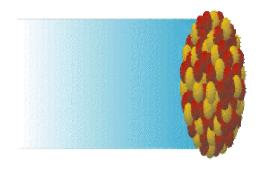
Parton matter in the early stage of ultrarelativistic heavy ion collisions

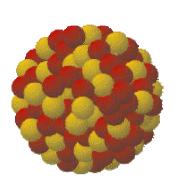
Péter Lévai KFKI RMKI, Budapest

Project: "Quarks, Hadrons and High Energy Collisions"

MTA - JINR Workshop Budapest, 7 September 2004 **Project: "Quarks, Hadrons and High Energy Collisions"**

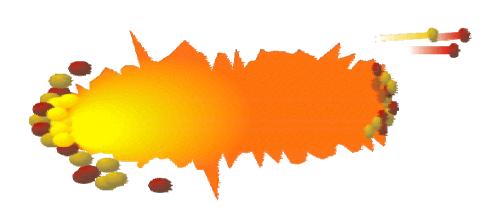
Dubna, Bogoliubov Laboratory for Theoretical Physics:


Dr. Viatseshlav Toneev * Dr. Arkady Shanenko Dr. Anatolij V. Efremov Dr. Alexandr Parvan Vladimir V. Skokov


Budapest, RMKI Research Institute for Particle and Nuclear Physics:

Dr. Péter Lévai * Dr. Tamás Biró Dr. Gogohia Vahtang Dr. Béla Lukács Dr. Nyiri Júlia Barnaföldi Gergely Gábor Sárkány Roland

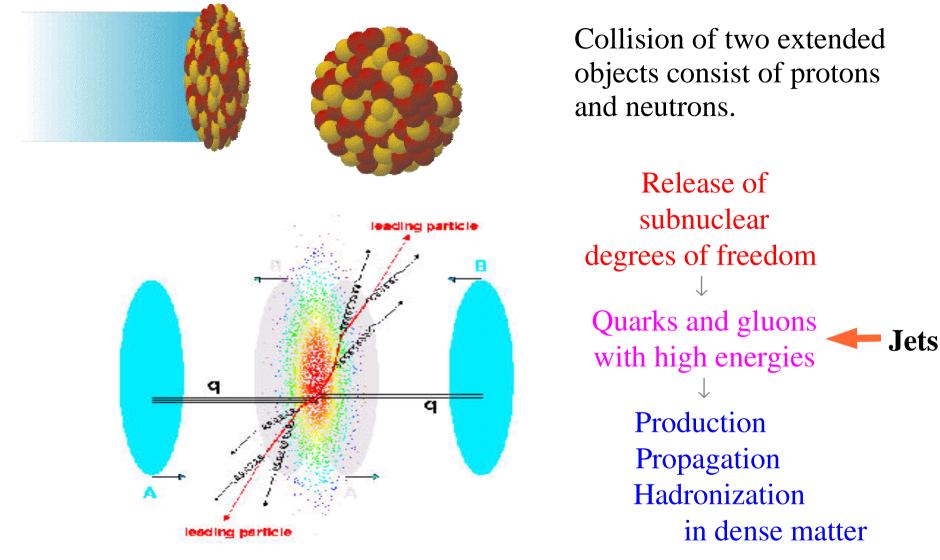
Budapest, ELTE Eötvös University, Theoretical Physics Department: Dr. Gábor Papp


Relativistic heavy ion collisions: 1980-2000

BEVALAC E(lab) = 1 GeV/A \downarrow **CERN SPS** E(lab) = 158 GeV/A

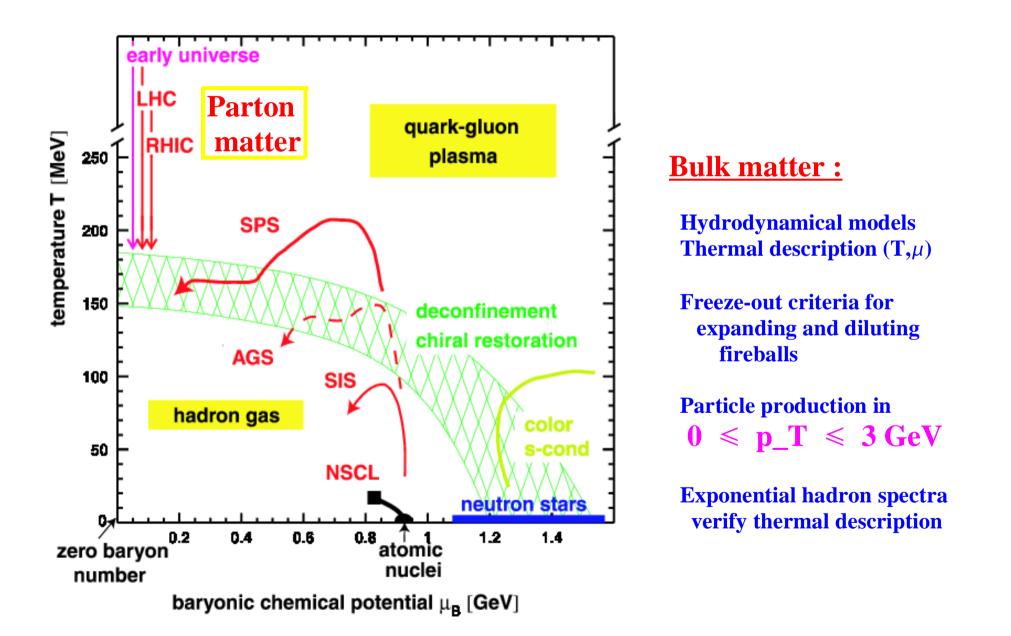
Q: How strong is the stopping ??

A: Strong stopping !!!
Lots of particle in midrapidity !
↓
Hidrodynamical description (thermodynamical equil.)
↓
EOS for nuclear matter (EOS for neutron stars)

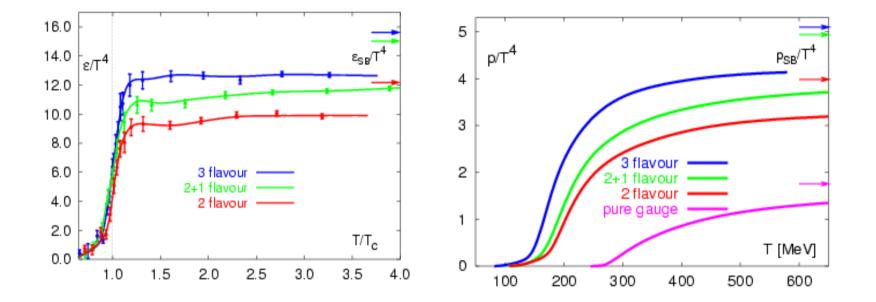

⇒ Strongly interacting nuclear matter + fireball formation

Only one problem: $p + p \Leftrightarrow Au + Au$ A1: string \leftrightarrow string-melting

A2: val quark \leftrightarrow quark matter


→ Soft physics

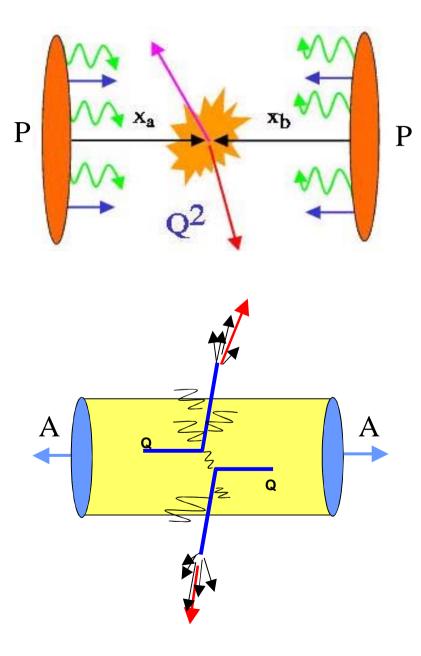
<u>Relativistic heavy ion collisions</u> ($\sqrt{s}=20-200$ AGeV)



Testing the produced hot dense matter → Testing QCD Finding QGP !

EOS for strongly interacting nuclear/hadronic/quark matter:

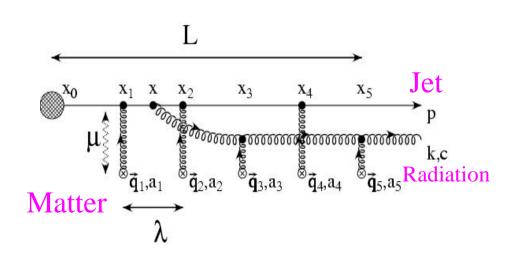
EOS for strongly interacting matter from lattice-QCD zero baryon density (1990-2000) finite baryon densities (2000 -) $\rightarrow \epsilon(\mathbf{T}, \mu), \mathbf{P}(\mathbf{T}, \mu)$


More realistic EOS for deconfined matter

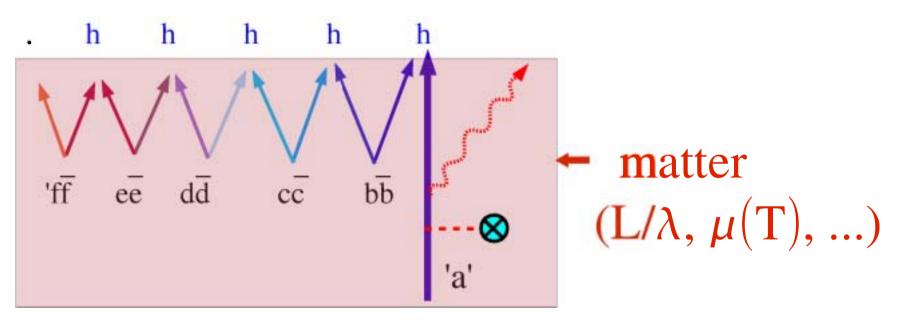
Non-ideal EOS → quasi-particle picture of strongly interacting QM Bogoliubov Lab. of Theoretical Physics →>>> Detailed microscopical picture of deconfinement is needed

- **0. Introduction --- parton matter, quark matter, EOS**
- 1. How to test:
 - --- parton matter in the early stages ? → jet-tomography (induced jet energy loss, opacity) (density evolution is integrated in time)
 - --- quark matter around phase transition? → hadronization models (quark coalescence) (density at phase transition)
- 2. Can we calculate the early stages directly ?
 - ➤ hard parton production from perturbative QCD;
 - ➤ soft hadron production from non-perturbative QCD;
 - --- lattice QCD
 - --- kinetic theory (pair production)

3. Summary

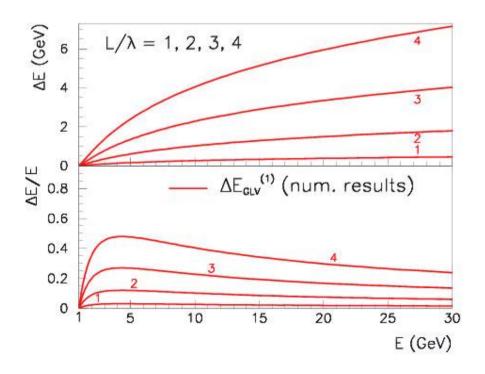

Jets in pp and in AA collisions:

Jet production in pp collision (in vacuum): → pQCD description


Jet production and propagation in AA collision (inside hot dense matter)

➤ induced gluon radiation in a modified pQCD description <u>JET-TOMOGRAPHY</u>

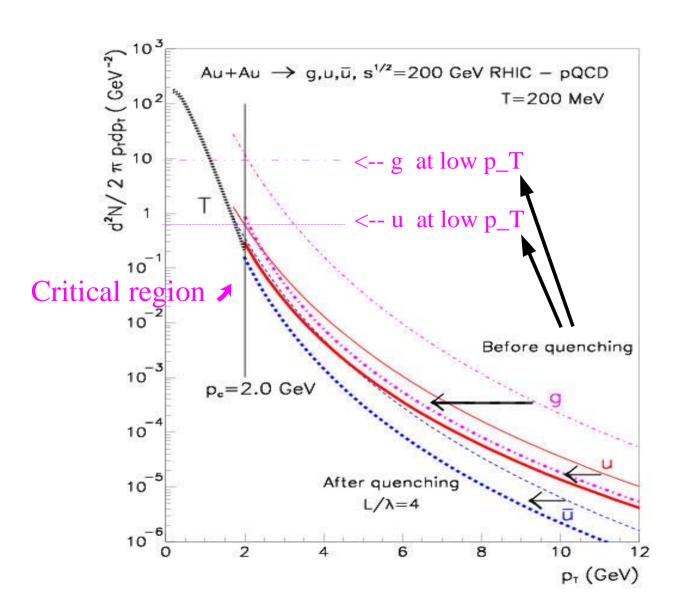
'Hard' physics: independent jet-fragmentation (FF) in matter


Fragmentation function: $D_c^h(z) dz \leftarrow$ the probaility to produce a hadron **h** with momentum **z p** from a jet **c** with momentum **p**

$$D_c^h(z) dz \rightarrow D_c^h(z^o) \frac{z^o}{z} dz^o$$
 where $z^o = 1 - \Delta E/E$

<u>'Jet-quenching' : induced jet energy loss</u> --- in thin colored matter M. Gyulassy, P. Levai, I. Vitev, PRL85,5535(2000), NPB594,371(2001)

GLV: time-ordered pQCD (Feyman diagrams) + OPACITY expansion (N = 1,2,3, ...) + kinematical cuts



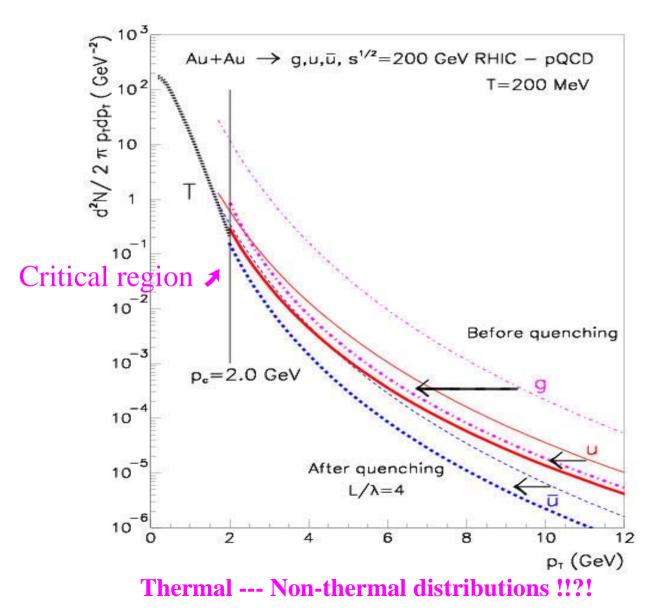
$$\Delta E_{GLV} \approx \frac{C_R \alpha_s}{N(E)} \frac{L^2 \mu^2}{\lambda_g} \log \frac{E}{\mu}$$

E-dependent $\Delta \mathbf{E}$ energy loss

E-independent △E/E in the window 3 < E < 10-15 GeV

Initial parton distributions before and after quenching

Before quenching:

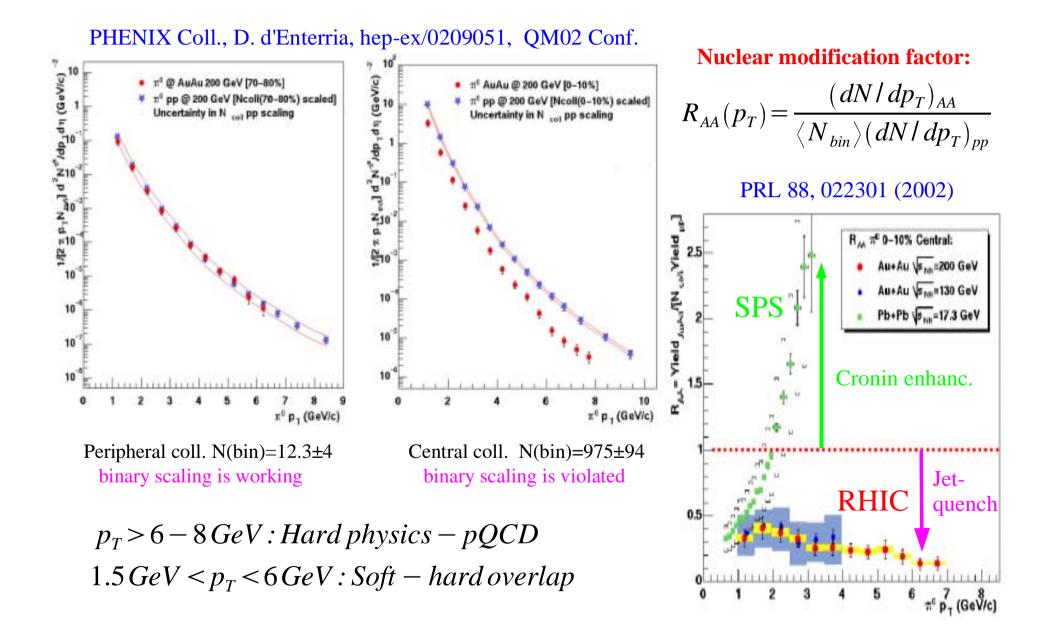

AuAu spectra ≡ binary scaled pp spectra

primary partons → p_T > p_c : polinomial p_T < p_c : suppressed or saturated

 $p_T > p_c$:

80 % of dE_T/dy (y=0)

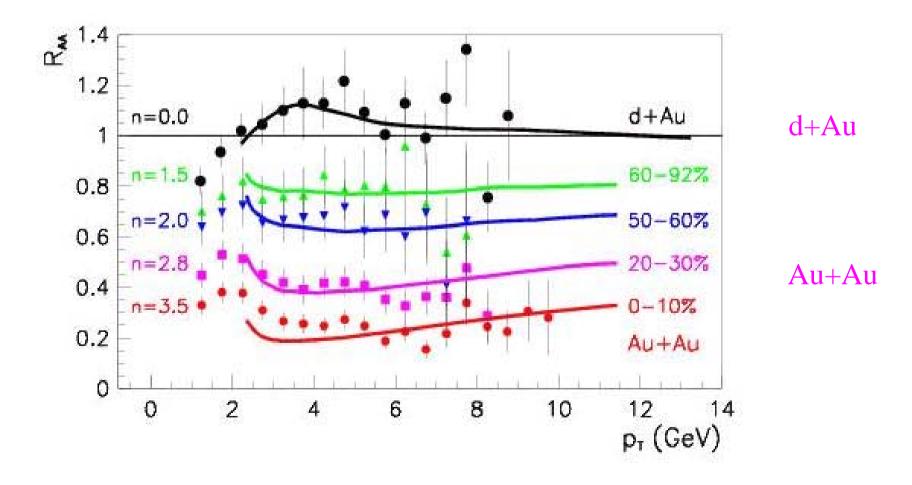
Initial parton distributions before and after quenching


After quenching:

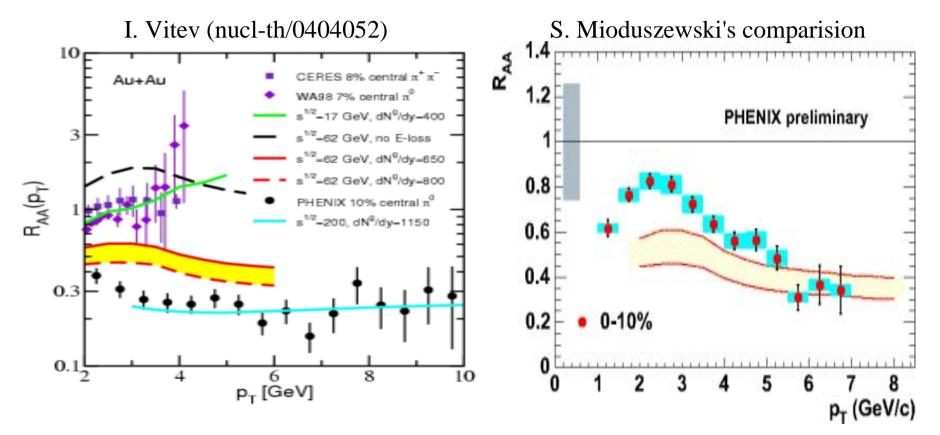
radiated gluons \rightarrow thermal bath (T=200 MeV) \equiv hot dense matter formation

dE_T/dy (y=0) = 570 GeV 80 % is soft (p_T < p_c) 20 % is hard (p_T > p_c)

Modification in parton spectra is shifted to smaller hadronic p T in case of independent jet fragmentation.


Exciting results from RHIC at $\sqrt{s} = 130$ and 200 A GeV -- π^0

Hard physics: pion production in AA collision at high- p_T

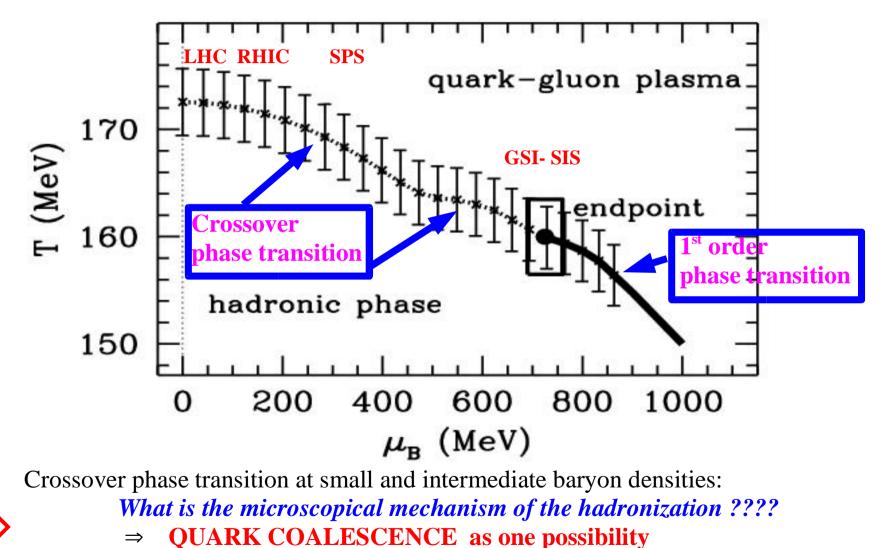

Perturbative QCD calculations in NLO for heavy ion collisions: geometrical overlap + shadowing, multiscattring, jet-quenching, ...

$$E_{\pi} \frac{d \sigma^{AB}}{d^{3} p_{\pi}} = \int d^{2}b d^{2}r \ t_{A}(\vec{r})t_{B}(\left|\vec{b}-\vec{r}\right|) \ E_{\pi} \frac{d \sigma^{PP}}{d^{3} p_{\pi}} \otimes S(...) \otimes M(...) \otimes Q(...)$$

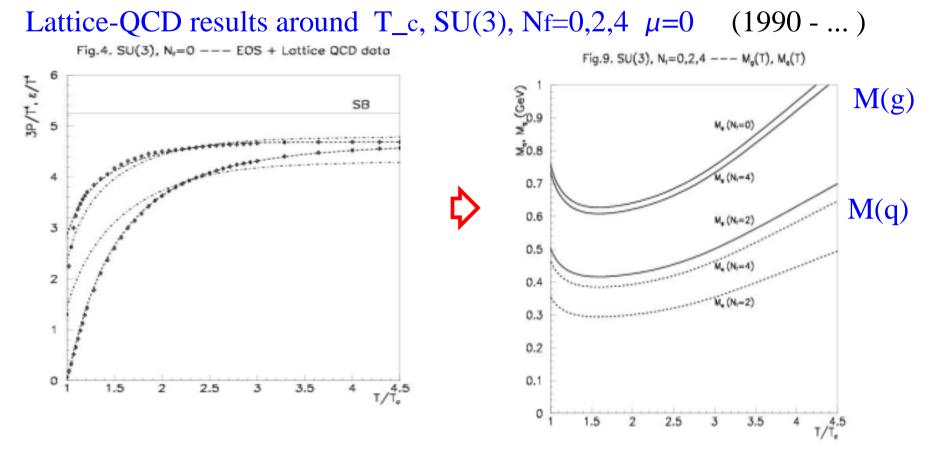
Hard physics: pion production in AA collision at high- p_T Au+Au collisions at 17, 62.4, 200 A GeV

 $L/\lambda \rightarrow \int \tau \rho(\tau) d\tau$ Opacity \rightarrow color charge density

 $\sqrt{s} = 17$ 62 200 A GeV $dN_g/dy = 400$ 700 1150 **<u>"Testing deconfined matter around phase transition"</u>**

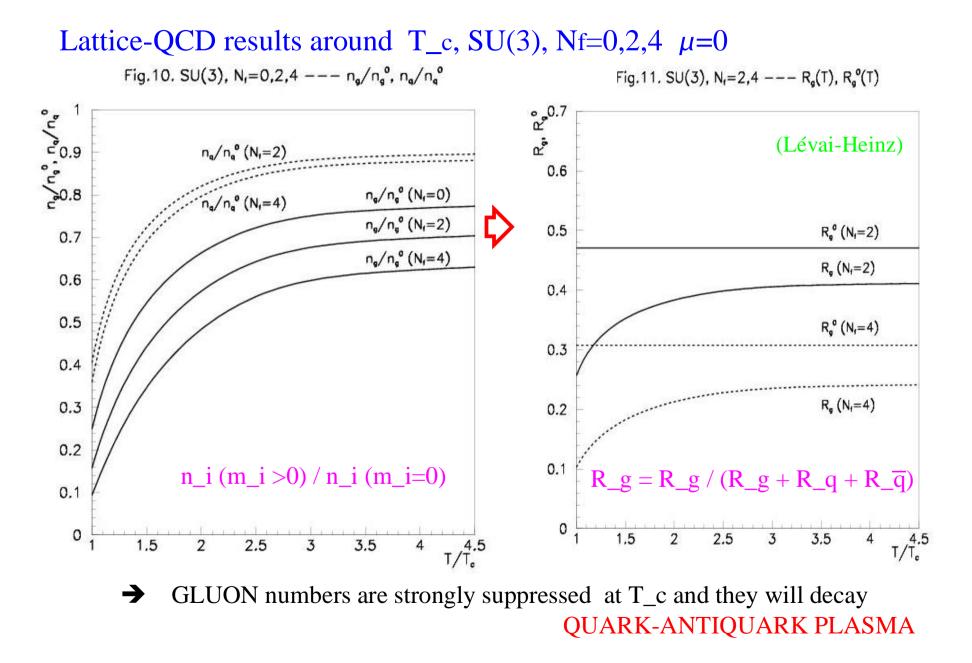

$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Hadronization models and descriptions


(Phenomenological descriptions.)

 \Rightarrow

Lattice-QCD results at finite density, SU(3), Nf=2 μ >0 (2002, Fodor et al.)



WE WANT TO FIND SOME "DECONFINED" PHASE !!

Understanding in a quasiparticle picture: $M(Q) \simeq 300 \text{ MeV}, M(G) \simeq 500-800 \text{ MeV}$

↓ [L.P, Heinz U., 1996, PRC51,3326]
 → Quark and antiquark dominated matter (QAP)
 HADRONIZATION ⇔ QUARK COALESCENCE (ALCOR '95)
 ('Cross-over' phase transition) (T.S. Biro, P.L., J. Zimányi)
 Interior of quark stars (G.G. Barnafoldi, B. Lukacs, P.L., 2003)

QUARK COALESCENCE: meson production in bulk quark matter

<u>Meson production</u>: binding of a quark and an antiquark, $q + \overline{q} \Rightarrow M$ (constituent quark model, non-relativistic approx.)

- --- (anti)quarks are inside a deconfined phase [QGP, QAP, CQM]
 - \Rightarrow asymptotic wave functions do not exist inside deconf. phase !!!!
- --- the interaction between quark and antiquark drives the meson production
- \Rightarrow non-relativistic V(qq) potential (lattice-QCD results around T_c !) --- direct calculation of coalescence matrix elements

 $M_{12} = \int d^3 x_1 d^3 x_2 \ \phi_M(|x_1 - x_2|) \ e^{-iPX} \ V_{12}(|x_1 - x_2|) \ \varphi_q(x_1)\varphi_{\overline{q}}(x_2)$ $\Rightarrow V_{12}(\mathbf{r}) \text{ is an effective coalescence potential: } V_{12} = -\alpha_{eff} \frac{\langle \lambda_1 \lambda_2 \rangle}{r}$ $\Rightarrow \text{ many coalescence channels exist } (\pi, \rho, \mathbf{K}, \mathbf{K}^*, \phi, ...)$

--- introducing $1+2 \rightarrow 3$ coalescence cross section [e.g. ALCOR, PLB347,1995,6]: $m_3^2 \sqrt{2m_1m_2}$ [12] $4 \leq 2 \sqrt{2} \leq 3$ [e.g. ALCOR, PLB347,1995,6]:

$$\sigma_{12}(k) = \frac{m_3}{4\pi^2} \sqrt{\frac{2m_1m_2}{(m_1 + m_2)^2}} |M_{12}|^{12} = 16m_3^2 \sqrt{\pi} \alpha_{eff}^2 \rho^3 \frac{d}{(1 + (ka)^2)^2} \rightarrow a: \text{Bohr radius}$$

--- quark coalescence rate: $\langle \sigma_{12} v_{12} \rangle = \frac{\int d^3 P_1 d^3 P_2 f_1(P_1) f_2(P_2) \sigma_{12} v_{12}}{\int d^3 P_1 d^3 P_2 f_1(P_1) f_2(P_2)}$

Can we use such a non-relativistic approximation ??? → Quark mass !?!

 $m(q) \simeq 330 \ MeV, \ T \simeq 175 \ MeV \longrightarrow OK$

ALCOR model for quark matter hadronization [Zimányi J., Biró T., L.P. PLB347,6, 1995]

 $u, \overline{u}, d, \overline{d}, \overline{s}, \overline{s}$ Massive quarks and antiquarks are the basic d.o.f.

Quarks from nucleus are melted (stopping) Newly produced fight quark-antiquark pairs Newly produced strange quark-antiquark pairs $\frac{dN(s)}{dy} = \frac{dN(\langle s \bar{s} \rangle)}{dy}$ $\Delta \text{ thractive potential between (anti-)quarks}$ $V_{eff}(r) = -\alpha_{eff} \frac{\langle \lambda_i \lambda_j \rangle}{r}$ Newly produced light quark-antiquark pairs

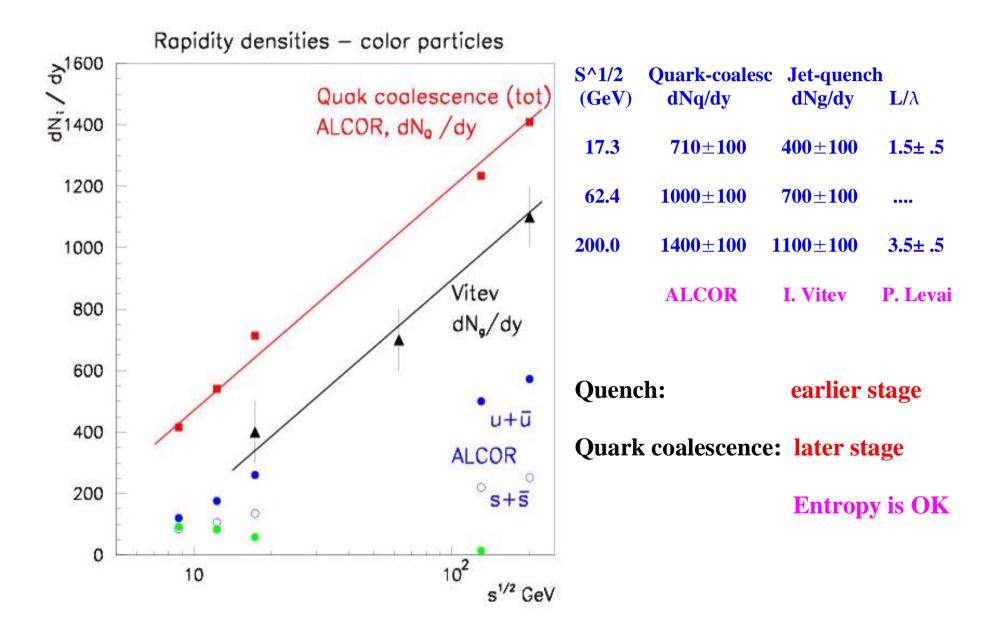
Heavy hadron resonances are produced -> decay

RESULT: analysis and understanding of the particle numbers and their ratios + energy dependence

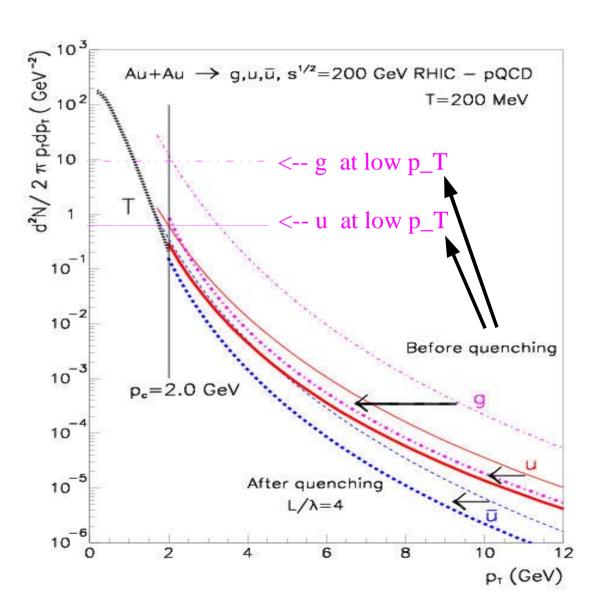
Input parameters: P;
$$\langle u \overline{u} \rangle = \langle d \overline{d} \rangle; \langle s \overline{s} \rangle = \underline{f}_s * (\langle u \overline{u} \rangle + \langle d \overline{d} \rangle); \underline{\alpha}_{eff}$$

 $\frac{dN(u)}{dy} = P * N_u^{(totalu)} + \frac{dN(\langle u \,\overline{u} \rangle)}{dy}$

Quark matter formation at RHIC at $\sqrt{s} = 130$ & 200 A GeV


ALCOR model for quark matter hadronization						2004 April		
	ALCOR	ALCOR	A	Au+Au dX/dy or R	STAR 130 AGeV	ALCOR	STAR 200 AGeV	ALCOR
	130 AGeV	200 AGeV		π^- K ⁻	$287 \pm 20 \\ 41.9 \pm 5.5$	287 40.4	$327 \pm 32 \\ 49.5 \pm 7.4$	322 45.6
New pairs, $dN_{u\overline{u}}/dy$	250	286		$\frac{K^{-}/K^{+}}{\Xi^{+}}$	$\begin{array}{c} 0.91 \pm 0.11 \\ 1.72 \pm 0.1 \end{array}$	0.93 1.76	0.92 ± 0.02 1.81 ± 0.08	0.94 2.23
Strangeness, f_s	0.22	0.22		h^{\pm}		690	780	780
Stopping, in %	3.3	3.0		K^+	46.2 ± 6.1	43.1	51.3 ± 7.7	48.1
Interaction, α_{eff}	0.55	0.55		Ξ^- $\langle \Omega^- + \overline{\Omega}^+ \rangle$	2.05 ± 0.1 0.55 ± 0.15	2.16 0.59	2.16 ± 0.09 0.59 ± 0.14	2.59 0.72
Quark-coalescence: reproduces most of the bulk properties at RHIC energies (particle numbers, ratios, their energy dependence)				$\frac{\overline{p}^{-}/p^{+}}{\overline{\Lambda}/\Lambda}$ $\overline{\Xi}^{+}/\Xi^{-}$ $\overline{\Omega}^{+}/\Omega^{-}$ K^{+}/π^{+} K^{-}/π^{-} $\overline{\Lambda}/h^{-}$ $\overline{\Xi}^{-}/\pi^{-}$ K^{*0} Φ/K^{*0} Δ^{++}/p^{+} ρ^{0}/π^{0}	$\begin{array}{c} 0.64 \pm 0.07 \\ 0.71 \pm 0.04 \\ 0.83 \pm 0.05 \\ 0.95 \pm 0.15 \\ 0.161 \pm 0.024 \\ 0.146 \pm 0.022 \\ 0.054 \pm 0.001 \\ 0.040 \pm 0.001 \\ 0.006 \pm 0.001 \\ 36.7 \pm 5.5 \\ 0.49 \pm 0.13 \end{array}$	0.70 0.75 0.81 0.88 0.15 0.14 0.047 0.037 0.007 28.5 0.37 0.39	$\begin{array}{c} 0.77 \pm 0.05 \\ 0.81 \pm 0.07 \\ 0.84 \pm 0.06 \\ 0.95 \pm 0.15 \\ 0.16 \pm 0.02 \\ 0.15 \pm 0.02 \\ \end{array}$	$\begin{array}{c} 0.76 \\ 0.810 \\ 0.86 \\ 0.92 \\ 0.150 \\ 0.142 \\ 0.050 \\ 0.042 \\ 0.008 \\ 31.7 \\ 0.37 \\ 0.39 \end{array}$

Quark matter formation at SPS at E(beam) = 158 & 80 A GeV


ALCOR mod	el for quark matter hadronization					2004 April		
	ALCOR 158 GeV	ALCOR 80 GeV	Pb+Pb dX/dy or B	NA49 158 AGeV	ALCOR	NA49 80 AGeV	ALCOI	
	fit	CULIND Y	π.	175.4 ± 9	175	140.4 ± 7	140	
New pairs, $dN_{u\bar{u}}/dy$	123	88	$\begin{array}{c} K^-\\ K^-/K^+ \end{array}$	16.8 ± 0.8 0.56 ± 0.05	18.1 0.62	11.7 ± 0.6 0.47 ± 0.05	11.2 0.46	
Strangeness, f _s	0.26	0.30	Ē	0.33 ± 0.04	0.36	0.11 ± 0.00	0.31	
Stopping, in %	14.	20.	<i>K</i> ⁺	29.6 ± 1.5	29.1	24.6 ± 1.2	24.2	
Interaction, α_{eff}	0.7	0.9	Ξ-	1.49 ± 0.08	1.84	2010-00-00-00-00-00-00-00-00-00-00-00-00-	1.81	
N 71 A MONTON CONTRACTOR NO 11	"Harm, "HCCI ""	M	\overline{p}^{-}/p^{+}	0.07 ± 0.01	0.070	0.033 ± 0.004	0.031	
			$\overline{\Lambda}/\Lambda$	0.148 ± 0.015	0.138	0.079 ± 0.01	0.096	
			Ξ⁺/Ξ-	0.22 ± 0.03	0.19	0.13 ± 0.02	6.17	
Quark-coalescence:				0.46 ± 0.1	0.34	inter-sector Alleren e	0,41	
				0.009 ± 0.001	0.0105		0.013	
reproduces most of the bulk properties at SPS energies			$\overline{\Xi}^+/\pi^+$	0.0022 ± 0.0006	0.0021		0.0023	
			Ω^{-}/π^{-}	0.0015 ± 0.0002	0.0022		0.0022	
(particle numbers, ratios, their energy dependence)				0.00065 ± 0.00007	0.00078		0.0009	

AI COD model for quark matter hadronization 2004 A mail

Color partcle densities --- quarks or gluons ???

Initial parton distributions from perturbative QCD

Before quenching:

AuAu spectra ≡ binary scaled pp spectra

soft parton spectra: only estimate based on energy conservation

Non-perturbative QCD → soft parton spectra: calculation directly

Duality: gluon field ↔ gluon particles

Kinetic theory: pair production from strong fields

Initial gluon distribution from non-perturbative (lattice-) QCD

A. Krasnitz, Y. Nara, R. Venugopalan, PRL87 (2001) 192302.

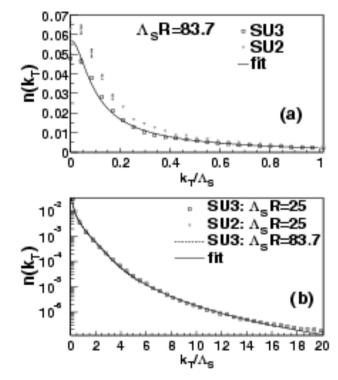


FIG. 2. Transverse momentum distribution of gluons, normalized to the color degrees of freedom, $n(k_T) = \tilde{f}_n/(N_c^2 - 1)$ [see Eq. (3)] as a function of $\Lambda_S R$ for SU(3) (squares) and SU(2) (triangles). (a) For soft momenta; (b) for all momenta. The solid lines correspond to the fit in Eq. (4).

The SU(3) gluon momentum distribution can be fitted by the following function:

$$\frac{1}{\pi R^2} \frac{dN}{d\eta d^2 k_T} = \frac{1}{g^2} \tilde{f}_n(k_T / \Lambda_s), \quad (3)$$

where $\tilde{f}_{s}(k_{T}/\Lambda_{s})$ is

$$\tilde{t}_{n} = \begin{cases} a_{1} [\exp(\sqrt{k_{T}^{2} + m^{2}}/T_{eff}) - 1]^{-1} & (k_{T}/\Lambda_{s} \le 3) \\ a_{2}\Lambda_{s}^{4} \log(4\pi k_{T}/\Lambda_{s})k_{T}^{-4} & (k_{T}/\Lambda_{s} > 3) \end{cases}$$
(4)

with $a_1 = 0.0295$, $m = 0.067\Lambda_s$, $T_{\rm eff} = 0.93\Lambda_s$, and $a_2 = 0.0343$. At low momenta, the functional form is approximately that of a Bose-Einstein distribution in two dimensions even though the underlying dynamics is that of classical fields. The functional form at high momentum is motivated by the lowest order perturbative calculations

Non-thermal distributions (Tsallis-distribution) --- T.S. Biro, A. Parvan V. Toneev

Initial parton distributions from kinetic theory in strong field

Krasnitz's fit for gluons

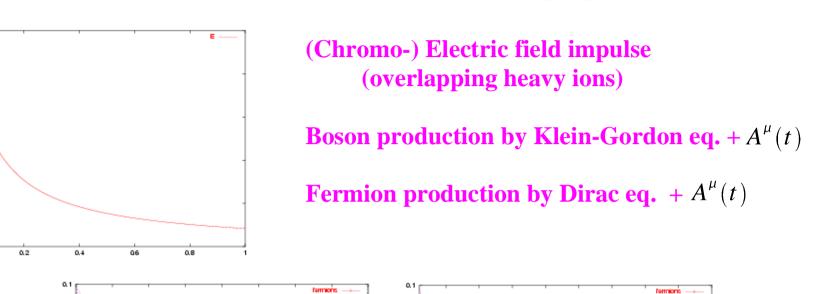
25

2

15

1

05

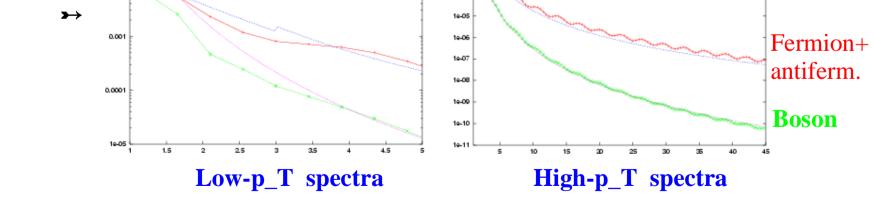

0

Num.

0

Simulations

0.01


0.01

0.001

0.0001

V.V. Skokov, P. Levai, in preparation

bosons Krasnitz's fit for gluons

Fermion dominance, 90 % of ε in fermion-antifermion pairs !!

SUMMARY:

Ultrarelativistic heavy ion collisions: phase structure of strongly interacting matter; EOS; hadronization;

Early stage: parton matter with high energy densities (QCD) Later stage: quark-antiquark dominated deconfined matter

How has the parton matter been produced? How has the QGP - QAP transformation happened?

Application of non-perturbative QCD and effective QCD methods.

EXPERIMENTAL DATA from RHIC and LHC! Strong demand for theoretical investigations !!!