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On the strength of space-time singularities 
Jimos Kh-miir and lstvim R&x 
Central Research Institute for Physics, H-1525 Budapest 114, P.O.B. 49, Hungary 
(Received 27 June 1991; accepted for publication 2 April 1992) 

New integral conditions are proposed that are sufficient for the existence of conjugate 
pointpairs along causal geodesics. As to maximal incomplete causal geodesics the upper bound 
on the rate of possible divergency of the tidal curvature is examined. 

I. INTRODUCTION 

Inextendible causal geodesics of finite total affine 
length have been proved to be inevitably present in the 
general relativistic models of universe and gravitational 
collapse by the singularity theorems of Penrose, Hawk- 
ing, and Geroch.lm3 These are existence theorems and 
they tell almost nothing about the nature of the space- 
time singularities. Incompleteness of causal geodesics 
does not imply that some of the “physical” quantities 
blow up along them. On the other hand, as shown first by 
Tipler,4 one can give an upper bound on the rate of the 
possible divergency of the Ricci part of the tidal curva- 
ture along incomplete maximal causal geodesics. Here, 
maximality of a causal curve means that it is the longest 
one in its close neighborhood in the space of causal 
curves. The maximality condition seems to be too strong 
a restriction; nevertheless, the presence of causal geode- 
sics having this property turned to be a generic feature of 
singular space-times. Namely, as shown by Szabados,’ the 
conditions imposed on space-times in singularity theo- 
rems automatically imply, beyond the existence of incom- 
plete causal geodesics, their maximality. 

In this paper, we are going to generalize the upper 
bound results of Tipler4’6 Newman,7 and Szabados.8’9 In 
particular, we examine not only the Ricci part or the 
conformal electric curvature, but also the separate com- 
ponents of the tidal force tensor, and consider, besides the 
null ones, the timelike geodesics as well. In the argument, 
some aspects of the Morse index theory will be incorpo- 
rated instead of the conventional approach relying on the 
examination of the solutions of the Raychaudhuri equa- 
tion. Not only more powerful theorems can be developed 
by this approach, but also the null and the timelike cases 
can be treated on equal footing. 

In the next section some notions and results are re- 
called, in connection with the Morse index theory. In Sec. 
III some sufficient conditions are derived, assuring the 
existence of conjugate pointpairs along causal geodesics 
in terms of an integral of a certain component of the tidal 
force tensor. In Sec. IV, these results are applied to give 
restrictions on the above-mentioned integrals along in- 
complete maximal causal geodesics. Finally, some con- 
cluding remarks are given. 

Our conventions and notations are the same as those 
of Ref. 2, so, e.g., the space-time metric g is considered to 
be a smooth Lorentz metric of signature +2 and for the 
curvature tensor R we have that R(X,Y)Z=VX(Vr)Z 
--vY(vx)z--v[x,~ Z, where X,Y,Z are arbitrary vector 
fields and V denotes the torsion-free covariant derivative 
operator determined by the metric. 

II. PRELIMINARIES 

In this section some well-known definitions and re- 
sults will be recalled that we shall need. 

A causal curve y:[a,b]-M from y(a) to y(b) is said 
to be maximal if among all causal curves from y(a) to 
y(b) generated by (infinitesimal) continuous piecewise- 
C’ variations of y it is the longest one. A future inextend- 
ible causal curve y:[a,b) -+M is said to be maximal if for 
any b’E(a,b) the segment y:[a,b’]+M is maximal. As 
detailed examinations show (see Refs. 1 and 10) 
y:[a,b]-+M is maximal if and only if it is geodesic and 
there is no conjugate pointpair between y(a) and y(b) 
along y. Necessary and sufficient conditions for the exist- 
ence of conjugate pointpairs along causal geodesics can be 
given in terms of the definiteness of the (Morse) index 
form (see Ref. 10). For the present purposes, however, 
use of the so-called timelike and null index lemmas, given 
by Harris,’ ’ seems to be more economical, so we shall 
recall them. 

Let y:[a,b]+M be a causal geodesic in M with an 
affine parameter t (which is the proper time if y is time- 
like), and denote by V(y) the real vector space of all 
continuous piecewise-@ vector fields along y. The index 
form I: V( y) X V(y) -+!R is the symmetric bilinear form 
given by the integral 

I(X,Y):= 
s 

,” k(V&,VTY) --~~(~,~)~,Y)ld~, 

for any (X, Y)EV( y) X V(y), where T denotes the tan- 
gent vector of y. Then the “first or timelike index lemma” 
for timelike geodesics is given as follows:” 

Timelike Index Lemma: Let y:[a,b]+M be a time- 
like geodesic with no points conjugate to y(a) and X be 
a continuous piecewise-C’ vector field along y, perpendic- 
ular to y, with X(a) =O. Let, furthermore, J be a perpen- 
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dicular Jacobi field along y with J(a) =0 and J(b) 
=X(b). ThenI(X,X))I(J,J), andI(X,X)=I(J,J) only 
if X=J. 

If y:[a,b]+M happens to be a null geodesic, the sit- 
uation is different, because the tangent vector T of y be- 
longs to its own perpendicular space. However, a slightly 
modified version of the above lemma can be prove, even 
in this case.” 

Null Index Lemma: Let y:[a,b] +M be a null geode- 
sic with no points conjugate to y(a) and X be a contin- 
uous piecewise-C’ vector field along ‘yt perpendicular to 
‘y, with X(a) =O. Let, furthermore, J be a perpendicular 
Jacobi field along y with J(a) =0 and J(b) =X(b) . Then 
I(X,X)>I(J,J), and 1(X,X) =I(J,J), only ifX-Jis ev- 
erywhere parallel to T. 

III. THE EXISTENCE OF CONJUGATE POINTS 

By the application of the above index lemmas, some 
conditions will be presented that are sufficient for the 
existence of conjugate points along causal geodesics. 

Throughout the following two sections, for a given 
causal geodesic y E will denote one of the unit spacelike 
vector fields parallelly propagated along and perpendicu- 
lar to y. Let y:[a,b]+M be a causal geodesic and E be a 
vector field along y. Let, furthermore, f:[a,b] -+ R be a 
continuous piecewise-e function, and X be the vector 
field X: = fE along y. Clearly, X belongs to V(r) and the 
index form takes the value 

I(X;y)= j-b t(f’(~))2-(f(~))2k~l\~(~)ld~, (3.1) 
fl 

on the pair (X,X)EV( r) X V(y), where the prime de- 
notes differentiation with respect to t, and the function 
kEl\T(t) is defined as 

kq,dt):= 
--K(YWd, if y is timelike, 

KAY(b), if y is null, 

where K(y( t) ,o) [resp., K7(y( t) ,a)] denotes the timelike 
(resp., null) sectional curvature (in the null case with 
respect to T) of the two-dimensional timelike (resp., 
null) linear subspace o in T,,,,M generated by the basis 
{E,T).“‘” Recall that K(y( t),a) [resp., Kr((y( t),a)] may 
be calculated by choosing a basis {X, y) (resp., {X,r)) 
for o and setting 

K(y(t),a):= - 
mw,nx,Y) 

g(X,XM Y, Y) - k(X, Y) I” ’ 

resp., Kd(y( t),a): = - 

Hereafter the function k,,,(t), the value of which de- 
pends only on the subspace o and not on the basis chosen, 
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will be referred to as the curvature function. It is worth 
noting that k,, r(t) is equal to the tidal force component 
R i4i4( t) of the curvature tensor in such a parallelly prop- 
agated orthonormal (resp., pseudo-orthonormal) basis 
{E,) that E, = E and E4= T. 

In what follows we shall apply a selected class of 
functions, denoted by F[a,b], to get restrictions on the 
timelike (resp., null) sectional curvature. Let 6 > 0 and 
g:[O,S]+W be such a @ function that - l<g<l, g(0) =0 
and g( 6) = 1. The set of functions having these properties 
will be denoted by G,. Now, then let the function 
fs:[a,b] -t W be defined as follows: 

i 

so(t--a), if a0zia+S, 
fs(t):= 1, if a+S<t<b-6, 

ho(b-f), if b-&Q& 

for some g,heG6, where O<S<f(b-a). The set of func- 
tions fs defined in this way will be denoted by F[a,b]. 
Clearly, the members of F[a,b] are continuous (at least) 
piecewise@ functions. 

Before presenting our main result we shall prove two 
lemmas. 

Lemma 3.1: Let tl, ~,ER and O<S<(t,--tl)/2. Fur- 
thermore, let k(t) :!R+ lR be a continuous function that 
does not change sign in each of the intervals [t, - S,tt +6] 
and [t2-S,t2+S]. Then, for any given g,hEG6, there exist 
such an ae[t, -S,t,] and a bE[t2,t2+8] that 

s 
,” (f6(t))2k(t)dt= 

s 
” k( t)dt (3.2) 
fl 

is satisfied, where fs is defined through g and h. 
Prooy? It is clear that (3.2) will be satisfied if for any 

given g,heGh there exist such an a and a b, for which 

s 

a+S 
(f-&( r))2k( t)dr= 

s 
‘+’ k(t)dt (3.3) (I 
f I 

and 

I b 
(f6( t))2k(t>dt= 

I 
” k( t)dt. (3.4) 

b-6 b-6 

We restrict the proof to the case of a, the existence of 
a proper b in (3.4) can be shown in an analogous way. 
Let geG6 and let the function I:[t,--S,t,]+R be defined 
as 

J?(a):= 
s 

:’ [go(t-a)]2k(t)dt 

s 

a+6 
- (l- [go(t-a)12)k(t)dt. 

tl 
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Then (3.3) must have a solution a~[t, -S,tJ if the func- 
tion I vanishes somewhere in the interval [tr -&t,]. Since 
k(t) does not change sign on [tr-&t,], one of the alter- 
natives, (a) k(t)>0 on [tt-S,t,] [whence l?(t,--S)>O 
and P(t,)<O]; and (b) k(t)<Oon [ti-6,tJ [whence I?(t, 
--S)(O and r(t,)>O); holds. 

As the function l? is continuous in the interval [ti 
-&t,] it must vanish in both cases somewhere in [ti 
--SJ,l. 0 

Lemma 3.2: Let S > 0 and geGa. Then we have 

I(g):= ,” 1S’(t))2dt>;) 
s 

(3.5) 

and F(g) =i only if g( t) =f/& 
ProoJ Let S> 0 and consider a smooth one- 

parameter family gA of functions in GG.-fhen the functio_n 
g,&Q extremizes the functional 1 whenev_er 61: 
=dI/dAI~zO=O. Now, for the first variation SI of the 
functional I, we get that 

SF=2 
s 

6 
g’(~)&‘(W~, (3.6) 

0 

where Sg:=dgn/dA IAZc. Clearly, S”g(a-+O) =S”g(b+G) 
=0 for any ~{1,2,...}. Upon integrating (3.6) by parts, 
we get that 

(37=-z 6 
s 

d’(Wg(~)dt; 
0 

i.e., gAZoeGa extremizes ;E, only if it is just the function 
g(t) = t/S. To see that I takes the minimum value at 
g(t) = t/S, it is enough to consider the second variation, 

S’F= 
s 

6 
2(&r’ (t) j2dt, 

0 

which is greater than zero for any nontrivial variation of 
g(t) =t/s. Cl 

Now, we can prove our main result, which we shall 
apply in the remaining part of this paper. 

Proposition 3.3: Let y:[a,b]+M be a causal geodesic 
in M, and t,,t,E(a,b) and O<S<(t,-rt,)/2, so that [ti 
-S,t, + S] C [u,b]. Suppose that there exists a vector field 
E along y so that the curvature function k,, =(t) does 
not change sign in each of the intervals [tr --6,t, +S] and 
[r2 - 6,f2 +S]. Furthermore, suppose that 

s 
“k Ei, 7(f)df>; (3.7) t, 

is satisfied. Then there exists a conjugate pointpair along 
y on the segment between r(t,--6) and S(t,+6). 

Prooj Suppose, on the contrary, that there is no con- 
jugate pointpair along y on the segment between y( t, -8) 

and y(t2+S). According to Lemma 3. l., to the interval 
[tl,t2], and for_any given g,hEGs, there exist such an Z[t, 
-s,t,] and a be[t2,t2+S] that 

s 
t2 k,,,(t)dt= 

s 

iY 
Kdf))2kE, r(f)dt 

fl a 

is satisfied, where fa is given through the functions g and 
h. Hence, the index form takes the value 

1(X,X) = 
s 

b (f;(t))2dt- 
s 

” k EA r(fW 
a 

f, 

for (X,XkV(y) X V(y), where X=f& Let g(t) =/z(t): 
= t/S. Then we have 

s 

b 

a 
(f;(t))2 dt=;. 

2844 J. K&mdr and I. R&z: On the strength of space-time singularities 

s 
t2 k f, Er, TOM>;, 

we get that 1(X,X) (0 is satisfied. However, according to 
the timelike (resp., null) index lemma, this implies that X 
vanishes along y (or in the null case it is purely tangen- 
tial) if y has no conjugate point to y(Z) on the segment 
between y(a and y(b). Since neither is true, the inverse 
assumption must fail, i.e., y contains a conjugate point- 
pair between r(t,-S) and r(t2+8). cl 

In view of Lemma 3.2. one can say that the lower 
bound 2/S appearing in expression (3.7) cannot be im- 
proved in the set of functions T[a,b]. 

As a direct consequence of the above proposition the 
next statement can be proved. 

Corolluly 3.4: Let y: ( - co, + CO ) + M be a complete 
causal geodesic in M. Suppose that there exists a vector 
field E along y so that the curvature function kEA T(t) is 
non-negative along y, while being positive somewhere. 
Then there exists a conjugate pointpair along y. 

Prooj The above condition on the curvature function 
kEA =(t) implies that 

s 

+CO 
k,,,(t)dt>o, 

--cc 

and so there must be such parameter values tr, t2& and 
a positive number 6 to Cl and t2 that 0 < 6( (t, - t2)/2 and 
Sz2k f, EAT(t)dt > 2/6 are satisfied. Then, according to 
Proposition 3.3, there exists a conjugate pointpair along y 
between r(tr--8) and y(t2+8). Cl 

Clearly, the restriction on the curvature function 
k,,, r(t) involved in the previous result plays the same 
role as the timelike (resp., null) convergence and the 
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so-called genericness conditions, together in the singular- 
ity theorems of Hawking and Penrose.‘>* However, it is 
worth noting that there can exist such a situation in 
which our condition is satisfied while the timelike (resp. 
null) convergence condition is violated everywhere along 
some causal geodesics. Consequently, a generalization of 
the Hawking-Penrose singularity theorem can be given. 

It turned out that the timelike (resp., null) conver- 
gence condition can be further weakened. Details and 
results on this line of examinations can be found in Ref. 
12. 

IV. THE BEHAVIOR OF THE TIDAL FORCE TENSOR 

In this section the behavior of the tidal force tensor 
along maximal incomplete causal geodesics will be exam- 
ined. First the diagonal elements then the off-diagonal 
ones will be considered. 

A. The diagonal elements 

In the remaining part of this paper we shall apply the 
following simplified version of Proposition 3.3. 

Proposition 4.1.1: Let y:[a,b] --+A4 be a maximal 
causal geodesic segment in M. Then for all rl,r2e(a,b), 
satisfying the relation [( 3t, -t2)/2,( 3t2-t1)/2] C [a,b], 
we have the inequality 

s 
I2 k I, .,,(Wt<W2--1, (4.1) 

for any curvature function kEA T( t) that does not change 
sign on the interval [(3t,-t2)/2,(3t2-t,)/2]. 

hvqf Clearly, whenever kEA T(t) ~0 on [ (3t, - t,)/ 
2, (3t2 - f1)/2], inequality (4.1) will be satisfied. Suppose, 
on the contrary, that there are tl,t2e(a,b) so that 

s 
” k 
11 

Et, T(t)dfi& 
2 1 

and k,,,(t)>0 on [(3t,-f2)/2,(3t2-lt,)/2]. In this 
case, with the choice S:= ( t2-t,)/2, the conditions of 
Propositions 3.3 are satisfied. Consequently, there exists a 
conjugate pointpair along y between “/(( 3t, - t2)/2) and 
‘y(( 3t2- t,)/2), so the geodesic y cannot be maximal. q 

Proposition 4.1.2: Let y: ( - 03 ,ro) -*A4 be a future in- 
complete casual geodesic. Suppose that there exists an 
interval [t*,to) and a vector field E along y so that the 
curvature function k,,.,T(t) does not change sign on 
[t*,to) and 

lim infI,l,,{(t-to)2kEl\T(t)}>9. 
I-6 

(4.2) 

Then there exists conjugate pointpair along y. 

Proof Suppose, on the contrary, that there cannot 
exist a conjugate pointpair along y. Let the function A ( t), 
defined as 

which is continuous and increasing on [t*,to). Hence, 
there must exist such an integer m( 22) and a parameter 
value t& 3t*+ to)/4,to) to this m that 
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2 

A(f)> 2 , 
( ) 

for any t~[tl,to). 

Let t2~(tl,to) be defined as 

2(m-1) 
t*2:= 

t +(m+2) 
3m O 3m ‘I* 

Then we have that 

3m t2-tl 
to-tl=-- m-l 2 ’ 

Furthermore, by ( 4.3 ) , 

(4.4) 

( 1 

2 

infI,,,,21C(f-fo)2kE,T(f)} > 2 * (4.5) 

Consequently, 

2 

(to-td2 inf[,,,,,]wEr\T(f)b 2 9 
( ) 

and by the application of (4.4)) we get that 

1 4 
inf[,,,,2]{kmT(t)) > (to-tl)2=(t2-tI)Z* 

(4.6) 

Then, integrating (4.6) over the interval [tl,t2], we obtain 
that 

s ‘2 km dt)dt> 
t1 

inf[,,,,zl{kEA T(t)}dt> A. (4.7) 
2 1 

Then, according to our choice we have that [( 3t, 
--t2)/2,( 3t2-t,)/2] C [tl,to). Furthermore, the curvature 
function does not change its sign on [( 3t, -t2)/2,( 3t2 
- t, )/2]. Consequently, the conditions of Proposition 
4.1.1 are satisfied, which exclude that (4.7) could be sat- 
isfied, whence the indirect condition must fail. cl 

Corollary 4.1.3: Let y:( - oO,to) -+M a future incom- 
plete maximal causal geodesic. Suppose that there is an 
interval [t*,to) and a vector field E along y so that the 
curvature function kEA T(t) does not change sign on 
[t*,to). Then we have that 
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lim inf{(f-fo)2kEAT(f)}<9. 
‘-‘0 

(4.8) 

So far we have not used any energy condition type 
assumption in the derivation of the above upper bound 
results. However, when deriving the dual lower bound 
results we have to impose certain restrictions on the Ricci 
part, Ric( T,T), of the tidal force tensor. 

Throughout the remaining part of this paper, for a 
given causal geodesic y {Ei}, we will denote one of the 
parallelly propagated orthonormal (resp., pseudo- 
orthonormal) bases along y, so that Ed:= T. 

Proposition 4.1.4: Let y:[a,b]+M be a maximal 
causal geodesic. Suppose that there exist t,,t2~(a,b) so 
that the diagonal components R,,(t) ie{ 1,2,3) (resp., 
k{1,2}) of the tidal force tensor for a basis {Ei} do not 
change sign on the interval [( 3t, - t2)/2, ( 3t2 - t1)/2] 
C[a,b] and Ric(T,T))-~/(t~-t~)~ along y for some 
c&R+. Then, for any k{1,2,3} (resp., k{1,2)) 

s 
r2 

RWH(t)dt> - 
4(n-l)+c 

(4.9) 
fl t2-t, ’ 

where n=3 (resp., n=2). 
Pro08 Since the conditions of Proposition 4.1.1 are 

satisfied for the interval ( t,,t2) C [a,b] we have for any 
iE{ 1,2,3} (resp., iE{ 1,2}) that 
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dition is satisfied along the future incomplete causal geo- 
desic y: ( - CO, to) -vM whenever 

lim{(t-to>2Ric(T,T)(t))>0. (4.13) 
‘-to 

This condition is satisfied if Ric( T,T) (t) does not di- 
verge too fast to - CO and, even more, if it has a lower 
bound along y. 

Proposition 4.1.6: Let y:( - CO ,to) +A4 be a future in- 
complete maximal causal geodesic. Suppose that the 
limes condition is satisfied along y and there is an interval 
[t*,to), so that the diagonal components Ri4i4( t)iG{ 1,2,3) 
(resp., &{1,2)) of the tidal force tensor for a basis {Ei3 
do not change sign on [P,to), as well as that 

l~[sUP~t,~~,C(t-to)2Ri4i40) 
t-.&J 

=o. 

Then, for any k{1,2,3) (resp., ic{1,2)) 

lim{(t-to>2Ri4i4(t)3)-9(n-11), (4.14) 
‘-b 

(4.10) 
where n=3 (resp., n=2). 

Proo$ Because of the above conditions, we have that 
Furthermore, Ric ( T, T) ( t) > - c/( t2 - t, ) 2 along the geo- 
desic y. Thus we have that 

Ribid(t ,=$+,R>@(r) - (tz~tl)~. (4.11) 
I 

Then, integrating (4.11) over the interval [t&j and ap- 
plying (4. IO), we get that (4.9) is satisfied. 0 

Corollary 4.1.5: Let y:[a,b] -M be a maximal causal 
geodesic. Suppose that there exist tl,t2E(a,b) so that the 
diagonal components Rai4( t)k{1,2,3} (resp., k{ 1,2}) of 
the tidal force tensor for a basis {Ei) do not change sign 
on the interval [ (3t, - t2)/2, ( 3t2- t,)/2] C [a,b] and 
Ric( T,T)>-c/(t2-t,)2 along y for some EW+. Then, 
for any k{ 1,2,3) (resp., iE{ 1,2)) 

lim inf~,t~,C(t-to)2Ri4i4(t))=lim{(t-to)2Ri4i4(t)), 
‘-‘0 t-to 

for any value of the index i. Then, by the application of 
Corollary 4.1.3, we get that 

lim{(t-to)2Ri4i4(t)))- 2 lim{(t-to)2R~~(t)) 
‘-‘0 j= l&i t+ to 

>--9(n-1). 0 

Then, simply as a consequence of Corollary 4.1.3 and 
the above proposition, the following statement can be es- 
tablished. 

(4.12) 

where n=3 (resp., n=2). 
In the derivation of the next statement a restriction 

weaker than the previous one on the Ricci part of the 
tidal curvature will suffice. It is said that the limes con- 

Corollary 4. I. 7: Let y: ( - 00 ,to) -A4 be a future in- 
complete maximal causal geodesic. Suppose that the 
limes condition is satisfied along y, and there is an inter- 
val [t*,to>, so that the diagonal components 
Ri4i4(t)k{1,2,3) (resp., k{1,2)) of the tidal force tensor 
for a basis {Ei) do not change the sign on [t*,to), as well 
as that 
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lim[sup~~,4,{(t-to)2R~4i40) 
f-4 

Then, for any k{ 1,2,3) (resp., k{ 1,2)), 

Ilim{(t-to)*Ri4i4(t))I(9(n-l), (4.15) 
t-4 

where n=3 (resp., n=2). 

B. The off-diagonal components 

As an easy application of the results of the previous 
section, the following two statements can be proved, in 
connection with the off-diagonal elements of the tidal 
force tensor along maximal causal geodesics. 

Proposition 4.2. I: Let y:[a,b] -+M be a maximal ca- 
sual geodesic. Suppose that there exist tl,t2e(a,b), so that 
the diagonal components Ri4i4( t)k{1,2,3) (resp., 
its{ 1,2)) of the tidal force tensor for a basis {Ei) and the 
functions Rk4k4( t) f R14[,( t) for some k&{ 1,2,3) (resp., 
k&{ l,2)) do not change the sign on the interval [(3t, 
-t2)/2,(3t2-t1)/2]C[a,bl and Ric(T,T)>-c/(t, 
- t,)2 along y for some c&+. Then, for the indices k,l, 

R/c,dWt < 
8(n-1)+2c t2-f] ’ 

where n=3 (resp., n=2). 
ProoJ By imposing the above conditions on the com- 

ponents Ri4i4( t)* we have that the diagonal components 
R>z( t): =g(R (Ei,T) T,Ei) of the tidal force tensor be- 
longing to the parallelly propzgated orthonormal (resp., 
pseudo-orthonormal) basis {Ei) al_ong y satisfy the con- 
ditions of Corollary 4.15, _where Ek:= (l/ti) (Ek+El), 
El: = ( l/a) (Ek- El) and Ei: = Ei whenever i#k,l. 

Then, using the multilinearity of the curvature ten- 
sor, we have that 

s 
f2R ba(t)dt=; 

s 
t2 Rk4k4(t)dt+; &dtW 

t1 fl 

s 
t1 

+ R/dWt 
fl 

is satisfied, from which we get that 

/ j-)Wt)dt~<j f Ri&(t)dtl +; 1 c R/m dj 
(4.16) 
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The statement follows from the fact that, by Corol- 
lary 4.1.5, each of the three integral terms on the right- 
hand side of (4.16) are bounded. 0 

Proposition 4.2.2: Let y:( - CO ,to) +M be a future in- 
complete maximal causal geodesic. Suppose that the 
limes condition is satisfied along y, and there is an inter- 
val [P,to> so that the diagonal components 
Ri4i4( t)&{ 1,2,3) (resp., k{ 1,2)) of the tidal force tensor 
for a basis {EJ and the functions Rk4k4( t) f R14t4( t) for 
some k&{ 1,2,3) (resp., k&{ l,2)) do not change sign on 
the interval [P,to), as well as that 

lim[suP~,~o,C(t-to)2Ri4i40) 
t-4 

Then, for the indices k,i, 

~lim{(t-t~)2R~~~~(t))1<18(n-l), (4.17) 
‘-4 

where n=3 (resp., n=2). 
Proq? Like in the proof of the previous proposition, 

we have that the conditions imposed on R,,(t) imply 
that the components RT4g(t) satisfy the conditions of 
Corollary 4.1.7. Furthermore, by the multilinearity of the 
curvature tensor, we have that 

lim~(t-to)2R~4~4(t))=~lim{(t-t0)2Rk4k4(t)) 
‘-4 ‘-4 

+limC(t-to)2R~4~4(t)3. 
t-4 

After rearrangement we get, by applying the Cauchy- 
Schwartz inequality, 
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I limC(t-td2&4r4(t)l I 
‘-to 

< 1 limC(t-to)2R~4~44(t)}I 
t-to 

+ J, i IlimI(r-to)2Ri4i4(t))I 
t-to 

<18(n- 11, 

where in the last line Corollary 4.1.7 was applied. 

V. CONCLUDING REMARKS 

0 

In addition to the above-mentioned possibility of re- 
placing the energy conditions of the classical singularity 
theorems by weaker ones there is another way to interpret 
the above results. Previously, it was shown by Tipler,4’6 
Newman,’ and Szabados ‘,’ that there exists an upper 
bound to the rate of the possible divergence of the Ricci 
part Ric( T,T) or the conformal electric part of the tidal 
force tensor along incomplete maximal null geodesics. 
The statements proven in the above two sections (see, 
e.g., Corollaries 4.1.3 and 4.1.7 and Proposition 4.2.2) 
are extensions of the previous results, and show that nei- 
ther of the diagonal or the off-diagonal components of the 
tidal force tensor that do not change sign on some final 
segment of y can blow up faster than (I- to> -’ along 
maximal timeiike and null geodesics. The applied limes 
condition is definitly weaker than the energy conditions 
appearing in the earlier works referred to. Furthermore, 
in our approach the behavior of the components can be 
separately examined. 

It is straighforward to recast the proposed procedure 
for any space-time (M,g) having a dimension m>2. 
Clearly, then n takes the value n=m - 1 (resp., n=m 

-2) and the free indices ij,k,l take value from the set 
{1,2,3 ,..., n}. 

It is worth noting that in the derivation of our main 
result, see Proposition 3.3, we were strongly relying on 
the chosen set of functions 3+z,b]. Since we could not 
find any evidence showing that our choice is the most 
suitable one the clearup of this problem would deserve 
further examination. 

Note added to prooj In the proof of Lemma 3.2 we 
only showed that g(t) = t/S is the only local minimum of 
the functional I. However, according to Tonelli’s exist- 
ence theorem for Lagrange problems of the calculus vari- 
ations [see, e.g., Theorem 2.20.i in Lamberto Cesari, Op- 
timization Theory and AppZications ( Springer-Verlag, 
New York, 1983)] this means that g(t) is the global min- 
imum of I. We are grateful to Steve Harris for pointing 
out to us the incompleteness of the first version of the 
proof. 
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