Planned polarized neutron reflectometer at BNC

L. Bottyán^a, Yu. N. Nikitenko^b, A. V. Pertenko^b

aKFKI Research
Institute for Particle
and Nuclear Physics

bFrank Laboratory Neutron Physics JINR, Dubna

JINR-HAS Workshop Budapest, 6-7 September 2004.

Outline

- 1. Evaluation of status at BNC (2.)
- 2. Options for a new PNR beamline (3.)
- 3. Specification of scientific needs (1.)
- 4. (Detailed technical specification (4.))
- 5. (Budget planning, ... (5...))

Evaluation of status at BNC

- 1. Structural studies: SANS, PSD, TAS, PRFM
- 2. Neutron flux, cold source, n-guides: all suitable for *high-performance* PNR
- 3. Present reflectometer: super-mirror tester
 - · important application, should remain
 - mechanical design, motorization, sample environment: NOT suitable to upgrade
 - Large sample size renders PRFM stand-alone
- → New beam line needed in the same guide hall

Options for a new PNR beam line

PNR Mode	Character	System to apply to
1	"nm-scale"	surfaces, thick films, polimer & multilayer films
2	"Atomic- scale"	Multilayers with small period length
3	"High- sensitivity"	Presision measurement of layer thicknesses ond internal fields
4	"Element- sensitive"	Systems of elements/isotopes with: (n,γ) reactions (σ >100b; 50) (n,p) & (n,α) reactions (σ >0.1b; 20)

Mode 1 - nm-scale PNR

Parameter		Range
Spatial resolution:	Δx	10÷100nm
Internal field resolution	δΜ	0.1÷ 0.3 T (Fe: 2.26 T)
Reflectivity	R	10 ⁻⁵ ÷1
Momentum transfer	Q	10 ⁻³ ÷10 ⁻¹ Å ⁻¹
momentum resolution	ΔQ	$3 \times 10^{-4} \mathring{A}^{-1}$

Mode 1 - nm-scale PNR

- · Monochromator, average resolution
- n-polarizer
- Slit system
- Spin flipper (2×)
- Polarization analyzer
- · PSD

Mode 2 - atomic-scale PNR

Parameter		Range
Spatial resolution:	Δx	0.1÷1 nm
Internal field resolution	δΜ	0.3÷1 T (Fe: 2.26 T)
Reflectivity	R	10 ⁻⁶ ÷10 ⁻³
Momentum transfer	Q	10 ⁻¹ ÷10 Å ⁻¹
momentum resolution	ΔQ	10 ⁻² Å ⁻¹

Mode 2 - atomic-scale PNR

- Wide-aperture polarizer
 (cross section: > 50×50 mm²)
- Number of interfaces
 in sample structure: 100÷1000

Mode 3 - high sensitivity PNR

Parameter		Range
Spatial resolution:	Δχ	10÷100 nm
Internal field resolution	δΜ	1 mT (!)
Reflectivity	R	10 ⁻³ ÷1
Momentum transfer	Q	10 ⁻³ ÷10 Å ⁻¹
momentum resolution	ΔQ	3×10-4Å-1

Mode 3 - high sensitivity PNR

- High degree of collimation &
- Monochromatization (△Q/Q= 10⁻⁵÷10⁻²)
- Precise goniometers (novel construction)
- Sample in a sandwich structure (e.g. Gd)
 for signal amplification

Mode 4 - element-sensitive PNR

Parameter		Range
Spatial resolution:	Δχ	10÷100 nm
Momentum transfer	Q	10 ⁻³ ÷10 Å ⁻¹
momentum resolution	ΔQ	3 ×10 ⁻⁴ Å ⁻¹

Mode 4 - element-sensitive PNR

- Detectors and spectrometer for the (n,γ) and (n,p) & (n,α) reactions
- Sparse usage, but space for shielding, etc. should be accounted for in design
- Resonance wavelength adjustment suits better for TOF spectrometers

Specifying scientific needs

- Broad national and regional discussion necessary
- Joint usage during IBR-2 reconstruction
- International board (Beside FLNP & KFKI: HMI Berlin, MPI Stuttgart, ANL, ...)

Mode 1 estimated investment

Constituent	(k€)
Monochr., polarizer, analyzer, flippers, slits	160
Goniometers	180
PSD	80
Magnet, PS, cryostat	300
Electronics	50
N-guides	30
Total:	800

Conclusions (1)

- A new PNR beam line at BNC is necessary
 (with presently strongest interest from magnetic film, surface and multilayer research, others to be further specified)
- Optimum usage as a Regional EU Facility
- JINR-HAS budget alone is insufficient for realization

but:

Conclusions (2)

- Collaborative HAS-JINR bilateral project:
 - Expertise of FLNP can considerably shorten specification period
 - Common interest: Joint usage scheme of beam line during IBR-2 reconstruction (2007-?)
 - Constitutes a firm basis for future EU project application