AUBIN’S LEMMA FOR THE YAMABE CONSTANTS OF
INFINITE COVERINGS AND A POSITIVE MASS THEOREM

KAZUO AKUTAGAWA*

ABsTrACT. Aubin’s Lemma says that, if the Yamabe constant of a closed
conformal manifold (M, C) is positive, then it is strictly less than the Yamabe
constant of any of its non-trivial finite conformal coverings. We generalize this
lemma to the one for the Yamabe constant of any (Mo, Coo) of its infinite
conformal coverings, provided that w1 (M) has a descending chain of finite
index subgroups tending to m1(Moso). Moreover, if the covering Mo is normal,
the limit of the Yamabe constants of the finite conformal coverings (associated
to the descending chain) is equal to that of (M« ,Coo). For the proof of this,
we also establish a version of positive mass theorem for a specific class of
asymptotically flat manifolds with singularities.

1. INTRODUCTION AND MAIN RESULTS

There is a natural differential-topological invariant, called the Yamabe invariant,
which arises from a variational problem for the functional E below on a given closed
smooth n-manifold M with n > 3. It is well known that a Riemannian metric on
M is Finstemn if and only if it is a critical point of the normalized Einstein-Hilbert
functional E on the space M (M) of all Riemannian metrics on M

Ju Rodpe
g9

Here, Ry, dp, and Vol, (M) denote respectively the scalar curvature, the volume
element of g and the volume of (M, g).
Because the restriction of E to any conformal class

[9] :={e* -g | fe C™(M)}

is bounded from below, we can consider the following conformal invariant (called
the Yamabe constant of [g])

Y(M,[g]) = inf{E(g) | § = u*/""? g € [g], ue CT(M)}

2l Vul?2 + Ryu?)d
—inf {Q(th)(u) — fM(a | U| + gqin)_;)l’;ln = COO(M), u# 0}’
(o w*/ (=2 dpy)
where a,, := % > 0 and

C (M) = {u € C®(M) | u > 0}.
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2 Aubin’s lemma for the Yamabe constants of infinite coverings and a positive mass theorem

A remarkable theorem [39, 37, 8, 28, 33] (cf. [9, 26, 34]) of Yamabe, Trudinger,
Aubin, and Schoen asserts that each conformal class [g] contains metrics g, called
Yamabe metrics, for which

Y(M,[g]) = E(9)-
A first variation argument shows that these metrics § must have constant scalar
curvature
Ry =Y (M, [g]) - Vol (M) ~*/™.
Hence, we call a conformal class [g] positive if Y (M, [g]) > 0.

Let C(M) denote the space of all conformal classes on M. The study of the
second variation of E done in [24, 30] (cf. [11]) leads naturally to the definition of
the following differential-topological invariant

Y(M):= sup inf E(g).
cec(M)9€C

This invariant is called the Yamabe tnvariant of M and it was introduced indepen-
dently by O. Kobayashi [21] and Schoen [29] (see also [22, 30]). In other words, the
Yamabe invariant Y (M) of M is the supremum of the scalar curvatures of unit-
volume Yamabe metrics on M. We remark also that, for any M and C' € C(M),
Aubin [8] (cf. [9, 26]) proved the following fundamental inequality

(1) Y(M,C) <Y(5",[g.]) = n(n — 1)Voly, (S")*/",
where g, denotes the standard metric of constant curvature one on the standard

n-sphere S™ (for each n). This implies that

Y(M)= sup Y(M,C)<Y(S")=n(n—1)Vol, (S")*/".
cec(M)
We will denote Y., := Y(S™,[g,]) = n(n — 1)Vol, (S™)*/™.

In the present article, we will study the Yamabe constants of conformal coverings
of a given closed conformal manifold (AM,C). When Y (M,C) < 0, the maximum
principle implies that any two constant scalar curvature metrics in C' are identical
up to a scaling (cf. [9]). Thus, for a finite k-fold conformal covering (M, C),

Y(M,C) = k™. Y(M,C).
On the other hand, when Y (M,C) > 0, we can not expect any similar explicit

relations between Y (M, C) and Y (M, C) (cf. [21, 30]). One reason is that, in a
given positive conformal class, the uniqueness for unit-volume metrics of constant
scalar curvature does not hold. However, Aubin [7, Lemma 2 and Theorem 6]
proved the following (see [5, Lemma 3.6] for details):

Aubin’s Lemma. Let (M, C) be a closed positive conformal n-manifold withn > 3
and (M,C) a non-trivial finite conformal covering of (M,C). Then,
Y(M,C) <Y (M,C).

This lemma was one of the crucial ingredients in [5], where it was used in order
to prove, for instance, that

(2) Y(RPP#(S? x S1)) < Y(RP?, [ho)),

where hg denotes the standard metric of constant curvature one on RP3.
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We now explain briefly how this inequality is obtained. First, we remark that the
inverse mean curvature flow technique developed in [12] can not be applied directly
to determine the Yamabe invariant ¥ (RP®#(S? x S1)). Instead, take any metric g
with Y/(M, [g]) > 0 on

M = RP?#(S? x S1)
and a smooth loop ¢ in S? x S* whose homology class [¢] generates H;(S? x S1;7Z).
We regard the loop c as a loop in M. Let (M, gx) and (M, g) denote, respec-
tively, the k-fold Riemannian covering and the normal (cf. [16]) infinite Riemannian
covering of (M, g) associated to [c] € Hy(M;Z). Note that, topologically,

My, = #EM#(S? x S*) and M., = #°M#(S* x R).

We can now apply Aubin’s Lemma to the coverings M} — M for all £ > 2 and
conclude that
Y(M,[g]) <Y (Mk, [gk]).

After some crucial arguments, the inverse mean curvature flow technique can then
be applied on each Mj, for all sufficiently large k in order to conclude that, for any
small £ > 0, there exists ko such that the following inequality holds (see [5] for
details)

(3) Y (Mg, [g]) < Y(RP?,[ho]) +¢  forall k> k.
Using the above inequalities, we obtain
Y(M7 [g]) < Y(]R]P3, [hO])7

and hence the desired result (2) holds.

In the argument sketched above, we did not compute the Yamabe constant of
(Moo, [9so]). However, the argument in (3) was inspired by the following working
hypothesis:

4 Tim ¥ (M, [ge]) = Y (Mac, [g2c]) < V(RE?, o],

This observation leads naturally to the problem of extending Aubin’s Lemma to the
case of the Yamabe constants of infinite conformal coverings. Furthermore, since
some sort of noncompact conformal manifolds appear as various kinds of limits
of closed conformal manifolds, the study of the Yamabe constants of noncompact
conformal manifolds is useful and indispensable for the study of Yamabe invariants
of closed conformal manifolds (cf. [1, 2, 3, 4, 6, 36]). In this article, we will present
some extensions to Aubin’s Lemma which will include, as a particular case, the first
equality in the above working hypothesis (4). Therefore, by combining this with
the inequality (3), the second inequality in (4) follows.

Before starting our main results (i.e., Theorem 1.2 and Theorem 1.4 below), we
need to introduce some definitions first. For a given open conformal n-manifold
(X,C) and a metric g € C (possibly incomplete), the Yamabe constant Y (X,C) of
(X, C) is also defined by

Y(X,C0) :=inf{ Qx4 (f) | f € CZ(X),f#0}.
Note that Y (X, C) does not depend on the choice of g € C' (cf. [33]), and hence it
is a conformal invariant of (X, C). Moreover, Aubin’s argument used in the proof
of the inequality (1) is still valid for any noncompact conformal manifold (cf. [26,

Lemma 3.4]) and so
Y(X,0)<Y,.
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Definition 1.1. Let G be an infinite group and H (C G) a subgroup of infinite
index. Let {G;}i>1 be an infinite sequence of subgroups of G. We shall call {G;};>1
a descending chain of finite index: subgroups tending to H if it satisfies the following;:
(i) Each G; is a finite index subgroup of G with G; D H.
(i) G=G1 2G> 2+ 2G; 2Gi 2
(iif) Ny, Gi = H.
The following theorem corresponds to an analogue of Aubin’s lemma for the
Yamabe constants of infinite conformal coverings. We identify each w1 (M) and
71 (M) with their projections to w1 (M) in the theorem below.

Theorem 1.2. Let (M, C) be a closed positive conformal n-manifold with n > 3.
Let (Moo, Co) — (M, C) be an infinite conformal covering such that w (M) has a
descending chain of finite index subgroups tending to m1 (Ms). Then,

Y(M,C) <Y (Mx,Co).
Moreover, if the covering Mo, 1s normal, then

lim Y(Mk, Ck) = Y(Moo, Coo)
k—o0

for any family {(My,Cy)}e>1 of finite conformal coverings of (M,C) satisfying
(My,C1) = (M,C) and such that {mi(My)}r>1 is a descending chain of finite
index subgroups of w1 (M) tending to w1 (Mx).

Remark 1.3. There is one well understood example of the above assertion worked
out by Kobayashi [21] and Schoen [30] (cf. [4]). The infinite universal Riemannian
covering

(S" P x R, g, 4+ dt?) — (S"7* x SY(1), g, + dt?)
is normal and

lim ¥(S" ! x §1(r), g, + i) = V(" x B [g, + ),

where S*(r) := [0,27r]/ ~.

When Y (M.,,Csx) = Y,, the proof of the second assertion in Theorem 1.2
requires the following positive mass theorem.

Theorem 1.4 (cf. [2], [4]). Let (M, goo) be a noncompact Riemannian n-manifold
(n > 3) which is a normal infinite Riemannian covering of a closed Riemannian
n-manifold (M, g) with Y (M, [g]) > 0 and such that m (M) has a descending chain
of finite index subgroups tending to m1(My). Let Goo be the normalized minimal
positive Green’s function on My, with pole at a fired poo € Mo for the conformal
Laplacian (cf. [33, 2])
4(n—1)
Low =77 75 Boe ¥ R

Set

4
9oo,AF ‘= Gg?goo on My — {poo}:
which is a scalar-flat, asymptotically flat metric on Moo —{poo}. Assume that either
3<n <5, or (M, [gso]) is conformally flat near pso. Then, (Moo —{Pso}, Goo,AF)
has nonnegative mass
MaDM (goo,aF) > 0.
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Moreover if mapm(goo,ar) = 0, then (Moo, [goo]) s simply connected and locally
conformally flat. Furthermore if mapm(goo,ar) =0 and n > 4, then it is a simply
connected domain in (S™,[g,]).

The following result does not hold without some assumption on M., since
Y (Q,[g] |Q) =Y, for any non-simply connected domain Q2 in S™ (see [33, Lemma 2.1]).

Corollary 1.5. Lel (M, Co) be a noncompact positive conformal n-manifold with
n > 3 which is a normal infinite conformal covering of a closed positive conformal
n-manifold (M,C) and such that 7 (M) has a descending chain of finite index
subgroups tending to m (My). Assume that

Y (Moo, Co) = Y.

Then, (Mus,Cx) is simply connected and locally conformally flat. Moreover if
n >4, it is a simply connected domain in (S™,[g,]).

This corollary gives an affirmative partial answer to the following problem, which
has been proposed by Kobayashi [23].
O
Problem. Assume that a noncompact conformal n-manifold (X,C) withn > 3
statisfies
Y(X,C)=Y,.
Then, is (X, C) locally conformally flat 7

Remark 1.6. From the final resolution of the Yamabe problem due to Schoen [28§],
[33], any compact conformal manifold (M, C) satisfying Y (M,C) = Y, is con-
formally equivalent to (S™,[g,]), and so (M,C) must be locally conformally flat.
Before this result, Aubin [8] has proved that any closed conformal manifold (M, C)
with n > 6 which is not locally conformally flat satisfies

Y(M,C) <Y,.

His method is still valid for any noncompact conformal manifold (cf. [2, Proposi-
tion 6.6]) and so an affirmative answer to the above problem has been known for
n > 6.

In the next section, we prove Theorem 1.2. One of the main difficulties in the
proof arises from the fact that the infinite covering M, in Theorem 1.2 might have
infinitely many ends. A key ingredient to overcome the difficulty is a construction of
a family of nice cut-off functions on M, which is a modification of the construction
done in [5, Sections 5 and 7]. One corollary of Theorem 1.2 will include that the
first equality in the working hypothesis (4) holds (Corollary 2.7).

In Section 3, we prove Theorem 1.4 and Corollary 1.5. As it was mentioned be-
fore, Corollary 1.5 is needed in order to prove Theorem 1.2 in the case Y (M, Co) =
Y .. The core of the proof of Theorem 1.4 is the following. The mass of the asymp-
totically flat manifold (Moo — {Po},goo,aF) is the limit of the positive masses of
asymptotically flat manifolds arising from closed positive conformal manifolds.

Finally, we will also show another extension to Aubin’s Lemma in the last section.
Namely, Aubin’s lemma for the Yamabe constants of finite conformal coverings of
a noncompact positive conformal manifold.

Acknowledgements. The author would like to thank Osamu Kobayashi for con-
tinuous encouragement and Hiroyasu Izeki for helpful discussion. He also would
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like to thank Takashi Tsuboi, Taro Asuke, Bernd Ammann and André Neves for
useful comments.

2. PROOF OF THEOREM 1.2

In this section, we first prove the first assertion of Theorem 1.2, that is, the
following strict inequality:

Y(M,C) <Y (Ma,Cos).

Proof of the first assertion of Theorem 1.2. Take a unit-volume Yamabe metric g €
C, and consider its lift g € Cs to M. Note that R, = R, = Y(M,C) > 0.
Moreover note that, the Sobolev embedding W?(Mu.; goo) <= L*™/ ("2 (M.; goo)
combined with the positivity of R, implies that Y (Ms,Cs) > 0. Take also
Poo € M. Since w1 (M) has a descending chain of finite index subgroups tending
to m (M), there exists a sequence of finite Riemannian coverings {(Mpg, gr) }e>1
of (M, g) satisfying (M1, g1) = (M, g), Npey 71 (M) = m1 (M), and the following:

(i) My is an infinite covering of each Mj,.

(ii) Mpy1 is a non-trivial finite covering of My, for k > 1.

From Aubin’s Lemma, we have
Y(M,[g]) <Y (M, [go]) <+ <Y(Mp,[gk]) <Y (Miyr,[gh4a]) <+ < Yo,

and hence the limit of {Y'(My,[gx])}r>1 always exists. Therefore, by taking a
suitable subsequence if necessary, it is enough to consider only the subsequence for
the proof. From this, we can also assume the following:
(iii) For k > 2, there exists a fundamental domain of M} in M., containing pe.
such that its closure M}, (C M) satisfies

{z € M | disty (2,p0) <k} C M, and M, - Int(]\//fkﬂ),
where Int(MkH_l) denotes the interior of J\A4k+1.

We can assume, without loss of generality, that oM, & 1s piecewise smooth (pos-
sibly disconnected) and that 8J/W\k+1, 6]\//.7k have the same projection on Mj, for all
k > 2. Denote by M (C M) the closure of a fundamental domain of M contain-
ing po, which satisfies M - ]/\.4\2 and such that both 8]\72 and AM have the same
projection on M. Take and fix a sequence of the closures {ﬁk}kzl of domains in
M., with smooth boundary 99, satisfying

J\//-qu - O C Mk;

where M := {ps} for the sake of convenience.
When Y (M, Co) = Ya, it follows from Aubin’s Lemma and the inequality (1)
that

Y(Mv C) < Y(M2) [92]) < Yn = Y(MOO)COO)
Hence, we assume that Y (Mo, Cs) < Y, from now on.
By the definition of Y (Ms, Coo) and the condition (iii), there exists ko € N such
that

Qk = inf Q(Moo7goo)((10) < Yn for all k Z k?()
peC (Int(@r)
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and that
Qko > Qko—‘rl > > Qko—‘rl > Qk0+i+1 > 9 kli>m Qk = Y(MOO7COO)-

By combining the inequality Qr < Y, with the same argument as the one used on
closed conformal manifolds (cf. [9, 26, 34]), the Yamabe problem of Dirichlet-type
can be solved for each (€2, Cxlg, ). Namely, there exists ¢ € C'>°(Q) such that

o Qg (Wr) = Q.
e Y >0 in Int(ﬁk) and Yr =0 on aﬁk.

We denote the zero extension of ¢, to M, also by g € COL (Moo )NW 2 (Moo; goo)-
Because I/Jk|8§k = 0, ¥ can also be regard as a function on the closed manifold
Mk. Then,

Y (My, [9r]) < Q(My,g0)(Vk) = Q(Mesgo0) (Vk) = Qi
and hence
lim sup Y (My, [gx]) < leII;o Qr =Y (Mw,Cx).

k—o0
From Aubin’s Lemma, we obtain
Y(Mv C) < Y(M27 [92]) < kh%m Y(Mka [gk]) = hin Squ(Mk) [gk]) < Y(MOO)COO)
o —00

This completes the proof of the first assertion. a

Next, we prove the second assertion of Theorem 1.2. The same notation as in
the previous proof is used.

We start by reviewing some indispensable properties (Lemma 2.1) for the Green’s
functions of the conformal Laplacians on (Mu, goo) and (My, gi) (for k > 1). Af-
ter this, we prove the second assertion modulo some auxiliary lemmas and Corol-
lary 1.5, whose proofs will be given in the end of this section and in the next section
respectively. Those auxiliary lemmas will be stated precisely during the proof of
the second assertion.

For simplicity, we often identify a set in M, with its projection on each M} and
a tensor (including a function) on M, with its lift to M,. For instance, gi denotes
both the Riemannian metric on My, (given in the above) and its lift to M.

Let G be the normalized minimal positive Green’s function on My, for the
conformal Lapalacian

Ly = —anAg + Ry
with pole at po, and Gy the normalized (positive) Green’s function on M}, for the
conformal Lapalacian £, with pole at p., respectively (see [33, Section 1], [2,
Section 6] for the existence and details). Namely, for instance G, the following
properties hold

Goo>0 on My — {ps}, Ly.Goo =cn-0p, on My,

wl;r;l disty_ (7, poo)™ ?Goo(z) =1 -+ (normalization),
and that if G/ is another normalized positive Green’s function in the above sense,
then
G, >Gs on My —{ps} -+ (minimality).
Here, ¢, > 0 and J,, stand respectively for a specific universal positive constant
and the Dirac d-function at po,. Set

_4
Joo,AF =G5 goo o M = My — {poc}
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and
4

e, ar =G g, on My := M — {psc}-
Then, these goo,ar and gi ar define scalar-flat, asymptotically flat metrics on
MZ and M}, respectively (cf. [26]). Note that the asymptotically flat manifold
(M2, goo,ar) has singularities created by the ends of M.

For simplicity, we set the following notation for the rest of this article. Any
quantity @ that depends on g or gr,ar (resp. goo O goo,ar) Will be denoted by
Qr or Qr,ar (resp. Qoo OF Qoo AF).

The Yamabe constant Y (M, Cs) can be rewritten as

Y(Me,Co) = Y(MZ, [goo,aF])
(S @l Vull, apdico,ar
= 1nf{ =

n—2

— u#Z0 in Cfo(M;o)}
(fMéo umde,AF) "

. f{fM; an|Vull, 4pditco,ar
=1

n—2

— u#0 in W1’2(M;o;goo,AF)}-
(e, 12 ar) -

From now on, we assume that the covering M., — M is normal. Let
G:=m(M)/m (M) and Gr :=m (My)/m (M) CG

denote the groups of deck transformations for the normal covering M., — M
and for the normal covering M., — M, respectively. We identify 71 (M) with
its pojections to m (M) and m(M}). With having this in mind, the standard
arguments for Gy and G in [33, 17, 2] (combined with the normality of each
covering Mo, — Mj,) imply the following lemma.

Lemma 2.1.
(i) For all k > 1,
Gy = Z Gooy on M.
YEGK
(il) For all k > 2,
0< G <Gy <Gy,

and G}, converges unifomly in C* (for every £ > 1) to G, on every compact
subset of MZ,.
(iii) For every compact set K of M* |

lin sup(Ge (@) | 7 € K.y € Wy} =0,
j—00
where Wi = {7 Y | diStgoo (7(1000)71700) >J }

(iv) For any open set O conlainig peo, there exists a constant L independent of

k such that, for all k > 1,
|VGk|k < LGy on M — O.

/ Goodltoo < 00.
Moo
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Proof of the second assertion of Theorem 1.2.

Case 1. First, we consider the case when Y (M., Cs) < Y,,. Let vy € C°(My,)

be a Yamabe minimizer (with respect to gi) satisfying ||Uk||L2_n2(M | = 1. Ar-
n- K39k

guing like in the first assertion of Theorem 1.2, we obtain from Aubin’s Lemma

that
Y (M, lgs]) < lim Y(Me,[g2]) SV (Moo,Coc) <Y forall k> 1.
— 00

By combining this uniformly strict inequality for Y (My, [gx]) with the normality of
the covering M., — M, a similar renormalization argument to the one used in the
proof of [34, Chapter 5, Theorem 2.1] and [2, Theorem 6.1] implies the following:
There exists a positive constant K (independent of k) such that

(5) vy <K on M forall k>1.

Hence, the elliptic estimates combined with (5) and ||Uk||L =1 imply

%(Mk?gk)
(6) |[Voglge <K' on M forall k>1,

where K' is also independent of k. Combining the above inequality (6) with

[|lv]] 2n = 1 and Y (Mg, [gx]) > Y(M,][g]), we can find a positive num-
Ln=2(M;gx)

ber uo (independent of k) satisfting the following: For each k sufficiently large,
there exists at most g distinct deck transformations

{’Yk)\}k)\EAk cg (|Ak| < NO)
of the covering M., — M such that

(7) {w € M, (2 My) ‘ v (z)7E > - an

m} c U w@) c M.

kx€Ax

For reasons of simplicity, we will assume that either Ap = ¢ or {7V, }r,ena, = {id}
from now on. Hence,

8) {a: e My (= M) ‘vk(x)ﬁ > Wm} c M.

Using these properties for vy, we obtain the following.

Lemma 2.2. There exist posilive constants o, Ly (independent of k) and ko such
that

vi < LoGy on My, — By (Do gr)  for all k > ko.

Remark 2.3. For the sake of the general case (7), we remark the following: Replacing

A?k by the closure of another fundamental domain of M}, in M, if necessary, we
can assume that

diStgoo (6]/\4'1,, Uk Ay Vi (]/W\)) > T,
where r, /' oo when k — oco. For each k) € Ay, set
Gr iy = 2veg, (Goo © 'y,;l) oy on M.

Then, Gy i, is the normalized Green’s function on M, with pole at Vi, (Poo) € M.
Replacing respectively G in Lemma 2.2 by

Gr =Yk, en,Gr by
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and the cut-off function s (giving in the proof of Lemma 2.4 below) by
k kA +
Mk, *=min {1, max { } on My — {Ukyer, Ve, (Po) }

kx€AR
then we can obtain similar results to Lemma 2.2 and Lemmas 2.4, 2.5 below.

We now return to the proof. Recall that
Y (M, [9k]) = Q(as.90) (VE)-

Every function vy is positive on M., and so it is not an admissible function for
the functional Qs ,g,) restricted on Int(My) (denote it by Q ) because it

does not vanish on the boundary OM; of My, ( C Mx). Therefore if we want
to get an admissible function for @ - TAPRER we need to multiply v, by some cut-

off function vanishing on the boundary aMk This is a delicate issue because,
in general, the multiplication by a cut-off function makes the Yamabe quotient
Q(Mk gk)( - ) increase. Moreover, since Mo, has generally infinitely many ends,

the number of the components of the boundary 8]\/4\k increases rapidly as k — oo.

This also complicates the construction of appropriate cut-off functions. Fortunately,

using Lemma 2.1, we can construct a nice cut-off function on each M} := My —{p~}
4

with respect to the asymptotically flat metric gy ar = G ,:’2 gk, and not with respect

to the lifting metric g. The reason is that our construction heavily depends on the
properties for G, and Gy, in Lemma 2.1, particularly on the property (v). For this

reason, analysis on (]\/4\ ¥, gk, ar) has definitely an advantage.
Lemma 2.4. There exists a sequence of Lipschitz functions mi,(0 < n < 1) on the
asymptotically flat manifolds ( v Ok, AF) with boundary such that
=0 on 8M,:, Nk =1  outside a compact set of ]\//.7,:,
and for all k sufficiently large

(9) fJ\A/I* Gillvnkli AFde ar = o(1),

f{zeM*\Vnwéo} G, " dug,ar = o(1) as k — oo.

Set g := vg - G; € C’°°(M*) and ug ;= - o € C’Ol( +) for k > 1. Then,
using Lemmas 2.2 and Lemma 2.4, we have the following.
Lemma 2.5.

Q(M’Lgk‘”)(uk) <Y (Mg,[gr]) +o(1) as k — oo,

where
f}\?[; an|v“k|i,AFd.Uk,AF

2n s
(f]Tx]; Uy, duk,AF)
We can now completes the proof of Case 1. From the construction of ny, - vy and
U, we obtain

Y(Mooycoo) < Q(Moo,gw)(nk'vk) = Q(thk)(nkvk) = Q(]T/]*

K19k, AF

Q(]’\j

gk, AF) (uk

)(uk) for allk > 1.

From this and Lemma 2.5, we obtain
(10) Y(Mw,Cx) < likm inf Y (My, [gx])-
— 00
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Applying the first assertion of Theorem 1.2 to each infinite conformal covering
(Ms,Csx) — (Mg, [gr]), we also obtain

Y (My,[gr]) < Y(Me,Cs) forall k> 1.
These inequalities imply that
(11) limsup Y (My, [gk]) <Y (M, Coo).

k—o0

It then follows from (10), (11) that
i Y (M [g6]) = ¥ (M, O,

This completes the proof of Case 1.

Case 2. We consider the case when Y (M,,Cs) = Y,. In this case, the renor-
malization argument in Case 1 does not work, and hence we can not get a similar
uniform estimate to (5) for all vi. However, combining the following approximation
lemma (see [3, Proposition 3.4] for the proof) with Corollary 1.5, we will be able
to overcome this difficulty.

Lemma 2.6. Let (X, h) be a complete Riemannian manifold (possibly noncompact)
with 0 < L1 < Ry < Ly for some positive constants L1,Ly. Let {hj}j>1 be a
sequence of complete metrics on X satisfying

hj +h as j— o0
with respect to the uniform C%-norm on (X, h). Then,
Y(X,[h]) = Y(X,[h]) as j— oco.

From Corollary 1.5, we have that (M, Cw) is locally conformally flat and hence,
the same property holds for (M, C). In other words, if a metric ¢’ on M is not locally
conformally flat, then Y (Mu, [95]) < Y, for its lifting g- to M. Take a sequence
{9(j)}j>1 of metrics on M, each of which is not a locally conformally flat metric,
such that

9(j) > g on M as j— o
with respect to the uniform C?-norm on (M,g). Let g(j)r and g(j)eo denote re-
spectively the liftings of g(j) to My and M,,. We now apply Lemma 2.6 to the
metric go and to the sequence {g(j)s};>1 in order to obtain that for any ¢ > 0
there exists j; such that

[V (Moo, [9(5)oo]) = ¥ (Moc, Cod)| < £V (Mo, Coc) for j > i

Since each g(j) for k > 1 is a lifting metric of g(j) € M(M), the sequence
{9(j)r}j>1 C?-converges to g uniformly in j for all k. Then, Lemma 2.6 also
implies the following: There exists jo such that

Y (M, [g()k]) =Y (M, [g])| <& -V (M, [ge]) for j > o, k> 1.

Set jo := max{ji,j2}. Since g(jo) is not a locally conformally flat metric, then the
result of Case 1 implies that, for all k sufficiently large

| (M, [9(j0)e]) = ¥ (Moo, [9(io)so])| < € Y,
where jo := max{j1,j2}. These three inequalities imply that, for all &k sufficiently
large
|V (Mi, [ge]) = Y (Moo, Cod)| < 32 Y,
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and hence
lerr;o Y (M, [gr]) =Y (Mw, Cso)-

This completes the proof of Case 2, and thus that of the second assertion of Theo-
rem 1.2. O

Corollary 2.7. Let (M,C) be a closed positive conformal n-manifold with a loop
¢ whose homology class [¢] € H\(M;Z) is of infinite order. Let (My,Cr) and
(M, Cs) denote respectively the normal k-fold conformal covering and the normal
infinite conformal covering of (M,C) associated to [c]. Then,

Y(M,C) <Y (Mo, Coc) and  lim ¥(My, Ci) = Y (Mec, Cuc).
—00

Proof. Consider a subsequence {(Ms;,C5)}j>0 of {(My,Cr)}e>1. We can apply
Theorem 1.2 directly to the normal infinite conformal covering (M., Cs) and to
the subsequence {(Ms;, Cyi)};j>0 in order to conclude that

Y (M,C) < Y(Maso,Cso).

We can not apply Theorem 1.2 directly because M1 — M}, is not a covering
for £ > 2. However, in order to prove

(12) limsup Y (Mg, Cy) <Y (My,Cs),

k—o0

the following property for {M} },>1 is enough (see the proof of the first assertion of
Theorem 1.2): There exists a fundamental domain of M}, (for every k > 1) in Mo,

containing p., such that its closure ]\//.Tk (C M) satisfies
{r € My, | disty (z,p-) <w(k)} C My, My G Int(Mpy),

8]\7k is piecewise smooth, and 8]/\4\k+1,8]\/4\k have the same projection on M;, for
all K > 1. Here, v(k) is a sequence of positive numbers going to infinity with
v(k) <wv(k+1) forall k > 1.

Assume that Y (M, Co) < Y,. Then, by considering the quantities @) defined
in the proof of Theorem 1.2, the following still holds:

Y(Mk,Ck) S Qk for k Z 1 and klim Qk = Y(MOO,COO)
— 00
Hence, there exists a small constant dy > 0 such that
Y (My,Cr) <Y(My,Coo) + 0 <Y, forall k sufficiently large.

This property combined with the normality of the covering M, — M implies (see
(10) in the proof of Theorem 1.2)

(13) Y (Mao, Co) < liminf ¥ (Mg, Ci).
—» 00
Thus, when Y (M, Cs) < Y, it follows from (12) and (13) that
lim Y(Mk,Ck) = Y(MOO,COO)
k—o0

The case Y (My,Cosx) = Y, can be treated in the same way as in the proof of
Theorem 1.2. This completes the proof of Corollary 1.5. O

The rest of this section is devoted to the proofs of Lemmas 2.2, 2.4 and 2.5.
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Proof of Lemma 2.2. First recall that for k£ > 1

R

Ay Gi = a—i’“Gk on My,
R

Ay vp = “Zpy — Y(Mm[gk])v

o
an any k

(14)

n42

> on M.

The property for v, presented in (8) implies the existence of positive constants
ro, k1 such that
_4 Oy

= 3 Y (M, [9e)

Thus, we obtain from this inequality and the second equation in (14) that

on My — B, (po; gr:) for all k> k.

R R 2-Y (M 4
Agkvz > 9k 7124‘ agk ’Uz(l— (akv[gk]),u,:fz)
R
> kg2 on My — By (pso;gr) forall k> k.
an

Set
fr :=vi —LoGr on My — By (poo; i),

where Lg is a positive constant to be fixed later.

It follows from the above inequality for v7 and the first equation in (14) that for
all k > ky
R
2 fion My = By (poos g1)-
Then, the maximum principle implies that for all k& > k;

Agkfk >

sup fr < sup [
My, —Br (Pooigr) OBrg (Pooigk)

Since {vi}r>1 (resp. {Gr}r>1) are uniformly bounded from above (resp. from be-
low) on B, (pso; gr), there exist large constants Lo and ko such that

sup fi <0 forall k> ks.
Brg (Pooigh)
These inequalities imply that for all k > ko := max{ki, k2}
vi < LoGr  on My — By, (Poos gi)-
g

Proof of Lemma 2.4. We will modify the argument in [5, Sections 5 and 7]. For
any 0 >0, k> 1, set
Mk,s = min {1, @} on My,
where (G, — §)+ denotes the nonnegative part of the function Gy, — 4.
We start by showing the following: For any £ > 0, there exist a small §y =
do(e) > 0 and a large integer ko = ko(e) such that, for any k > ko,

(15) Mes, =0 on 8]\/4\,:, Mes, =1 outside a compact set of ]\7,:

and
ff/[kf G1:1|V77k,60|i,AFde,AF <ke,

n

—~ n—2
f{$EM;|VWk,50¢O} Gy, dpk ar < €.
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From Lemma 2.1-(iii), (v), we can choose g = dp(g) > 0 so that

€ n €
16 / Goodlioo < — and / G5 % dpes < =,
(16) Gzt (160,260]) 8L? @z (160,250]) 2

where L is the constant given in Lemma 2.1-(iv). From Lemma 2.1-(iii), there exists
a large integer ko = ko(e) such that for all k > ko

My, C G ([0, 6k.5,]) -

This implies that the cut-off functions ny 5, (for k > ko) satisfy the condition (15).
Combining the estimate (16) with Lemma 2.1-(ii), (iv), (replacing ko by another
large integer if necessary) we obtain for all k& > ko

—1 2 _ —1 2
/A Gy |V77k,60|k,AFd,Uk,AF —/ Gy |V77k,6o|k,AFde,AF
My My

= / Gl Vs |t dp
&7t (10.2601)

<4r? Grdur <ce,
Gt (160,260
/ . G}Zﬁdﬂk,AF S/ G,Z%duk <e.
(2D |V 5, #0} &7t (160,2601)

From the above argument, we can choose two sequences {8o(1/5)};>1, {ko(1/j)}j>1
satisfying

o(1) > 0o(1/2) > -+~ > 6o(1/5) > do(1/(G+1)) > --- \, 0,
ko(1) < ko(1/2) < -+ < ko(1/j) < ko(1/(G + 1)) <--- 7 o0.

Then, we can define the desired sequence {n;}r>1 of cut-off functions by

Mk 60 (1) for ko(1) <k < ko(1/2),

Mhoo(1/5)  for ko(1/7) <k <ko(1/(j+ 1)),

This completes the proof. a

Before proving Lemma 2.5, we make the following remark. In [5, Theorem 4.1],
we constructed a sequence {uy}r>1 of approzimate Yamabe minimizers satisfying
ug < 1for all k. In the present case, we only have the inequality u, = n (vg -G,:l) <

11
L3 G, *. Nevertheless, due to the asymptotic estimates (9) in Lemma 2.4, this
inequality is enough for our purposes.

Proof of Lemma 2.5. Replacing Ly given in Lemma 2.2 by a large constant if nec-
essary, we obtain that for all £ > 1

(17) vi < LoGyr on M.
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This inequality follows from the estimate (5), Lemma 2.1-(ii), (iii), Lemma 2.2 and
the following normalizations

lim dist, (7, pe)” *Goo(z) = 1, Lim disty, (7, pe)” 2Gr(z) =1 for k> 1.
T Poo

T—>Poo

Recall that
2n_
fﬁ; Yr 2 dpr,ar =1,
an [57 IVorlPdurar = Qgze o o) (0r) =Y (M, [gx])-
From Lemma 2.1-(iv), Lemma 2.4, (17) and (18), we have

(18)

an /A \Vur|f apdpr,ar < an{ /A \Vorli, apdur,ar
M M

+2\/ /A |wk|%,Aquk,AF\/ /A VI3 4l ar + /A soiWnui,Aquk,AF}
My My My

< Y(My, [ge])

+2\/OénL0Y(Mka[gk])/A G VnelR apdurar + Lo /A G IV Iel§ apdpk ar
M VS

=Y (Mg, [gr]) + o(1) as k — oo.

On the other hand, from Lemma 2.4, (17) and (18), we also have

2n 2n 2n
/A wp " dpig, Ar Z/A w;:_zduk,AF—/ - op dpk,Ar
g By {2 | Vi #£0}

:
—1- o™ dpgar
{wEM;\Vnk;éO}

=1+o0(1) as k — oo.

Therefore,
Sii: anlVurli apdie,ar
Qi gy (1) = S <Y (M [ge]) +o(1) as koo,
(Jsz wl " dyse.ar)
k
and this completes the proof. O

3. PrROOF oF THEOREM 1.4 AND COROLLARY 1.5
In this section, we prove Theorem 1.4 and Corollary 1.5.

Proof of Theorem 1.4. First note that, under the condition that either 3 < n <5,
or (Moo, [9so]) is conformally flat near poo, the mass mapnm(goeo,4r) is well-defined
[10] (cf. [26]). We also remark that for a conformal metric

— 4
Joo = U™ "2 g0
on MY = M. — {p=}, the corresponging Green’s function Go is given by

Goo = u(Poo) 't ' Gro.
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—~ 4
. . .~ n—2 —~ .
Then, the corresponging asymptotically flat metric goo 4p = Goo” ™ goo and its
mass MApM (oo, 4p) are given by

— a4 — _
Joo,ar = U(Poo) "2 Goo, AF, mapM (9o ar) = U(Poo) “MADM (oo, AF),
respectively. Therefore, we may assume that g is a unit volume Yamabe metric on

M with R, =Y (M, [g]) > 0.
We use the same notations as in the proof of Theorem 1.2 for {(Mk,gr)}r>1,

{M\k}kZh {ﬁk}kZM {Gk}kZI and {gk,AF}kZl- From the Positive Mass Theorem
proved by Schoen-Yau [30, 31, 32] and Lohkamp [27] (cf. [10, 26, 34, 35, 38]), each
mass mapwm (gk,ar) is positive (since (My, [ge]) # (S™,[g,])). Then, using a similar
argument to that in the proof of [2, Theorem 6.13] combined with the properties
for G, G in Lemma 2.1, we obtain (cf. [4])

lim mapm(gr,ar) = MaDM(goo,AF)-
k—o0
Therefore, the positivity of every mass mapm(gk,ar) implies

MaDM (goo,aF) > 0.
In the rest of this proof, we assume that mapm(geo,ar) = 0. Set
O =0y — {pe} (M*CQ5CM;C ML).
Modifying the argument in [28, Lemma 3], [26, Lemma 10.7], we obtain the

following. (The argument in the corresponding result [2, Proposition 6.14] is not
sufficient without the changes we describe below.)

Lemma 3.1. Under the assumption that mapM(goo,aAF) = 0, goo,ar is Ricci-flat
on Q3.

Proof. For any symmetric 2-tensor h = (h;;) on M., with compact support in the
interior Int(Q3) of O3, we define a smooth family {g% } of smooth metrics by

4
gl = goo +tG"h on M,
for small ¢ (—e < t < €). Since Qy C My for any k > 2, we can identify g<t>°|1\7lk

__4
with the metric gy + tGoo" ?h on My (for k¥ > 2), and then denote its lifting
to M, by g%!. By Lemma 2.6, there exists sufficiently small 5 > 0 such that

4
Y(Muo,[gt]) > 0, Y(Mu,[g%!]) > 0 and Y (Mg, [gr + tGoo"~>h]) > 0 for any
t (—ep <t < ép), k> 2. Note that, since g%t = g!_ = g, on a small neighborhood
of poo, the metrics g&t, gi are locally comformally flat near p., provided that n >

6. Applying the first assertion of Theorem 1.4 to each normal infinite Riemannian
4

covering (M, g&t) — (Mg, gr +tGoo""h), we obtain
(19) mapm(ge’4p) >0 forall ¢(—eo <t<eo) and k> 2.

For each k > 2 and t (—ep < t < &), let G¥! denote the normalized minimal
positive Green’s function on M, for £g1;5t with pole at p.. Replacing ¢y by a
smaller positive constant if necessary, we may assume that, for all k& > 2 and
t(—eo <t<eg),

1 1
(20) 2Ry > Ryee > SRy, (= 5Y(M, [g)) >0) on M,
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(21) V(M [g]) > 2¥ (Mo, [31]) > 0.

From (21), Aubin’s Lemma and the first assertion of Theorem 1.2, we have

(22 Y (Meo, [95]) > 5V (M, [g)) > 0.

The sublemma we present next will have been proved at the end of this section.

Sublemma 3.2. For any t (—eg < t < €9), there exists uniquely a normalized
minimal positive Green’s function Gt_ for Ly: with pole at po, such that

(23) mapm (g ar) = Jim mapm (95 4p)-
Hence, it follows from (19) and (23) that

mapm (g ap) >0 forall t(—go <t < ep).

Similarly to [26, Lemma 10.7], the mass zero condition mapm(geo,ar) = 0 implies
_ 4
S dt

where Ric,_. ., denotes the Ricci curvature of g, ar. This holds for all compactly

0 mapM (95, Ar) Z/A (Ricg, 4p> Moo, aFdiics,ar,

t=0 Q3

supported h in Int(ﬁg). Therefore Ric,_ ,, = 0 on (23, and then this completes
the proof of Lemma 3.1. O
From the existence result in [10] (cf. [2, Lemma 6.17]), there exist harmonic
coordinates near infinity ¥ = (z*,---,2™) on (0}, goo,AF). Namely, (z%) are
smooth functions on SA); which give asymptotically flat coordinates near infinity
for (ﬁ;, goo,AF), and for which
ort
ov
Here, v is the outword unit normal vector field normal to 6@; with respect to
Joo,AF. We now apply the Bochner technique. The harmonicity of (z") implies
that {dz'} are harmonic 1-forms on (Q, goo,AF). The Bochner formula for the

1-forms {dz'}, combined with the conditions %—fj =0on 8@; and Ricy_ ,, =0 on

~

%, implies that (cf. [10, Theorem 4.4], [26, Proposition 10.2])

Ay z2'=0 on Q;, =0 on 8@;

n
MADM (Joo,AF) = Gn Z/A |Vdz' 2dpioo, AF,
=179

where a,, > 0 is a specific universal positive constant depending only on n. Then,
combining the condition mapm(geo,ar) = 0 with the above equation, we obtain that
the 1-forms {dxz'} are parallel on ﬁ; with respect to goo,ar. Since the coframe {dz’}
is orthonormal at infinity, {dz'} is a parallel orthonormal coframe everywhere on
(€, goo,ar)- This implies that the map z = (z',--+ ,2") : (€, goo,aF) = (R™, g,)
is a local isometry, where g, stands for the Euclidean metric on R”. Hence, g aF is
locally conformally flat on ﬁ; Therefore, g is locally conformally flat everywhere
on M, since it is the lifting of g = goo|1\7.

Since go. is the lifiting of g on the closed manifold M, g, is a complete metric
with R, = Y (M,][g]) > 0 and with bounded Ricci curvature. Then, the results
in [33, Proposition 3.3 and Proposition 4.4] combined with the locally conformally
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flatness of goo and with mapm(geo,ar) = 0 imply that (M,[ge]) is a simply
connected domain in (S™, [g,]) if n > 4.

For the rest of this proof, we assume that n = 3 (and that mapm(geo,ar) = 0).
By combining [14, Theorem 8.1] (cf. [18]) with Y (M, [g]) > 0, (replacing M by its
orientable double covering if necessary) M can be decomposed uniquely into prime
closed 3-manifolds

M = Ni# - #Ny #0(S" x 52),

where 71 (NN;) is finite for j = 1,---,¢; and ¢;,¢> are nonnegative integers. By
the C-prime decomposition theorem for closed locally conformally flat manifolds
[19, 20], the locally conformally flat manifold (M, [g]) can be decomposed as

(M, [g)) = (N1, C1)# - #(Nay, Co, ) (S x S2,C1)#t - #(S" x §%,Cy),

where each C; and éj are flat conformal structures on N; and S' x S? respectively.
Then, Kuiper’s Theorem [25] implies that each (N;, C;) is a non-trivial quotient of
(S3,19,]). After taking an appropriate finite covering M’ of M, we have

M' = #£(S* x §?) for some £ > 1.

Consider the (infinite) universal covering M of M and denote the lift of the metric
g by g. Then, M — M’ is also the (infinite) universal covering of M’ such that
71 (M') has a decending chain of finite index subgroups tending to m; (M) = {e}.
Let ¢’ be the lifting of g to M'. Applying the first assertion of Theorem 1.4 to the
normal infinite Riemannian covering (M ,g) = (M',g"), we have that

mapm(gar) > 0.

Since both M — M and Mo — M are coverings of M, then there exists a unique
universal covering P : M — M. Since (Mu, [goo]) is locally conformally flat, we
can take a metric h € [goo] on My, which is flat near po,. With respect to this
metric h, take Euclidean coordinates z = (z!,--- ,2") around pe, with z(ps) = 0.

Note that
mapMm(har) = ¢ MaDM (goo,aF) = 0,

where ¢ > 0 is some positive constant. Then, around p., the normalized minimal
positive Green’s function G, can be expressed by

1 .
(24) Gool(z) = R O(zl),  |z] = distn(poo, z)-
Let & be the lifting of h to M. Fix a point in P~'(ps) and denote it also by
Poo € M. Using the lifting coordinates of = around pos € M, we can express the
normalized minimal positive Green’s function G for £; with pole at p. by

~ 1 )
G(z) = m+A+0(IwI), |z| = dist; (Poo, T),

where A = ¢y mapm(har) for some universal positive constant ¢y > 0. From the
nonnegativity of mapm(gar), we have

A = co mapm(har) = coc mapm(Gar) > 0
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Since the universal covering M — M, is normal, we can apply Lemma 2.1-(i) to
G and G (even if M, is noncompact). Then,

~ 1 ~
(25) Gm(w)ZZ(GOW)($)=m+A+ Y (Gom)(@) +O(lz]),
vEG y#id
where |z| = dist; (poo, z) and G = 71 (M) denotes the group of deck transforma-
tions for the covering M — M,. Hence, it follows from (24) and (25) that

A+ (Gom)(pw) =0.
y#id

Since A > 0 and G > 0, we obtain that A = 0 and m; (Mu) = {e}. Thus, My, = M
is simply connected and this completes the proof of Theorem 1.4. a

Proof of Corollary 1.5. When n > 6, the assumption Y (M,Cx) =Y, combined
with Remark 1.6 implies that (M, Cw) is locally conformally flat. Then, for any
dimension n > 3, Theorem 1.4 implies that, for the lifting g, € Cs of a metric
g€ C to M,

MADM (Joo,aF) > 0.
If mapm(goo,ar) > 0, a similar argument to that of [28, Theorem 1] and [34,

Chapter 5, Theorem 4.1] implies that ¥ (M, Cs) < Y,. This is a contradiction.
Hence,

MADM (Joo,ar) = 0.

We can now apply Theorem 1.4 and obtain the desired result. a

Proof of Sublemma 3.2. Firstly, we prove some uniform estimates for G*! (k >
2, —gg < t < g9). Each Green’s function G*! belongs to L'(MZ ;gkt) because
of Lemma 2.1-(v). More precisely, using the arguments as in the proof of [33,
Proposition 2.4-(ii)], we obtain that

Ghtdpye < —— " for k>2, t (~go <t < ),

Mz > minas, B xe

where ¢, is the positive constant given in Section 2. From this and the inequal-
ity (20), we have the following uniform estimate

2¢,
(26) / Ghldp ve < ——"— for k>2, t(—eo <t < ep).
Mz, 9= = Y(M,]g])
We can assume, without loss of generality, that dist,_ (J/M\l, 8]\72) > 2, and that
diStgéo (]\71,8]\/4\2) >1, distgk,i(]\/jl,a]\/jg) >1 for k>2,t (—80 <t< 60).

Recall that each GX! satisfies the linear elliptic equation Lk Gkt =0 on MY,
Applying the standard LP-estimates and the estimate [17, Proposition 1.2.7] to this
equation, we obtain the existence of some positive constant K (independent of k
and t) for which

kit k.t N
||Goo ||W2’M2-_1(Mm—ﬁz;g’§5i) < KHGoo ||L1(MOC—M1;g§5t)'
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This inequality was derived using (20), the facts that g, is the lifting metric of
g on the closed manifold M and that g*! is C?-close to go, uniformly on M,
(independently of k£ and t). It then follows from this estimate and (26) that

2Kc,
@0)  (IGH| omss

. 22O for k> 2, ¢ (- _
Tk S VL) O k22 (e <t <)

Similarly, we also obtain that

bt 2K'c,

28 Goo 1,2 Wit S TR T
(28) NG st < FOL LT

for k>2,t(—eg <t<ep),
where K’ is a positive constant independent of k and ¢. Combining the esti-
mates (27) and (28) with the Sobolev embedding theorems, we have

2KKic,

9 k,t <K k,t n - < ————7= MOO - M\
(29) Gy < 1||G00 ||W2’%(Mw—Mz;g§5i) - Y(M,[g]) " >

2K'Ksc,

kA, N — <=
(30)  NGA], 2 M= Maio') = V(I [g])

k.t
Mgty < NGl

for all £ > 2 and ¢t (—eo9 < t < &9), where K;,K> are some positive constants
independent of k£ and t¢.
Now using the Moser iteration technique (cf. [2, Proposition 5.8]) and the uniform
estimates (22), (29), (30), we have the following decay estimates for GX:*:
K 1

(31) GL(2) < e

on M —J\/I\,
Y(M, [g)) "% ’

n—2

r(z) =

where r(z) := dist,, (z,ps) and Ky is a positive constant independent of k and ¢.
Secondly, for each t (—eg < t < 9), we construct a normalized minimal positive
Green’s function for £,:  with pole at p.. Since Ry > 0, we have for every k > 2

the existence of a unique normalized positive Green’s function Gf, € C{° (Int(ﬁZ)) N
C°(Q}) such that

G, =0 on 9Q.

From the standard removabAle singularities theorem, for each ¢ > k >2, the differ-
ence (G5 — GY) € C°°(Int(Q,) — {po}) extends smoothly on Int(). Then, the
maximum principle implies that for any k& > 2

{cg; Gt =cndp.  in Int(Qy),

Gl < Gipy <Ghyp -+ on Of.

Since gkt = g¢_ on M, and Q4 C My, the standard removable singularities theorem
and the maximum principle also imply that for any k& > 2

G <GM on O,
and hence from (29) and (31)
GL<G* +L on OM,

on Qp — My,
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where L is a nonnegative constant independent of k£ and ¢. The maximum principle
implies again that, for any k£ > 3,

(33) GL<G*+L on M.

Then, by Harnack’s convergence theorem and the uniform estimates (32), (33),
there exists a normalized positive Green’s function G¥_ for Lge with pole at pe

such that the sequence {Gi} k>2 converges uniformly to G*_ on each compact subset
of M and that

Ko
n—2

— - on My —M\g.
Y(M,[g)" T r(z)=

(34) Goo(@) <

The minimality and the uniqueness of G*_ follow at once from its construction and
the maximum principle.

Finally, we prove the equality (23). By applying the maximum principle for the
operator L r: = Lg: on M, to each function (Gt — Ght) € C*° (M), it follows
from the uniform decay estimates (31), (34) that

(35) sup|G', -GN =0(1) as k— oco.
M,
From the theory of conformal normal coordinates [26], [13], [15], there exist a

conformal metric g = uﬁg on M and small open neighborhoods U,V (U C V) of
Poo Such that

det(g;;) =1 in g—normal coordinates at p on U,
(36) u=1l on M-V,
spt(h)NV = ¢,

where spt(h) is the support of the given symmetric 2-tensor h and we identify M
with M (C My). Let §oo, g%, and gt denote the corresponding metrics on M.
Recall that g5t = gt = g on V, which implies that §%! = g%, = o on V. Since
the Green’s functions G%_ and G¥:! corresponding to gt and gk are given by

G =u(pse) ' 'GY, and GR' = u(pes) 'w'GH on V

respectively, a similar estimate to (35) holds for |Gt —G*:!|. Hence, we may assume
that g itself satisfies the same properties as (36).

Besides gkt = g!. = goo on V, recall that g. is locally comformally flat near
Poo provided that n > 6. Then G ,G*! have the following expansions in fixed
goo-normal coordinates x = (z!, -+ ,2™) at po (cf. [26, Lemma 6.4]):

G'o(z) = + A"+ O0(lz), GE(2) = + A+ O(|z)),

|:L.|n—2 |m|n—2

where A and A** are some constants. It follows from (35) that

lim A%t = A%,

k—o0

and hence we obtain the desired equality (23). O
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4. ANOTHER EXTENSION
We start this section by proving another analogue of Aubin’s Lemma.

Proposition 4.1. Let (X, C) be a noncompact positive conformal n-manifold with
n >3 and (X,C) a non-trivial finite conformal covering. Then,

(37) Y(X,0) <Y(X,C).

Remark 4.2. The above inequality (37) can not be improved into a strict inequal-
ity in this setting. For instance, let Q be the outside domain of a thin tubular
neighborhood of an embedded S™2 in S™. Then, Lemma 2.1 in [33] implies that

Y (Q,[g]|g) = Ya.
Hence, combining the inequality in Proposition 4.1 with the equality above, we see

that the Yamabe constant of any finite conformal covering of (€2, [g§]|Q) is always
equal to (2, [g.]],)-

Under some additional assumptions, the strict inequality in (37) holds.

Theorem 4.3. Let (X,C) be a noncompact positive conformal n-manifold with
n > 3 and (X,C) a non-trivial finite conformal covering. Assume that (X,C)
s a @ormal nfinite conformal covering of a closed positive conformal n-manifold
(M, C) and that w (M) has a descending chain of finite index subgroups tending to
m1(X). Then,
Y(X,0) <Y(X,0),
where we identify m (X)) with its projection to m (M).
Proof of Proposition 4.1. When Y()?, 5) =Y, the assertion is obvious since
Y(X,0) <Y, =Y(X,C).

Hence, we assume that Y (X,C) < Y.

Let h € C be a complete metric on X and denote by h € C' its lifting to X.
Denote the number of sheets of the covering (X, C) — (X, C) by k (> 2). For every

i > 1, there exist a relatively compact domain (}; with smooth boundary and a
function f; € C2°(X) with ||f1||L7 - -~ = 1 whose support spt(f;) is contained

"3 (Xih)
in ©; and such that )
Q()?jl)(fi) <Y(X,C0)+ T

We may assume that

QlCQQC"'QiCQiJrlC"', U(?olQiZX.

1=

Take a positive integer ig satisfying
s ~ 1

(38) Y(X,0)+-<Y, forall i>ip.
i

For every ¢ > 1, take a relatively compact domain V; in X with smooth boundary
satisfying

P() C Vi, VicVaC--ViCVipn Co-v
where P denotes the covering map of X - X. For every i > 1, define a relatively
compact domain W; in X with smooth boundary by

W; =P (V).
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Note that
W; =P~ (P(Wy)),  spt(fi) C % C Wi

Similarly to the proof of the first assertion of Theorem 1.2, the strict inequal-
ity (38) implies the existence of u; € C°°(W;) with

and such that, for each i > i,

Qx (i) =inf{Q 5 7,(f) | f € C2(W), f#£0} = a;,

n+2
(39) Liui =¢q;-u’~" on W;
u; >0 in W, u; =0 on OW;.

We denote the zero extension of u; to X by u; € C%'(X) N W"2(X;h). Note that
. o1
(40) V(X,0) <4 <Qiz5)(fi) <Y(X,0) + 7 for all @ > 4.

We now prove the desired result using the approximate solutions {u;};>i,. For
any z € X, set
{z1,--, 2} =P (P(z)) with 2 = .

Define positive functions v; and P (for each p > 0) on X by

i

k
vi(z) == Zul(ma) and v§p> (z) := Z wi(xa)P.

a=1
These functions satisfy
v; =0, U§p>EO on X —W,.
For any evenly covered open set U (C X) for P, set
(U, -, U} == P7H(U) (C X).
Moreover, all the sets are isometric and so we can find, for instance, k isometries
Yo : Uy = U; for a=1,---k
(p)

satisfying P oy, = P. As a result, it is possible to express v; and v;"’ on U; as
k k
vi=Y uiove, o =3 (uiova),
a=1 a=1

and hence v;, v§” ) e o (W;) nCot (X). We can use the local expression described
above in order to find k£ distinct isometries

7a:)2'—8 — X-8 for a=1---k,

where S is a piecewise smooth (n — 1)-submanifold (possibly empty) satisfying
S =P~ (P(S)). Hence, if we set u; o := u; © Yo, we have that on X — S

k k
v; = E Ui a and v§p> = E u?
a=1 a=1
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from which it follows that

/~ U§p>duhk =k /~ ufduhk and ﬁ’ﬁvi = qi-v5m> =q;- Zui";Z on W;.
X X

Define w; to be the function on X whose lift to X is v;. Combining the property (39)
with a similar argument to the one used in [7, Lemma 2 and Theorem 6], we obtain
that (cf. [5, Lemma 3.6])

Qx,ny)(wi) < g;.
Then, this and the inequality (40) imply that

-1
Y(X,C) < Q(X,h)(wi) <q < Y(X,C)-l— ; for all i > ig,

and hence
Y(X,0) <Y(X,C).
a

Proof of Theorem 4.3. We start by noting that Y (X, C) < Y,, because, otherwise,
we could apply Corollary 1.5 to the normal infinite conformal covering (X,C) —
(M, C) and conclude that X is simply connected. This contradicts that X is a
non-trivial covering of X.

When Y(X', 5) =Y ,, the assertion is obvious. Hence, we assume that Y()Z', C~') <
Y,.

Since m; (X) is a normal subgroup of 71 (M) and 7 (X) is a finite index subgroup
of 71 (X), the normalizer N = Ny, () (1 ()N()) of w1 (X) in 71 (M) is a finite index
subgroup of m;(M). Although the covering X 5> M may not be normal, the
following holds: There exists a compact subset K of X such that, for any z € X
there exists a deck transformation v € N/m (X) satisfying v(x) € K. Therefore,
this fact and the strict inequality Y()Z' , 5) < Y, imply that the renormalization
argument in the proof of [34, Chapter 5, Theorem 2.1] and [2, Theorem 6.1] is still
valid on (X, C).

Let h € C be a complete metric on X and denote its lift to X by h e C. The
renormalization argument implies the existence of both a positive constant L and
a positive function v € C’j'r"()?) with [|v|| 2n _ . =1 such that

L7-2(X;h)

Quxpl) = Y(X,0),

Liv = Y(X,C)-v+2 on X,
v(z) < Lr—"% forall v € X with r:= dist; (x,po) > 1,

where py € X is a fixed point. Then, by arguing like in the proof of [7, Lemma 2 and The-
orem 6], it follows straightforwardly that (see also [5, Lemma 3.6] for details)

Y(X,0) < Y(X,C).
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