Terahertzes óriásimpulzusok az ELI számára

Almási Gábor (és még sokan mások)

PTE TTK Fizikai Intézet almasi@fizika.ttk.pte.hu

Tartalom

 A terahertzes tartomány meghódítása Néhány szó az ELI-PTE közreműködésről •THz pumpa – THz próba (TP2) •Pumpa – Próba mérés Multispektrális képalkotás Nagy energiájú THz-es forrás •THz-es sugárzás keltése Cserenkov geometria Döntött impulzusfrontú gerjesztés Főbb alkalmazási lehetőségek Nagy energiájú alkalmazások Relativisztikus elektronok gyorsítása Protonok utógyorsítása

Mit értünk THz-es sugárzáson?

Mit értünk THz-es sugárzáson?

2018.03.15. 61. Fizikatanári Ankét, Szeged

Mit értünk THz-es sugárzáson?

Feketesugárzók zavaró hatása a THz-es mérésekre

THz-es közlemények

THz-es impulzusok osztályozása a csúcs-térerősség alapján

61. Fizikatanári Ankét, Szeged

2018.03.15

- Kis térerősségű (*E*_{max} ≈ 100 V/cm → 10 fJ energia) Lineáris (TDTS) THz spektroszkópia
- Nagy térerősségű ($E_{max} \approx 100 \text{ kV/cm} \rightarrow \mu \text{J energia}$) pumpa-próba
- Extrém nagy térerősségű (E_{max} ≈ 100 MV/cm → 10 mJ energia)

A THz-es impulzus energia a pumpáló energia függvényében

Fülöp et al., Optics Lett. 37, 557 (2012), Huang et al., Optics Lett. 38, 796 (2013)

Az ELI-PTE együttműködésről 1 – THz pumpa – THz próba (TP2)

Pump-probe technique

Optikai pumpa – THz próba (OPTP)

THz pumpa – THz próba

Hoffmann et al.: Phys. Rev. B 79, 161201R (2009)

2018.03.15. 61. Fizikatanári Ankét, Szeged

THz pumpa – THz próba (TP2)

2018.03.15. 61. Fizikatanári Ankét, Szeged

THz pumpa – THz próba (TP2)

Multispektrális képalkotás (MSI)

2018.03.15. 61. Fizikatanári Ankét, Szeged

A finom részletek... (Vákuum)

A finom részletek...(TANGO)

THz-es sugárzás keltése

FOM 2 mm-es kristályhossz esetén

Material	d _{eff} (pm/V)	n_{800nm}^{gr}	n _{THz}	$n_{1.55\mu m}^{gr}$	$lpha_{_{TH_z}}$ (cm ⁻¹)	FOM (pm ² cm ² /V ²)
CdTe	81.8		3.24	2.81	4.8	11.0
GaAs	65.6	4.18	3.59	3.56	0.5	4.21
GaP	24.8	3.67	3.34	3.16	0.2	0.72
ZnTe	68.5	3.13	3.17	2.81	1.3	7.27
GaSe	28.0	3.13	3.27	2.82	0.5	1.18
sLiNbO ₃ sLN 100K	168	2.25	4.96	2.18	17 4.8	18.2 48.6
DAST	615	3.39	2.58	2.25	50	41.5

Sebesség illesztés feltétele:

$$v_{NIR}^{gr} = v_{THz}^{ph} \Longrightarrow n_{NIR}^{gr} = n_{THz}$$

2018.03.15. 61. Fizikatanári Ankét, Szeged

THz-es sugárzás keltése: Cserenkov geometria

Cserenkov

 $\Delta t_{pump} < T_{THz}$

$$w_{\rm pump} < \lambda_{\rm THz}$$

Kúp alakú hullámfront

THz-es sugárzás keltése:

Cserenkov geometria

THz-es sugárzás keltése

A döntött pumpáló intenzitásfront által keltett THz-es sugárzás erre a frontra merőlegesen halad \rightarrow a sebességillesztés feltétele módosul:

$$v_{THz}^f = \cos \gamma \cdot v_{l\acute{e}zer}^{cs}$$

THz-es impulzusok keltése: Döntött impulzusfrontú gerjesztés

Döntött impulzusfront

 $\Delta t_{pump} < T_{THz}$

Skálázható w_{pump}

Síkhullám

 $v_{vis}^{gr}\cos\gamma = v_{THz}^{ph}$

THz-es sugárzás keltése

THz-es impulzusok keltése: Döntött impulzusfrontú gerjesztés

THz-es impulzusok keltése: Döntött impulzusfrontú gerjesztés – kontaktrács I.

THz-es impulzusok keltése: Döntött impulzusfrontú gerjesztés – kontaktrács II.

LiNbO₃ kontaktrács elektronmikroszkópos képe

THz-es impulzusok keltése: Döntött impulzusfrontú gerjesztés – kontaktrács III.

ZnTe kontaktrács

THz-es impulzusok keltése: Döntött impulzusfrontú gerjesztés – kontaktrács IV.

Echelle rácsos elrendezés

Extrém térerjű THz-es impulzusok alkalmazása I. Relativisztikus elektronok utógyorsítása

THz meghajtású dielektrikus lézer gyorsító relativisztikus elektronokra

201,8,03.15

ം

A. Aimidula et al., Nucl. Instr. and Meth. A, 19, 15090 (2014) Computer Simulation Technology (CST)

THz meghajtású dielektrikus lézer gyorsító optimális paraméterei (Az alkalmazott anyagtól függenek)

Anyag: Szilícium (n = 3.41)

$$A = B = \lambda / 2$$

A = B = λ / 2 Optimalizáltuk a C, D és L paramétere

$$\rightarrow$$
 C = 0.1 λ

$$\rightarrow$$
 D = 0.167 λ

$$\rightarrow$$
 L = 0.28 λ

 $\lambda = 0.9 \text{ mm} (0.33 \text{ THz})$

2018.03.15

iári Ankét, Szegec

Elektromos tér a rácsok közötti térrészben

Elektromos tér a rácsok közötti térrészben

Várható gyorsítás

THz paraméterek: 0.33 THz 1 MV/cm 15 ps 20 mJ

> 5 cm dielektrikum hossz: 1 MeV \rightarrow 4 MeV Gradiens: 59 MeV/m

THz paraméterek: 0.7 THz 2 MV/cm 7 ps 20 mJ

> 5 cm dielektrikum hossz: 1 MeV \rightarrow 6.35 MeV Gradiens: 107 MeV/m

Extrém térerjű THz-es impulzusok alkalmazása II. Protonok utógyorsítása

Gyors protoncsomag előállítása lézerrel keltett plazmákban

Snavely et al.: PRL 85, 2945 (2000)

1 PW, 500 J, 500 fs

2018.03.15 5 12C-Ions 250 MeV/u 300 MeV/u 61. Fizikatanári Ankét, Szeged relative dose 3 2 18 MeV photons 60Co-1 Gamma 120 keV n 10 15 20 5 0 depth in water [cm]

Protonterápiához E > 70 MeV kell !

http://www.extreme-lightinfrastructure.eu/Hadron-therapy

Protonok utógyorsítása A lézermeghajtású proton gyorsítók jelenlegi korlátai

A hadron terápia elvárásai a protonforrásokkal szemben

- 70 250 MeV/nukleon energia
- Relatív energia fluktuáció <1% (kvázi-monoenergikus nyaláb) ^p/_{...}
- Alacsony nyaláb divergencia

- Legnagyobb közölt energia: 58 MeV (proton) /széles sáv/ vékony szilárd target Phys. Rev. Lett. 85, 2945 (2000)
- Keskeny sáv (~1%), de alacsony energia (20 MeV) gáz target Nature Physics 8, 95 (2012)

Az evaneszcens térrel működő THz-es gyorsító elrendezés

Palfalvi et al., Phys. Rev. ST-AB 17, 031301 (2014)

Utógyorsítás evaneszcens THz-es térrel

egyetlen proton gyorsítása

Proton csomag gyorsítása és monokromatizálása

Proton csomag gyorsítása és monokromatizálása több fokozattal 0.25 THz frekvenciával

Az eredmények létrejöttében meghatározó szerepet játszottak:

Hebling János Buzády Andrea Márton Zsuzsa Pálfalvi László Ollmann Zoltán Monoszlai Balázs Mechler Mátyás Illés Fülöp József András Unferdorben Márta Lombosi Csaba Polónyi Gyula Tibai Zoltán Tóth György

Köszönöm a figyelmet!

