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On the existence of C'* solutions to the
asymptotic characteristic initial value
problem in general relativity

By JANOS KANNARY

Maz-Planck-Institut fir Gravitationsphysik, Albert-Einstein-Institut,
Schlaatzweg 1, D-14473 Potsdam, Germany

The asymptotic characteristic initial value problem for Einstein’s vacuum field equa-
tions is treated. It is shown that C'* solutions exist and are unique for C*° initial
values. The proof is based on Friedrich’s regular conformal vacuum field equations
and Rendall’s method of reducing the characteristic to an ordinary initial value prob-
lem.

1. Introduction

In this paper we shall solve the asymptotic characteristic initial value problem for
Einstein’s vacuum field equations. The initial values (in our case C*° functions) are
given on an incoming null hypersurface N/ and on a part of past null infinity Z~,
which intersect in a two-dimensional space-like surface Z diffeomorphic to S2. (We
have chosen this ‘traditional’ topology for Z, but the proof applies equally to cases
where Z has a more complicated topology.) This problem arises in the study of far
fields of isolated systems, in radiation problems and in the case of black holes, where
horizons are present. A technical advantage of the characteristic initial value problem
is that the constraints are reduced to a hierarchy of ordinary differential or algebraic
equations, which are easier to solve than the elliptic constraints of the traditional
Cauchy problem.

The first existence proof is due to Friedrich (1982), who has shown that, in the case
of analytic initial values, an analytic solution of the asymptotic characteristic initial
value problem exists and is unique in some neighbourhood of the intersection Z.
Analytic functions are, however, not general enough for the treatment of all physical
problems. In the case of analytic initial values, a change of the data on a part of the
initial surface does not influence the solution only in the domain of dependence of
this region, i.e. analytic solutions are not suitable to exhibit causality. Therefore, it is
important to consider the more general problem where the initial values are smooth,
that is C°. These are reasonable in most physical problems. We shall prove in this
paper the following theorem.

Theorem 1.1. Given a C*° ‘reduced initial value’ set t, (see (2.14) and (2.15)) on
N and I~ there exists a unique C* solution of the conformal vacuum field equations

t On leave from KFKI Research Institute for Particle and Nuclear Physics, Budapest.
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946 J. Kdnndr

R, (£272g.x) = 0 (see (2.2)) in a certain neighbourhood of Z, which implies the given
data on N and I~.

This result, and similar others, (for a review, see Friedrich 1992) show that Pen-
rose’s concept of asymptotic flatness (see Penrose 1963, 1965) is compatible with
the field equations, and they provide a strong base for numerical (approximation)
methods.

The conformal Einstein vacuum field equations are (at least formally) singular at
null infinity. Friedrich (1981a,b) has shown that instead of these equations one can
consider a regular system, the ‘reduced conformal vacuum field equations’. This sys-
tem is first-order quasilinear and symmetric hyperbolic. For such equations, Rendall
(1990) has given a general method to reduce the characteristic initial value problem
to the ordinary Cauchy problem, for which the existence and uniqueness of solutions
has been established (see Taylor 1993). Our proof is based essentially on his method.

In §2 we shall briefly review the geometry of the problem and the known results
regarding the field equations (the details can be found, for example, in Friedrich
1981a). In § 3 Rendall’s method will be applied to quite general symmetric hyperbolic
systems. The last section contains the proof of the theorem stated above. We shall
show first that the reduced conformal vacuum field equations, together with the
‘complete initial-value set’ (see (2.7)) on N and Z~, determine all the derivatives of
a possible solution along these surfaces. Second, we shall demonstrate in detail how
Rendall’s method, which was formulated for Rt x RT x R? manifolds, is applicable
to the present problem, which has the topology Rt x R x S2.

Our conventions and notations are the same as those of Friedrich (1981). We
shall use the spin frame formalism of Newman & Penrose (1962) without further
explanation. Phrases such as ‘on N’ (‘on M’ etc.) will always refer to suitable
neighbourhoods of Z on A/ (on M, etc.).

2. The conformal vacuum field equations

A solution to the asymptotic characteristic initial value problem is a triplet
(M, £2,9,,), where (M,g,,) is an ‘unphysical spacetime’ with a regular Lorentz
metric g,, of signature (4, —, —, —). The manifold M with boundary is diffeomor-
phic to Rt x Rt x S2. The boundary consists of an incoming null hypersurface A/
and past null infinity Z~; both have Rt x S? topology. The conformal factor {2 is a
regular function on M and satisfies the conditions

=0, d2#0,onZ", N2>0onM\Z . (2.1)

On the ‘physical spacetime’ (M \ Z~, 27 2g,,) the vacuum Einstein field equations
hold:

Ry (£27%g.5) = 0. (2.2)

The pair ({2, g,.) is subject to gauge transformations; for an arbitrary positive func-

tion O, the new triplet (M, 642, ©%g,,) also satisfies the above conditions and de-

termines the same physical spacetime as (M, g,,,). In order to restrict the gauge we
impose the condition

R(guw) = 0. (2.3)

These two equations (equipped with suitable initial conditions) are to be solved for
the metric g,, and the conformal factor {2 on the whole of M.
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C* solutions to the asymptotic characteristic initial value problem 947
A coordinate system and a null tetrad {e,./*} satisfying
Guv€aar"erty” = €av€arvy (2.4a)

are fixed as follows. First choose on Z = N'NZ~ a coordinate system {z“}, (the index
A will always take the values {3,4}) and a complex null-frame egy/#, e19/* = €Y, for
which (2.4a) holds. Let e;1-# be the null generators along Z~, and the coordinate
2!, which vanishes on Z, a parameter of the integral curves of e;1/# on Z~. Let the
vector fields e11/#, eg1/* and e o* be parallely transported along the null generators
of Z~. Let us consider the {z! = const.} null hypersurfaces in M. The remaining null
vector egy# can be chosen as a generator of these hypersurfaces, i.e. ego* = g"* 0, z?.
Let 22 be a parameter along the integral curves of egp* which vanishes on Z~. The
vectors ej1-, egrr”, e1grt are parallely propagated along these curves; the coordinates
{24} are constant along both classes of the null generators considered. In this special
coordinate system, where N: {z! = 0} and Z: {z? = 0}, the tetrad defined above
has the components

800/’1’ :(55> 611/“ = 6?+U65+XA(SZ, (24b)
601/’1’ = wég -+ &A&Z, 610/’1’ = (:1(55' -+ EAéi, '
where U and X“ are real, w and ¢4 are complex functions obeying
U=X*=w=0, onZ . (2.4¢)

The spin coefficients satisfy

I'ygr =111 =0, onZI-, (2.5)
I'yyoo = ITovor + Torors  Thooo = Toroos  LTooras =0, on M.

Next to these expressions, which follow from the above choice of the coordinates
and the tetrad, there are also quantities which are determined on the initial surfaces
through the special choice (2.3) of the conformal factor. These are the conditions

Yoo = 600’(Q)€a0€a’0,> b1111v =0, onI-,
@000/0/ = O, on N, (26)
eoo(2) =1, Topoo =1Io111 =0, onZ.

Equation (2.2) is (at least formally) singular on Z~. Friedrich (1981a, b) has shown,
however, that the problem can be reformulated as a first-order regular system for
the unknown

t= ('Q, EaaH S, 6aa’#a Faa’bc» Pabed Qaba'b')v (27)
which consists of, respectively, the conformal factor, its gradient X, = V4o §2 and
s = }lvaa,vaa’(z, the components of the Newman—Penrose null tetrad, the spin
coeflicients, the conformally rescaled Weyl spinor @upeca = 27 0apea (due to the
arguments of Penrose (1963, 1965) that the Weyl tensor vanishes on Z~, this is a
regular quantity) and the Ricci spinor. V,, denotes the Levi-Civita connection with
respect to the metric g,,. In the sequel, we also need the expressions for the torsion
and curvature spinors in terms of the tetrad and spin coefficients, respectively:

bb’ b
taa’ cc’ebb’” =€ e([‘aa’eceubc’ - Fcc’eaeﬂba’)
_be /T i = —
+€ ¢ (Faa'e'c’ecb/ - Fcc’e’a’egb/) + €ce! (euaa') - eaa’(eucc’)7 (28)
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948 J. Kdnndr

Tabe'dd’ = €dd’ (Lecrab) — €ce(Laaran)
+€" (LawatLeersb + TiaravTeersa — Tecrat Taarso — Dierap Laarse)
+e's (TavapLeersrar — LeprapLaarsrer) — tee®® ag Desrab (2.9)
and the decomposition of the latter into its Weyl and Ricci parts. It is convenient to
write
Ropeerdar = — 2@ abea€erar — Paberdr€cd (2.10)

and to consider the equalities of the left-hand sides of the last two equations as part
of the following overdetermined first-order system for ¢:

kaa’ = Vaa’\Q - Zaa’ = 07 Gaa’b! = Vaa/ Ebb’ + Q@aba’b’ — S€ap€ary = Oa
Paar = Vaar s + Q}aba/b/zbb/ =0, taa/bb/cc/ebb’u =0,
Aabcc’dd’ = Tabec'dd! — Rabcc’dd/ = 07
havear = V¥ arPaver =0, Lapear = Vol Ppearpr — Paes 5 4 = 0.
(2.11)
This system is equivalent to the above equations (2.2) and (2.3), provided that the

gauge condition (2.3) holds at least at one point of M. One can separate system
(2.11) into two subsystems, namely the equations

koor =0,  qooser =0,  poor = 0, tOO’bb/dd'ebb/u =0, (2 12)
Agpoorddr = 0,  hapeor =0,  Lopear =0,
which are constraints on the hypersurface A/, and
kcc’ = 07
"Qec'bb = O> Ccl 7é 00/
Pecr = 0>
t C/bb/ , P 0,
cc’” dd’€bb o £00,  dd £ 00 (2.13)
Aabcc’dd’ =V,
habcl’ = O,
lecd’ = 07

which are similar constraints on past null infinity Z~. On the initial surfaces, these
equations form a hierarchy of ordinary differential equations (and algebraic expres-
sions). This means that the initial values for all the components of the unknown
(2.7), that is a ‘complete initial value set’ ¢y, cannot be given freely, but one can
calculate it with the help of (2.12) and (2.13) from a ‘reduced initial value set’ t,.

The choice of the reduced initial value set is not unique; we can choose, for example,
the data

I'v1700, onZ7,
©Yoooo, on N, (2.14)
®oo01, Pooi1 + Poorr, €4, on Z,
such that —(£4€8 +£4¢8 ) is a metric conformal to the standard metric on the sphere.
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C solutions to the asymptotic characteristic initial value problem 949
We can instead consider another system of quantities:

w1111, onZ-,
Y0000, on IV, (2'15)
_ A
I'oi00,  Poorrrs o001,  ®oorr + Pororir,  §F, on Z,

which is equivalent to the set (2.14) (one can see this easily from the constraint
equations (2.13)). The advantage of this second choice is that the data are symmetric
with respect to the initial surfaces.

From the overdetermined system (2.11), Friedrich has extracted a first-order quasi-
linear symmetric hyperbolic system, the ‘reduced conformal vacuum field equations’,
that is the system

koo =0, qooer =0, poor =0, too™ qwew” =0,
Agpooraar = 0,  —hiier =0, —hopeor + haperr =0, hooorr = 0, (2.16a)
_LObcl’ = Oa _LOch/ + lecl’ = O> lecO’ =0.

He has shown also that solutions of the above reduced conformal vacuum field equa-
tions, which coincide on A and on Z~ with the initial data calculated from the
constraint equations (2.12) and (2.13), are also solutions of the whole system of con-
formal vacuum field equations (2.8). The gauge condition (2.3) for the conformal
factor is also satisfied.

The reduced conformal vacuum field equations (2.16 a) can be written in the con-
cise form

AF(z¥,t)0,t + B(x",t) = 0. (2.16b)

The hypersurfaces N and Z~ are characteristics of the above system. The equation
is symmetric hyperbolic; the matrices A* are hermitian, and there is a direction, in
our case it can be chosen to be eg,, + €11/, such that the matrix A*(egp ), + €11/,,)
is positive definite. This last property means that the hypersurfaces with normal
eoo, + €117, are space-like with respect to system (2.16a). The equation can be
extended to negative values of the coordinates z! and 2. Taking into account the
expression of the null tetrad (2.4 b), this means that the hypersurface F: {z!+2% = 0}
is space-like in a neighbourhood of the intersection Z of the initial surfaces.

3. Reduction to the ordinary Cauchy problem

Let us consider an equation of the type (2.16b) on R* (in a neighbourhood of
N1 NN, where AV and N, denote the initial hypersurfaces {#? = 0} and {z! = 0},
respectively). Let £y be initial values, defined on N and N, continuous on N; U
N, and their restrictions smooth on A and on N;. Moreover, let A} and N, be
characteristics for (2.16 b) and . Let us finally suppose that the system of equations
obtained from (2.16 b) by formal differentiation with respect to the =¥ to all orders
and then restricting to N7 U N;, can be solved uniquely to give all formal (interior
and exterior) derivatives of ¢y as smooth functions on A; and As. By the Whitney
extension theorem (see Abraham & Robbin 1967), a smooth function ¢; exists on a
neighbourhood of A; N AN, all of the derivations of which agree with those formal
derivatives. This means that the function

A= A“(Q?V, tl)autl + B(.’EV, tl) (31)

Proc. R. Soc. Lond. A (1996)
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950 J. Kannar

vanishes to all orders on the characteristic surfaces and the function

0 '>0, z*>0,
A, elsewhere,
is smooth in a neighbourhood of N N A5, where ¢, exists.
Consider, then, the equation
A”(l’y,tl —l—T)aﬂ(tl +T>+B($V,t1 —|—T) =6 (33)

for the unknown 7, and its (ordinary) Cauchy problem with zero data on the initial
surface F: {z! + 2? = 0}. This surface has a neighbourhood around N; N N, which
is space-like with respect to the equation; thus, the given Cauchy problem has a
unique solution 7 on it in a neighbourhood U of N7 N A,. Tt is easy to see that 7 is
zero outside the intersection of U with the region {xl >0,22 > 0}, and the function
t* = t; + 7 is the unique solution of the characteristic initial value problem inside
the intersection (for details, see Rendall 1990).

4. The existence proof

Using expression (2.4 b) of the null-tetrad and the explicit notation of Newman &
Penrose (1962), the reduced conformal vacuum field equations (2.16 a) take the form

Oati = fi,

Doips — WOaipg — EMDaips = fou,

Oopit1 + 01p1 + Ubajpr + X20apj41 — whajaa — E20apiio

—w0ap; — E20ap; = faray,

Drpo + Udapo + XA0apy — wdapr — E40ap1 = fos, (4.1)

Oy Bjp — wy Pj1 — E204 Pj1 = fop,

Do ®j1 + 01 i1 + Uy By + X404 Pj1 — 00y Py — £404 D)o

—w0s @jo - §A8A 45,7‘0 = f29+j,

O Pjo + U0 Pj0 + X404 Do — w0 Pj1 — £40,4 D1 = fa244s J
where i = {1,...,20}, 7 = {0,1,2} and ¢; with [ = {1, ..., 34} means the /th non-zero
component of the unknown ¢, namely

t=(t) = (2; Doar; 5; U, X w0, 47,7, 0,0, B, 11y 0, N 015 i), (4.2)

where h = {0,...,4}, {j,k} = {0,1,2} and the functions f; on the right-hand side
contain only linear and quadratic expressions of the components t;. (Their precise
form is unimportant from the point of view of the following proof.)

Having a complete initial data set ¢, (a solution of the constraint equations (2.12)
and (2.13)), with the help of equations (4.1) we are able to calculate all the outgoing
(transverse) derivatives which a solution has to have on the initial surfaces N and Z~
(this means, in fact, that we are able to calculate all the derivatives). This we have
to show in detail, because there is not any available criterion which would help us to
decide whether this is true for a general first-order symmetric hyperbolic system.

Proc. R. Soc. Lond. A (1996)
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C® solutions to the asymptotic characteristic initial value problem 951

Let us first consider past null infinity Z—, where 0, is transverse. The first trans-
verse derivatives of all unknowns but ¢, and @, are algebraically determined through
to. Because of conditions (2.4 ¢), the 25th and the 32-34th equations (see the fourth
and the last lines of (4.1)), evaluated on Z~, do not, in fact, contain z2-derivatives.
After differentiation of these equations with respect to 2, we get a system of linear
first-order ordinary differential equations for 0,0 and 0, ®;o. The initial values for
these quantities can be calculated on Z, given ¢, on the initial surfaces. Let sys-
tem (4.1) be modified so that the 25th and the 32-34th equations (see the fourth
and the last lines of (4.1)) be replaced by their z?-derivatives. Considering succes-
sively higher z2-derivatives of this modified system, we can iteratively solve them,
since they are always algabraic expansions and ordinary differential equations for the
unknown transverse derivatives

On the other null hypersurface A/, the situation is quite similar. Here d; is trans-
verse. Considering equations (4.1), we can see that here only 01¢.,, m # 4 and 01 @55,
J # 2 are algebraically determined through the initial values ¢, (see the 22-25th and
the 29-34th equations, that is the 3-4th and 6-7th lines of (4.1)). After calculating
the x!-derivatives of the remaining equations, we can also get here a system of linear
first-order ordinary differential equations for the unknown first outgoing derivatives.
Following the same method as in the case of 7~, we can calculate all the higher
x'—derivatives step by step.

Let us consider an atlas {(Ul, 91); (U, @2)} on Z (diffeomorphic to S?) and the
closed sets V; C U; (here and in the following ¢ = gl ), which also cover Z, that is
Z C V4 U Vs, Define the two C$°(R?) functions 1

) () = 1, ze (Vi)
n®(z) = { 0. ze R\ B(U). (4.3)

Let £ denote the restrictions of the reduced initial values (2. 14) or (2. 15) to Uj;.
Writing them as functions of the coordinates @;(U;), the functions n(z)t( define a
C* reduced initial value set on the hypersurfaces N7 = RT x {0} x R? and N, =
{0} x RT x R?, which is identical with the original one on R* x {0} x &;(V;) and
{0} x Rt x &;(V;).

Solving the constraint equations (2.12) and (2.13) on N; and Nj, respectively, we
can get the complete initial value sets téz . Using the procedure introduced at the
beginning of this section, all the outgoing derivatives on A} UN; can be determined.
So with the help of Rendall’s method reviewed in the last section, we can construct
the unique solutions t*®) (both of them in a neighbourhood of A N A%). Their re-
strictions to the Cauchy development of R x Rt x &;(V;) are indeed (local) solutions
to the original problem.

The last task is to show that they can be glued together to form a global solution on
Z. From the uniqueness of the local solutions ¢t* follows that their restrictions to a
part (where both solutions exist) of the Cauchy development of Rt x R x &;(ViNV3)
differ only by a coordinate transformation. This means that they can be identified
on this region. The result is the unique C'* solution in a neighbourhood of Z.

Now we have proved the theorem stated in the introduction. It is important to
note that the proof applies even if the intersection surface Z has a more complicated
topology. This means that the above theorem remains true without specifying the
topology of the two-dimensional (orientable) manifold Z.

Considering §2 = 1, we get as a special case the equations of the ‘normal’ vacuum
characteristic initial value problem. The proof above is easily applicable to this case.
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