Spin-Flop-Induced Coarsening of Antiferromagnetic Domains in a Fe/Cr Multilayer

D.L. Nagy^a, L. Bottyán^a, L. Deák^a, J. Dekoster^b,
H.J. Lauter^c, V. Lauter-Pasyuk^{d,e}, M. Major^{a,b},
O. Nikonov^{c,d}, A. Petrenko^d, E. Szilágyi^a

^a KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
^b K.U. Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium
^c Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
^d Institut Laue-Langevin, Grenoble, France
^e Technische Universität München, Garching, Germany

Outline

- Bulk spin flop in an antiferromagnetically coupled Fe/Cr multilayer
- Spin-flop-induced domain coarsening
- Spontaneous complex domain coarsening: the next possible PNR experiment

Bulk spin flop in a Fe/Cr multilayes (NR) MgO(001)[Fe(25Å)/Cr(13Å)]₂₀, easy axis

K. Temst et al., Physica B 276-278, 684 (2000).

Bulk spin flop in a Fe/Cr multilayes (PNR) MgO(001)[Fe(25Å)/Cr(13Å)]₂₀, easy axis

K. Temst et al., Physica B 276-278, 684 (2000).

Bulk spin flop in a Fe/Cr multilayer (SMR)

MgO(001)[⁵⁷Fe(26Å)/Cr(13Å)]₂₀, easy axis

Bulk spin flop in a Fe/Cr multilayer (CEMP)

MgO(001)[57Fe(26Å)/Cr(13Å)]₂₀, easy axis

Spin-flop induced domain coarsening (PNR)

MgO(001)[57Fe(26Å)/Cr(13Å)]₂₀, easy axis

Domain coarsening on spin flop

 Coarsening on spin flop is an explosion-like 90-deg flop of the magnetization annihilating primary 180-deg walls. It is limited neither by an energy barrier nor by coercivity. Consequently, the correlation length of the coarsened patch domains ξ may become comparable with the sample size.

Domain coarsening during spin flop

Spontaneous complex domain coarsening after decreasing the field along a hard axis

M. Rührig et al., Phys. Stat. Sol. (a) **125**, 635 (1991).

Spontaneous complex domain coarsening after decreasing the field along a hard axis (SMR)

MgO(001)[57Fe(26Å)/Cr(13Å)]20

Precise (±0.5°) alignment in CEMS polarimeter

> ESRF ID18

Conclusions

With suitable magnetic field program, it is possible to shape the domain structure of AF-coupled multilayers.

- \blacktriangleright On leaving the saturation region sub- μm native patch-domains are formed in decreasing field.
- On further decreasing the field, the domain size spontaneously and irreversibly increases (ripening).
- The bulk spin flop leads to an explosion-like increase of the domain size (coarsening).
- In decreasing hard-axis field, a spontaneous complex domain coarsening takes place.