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1 Introduction

Null infinity is the most interesting asymptotic domain of asymptotically flat space-
times, since it is here where information on dynamical processes which take place in
the interior of space-times is registered by the ideal observer at infinity. The early
investigations of asymptotical flatness in null directions ([5], [15], [20]) are based on
the notion of “Bondi-type” coordinates and associated gauge conditions, which involve
as a basic ingredient families of outgoing null hypersurfaces of the form {u = const.}
with a smooth function u. Such coordinates play a distinguished role in these studies,
because the fall-off behavior of the fields at null infinity, put in after a judicious choice
“by hand”, is specified in terms of suitable parameters along the generators of the null
hypersurfaces.

In the following we shall mainly be concerned with the idea of asymptotic sim-
plicity ([18], [19]). This proposal to characterize the fall-off behavior of gravitational
fields in terms of the light cone structure does not require the use of preferred classes
of coordinates. Nevertheless, because null hypersurfaces are conformally invariant
structures and are closely related to certain features of gravitational field propagation,
Bondi-type gauge conditions have been used so extensively also in this context that
they may appear to be naturally associated with the analysis of asymptotic properties
of gravitational fields. We shall see in the following that there are good reasons to
consider also other coordinates and gauge conditions in the study of asymptotics.
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A detailed understanding of the behavior of gravitational fields near space-like in-
finity plays a key role in the analysis of asymptotically flat space-times. As pointed out
already in [19], such an understanding is required to relate information given on past
null infinity to information gathered on future null infinity. Moreover, it is obviously
desirable to complete the interpretational frame-work developed for the gravitational
fields of isolated systems by relating concepts like “radiation field”, “Bondi-energy-
momentum”, etc. which have been introduced on null infinity, to concepts defined at
space-like infinity. Other reasons for studying space-like infinity will be seen below.
Several attempts have been made in this direction. In [1] (cf. also the references given
in this article), [14] this was done on the level of conformal geometry without touching
the field equations in an essential way. Thus there arose the need to introduce fur-
ther assumptions on top of to those made already in the study of null infinity. Later
approaches ([3], [4]), which have subsequently been transposed into the conformal
picture [2], took the field equations to some extent into account but they offered no
obvious way to relate information near space-like infinity to structures on null infinity.
Moreover, it appears difficult to bring these studies in relation to those of the Cauchy
problem, something which one would like to do to replace implicit assumptions on the
evolution in time by definite statements about sufficiently general classes of solutions
with required properties.

The work [6] contains a discussion of space-like infinity which does not involve any
assumptions besides those on initial data and which, in a sense, is rather complete.
However, for reasons indicated in the introduction of [6], no attempt has been made
to clarify the notion of asymptotic simplicity. Earlier studies of asymptotic simplicity
in terms of the conformal field equations (cf. the references given in [10], [11]) have
shown that, at least for solutions to the vacuum field equations arising from small
initial data, the smooth extensibility of the light cone structure through null infinity
postulated by asymptotic simplicity is preserved along null infinity if it holds close to
space-like infinity. In this sense the decision whether there exists a smooth structure
at null infinity is made at space-like infinity.

Whatever techniques are used to analyze the field near space-like infinity, the slow
fall-off behavior of the metric field near space-like infinity will give rise to difficulties.
In terms of the conformal picture the latter take the following form. In the standard
conformal completion of Minkowski space space-like infinity is represented by a point
i0. Any smooth space-like Cauchy hypersurface S̃ of Minkowski space approaches this
point. To S̃ can be adjoined a point i to obtain a 3-sphere S = S̃ ∪{i} such that i will
coincide with i0 if the immersion of S̃ into compactified Minkowski space is extended
to cover S. We shall consider the case where S̃ is chosen such that S will be smoothly
embedded. Then the conformal initial data induced on S will be smooth and the
conformal Weyl tensor will vanish. If these data are now deformed while keeping the
conformal vacuum constraints being satisfied, they will loose their smoothness at i, in
fact, the conformal Weyl tensor will even diverge there, as soon as the ADM mass of
the data set does not vanish any longer. This fact, a reflection of the slow fall-off of
the metric, represents the technical hitch which obstructs the immediate application
of the conformal field equations near space-like infinity.

In [9] has been shown that under suitable assumptions on the data some of these
difficulties can be overcome. It turns out that it is possible to introduce a setting,



H. Friedrich et al., Asymptotic quantities near space-like and null infinity 323

defined in terms of conformally invariant structures, in which the asymptotic regions
are represented in a finite picture, the data extend smoothly to a suitable defined
“space-like infinity”, and in which the equations are rendered in a manageable form.
Moreover, the setting allows us to relate near space-like infinity structures at null
infinity to the data on the initial hypersurfaces. Some of the consequences of this
setting will be recalled in chapter 2. The gauge conditions employed in this study are
completely different from Bondi-type gauge conditions. Therefore we have analysed in
[12] to what extent the discussion of null infinity in terms of Bondi-type systems can
be redone near space-like infinity in the setting of [9]. As discussed in chapter 3, the
transformation which relates the different gauge conditions becomes singular at the
set where “null infinity touches space-like infinity” (cf. the sets I± below). However,
it does so in a very controlled way and it actually allows us to calculate near space-
like infinity expansions of the quantities of physical interest, such as the radiation
field on null infinity, in terms of the initial data. As a particular application we have
determined a formula for the NP-constants in terms of the initial data (chapter 4).
In the course of these calculations we have also determined a certain expansion near
space-like infinity introduced in [9] to third order. The regularity of the third order
expansion coefficient sheds some light on the possible smoothness at null infinity under
our assumptions on the fall-off behavior of the data (chapter 4). In conclusion it can
be said that, apart from the length of the calculations involved, Bondi-type systems
can conveniently be related to the setting of [9] and that our investigation sheds light
on the analysis of [9] as well as on the investigations in terms of the Bondi-type gauge
conditions.

2 The regular finite initial value problem near space-like infinity

It turns out that some of the difficulties near space-like infinity indicated above can be
circumvented by using a new representation of the conformal field equations [8] and a
suitable choice of gauge conditions [9]. In the resulting finite picture space-like infinity
is represented by a cylinder I = I0×]−1, 1[ instead of by a point i0. The initial data for
the conformal field equations are given on a manifold with boundary, where the latter
is obtained by adjoining to S̃ the spherical set I0×{0} � I0 instead of the point i. The
initial data for the conformal field equations (derived from asymptotically Euclidean
vacuum data) extend smoothly to the boundary of this manifold, and the conformal
field equations imply in this setting symmetric hyperbolic evolution equations for the
extended data. The gauge conditions underlying this picture are again defined in terms
of conformally invariant structures but they are completely different from the Bondi-
type gauge conditions referred to above. Nevertheless, if the solution of the initial
value problem so obtained extends near space-like infinity with sufficient smoothness
sufficiently far into the future, we will be able to identify near I in our coordinates
future and past null infinity as null hypersurfaces J± of a finite location which touch
the cylinder I at its boundary components I± = I0 × {±1}. In a suitable gauge
(different from the one used in the calculations referred to below) a neighborhood M
of space-like infinity, which includes the asymptotic structures, can be described in
the form M = {(τ, ρ, t) ∈ R × [0, a[×I0 | |τ | ≤ 1 + ρ}, with some number a > 0,
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such that the subsets of M referred to above are then given by S̃ = {τ = 0, ρ > 0},
I = {|τ | < 1, ρ = 0}, I± = {τ = ±1, ρ = 0}, J ± = {τ = ±(1+ρ), ρ > 0}, the “physical
part” of M is given by {|τ | < 1 + ρ, ρ > 0}. We consider τ and ρ as functions on M .
Near S̃ ∪ I will then be defined on M̃ a time function by τ and ρ can be understood
as a radial coordinate which vanishes at space-like infinity.

In [9] the picture outlined above has been analyzed under the simplifying assump-
tions that the data are time-symmetric and that the conformal structure induced on
the initial hypersurface S̃ extends smoothly (in fact analytically) to i, conditions which
have also been assumed in the article [12] on which we shall report below. Since these
conditions appear rather restrictive, we remark that recent studies demonstrated pos-
sibilities for generalizing this analysis to more general data [7]. The smooth conformal
initial data on S̃∪I0 define together with the conformal evolution equations the regular
finite initial value problem near space-like infinity. This setting has been developed
with the aim to derive statements about the smoothness of the solutions near the sets
J ± ∪ I±. To achieve this goal, we need to understand the time evolution near the set
I in sufficient detail. To some extent this has been studied already in [9]. We recall
some of the results below without going into details. The article [12] is a further step
into this direction.

Since the conformal data are given on S̃ ∪ I0 and the conformal field equations are
to be solved on M , one may be led to think that one has to solve a boundary value
problem with time-like boundary I. This is not correct. The unknown of the conformal
field equations can be written schematically u = (frame, connection, curvature) and
the evolution equations take the form

{Aτ∂τ + Aρ ∂ρ +A} u = B u, (1)

with a differential operator A on I0 and matrix-valued functions Aτ , Aρ, B which
depend on the coordinates and the unknown. The equations are symmetric hyperbolic
in some neighborhood N of the initial hypersurface and the data determine a unique
smooth solution on N . Though we can imagine I as arising as a limit of hypersurfaces
in N ∩ M̃ which are time-like for the metric defined by the solution, the metric, which
is smooth and Lorentzian on N ∩ M̃ , degenerates as ρ → 0 and “time-like” looses
its meaning on I. This fact is reflected by the observation that Aρ = 0 on I ∩ N .
Consequently, the equations above, if restricted to I, imply an interior system on I
which determines u on I uniquely from the data u|I0 , i.e. there is no freedom to
prescribe boundary data on I. Moreover, applying repeatedly the operator ∂ρ to the
equations and restricting to I, we get interior equations for the quantities up = ∂p

ρ u|I
on I, which allow us to determine a formal expansion u =

∑
p≥0 u

p 1
p! ρ

p of the solution
at I. Under the assumptions of [9] this series converges near I0 and provides the
solution.

The calculation of the function u0, which allows us to determine Aτ on I, leads to
the following important observation: the matrix Aτ , which is positive definite on I,
extends smoothly to I± but drops rank there by 1. Following the procedure outlined
below, the quantities up, p = 0, 1, 2, have been calculated explicitly in [9]. Using them
to determine ∂ρA

τ on I we get an expression which suggests that the degeneracy of
Aτ is removed as soon as ρ > 0. Thus all the remaining problems to analyze space-like
infinity can be traced back to the degeneracy of Aτ at I±.
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Expanding up in terms of a suitable system of functions Tm
j

k on the sphere I0

(related to spin spherical harmonics), the interior equations are reduced to systems of
ODE’s for the τ -dependent expansion coefficients. The task of solving these equations
can be reduced to solving a hierarchy of ODE’s of the form d

dτ y = C y+ b, with 2× 2-
matrix-valued functions C and 2-component vector-valued function b and y of τ . The
unknowns y = y(τ ) as well as the coefficients of the systems carry a “multi-index”
α = (p,m, j, k) which has been suppressed here. The components of y are related to
derivatives, whose order depends on p, of certain components of the rescaled conformal
Weyl tensor. For given order p the functions b are calculated (essentially) from the uq,
q ≤ p− 1. The matrices C are universal in the sense that they depend on the number
p but not on the quantities uq, q = 1, 2, . . . The solutions to these equations can be
written in the form

y(τ ) = X(τ )X(0)−1 y0 +X(τ )
∫ τ

0

X(τ ′)−1 b(τ ′) dτ ′, (2)

where y0 = y(0) and X(τ ) (suppressing again the multi-index α) denotes a funda-
mental matrix of the given ODE. In [9] these fundamental systems have been given
explicitly in terms of Jacobi polynomials. Thus the solutions can be calculated recur-
sively. Since for increasing p the explicit expressions for b become quite complicated
the solutions y(τ ) have not been analyzed in all details yet.

However, we can say the following. Due to the degeneracy of Aτ on I the ODE’s for
the y’s are singular at τ = ±1. As a consequence, we find for any p ≥ 2 certain multi-
indices α∗ for which the fundamental system X develops logarithmic singularities at
τ = ±1. Since the corresponding functions b vanish, there cannot arise cancellations
from the integrals in (2). Thus, in general, the functions up develop such singularities
for all p ≥ 2 on I±.

Provided the solution of our initial value problem extends to the sets denoted above
by J ± and the metric remains sufficiently smooth there, these sets may still be null
hypersurfaces for the solution, whence characteristics for the evolution equations. The
hyperbolicity of the conformal evolution equations then suggests that the logarithmic
singularities which develop at I± will be transported along the generators of J ±.
Several authors speculated about the occurrence of logarithmic singularities at null
infinity. The observation above provides perhaps the clearest support for this view.
This picture would also be consistent with the results of [6], where estimates for the
conformal Weyl curvature have been obtained which suggest a peeling which is weaker
than that implied by asymptotic simplicity. It should be noted that the logarithmic
singularities observed here occur in spite of the fact that we have chosen initial data
which are particularly “clean” at space-like infinity.

Because of the degeneracy of Aτ at I± it is not clear that the solution would extend
smoothly to J ± near I± if all the functions up on I would extend smoothly to I±.
Before trying to solve this problem, we should consider another one: can we provide
situations, without being led back to Minkowski space, where the up extend smoothly
to I± ? Other studies of asymptotic simplicity (cf. the discussions in [10], [11]) suggest
that the logarithmic singularities might be avoided if the data are subject to suitable
extra conditions. Inspecting for the multi-indices α∗ the first (and in that case the
only) term on the right hand sides of (2), we find after a somewhat lengthy analysis of
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the initial data that the logarithmic singularities at I± observed above do not occur
if and only if the free data on S, represented under our assumptions by the intrinsic
conformal 3-metric h, satisfies the asymptotic regularity conditions

D(apbp
. . .Da1b1 babcd)(i) = 0, (3)

for p = 0, 1, 2, . . .. Here we use space-spinor notation, the spinor field babcd = b(abcd)

represents the Cotton tensor of h, and D denotes the covariant Levi-Civita derivative
of h. If we want the up to extend smoothly to I± only for p ≤ p∗, we need to require
(3) only for p ≤ p∗ − 2. We note that for given integer p∗ ≥ 0 the requirement that
(3) hold for p ≤ p∗ is conformally invariant and thus provides in fact a condition on
the conformal structure of h, i.e. on the free data. For the question of generality of
the class of metrics satisfying (3) we refer to [9].

If (3) is not satisfied at some order, logarithmic terms would be fed into some of
the function b on the right hand sides of (2) and result in logarithmic singularities
at higher order. But even if (3) holds at any order there may still arise difficulties.
As a further consequence of the degeneracy of Aτ on I± we find that det(X) → 0 as
τ → ±1. Thus we might find singularities at I± in the solutions y for those multi-
indices α (with p ≥ 3) for which the function b in the integrals on the right hand sides
of (2) does not vanish. Since the occurrence of singularities depends on the form of b
it also depends very much on the specific algebraic structure of the conformal Einstein
equations. We will say more about this below.

3 Bondi-type gauge conditions near I

In [12] we analyzed the relation of the early discussions of fields near null infinity
in terms of Bondi-type gauge conditions, in particular the results of [16], [17], to the
setting provided in [9]. One of our main questions here was: do quantities and physical
concepts introduced on J + in the NP-gauge extend in a meaningful way to I+ in the
F-gauge ?

The first problem is to relate the different gauge conditions involved. Given a
smooth structure on null infinity, Bondi-type gauge conditions can be fixed conve-
niently near J +. One chooses a (spherical) space-like cut C of J +, removes some of
the gauge freedom on C, and removes further gauge freedom on J + by solving certain
ODE’s along the generators of J+. In the course of this is defined a function u on
J + which defines a space-like slicing of J + with u = 0 on C. The function u is extend
into the physical space-time such that the hypersurfaces {u = const.} are null and
some of the remaining gauge conditions are fixed by some propagation law along the
generators of these hypersurfaces. There are variants of this. We consider in [12] the
gauge employed in [17], which involves a choice of conformal factor, of coordinates,
and of a frame field, and refer to it as to the NP-gauge.

The gauge conditions used in [9], which involve similar fields, are determined by
the initial data on S̃∪I0 and certain propagation laws which are encoded in an implicit
way into the form of the conformal evolution equations. We refer to this gauge as to
the F-gauge. If we want to discuss the NP-gauge in this context we clearly have to
assume that the solution to our initial value problem extends smoothly to J±. In
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the detailed calculation we will in fact assume that the solution extends smoothly to
J ± ∪ I±. We impose, of course, the asymptotic regularity condition on the data.

The solution of the initial value problem is not given explicitly. Consequently, the
transformation from one gauge into the other, which involves a conformal rescaling, a
rotation of the frame, and coordinate transformation, cannot be calculated explicitly.
We therefore pursue the following strategy. We describe in an abstract way the proce-
dure to get from the F-gauge into the NP-gauge. Here we use the a priori information
given by the setting of the regular finite initial value problem, i.e. the known location
of J + and the explicitly given conformal factor Θ. We try to push the section C to I+.
Then we integrate the fields up to the desired order and determine an expansion of
the transformation, respectively of certain transformed fields, in terms the coordinates
given by the F-gauge. The feasibility of this procedure depends on the functions up

needed on I+ and on the behavior of the ODE’s on J + near I+ which need to be
solved to achieve the NP-gauge.

It turns out that after suitable redefinitions of the unknowns and the equations
we obtain equivalent ODE’s on J + which extend in a regular way to I+ . Using ρ as
a parameter on the generators on J + we can describe the basic result on J+ near
I+ = {ρ = 0} as follows.

(i) The positive function θ which we need to redefine the conformal factor by
Θ → θΘ is of the form θ = 1 + O(ρ).

(ii) The transformation Λ ∈ SL(2, C) relating the spine frames is of the form

Λ = ρ
1
2

(
O(ρ) 1 +O(ρ)

−1
ρ
+O(ρ0) O(ρ2)

)
.

(iii) The affine parameter on the generators of J + in the NP-gauge is of the form
u =

√
2 {−1

ρ + 4m logρ+ u∗ + O(ρ)}.
In these equations u∗ denotes a constant and an expression O(ρk) stands for a

smooth functions on J + ∪ I+ whose Taylor expansion at ρ = 0 starts with the power
k. Obviously, θ extends smoothly to I±. The transformation Λ does not extend
smoothly but has a well controlled behavior at I±. If it is used e.g. to transform
the rescaled conformal Weyl spinor, the most important field in these studies, from
the F- into the NP-gauge, the factors ρ

1
2 and 1

ρ imply, due to cancellations and the
integer spin of the field, no singularities. The logarithmic term in u does no harm in
the calculations either.

If the functions up have been calculated and extend smoothly to I+, the calcula-
tion of the NP-gauge can in principle be extended off J+ into M̃ to arbitrary order
such that {u = const.} will be the family of null hypersurfaces defining the gauge.
Furthermore, we can calculate an expansion of the NP fields on J+ in terms of ρ and
can extend the expansion suitably off J+ into M̃ .

Since the functions up on I+ are given in terms of expressions derived from the
initial data on S̃∪I0, we obtain an expansion of the NP fields on J + near I+ in terms
of the initial data. In particular, we can calculate expansions of the radiation field
on J +, the mass aspect, the Bondi-energy-momentum for a suitable family of cuts
of J + etc. The resulting expressions contain non-trivial information on the evolution
of the gravitational field in time. In the case of data which are non-time-symmetric
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an analogous calculation would allow us to relate non-trivial information of J − to
information on J +. Of course, from the practical point of view, the possibility to
perform these calculations will be limited by the sheer length of the latter, which will
increase quickly with the order of the calculation.

4 The calculation of the NP-constants

In [16], [17] Newman and Penrose discussed the quantities

Gm =
∮

2Ȳ2,mΨ1
0 sinϑ dϑ dϕ, m = −2,−1, 0, 1, 2, (4)

which are obtained by integration over a spherical cut C of J + where the fields entering
the integral are given essentially in the NP-gauge associated with the cut C. Here
2Y2,m denote spin-2 spherical harmonics, sinϑ dϑ dϕ is the surface element of C, and
Ψ1

0 is the second coefficient in the expansion Ψ0 = Ψ0
0r

−5 + Ψ1
0r

−6 + O(r−7) of a
certain component of the “physical” conformal Weyl spinor in a certain frame. Here r
denotes a certain “physical” parameter along the null generators of the hypersurfaces
{u = const.} with r → ∞ on J +.

As shown in [17], these quantities are ”absolutely conserved” in the sense that their
values do not depend on the choice of the cut C.

Using the calculations indicated in the previous chapter, we can give the “NP-
constants” (4) for space-times satisfying our assumptions in terms of quantities derived
from the data h on S. We express the integrals (4) in terms of the F-gauge, use their
conservedness to push C into I+, express the result in terms of the functions up|I+ ,
and finally express the latter in turn in terms of the values of up on I0. The resulting
formula is of the form

Gm = c1 mW2,2−m − c2 R2,2−m −
∑

j+k=2−m

cjk W1,j W1,k, (5)

with certain non-vanishing constants ci, cjk. The coefficients R2,2−m,m = −2,−1, 0, 1, 2,
are derived from the Ricci scalar R of h on the initial hypersurface. It has near
I0 = {ρ = 0, τ = 0} on {τ = 0} in the gauge employed in [12] an expansion

R =
1
2
(

4∑
m=0

R2,m T4
m

2) ρ2 +O(ρ3).

The coefficients W2,2−m, m = −2,−1, 0, 1, 2, and W1,j,j = 0, 1, 2, are obtained from h

as follows. The “physical” 3-metric h̃ is related to h by a conformal factor Ω such that
h = Ω2 h̃. This factor has to satisfy the Lichnerowicz equation (∆h − 1

8
R)(Ω− 1

2 ) = 0
on S̃ and certain fall-off conditions near space-like infinity. As a consequence it can be
given near I0 on S̃ ∪ I0 in the form Ω = ρ2 (U + ρW )−2 with some smooth functions
U and W . The function U can be calculated locally from h. The function W contains
global information on the initial data. In the gauge used in [12] it has an expansion

W =
m

2
+ (

2∑
m=0

W1,m T2
m

1) ρ+
1
2
(

4∑
m=0

W2,m T4
m

2) ρ2 + O(ρ3),
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where m denotes the ADM mass of h.
Newman and Penrose have derived for the NP-constants of static solutions an

expression of the form

mass × quadrupole moment − (dipole moment)2 .

Formula (5) is quite similar. If the ADM mass of h vanishes, the coefficients R2,m

vanish and in certain representations of static solutions a factor m can be extracted
from those coefficients. It should be noted, however, that, provided our assumptions
on the time evolution are satisfied, equation (5) is valid for a class of time-symmetric
solutions which is much larger then the class of static solutions. In particular, our
solutions in general do not admit a time-like Killing vector field and thus the evolution
in time is no longer known explicitly.

About the meaning of the NP-constants no consensus has been reached yet (cf. the
references given in [12]). Some light may be shed on this question by analyzing the
consequences of the coefficients entering formula (5) on the structure of the solution.

5 The calculation of u3

Since only second order quantities enter (5), the quantities up, p ≤ 2, may appear suf-
ficient to derive that expression. However, the non-linear terms on the right hand side
of (5) are transported at third order and u3 needs to be calculated on I+. As discussed
in chapter 2, this is the first order at which singularities may arise from the integral on
the right hand side of (2). The proof that no such singularities occur is quite involved
because the expressions for b, derived recursively from quantities of lower order, is
getting more and more complicated. However, apart from the fact that it would shed
light on the smoothness of the solution near I+, the proof would be of interest because
it will give insight into the general form of up and the underlying properties of the
field equations which imply this form. Clearly, to show that the asymptotic regularity
conditions are indeed sufficient to exclude any further singularities, it is of interest to
check this for the first few orders. Though the calculation is quite lengthy it should
give clues of how to give the general proof by a recursive argument. Remarkably, in
the case p = 3, we find by explicit calculations that the integrand in (2) has poles
at |τ | = ±1 and also outside the interval [−1, 1], that the integral has poles and no
logarithmic terms, but the final solution is a polynomial in τ . As a consequence, the
frame, the connection coefficients, and the components of the conformal Ricci tensor
also remain regular at the order p = 4. This may be considered as a first indication
that the asymptotic regularity conditions (3) suffice to ensure smooth extensibility of
the up to I±. We emphasize that only assumptions on the initial data have been used
in these calculations.

6 Concluding remarks

The discussion of [12] has shown that under suitable assumption it is possible to
analyze the behavior of Bondi systems in the setting of [9] to any desired degree of
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precision near space-like infinity. Furthermore, the physical concepts studied on null
infinity can be calculated in principle to any order near I±. We expect that our
results and the further exploration of space-like infinity will give enough insight into
the Einstein evolution near space-like infinity to replace in the end the assumption on
the smoothness of the fields on J ± by the proof of existence results which imply the
required smoothness and which rely only on assumptions on the data.

Another field in which the results of [12] should be of interest is the numerical
calculation of space-times. The setting of [9] offers the only possibility to calculate
numerically entire asymptotically flat space-times. Moreover, this can be done by
referring only to the asymptotically flat Cauchy data. This follows from the finiteness
of the coordinate representation of the regular finite initial value problem. Thus there
does not arise the need to introduce time-like or null boundaries in the physical space-
time to cope with the unavoidable finiteness of numerical grids. Consequently, there
never arise questions about the meaning of the additional information fed into space-
time by prescribing boundary data. Finally, the conceptual (cf. [13]) and numerical
difficulties arising from time-like boundaries can be avoided. The insights provided in
[12] will be helpful to perform controlled numerical calculations of space-times near
space-like infinity and to interprete the numerical results in terms of the physical
concepts introduced in the early studies of asymtptotically flat space-times.

One of us (J.K.) was supported by the research grant OTKA-D25135.
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