Formation and ripening of antiferromagnetic domains in a Fe/Cr multilayer

M. Major^a, L. Bottyán^a, D.L. Nagy^a, Yu.V. Nikitenko^b,
 A. Petrenko^b, V. Proglyado^b, E. Szilágyi^a, F. Tanczikó^a

^aKFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

^bJoint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Russia

Outline

- Introduction: coupled multilayers, magnetic and domain structure, reflectometry
- Native patch-domain formation in antiferromagnetically coupled multilayers
- Spontaneous and irreversible growth of the domain size in decreasing field: the domain ripening

AF coupled multilayers and patch domains

Antiferromagnetically coupled Fe/Cr multilayer

Patch domains in AF-coupled multilayers

Layer magnetisations:

The 'magnetic field lines' are shortcut by the AF structure → the stray field is reduced → no 'ripple' but 'patch' domains are formed.

The patch domains

- The domain-size-dependent magnetoresistance noise may be as high as to limit GMR applications → 'tailoring' of the domain structure ('domain engineering') is required.
- The first step towards domain engineering is to understand the formation mechanism of patch domains.

Domain formation on leaving saturation

From saturation to remanence: the domain ripening

- The domain structure in remanence may differ from that of the native domains.
- The domain-wall energy is increasing in decreasing field.
- In order to decrease the surface density of the domain-wall energy, the multilayer spontaneously increases the average size of the patch domains ('ripening').
- The spontaneous domain growth is limited by domain-wall pinning (coercivity).

Polarized Neutron Reflectometry (PNR)

Neutron reflectometry: the scattering amplitudes

 $\pm b$

$$f_{n} = f_{n}^{nuc} + f_{n}^{mag}$$
sotope-specific
scattering length
$$f_{n}^{mag} =$$

+ for neutron spin parallel to magnetisation

- for neutron spin antiparallel to magnetisation

for neutron spin perpendicular to magnetisation: spin-flip scattering!

Neutron reflectometry

AF coupling: magnetic doubling of the 'unit cell', appearance of half order reflection peaks

The off-specular scattering width

- The off-specular (diffuse) scattering width around an AF reflection stems only from the magnetic roughness.
- The diffuse scattering width ΔQ_x at an AF reflection is inversely proportional to the correlation length ξ of M:

$$\xi = 1/\Delta Q_x$$

At an AF reflection, ξ is the average domain size!

Arrangement of the PNR experiments

http://nfdfn.jinr.ru/ibr2.html

Raw data

Domain ripening as seen by PNR

Domain ripening: off-specular PNR, easy axis

Domain ripening: PNR (Q_z-integrated)

Correlation length: $\xi = 1/\Delta Q_x$ $\xi \approx 370 \text{ nm}$ $\xi \approx 800 \text{ nm}$

Domain ripening is an irreversible process: the domain size does not appear to change on later increasing or decreasing the field.

Domain ripening: off-specular SMR

 $MgO(001)[^{57}Fe(26Å)/Cr(13Å)]_{20}$ 2 Θ @ AF reflection, hard axis

ESRF ID18

Conclusions

- The native domains do not change their shape and size from saturation down to 200 mT (evidence from SMR measurements).
- The native domain size is 370 nm.
- Between 300 and remanence, ripening of the domains takes place (SMR evidence: 200-100 mT). The domain size increases to 800 nm.
- The domain ripening is irreversible, as long as the domain structure is not erased by saturating the multilayer.