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We relate Bondi systems near spacelike infinity to another type of gauge condi-
tions. While the former are based on null infinity, the latter are defined in terms of
Einstein propagation, the conformal structure, and data on some Cauchy hypersur-
face. For a certain class of time symmetric space—times we study an expansion
which allows us to determine the behavior of various fields arising in Bondi sys-
tems in the region of space—time where null infinity touches spacelike infinity. The
coefficients of these expansions can be read off from the initial data. We obtain, in
particular, expressions for the constants discovered by Newman and Penrose in
terms of the initial data. For this purpose we calculate a certain expansion intro-
duced by FriedricliJ. Geom. Phys24, 83—163(1998] up to third order. ©2000
American Institute of Physic§S0022-2488)0)02602-5

I. INTRODUCTION

Most studies of gravitational fields near null infinity are based on the use of “Bondi-type”
coordinates. In the first investigations of the behavior of the field near null inficfityRefs. 1—-3
Bondi-type coordinates played a crucial role in the specification of the fall-off behavior of the
field. The characterization of the asymptotic behavior of gravitational fields near null infinity in
terms of the conformal geometry subsequently suggested by P&noses not require the use of
such a specific class of coordinates. Nevertheless, Bondi-type coordinates are usually also em-
ployed in this context because they allow us to exploit in a convenient way certain features of the
null cone structure. If the gravitational field is, however, to be analyzed in detail in the region
where future and past null infinity = “touch” spacelike infinity, and if this is to be done such
that 7~ and J* are treated on an equal footing, Bondi-type coordinates are not particularly
helpful. Already in the simplest nontrivial case, that of the Schwarzschild solution, the use of
double null coordinates leads to difficulties.

In Ref. 6 an initial value problem for the conformal vacuum field equations has been formu-
lated which is designed to analyze near spacelike and null infinity the Einstein propagation of

asymptotically flat data on a Cauchy hypersurf&cin a finite picture. In this setting, which is
based on certain conformally invariant structures, spacelike infinity is represented by a cylinder
I=]-1,10 XS? such that the setg”=RXS? representing, respectively, future and past null
infinity, “touch” the cylinder at its two boundary componeht ={+ 1} X S2. Though the under-

lying facts about the evolution equations which have been used here hold for much more general
situations, the picture has been analyzed so far under certain simplifying assumptions on the initial
data. The data are assumed to be time symmetric and the conformal structure, which then repre-
sents the free datum, is assumed to extend smoothly through spacelike infinity such that the latter

is represented by a pointin an extended manifolt$=§U{i}. The cylinderl is obtained by
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blowing up the pointi to a spherd®={0}xS? and by smoothly extending the solution in a
particular geometric gauge.

It can be seen already under these assumptions on the data that the new picture allows us to
relate neat * properties of the data 08, which touches at1°, to properties of the field on null
infinity by solving a hierarchy of differential equations bnThese equations have been used in
Ref. 6 to derive certain “asymptotic regularity conditions” for the initial data whose imposition
prevents a certain class of logarithmic singularities of the field at thel Sei®m arising. How-
ever, it still has to be shown that the asymptotic regularity conditions ensure a time evolution of
the data which extends near spacelike infinity smoothly to null infinity.

In the present article we analyze the consistency of the early investigations of fields near null
infinity with the picture developed in Ref. 6 and we demonstrate to some extent the efficiency of
the latter in calculating near spacelike infinity quantities on null infinity from the given data. For
this purpose we make two different types of assumptions. On the one hand, we shall consider
space—times arising from time symmetric vacuum data as described previously which satisfy the
asymptotic regularity conditions. Our calculations of fields on the cylindely only on these
assumptions. On the other hand, we shall assume that these data develop into solutions which
admit a smooth conformal structure at null infinity and that the gauge conditions proposed in Ref.
6 extend in a smooth and regular way 6. We expect that our analysis will contribute infor-
mation on the solution process which in the end will allow us to remove the second type of
assumptions and to show that the existence of the smooth evolution can be derived solely from
assumptions on the initial data.

The present article can be divided into three different, though related, parts.

(1) In Ref. 6 an expansion of the field near spacelike infinity in terms of a “radial” coordinate
p, which vanishes on the cylinddr representing spacelike infinity, has been introduced. We
calculate the coefficients of this expansion to third order. This calculation is not only of interest
because it allows us to study the Newman—Pen(h&® constants, which will be discussed in the
following, but also because it provides some information on the smoothness of the evolution near
null infinity for fields arising from data subject only to our first type of assumptions. Though the
asymptotic regularity conditions referred to previously exclude certain types of logarithmic sin-
gularities in the evolution nedr, there exists another potential source of singularities. To show
that in fact no further singularities can arise at any order, it is clearly of interest to understand the
situation for the first few orders of the expansion. The potential singularities should show up for
the first time at the order of our calculation. Our calculations show that at this order they are in fact
excluded by the asymptotic regularity conditions.

We note that our expansion of the field near spacelike and null infinity, which we carry out in
terms of the conformally rescaled fields and associated gauge conditions, can be translated into an
expansion of the field near spacelike infinity in terms of the “physical” field and suitable coor-
dinates. We shall not carry out such a translation because the main point of our consideration is the
fact that we can relate quantities on null infinity to the dataSon

(2) Bondi-type coordinates and certain related frame figlds the definition of the “NP
gauge” in the following are based on the structure of null infinity. The gauge conditions in Ref.

6 (cf. the definition of the F gauge” in the following are based on Cauchy data, the Einstein
equations, and certain properties of conformal structures. We discuss in general terms how to
construct near null infinity the transformation from tRegauge into the NP gauge. Using the
expansion referred to previously we then obtain expansionsliieaf various quantities given in

the NP gauge in terms of the coordinates arising inRlgauge and coefficients which are given
directly in terms of the initial data 0% We note that these expansions imply expansions of
quantities of physical interest on null infinity such as the Bondi-energy-momentum, the angular
momentum(cf. Ref. 7 for various suggestionghe radiation field, etc., in terms of the coordinate

p on null infinity, which vanishes at", and coefficients derived from the initial data.

Since we need, for our considerations quite detailed information on the structure of the initial
data near spacelike infinity, our explicit calculations are done only for time-symmetric data.
However, many of our considerations apply also to more general situations and as soon as suffi-
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cient information on data with nonvanishing extrinsic curvature becomes avaitdbRef. 8, we
shall be able to derive by similar calculations relations between field¥ orand 7*. These
relations will contain nontrivial information on the evolution process.

(3) As a specific application of this discussion we reconsider the constants which have been
associated by Newman and Penrose with asymptotically simple space-+tfim@sfs. 9 and 10
The NP constants are given by certain integrals over spherical cuts of null infinity and have been
shown to be absolutely conserved in the sense of being independent of the choice of cut. We
derive for them expressions in terms of the initial dataSrSuch expressions have been given
already in the static case in Ref. 10. We derive analogous expressions for a much more general
class of space—times arising from time-symmetric initial data. For these data the time evolution of
the field is in general not known explicitly as is the case in the presence of a timelike Killing
vector field. The fact that we can nevertheless obtain expressions in terms of the data illustrates to
some extent the efficiency of the new picture. Though various autobrRefs. 11-1Bdiscuss
these constants from different points of view, no consensus has been found concerning their
geometrical/physical significance. Whether our discussion will help clarify the meaning of the NP
constants remains to be seen. One of our main reasons for looking at them is the expectation that
they may play a role in the construction of space—times. In numerical calculations they may
certainly provide a check on the numerical accuracy.

II. RELATING DIFFERENT GAUGE CONDITIONS NEAR NULL INFINITY

We begin by giving an outline of thénite, regular initial value problem near spacelike
infinity. This has been introduced in Ref. 1, which we refer to for more detalils. It involves a gauge
which we refer to as th& gauge We then recall the Nigauge employed in Ref. 10, to discuss
the gravitational field near null infinity. Finally, we discuss how the NP gauge is related t© the
gauge.

A. The regular finite initial value problem near spacelike infinity

We want to discuss asymptotically flat solutionldl §) to Einstein’s field equationﬁw,
=0 in a neighborhood! , of spacelike infinity which covers parts of future and past null infinity.
The solutions arise from asymptotically flat data on a smooth spacelike Cauchy hypersurface
'SC M which are such that the intrinsic conformal structureScadmits an extension with a certain
smoothness to a smooth compact manifSldbtained fromS by adjoining a pointi which
represents spacelike infinit$,=§U{i}. We assume that the solution, i.e., the evolution in time of
these data, possesses a smooth conformal extensigg,@®) such that we can writeM
=MUJ UJ", where7*=Rx S? represent, respectively, future and past null infinity &nd
denotes a smooth “conformal factor” okl such that®>0 andg=©2g§ on M while ®=0,
d®+#0 onJ".

To analyze in detail the consequences of the field equations in a neighborhood of spacelike
infinity which covers parts of7/~, the above-mentioned situation has been discussed in Ref. 6 in
terms of a certain principal fiber bund\,— M , with projectionar, four-dimensional base space
M,, and bundle spac® which is a five-dimensional manifold with boundary and edges. To
describe this setting further we need to introduce some notation.

We employ the two-components spinor and space-spinor formalisms as used in Ref. 6 where
€40, €20 are the antisymmetric spinors with;=1, ®’=1. We setr®® = ¢,/ +¢,%;,2 . By
SU(2) will be denoted the group of 22 matricest=(t?,) satisfying

a +C _ a +C _
€actbl 4= €pds  Tact bl 4= Thd:

and by U1) its subgroup of diagonal matrices. A basis of the Lie algebra d25Id then given
by the 2<2 matrices
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1/0 i 1/0 -1 1(i O
“1=§<i o)’ ”2=§<1 0)’ u3=§<0 —i)’ -y

of which u; generates (1).

In the following will be described in detail the regular finite initial value problem at spacelike
infinity formulated in Ref. 6. Though we shall remark in passing on the construction of the
manifold M/ and the underlying gauge conditions, we refer for the full details to the original
article. The manifoldV/ is given by

® ®
M.=|(7,p,t) e RXRXSU?2)|0=p<a,— ;ST$ ; ,

wherea is a positive real number and= w(p,t) a smooth non-negative function, given in the
following, such thatw/p extends to a smooth positive function witip— 1 asp—0. By p, and
7 will also be denoted the projections b, onto the first and second component, respectively, of
RXRXSU(2). Then any coordinate system on @uUwill define together with the functionsand
7 a coordinate system av /. There will, however, arise no need for us to introduce coordinates
on SU?2). We denote the projection onto the third component 5fR X SU(2) by t and regard the
SU(2)-valued functiont as a “coordinate” onM .

The natural action on the right of(l) on SU2) induces a smooth action of(l) onM/ . The
quotientM }/U(1) under this action will be denoted by, and the induced projection &/ onto
M, by 7. We shall writeN=7(N") for any subseN’ of M/ . The following subsets df1, will
be important for us:

f+=(T=i%,p>0)=]RXSS,

I'={|7|<1p=0}=RxS% |'*={r=+1p=0}=S%,
C'={r=0}, 1"°={r=0p=0}=C'NI'=S"

Because they cover only a part of null infinity close to spacelike infinity, we should have denoted
the first sets more precisely I3, ~ but we dropped the subscriatfor convenience. By definition

the part of the physical manifoldVl which is covered by M, is given by I\N/Ia
=M \MJ UJ'UIUIUI™) the setsJ* representuture and past null infinity respectively,

while the setl representspacelike infinityfor M, and the metric induced on it B§. ThusM,

covers a neighborhood of spacelike and null infinityNh The edged *=S? of M, at which
future and past null infinity, respectively, touches spacelike infinity will play an important role in
the following. We shall refer to the s€ as theinitial hypersurfacesince by definitionCN M,
=C\I°=SNM,. There exists a neighborhodgl, of i in S and smooth surjective map’:C
— B, which is injective onC\I° and which map$° ontoi.

As described in Ref. 6, the manifold/ is obtained essentially by liftinyl, into the bundle
of normalized(with respect toe,;) spin frames. The sdt °=SU(2) corresponds to the set of
normalized(with respect toe,, and 7,5,) spin frames at the point With each such spin frame we
associate a unit tangent vector®ati. With this vector we associate in turn a curve throug
B, and extend the spin frame along this curve by a certain transport process. Thus we obtain spin
frames at each point &,\{i}. These frames are transported Bffi{i}=C\I° into the space—time
M, by a certain propagation law along conformal geodesics orthogortal The latter are given
in our description oM/ by the curveg = const,t=const with7 a natural parameter along them.
Since for given unit tangent vector athe spin frame defining it is determined up to a phase
factor, the spin frames at points bf \(IU1~ U1 ™) are also given up to multiplications by phase
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factors, which correspond to the action of the groud)UThe transport laws as well as further
details of the gauge conditions are encoded in the form of the data and certain properties of the
unknowns for the reduced equations.

Since it turns out to be most convenient, we will carry out all our calculations on the manifold
M and use for the subsets BF, introduced previously the same names as for their images under
ar.

We denote b)Zui the vector field generated hy and the obvious action of SB) on M/ and
define complex vector fields, = — (Zu2+ iZul), X =- (Zuz— iZul), X=- 2iZu3 which satisfy
the following commutation relations:

[X, X, ]1=2X,, [XX_]=—2X_, [X.,X_]=—X. (I1.2)

The conformal field equations, in the form used in Ref. 6, are given in a particular gauge
(coordinate and framewhich is explained, together with the equations, most naturally in the
context ofnormal conformal Cartan connectiortsf. Ref. 14. Again, we shall not go through the
complete argument but just describe the unknowns and equations. To obtain the equalitns on
we use the fact that the solder and the connection forms on the bundle of spin frames induce

corresponding formsc??’ ,w?, on M\l which extend smoothly toM/. The metric

€an€arh 02 o on M/ is degenerate becauée®®’ ,X)=0 (the angle brackets denoting the dual
pairing), but it descends to the Lorentz metgoon «(M\ ).
The equations are written as equations for the “vector”-valued unknown

— (A0 1 +
U—(C ab,C ava abvX(ab)cdvfabcd:fab’e)(ab)cdv®ggabr¢abcd)v
whose components have the following meaning. We consider the smooth vector fields
Caar = Cla @, +Clad,+Ch aa Xy +C g X,

which satisfy(®® ,cpp )= €,%€p 2 on MA\I’. All fields are written in space spinor notation
based on the vector field,= 22 c,,, . Sincer?? ¢, is invariant under the action of (1) it
descends to a vector field ar(M\l ") which is timelike, has norm, 72 =2 and is orthogonal
to S. We have

1
Caa,:ﬁ Taa’(;)f_ Tbarcab (”3)

with ¢, = r(ab’cb)b, = coab&TJr clabaer ¢ X4 +C pX_ . The connection defines connection
coefficientsl ypcq= rba'l“aa,cdz Tba'<wcd,caa,> which can be decomposed in the form

1
Fabcd:E(gabcd_ Xabcd = 5 (€abcd— X(ab)cd) - 5 €abfcds

W|th f|e|ds Satisfying)(abcd: Xab(Cd)! gabcd: g(ab)(cd)v fab:f(ab) . The curvature iS represented
by the rescaled conformal Weyl spinor fielél,,cq= ¢ancg and by a spinor field® .4
= 0 ap(cq) Which is the Ricci spinor field of a certain Weyl connection Tor

The pull back#* ®, again referred to as the conformal factor and denote®pgxtends
smoothly toM/ and is known in our gauge explicitly. It is given by

2
®:%<1—72§z), (11.4)

and appears, together with the one-form
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_ Uxab_PDabU_PzDabW
dab_ 2P (U+pW)3 '

(with x,p as given in Appendix Pwhich characterizes in a certain way the difference between the
Levi-Civita connection ofg and the above-mentioned Weyl connection, as coefficient in the
conformal field equations. We have set here
0P
(U+pW)2’
0=2Q(—D4,0D30) 2= p(U+ pW){U?+2pUx3"D ,U — p?D3PUD U + 2p2Ux3°D ;oW
—2p3D3PUD ,yW— p*D3PWD, W} 1?2, (1.5)

where the smooth functiong=U(p,t), W=W(p,t,) which satisfyU=1 andW= 3mupy on°,
are given as part of the initial data on the initial hypersurf@e on whichD,, is the intrinsic
covariant derivative. Note that the field¥, », d,, do not depend or. The conformal factor
satisfies the relation&f. Ref. 14

0>0 on M}, {O@=0}=7"Ul'"Ul'UI'"UT ",
- (1.6)
Can (®)#0, €€ ¢ 0/(0)Cphy (®)=0 on J'*.

In the following we shall refer to the coordinatesp, t, the frame{c,,/}, and the conformal gauge

defined by(ll.4) as theF gauge

1. The conformal evolution equations

We recall here a few general features of the conformal field equations and refer again to Ref.
6 for more details. The conformal field equations imply My evolution equations of the form

{A%,+A9,+ AT X, +A"X_}u=Cu, (11.7)

whereA® A, A* C denote matrix-valued functions which dependwand the coordinates. The
system is, fom close to the data given in the following and for the coordinates taking values on
M/ nearC’, symmetric hyperbolic. Writingi= (v, ¢) with

v =(C%pClapC b X (abycd » €abcds Fab O (apycd: @ ¢%ap): = (dapcd, (1.8)

the evolution equations far are obtained, with our assumptions on the gauge, from the structural
equations of the normal conformal Cartan connection associatedywithey read explicitly

o _ f.0
d,C ab__X(ab)e Cer~ fab,
R ef .« _
&TC ab™— _X(ab) c efs a—l,+,—,
_ ef 1 ef o) e
9:8abcd™ ~ X(ab) Sefed™ —2(€acX(bd)ef+ €pbdX(acren) f* = V2X(ab)(c faje

v

1
f f -
- E(Eacf bd T €0d@+t ac) =10 apcds

&Tfabz_X(ab)effef+i®ffab! (1.9)
V2
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f
d:X (ab)cd™ _X(ab)e Xeted™ O (cdjabT © Nabcas
f .
99 (abjca= ~ X(cd)® O (abjer— 970 Napcat 1V2d%attp)cde:
f
(?f®ggab: - X(ab)e ®ggef""‘ﬁdef”fiabefa

Wh(?re o 77ak,)c_d: H(babeat ¢;bcd) and Habcd= ~ (112) (dapea— ¢§bcd)1 with
722 12 78 7 barprerdr = Papeq» denote the electric and the magnetic partdf,.q, respec-
tively. These equations are of the form

9.0=K(©)+Q(v,0)+L(), (11.10)

with a linear functionK and a quadratic functio® of v, both with constant coefficients, and a
linear functionL of ¢ with coefficients which depend on the coordinates. We Haw® onl’.
The evolution equations fap, derived from the Bianchi identities, are genuine partial differential
equations. They will be considered in more detail in the following.

2. The initial data

Consequences of the finite regular initial value problem have been worked out so far for
Cauchy data which are time symmetric and admit a smooth extension through spacelike infinity.
In fact, it has been assumed in Ref. 6, as will be done in the following, that the conformal structure
is analytic near spacelike infinity. We note that this condition is imposed only for convenience and
could be relaxed. The free Cauchy dataSare then given by the conformal structure of a smooth
metric h on Swhich is analytic in somé-normal coordinates near

We assumé to be given near in a certain conformal gauge, the gauge(cf. Ref. 6. This
reduces the freedom of performing conformal rescalings#?h to the choice of the four real
parametersd(i),6 4(i), the value of@ in a neighborhood of then being determined by the
conformal gauge. We assume tlggtis a convexh-normal neighborhood afand thatp descends
to a radial normal coordinate dd, .

The metrich induced by onS is related toh by a rescalindi=Q ~2h, where the conformal
factor ) satisfiespQ) ~*°—~1 asp—0 and the LichnerowictYamabé equation

(D,D*—ir)(Q Y =0. (11.11)

HereD denotes the covariant derivative anthe Ricci scalar oh. The form(11.5) of Q in terms
of the functionsU andW is a consequence of this equation and the required asymptotic behavior
of Q, which ensures thdt is asymptotically flat.

The initial data onC’ for the conformal field equations are derived fronand Q). They are
given by

0o _ 1 _ + <+ - _ “—
C’ab=0, Cap=pXaps C ap=ZabTPC ap, C ap=YabTPC ap,

Xabycd=0,  Eabcd=V2PYabcd: Fab=Xab: (11.12)

2 3
p 1 p
Oapcd= — a D (abDcagyQ+ 1_2p2rhabcd: d’abcd:m(D(achd)Q+QSabcd)a

With X, Yab, Zap, and the expressioln,, .4 of the metrich in space spinor notation as given in
Appendix 2, ands,pcq= Siancq the trace free part of the Ricci tensor tof

In chapter Sec. IV A we shall discuss how the coefficiéilts, ¥apcq defining the frame and
the connection coefficients are determined@nby the (three-dimensionalstructure equations
fromr ands,cq. The observatioiicf. Ref. § that the above-mentioned data extend smoothly to
['°CC’ is most important for our construction.
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3. The transport equations on |

At first sight it may appear that the initial data & thus in particular orC’, should be
complemented by boundary data bnfor the solutions of Eq(Il.7) to be uniquely determined.
However, it turns out that for any smooth solution to the evolution equation™ prwhich
coincides onC’ with the above-mentioned initial data, we have the important relation

Al=0 onI’. (11.13)

As a consequence, Edll.7) reduces to a symmetric hyperbolic system of the fd?d,
+A*X,+A"X_}u=Cuonl’, which allows us to determine the unknowron |’ uniquely in
terms of the value ofi on 1'%, Thus we find, as was to be expected, that any smooth solution of

(1.7) on M taking onC’ our initial data is determined uniquely by its data®n
More generally, by applying repeatedly the derivative operafdo the evolution equations,
restricting tol’, and observindll.13), we obtain symmetric hyperbolic transport equations

{A% +A* X, +A X_JuP=C,uP+g, on I’, p=0,1.2,.., (11.14)

for the quantitieaJF’:((?gu)l,, . Here the matrix-valued functio@, and the vector valued func-
tion g, depend orp and the quantities®,...,uP~*, but the matriceA®, A* are universal in the
sense that they depend neitherpnor on the initial data. We shall employ the above-mentioned
notation more generally, such that applying it to the fiedgs.4 andr on the Cauchy hypersurface
we haveshy, .= (5 Sapcd 170, andrP=(dfr)|, .o, respectively.

To integrate the transport equatiofis14) onl’, we expand all fields in terms of the matrix
elements of unitary representations of (8Jwhich are given, in terms of the matrix elements
(t%)ap=0.1 Of the two-dimensional standard representationt ©5U(2), by the complex-valued
functions

) 1/2 1/2
SU(Z)BHijk(t):(J') (k) O3, 1oy ) To(=1,

j,k=0,..m m=123,... (I1.15)

Here, as in the following, setting a string of indices into brackets with a lower ikdexneant to
indicate that the indices are symmetrized and thehthem are set equal to 1 while the remaining
ones are set equal to 0. The functiogis+1T,/,(t) form a complete orthonormal set in the
Hilbert spacel.?(u,SU2)), where u denotes the normalized Haar measure or(2pUJnder
complex conjugation we have

T () == T " (1), teSU2),
and, for O<k,j<m, m=0,1,2,..., we have with8, ;={j(m—j+1}*/2,
XTi=(M=2D)T0 5, XeTw = Bmi T2, X-Tm 5= = Bmj+1Tm 1. (11.16)

A functionf satisfying a relatiorX f=2sf with an integer or half-integer numbsyis said to have
spin weights. We note the spin raisindowering property of the action oX.. on such functions
implied by (11.2), i.e., X X. f=2(sx1)X.f. By construction of the manifold/ any function
occurring in our formalism has a well-defined spin weight. This leads to a simplification of the
expansion in terms of the functioﬁ'sm"j. The general form of these expansions has been dis-
cussed in detail in Ref. 6 and will be assumed here without further explanation.

The quantitiesi®,u*,u? have been determined in Ref. 6. They are given Ifeith a correc-
tion and a useful change of notatjoat the beginning of Sec. IVA. The functions will be
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calculated in Sec. IV A. The quantitie®, p=2,3,... have been show(ef. Ref. 6 to develop a
certain type of logarithmic singularity on the séts unless the free datum on S satisfies the
asymptotic regularity condition

D(agpy *"Payb,Pabcy (1) =0, (11.17)

forq=0,1,2,..., where the spinor fielt,.4=b(ancq represents the Cotton tensorrofThe values

of the functionsuP, p<3, which will be given in the following, have been calculatedlérunder

the assumption thdtl.17) is satisfied forg=<1. The analysis of the quantities, to the extent to

which it has been carried out in Ref. 6, indicates another potential source for a singular behavior
of the fieldsuP, p=3, atl’*. This will be discussed further in Sec. IV A.

B. The NP gauge

For simplicity we restrict our discussion now to the futureSoih M, we refer to future null
infinity simply as to null infinity and we denote it by. In the following we shall describe a
certain class of gauge conditions @vl, g) near null infinity, referred to as the Nfgauge which
comprise certain requirements on the conformal gauge, certain coordinates, and a certain ortho-
normal frame field. Though this gauge is known, our description will be quite detailed, because we
will have to refer to it later. The Levi-Civita connection induced by the conformal mgtwdl be
denoted byV.

Suppos€E, , } is a smooth frame field, satlsfylrgEaa, \Epp) = €av€arp , Which is defined
in a neighborhood of null infinity. We call it an “adapted frame,” if it satisfies the following
conditions. The vector fieIE"n, is tangent to and parallel propagated along null infinity. On the
neighborhood on which the frame is given there is exists a smooth functianich induces an
affine parameter on the null generators Bfsuch thatE"ll,(u°) 1, which is constant on null
hypersurfaces transverse § and which satisfie€, = g“ﬁv gU’. ThusEg, is tangent to the
hypersurface$u’= cons} and geodesic. The f|eldl<.ll, , 00, as well as the fleIdEm, ,Elo, which
are necessarily tangent to the slides=cons}N 7, are parallelly propagated in the direction of
Eo -
” In terms of its NP-spin coefficientsiote the slight difference of our notation with that of Ref.
2)

EA V. E, +E%EPV,E

I, {Eaa’ bl ¥ a=c0’'B aa’ —cl’ bO’B} (”'18)

aa’bc

an adapted frame is characterized by the properties

Ip1=0, Tj,=0 on 7,
(11.19)

F10’0 I‘01’0 ro’ I‘11’002 01/0’1’+F01’01’ I

wap=0, ab=0,1 nearJ.

The first of these conditions tells us th&tis shear free. This well-known fact follows from the
equation for the trace free pas}; of the Ricci tensor of the conformal vacuum metgic

0S,5=130,5V,V70 —2V V0. (11.20)

Transvection witrE;% E;% and restriction tQ7 givesI';,,,Eqy () =0, while E;,, (©)#0 on J.
We shall combine now the construction of an adapted frame with the freedom to perform rescal-
ings

g—g*=6’g, O0—-0*=00 (11.21)
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with some positive functiord, to obtain another adapted frar{g,} for which we get further
simplifications beside§l.19). We start with an adapted franjE_ _,} as described previously. For
arbitrary >0 and for arbitrary functiop>0 which is constant on the generatorsbfve set

El, =0 ?pE,, and u'(u"):jli 6%(u’)p~Y(u")du'+u, on J, (11.22)

U

where the integration is performed along the generatog. dthen E'll, will be parallelly propa-
gated ancE};,(u’) =1 will hold. We assume that’=u, andu’=u; onC and set

o

Eoy=P 'Eyy. Ejp =0 ?pEj,, Eg=60'Ey, oncC (11.23)

SinceC is diffeomorphic toS? and thus carriesup to diffeomorphismsprecisely one Rie-
mannian conformal structure, we can fix coordinatés 9, x*= ¢ as well as the functio® on C
such that the metrih* induced byg* on C is given by the standar&?-metric h*=dd?
+si? 9de?. Using the transformation lawd'}y =P '[[jy00— Eoy(l096)] and Iy,
= pG*Z[FBl,llJr E°11,(Iog 0)] on C, we can achieve, by suitable choicedd andp,

[o00=0, Tgp13=0, Egy(©*)=const=0 on C. (1.24)
The transformations}, ;= — (2/6){(V,V 30— 2/6V .0V ;6) — 1925V, V70—2/0V_6V70)} +5,,

of the trace free paﬂaﬁ of the Ricci tensor under the rescalifig21) implies a transformat|on of
D 9= 35,4E55 Ea) into @3,= ZSa,BEll'Ell’ which yields, with the assumption thé;,=0 on 7,
on the generators qf the ordinary differential equatiofODE)

.. 2
Ell,(Ell,(a))—E(Ell,(e))z— 6d,,=0. (11.25)

Equation(I1.25) can be rewritten as a linear ODE fér * which can be solved on the generators
of J with §>0. Using the initial dat&, E"ll,(e) on C determined previously, we solve f@érto
obtain

®3,=0, Ty, ;=0 onJ (11.26)
Here the second equation is a consequence of the first, the field equatioi$,22ndWe assume
in the following (11.22). We observe that the induced metric on the sectfaris- cons} is given
as a consequence everywhere By the S>-standard metric.

Once # and E;,, have been fixed o, the vector fieldE,,, (whenceE;,) tangent to{u’
= cons} is determined up to rotations. We choose some smoothHigldon 7, solve the equation

E(0)=—iEjG Ef VEED, . (11.27)
for the functionc with initial valuec=0 onC and replaceE;)l, by eiCEz)l, to achieve
Iy0,=0 onJ. (1.28)

Observing the above-mentioned simplifications, we contract the analdt. Zﬁ) for g* with
Eqi E35 to conclude thaW ;V*“®*=0 on J. A further contraction withEg E %, gives

El1(Ex(©*)=0, ie. Ey(®*)=const onJ, (11.29

while a contraction W|tI”EOO, EOl, yields nowEOl,(EOO,(® )= anoo 00,(@ ), which implies
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=0 onJ. (11.30)

To fix alsod® on 7, we use the conformal transformation law for the Ricci scalar, i.e.,
1 12_, 6_,
Rlg*]= zRlg]+ 5z VL0V 0= SV V0. (11.31)

If we require thaR[ g*]= 0 along.7, this equation takes on the generators of the null hypersurface
J the form

S 2 . .
E1y(Eoo (0))~ 5E1y(0)Eq (0)=F", (1.32)

of a linear ODE for the unknowan,(e), where the right-hand side

.. . . 2 . . 1
F*=Re| Egy (Eio(6)) ~ 200y 0,E 0 (6)~ 5 Egy ()L () + 55 RIQ]

is given in terms of quantities which have been determined already. &sing the initial value
Egy () =p 20Ty 0dc, fixed onC by (11.24), we can integrate the equation to achieve

Rlg*]1=0, T'jy0,=0 onJ, (11.33)

where the second equation follows again from our previous results and the field equations.
We do not require conditions of higher order on the conformal gauge. Assuming a conformal
gauge as described here, we shall refer to an adapted ffamg satisfying the above-mentioned
conditions as a NP frame, and to a normalized spin fraifle={0"",."*} which implies a NP
frame as to a NP-spin-frame.
We extend the coordinates,x* to 7 such that they are constant on the null generatotg. of
As described previously, we define null hypersurfaa€s= const transverse tQ7 and we denote
by r* the affine parameter on the null generators of these hypersurfaces which sE@g,f(eQ
=1 and, on7, r"=0. The coordinates® x* are extended such that they are constant on the null
generators ofu’=const. Thus we get @ondi-type systertu’,r*,x*,x*) in some neighborhood
of null infinity. Occasionally we shall change from the coordinafgsp, to a complex stereo-
graphical coordinate given by=e'¢ctg(9/2). We write the volume element and the volume
form alternatively

ds?= — (d9?+sit 9 dp?)=—P({) 2d¢dl, e=sind ddN\de=[2P({)] 2d¢/A\d¢,

where we seP({)=3(1+ gf). We shall refer to the conditions on the conformal scaling, the
frame field, and the coordinates as tHE gauge

C. Relating The NP gauge to the F gauge

While the NP gauge is hinged on null infinity, the F gauge is based on a Cauchy hypersurface
and these gauge conditions are in general completely different. In the following we will study the
transformation which relates one to the other. It is important for this that the conformal €égctor
whence7, is known explicitly in the F gauge.

The vector fields{c,,/} tangent to the five-dimensional bgndle spad¢ are not directly
related to the NP gauge on the subkkpl of M. Let S°2U s p— =s(p) € SU(2) be a smooth
local section, defined on some open sulidasf S?, of the Hopf fibration S(R)—SU(?2)/U(1)

S
=S%. It induces a smooth sectiddx RXRs (p,7,p)—(s(p),7,p) € M. We denote the image
of Sby M} . The vector fields tangent &(U) which have projection identical to that &f. are
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of the form X.. +a. X with some smooth functiona.. on s(U), satisfyinga_= —a, . Because
of (I1.2) a. cannot vanish on open subsetss¢t)). Consequently, the tangent vector fiekisé,
of M3 satisfyingm, (C},) =, (Caa) are given oM by

* + -
C,.=Caxt(ajc _,Ta_c )X,

with functionsa.. which are independent afandp. The connection coefficients defined b
by the connection forrraubC and the vector fields;a, are given by
I‘;a/bc:l_‘aa’bc""(aJrCJraa’"'afciaa’)(eobeco_ elbecl)-

In the remaining part of this section we shall work @M /) and denote the projection of the
vector fieldsc;a, , which define a smooth orthonormal frame field sGM;\I"), and the pull-
back of ' ,°. by Sagain byc’,, andI';,,°.. Similarly, the projection of7 NM} andl’ * N M}
will be denoted by7 andl .

The frame field{c’_,}, which is in general not adapted to null infinity, will now be related

aa’
close tol * to an adapted framgE;_,}. On 7 the vector fieldE;,, must be of the form

;a’
E}5=fVeO, (11.34)

whereV and® denote the Levi-Civita connection and the conformal factor associated with the F
gauge. The requirement0E ",V 4E;%, = fVFOV 4 VO + f2V 4(3V,,0V*0) thatE;S, be paral-
lelly propagated, gives after contraction with a vector fiélttansverse tqQ7 the ODE

Z(V,0V40)

V*OV (logf)=— 2(0)

(11.35)
for f on the generators @f. To fix f, we setf = f;=const-0 on some sectiod of 7. The function
u® satisfying E‘ﬁ,(u") =1 onJandu’=u; onC can be now be determined.

Let \j e SL(2C) satisfy

ADch, (11.36)

Rewriting (11.34) in the formE;,, = fc},,(0) €% ¢’ , we find the relations

a!l
NN =fck, (@), NOaY i =—fcl, (@), AAY=fch,(0). (11.37)

From (11.36) we obtain\®,E",, =\%E;,, =A% 1.ci, =AY 1.ck, . Applying this to the function
u’, we get

No=A0" ek (u) Y ek (u). (11.38)

Together with the condition det{,)=1 the relations(11.37), (11.38) allow us to determine the
matrix elements\?, on 7 up to replacementa® —\?,7°. with (7%,)=diag€*e ') eU(1).
After making here an arbitrary choice, the adapted frfﬁEf%,} is determined uniquely neaf.

To determine a NP fram{eE;a,} near., we need to find an appropriate rescaliig21) and
a scaling factop. We set

* 1%
Caa’_e Caar s Ea

b Ab' %
a=AAP e (11.39)

with Afe SL(2C). Assuming(1l.22), we haveE; ], =f*V**@* with
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1

f'=— Ep(07)=5

R on J. (11.40)
We choose now), df, and coordinates® x* such that the induced metric @his given by the
S?-standard metric and, with chosen such thgi= 6 on C, conditions(11.24) are satisfied with
Eoo (%) =15 ™.

Following the procedure of Sec. Il B, we can determine the conformal féabor 7 such that
(11.26) is satisfied. The transformatiok?, can be determined in the same way\dg. Imposing
condition (11.28), we determineA?, up to U1) transformations or€. Conditions(11.29), (11.30)
will now be satisfied as well and we can determitteon 7 such that(11.33) holds. Extending the
tetrad to a neighborhood ¢f such that it is parallelly propagated in the directiorEQB,, we get
the desired NP frame.

In our later calculations we will need the quantitiEg,o,(Aab). Using our gauge condition
oy ap=0 and the transformation laws for the connection coefficients,

rr 1 e .+ * _(log @
aa’bc_g{ aa’bc Ea(bcc)a’( 0og )}1

. (AP)=—AT A" AN TS, P+ AP 9,
wherel', ,, . denotes the connection coefficients with respec? teand{c_,}, we find
Epy (AP)=—ATgAT o AN T, 5y (11.41)

In the above-mentioned considerations we had to fix various quantities by prescribing data on
the sectionC. When we shall determine later the expansion of a NP frame Ingait will be
natural to try pushing’ to | . A priori it is not clear, however, whether this can be done in a
continuous way. We shall see, that for certain quantities the limits"tdo exist, while other
quantities can only be described in terms of their growth behavior Inear

Ill. THE NP CONSTANTS

In 1965 Newman and Penrose discovered certaintrivial quantities, defined by certain
integrals over a two-dimensional cross sectio7éf which are absolutely conserved in the sense
that their values do not depend on the choice of the se(tibiRefs. 9 and 10 The interpretation
of these ten real NP constants is still open. In the case where the space—time admits a smooth
conformal extension containing a point (“future timelike infinity” ) whose past light cone
represents7’, these constants are essentially given by the five complex components of the
rescaled conformal Weyl spindcf. Refs. 10 and 165 However, these quantities do not allow us
a simple interpretation either. More interesting is the case of stationary vacuum space—times. In
this case the constants have been calculated and have been given in the nfasy (

X (quadrupole momejt- (dipole moment (cf. Refs. 10 and 16

If the evolution of the field in time is not given explicitly as in the presence of a timelike
Killing vector field, there appears to be no obvious way to calculate the NP constants. It turns out,
however, that under suitable assumptions on the asymptotic behavior of the field near spacelike
infinity the constants can be calculated by integrating the transport equatidhscoa sufficiently
high order. In the following we shall derive a formula for the constants in terms of quantities
which can be determined by solving the transport equations.

To explain the original formulécf. Ref. 10, which is given in the Bondi—Sachs—Newman-
Penrose framework, lét, r, 9, ¢) denote Bondi coordinates on the physical space—time, where
r denotes an affine parameter along the generators of the null hypersyrfiacesns} and the

generators are labeled by the standard coordir{ates) on the two sphere. The null frand& ., }
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as well as a corresponding spinor dygf', 7%}, both defined on the physical space—time, are
normalized with respect to the physical mef@iicThey are adapted to the Bondi coordinates such
thatEoy =4, .

We assume that the conformal space—time with mettier ~2g admits a smooth extension
asr—oo to a smooth Lorentz space with boundafy ={r°=0} and that the functions’:=u,
r'==r 1, 9, ande extend such as to define a smooth system of Bondi-type coordinateg’hear
Furthermore, we assume that the frafi€,,} and the spinor dyago™,."*}, defined by

E. = rz_a_a,Eaar y
(n.1)
o'A=ro”, A =14,
such that they are normalized with respecyto extend to smooth frame, respectively, dyad near
J". The results of Newman and Unif. Ref. 17 then imply that{E’ _,} defines in fact a NP
frame.
Under our assumptions the componeRt= a0 0°6°8P of the conformal Weyl spinor
has an expansiofig= y3r ~5+ ygr ~6+O(r ~7) with coefficientsy§) which are independent of
In terms of the physical space—time the NP constants are given with this notation by the integrals

aa’

G= ff 2Yomibssing dd de, (1.2)

which are calculated for fixed value of The functions,Y,,,m=—-2,—-1,0,1,2, denote spin-2
spherical harmonic&cf. Ref. 18 which are obtained from the standard spherical harmonics by

1 oo 1,
—=Eg By 0a65Yom=—=0Yom. (11.3)

Y:
22,m2\/€ 2\/6

Here 6 and 0 denote the standard covariant differential operator on the unit two-sphere and the
“edth” operator, respectively. In evaluatindll.2), it will be important that the operatas is
defined with respect to the complex null vector fiélg}, (cf. Ref. 19.

We reexpress the constants in terms of the figl’dE'aa,,o'A,L‘A satisfying the NP gauge, in
particular (11.33). Using the componentbo=rapcp0 0"B0"0'P of the rescaled conformal
Weyl spinor, and performing the obvious lift ¢d’, we obtain for the NP constants the formula

1 = .
Gn="5— 35 2YamEny ($0)dSda. (I11.4)

HeredS=sinddd de denotes the surface element on the cross setign”=cons}C 7" and «

denotes a parameter on the fibers of the principal fiber buddle- M. The second integration

can be performed without changing the result because the integrand is independent of the variable
.

The values of these integrals are independent of the value of the constant defining the cross
section as well as of the choice of the Bondi coordinatétself. Thus they are invariant under
supertranslation&cf. Ref. 10.

We shall determine the NP constants by integrating the transport equatidbhsSince these
equations and their unknowns are given in the F gauge we exflteds in this gauge. Using
(11.39), we obtain in the notation of Sec. Il

1 —_— 1 v .
Gn=-— > % 2Y2,my{Abo/\CoAdero[AaoAa 0/Cazr (Pocdd — 3beddEgy ()]

+40A oA A YGE y (A%) dpead dS da. (11.5)
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This is the expression for the NP constants which will be used in the calculations of Sec. IV C.

IV. TIME SYMMETRIC SPACE-TIMES

In this section we will use the assumptions of the regular finite initial value problem near
spacelike infinity and thus restrict our considerations to time symmetric space—times. We begin by
solving the third-order transport equations bn This calculation is of interest for two quite
different reasons. First of all, it will give us a first insight into the potential source of singular
behavior of the quantities® pointed out in Sec. Il A 3. Further, besides giving information on this
question of principle, the calculation will allow us to analyze the relation between the NP con-
stants and the initial data for asymptotically flat solutions. Under our assumptions, we will be able
to evaluate the integrdlll.5) in terms of quantities derived from the initial data.

A. Solving the third-order transport equation

The solutionauP of Eq. (Il.14) have been given in Ref. 6 fgr<2. Since they will be used in
the following calculations we reproduce them here, in a notation, though, which is more conve-
nient for a systematic discussion of the higher order expansion coefficients. We also take the
opportunity to correct a misprint in Ref. 6.

The solutionu® of the transport equatior($l.14) has the form

(Co)°=—TXap, (C2p)°=0, (Cap)°=Zap, (Cap)’=VYan, Eapca=0
0 0 0 0 0 2 (v.1)
X(ab)cdzo' fab=Xab, (®ggab) =0, ®(ab)cd:0' Dapcd™ —OMeZpca

where m=mjyp, denotes the ADM mass of the initial data set. The spinors appearing on the
right-hand side of these and the following formulas are listed in(Ef0) of the Appendix. The
solutionu? is given by

(Cap) =™ DXap, (Cap)'=Xap, (Cap)*=C"(7)Zap,
(Cap) ="M (MVab,  Eapca=SH(T)(€aXoat €bXac)  X(abyed=K (Teanca
1 1 1_:1 1 1 2 (V.2)
fap=F (1) Xap, (ggab) =t(7)Xap ®(ab)cd:T (T)eabce
brped= BT X Waelp gt [ d3(7)+ DI TIWylel o= d1(— TIX_Wiedy 4
while u? takes the form
(o) ?=[cT(7) +CHA )Wy IXap+ CGA TI[X - W1Yapt+ Xy WiZg],
(Cap)?=C(7)Xap,
(Cap)?=[C1 (1) + ¢35 (T)W1]Zap+C5 2( )XW Xqp,
(Cap)®=[c1 (1) +¢52(T)Wy]Yap+C5 2(7) X WiXap,
gibcd: [Si( T)+ S%( T)W1](€acXpat €paXac) + Sg( 7)(€acYbdt €pdYac) X- Wi
+ S%( 7)(€acZhdT €paZac) X+ W+ 8421( T)(S;bch+W1+ Sgbcdxfwl)a
(IV.3)
Xeabyea=[KI(7) + KE(T)Wiledpcqt K5(TNapeat KA(7)(€acYbat €ndYac) X~ Wi

—K3(7)(€acZat €ndZac) X Wi+ KE(7) (e 2peaXs Wi — £3pcaX-Wi),
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f20=[F2(7) + F3(1) Wi ]Xap+ F3(7) (X_WyYap+ X Wi Zap),
(0 ¢%p)2=[t5(7) + t5(T)Wy [Xap+ t5(7) (X_WiYap+ X W1Zap),

®(ab cd— [T (T)+T2(T)Wl]8abcd+-r (T) abcd+ Tzzl(T)(facybd+ deyac)xfwl
_T4( 7)(€acZodT €bdZac) X+ W1+T (T)(Sabcdx+wl abch—Wl)i

Baped= PTIX X Woe gt [ 5(7)X s Wi+ ¢5(7)X s Wale hpeat[ 95(7) + da(TIWy
+ P TIWoleipeg— [ #5(— TIX_Wi + ¢5(— T)X_Waledpeqt d5(— TIX_X_Waeapeqs

The ~dependent functions in these expressions are polynomials which are given in Appendix 3.
The calculation ofu® is facilitated by the following properties of the transport equations
(I1.14). For p=1 they are of the form

JP=LwP+1,, B%,4P=M, 4P, (IV.4)

where, using the notatiofil.8), we setv”= ()|, ¢P=(d5¢)|;» and denote by, andl, a
matrix and vector-valued function respectlvely, of the quantmfés uP~1 while M, denotes a
matrix-valued function which depends on the variahlés..,uP 1, vP. The matrlcesB“ neither
depend orp nor on the initial data. Thus, given the quantitigsq<p—1, we can integrate the
first of equations(IV.4), which is an ODE. To integrate the second equation, we expand the
quantitiesu® in terms of the functionﬂ'mkj given in(11.15) and usg(ll.16) to reduce the integra-
tion to that of a system of ODEs.

To determine the initial data far® on 1'%, we have to expand the unknowfis12) in terms
of p. Instead of prescribing the conformal methi@n the initial slice, which represents the free
datum, we shall prescribe, in a fashion consistent with the three-dimensional Bianchi identities,
certain curvature quantities and use the three-dimensional structure equations and the Yamabe
equation to determine the remaining quantities.

The conformal factor, which appears in the expressitink2), is given in(I1.5) in terms of
the functionsU andW. The functionU, which is determined locally bi near spacelike infinity,
is given, by a procedure explained in Ref. 6, in the form

U= Up®, (IV.5)
p=0

with p-dependent coefficientd,,. As shown in Ref. 6, the Taylor expansion Wfin terms ofp
has in our gauge the form

U=1+ E Ukp (IVG)

For our calculations we shall need the coefficiém, which will be determined later in this
section.

The functionW, which contains global information on the free initial data, is determined by
solving the Yamabe equation on the initial hypersurface. We shall consider here a larger class of
functions which are subject to the Yamabe equation only in a small neighborhood of spacelike
infinity. The coefficients in the Taylor expansiof=Wy+W;p+ 2W,p?+ (1/31)W3p3+ O(p*)
have expansioiicf. Ref. 6.

2i m
W= > Wi T ) -
m=0 k=0
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They are restricted by the requirement that the Yamabe equatitD(,D ;— 5r,)[W]=0 holds
near{p=0}, which implies the simplification

2
Wi:kZO Wi;Zi,kTZiki y |S3 (IV?)
We get for the conformal factor and the trace-free part of its second covariant derivative

Q=p?=mp*+[3m?—2Wy]p*+[ - 3m°+3mW, — W,]p°

+[Em*—3mPW, + 3W3+ 3mW, — 2W;— 50,]p%+0(p7),
(IV.8)
D (abDcayQ=[ —6MeZpcalp+[(12M% = 36W,) e 2 cq— 12(& gpedX+ — €apeaX—) Wi lp?

+[(—15m°+96m W, — 36W,) £ 3 cit (8apcaX+ — EapcaX - ) (24MW —8W,)
—3(ed X X+ emp X X)W, ]p3+ [ (156W5— 150m>W; + 15m*+ 8ImW,
—20W3— 40,4+ HX, XU, — 6X, W X_W;)e2, 4
+ (& apedX+ — & apcdX ) (30WE — 30M?W, + 15mW, — W3- 2U,)
+ %(Sgbcdx+x+ + Sgbcdxfxf)(e’widl' FMW,— W3- ﬁ04) - %Xe(a'ygced)]94
+0(p°).

From this we obtain as initial data far® on1'°,

(c2)%=0, (ci)®=0, (cip)3=0, (cyy)°3=0,

Eabea=0, X?ab)cdzo' f3,=0, (0%)3=0,
(IV.9)
@?ab)cd=3x+x+wzsgbcd+(—7ZnX+W1+48X+W2)s§bcd+(27m3—288'nW1+21aN2)s§bcd

+(72MX_ W, — 48X_W,)e3, .4+ 3X_ X _Woel, .o

babod= (£abcdX+ X +eapcdX X ) (W5 — MWy~ W5 —3U )
+A(el o Xs — 30X ) (OW2— 3mW, — BW,— 20 ,) + 682, . 12W2 — 3mW, — 20W,
— 40,4 X, XUy = 6X Wi X Wy) — 4Xe(a Ve e 3S3pca

where yapca=(2p) ~L(€acXpaT €naXac) + Yanca deNote the connection coefficients 6.

We determine now how the functiolis,, y3,.,ands2, .4 are related to the free data on the
initial hypersurfaceC’. As shown in Ref. 6, the structure equations ©h, which relate the
connection coefficients to the curvature, read

! d.3 + V2 b b + ! 3
— Y — |7 — Y — 7
ARG 00ab P 0000Zab™ Y0011 ab A 00ab
L L 1 1
= Y0000Y11ab™ Y0011Y00ab EsabOO _6 v Yab,
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1 . V2| . .
v dpY11apt r Y110ab~ Y111¥abt v Y11ab
. . . . 1 1
= —_ + — —_
¥1100Y11ab ™ Y1111Y00ab ™" 5 Sab11 6v2 IZab»

and the components df,,.q4 have Taylor expansions

. . 1.5 3 4 1.3 4
Yo1ab=0, Yooab= 37 YooabP +0(p"), Y11ab= 37 Y11abP +0(p").

From this we get

3 2 ©3 2 “ 2
Yo001= — = Sooor Y1101~~~ So11r  Yoooo= — ==
0001 ™ 7 7 So00z 1101~ , > So11r - Y005~ 5 S0000
3’3100: ° 53011_ : re, 3’8011: - ° 55011"” : ~r%, Y= ° 111
5V2 102 5V2 10v2 5V2

and thus obtain for the quanti®y,p.q= —4xe(ayﬁced)+35§1bcd the concise expressions
Fo=2s3, F1=3si, F,=%s5—&r? Fy=3si, F,=2si, (IV.10)

where we sefF;= F (abca),+Si = S(abca), using the notation introduced {il.15).

In the cn gauge the curvature vanishes at zeroth and first order at spacelike infinity. At second
order this is in general not true and the prescription of the free datainrterms of curvature
guantities has to be consistent with the cn gauge, the Bianchi identity, and the regularity condition
(11.17) for g=1. The content of the cn gauge is expressed in second order in the curvature by the
conditions

DapD?r=0, D,pD?Scger= —iDcaDefls D(apDedSetgn=0 ati.
It follows that the spinor

_ 1
tabed efgh™ DachdSefgh_ §habchhSefgh-

whereA,, denotes the Laplacian corresponding to the méiris symmetric in the first and the last
four indices separately. Using the Bianchi identity

Dabsabcd: %Dcdrv
we thus get
D apDcdl — 3AnSabcd=t"abcde = tah cder= Da®Dp' Scdert $AnSabed:
whence
DaeDbecdef: 5Dachdr-

No further conditions are implied aton the Ricci scalar at this order. Finally, we get from
(1.17) for g=1

Dh(anCSdef)h=0 ati.
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The above mentioned relations imply that the expansion,@fq ciqnin terms of symmetric
spinors ande,,’s can be expressed completely in terms of symmetrized twofold contractions of
this spinor, which in turn can all be expressed in terms of the symmetric spigy®.r. Work-

ing out this expansion we get

D3PD s, ¢y = @0 oD %yyr — 55h?°DDypr  at i, (IV.11)

in our gauge. Going through the procedure described in &6) of Ref. 6 we gets(abcd)
=s7p?+0(p®) andr=r?p?+0(p® with

3l2-jl 4 4\ 12 5 4
2~ x| k. 2_ 7 * T K

ST kgo Rk ( J) T, 1 \/Ekgo R T4, (IV.12)
where we seR = 3(i) /D (apDca), I *, With the star indicating that the quantities are given in our

gauge at. The five real real numbeiR; contain precisely the information on the methievhich
can at this order be freely specified in the cn gauge.
We note that the Cotton spinor is then given aty

Dapbcger= — g{fa(chdDef)r + eb(aDcdDef)r )

and the deviation dfi from conformal flatness atis encoded at this order in the symmetric spinor

Dachdr(i)-
From (IV.10), (IV.12) we obtain

4 4 4
27 3
P R*T k , F — R*T k ,
ZOKZO k '4 0 1 8k§=:O k'41 20\/— <o

k
T42!

4
27
F4:%k§=:0 R§T4k4 .

3 . *T1 k
_§k§=:o Rk T4 3
Finally, we will calculate the coefficierid, in the Taylor serie$lV.6). Only the coefficients

Uy, U;, andU, of the expansior(lV.5) contribute toU,. These functions have the following
expansiongcf. Ref. 6 for the defining integrals

1 (r ) dp’ 1 3
Ugp=ex Zf (Ap' +6)7 =1+ E[\/ﬁylloo]p‘l-l-O(ps), (IV.13)
0 .

where we used the expansion

2V2
Ap?=—6+ 3 7"1’)10004-1- O(p®).

Further we have, witl. denoting the Yamabe operator,

pL[Up] 1

Wi, o1
12p T

36 Y1100~ 4_8r2

p?+0(p3). (IV.14)

Finally, observing(V.12), we obtain

Uo [»L[U4]p’

N IRV

dp’=0(p).

Collecting results, we arrive at the expansion
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1 4v2 1., 5
U=1+ 77|~ 3 Yoo 777 [p"+0(p”)
1 *
=1+ 4 ——10 2 RET, ,|p*+0(p%). (Iv.15)

Since the initial datum for the conformal Weyl spinor is a nonlinear function of the basic
quantities and the transport equations are quadratic in the unknowns, we have to make use of the
Clebsch—Gordan expansions of products k&, T,',,. These are readily calculated by using the
definition (11.15). For the quantities relevant in our calculation we thus obtain

4 4
XWX Wi=— > a T +2b, W2=2 aT,5+b,

6 4 4
W1X_W1=—7k20 T, s, WX Wy=— > go a T, (IV.16)

4 4
(X_W,)2= %go aT, s (X Wy)2= @go aT, o,

with coefficients

2 2
ao—%wl 20 & Wy W21, a2_§(W1 2,0W1;2 2t W15 ),
(IV.17)
W5 W 2 w2 b 2 W5 QW 1W2
A =— . . . a,=— — . - .
3 ‘/3 1;2,2VV1;2,1 4 \/6 1;2,2 3 1;2,0VV1;2,2 2 1;2,1
It was shown in Ref. 6 that the quanti(é? has an expansion of the form
q m
= 2 2 Bk T2+ (IV.18)
m=1]4—2i| k=0

Using the above-mentioned results in the last equatiofi\o®), this expansion reduces to

¢i3;m,k:0 for i={0,...,4 and m=8,
¢8;6k: - 2\/%‘/\/3;%, ¢:i;6,k: - 10‘/?’W3;6kv ¢g;6,k: —20W3.6,
B3.6x= —10/3Wgy6p,  3.6x= — 21305,

Po:ax=18V62— 3VBMWo o+ SRE L 1.4 =96a— $3VBMW, g+ FRE, (IV.19)
3 3 * 3 3 3 *
¢2;4’k:18ak_3mW2;4k+m K » ¢3;4k:9\/6ak— E\/EmWZ;‘”(-i— ZRk ’

b3 45 = 18V6a,— 36MmW, 4+ 3RE

¢i3;2‘k=0 for i={1,2,3, ¢g;o,0:0-
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Given these data or®, we are in the position to solve the transport equations’ oThe first of
the systemsglV.4) can be integrated step by step with the result

(c2)3=[c%(7) + ¥ YW, + S 1) W, [Xap+ [ €33 7) X Wi + c2(7) X W, ] Za,

+[ AT X-Wy+ (1) X_W,]Yap,
(Cap)3=[c1(7) + 5 TIW, IXap+ C3 T)[ X WiZap+ X Wiy ap],

(Cap)®=[c1 (X _Wy+¢5 ()XW, ]Xapt+[C3 (1) +Cy (Wi + 5 3(1)Wa]zg

+Cg (T)X_X_WoY,ap,

(Cap)®=[c1 (X Wy+ 5 3 ()X WolXap+[C3 3(7) + 5 3(n)Wy+c5 3 (1) Walyap

+ C(;:s( )X X WoZgp,

Eaped™ SHDX L X Woe B cq [ S )X Wi+ S (1) X Walehpeat [SH(TIX_W;
+ S3(1)X-WaJedpea— SI(T)X-X-Wasgpeat [S3() + S2(T) Wy + S3(7)Wa](€acXbq
+ €paXac) T[ST(T)X Wi+ S3(7) X W] (€acZoat €naZac) +[S7(7)X Wi+ S5(7) X Wo]
X (€acYpat €ndYac)s (IV.20)

Xoapyea= K3 (T X5 X Wae et [K(7) X Wy + K3(1) X Wale kpeqt [K3(7) +KE(T) W,y
+KA(Waledpea— [KI(MX_Wy+K3(1)X_W,led o+ KT XX _Waeapcq
+[K3(7) +K3(m)WyThapeat [K(7) X Wi+ K3 7) X Wo](€acybat €bdYac)
~[K3() X, Wy +Kio( )X Wa](€acZnat €paZac);

f3,=[F3(7) + F3(1)Wy + F3( 1) Wy]Xap+ [F3(7) X W, + F3( 1) X_W,]Yap
+[FH(D)X Wy + F3(1) X W,]Za,

(0 %p) 3 =[t5(7) +13( D)W +t5(1) W Xap+ [L5(7) X Wy +t3(1) X_W,]yap
+ LR X W+ t3( 1) X WaZap,
O apyca= TH(T) X X Woedp gt [ To(7)X e Wi+ T3(7) X W e 3peq
TN+ TA W+ TN WoleZpeq— [TH(1)X- W+ T3(1)X-Walednea
+TH DX X Woepeqt [ TH) + Ta( D)W lhapeat [ THT)X W, + T3 7)X_W,]
X (€acYbat €ndYac) — [ To(T) X Wi+ T3 7) X Wal( €acZog+ €ngZac)-

The ~dependent functions in these expressions are given in Appendix 3.
We now turn to the second of the transport equatidNs4), which is a partial differential

equation. The system for the expansion coeffici@fftsof the rescaled conformal Weyl spinor on
I” has the form

(1+7)3,¢3+ X, ¢3— d3=Ro,

9,3+ IX_ o+ 31X, d3+ p3=Ry,
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.45+ X+ 3X, p3=Ry, (Iv.21)
0, h3+ 3X_d3+ 3K, ¢~ $3=Ry,

(1= 7)0,¢3+X_dp3+ ¢3=Ry,

where the right-hand sides are given by
Ro=A1(7) X4 Xy W+ Ag(7) (X Wy)?,
R1=B1(7) X Wi+ Ba( 1)W1 X, Wi+ B3(7) X Wa,
R, =C4(7)+ Co(7)W;+ C3(7)(W;)?+ Cy(7)W,+ Cs(7) X, Wi X_Wy, (IvV.22)
R3=B1(— ) X_W;+By(—7)W; X_W;+Bs(— 1) X_W,,
Ry=—As(— 7)X_X_Wo—Ay(— 7)(X_Wy)?,

with 7~dependent function(7),B;(7),C(7) which are listed in Appendix 3. These functions

have been calculated from the lower order expansion coefficiBnts)—(1V.3) and from(IV.20).
The symmetry inherent in these expressions reflects the time-symmetry of the underlying space—
time.

Using the expansioflV.18) and corresponding expansions of the above-mentioned terms, we
decomposg1V.21) into the following equations. Fom=6 the coefficient%ﬁm'k, k=0,...m,
satisfy the homogeneous system

(1+ T)arqsg;m,k_ ¢g;m,k+

m m 5 m 5
D2mk— > 2 1) ¢5. mk+ E“‘l #3:mk=0, (IV.23)
5 5 m m m m
9 P3.mKk~ P3mk— > 5 +t1l|+ ¢2mkJr > -5 +2 5_1 Bt mk=

(1= 73,3 mit Phmi—

m
> +2 5—1)¢§;m,k:o.
The coefficientsp? ., k=0....,4, solve
(1+ 1), 05,05~ bo-axt 203.a5= 2V6AL(T)Wa g+ VBAL( T,
&T¢§;4k+ ¢i;4k_ ¢g;4k+ %\/€¢g;4k: 3V6B,( ) ar+ VBB3( )Wy, gy,
0,63,4x~ 5V6 63,45t 3168345 =[Ca(7) ~ Cs(1)]ay+ Cal)Waray,  (IV.24)
00345 D3t BF.ax— 36 b3,45= — 3V6Bo(— T)ay— VBBa(— )Wy 4y,

(1= 10,0545+ D3.ax— 2 3.45= — 2V/BAL(— )Wy, 45— VBAL(— 7y,
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with the coefficientsa, defined in(IV.17). The functionse?,,, k=0,1,2, satisfy

1
97 P3 o5t B3 ot ‘Ed’g;z,k:‘/iBl( )Wy, ok,
1 1
9, B3~ Ecﬁim 5¢§;2k=cz< TYWy.o, (IV.25)

1
197(152;2}(_ d’g;Zk_ E ¢g;2,k: _‘fZBl( - T)Wl;zkv

while ¢3.,is subject to
d,¢3.00=C1(7) +[Ca(7)+2Cs(7)]b, (IV.26)

with b as defined inIV.17).

These ordinary differential systems have to be integrated for the initial (6\th9) at 7
=0. Since the equations are already quite complicated, we used the program MapleV.4 for this
purpose. Synthesizing the result of these integrations accordiig.i8), we obtain the following
concise expressions fah on|':

Bo=—(1+7) (1= 73X X Wa+ g5 o( 7)M X X Wo+ &go(7) (X Wy) 2+ Gho( 1) X X, 12,

$3=—5(1+ )X (1—7)*X  Wa+ ¢f 1(T)mX, W,
+391(T) WX Wi+ 30y (1) X 12+ 3Ky (1) mPX W,

$3=—20(1+ 7)3(1— 7)3Wy+ f o ) MWo+ go( 7) (Wy)?
+3hy( )12+ ko HIMPW, + p(r)m*+[g(7) — ga( 1) b, (IV.27)

B3=5(1+ 1)4(1— 7)2X_Wy3— 1 1(— HIMX_W,
—302(— PIWLX_ Wy 3hy(— )X 12 3ky(— P)mEX Wi,

$3=—(1+7)5(1— I)X_X_Ws+ &fo( — 7)MX_X_W,
+3590(— 7)(X-Wy)?
+3ho(— )X _X_r?,

with ~dependent functions which can be found in Appendix 3. All the functi¢ﬁ$1ave poly-
nomial dependence on

The most interesting feature of this solution is its smoothness-at 1, which, in view of the
singular behavior of Egs(IV.23), (IV.24) at these points, was not to be expected from the
beginning. To explain its significance we indicate the argument which led to the asymptotic
regularity condition(l.17). The Bianchi equations, which were used to obtain the evolution
equations for the rescaled conformal Weyl spinor and, consequently, the second of the transport
equationg1V.4), form an overdetermined system. Thus there are further equations, to which we
refer as to the constraints. In the present case the constraints take the form

79,3+ (X4 p3—X_3) —343=5;,

7d.p3+ H(Xs $3—X_¢7) = 35=$,, (Iv.28)
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70,45+ H(X 3= X_3) —3¢3=S,
where
S1=Fi(m) X Wy + Fo(1)Wi X, Wi+ F3(7) X Wa,
$,=G1(7) + Go( )Wy + G3(7) (W1)?+ Gy 7)Wa+ Gg(7) X - W, X, Wy, (IV.29)
S3= —F1(= )XWy —Fy(= )W X_W; — F3(— 1) X_W5,

with functions which are given in Appendix 3. As before, we obtain equations for the coefficients
in the expansiorflV.18). Together with(IV.23), (IV.24) these equations imply the systems

(1+7) (5724 3) 9,565+ (57— 572+ 57+ 7) g6~ 5(7— 1)%3.6,=0,
(IV.30)
(1= 7)(57%+3) 9,365+ (57°+ 572+ 57— T7) dg.cx— 5( 7+ 1)%¢3 .6, =0,

and

4(3+ 1) (14 7) 9,05 45— 2(1— 1) 3h3. 4+ 2(1— 7)3 3.4 = To( DAy + To( 1) Wo. 4.,
(IV.31)
—4(3+72) (1= 1) 3,b3.4x— 2(1+ 13¢5 41+ 2(1+ 7)33. 4= To(— D)+ To( — 7) Wi, 4y.,

with functionsT, and T, (given in Appendix 3 derived from the function&®; ands;.

It turns out that once these equations have been solved, the remaining expansion coefficients
in (IV.18) can be obtained either by purely algebraic operations or by solving ODEs which are
regular forre[ —1,1]. This situation is the same for all ordgys 3 in (1V.4). The solutions/(7),
with y denoting in the above-mentioned case the column vector with entries given by the two
unknowns of(IV.30) and (IV.31), can then be given fop=3 in the form(suppressing here all
indices

y(1)=X(1)X(0) " yo+X(7) jOTX(T')_lb(T')dT’, (IvV.32)

with X(7) denoting a fundamental matrix of the system of ODEs under study. The vector-valued
functionb(7) is built from solutions which are obtained by solving the equations of lower order.
In Ref. 6 the equation@written there in a slightly different forinhave been discussed in general
and the fundamental matriceq 7) have been derived. As in the case(bf.30), (IV.31), there
occur homogeneous as well as inhomogeneous systems for gpaedalThus for certain values

of the indiceqi.e., p and the indices which arise from expandinyin terms of the function§'mij)

the functionsb(7) vanish and the solutions are of the fogrtr) =X(7)X(0) ly,. In these cases
some of the entries oX(7) have logarithmic singularities. The latter drop out of the final expres-
sion precisely if the asymptotic regularity conditiofis17) are satisfied. In the remaining cases
the entries of the matriceX(7) are polynomials inr but deti)=cf(7)(1—7%)P 2 with some
constant# 0 and some polynomidl(7) satisfying|f(7)|=1 for | 7|<1. Furthermore, the column
vectorb(7) has poles. However, it has no logarithmic singularities if the solutions of the equations
of lower order have no logarithmic singularities. Assuming condifibri7), the remaining po-
tential source of singularities af’, p=3, at|7|==1 are the integrals on the right-hand sides of
the expressiondV.32). These have not been analyzed yet. To understand the general situation, it
is clearly of interest to study the problem for the first few valuep.dRemarkably, in the present
case p=23, we find that the integrand i{V.32) has poles atr|= =1 and also outside the interval
[—1, 1], that the integral has poles and no logarithmic terms, but that the final solution is a
polynomial in 7.
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B. The detailed transformation formulas

In this section we will determine expansions for the conformal scale fagtand the
SL(2C)-valued functiomA?, which define the transformation from tkegauge into the NP gauge
as described in Sec. IIC. To calculate the NP constants in terms of the initial data we shall
determine the values of the integrals defining these quantities by taking their limits:8s The
gauge in which these integrals are given is based on a se&ttbthe generators of *. We shall
try to push this section tb". The usefulness of this procedure depends, of course, on the resulting
form of the ODEs on7* which were used in 1l C to fix th& gauge.

Near | * the hypersurfacg/~ can be given as the gragh=17°, p>0!} of the function®
= 7%(p,t%,) which is given by

20
75:7[— D,p,QD0 ]2, (IV.33)

Substituting the expansiori/.8) of () and those of the frame vectors into the BY.33), we get
the expansion
=14 Imp+2W;p2+ O(p3). (IV.34)

Setting in(1.35) Z=4,, we obtain for the right-hand side of this equation the expansion

2(3v,0V%0) 5,
z©) 3™

229 , 24\ . .
3™ 5 Wi|p®+0(p). (IV.35)

SupposeT=T°aT+T1ap+T+X++T‘X, is a vector field defined near and tangent{f6. De-
note byT* the vector field which is induced by it aff*. If p andt®, are used as coordinates on
J*, one finds forT* the expressio* =T'9,+T*X, +T~X_. Applying this to the gradient of
® on J", we find that the left-hand side ¢fi.35) is given by

({—2p+ ¥mp3+0(p*)} 4, { EX_Wyp3+0(p")} X s +{EX, Wip®+O(pH)}X_ ) (logf )

Thus, dividing(11.35) on both sides by?, we get a differential equation of the forii (log f)

=g on Jt with a vector fieldT* and a functiong which extend smoothly té* such thatT*
=—24,+0(p) nearl *. For given datumf, on | * this equation has a unique smooth solution
which can be expanded in terms @fAs shown in our general discussion, the valud phas to
be constant ol to fulfill the NP-gauge conditions. We choose

1

f [
Y

onl™ and find for the solution ofll.35) the expansion

191 ) 6W
252M T5Ma

p>+ O(pS)] . (IV.36)

f ! [1+5 +
=——11+=-m
vl 6"

To obtain the matrix elements’, of (11.36) by using(11.37) we have to calculate the deriva-
tives c;a,(®) of the conformal factor. Using the expansion coefficients derived in Sec. IV A, we
get

Chor(©)=0(p,

Cor(©)=vZ{X W;p3+0(p"}, cip(0)=vZ{X_W,;p>+0(p"}, (IV.37)
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11 (0)=v2{—2p+3mp2+(8W;—3m?)p3+O(p*)}.

Substituting these expressions into the formulag7) the matrix elementa®, and\*; can be
calculated explicitly up to a () phase transformation. Since the choice of the latter is not
important for the following we choose it suitably to obtain

N =p Y1 —dmp+ (= IW,; +38mH)p2+0(p®)}, My =p¥33X, Wi+ 0(p)},
(IvV.38)
which allows us to determine also the expansion
1y =V2{imp®+ (— zm*+2Wy) p®+O(p*)}a,+v2{3p” — §mp>+ (35m*— Fwy)p*
+0(p°)}d,+v2{ = EX_W1p3+0(p")} X, +v2{— X, W;p+O(p"}X_. (IV.39)

To solve the differential equation for the affine parameter on the generatgrs ,ofve observe
that already in the case of Minkowski space—time this parameter is a singular funcppgieén
by u’=—v2p~1+u;, . The inspection of the expansi¢iv.39) suggests to search for a solution of
the form

u'=w+v2

1+7 I V.40
—; §mogp. (IV.40)

This ansatz does indeed lead to a smooth regular equatiomriear| *. It allows us to calculate
the expansion

1
u°=1/§( — ;+ Imlogp+u;, +(f5em?+ 2W,)p + O(pz)], (IV.41)

whereu;, denotes an arbitrary constant initial datumldn As described in Sec. Il C, the matrix
elements\% and\*, can now be determined. We obtain the expansions

77
A= p3’2[1—0xwl+ O(p)] . ANo=p Y4 —1-1mp+0(p?)}. (IV.42)

Knowing the matrix\?, on null infinity, we can calculate the limits of the NP-spin-
coefficientsl'y,,,, andT';, oo at1 ™ asp—0. Substituting our expansions into the formula for the
connection coefficients

° _y N1 h ° h
Togne=Nal a NN T = €gnh % E Lo (M), (IV.43)
we arrive at the expressions

I . - 11
1+= I|m F01,11=0, F10,00||+: ||m F

= ——m (IV.44)
o o 1000 ¢ 5

1—‘001’ 11|

The next step is to calculate the conformal scale faétoy solving Eq.(11.25). To determine
the Ricci spinor componenb ,,= %RaﬁEf’l‘i,Ec’l’i, , we have to determine the Ricci tendRy; of
the metricg. The components of the tensor

@aﬂiz%ﬁ(aﬁ)_égaﬁﬁ‘}' %ﬁ[aﬁ] (|V45)
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*

in the frame{c;,, }, where Ifiaﬁ and R denote, respectively, the Ricci tensor and the curvature

scalar induced by the Weyl connecti§hwith coeﬁicientsf§y=rgy+ 8o+ 85 ,— ., P (cf.
Ref. 14, are among the variables of the conformal field equations. Thus they are known to third
order in thep coordinate. From the general transformation law

Raﬁ: Raﬁ_ZV(afﬁ)+2 fafﬂ_gaﬁ(vyfy+2 f7f7)+4V[afﬁ] 5 (|V46)
we get the relation
@aB: %( Raﬁ_ %gaﬁR) - Vﬁfa+ fafﬁ_ %gaﬂf }’f v, (|V47)
From this we derive the expression
D=0 E 3 Eh +E 1 (B3 f)— (B fa)2. (IV.48)

Substituting herdlV.39) and the expansion of the one-forffnobtained from the solution of the
field equations we get the expansion

D= g mp®+ (= Fm?+ 2Wy) p*+0(p°) (IV.49)
onJg".
Onl* is induced in our gauge the stand@dmetric. Therefore we solve E@l.25) with the

initial condition

lim 9=1. (IV.50)
p—0

For the conformal scale factor we obtain then the expansion
0=1+2mp+ (2W, + 22m?)p2+ O(p3). (IV.51)

By the choice of the initial value for the conformal factor the scale functiappearing in the
gauge transformations is also fixed with

p=1 on J'. (IV.52)

In the conformal gauge characterized by the conformal fa@tbr=60 the generators of null
infinity are expansion free. Proceeding as indicated before, we construct the NP{Eégn]a
Observing the expansior{f.36) and (11.39) of the null vectorsE},, andE;,, respectively, and
taking into account the properties of the conformal rescaling we get the relations

AO]_: 071/2)\01eic, All: 071/2)\11eic, (|V53)

with function ¢, characterizing the phase freedom, which will be fixed later. U$ixig38) and
(IvV.51) we get the expansions

A% = p {1 3mp+(3Bm?—2Wy)p?+O(p®)}e,  A*;=p¥%3X W, +O(p)}€,
(IV.54)

from which we derive in turn the expansion
Ely =V2{imp?+(—m?+2Wy)p°+O(p*)} 3, +v2{3p*— 2mp>+ (Fm*— FW,)p*+O(p°)} 4,

+V2{— IX_Wyp3+O(ph)}X, +V2{ = EX, Wyp3+ O(p*) X _, (IV.55)



2222 J. Math. Phys., Vol. 41, No. 4, April 2000 H. Friedrich and J. Kannar

of the vector fieIdE'll, tangent to the null generators g . Furthermore the new affine parameter
has the form

195 5. T4y
28M s

1
u'=v2 —;+4m|ogp+u;+ p+O(p2)}, (IV.56)

with a free constant;, . Using the formula analogous {t1.38) we derive
A% =p 4~ FX_Wip+0(pHte ™, Aly=p Y —1-imp+O(pH)le . (IV.57)

To determine the phase factet '® we solve equatiorill.27) along the generators of null infinity.
Expanding the right-hand side, we get

1 (0)=20m{A" A" A9 AN, —A%E L (AT + AYE (A%}, (IV.58)

Wherefxab has been obtained from the above-mentioned matfixby settingc= 0. Substituting
the known data into EqV.58), the solutionc which is needed to satisfy the gauge condition
I'}101 =0, is found to have an expansion

c=0(p?), (IV.59)
which entails the expansions
€°=1+0(p?), E; (€9)=0(p®), Ej, (e°)=0(p?. (IV.60)

The matrix elementd ?, are now determined on null infinity to the precision needed in our
later calculations, but in the definitigiil.5) of the NP constants appear some of the transversal
derivativesE;)O,(Aab) of the matrix elements as well. Using the general formladl) we get
the expansions

Eoy (A%)=V2p 445X W1 +0(p)}, Egy(Ale)=v2p 347+ 5mp+0(p?)},
(IV.61)
Eog (A%)=v2p Y23+ Smp+0(p?)}, Egy (A1) =v2p¥H — 1X. W1 +0(p)},

where we have taken into account the expressi{tvw$0) for the phase factor.
The transversal derivative of the conformal scale faEt{g)r(e) is fixed on null infinity by the
requiremenR[g*]| ,+=0. Thus it has to satisfy equatigH.32) with initial datum

Eog (O)]i+=1im 0p~ 1T 0= lim 'y 00- (IV.62)

p—0 p—0
Given the matrixA®, and the conformal scale facter all the terms appearing in E¢1.32) can
be calculated in a straightforward way, with the exception of the curvature fRddr whose
calculation requires some explanation. Contracting (Bg47) we get the identity
RIGTI=6(0 260+ Vaa For + Faa fop) €27 2, (IV.63)
where
Vaa’fbb’ = C;a’(fbb’) - (F:a’cb?b’c' + F;a’c’b’ Gbc)fCC’ .

Expanding these quantities we get

R[g]=(Zm?—£*W,)p?+0(p?),
(IV.64)
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F*=(5m?— 4W, + 2a_ X, W; — fa. X_Wy)p?+0(p?),
which entail with(I1.32) the expansion
Eqy (0)=v2{Em+ (£m?—4W,; + 2a_X, W;— fa, X_W,)p+O(p?)}. (IV.65)

Given the above-mentioned expansion, we can calculate expansions of various quantities of
physical interest, such as the Bondi energy momentum, the angular momentum, and the radiation
field on J*. Since the coefficients in these expansions are given directly in terms of the initial
data on the Cauchy hypersurfaSethe expansions contain information about the evolution of the
field over an infinite range. As an example we will calculate in the following the NP constants.

We close this section with a remark on the BMS group, the group of transformation between
different Bondi-type systems. It was shown in Ref. 20 that for solutions for which the the condi-
tion Iimu. FEe]oroozo could be realized at spacelike infinity, where the subscrgti$ to

denote the electric part of the considered spin-coefficient, one can single out the inhomogeneous
Lorentz group as the group of transformations preserving this condition. It turns out that under our
assumptions, which include in particular the time-symmetry of the solution, the even stronger

condition lim T'o100=0 is satisfied. This means that for our solutions there is a natural way
u

— —®

to single out the inhomogeneous Lorentz group as asymptotic symmetry group.

C. The NP constants in time symmetric space—times

Using the formulas of the previous sections we can express the NP constants in terms of the
initial data for the corresponding time symmetric solutions. All the quantities appearing in the
integral (I11.5) are known in terms of the initial data to the precision needed to perform the limit
p—0.

We have to express the spin-2 spherical harmos\gs, in terms of the functiond ). By
(11.3) the definition of thed operator is based on the choice of the complex null vector E%{d
In Appendix 1 we have applied the standard choice and derived the relations between the opera-
tors X, andd and between the spin-2 spherical harmoni¢s,,, and the functiond ). By this
choice we should have

i
—X,

E,, =
o= s

on ™. However, calculating the vectdﬁ;l, in the previous conventions used, we get

E

. 1

orhi+= Ex_ . (IV.66)

There are two causes of the difference. We fixed the phase factor such as to simplify the calcu-
lations and the conventions used in the F gauge and the NP gauge are such that one has to swap
the two spinors of the dyad to get from one to the other convention. The ({186) of E,,
corresponds te-iv2m, if m denotes the standard complex null vector used in Appendix 1. This
means thaiIV.66) corresponds to the operaterid instead ofd discussed in the Appendix.
Observing this andA9) in (111.4) we obtain the formula

sziz’m(Sw)”zjgﬂz’m4E(')O,(¢o)M for m=-2,...,2, (IV.67)

where = (1/47?)dSde is the Haar measure on $2).
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To calculatglV.67) we expand the integrand in termsménd take the limit ap— 0. For this
we have to determine fdE, (o) only the terms of orde©(1). In thelimit only these terms
give a contribution while the terms of order * cancel each other. Using the explicit results of the
previous sections we arrive after some lengthy but straightforward calculations at the expression

Gm||+ = I|m Gm
p—0

=j 27m(10ﬂ_)1/2

5 , 635 1905 , 16
X §T4 4 —3—2X_X_I’ +?mX_X_W2—T(X_W1) +§X_X_W3 M.

(IV.68)

Expanding the functions in the brackets in terms of the funct'lbﬁi‘:? and using the orthogonality
relations satisfied by these functions we can perform the integration. All terms except the last one
give some contributions. Using the formuld¥.7), (IV.12), and(IV.16) we get the final expres-

sion

i2—m 1
Gm|.+:7(1577)1’2 127MWy.4 5 m—68, ) — —=R3_ 11, (IV.69)

2\/6 2-m

where the coefficienta,_,, which are quadratic iV, ., , are given by(I1V.17). We note that the
structure of this more general expression is essentially the same as that of the expression obtained
by Newman and Penrose in the case of static and stationary solutions.

V. CONCLUDING REMARKS

We have seen that, under the assumptions explained previously, certain fields which are given
near spacelike infinity in terms of Bondi-type systems can be expressed in a straightforward way
in terms of the gauge conditions used in Ref. 6 and can thus be related directly to the structure of
the Cauchy data which give rise to the space—times by Einstein evolution. The calculations
involved are quite lengthy but taking into account that we relate quantities which are obtained by
a nonlinear evolution over an infinite domain of space-time to the data from which they arise, the
overall structure of the argument is surprisingly simple.
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APPENDIX: DEFINITIONS AND GENERAL IDENTITIES

1. X4 and the 8 operator

In this section we describe the relation between the operatarsintroduced in Ref. 20 and
the operatorX,, X_, X used in Ref. 6.

Consider on the group SB), which is diffeomorphic taS®, coordinategx,y,a} such that
outside a set of measure zero the general group eletfigaSU(2) is given by

1 eia ie_i“g“)
ta: S —ia 3 (Al)
" Vi+gz '€ €
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with {=x+iy. Thena is a parameter andandy are constant on the orbits of the the subgroup
U(1). The tangent vectors,, J,, andd,, respectively, at the unit element coincide with the

generatorau;, U,, andu, of the Lie algebra of S(2). Writing P=(1+ gf), we get for the
corresponding left invariant vector fields the expressions

Z,,=P cog2a)d,+Psin2a)d,+ Uxsin(2a)—ycog2a)]d,,

Zu2=—Psin(2a)&x+Pcos(2a)&y+%[ysin(Za)ercos{Za)]aa, (A2)
Zu3:%’9aa
whence
X =2y —iZ, =€ —iv2 m—i—Za X=-2iZ,=—id
+ up ug 23 ) ug ar
(A3)

4 [
X_=—2Z,+iZ,=e 2 iv2| m+—(d,] |,
2 1 2‘/2

where the vectorsn=v2PJ, andm=v2Pd, define a complex dyad tangent to the surfages
=cons} which is null with respect to the standa®d-metricds>=P~2d{ dZ on these surfaces.

We may identify SW2) with the spin frame bundle over the base manifgfdwith structure
group U1). The sectionfa=0} can be identified with the base manifdldith a point omitte.
Here we take the complex null fran{en,m} defined previously, where a group elemeri,
=diag@+e 9 eU(1) acts au({m,m})={e?*m,e”2“m}. A function 7 on S? is said to have
spin weightN, if it can be decomposed aﬁgvazemi“no, where the functiory, is independent
of the parametew along the fibers. Thé operator is defined by the complex null vectorand
acts on a spiN function as

) 1 — )
07l s,0=v2{m( 7]0)"‘Nﬂomymﬁ%my}ez(ml)m:‘/zl m( 7o) + ENZWO} e?(N+Dia  (Ag)

where § denotes the Levi-Civita differential operator induced by the stan&archetric. This
means thad» has spin weighN+ 1. (This treatment of the functions with spin weight and the
operator is a bit different from the one which can be found in the literdtfreRefs. 20, 18, and
19), where the expressions are evaluated on some cross sect®. of

The horizontal lift of the vectom defined with respect to the Levi-Civita connectiérns
given by

[J—
Myls ,=M———{d,. A5
mle, 2‘/25 (A5)

This means that thd operator onS® is given by
O ;a=v26%"my. (AB)
Comparing the formulagA3), (A5), and(A6) we get the relations
Xy=—id, X_=id, X=-[8,3]. (A7)

The spherical harmonicy, ,, are defined as an orthogonal function system on the siBfere
They can be extended ® as functions with zero spin weight, i.e., they became independent on
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the parameter along the fibers. This means that they can be expandedag ; cijZKik in

terms of the functionsT,),. The spherical harmonics satisfy the equatiéijhm:—I(I
+1)Y, m, S0 using the relationfA7) and(ll.16) we arrive at the relation

Y|,m=§j) S P (A8)

Taking into account the explicit coordinate expressions of the group elements one could determine
the expansion coefficients . Using the definition of the spin harmonig¥, ., (cf. Ref. 1§ and
Egs.(I1.16), (A7), and(A8) one can also derive the relation between the functidfs, and the
functionsT,,),. We shall only need the transformation formulas

1/2
T4 2

-
Yom=(=0)* (E

1/2 1/2 (Ag)

U o, [ 5 _
2Y2,m=(_|)2 m(ﬁ) T4o- —2Y2,m=(_|)2 m(ﬂ) Ti 4m-

2. Some useful spinor identities

Here we describe irreducible decompositions of spinors with four unprimed indices in terms
of the “primary spinors” ejpcq, Nabcds Xabs Yab, Zap and ez, Where

1 1
Xab:‘/ie(aoeb)l’ yab:_‘zealfblr Zabzgfaoebov

(A10)

h); _
i, Nabea= — €a(c€d)b -

siabcd: f(a(efbffcgfd)
It is well known that a SpiNoA .4 satisfyingAapca=Aab)(cd) = — Acdab C@N be decomposed in
the form A,pce= €acPodt €pdPac With Agp=2A. ¢, = A and that a spinoS,,cq satisfying
Sabcd: S(ab)(cd) Scdab can be written in the fornﬁabcd S(abcd)+ habcdS with S:= Sefef. It
follows from this that an arbitrary four index spinor with symmetrisg, = Xap)(cq) Can be
expanded in terms Qfabcd* €acXbdt €bdXac: €acYbd™ €bdYac: €acZbd™ €pdZac aNdhapcy.
The following relations were frequently used in the calculations:

1 1
_ .3 _ 1 .
YabXcd™ ~ €abcd™ > (€acYbdt €ndYac)s ZabXcd™ Eaped™ o (€acZodt €pdZac);

ab_ ab_ ab__ ab_ ab_ 1 ab_n-
XapX =-1, Xapy =0, XapZ =0, Yaby =0, YabZ "=~ 2, ZapZ =0;

1 1 1

fy _ fy _ fy
Xaxbf_ieaba yaxbf_EYaby Zaxbf__ﬁzaba

1
f o 1_0 f A
Ya ¥bi=0, VYa Zyt=~5€ €, Za 2,1=0;

0 cd_ 0 cd_—_ __ 0 cd__ 1 cd_ _ 1
€abedX” =0, €apcd = ~Zabs €abed =0, EapeX = — 2Zab

1 cd_ _ 1 1 cd_ 2 cd_ _ 1 2 cd_ 1
€aped) = ~aXabs €apbc? =0, EapedX = ~3Xabs Eapcd) = 8Yabs

2 cd_ 1 3 cd_ 1, 3 cd_ 3 cd_ 1
€abed = Zabs  €abcdX = 2Yabs €abed) —0s E€apcd = aXabs



J. Math. Phys., Vol. 41, No. 4, April 2000 Bondi-type systems near spacelike infinity . . . 2227

4 cd_ 4 cd_ 4 cd_ __
8abcdX _0' Sabcdy _0' Sabcdz - yab;
__ .3
X(abXcd) = 2<‘3abcdv X@bYcd)™ ~€apcar  X(abZcd) ™ Sabcdv

_ 1 4 _ 1.2 1.0 .
Y@bYcd)= 2€abca  Y(abZed) = ~ 2€abcd  Z(abZcd) = 2€abcd

XEaSg)cdf:isgbcd’ X{asé)cdf:izabxcd, X{asg)cdf:_(facxbd+ €pdXac),
V2 2v2 12
XIagg)cdf:_l YabXcd» XIasg)cdf: - i Sgbcdv hab(cfxd)f =5 (€acXpdt €pdXac);
2v2 V2 2
1 1 1

1
f 2 _ 3 f 2 _ 1 .
Y(d€cyabt™ — €abedT ﬂ(facybd+ €pdYac):  Z(d€cyabi= — €abedT zl(faczbdJr €paZac);

2 2

2 ef. 1 _ _ - 1 "
€ab Ecdef” ~ 7p%abed _Sﬁ(eaczbd €pdZac)

1

2 ef 3 _ 3 .
€%b €cdef= ~ 75€abcdt T = (€acYbd™T €bdYac);
12 8v2
2 2abcd_ 1 2 ef,2 _ _ 1.2 1
€abcd® =% &°ab Ecdef~ ~ 58abedT 18Nabcd-

3. The detailed expressions for u”, p=0,...,3

The ~dependent functions occurring {iVv.2),
) =m(37°~37°), cTHn=m(r*=57"), SH7)=v2m(;r*—37"),
K =m(-12r+47), FX7)=3im7* tY(7)=v24mm,
THD=6m(1-7), ¢i(n=—12A1-7)?% ¢;(r)=—m*(187-37,
$3(7) = — 36+ 367°.
The ~dependent functions occurring {iVv.3),
A1) =m*(—27r°-37°+ %" —37%), (1) =162+ 87
(1) =8r—Ir -2, cAr)=m(-472+51%),
crA(m)=mA (=243 =55+ 475, c;A(1)=12r2—37%+ 4O
c3 A1) =—672— 3+ 515  Si(n)=v2m?(3r*— 55— 519,
SH(1)=v2(67° =37+ 157°),  S3(7)=V2(—ir'+ 37— 570),
Si(1)=—3672+117*+ 2%, Ki(7)=m?(247-87+41°— 37'),

K3(7)=—144r+ 72731875, K§(n)=m*(— 37+ §r°— 871),
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Ki(1)=—v227%, K&(1)=—48r+ 27,
Fi( T)= m2( 2724 %7‘4— %7'64— %7'8 , F%( 7)=274— 27'6,
Fi(n=37"+27% ti(n)=v2m?(—12r—§r°+47°),
t5(7)=v2(48r—161%), t5(1)=v2(247r+87),
TH(m)=m?(—12+1272-107*+ 57°%), T5(7)=72-72r%+367",
T5(1)=m?(47°— 57+ 57%), Ti(1)=—-v267
Ta(m)=24-127% ¢i(1)=—(—1+7%
P5(1)=am(Hr°— B0 - L+ 4677 - 1877), $3(1)=16(1+7)(—1+1)3,
(1) =6(—Fr8+ B0 — 151+ 67)m*,  $i(1)=6m(— L1+ 627~ 727%),
()= —T2A1+ )} (—1+1)2
The ~dependent functions occurring (iVV.20),
cP¥(1) = (373+ 187%+ 217 — %+ st srHm?®,
CX(7) = (— 4473 — 275+ B8 — D794 Erthm,
c(1) =487 — Lo+ L7 - L4°,
cO¥(7)=(—20r3—67°+ 77— 33:°— Lrihm,
QA1) =16r"—47°— 377+ 37°,
cX(7)=(1272+ 15— $75+ 35 m?,
C%S( 7)=—T727%+187%— 1875,
c3i(1)=— 3677+ 374+ 275,
Clia( 7)=(1872+127*— 275+ 38— 2710 m,
Czﬂ’( 7)=—127%+ %7’6— %7'8,
C3 (1) = (372 — Tr*+ 75— 5215+ Br10- 2rAmd,
¢z 3(7)=(—4877+105¢"— 4%+ Ty 8 — §r'0m,
Csia( 7)=367"— 1274+ %75— 578,
Cg?’( 7)=—37-27+ §7'6+ 1%,7'8,

S =-977-27"+ 275+ 7%,
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S3(7)=(10872— 168"+ 867°— 28— Z10m,
@(7‘)——727‘24—487 276_2.8
83( T)=(— 3723174+ 1,6 827,84 355,10 812 m3,
Sg( )= (6724 Q74— 333,64 199,84 13,10) 5,

S3(7)=(18r2— 67+ 75— 27°)v2,
Si(7)=(=372= F7*+ 55— {5+ &r'Ovam’,
S3(7)=(672—27"+2:%)vam,
K3(r)=—67r—87+ 85+ 4,7
K3(7)=(144r+127°— 375+ 27" - L %)m,
(7')— — 967+ 167°+ 27— %77,
K3(m)=(—54r+1273— 21675+ 22877 — 4279+ 1871 m?,
K3(7)=(576r—216r°+ 2527°— 477+ 2% m,
K3(7)=—432r+2887°— 8475+ 28877,
K3(7)= (407 - 167°+ 327" — 188r°+ Zarthm?,
K3(7)=(—2407%+ 75— 2877+ B9 m,
K§(r)=(97° = 5= 337"+ go7°)v2m,
Kif(m)=(—47+87°)v2,
FU(m)=(972+27%— 375+ 28— 2710+ 21 m?,
F3(7)=(—6072+ 367" — 1275+ 875 — &7 m,
F3(r)=—275+ 128
Fi(7)=(—127'2—67'4+ %TG-I- 15—?7'84- %OTlo)m,
Fi(7)=47"—{r0— 3%,
t3(7) = (367+207°+ 467°— 277 + 222:°)v2m?®,
t3(7)=(—312r— 24— Zr°— £7')vam,
t3(7) = (1447 967+ 1*7°)v2,
t3(7)=(—967— 12r%+ 2*r°— 27)v2m,

tg( 7)=(48r— Lr)WV2,
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TH7)=3+977-37*— 75,
T3(7)=(—72-367°+ 817"~ *275+ $%)m,
T3(7)=48- 247+ 167°,
TH(7)=(27- 187+ 1807~ 134:°+ 2475 — 2710 m®,
T(7)=(—288+ 21677~ 558:*+ 15— Z¥%)m,
T3(7)=216- 21672+ 2167*— 7275,
TH7)=(— 247+ 167~ P75+ 3275 — 5O m?,
Ta(7)=(144r%— 1027*+ 227°— 557°)m,
T3(7)=(2772— 84— L5+ 57%)vam,
Tio(7) =(—1272+67%)v2.
The ~dependent functions occurring {iV.22),
A1(7)=(367— 787+ 827~ 7+ 2r°+ 1970~ 87+ Fh)m,
Aq(7)=—648r+ 17287 — 1692r3+ 4327% + 252275 — 2206,6.4 1367 102,8
B1(7)=(108r— 234" — 3967° + 1503r* — 5797° — L3970+ H3g87 4 44435,8 — 258179
+ 18L077'10)m ,
Ba(7) = — 6487+ 14047°— 5407 — 8107 + 27° + 15%7° — 1087 + 13°7°,
B3(7)=(—72r+ 1687+ 247~ 2747+ 120r°+ 2°7°— 327"+ $7%)m,

Cy(7)=(—27r+342r3— 6967+ 252877 — 49559 4 179,10y

Co(7) = (5047 — 34923+ LL807,5_ 41289,7 | 16669, 9) 2.
Ca(7)=—1296r+ 23767r°— 4227°+ 216177,
Cu(7)=(—432r+7927°— 39254 816: T\,

Cs(7)=— 2167+ 10873+ 82875+ 3247,
The ~dependent functions occurring (V.27),
fo7)= — 18+ 216r2— 2407°+ 187* — 487°+ 2045 — 14477+ 30°,
f1(7)=—9— 21672+ 69675 — 19874 — 2544754 984,64 936,7_ 4118
f2(7)2—3_2167.2+3727_4 92676+ 219 8
go(7) =108~ 194472 + 475273 — 57247+ 19005,5— 6204,6 4 8477 18,5,

01(7) =54— 97277+ 1620r3+ 3787 — 1548754 5718,0 4 108,7  108,8,
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02(7) = 18- 54077+ 9727 — 2328704 13878,
ho(r)=2, hi(n)=3% ha(r)=13
Ky(7)=10872—2767°— 129r*+ 490175 — 3289,6_ 2439, 71 32.803,8.4 483,9_ 2721,10
Ko(7)=2527"— 9427+ 31470 — 035178+ 2710,
(7)== F7% 4 s - 10675+ 38075 iriO 78
q(7)= 557"~ %27°+ 6487 — 8647,

The mdependent functions occurring {iV.29),

107144 4077 5_ 2639.6_ 188787, 11326878
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