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Three qubit entanglement

An arbitrary three-qubit pure state |ψ〉 ∈ C2 ⊗ C2 ⊗ C2 is
characterized by 8 complex numbers ψlkj with l , k, j = 0, 1

|ψ〉 =
∑
l ,k,j

ψlkj |lkj〉 |lkj〉 ≡ |l〉C ⊗ |k〉B ⊗ |j〉A

In a class of quantum information protocols the parties can
manipulate their qubits reversibly with some probability of success
by performing local manipulations assisted by classical
communication between them. Such protocols are yielding special
transformations of the states, called stochastic local operations
and classical communication (SLOCC).

|ψ〉 7→ (C ⊗ B ⊗A)|ψ〉, C ⊗ B ⊗A ∈ GL(2,C)⊗3

Classification of entanglement amounts to classifying the SLOCC
orbits.
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The SLOCC classification of three-qubit entanglement

The basic result is due to W. Dür, G. Vidal and J. I. Cirac (2000).
The inequivalent SLOCC classes of entanglement are:

1 (A)(B)(C ) separable, eg. |000〉

2 (A)(BC ) biseparable, eg. (|00〉+ |11〉)⊗ |0〉
3 (B)(AC ) biseparable

4 (C )(AB) biseparable

5 W-class, eg. |001〉+ |010〉+ |100〉
6 GHZ-class, eg. |000〉+ |111〉
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Cayley’s hyperdeterminant as the three-tangle

There are polynomial invariants characterizing these entanglement
classes. The most important one is the SL(2,C)⊗3 and
permutation (triality) invariant three-tangle related to Cayley’s
hyperdeterminant (1845).

D(|ψ〉) ≡ ψ2
000ψ

2
111 + ψ2

001ψ
2
110 + ψ2

010ψ
2
101 + ψ2

011ψ
2
100

− 2(ψ000ψ001ψ110ψ111 + ψ000ψ010ψ101ψ111

+ ψ000ψ011ψ100ψ111 + ψ001ψ010ψ101ψ110

+ ψ001ψ011ψ110ψ100 + ψ010ψ011ψ101ψ100)

4 (ψ000ψ011ψ101ψ110 + ψ001ψ010ψ100ψ111)

τABC ≡ 4|D(|ψ〉)| ≤ 1

The two classes containing genuine tripartite entanglement are the
W and GHZ classes having τABC (|W 〉) = 0 and τABC (|GHZ 〉) 6= 0.
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Attaching special role to qubits

By chosing the first, second or third qubit one can introduce three
sets of complex four vectors, e.g. by chosing the first we can define

ξ
(A)
I =


ψ000

ψ010

ψ100

ψ110

 , η
(A)
J =


ψ001

ψ011

ψ101

ψ111

 I , J = 1, 2, 3, 4

Similarly we can define the four-vectors ξ(B), η(B) and ξ(C), η(C).
Alternatively one can define three bivectors P(A) = ξ(A) ∧ η(A) with
components (Plücker coordinates)

P
(A)
IJ = ξ

(A)
I η

(A)
J − ξ

(A)
J η

(A)
I
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The structure of the three-tangle

Then we have

τABC = 2|P(A)
IJ P(A)IJ | = 2|P(B)

IJ P(B)IJ | = 2|P(C)
IJ P(C)IJ |

where indices are raised with respect to the SL(2,C)× SL(2,C)
invariant metric g = ε⊗ ε

g IJ =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 =

(
0 1
−1 0

)
⊗

(
0 1
−1 0

)

Since the Plücker coordinates are SL(2,C) invariant the expression
above shows the SL(2,C)⊗3 and triality invariance at the same
time. Notice that the three-tangle can also be written in the form

τABC = 4|(ξ · ξ)(η · η)− (ξ · η)2| = 4| − D(|ψ〉)|

with ξ · η ≡ g(ξ, η) = g IJξIηJ . Hence ξ, η ∈ (C4, g).
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Unitary invariants, needed for a finer classification

One and two partite reduced density matrices are defined as

ρA = TrBC |ψ〉〈ψ|, ρBC = TrA|ψ〉〈ψ|

The quantity τA(BC) called the squared-concurrence between the
subsystems A and BC is

τA(BC) = 4DetρA = 2
4∑

I ,J=1

P
(A)
IJ P

(A)
IJ

We can alternatively write

τA(BC) = 4(〈ξ|ξ〉〈η|η〉 − |〈ξ|η〉|2) ≤ 1

τA(BC) = 0 if and only if ξ(A) and η(A) are linearly dependent. In
this case the corresponding reduced density matrix ρA has rank one
a condition equivalent to A(BC ) separability.
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Two-partite correlations inside a three-qubit state

A useful measure for the two-qubit mixed-state entanglement is

τAB = (max{λ1 − λ2 − λ3 − λ4, 0} ≤ 1)2

where λi , i = 1, 2, 3, 4 is the nonincreasing sequence of the
square-roots of the eigenvalues for the nonnegative matrix

ρρ̃ ≡ ρ(ε⊗ ε)ρ(ε⊗ ε)

In the three-qubit context the two-qubit density matrices are of
rank two hence we have merely two nonzero eigenvalues λ1,2.
As a result of this the invariants discussed above are not
independent, they are subject to the important relations

τA(BC) = τAB + τAC + τABC
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The Coffman-Kundu-Wootters relation (2000)

We can write the above relation as

τAB + τAC ≤ τA(BC)

A consequence of this is that if two qubits are maximally entangled
with each other then neither of them can be at all entangled with
the third one. This fact is sometimes called the monogamy of
entanglement.
According to T. J. Osborne and F. Verstraete (2006) this relation
also holds for an arbitrary number of qubits a special case is e.g.

τAB1 + τAB2 + . . . τABn ≤ 1

Hence qubit A has a limited amount of entanglement to share.
Any amount of entanglement that it has with qubit B1 reduces the
amount available for the rest of the qubits.
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Principal null directions

Consider a pure three-qubit state which is not A(BC ) or
(A)(B)(C ) separable. Then the bivectors

P = ξ ∧ η ↔ PIJ = ξIηJ − ξJηI

are giving rise to the planes in (C4, g)

aξI + bηI , I , J = 1, 2, 3, 4 a, b ∈ C

Let us solve the quadratic equation for the ratio a
b , b 6= 0

a2(ξ · ξ) + 2ab(ξ · η) + b2(η · η) = 0

The discriminant of this equation is just Cayley’s hyperdeterminant.
The solutions u± ≡ aξ + bη are the principal null directions.
Assuming ξ · ξ 6= 0 and solving the quadratic equations for the
ratio a

b , the PNDs are:
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Real states

u±I = −PIJξ
J ±

√
DξI

or alternatively assuming η · η 6= 0 and solving for the ratio b
a

v±I = PIJη
J ±

√
DηI

One can show that

PJ
I u±J = ∓

√
Du±J , PJ

I v±J = ±
√

Dv±J

States with nonvanishing τABC which are SU(2)⊗3 equivalent to
ones with real amplitudes are called real states. There are two
classes of real states according to whether the PNDs are real or
complex conjugate to each other. Later we will need the
unitary invariant

σABC = ||u+||2 + ||u−||2 + ||v+||2 + ||v−||2
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The geometry of three-qubit entanglement (P. Lévay 2005)

The basic objects of our geometric picture are pairs of complex
four vectors. These vectors span planes in (C4, g). It is
convenient to switch to the projective picture and use the
projective space which is CP3. In this space our pairs of complex
four-vectors define complex lines.
We describe three-qubit entanglement from the viewpoint of one
of the parties. The vectors we use are then ξ and η.
For ξ, η ∈ (C4, g) we have

g(ξ, η) ≡ ξ · η = ξ1η4 + ξ4η1 − ξ2η3 − ξ3η2

The vectors ζ ∈ C4 with g(ζ, ζ) = 0 define a quadric surface Q in
CP3.
Let us now consider a complex line corresponding to a three-qubit
state in CP3 of the form

wξ + η w ∈ C∗

with ξ and η are non null.
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Intesection properties of lines with Q

When the equation g(wξ + η,wξ + η) = 0 has two solutions for w
the line intersects Q in two different points. The sufficient and
necessary condition for this to happen is just D 6= 0 or τABC 6= 0.
States belong to the GHZ class iff the representative lines
intersect Q in two points.
If the equation g(wξ + η,wξ + η) = 0 has merely one solution the
line is tangent to the quadric Q at this particular point.This can
happen iff D = 0 i.e. τABC = 0.
States belong to the W-class iff the corresponding lines are
tangent to the quadric Q.
Note, however that in these two cases of genuine three-qubit
entanglement the points through which the lines were defined are
themselves not lying on Q.
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Geometric representation of the W class

ξ

η

W

Q

+ −u  = u

Figure: Geometric representation of the W class.Péter Lévay Three qubit entanglement



Geometric representation of the GHZ class

Q

ξ

η

u

u

+

−

GHZ

Figure: Geometric representation of the GHZ class.Péter Lévay Three qubit entanglement



The geometry of separable states

For A(BC ) separable states τA(BC) = 0 and the vectors ξ and η are
dependent. Our line degenerates to a point not lying on the
quadric Q. We can represent the corresponding situation by
drawing a point off the quadric.
When the lines themselves are lying inside the quadric Q we have
isotropic lines with respect to Q. There are exactly two families of
lines on a nondegenerate quadric Q in CP3. Two lines belonging
to the same family do not intersect; whereas, two lines belonging
to the opposite families intersect at a single point on Q. Hence
any nondegenerate quadric in CP3 is isomorphic to CP1 × CP1.
One can prove that
The two different classes of isotropic lines correspond
precisely to B(AC ) and C (AB) separable states.
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Geometric representation of the A(BC) biseparable class

Q

ξ

A(BC)

Figure: Geometric representation of the A(BC) biseparable classPéter Lévay Three qubit entanglement



Geometric representation of the C(AB) biseparable class

Q

η

ξ

C(AB)

Figure: Geometric representation of the C(AB) biseparable classPéter Lévay Three qubit entanglement



Geometric representation of the B(AC) biseparable class

Q

η

ξ

B(AC)

Figure: Geometric representation of the B(AC) biseparable class.Péter Lévay Three qubit entanglement



A sketch of proof

Let τ+ = τC(AB) and τ− = τB(AC). Then we have

τ± = |ξ · ξ|2 + 2|ξ · η|2 + |η · η|2 + (P IJ ∓ ∗P IJ)P IJ

where

∗PIJ ≡
1

2
εIJKLP

KL

Isotropic lines satisfy the relations ξ · ξ = η · η = ξ · η = 0,
moreover such lines are necessarily self-dual or anti-self-dual.
Hence for isotropic lines we have either τ+ = 0 or τ− = 0.
Conversely, using the positivity of the terms the vanishing of τ±
implies that the corresponding lines are isotropic.
Finally, states of the form (A)(B)(C ) are represented by points
since they are A(BC ) separable, moreover they have to lie on the
quadric since due to C (AB) and B(AC ) separability they are parts
of isotropic lines.
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Geometric representation of the (A)(B)(C) separable class

Q

ξ

(A)(B)(C)

Figure: Geometric representation of the A(BC) biseparable classPéter Lévay Three qubit entanglement



Three-qubit canonical form

In order to obtain a finer classification we can use local unitary
operations. Performing such transformation on the first qubit we
get:

ξ′ = aξ + bη, η′ = cξ + dη, U1 =

(
a b
c d

)
∈ U(2)

ξlk ≡ ψlk0, ηlk ≡ ψlk1

Let us chose the complex numbers a and b such that

Det(ξ′) = 0 ↔ ξ′ · ξ′ = 0

This means that we have used a local unitary acting on the first
qubit to rotate one of the four-vectors ξ to one of the principal null
directions.
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Three-qubit canonical form

We can use the remaining local unitary transformations to get

ξ′ 7→ U3ξ
′U2 =

(
λ0 0
0 0

)
, λ0 ∈ R+

η′ 7→ U3η
′U2 =

(
λ1e

iϕ λ2

λ3 λ4

)
, λ1, . . . λ4 ∈ R+

Hence we have a canonical form containing five positive real
numbers and a phase:

|ψ〉 = λ0|000〉+ λ1e
iϕ|001〉+ λ2|101〉+ λ3|011〉+ λ4|111〉

It can be shown (A. Acin et.al. (2001)) that with the restriction
0 < ϕ < π this canonical form is unique.

Péter Lévay Three qubit entanglement



Three-qubit canonical form in terms of unitary invariants

(λ±0 )2 =
σABC ±

√
∆

2(τAB + τABC )

(λ±2 )2 =
τAC (τAB + τABC )

2(σABC ±
√

∆)

(λ±3 )2 =
τBC (τAB + τABC )

2(σABC ±
√

∆)

(λ±4 )2 =
τABC (τAB + τABC )

2(σABC ±
√

∆)

cosϕ± =
(λ±1 λ

±
4 )2 + (λ±2 λ

±
3 )2 − τBC/4

2λ±1 λ
±
2 λ

±
3 λ

±
4

∆ = σ2
ABC − (τAB + τABC )(τBC + τABC )(τAC + τABC )
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The STU model. Black Hole Entropy as a three-tangle

Ungauged N = 2 supergravity in d = 4 coupled to 3 vector
multiplets. The bosonic part of the action is (~ = c = 1)

S =
1

8πGN

∫
d4x

√
|g |{−R

2
+ Gab∂µza∂νz

bgµν

+ (ImNIJF IFJ + ReNIJF I ∗FJ)}

Here F I , and ∗F I , I = 0, 1, 2, 3 refer to field strengths F I
µν of 4

U(1) gauge-fields and their duals. The za a = 1, 2, 3 are complex
scalar fields taking values in the manifold for the STU model:
SL(2,R)/U(1)× SL(2,R)/U(1)× SL(2,R)/U(1). Conventionally:
z1 ≡ S , z2 = T and z3 = U.
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The coupling matrices

For the STU model the scalar dependent vector couplings ReNIJ

and ImNIJ take the following form (za = xa − iya)

ReNIJ =


2x1x2x3 −x2x3 −x1x3 −x1x2

−x2x3 0 x3 x2

−x1x3 x3 0 x1

−x1x2 x2 x1 0



ImNIJ = −y1y2y3


1 +

(
x1
y1

)2
+

(
x2
y2

)2
+

(
x3
y3

)2
− x1

y2
1

− x2

y2
2

− x3

y2
3

− x1

y2
1

1
y2
1

0 0

− x2

y2
2

0 1
y2
2

0

− x3

y2
3

0 0 1
y2
3


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String theoretical interpretation of electric and magnetic
charges

When type IIA string theory is compactified on a T 6 of the form
T 2 × T 2 × T 2 one recovers N = 8 supergravity in d = 4 with 28
vectors and 70 scalars . This N = 8 model has the STU model as
a consistent N = 2 truncation with 4 vectors and 6 scalars. In this
truncation the D0− D2− D4− D6 branes wrapping the various
T 2 give rise to four electric and magnetic charges defined as

P I =
1

4π

∫
S2

F I , QI =
1

4π

∫
S2

GI , I = 0, 1, 2, 3

where

GI = N IJF+J , F±I
µν = F I

µν ±
i

2
εµνρσF Iρσ

These charges can be organized into pairs

Γ ≡ (P I ,QJ)
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Static, spherically symmetric extremal black hole solutions

For the 4d space-time metric the Euler-equations for the
Lagrangian admit static, spherically symmetric, extremal black hole
solutions. These are of Reissner-Nordström type. Solutions of both
supersymmetric (BPS) and not supersymmetric (non-BPS) types
are known. The leading order term in the macroscopic black hole
entropy for such solutions can be calculated using the
Bekenstein-Hawking formula (K. Behrndt et.al. 1996). The
surprising result is that the values of the scalar fields at the black
hole horizon can be expressed in terms of the electric and magnetic
charges. This stabilization of the scalar fields is called the
attractor mechanism (R. Kallosh, A. Strominger, S. Ferrara
1995). Hence for the STU model the black hole entropy is only
depending on 8 charges: 4 electric and 4 magnetic.
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The Black Hole Qubit Correspondence

The leading term (Bekenstein-Hawking) of the STU black hole
entropy is

S =
π

GN

√
|I4(Γ)|

I4(Γ) = 4Q0P
1P2P3− 4P0Q1Q2Q3− (PIQ

I )2 + 4
∑
m<n

PmQmPnQn

Let us reorganize the 8 charges to a three-qubit ”state” as follows:

|Γ〉 =
∑

l ,k,j=0,1

Γlkj |lkj〉 |lkj〉 ≡ |l〉C ⊗ |k〉B ⊗ |j〉A

where(
P0, P1, P2, P3

−Q0, Q1, Q2, Q3

)
=

(
Γ000, Γ001, Γ010, Γ100

Γ111, Γ110, Γ101, Γ011

)
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The Black Hole Qubit Correspondence

Now one can check that (M. J. Duff, 2006)

I4(Γ) = −D(|Γ〉)

hence
S =

π

2GN

√
τABC

Notice that for BPS black holes we have D(|Γ〉) < 0, and for
non-BPS ones D(|Γ〉) > 0 (R. Kallosh, A. Linde, 2006). These two
classes of real states are precisely the two inequivalent types of real
states embedded into the complex ones (P. Lévay, 2006). Recall
that for these classes the principal null directions are real or
complex conjugate to each other.
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The Black Hole Qubit Correspondence

Notice that the classical symmetry group of the STU model
SL(2,R)⊗3 is broken down to the U-duality subgroup SL(2,Z)⊗3

due to quantum corrections (Dirac-Zwanziger quantization of
electric and magnetic charges). The action of this subgroup on the
”charge states” is

|Γ〉 7→ (C ⊗ B ⊗A)|Γ〉, C,B,A ∈ SL(2,Z)

Note also that the ”charge state” belonging to the GHZ-class

|Γ〉 = P0|000〉 − Q0|111〉

independent of the signs of the charges represents a non-BPS
solution. (A D0-D6 system in the type IIA duality frame.)
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The Black Hole Qubit Correspondence

These (and many more) correspondences found between the fields
of Multiqubit Entanglement and Black Hole Solutions in
String Theory not necessarily hint at a deeper connection. The
obvious guess is that these are merely consequences of similar
symmetry structures involved in the two fields. In any case it is
worth working out the dictionary of this correspondence and follow
the analogy as far as we can.
Finally note that the key physical concepts in both fields of the
analogy are

1 Entanglement

2 Entropy

3 Information
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