Applications of ion beams in materials science

J. Gyulai
Research Institute for Technical Physics and Materials Science (MFA), Hung. Acad. Sci., Budapest
Types of processing technologies

- **Top-down** - waste of energy
 - Stone age tools
 - Metals: cast and turned

- **Bottom-up** - preferred
 - Antique glass,
 - In IC: planar processing, e.g., implantation, CVD, oxidation, metallization
 - Ultimate: nanotechnology
Ion beams as a tool

- Despite of damaging, as consequence of its non-equilibrium nature, ion beams became standard doping, modifying and analytic tools.
- Especially, in IC technology: implantation, apart from lithography, is the most used technology. In Intel’s new processor 23 implantations!
- Energy there ranges from few MeV to today’s 100 eV, in niche applications, up to few 100 MeV.
- Results of the next talk summarize achievements in cooperation of Russian and Hungarian partners using ions with 'extreme' energies.
Dose-energy requirements, IC and others

PIII, wear, etc.

Filters

Lifetime eng
Physical features of ion-solid interactions

- Production of
 - point defects – lifetime and damage engineering, Single Event Upset, nuclear filters
 - defect clusters – nanodots – phase separation
 - amorphization – device isolation (solar cells)
- Sputtering – FIB, TEM sample, SIMS-Auger
- Chemistry by implanted atoms – SIMOX, Mixing, catalysis
- Resumed crystallinity - reliable implantation
- …in all combinations
- Think also of ion beam analysis (IBA) techniques
Physics behind

- Doubly statistical nature of ion beam effects:
 - location of impinge is random,
 - stopping process, the cascade itself, too
- Difference of effects of electronic vs. nuclear stopping – more complicated than anticipated
- Thermal picture, planar geometry, laser or ion pulses: margin in resolidification velocity:
 - crystalline vs. amorphous regrowth: < vs. >15 m/s
- Equivalent to an (inverse) rate 10 ps/elementary cell, the time necessary to establish a perfect chemical bond
Ions in Semiconductors

- Silicon device – full success, SiC – only solution for doping, others – less success
- Implantation Preamorphization doping, “dual doping” (Caltech-KFKI)
- Roadmap demands – $R_p = 20 \text{ nm}$
- Solutions for year 2010 – SiGe, 3D gates, etc.
The low energy end

- Extreme low energies
- Difficulty in achieving high enough intensity beams at few hundred eV
- Molecular ions – from early BF$_2^+$ to decaborane (B$_{10}$H$_{12}$)
- Cluster ion deposition
Sputtering – why towards extreme low energies?

- Ion implantation – a 'sloppy' sputtering
- Atoms are removed, but as ΔR_p is not very much different from R_p, defects accompany good if part of the cascade is out of the target
- If sputtering is the goal, defects count as artefact
- Main areas of ion beam sputtering: FIB, TEM
- Solution: reduce energy, collimate, but
- with lower energies, both sputtering rate and efficiency will be reduced
Sputtering applications

- FIB
- TEM
Comparison of expected differences for low and high energies

- Surface vs thin film, even buried layers
- I.e., cascade volume partly out, or buried inside
- Heat balance – radiation may play a role
- Ambient effects for low energies, especially, oxygen
Heavy ions at extreme high energies

- Electronic stopping adds to defect production
- Irradiation geometries: normal and parallel
Atomic processes for a single cascade

CM-AFM of a cascade branching in mica for Ne 217 MeV

Irradiation of Highly Oriented Pyrolytic Graphite, HOPG

- Nanotubes form
- Length around 10 µm
- As cascade duration is some 10 ps, growth rate is around sound velocity
- Condensation of vapor or rolling up of graphene sheets – this determines metallic or semiconducting properties
As-formed nanotube

Fig. 2
FIB (Focused Ion Beam) sectioning

(c)
Conclusions

- Implantation stays with us, at least for good ten years
- Strategy for a small institute: to find "niches"
- At the low energy end, doping and sputter removal
- High end led us to nanotubes, still are problems to be solved