New data on the Higgs boson by CMS

FFK-2014, Dubna, Russia, 1-5 Dec. 2014

Dezső Horváth
on behalf of the CMS Collaboration

horvath.dezso@wigner.mta.hu

Wigner Research Centre for Physics,
Institute for Particle and Nuclear Physics, Budapest, Hungary
& ATOMKI, Debrecen, Hungary
Outline

- Higgs boson of the Standard Model
- LHC and CMS at CERN
- Methods of the Search
- Observation at LHC
- Is it the SM Higgs?
- What else?

With the support of half the world
including the Hungarian OTKA Grants K-103917 and K-109703
References

The Zoo of the Standard Model

The elementary particles

3 fermion families:
1 pair of quarks and
1 pair of leptons in each

3 kinds of gauge bosons:
the force carriers
All identified and studied!

+ the Higgs boson (!)

Color: the charge of the strong interaction
colored quarks \Rightarrow colorless composite hadrons of 2 kinds
hadrons = mesons ($q\bar{q}$) + baryons (qqq)
The Standard Model

Derive 3 interactions of local $U(1)$, $SU(2)$ and $SU(3)$ symmetries

Unify and separate e-m $U(1)$ and weak $SU(2)$ interactions using spontaneous symmetry breaking:

- Anderson-Brount-Englert-Higgs-Guralnik-Hagen-Kibble (BEH) mechanism, 1963-64

Add a 4-component, symmetry breaking BEH-field to vacuum.

From the ruined $U(1) \otimes SU(2)$ separate a good $U(1)$ local symmetry

\[\downarrow \]

electromagnetism + zero-mass photon, OK!

Turn 3 d.f. of BEH-field to create masses for Z, W^+, W^-, get a correct weak interaction with 3 heavy gauge bosons.

4th degree of freedom: heavy scalar boson.
Standard Model fitting, 2014

Includes hundreds of measurements of all experiments

|Expt – theory| expt. uncertainty

Slightly deviating quantity:
forward-backward asymmetry of:
\[e^+e^- \rightarrow Z \rightarrow b\bar{b} \]

The Gfitter Group:
arxiv.org:1407.3792

Dezső Horváth: New data on the Higgs Boson
FFK-2014, Dubna, Russia, 1-5 Dec. 2014

\[(O_{\text{indirect}} - O) / \sigma_{\text{tot}} \]

\[\Delta \alpha_s(M_Z^2) \]

\[\Delta \alpha_s(M_Z^2) \]

\[\alpha_s(M_Z^2) \]

\[\sigma_{\text{had}}(M_Z^2) \]

\[\sigma_{\text{had}}(M_Z^2) \]

\[M_H \]

\[M_W \]

\[\Gamma_W \]

\[M_Z \]

\[\Gamma_Z \]

\[\sin^2\theta_{\text{eff}}(Q_{\text{FB}}) \]

\[A_c \]

\[A_b \]

\[A_{FB}^0 \]

\[R_c^0 \]

\[R_b^0 \]

\[m_t \]
The Higgs boson of the Standard Model

Spinless, neutral, heavy particle
The scalar particle needed for renormalisation
SM: it must exist!

Many jokes were of the Higgs boson before the discovery

- The Higgs boson walks into a bar. The bartender says "Watch out, there were some guys looking for you."

- I’m trying to find a good Higgs joke. It may take years, but I’m sure it exists.

- The Higgs boson walks into a church. The priest says “Your kind is not welcome here”. The boson replies: “But without me how can you have mass?” (Mass: Inertia, people, ceremony)

- The Higgs boson walks into a bar. The bartender does not understand...
Luminosity: collision rate

Luminosity: \[L = fn \frac{N_1 N_2}{A} \]

\([L] = s^{-1} \text{cm}^{-2} \sim \text{flux}\)

\(f\): circulation frequency; \(n\): nr. of bunches in ring; \(N_1, N_2\) particles/bunch; \(A\): spatial overlap

Rate of reaction with cross section \(\sigma\) at efficiency \(\epsilon\)

\[R = \epsilon \sigma L \]

Integrated luminosity: \[\int_{t_1}^{t_2} L dt \]

measured in units of inverse cross-section:

\([\text{pb}^{-1}, \text{fb}^{-1}]\)
Exclusion and Discovery

General convention in accelerator experiments:

Exclusion of a given phenomenon at \(\geq 95\% \) confidence level.

Observation of something new:

\(> 5\sigma \) above background.

One-sided exclusion:

\[X > X_0 \text{ at } 95\% \text{ CL if } X_{\text{obs}} - X_0 > 1.64\sigma \]
And what is σ?

The total uncertainty of the physics parameters P according to the best honest guess of the experimentalist.

It has a **statistical component** (from the number of observed events)

and **systematic** ones from various sources:

Monte Carlo statistics and inputs, calibration factors, efficiencies, etc. *(nuisance parameters Θ)*

could be added up with correlations accounted for with a final uncertainty roughly:

$$\sigma = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$$

However, we derive the final uncertainty via marginalizing (integrating out) the nuisance parameters in likelihood \mathcal{L} using the related probability distributions \mathcal{W}:

$$\mathcal{L}(P; x) = \mathcal{W}(x|P) = \int \mathcal{W}(x|P, \Theta) \mathcal{W}(\Theta|P) d\Theta$$
What is observed: resonance

\[\tau = \Gamma^{-1} \text{ lifetime } \Rightarrow \text{exp. decay: } N(t) = N_0 e^{-\Gamma t} \]

Probability distribution:

\[|\chi(E)|^2 = \frac{1}{(E-M)^2 + \Gamma^2/4} \]

Breit-Wigner equation

\[
\begin{align*}
M & \text{ resonance} \\
\Gamma & \text{ centre width}
\end{align*}
\]

\[
(h = 1, c = 1)
\]

Lorentz curve

New particle discovery: resonance at decay energy corresponding to the same particle mass in all possible decay channels
Hunting the Higgs boson

Compose a complete SM background using Monte Carlo simulation taking all types of possible events normalized to their cross-sections.

Higgs signal: simulation of all possible production and decay processes with all possible Higgs-boson masses

Put all these through the detector simulation to get events analogous to the measured ones.

Optimize the event selection: reduce B background, enhance S signal via maximizing e.g.

\[\frac{N_S}{\sqrt{N_B}} \text{ or } \frac{N_S}{\sqrt{N_S + N_B}} \text{ or } 2 \cdot (\sqrt{N_S + N_B} - \sqrt{N_B}) \]

Calculate at experimental luminosity expected nr. of events for signal and background at various conditions.

SM background \sim experiment? (YES \downarrow / NO \uparrow).

†Bityukov and Krasnikov, 1999
LEP & LHC (2011): exclusion

The LEP Collaborations: Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP,

Physics Reports 532 (2013) 119-244.

LHC exclusion (2011 data) included
Blind Analysis

“A blind analysis is a measurement which is performed without looking at the answer. Blind analyses are the optimal way to reduce or eliminate experimenter’s bias, the unintended biasing of a result in a particular direction.”

A. Roodman: *Blind Analysis in Particle Physics*,

Originally coming from medicine

Basic analysis method of searches at LEP and LHC:

Optimize, prove and publish your analysis technique using simulations and earlier data only before touching new data in the critical region

CMS, 2012: $110 < M_H < 140$ GeV blinded because of 3σ excess observed in 2011

Simultaneous *unblinding* for all pre-approved analysis channels
Accelerators of CERN now

LHC: Large Hadron Collider
SPS: Super Proton Synchrotron
AD: Antiproton Decelerator
ISOLDE: Isotope Separator On Line DEvice
PSB: Proton Synchrotron Booster
PS: Proton Synchrotron
LINAC: LINear ACcelerator
LEIR: Low Energy Ion Ring
CNGS: Cern Neutrinos to Gran Sasso

Dezső Horváth: New data on the Higgs Boson
FFK-2014, Dubna, Russia, 1-5 Dec. 2014
Steering magnets of LHC

1232 superconducting magnets (before installation)

\(L = 15 \text{ m}, \quad M = 35 \text{ t}, \quad T = 1.9 \text{ K}, \quad B = 8.3 \text{ T} \)
Dipole magnets of LHC in the tunnel
Higgs Search at LHC

Dezső Horváth: New data on the Higgs Boson

FFK-2014, Dubna, Russia, 1-5 Dec. 2014
CMS: Compact Muon Solenoid

14000 ton digital camera:
100 M pixel, 20 M pictures/sec, 1000 GB/sec data
Max 1000 pictures/sec processed ⇒ intelligent filter!!

Dezső Horváth: New data on the Higgs Boson
FFK-2014, Dubna, Russia, 1-5 Dec. 2014
The (Compact Muon) Solenoid itself
Formation of the SM Higgs boson in p-p collisions at LHC

SM Higgs production

- $gg \rightarrow h$
- $qq \rightarrow qqh$
- $qq \rightarrow Wh$
- $bb \rightarrow h$
- $gg,qq \rightarrow tth$
- $qb \rightarrow qth$
- $qq \rightarrow Zh$

TeV4LHC Higgs working group

g

q

H

\bar{q}

q

W,Z

gluon fusion

vector boson fusion

σ [fb]

m_h [GeV]

Dezső Horváth: New data on the Higgs Boson

FFK-2014, Dubna, Russia, 1-5 Dec. 2014 – p. 21
March 2012
Not excluded by 2011 CMS data:
$114 < M_H < 127$ GeV (at 95% CL)
(where many decay processes contest)
Best identified:
$H \rightarrow \gamma\gamma$;
$H \rightarrow ZZ^* \rightarrow \ell^+\ell^-\ell^+\ell^-$
($\ell^\pm = e^\pm, \mu^\pm$)
Excess observed $2 - 3\sigma$ at ~ 125 GeV!
CMS: elektromagnetic calorimeter
optimized for studying $H \rightarrow \gamma\gamma$

75,848 PbWO$_4$ single crystal scintillators
A CMS event: $H \rightarrow \gamma\gamma$ candidate
4 July 2012: we have something!

ATLAS and CMS, at LHC collision energies 7 and 8 TeV, in two decay channels $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow \ell^+\ell^-\ell^+\ell^-$, at the same invariant mass of $m \approx 126$ GeV see a new boson at a convincing statistical significance of 5σ conf. level each with properties corresponding to those of the SM Higgs boson.

Matthew Chalmers: Nature on-line, 2 July 2012!
“Physicists Find New Particle, but is it the Higgs?”
The basic question!

François Englert and Peter Higgs
CMS and ATLAS: A new boson

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC

ATLAS Collaboration*

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

ARTICLE INFO

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets correspond to integrated luminosities of approximately 4.8 fb$^{-1}$ collected at \sqrt{s} = 7 TeV in 2011 and 5.0 fb$^{-1}$ at \sqrt{s} = 8 TeV in 2012. Individual searches in the channels $H \rightarrow ZZ \rightarrow 4\ell$, $H \rightarrow WW \rightarrow 4\ell$, and $H \rightarrow $ jets in the 7 TeV data and results from improved analyses of the $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow j/jj$ channels in the 7 TeV data. Our results are compatible with Standard Model Higgs boson production in proton-proton collisions at 7 and 8 TeV in comparison with the Standard Model expectation. © 2013 CERN. Published by Elsevier B.V. All rights reserved.

CMS: 2899 authors

Observation of a new boson in the search for the Standard Model Higgs boson with the CMS experiment at the LHC

CMS Collaboration*

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many contributions to the advancement of this experiment.

ARTICLE INFO

A search for the Standard Model Higgs boson in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV is performed using data corresponding to integrated luminosities of up to 5.1 fb$^{-1}$ at 7 TeV and 5.0 fb$^{-1}$ at 8 TeV. The search is performed in four decay modes: $\gamma\gamma$, ZZ, W^+W^-, $\tau^+\tau^-$, and $b\bar{b}$. An excess of events is observed above the expected background, with a local significance of 5.8 standard deviations, at a mass near 125 GeV, signaling the production of a new particle. The expected significance for a standard model Higgs boson of this mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the largest cross-sections ($\gamma\gamma$ and ZZ). The two-fermion signal exhibits a mass of 125.1 ± 0.6 (stat) ± 0.8 (syst) GeV. © 2012 CERN. Published by Elsevier B.V. All rights reserved.
CMS: H → γγ mass distribution

\[\frac{\sigma_{\text{expt}}}{\sigma_{\text{SM}}} = 1.14 \pm 0.21 \text{ (stat)} +0.09 \quad \text{ (syst)} +0.13 \quad \text{(theo)} -0.05 \quad -0.09 \]

ATLAS: $H \rightarrow \gamma\gamma$ mass distribution

2012 (2011 + 25\% of 2012 data)

2014 (2011 + all 2012 data)

 CMS: $H \rightarrow ZZ^* \rightarrow \ell^+\ell^-\ell^+\ell^-$

\[\frac{\sigma}{\sigma_{SM}} = 0.93 \pm 0.26 \text{ (stat)} \pm 0.13 \text{ (syst)} \]

CMS: $H \rightarrow ZZ^* \rightarrow \ell^+\ell^-\ell^+\ell^-$
The probability that random fluctuation of the measured background could give the observed excess.

$\gamma\gamma$ and ZZ: 5.0σ

$\gamma\gamma$, ZZ and WW: 5.1σ

All together: 4.9σ

ATLAS got the same: $\gamma\gamma$ and ZZ: 5.0σ

Adding WW increased the ATLAS excess to 6.0σ
Higgs Jokes after the Discovery

The Higgs discovery unleashed a Big Bang of bad jokes.

The Higgs discovery makes me feel heavier already. What we need instead is the anti-Higgs. A particle that takes mass away.

Physicists *massively* celebrated the Higgs discovery.

Are you there God Particle? It’s me, Average Person that doesn’t understand you.

Better double check. I thought I discovered a Higgs boson under my couch last year but turned out to be an old marble.

If we can control the Higgs field then we can really build Weapons of Mass Destruction.

A top quark and a Higgs had a public break up on the weekend. The quark stormed off, complaining that the Higgs kept telling it how heavy it was and had nothing else to say.
We have a/the Higgs boson, what next?

All results (ATLAS & CMS, properties of various production and decay channels) for the Higgs boson agree within uncertainties.

We have found a Higgs boson, very probably that predicted by the Standard Model, and thus proved the validity of the SM. What next?

We must study its properties, especially to measure its coupling strengths to other particles as those are fundamental physical constants.
CMS, H→γγ: mass and cross section

Mass (CMS, γγ):

\[m_{\gamma\gamma} = 124.70 \pm 0.31 \text{(stat)} \pm 0.15 \text{(syst)} \text{GeV} \]

\[= 124.70 \pm 0.34 \text{ GeV} \]

Signal strength as compared with SM prediction:

\[\frac{\sigma_{\text{expt}}}{\sigma_{\text{SM}}} = 1.14 \pm 0.21 \text{(stat)} \left\{ \begin{array}{c} +0.09 \\ -0.05 \end{array} \right\} \text{(syst)} \left\{ \begin{array}{c} +0.13 \\ -0.09 \end{array} \right\} \text{(theo)} \]

\[= 1.14 \left\{ \begin{array}{c} +0.26 \\ -0.23 \end{array} \right\} \]

CMS, H→ZZ: mass and cross section

\[H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^- \ (\ell = e, \mu) \]

\[
m_{4e} = 126.2 \pm 1.5 \pm 1.8 \\
m_{2e2\mu} = 126.3 \pm 0.9 \pm 0.7 \\
m_{4\mu} = 125.1 \pm 0.6 \pm 0.9
\]

Mass average: \(m_{ZZ} = 125.6 \pm 0.4 \text{(stat)} \pm 0.2 \text{(syst)} \text{ GeV} \)

Signal strength as compared with SM prediction:

\[
\frac{\sigma}{\sigma_{\text{SM}}} = 0.93 \pm 0.26 \pm 0.23 \quad \text{(stat)} \pm 0.13 \pm 0.09 \quad \text{(syst)}
\]

CMS vs. ATLAS: masses

CMS
Preliminary
$H \rightarrow \gamma \gamma + H \rightarrow ZZ$

μ_{ZZ}, $\mu_{\gamma \gamma}$ (ggH, ttH),
$\mu_{\gamma \gamma}$ (VBF, VH)

- $2 \Delta \ln L$

$19.7 \text{ fb}^{-1} (8 \text{ TeV}) + 5.1 \text{ fb}^{-1} (7 \text{ TeV})$

ATLAS

$\sqrt{s} = 7 \text{ TeV}, L_{\text{int}} = 4.5 \text{ fb}^{-1}$
$\sqrt{s} = 8 \text{ TeV}, L_{\text{int}} = 20.3 \text{ fb}^{-1}$

- $2 \Delta \ln L$

Dezső Horváth: New data on the Higgs Boson
FFK-2014, Dubna, Russia, 1-5 Dec. 2014
CMS, 2014: mass and cross section

Combination of all channels:

- $H \rightarrow \gamma \gamma$
- $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$
- $H \rightarrow WW \rightarrow \ell \nu \ell \nu$
- $H \rightarrow \tau \tau$
- WH, ZH
- $H \rightarrow b \bar{b}$
- $t \bar{t}H$
- $H \rightarrow$ hadrons, leptons

(CMS Physics Analysis Summary HIG-14-009, 2014)

Measured mass:

$$m_H = 125.03 \pm 0.26_{\text{stat}} \pm 0.13_{\text{syst}} \pm 0.08_{\text{theo}} \text{GeV}$$

Signal strength as compared to SM prediction at the measured mass:

$$\frac{\sigma}{\sigma_{\text{SM}}} = 1.00 \pm 0.09_{\text{stat}} \pm 0.07_{\text{syst}}$$
CMS, Dec. 2012: coupling to fermions?

CMS, Nov 2014: spin, parity

CMS data (γγ, ZZ and WW modes collected in 2011 and 2012) favour $J^{PC} = 0^{++}$ parity for the 125 GeV Higgs boson assuming the conservation of C- and CP-parity for its interactions.

- $S = 1$ mixed parity states excluded to 99.999% CL
- $S = 2$ excluded to 99% CL
- $P = +$:
 - $H \rightarrow ZZ, Z\gamma^*, \gamma^*\gamma^* \rightarrow 4\ell$
 - $H \rightarrow WW \rightarrow \ell\nu\ell\nu$
- $C = +$: $H \rightarrow \gamma\gamma$

Everything points toward a scalar, SM-like Higgs boson.

CMS: is it the SM Higgs boson?

Branching ratios of different decay channels as compared to SM predictions for a 125.03 GeV Higgs boson

CMS Physics Analysis Summary HIG-14-009, 3 July 2014
Signal strengths vs. SM expectations

CMS preliminary results

Relative signal strengths for various production and decay channels

68% confidence level contours

All agree with the SM

CMS Physics Analysis Summary HIG-14-009, 3 July 2014
CMS vs. ATLAS: mass

(determined consistently, in various ways)

Mass averaged for both channels and all decay modes

CMS, 2013: $125.7 \pm 0.3 \text{(stat)} \pm 0.3 \text{(syst)} \text{GeV/c}^2$

CMS, 2014: $125.03 \pm \begin{cases} +0.26 \\ -0.27 \end{cases} \text{(stat)} \pm \begin{cases} +0.13 \\ -0.15 \end{cases} \text{(syst)} \text{GeV/c}^2$

ATLAS, 2013: $125.5 \pm 0.2 \text{(stat)} \pm \begin{cases} +0.5 \\ -0.6 \end{cases} \text{(syst)} \text{GeV/c}^2$

ATLAS, 2014: $125.36 \pm 0.37 \text{(stat)} \pm 0.18 \text{(syst)}$

$= 125.36 \pm 0.41 \text{GeV/c}^2$

High gain in systematics with some loss of statistics.
CMS vs. ATLAS: signal strength

Total cross section for all production and decay channels as compared to
the SM prediction for $M_H = 125$ GeV ($\mu = \sigma_{\text{obs}} / \sigma_{\text{SM}}$):

CMS, 2013: 0.80 ± 0.14

CMS, 2014: $1.00 \pm 0.09(\text{stat}) \pm 0.07(\text{syst}) \pm \begin{cases} +0.08 \\ -0.07 \end{cases} (\text{theo})$

ATLAS, 2013: $1.43 \pm 0.16(\text{stat}) \pm 0.14(\text{syst})$

All agree with the Standard Model (unfortunately)
Doubling 8 TeV statistics increased CMS excess to 6.9 σ

Sharp peak, close to SM exp. at 125 GeV, far less elsewhere
What does $M_H = 125$ GeV mean?

- M_H vs. M_{top} is critical, at vacuum stability border
- Need very precise M_H, M_{top} and α_s.
- SM may be valid until Planck energy (10^{18} GeV)!
- New physics anywhere??

OR:

- Somebody is pulling our leg???
- Anthropic principle???

Conclusion

- We very probably observed the Standard Model Higgs boson or (unfortunately, much less probably) a Higgs boson of a more general model.
- All measured properties are consistent with the predictions for the SM Higgs-boson.
- LHC will restart in 2015 at much higher energy and luminosity.
- Let us hope for some deviation from the Standard Model (although none seen yet).

Thanks for your attention!
Hypothesis Testing: Test Statistic

Likelihood ratio: \(Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b} \)

Usually analysed and plotted:

\[
-2 \ln Q(m_H) = 2 \sum_{k=1}^{N_{\text{ch}}} \left[s_k(m_H) - \sum_{j=1}^{n_k} \ln \left(1 + \frac{s_k(m_H)S_k(x_{jk};m_H)}{b_kB_k(x_{jk})} \right) \right]
\]

- \(n_k \): events observed in channel \(k \), \(k = 1 \ldots N_{\text{ch}} \)
- \(s_k(m_H) \) and \(b_k \): signal and background events in channel \(k \) for Higgs mass \(m_H \)
- \(S_k(x_{jk};m_H) \) and \(B_k(x_{jk}) \): probability distributions for events for Higgs mass \(m_H \) at test point \(x_{jk} \)
- \(x_{jk} \): position of event \(j \) of channel \(k \) on the plane of its reconstructed Higgs mass and cumulative testing variable constructed of various features of the event like b-tagging, signal likelihood, neural network output, etc.