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Abstract
A key result in four-dimensional black hole physics, since the early 1970s, is
Hawking’s topology theorem assertion that the cross-sections of an ‘apparent
horizon’, separating the black hole region from the rest of the spacetime, are
topologically 2-spheres. Later, during the 1990s, by applying a variant of
Hawking’s argument, Gibbons and Woolgar could also show the existence of a
genus-dependent lower bound for the entropy of topological black holes with
negative cosmological constant. Recently, Hawking’s black hole topology
theorem, along with the results of Gibbons and Woolgar, has been generalized
to the case of black holes in higher dimensions. Our aim here is to give a simple
self-contained proof of these generalizations, which also makes their range of
applicability transparent.

PACS numbers: 04.20.−q, 04.50.Gh

1. Introduction

The notion of a trapped surface was introduced by Penrose [11]. In a four-dimensional
spacetime the spacelike boundary, S , of a three-dimensional spatial region is called a future
trapped surface if gravity is so strong there that even the future and ‘outwards’ directed
normal null rays starting at S are dragged back so much that their expansion is non-positive
everywhere on S . Careful analysis justified that trapped surfaces necessarily occur whenever
a sufficient amount of energy is concentrated in a small spacetime region [12].

Intuitively, a black hole region is considered to be a part of a spacetime from which
nothing can escape. Therefore a black hole region is supposed to be a future set comprised by
events that individually belong to some future trapped surface. The boundary of such a black
hole region, referred to usually as the ‘apparent horizon’, H, is then supposed to be comprised
by marginal future trapped surfaces. As one of the most important recent results in black hole
physics the existence of an ‘apparent horizon’ was proved in [1, 2]. More specifically, it was
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shown there that given a strictly stable marginally outer trapped surface (MOTS) S0 ⊂ �0 in
a spacetime with reference foliation {�t }, then there exists an open tube, H = ∪tSt , foliated
by marginally outer trapped surfaces, with St ⊂ �t , through S0. Let us merely mention,
without getting into the details here, that the applied strict stability assumption is to exclude
the appearance of future trapped surfaces in the complementer of a black hole region.

Hawking’s black hole topology theorem [9] is proven by demonstrating that whenever the
dominant energy condition (DEC) holds a MOTS S can be deformed, along the family of null
geodesics transverse to the apparent horizon, yielding thereby—on contrary to the fact that
S is a MOTS—a future trapped surface in the complementer of the black hole region, unless
the Euler characteristic χS of S is positive. Whenever S is a codimension-two surface in a
four-dimensional spacetime the Euler characteristic and the ‘genus’, gS , of S can be given,
in virtue of the Gauss–Bonnet theorem, via the integral of the scalar curvature Rq of the metric
qab induced on S as

2πχS = 4π(1 − gS ) = 1

2

∫
S

Rqεεq. (1.1)

The main difficulty in generalizing Hawking’s argument to the higher dimensional case
originates from the fact that whenever S is of dimension s = n − 2 � 3 in an n-dimensional
spacetime, the integral of the scalar curvature R

(s)

by itself is not informative, as opposed
to the case of n = 4, therefore the notion of Euler characteristic has to be replaced by the
Yamabe invariant. The latter is known to be a fundamental topological invariant and is defined
as follows. Denote by [q] the conformal class of Riemannian metrics on S determined by
qab. It was conjectured by Yamabe, and later proved by Trudinger, Aubin and Schoen that to
every conformal class on any smooth compact manifold there exists a metric q̃ab of constant
scalar curvature so that

Rq̃ = Y (S , [q]) ·
(∫

S
εεq̃

)− 2
s−2

, (1.2)

where the Yamabe constant Y (S , [q]), associated with the conformal class [q], is defined as

Y (S , [q]) = inf
q̂∈[q]

∫
S Rq̂εεq̂( ∫
S εεq̂

) s−2
s

= inf
u∈C∞(S ),u>0

∫
S

[
4 s−1

s−2 (Dau)(Dau) + Rqu
2
]
εεq(∫

S u
2s

s−2 εεq

) s−2
s

. (1.3)

In the later case, the metric q̂ ∈ [q] can be given as q̂ab = u
4

s−2 qab, and, moreover, Da and
Rq denote the covariant derivative operator and the scalar curvature associated with the metric
qab on S . The Yamabe invariant is then defined as

Y(S ) = sup
[q]

Y (S , [q]). (1.4)

Some of the recent generalizations of Hawking’s [9] black hole topology theorem, and also
that of Gibbons’ [7] and Woolgar’s [15] results, proved by Galloway, Schoen, O’Murchadha
and Cai, that are covered by [3, 4, 6] may then be formulated as.

Theorem 1.1. Let (M, gab) be a spacetime of dimension n � 4 satisfying the Einstein
equations

Rab − 1
2gabR + �gab = 8πTab, (1.5)

with cosmological constant � and with matter subject to DEC. Suppose, furthermore, that S
is a strictly stable MOTS in a regular spacelike hypersurface �.

(1) If � � 0 then S is of positive Yamabe type, i.e., Y(S ) > 0.
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(2) If Y(S ) < 0 and � < 0 then for the ‘area’ A(S ) = ∫
S εεq of S the inequality

A(S ) �
( |Y(S )|

2|�|
) s

2

(1.6)

holds.

The significance of these results gets to be transparent if one recalls that in the first case,
i.e., when Y(S ) > 0,S cannot carry a metric of non-positive sectional curvature which
immediately restricts the topological properties of S [8]. Whereas, in the second case a lower
bound on the ‘entropy’ of a black hole, which is considered to be proportional to the area
A(S ) is provided by (1.6).

Before proceeding we would like to stress on an important conceptual point. Most of the
quoted investigations of black holes, see [1–6], start by assuming the existence of a reference
foliation {�t } of the spacetime by (partial) Cauchy surfaces �t . In this respect it is worth
recalling that by a non-optimal choice of {�t } one might completely miss a black hole region
as it follows from the results of [14], where it was demonstrated that even in the extended
Schwarzschild spacetime one may find a sequence of Cauchy surfaces which get arbitrarily
close to the singularity such that neither of these Cauchy surfaces contains a future trapped
surface. Hence, one of the motivations for the present work—besides providing a reduction
of the complexity of the proof of theorem 1.1, and also a simultaneous widening of its range
of applicability—was to carry out a discussion without making use of any reference foliation.

2. Preliminaries

As will be seen below, the simplicity of the presented argument allows the investigation of
black holes essentially in arbitrary metric theory of gravity. Thereby, we do not restrict our
considerations to either of the specific theories. Accordingly, a spacetime is assumed to be
represented by a pair (M, gab), where M is an n-dimensional (n � 4), smooth, paracompact,
connected, orientable manifold endowed with a smooth Lorentzian metric gab of signature
(−, +, . . . , +). It is assumed that (M, gab) is time orientable and that a time orientation has
been chosen.

The only restriction, concerning the geometry of the allowed spacetimes, is the following
generalized version of DEC. A spacetime (M, gab) is said to satisfy the generalized dominant
energy condition if there exists some smooth real function f on M such that for all future
directed timelike vector ta the combination −[

Ga
bt

b + f ta
]

is a future directed timelike or
null vector, where Gab denotes the Einstein tensor Rab − 1

2gabR. It is straightforward to see
that in Einstein’s theory of gravity, where gab is subject to (1.5), the generalized dominant
energy condition, with the choice f = �, is equivalent to requiring the energy–momentum
tensor, Tab, to satisfy DEC [13].

To restrict our considerations to black hole spacetimes, we shall also assume the existence
of future trapped surfaces in (M, gab) which are defined as follows. Let us consider a smooth
orientable (n− 2)-dimensional compact manifold S with no boundary in M. Let �a and ka be
smooth future directed null vector fields on S scaled such that ka�a = −1, and which are also
normal to S , i.e., gab�

aXb|S = 0 and gabk
aXb|S = 0 for any vector field Xa tangent to S .

Consider then the null hypersurfaces generated by geodesics starting on S with tangent �a

and ka . These null hypersurfaces are smooth in a neighbourhood of S , and, by making use of
the associated synchronized affine parametrizations of their null generators, the vector fields
�a and ka can be, respectively, extended to them. The level surfaces of the corresponding
synchronized affine parametrizations do also provide foliations of these null hypersurfaces by
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Figure 1. The black hole, represented by the shaded region, is bounded by horizon H that is
foliated by MOTS’ homologous to S .

(n− 2)-dimensional compact manifolds homologous to S . Denote by εεq the volume element
associated with the metric, qab, induced on these (n − 2)-dimensional surfaces. Then the null
expansions θ(�) and θ(k) with respect to �a and ka are defined by

£�εεq = θ(�)εεq, £kεεq = θ(k)εεq, (2.1)

where £� and £k denote the Lie derivatives with respect to the null vector fields �a and ka .
The (n − 2)-dimensional surface S is called future trapped surface if both the null

expansions θ(�) and θ(k) are non-positive on S . In the limiting case, i.e., whenever either
of these null expansions (say θ(�)) vanishes on S identically, S is called future marginally
trapped surface.

In case of a generic (n − 2)-dimensional surface the quasi-local concept of outward and
inward directions is undetermined. Nevertheless, these concepts get to be well defined for
non-minimal marginally trapped surfaces. It will be said that �a and ka point outwards and
inwards, respectively, provided that θ(�) = 0 and θ(k) � 0, and that θ(k) is not identically zero.
(If both θ(�) and θ(k) vanish identically S is a minimal surface and the notions outwards and
inwards become degenerate.)

To see that this quasi-local concept of ‘outer’ direction is not counter intuitive, consider
the null hypersurface N generated by null geodesics starting at the points of S with tangent
na = −ka (see figure 1). Since N is smooth in a neighbourhood O of S it can be smoothly
foliated by (n − 2)-dimensional surfaces, Su, defined as the u = const cross-sections of N ,
where u is the affine parameter along the generators of N such that na = (∂/∂u)a and u = 0
on S . Then, it seems natural to consider ka as inward pointing if the ‘area’ A(Su) = ∫

Su
εεq

of the cross-sections Su is non-decreasing in the direction of na which, in the case under
consideration, follows from θ(k) � 0 as

dA(Su)

du

∣∣∣∣
u=0

=
∫

S
£−kεεq = −

∫
S

θ(k)εεq � 0. (2.2)

Accordingly, S is called future marginally outer trapped surface (MOTS) if θ(�) = 0
and θ(k) � 0 on S .

In deriving our results we shall also apply a stability assumption. Before formulating it
let us first recall that the above imposed conditions do not uniquely determine the pair of null
vector fields �a and ka on S . In fact, together with �a and ka any pair of null vector fields �′a

and k′a that is yielded by the boost transformation

ka → k′a = evka, �a → �′a = e−v�a, (2.3)
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where v : S → R is an arbitrary smooth function on S , will be suitable. It is well known,
however, that the signs of θ(�) and θ(k) are invariant under such a positive rescaling of �a

and ka .
Suppose then that S is a future MOTS with respect to a null normal �a . Then, S will be

called strictly stably outermost if there exists a rescaling of the type (2.3) so that £k′θ(�′) � 0
for the yielded vector fields �′a and k′a , and also £k′θ(�′) < 0 somewhere on S . Obviously,
this definition is independent of the use of any sort of reference foliation. Moreover, as will
be indicated below, it can be seen to be equivalent to the corresponding criteria applied in
[1, 2].

3. The proof of the main result

The main argument of the present paper can then be given in the following simple geometric
setup. We have already defined na = −ka to be a smooth past directed null vector field on
S that is also normal to S . Similarly, the smooth null hypersurface N , spanned by the
(n − 2)-parameter congruence of null geodesics starting at S with tangent na , and the affine
parameter u along the geodesics, synchronized such that u = 0 on S , have already been
introduced. Denote by na the tangent field (∂/∂u)a on the null hypersurface N , which is
foliated by the smooth u = const cross-sections, Su. Then, there exists a uniquely defined
future directed null vector field �a on N such that gabn

a�b = 1, and that �a is orthogonal to
each Su. Denote by r the affine parameter of the null geodesics determined by �a which are
synchronized such that r = 0 on N .

Since �a is, by construction, smooth on N the null geodesics starting with tangent �a on N
do not meet within a sufficiently small open ‘elementary spacetime neighbourhood’ O of S .
Extend, then, the function u from N onto O by keeping its value constant along the geodesics
with tangent �a . Then the vector fields na and �a , defined so far only on N , do also extend
onto O such that the relations na = (∂/∂u)a and �a = (∂/∂r)a hold there, which do also imply
that na and �a commute on O. Note that O is smoothly foliated by the two-parameter family
of (n − 2)-dimensional u = const, r = const level surfaces Su,r . The spacetime metric in O
can then always be given (see, e.g., [10] for a justification) as

gab = 2(∇(ar − rα∇(au − rβ(a)∇b)u + γab, (3.1)

where α, βa and γab are smooth fields on O such that βa and γab are orthogonal to na and �a .
Recall also that γab and the positive definite metric qab on the (n − 2)-dimensional surfaces
Su,r are related as

qab = r2βcβc�a�b − 2rβ(a�b) + γab. (3.2)

This latter relation implies that qab = γab on N , represented by the r = 0 hypersurface in O,
i.e., γab is the metric on the cross-sections Su of N .

Since the vector fields na and �a are null and normal to the cross-sections Su the
expansions of the associated null congruences at Su can be given as

θ(n)|Su
= 1

2qef (£nqef ) = 1
2γ ef (£nγef ) and θ(�)|Su

= 1
2qef (£�qef ) = 1

2γ ef (£�γef ), (3.3)

where £n and £� denote the Lie derivatives with respect to the vector fields na and �a ,
respectively, and (here and elsewhere) all the indices are raised and lowered with the spacetime
metric gab. The second equalities in (2.1) follow from the fact that βa and γab are orthogonal
to na and �a and also that na and �a commute in O.

By making use of (3.1) and the definition of the Einstein tensor, it is straightforward to
see that

Gabn
a�b = Rabn

a�b − 1
2Ref [2n(e�f ) + γ ef ] = − 1

2γ ef Ref (3.4)
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holds on N . Then, in virtue of equation (82) of [10], and by the coincidence of qab and γab

and also of the projectors qa
b, γ

a
b and pa

b on N (for the definition of pa
b see (76) of [10])

we also have that on N
Gabn

a�b = − 1
2

[ − γ ab(£�£nγab) − αγ ab(£�γab) + Rq + Daβa − 1
2βaβa

+ γ abγ cd(£�γac)(£nγbd) − 1
2γ ab(£�γab)γ

cd(£nγcd)
]
, (3.5)

where Da and Rq denote the covariant derivative operator and the scalar curvature associated
with the metric qab = γab on the (n − 2)-dimensional surfaces Su on N . By making use of
the fact that the vector fields na and �a commute in O and that they are orthogonal to γab a
direct calculation justifies then the relation

−γ ab(£�£nγab) = −£�(γ
ab£nγab) − γ abγ cd(£�γac)(£nγbd). (3.6)

Since na and �a commute we also have that

£�θ
(n) = £nθ

(�) (3.7)

in O, where the expansion θ(n) is defined with respect to the volume element εεq associated
with the metric qab on the surfaces Su,r as in (3.3). Similarly, it can be verified that

£kθ
(�) = £nθ

(�) (3.8)

on N , i.e., whenever r = 0, where ka denotes the unique future directed null extension

ka = −[
na +

(
rα + 1

2 r2βeβe

)
�a + rβa

]
(3.9)

of ka = −na on S onto O which is normal to the surfaces Su,r and is scaled such that
ka�a = −1 in O.

Then, by making use of the vanishing of θ(�) on S , the above relations—in particular,
equations (3.3), (3.5), (3.6) and (3.7)—imply that

£nθ
(�)|S = Gabn

a�b + 1
2

[
Rq + Daβa − 1

2βaβa

]
. (3.10)

Since −na and �a are both future directed null vector fields on N , and also the generalized
dominant energy condition holds, i.e., there exists a real function f on M such that the vector
field −[

Ga
bl

b +f la
]

is future directed and causal, the inequality Gabn
a�b +f � 0 holds on N .

Finally, since S was assumed to be a strictly stable MOTS, in virtue of (3.8), the null normals
na = −ka and �a may be assumed, without loss of generality, to be such that £nθ

(�)|S � 0,
and also that £nθ

(�)|S > 0 somewhere on S .
To see that the stability condition applied here is equivalent to that used in [1, 2] note that

βa = −qe
anb∇e�

b and it transforms under the rescaling (2.3) of the vector fields ka = −na

and �a on S as βa → β ′
a = βa +Dav. By making use of the notation ψ = e−2v and sa = 1

2βa ,
it can be verified then that

£ψn′θ(�′)|S = −DaDaψ + 2saDaψ +
ψ

2
[Rq + 2Gabn

a�b + 2Dasa − 2sasa] (3.11)

holds, which is exactly the expression ‘δqθ ’ given in lemma 3.1 of [2] whenever S is
a MOTS and the variation vector field qa is chosen to be ‘ψna’. This justifies then
that the strict stability conditions applied here and in [1, 2] (see, e.g., definition 5.1
and the discussion at the end of section 5 of [2] for more details) are equivalent.

In returning to the main stream of our argument note that whenever S is a strictly stable
MOTS and the generalized DEC holds then, in virtue of (3.10),

Rq + Daβa − 1
2βaβa � 2f, (3.12)

so that the inequality is strict somewhere on S . Since qab is positive definite we also have
that for any smooth function u on S

u2Daβa = Da(u2βa) − 2u(Dau)βa � Da(u2βa) + 2(Dau)(Dau) + 1
2u2βaβa. (3.13)

6
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Thus, multiplying (3.12) by u2, where u > 0 is arbitrary, we get, in virtue of (3.13), that

2(Dau)(Dau) + Rqu
2 + Da(u2βa) � 2f u2, (3.14)

so that the inequality is strict somewhere on S .
To get the analogue of the first part of theorem 1.1 assume now that f is such that f � 0

throughout S . Then, by taking into account the inequality 4 s−1
s−2 > 2, which holds for any

value of s � 3, we get from (3.14) that∫
S

[
4 s−1

s−2 (Dau)(Dau) + Rqu
2
]
εεq(∫

S u
2s

s−2 εεq

) s−2
s

> 0, (3.15)

for any smooth u > 0, i.e., Y (S , [q]) > 0, which implies that S is of positive Yamabe type.
Similarly, whenever the minimal value f S

min of f on S is negative, on one hand,

2
∫

S
f u2εεq � −2

∣∣f S
min

∣∣ ∫
S

u2εεq (3.16)

while, on the other hand, by applying the Hölder inequality∫
S

φ1φ2εεq �
(∫

S
|φ1|aεεq

) 1
a
(∫

S
|φ2|bεεq

) 1
b

,
1

a
+

1

b
= 1 (3.17)

to the functions φ1 = u2 and φ2 = 1 with a = s
s−2 , b = s

2 , we get that

∫
S

u2εεq �
(∫

S
u

2s
s−2 εεq

) s−2
s

[A(S )]
2
s . (3.18)

The combination of (3.16) and (3.18), along with (3.14), justifies then that∫
S

[
4 s−1

s−2 (Dau)(Dau) + Rqu
2
]
εεq(∫

S u
2s

s−2 εεq

) s−2
s

� −2
∣∣f S

min

∣∣[A(S )]
2
s . (3.19)

Assuming finally that Y(S ) < 0 we get that, for any conformal class [q], the Yamabe constant
Y (S , [q]) � Y(S ) < 0. This, along with (3.19), implies then

|Y(S )| � |Y (S , [q])| = −Y (S , [q]) � 2
∣∣f S

min

∣∣[A(S )]
2
s , (3.20)

which leads to the variant of the inequality (1.6) yielded by the replacement of � by f S
min.

4. Final remarks

What has been proven in the previous section can be summarized as.

Theorem 4.1. Let (M, gab) be a spacetime of dimension n � 4 in a metric theory of
gravity. Assume that the generalized dominant energy condition, with smooth real function
f : M → R, holds and that S is a strictly stable MOTS in (M, gab).

(1) If f � 0 on S then S is of positive Yamabe type, i.e., Y(S ) > 0.
(2) If Y(S ) < 0 and f S

min < 0, where f S
min denotes the minimal value of f on S , then

A(S ) �
(

|Y(S )|
2
∣∣f S

min

∣∣
) s

2

. (4.1)
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We would like to mention that the argument of the previous section does also provide an
immediate reduction of the complexity of the original proof of Hawking and that of Gibbons
and Woolgar. To see this recall that, in virtue of (1.1), (1.3) and (1.4), Y(S ) = 4πχS ,

whenever S is of dimension s = 2, and also that f = �, if attention is restricted to Einstein’s
theory with matter satisfying the dominant energy condition. Thereby, as an immediate
consequence of theorem 4.1, we have that

χS > 0, (4.2)

whenever � � 0 on S , while

A(S ) � 4π(1 − gS )

|�| (4.3)

whenever both χS and � are negative.
Clearly the above justification of theorem 4.1 is free of the use of any particular reference

foliation of the spacetime. Note also that in the topological characterization of an n-2-
dimensional strictly stable MOTS S , only the quasi-local properties of the real function
F : M → R are important. In particular, as the conditions of theorem 4.1 do merely refer to
the behaviour of f on S it need not be bounded or have a characteristic sign throughout M.
Similarly, it would suffice to require the generalized dominant energy condition to be satisfied
only on S .

Finally, we would also like to emphasize that theorem 4.1 provides a considerable
widening of the range of applicability of the generalization of Hawking’s black hole topology
theorem, and also that of the results of Gibbons and Woolgar. As its conditions indicate,
theorem 4.1 applies to any metric theory of gravity and the only restriction concerning the
spacetime metric is manifested by the generalized dominant energy condition and by the
assumption requiring the existence of a strictly stable MOTS. Accordingly, theorem 4.1 may
immediately be applied in string theory or in various other higher dimensional generalizations
of general relativity.
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