of the mirror position that, as we will see in this secti
the uncertainty principle can indeed become important.3?
Using the explicit expressions and ammiwm

oﬁ —
27 Ayrn ’

fo=

eq. (9.235) can be written as

=z e (14

1/2
SY2(f) g . (9.237)

opt

J 1
12 m 1+ f2/f2

- For a given value of f we can minimize S./ NA Flopt with respect to fo.

(In particular, fo is varied changing the power Py, so this amounts to
finding the optimal value of Pys.) The optimal value of fg is the one for

- which the shot noise and radiation pressure contributions are equal, and
_ is given by

2_n
=5

The corresponding optimal value of s/ mA f) defines the standard quan-

tum limit (SQL),
\mm

t should be stressed that Ssqr(f), even if written as a function of f,
annot be interpreted as the minimum noise spectral density that can

(9.238)

gi/2

Ssqu(f) =

5 x 7 (9.239)

- be reached with this type of optical read-out. In fact, the value of fo,

-e. of the laser power, has been optimized keeping fixed the value of f.
t therefore represents the minimum value of the spectral density which
an be obtained (as long as only optical read-out noise is concerned)
at that value of f. Once we have chosen the power so to optimize the
ensitivity at a given frequency f, at all other values of the frequency we
are not in the optimal situation, and the strain sensitivity is higher than
he standard quantum limit. So, eq. (9.239) rather gives the envelope of
the minima of the family of functions sy mA f3 fo)lopt, parametrized by
fo, as shown in Fig. 9.27. (For this reason, it is called a “pseudo-spectral
density”.)

It is useful to define the dimensionless quantity

8wy, Pos 1
ML? W (w2 +w?)’

K(f) = (9.240)

- where w, = 21 f, and w = 27 f. Then eq. (9.237) can be rewritten as?

oo = 351|775+ KU0)] (9.241)

K(r

We have seen that the existence of the limiting value Ssqr(f) is a man-
ifestation of the Heisenberg uncertainty principle. However the uncer-
tainty principle does not put a limit on the accuracy of measurements of

- position, but only on the accuracy of simultaneous measurements of con-

jugate variables, and it is possible to go beyond the standard quantum
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10° F(Hz) 10°

Fig. 9.27 The optical read-out
strain  sensitivity Sa2(flops (in
units H2"'*) for f, = 10 Hz (dot-
ted line), fo = 50 Hz (dashed
line) and fo = 100 Hz (dot-dashed
line), compured to the SQL pseudo-
spectral donsity (solid line). The
other parameters ar¢ L = 3 km,
M =20.3 kg, fy = 50O He.

33This result can also be obtained with
an elegant formalism, in which radi-
ation pressure and shot noise are re-
lated to the quantum vacuum fluc-
tuations entering the interferometer
from the output port, see Kimble,
Levin, Matsko, Thorne and Vyatchanin
(2000). The quantity that we denote by
wy corresponds to «y in this reference.
More precisely, v = ct}/(4L), where ¢1
is the transmissivity of the first mirror.
In our computation we have assumed
negligible losses, so nw =1- ﬂm. and
ry,72 close to one, so y ~ mwe/(2LF).
Observe also that we have set to one the
efficiency 1 of the photodiode and we
have neglected the effect of light mod-
ulation. For instance, in the present
configuration of VIRGO, this results in
the replacement 1/K(f) — 3/[2nK(f)]
in the first term of eq. (9.241). Differ-
ent modulation schemes can give rise to
different numerical factor for this shot
noise term.
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inda originates mostly
¢ ¢yelonic systems over
the oceay s transferred from
the atmosphese ter the ocenn, and then
to the ocean fluor. “Promi there it is
transmitted through the ¢rust for long
distances, O(10%) kin;’ miostly in the
form of surface waves: fta-wrplitudo
presents a peak corresponding to-the
period of the ocean waves (1) wid An-
other one at twice this fraquonsy; and
decreases as a power law at higher fre-
quencies. Near the costs, thore i alse
a contribution from sea waves braaking
on the shore.

i

where (above about 1 Hz) the index v =~ 2 while, at a typical quiet
location, A can be of order 10~7. Dividing z(f) by the length L =
3-4 km, we are left with a noise strain sensitivity at least 10 orders of
magnitude larger than the values at which we are aiming. The seismic
noise must therefore be attenuated by a huge factor. This is in general
obtained with a set of pendulums in cascade.?> A single pendulum with
resonance frequency fo, at frequencies f > fy attenuates the strain
sensitivity z(f) by a factor f/f?, and a multistage filter made by N
stages provides an attenuation factor (fZ/f%)V. Therefore one must
choose fo much smaller than the GW frequency of interest. In practice,
this means that the seismic noise can be reduced below a level interesting
for GW detection only at frequencies above, say, 10 Hz. This is the main
reason while a ground-based interferometer cannot search for GWs below
the ~ 10 Hz region.

Newtonian noise, also known as “gravity gradient noise”, is due to the
Newtonian gravitational forces of objects that are moving, which results
in a time-varying gravitational force.3® The most important Newtonian
effect is induced by micro-seismic noise, which produce mass density
fluctuations and therefore a fluctuation of the gravitational field of the
Earth, which couples directly to the test masses of the interferometer.
One can get a feeling for the extreme sensitivity of a GW interferorm-
eter, when one realizes that even the changing gravitational attraction
due to atmospheric turbulence gives a non-negligible contribution to the
Newtonian noise below O(1) Ha.

While the seismic noise can be attenuated arbitrarily (at least in prin-
ciple, if one were able to build an arbitrarily good attenuator), the New-
tonian noise cannot be eliminated, since the gravitational force cannot be
screened. In present GW interferometers the Newtonian noise is not the
dominant effect (below a few Hz it is overwhelmed by the seismic noise
and above a few Hz by the pendulum thermal noise, see Fig. 9.31). How-
ever, even if one were able to push further down the seismic and thermal
noise, which in principle can be done with technological improvements,
still one would remain with the Newtonian noise which, for a ground-
based detector, would anyway provide the ultimate limitation at low
frequencies (although some noise reduction might be possible monitor-
ing it with a complex network of accelerometers, and then subtracting
it).

limit using quantum non-demolition (QND) techniques. The gencral
principles of QND measurements have already been presented in Sec-
tion 8.3.4. We refer the reader to the Further Reading section for the
application of these techniques to GW interferometers. These techniques
can become important for advanced interferometers.

9.4.4 Displacement noise

The optical read-out noise discussed above is intrinsic to the way that we
use to detect the displacement of the test masses induced by GWs, using
a laser beam that bounces between them. Of course, the test masses also
move because of many other effects that have nothing to do with GWs,
We generically denote all these other effects as “displacement noise”, and
we characterize them with a strain spectral density of the displacement
_mm\mqvu that we denote simply as z(f).

Recall that the effect of a GW on the length L of a FP cavity is to
change it by the amount AL = hL (as long as wgwl/c € 1, i.e. as long
as eq. (9.124) holds). Thus, if the length of the cavity changes by
amount Az because of one of these displacement noise, the correspon
ing equivalent GW amplitude is Az/L. So, to refer the noise at t
detector input (i.e. to compute the equivalent GW that would indu
the same phase shift), we must divide the strain sensitivity of the di
placement by the arm-length L. The finesse of the cavity, or equivalent;
the number of bounces N performed by the laser beam inside the F
cavity, does not enter here. This can also be understood in terms of th
phase shift A¢rp, observing that the phase shift induced by a GW an
that induced by the displacement noise of a mirror are both multipli
by the number of bounces of the light inside the cavity, so when we refl
the noise to the detector input the factor A cancels.

The computation of these displacement noise depends on many te
nical issues such as properties of materials, details of the suspensic
mechanisms, etc. and a complete discussion is beyond the scope of thi
book. We limit ourselves to mentioning the most important displag
ment noise below. Graphs showing their separate effect on the straj
sensitivity are shown in Section 9.5 below, in Fig. 9.31 for VIRGO ang
in Fig. 9.32 for LIGO.

Seismic and Newtonian noise

. . . . . Thermal noise
The Earth’s ground is in continual motion, with amplitudes of order

few microns. In the region 1-10 Hz this is mostly due to human activif
such as local traffic, trains, etc. as well as to local phenomena such
winds. Furthermore, there is a micro-seismic background, which affec
8 GW interferometer mostly in the form of surface waves that shake t}
suspension mechanisms and, finally, the mirrors.3¢ Its strain sensitivi
has in general the form

HQVR\» AH\WNV EENL\NM

Thermal noise induce vibrations both in the mirrors and in the suspen-
sions. As discussed in Section 8.3.1, its effect can be computed using
the fluctuation-dissipation theorem. We saw that, for a linear system
subject to a force F, we can always write the equation of motion in the
form

Flw) = ~iwZ(w)i(w), (9.243)

' where Z(w) is called the impedance. The fluctuation—dissipation theo-
rem gives the spectral density of the force responsible for thermal Auc-
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35Such an attenuation system is in it-
self a remarkable technological achieve-
ment. In particular, the VIRGO su-
perattenuator, made of 8 m tall tow-
ers, is the most performing device of
this kind ever built. The construction
of these towers also present non-trivial
problems in material science. To get a
feeling for the kind of issues involved,
consider that the slippage of two grains
of steel under stress releases an energy
sufficient to shake the mirror at the
level of 10712 m, about a million times
larger than the expected GW signal.

mevﬁo:wg these are quasi-static
gravitational fields in the near region
of their sources, and are distinct from
GWs, that are time-varying gravita-
tional fields in the far region of their
sources.
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tuations, Sp(w), in terms of the real part of Z, see eq. (8.125). The
displacement spectral density is then given by eq. (8.128), that we write
as

o Thermo-elastic fluctuations. These are due to the fact that, in
a finite volume V, the temperature fluctuates, with a variance
(8T)? = kgT?/(pCy V), where Cy is the specific heat and p the
density of the material. These temperature fluctuations gener-
ate displacement noise through the expansion of the material.
Thermo-elastic fluctuations take place both in the mirror bulk and
in the mirror coatings.

¢ Thermo-refractive fluctuations. The refraction index of the coat-
ings is a function of the temperature. Thus, the same temperature
fluctuations responsible for the thermo-elastic noise also induce
fluctuations in the refraction index of the mirrors.

1 1/2
(W) = ——— [4kT Re Z(w)]"/~ . (9.244)
©=zwn!
"Therefore, z(w) is known once we have Z(w). This has the great advan-
tage that we do not need to have a detailed microscopic model of the
dissipation mechanism. For a simple damped harmonic oscillator, Z(w)
is given by eq. (8.126). For a more complex extended object, the imped-
ance associated to a normal mode with frequency wy can be modelad
more generally as
Z = Islﬁ?m

w

Of course, thermal noise is proportional to the dissipations present in
the system, which depend strongly on the material used, and therefore
there is an ongoing search for materials with optimal properties.

— Wi + iwd(w)], (9.24

where the dimensionless function ¢(w) is called the loss angle. The most

important thermal noise are the following.
Other noise

Suspension thermal noise. Any vibration induced in the suspension o

! ! i Beside read-out and displacement noise, other noise are relevant, and
the test masses results in a displacement noise. In particular, we have

keeping them under control require advanced technologies. We mention
some of them, to give a feeling for the complexity of a GW interferom-

¢ Pendulum thermal fluctuations. These are thermal fluctuatioi cter

that induce a swinging motion in the suspensions, and therefor
a horizontal displacement of the mirrors. In the present detectol
this noise is the dominant one between a few Hz and O(50) H:
see Fig. 9.31. )
e Vertical thermal fluctuations. Thermal noise induce also a verti
motion of the suspensions. In a GW interferometer, we are only
terested in the horizontal distance between the mirrors. Howeve
because of the curvature of the Earth, the direction of the ve
cal at the two mirror locations, which are separated by a dista;
L = 3-4 km, is not the same. This results in a vertical-horizont;
coupling of the order of the angle § = L/(2Rg) ~ 2 x 10~4.
¢ Violin modes. These are vibrations that can be described in tern
of fluctuations of the normal modes of the wire. They are respo
ble for the set of spikes between 300 Hz and a few kHz in Fig. 9.3
The width of these resonances is however very narrow, so they a
fect the sensitivity only in very small intervals of frequencies.

The laser beam must travel in a ultra-high vacuum pipe, in order
to keep the noise induced by fluctuations in the index of refrac-
tion below the design sensitivity. For the initial interferometers
the pressure must be lower than 10~7 mbar while, for advanced
interferometers, it must be lower than 10~? mbar.37 Furthermore,
the residual gas must be free of condensable organic molecules

(hydrocarbons), in order to keep the optical surfaces clean. It is

estimated that a hydrocarbon partial pressure of 10~13 mbar is

required if one wants to avoid the cumulative deposition of one
monolayer of molecules on the optical elements in 4 years.

¢ To limit diffuse light scattering in the interferometer, the mirrors
are polished to a rms micro-roughness of about 0.54, over a di-
ameter of order 20 ¢m, and have losses of order a few parts per
million.38

¢ Fluctuations of the laser in power and in frequency must be kept

under control to great accuracy.

Other important concerns are so-called technical noise, often re-

lated to the servo loops that keep the many degrees of freedom of

an interferometer under control.

e Seismic noise can be reinjected in the detector because the enclo-
sure walls couple to the mirror magnets both directly, because of
diamagnetism, and through eddy currents.

» The suspension wires undergo creep, i.e. sudden grain-boundaries

slipping, which at this sensitivity level are so frequent that they

finally constitute a Gaussian noise. .

Test-mass thermal noise. These are thermal fluctuations within the t
masses themselves. We can distinguish the following effects.

e Brownian motion of the mirrors. The atoms of a mirror at te
perature T have a Brownian motion due to their kinetic energy
which gives rise to mirror thermal noise. Just as with the vio|
modes, its effect can be computed performing a normal-mode d
composition. This is presently the dominant noise between a fe
tens and a few hundred Hz, see Fig. 9.31.
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37 These vacuum tubes have a diame-
ter of about 1.2 m in order to contain
the diffraction-limited laser beam, and
a 3- or 4-km length, resulting ina total
high-vacuum volume of abott 9000 m3.
For comparison, this is much larger
than the vacuum volume of the LEP
particle accelerator, where the ring is
almost 27 kms in length, but the trans-
verse section of the vacuum pipe was an
ellipse with semiaxes of about 6 cm and
3 cm, respectively.

memé?:m_mmE the remaining diffused
light still generates important noise be-
cause it can interact with the pipe
walls, thereby getting modulated by its
seismic noise, and then it can be red-
iffused back in the beam by reflection
on a mirror. Even if only a few parts
per million of the circulating light is
diffused, an unacceptably high noise
results. For this reason, in each of
the 3 km arms of VIRGO have been
mounted about 100 circular rings, ob-
tained from a conical surface, that trap
and absorb most of the residual diffused
light.
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Rig. 9.28 A view of the LIGO detec-
tor.in Hanford, Washington State.
(Courtesy of the LIGO collabora-
thon):: -

Fig. 9.29 A view of the VIRGO in-
terferometer in Cascing, neny Plan,
(Courtesy of the VIRGO collubera-
tion.)

e Non-Gaussian noise is also present. For instance, the release of
residual gas pockets from the tube walls can generate sudden
bursts.

So, many subtle effects can become important at the sensitivity level
at which a GW interferometer aims. In spite of the apparent simplic-
ity of the original idea, a GW interferometer is clearly a very complex
instrument.

9.5 Existing and planned detectors

9.5.1 Initial interferometers

At time of writing (2007) there are various collaborations running GW
interferometers. In the US, the LIGO collaboration runs two interfer-
ometers with arms of 4 km, one in Hanford (Washington State) and one
in Livingstone (Louisiana). The two detectors have been placed at
large distance (the light travel time between them is about 10 ms), 86
that their noise should be uncorrelated, and are used to search for coinc}:
dences. In the Hanford site there is also a second smaller interferomete
with 2 km arms, in the same vacuum system. While of course there will
be correlated noise between the shorter and the longer interferomete;
still the presence of the smaller interferometer gives a further handle
that helps discriminating real signals from spurious noise, making use of
the fact that many common noise in the two detectors are independen
of L, while the effect of the GW scales with L. A view of the Hanfor
detector is shown in Fig. 9.28. The scientists collaborating to the projeg
are members of the LIGO Scientific Community (LSC).

The VIRGO interferometer, located near Pisa, Italy, is a collaboratio
between Italy and France, and has arms of 3 km. A view of the detectol
is shown in Fig. 9.29.

Beside these large GW interferometers, there are two smaller ones:
GEO600, with arms of 600 m, is located near Hannover and is a German:
British collaboration. GEOQ600 works in close collaboration with LIG
and its members are also members of the LSC. TAMA is located i
Tokyo, and has arms of 300 m. These smaller detectors are useful a
for developing techniques that will be used by LIGO and VIRGO i
their advanced stage.

In Fig. 9.30 we show a simplified model of the strain sensitivity ¢
these detectors, in their initial stage. The best sensitivities are reache
by the two detectors with longer arms, LIGO and VIRGO. In the low
frequency regime, the dominant noise is the seismic. For LIGO and GE
this results in a “seismic wall” below about 30-40 Hz. VIRGO has d
veloped an advanced super-attenuator, so its target sensitivity is bett
at low frequencies. In the intermediate region the dominant noise is th
mirror thermal noise. In this region GEQ600 compensates the smalld
arm length using fused silica suspensions, an advanced technique th
reduces suspension thermal noise, and that will be adopted in advance
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Fig. 9.30 A simplified model of the strain sensitivities of the initial interferometers.

interferometers. Then, shot noise takes over and becomes the limiting
noise at high frequencies. In this regime, the difference between the sen-
sitivities of LIGO and VIRGO is due to the fact that LIGO has longer
arms (4 km instead of 3 km for VIRGO) and a higher finesse (F = 200
for LIGO and F = 50 for VIRGO). On the one hand this means that,
at f < fpole, the shot noise of LIGO is smaller than that of VIRGO, see
eq. (9.220), which helps to give a better sensitivity in the 100 Hz region.
On the other hand, we see from eq. (9.88) that the pole frequency of
LIGO is smaller, fo ~ 90 Hz for LIGO and fo 22 500 Hz for VIRGO.
This means that in LIGO the shot noise curve begins to raise linearly
earlier, so it finally get higher than in VIRGO.

A more accurate plot of the sensitivity, including the separate contri-
butions from the various noise sources, is shown in Fig. 9.31 for VIRGO,
while actual data from LIGO are shown in Fig. 9.32, and in Fig. 9.33
for GEO.39

Once we have the strain sensitivity, the signal-to-noise ratio of GW in-
terferometers for different type of signals (coalescences, bursts, periodic
signals and stochastic backgrounds) can be computed using the results
of Chapter 7, similarly to what we did in Section 8.3.5 for resonant bars.

For a broadband GW detector such as an interferometer, a useful mea-
sure of the sensitivity is given in terms of the sight distance to coalescing
binaries, that we introduced in Section 7.7.2. Inserting in eq. (7.182) the
strain sensitivity of the initial LIGO and VIRGO one finds that, for a
NS-NS binary, with NS masses m,; = mg = 1.4Mg, initial interferome-
ters have a range

dns—ns = O(20) Mpc, (9.246)

%At time of writing (2007) initial
LIGO has reached its target sensitivity
and is completing a long science run,
termed S5, with one year of coincident
data between its detectors. As shown
in Fig. 9.32, the noise budget is very
well understood, and reproduces pre-
cisely the theoretical curves. VIRGO
is presently close to reaching its target
sensitivity, and is starting its first sci-
ence runs. VIRGO and the LSC have
signed an agreement for joint data tak-
ing and data exchange. The sensitiv-
ity of GW interferometers will proba-
bly be in rapid evolution in the near
future, with various improvements and
upgrades leading from the initial detec-
tors to advanced interferometers.
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Fig. 9.31 The predicted strain sensitivity si/? (f) (here denoted h(f)) of the initial
VIRGO detector, and the various noise contributions. (Courtesy of the VIRGO!
collaboration.)

which barely includes the Virgo cluster of galaxies. For BH-BH binaries,
assuming a black-hole mass of 10M, as suggested by the observation
typical stellar-mass galactic black holes, gives a sight distance at initi
interferometers

deu-sy = O(100) Mpc. (9.247

Estimates of the rate are uncertain and will be discussed in detail i
Vol. 2, where we will see that, if our theoretical understanding of the
formation and evolution of compact binaries is correct, at these distanced
the chances of a detection are small, with O(1074)—0(10!) events per
year for BH-BH coalescences, and O(1073)—0(1072) for NS-NS binarie
We will see however in Section 9.5.2 that these rates improves drastically;
for advanced interferometer. :

For burst searches, the sensitivity of a broadband detector dependg
strongly on where, in frequency, the burst is peaked, and on its temporal
duration. Assuming for definiteness a flat spectrum over the frequenc;
bandwidth, a burst that radiates an energy 10~6Mpc? in GWs would be
visible, at SNR = 8 and assuming optimal orientation, up to O(10) kpe:

For spinning pulsars, the sight distance is obtained from eq. (7.166)
a8 o function of the ellipticity € and of its frequency fo.
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L1: i 5 Mpc, Predicted: 14.2, May 12 2006 01:50:00 UTC
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Fig. 9.32 The strain sensitivity, in m/vHz, of the LIGO detector in Livingston.
The strain sensitivity in Hz"2/? is obtained dividing by the arm length I =
4000 m. The noise budget is very well understood. (Courtesy of the LIGO
collaboration.)
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Fig. 9.33 The strain sensitivity, in 1/v/Hz, of the GEO detector during the S5
run. (Courtesy of the GEO collaboration. )
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Fig. 9.34 The planned sensitiv-
ity of Advanced LIGO compared
to initial LIGO. A wideband and
a narrow-band configuration are
shown. (Courtesy of the LIGO col-
laboration.)
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Fig. 9,35 The main noise contribu-
tions in » possible Advanced LIGO
configuration.  (Courtesy of the
LIGO eollaboration.)
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Fig. 9.36 A possible sensitivity
curve of Advanced Virgo, compared
to the initial Virgo. (Courtesy of the
VIRGO collaboration.)

9.5.2 Advanced interferometers
Ground-based detectors

For the LIGO and VIRGO interferometers there is a well-defined plan
for upgrades which should lead, in a few years, to second-generation
detectors with much better sensitivities, Advanced LIGO (to which will
contribute also GEO600 and the Australian consortium ACIGA) and
Advanced VIRGO. GEO600 should evolve into a tunable zmﬁos-vﬂ:_
detector in the high-frequency region (GEO-HF), and in a facility for
testing technologies for future interferometers. A cryogenic detector,
LCGT, is under study in Japan, and there are plans for an interferome-
ter in Australia, AIGO. Examples of planned sensitivities are shown in
Figs. 9.34-9.36. .

While a number of details might still change, the baseline for the main
improvements that are planned is the following.

e An increase in the input laser power from the present value of
order 10-20 W up to 100-200 W. After power recycling, this would
lead to a laser power in the Fabry-Perot arm cavities of order
1 MW. This has the effect of reducing the shot noise, improving.
the sensitivity in the high-frequency region. Such a huge power

will however induce thermal lensing in the test mass optics, due to=

absorption in the substrate and coatings, and compensation effect§

will be added.

As discussed in Section 9.4.2, the increased laser power will pro«

duce a Jarger radiation pressure noise, up to the point that thi

becomes a dominant noise at low frequency. This is compensated
increasing the mirror masses, up to about 40 kg.

LIGO will introduce much better seismic isolation, improving t

sensitivity at low frequencies and bringing the “seismic wall” from

40 Hz down to about 10 Hz. VIRGO already has a seismic isolatior

appropriate for an advanced interferometer.

o The test-mass suspensions, presently made of steel wires, will
replaced by silica (which has lower losses), fused to the mirror
with silicate bonding to create a single monolithic object, thereby
reducing suspension thermal noise. This technique has already
been developed in GEO600. Further improvement can be obtaineg
shaping the suspension fibers in the form of a ribbon. The resulting
suspension thermal noise will be lower than the radiation pressurg
noise (in broad-band observation mode, see below), and compara~
ble to the Newtonian background at 10 Hz.

o New mirror coatings, with lower thermal noise and lower losseg
(e.g. thanks to the insertion of dopants) are investigated.

The basic optical configuration is still a power-recycled interferomet
with Fabry-Perot cavities in the arms. To this configuration is added si
tial recycling. This consists of adding a new mirror, the signal-recycling
ntirror, at the output port of the interferometer, i.e. between the _umm:r
splitter and the photodetectors in Fig. 9.25. As in our discussion of thd

9.5

power recycling cavity, the addition of this mirror creates a new cavity,
the signal-recycling cavity, composed by the “effective interferometer
mirror” and the signal-recycling mirror.

Recall from Section 9.2.2 that 2 GW of frequency wyyw generates in the
interferometer sidebands at wL * wgw. If the signal-recycling cavity is
tuned in resonance with a sideband corresponding to some given value
of wew, the sensitivity of the interferometer for this GW frequency is
enhanced, at the cost of the bandwidth. This enhancement depends on
the finesse of the signal-recycling cavity. If the signal-recycling cavity is
tuned to anti-resonance, the sidebands are extracted and the bandwidth
of the detector is increased, with respect to the case where no signal-
recycling cavity is present. This technique is know as resonant sideband
eztraction. As a result, with tiny adjustments of the position of the
signal-recycling mirror, of order of fractions of AL, we can either tune the
interferometer to some specific source or increase the bandwidth. These
two options are illustrated in Fig. 9.34. The signal-recycling technique is
already implemented in GEO600, although without Fabry-Perot cavities
in the arms.

Thanks to these and to other improvements, an advanced interferom-
eter in wideband mode will be limited, over a bandwidth from about
10 Hz to a few kHz, mostly by the optical read-out noise, as we see from
Fig. 9.35, and therefore by the quantum limit. In the signal-recycling
configuration it is however possible to perform quantum non-demolition
measurements, hence going beyond the standard quantum limit, with
& simple modification of the input—output optics, see Fig. 9.37 and the
papers by Buonanno and Chen in the Further Reading section.

With the strain sensitivity of an advanced interferometer, the perspec-
tive for detection and for opening the field of GW astrophysics are quite
good. A detailed discussion of the sources and their strength will be
the subject of Vol. 2. Here we observe that the sight distance to NS-NS
binaries becomes

&Zlem = Qﬁwcov zvo . GM&mv

At this distance, the expected rate is between O(10) per year and O(100)
per year. For BH-BH with masses 10Mg, the sight distance becomes

dpy_BH = 0(1.5) Gpe, (9.249)

and expected rates are between one signal per year and O(500) per
year.4® For BH-NS binaries,

dpu-Ns = O(750) Mpc, (9.250)

with an expected rate between one signal per year and O(30) per year.

Looking further ahead, there are ideas for “third generation” interfer-
ometers. Among the features that are being considered, is the possibil-
ity of building an underground detector. As discussed in Section 9.4.4
(compare with Note 34 on page 524) the micro-seismic noise is mostly
propagated through surface waves, so underground it is sensibly reduced,
which also results in a reduction of the Newtonian noise induced by the

Fig. 9.37 Plot of 1/5,(9)/55% ()
(where @ = 27 f and v = 27 fpole)
as a function of /v, for different
optical configurations. Reprinted
with permission from Buonanno and
Chen, Class. Quantum Grav. 18
L95 (2001b).

0y major source of theoretical uncer-~
tainty is related to the fact that the po-
tential progenitors of a BH-BH system
can go through a phase of common en-
velope evolution, that can lead to the
merging of the progenitor stars rather
than to the formation of a BH-BH bi-
nary. See Belczynski, Taam, Kalogera,
Rasio and Bulik (2006) for a discussion
of these rates and of their theoretical
uncertainties.
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micro-seismic motion. Another third-generation feature could be the
use of cryogeny. A Japanese collaboration, building on the experience
gained with TAMA, has proposed the realization of the LCGT detector,
made of two independent underground interferometers in the same vac-
uum system, with 3 kms arms and cryogenic mirrors, cooled at 20 K,
to be located at Kamioka, an old mine transformed in an underground

physics laboratory. This site is about 1000 m below the top of a moun-
tain, and provides a very stable seismic and temperature environment. A
prototype, CLIO, has already _umm,n installed and is under development,

Interferometers in space

The region below about 10 Hz is unaccessible to ground-based interfer-
ometers, because of the wall due to seismic and Newtonian noise. Still,
we will see in Vol. 2 that the mHz region is potentially very rich in GW
sources, including particularly fascinating objects such as supermassivi
black holes. The only way to detect them is to go in space, where the
seismic noise is absent. One such project is LISA. The LISA mission ig
a collaboration between the European Space Agency (ESA) and NASA
The concept of the LISA mission is quite impressive. It consists of three
spacecrafts, separated by 5 million kms, in a equilateral triangle con
figuration, orbiting the Sun. The center of the triangle should be &
a distance of about 50 million kms (i.e. about 20° degrees along th
orbit) behind the Earth. The size of the arms is chosen to optimize th
sensitivity for GWs in the 10 mHz region, and in general LISA woul
be sensitive to GW frequencies in the range 0.1 mHz-0.1 Hz.

For a detailed description of the mission concept we refer the reade
to the Further Reading section. Here we briefly mention some aspec
of this remarkable experiment.

o Inside each spacecraft there will be two test masses (one for e;
arm), freely floating. The spacecraft is kept centered on the tes
masses using a drag free technique, in which the position of th
masses is sensed, and the spacecraft adjusts its position with r
spect to them, using micro-thrusters. The thrusts necessary t
maintain drag-free operation are extremely small, less than 100 uN,
and the required recoil is obtained emitting in space just a hand
of fast ions. This compensates for external influences such as sol
winds, micro-meteorites, etc. that in the long term would sensib!
alter the nominal position of the spacecraft. The LISA Pathfinde:
is a ESA mission to demonstrate the drag-free control techniqu
at the required accuracy.

The free masses exchange among them laser signals. Over a dis:
tance of 5 million kms, reflection is impossible because of powe
losses due to diffraction; after a travel of 5 million kms, the lase
beam is spread over a surface of radius 20 kms. So LISA uses
a laser transponding scheme in which the incoming laser light-i
sensed, and another laser is phase-locked to it and sends back an
other beam. :
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¢ LISA has unequal arms, with arm-lengths known to £20 m from
the measurement of the round-trip time. Then, contrary to what
happens in a Michelson interferometer with equal arms, laser fre-
quency fluctuations do not cancel out when taking the difference
between two arms. For this reason, the LISA concept uses time-
delay interferometry, in which the outputs of the two arms are
recombined with a time delay that takes care of the arm differ-
ence. In the process, laser frequency noise is canceled (while the
signal from GWs with frequencies in the mHz region is unaffected).
After minimizing spurious forces on test masses, the other most
important issue is the need to keep the temperature distribution
in the spacecraft as constant as possible, since the mass displace-
ments due local temperature fluctuations would induce changes in
the Newtonian gravitational forces on the test mass, as well as
accelerations of the test masses due to therma) radiation pressure.

Clearly, LISA would be an extremely impressive instrument and its
scientific achievements could be truly spectacular.

A number of other space missions are currently discussed, such as
DECIGO, & Japanese space project with arm-lengths shorter than LISA,
to bridge the gap between LISA and the ground-based detectors; and
ASTROD, a Chinese space project with arm-lengths longer than LISA
which, among other relativity experiments, would extend the search for
GWs to lower frequencies. Follows-up to the LISA mission, such as the

Big-Bang Observer (BBO), are also being investigated.

Further reading

For a lively discussion of the history of
gravitational-wave research, as well as the develop-
ment of GW interferometers, see the popular book
Thorne (1994). See also the review Thorne (1987).

A textbook devoted to the interferometric detec-
tion of GWs is Saulson (1994). For reviews, see
also Giazotto (1989), Drever (1991), and Ju, Blair
and Zhao (2000). A large bibliography on GW in-
terferometers can be found in the review by Rowan
and Hough (2000).

A detailed discussion of the optics of GW in-
terferometers is the “VIRGO Physics Book,
Optics and related Topic”, available at
http://wwweascina.virgo.infn.it/vpb/. The effect
of scattered light in interferometers is discussed in
Vinet, Visson and Braccini (1996) and Vinet et al.
(1997). Mesa beams are proposed in Bondarescu
and Thorne (2006).

Computations of the sensitivities to GWs of Fabry—
Perot cavities in various configurations can be
found in Vinet, Meers, Man and Brillet (1988) and
Meers (1988, 1989).

A pedagogical discussion of lock-in detection is
given in Black and Gutenkunst (2003). A nice
discussion of null instrument is given in Saulson
(1994), Chapter 10. For a discussion of Pound—
Drever-Hall locking see Saulson (1994), Section
12.5, and Black (2001). A discussion of the global
control of the VIRGO detector can be found in
Arnoud et al. (2005). For resonant sideband ex-
traction see Mizuno et al. (1993).

Shot noise in modulated interferometers is dis-
cussed in Niebauer, Schilling, Danzmann, Riidiger
and Winkler (1991) and Bondu (2003). Radiation
pressure is discussed in Edelstein, Hough, Pugh and
Martin (1978) and Caves (1980, 1981).
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For quantumn non-demolition measurements see
Caves, Thorne, Drever, Sandberg and Zimmer-
mann (1980) and Braginsky and Kalili (1992). For
application to advanced interferometers see Kim-
ble, Levin, Matsko, Thorne and Vyatchanin (2000}
and Buonanno and Chen (2001a, 2001b, 2002). For
a review of quantum noise in GW interferometers
see Corbitt and Mavalvala (2004).

The effect of seismic noise in GW interferometers is
discussed in Saulson (1994}, Chapter 8. Newtonian
noise are studied in Saulson (1984) and Beccaria et
al. (1998). Our discussion of thermal noise followed
the internal VIRGO note Flaminio et al. (2005),
where calculations of the various thermal noise are
performed in detail. Thermo-elastic noise is dis-
cussed in Braginsky and Vyatchanin (2003).

Updated information on the existing GW inter-

ferometers, as well as technical documents, PhDD
theses, etc. can be found at

http://www ligo.caltech.edu/ (LIGO)
http://wwwecascina.virgo.infn.it/ (VIRGO)

http:/ /www.geo600.uni-hannover.de/ (GEO600)
http://tamago.mtk.nao.ac.jp/ (TAMA)

A detailed description of the LISA mission can
be found in the LISA Pre-Phase A Report
(1998).  See also the reviews Bender (2001),
Danzmann and Riidiger (2003), and the web site
http://lisa.jpl.nasa.gov.

For lack of space, we have not discussed experi-
ments searching for GWs using the Doppler track-
ing of spacecraft. For a recent review, see Arm-
strong (2006).
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