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bstract

A brain–computer interface (BCI) is a communication system that translates brain-activity into commands for a computer or other devices. In
ther words, a BCI allows users to act on their environment by using only brain-activity, without using peripheral nerves and muscles. In this paper,
e present a BCI that achieves high classification accuracy and high bitrates for both disabled and able-bodied subjects. The system is based on
he P300 evoked potential and is tested with five severely disabled and four able-bodied subjects. For four of the disabled subjects classification
ccuracies of 100% are obtained. The bitrates obtained for the disabled subjects range between 10 and 25 bits/min. The effect of different electrode
onfigurations and machine learning algorithms on classification accuracy is tested. Further factors that are possibly important for obtaining good
lassification accuracy in P300-based BCI systems for disabled subjects are discussed.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

The major goal of BCI research is to develop systems that
ake it possible for disabled users to communicate with other

ersons, to control artificial limbs, or to control their environ-
ent. To achieve this goal, many aspects of BCI systems are

urrently being investigated. Research areas include evaluation
f invasive and noninvasive technologies to measure brain-
ctivity, development of new BCI applications, evaluation of
ontrol-signals (i.e. patterns of brain-activity that can be used
or communication), development of algorithms for translation
f brain-signals into computer commands, and the development
nd evaluation of BCI systems specifically for disabled sub-
ects (see Wolpaw et al. (2002), Lebedev and Nicolelis (2006)
or general reviews of BCI research). In this paper, we dis-
uss BCI systems for disabled users based on a noninvasive
ethod to measure brain-activity, namely the electroencephalo-
ram (EEG).
One of the earliest systems that used the EEG and was tested

ith disabled subjects was described by Birbaumer et al. (1999).
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n their pioneering work, Birbaumer et al. showed that patients
uffering from amyotrophic lateral sclerosis (ALS) can use a
CI to control a spelling device and communicate with their
nvironment. The system relied on the fact that patients were
ble to learn voluntary regulation of slow cortical potentials, i.e.
oltage shifts of the cerebral cortex which occur in the frequency
ange 1–2 Hz. Drawbacks of the system were that it usually
ook several months of patient training before the subjects could
ontrol the system and that communication was relatively slow.

Parallel to the work of Birbaumer et al. BCI systems were
eveloped that used changes in brain-activity correlated to
otor-imagery as a control-signal (Pfurtscheller and Neuper,

001). While these systems were for a long time tested exclu-
ively with able-bodied and quadriplegic subjects, recently tests
ave been performed with ALS patients and other disabled
ubjects. Positive results have been obtained by Kübler et al.
2005) who showed that ALS patients can learn to control motor-
magery based BCI systems. However, as for the system based on
low cortical potentials, users were trained over several months
nd communication was relatively slow. Negative results have
een obtained by Hill et al. (2006), who tested a motor-imagery
ased BCI with several completely locked-in patients and could

ot obtain signals that were suitable for communication. One
ossible reason for the different results is the fact that in the
tudy of Kübler et al. the patients were not completely locked in
hereas the patients in the study of Hill et al. were completely

mailto:ulrich.hoffmann@epfl.ch
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ocked-in. Furthermore in the study of Kübler et al. several train-
ng sessions were used whereas in the work of Hill et al. only
ne, relatively long training session was used. In summary, it
as thus been shown that motor-imagery based systems can be
sed by disabled subjects, however positive evidence is limited
o cases in which subjects were not completely locked-in and
ollowed a long training protocol.

In the present work, a control-signal is used that can be
etected reliably and does not require extended subject train-
ng: the P300 event-related potential. The P300 is a positive
eflection in the human EEG, appearing approximately 300 ms
fter the presentation of rare or surprising, task-relevant stim-
li (Sutton et al., 1965). Farwell and Donchin (1988) were the
rst to employ the P300 as a control-signal in a BCI. They
escribed the P300 speller system, with which subjects were
ble to spell words by sequentially choosing letters from the
lphabet. A 6 × 6 matrix containing the letters of the alphabet
nd other symbols was displayed on a computer screen. Rows
nd columns of the matrix were flashed in random order. To
hoose a symbol, subjects had to silently count how often it was
ashed. Flashes of the row or column containing the desired
ymbol evoked P300-like EEG signals, while flashes of other
ows and columns corresponded to neutral EEG signals. The
arget symbol could be inferred with a simple algorithm that
earched for the row and column which evoked the largest P300
mplitude.

Since the work of Farwell and Donchin much of the research
n the area of P300 based BCI systems has concentrated on
eveloping new application scenarios (see for example Polikoff
t al. (1995), Bayliss (2003)), and on developing new algorithms
or the detection of the P300 from possibly noisy data (see for
xample Xu et al. (2004), Kaper et al. (2004), Rakotomamonjy
t al. (2005), Hoffmann et al. (2005), Thulasidas et al. (2006)).
ecently, two studies have been published in which P300-based
CI systems were tested with disabled subjects. These studies
re described in the following.

Piccione et al. (2006) tested a 2D cursor control system with
ve disabled and seven able-bodied subjects. For cursor con-

rol, a four-choice P300 paradigm was used. Subjects had to
oncentrate on one of four arrows flashing every 2.5 s in random
rder in the peripheral area of a computer screen. Signals were
ecorded from one electrooculogram electrode and four EEG
lectrodes, preprocessed with independent component analysis
nd classified with a neural network. The results described by
iccione et al. showed that the P300 is a viable control-signal for
isabled subjects. However the average communication speed
btained in their study was relatively low when compared to
tate of the art systems, as for example the systems described
y Kaper et al. (2004), Thulasidas et al. (2006). This was the
ase for the disabled subjects, as well as for able-bodied sub-
ects and can probably be ascribed to the use of signals from
nly few electrodes, the small number of different stimuli, and
ong interstimulus intervals (ISIs).
Sellers and Donchin (2006) also used a four-choice paradigm
nd tested their system with three subjects suffering from
LS and three able-bodied subjects. In their study four stimuli

‘YES’, ‘NO’, ‘PASS’, ‘END’) were presented every 1.4 s in ran-
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om order, either in the visual modality, in the auditory modality,
r in a combined auditory–visual modality. Signals from three
lectrodes were classified with a stepwise linear discriminant
lgorithm. The research of Sellers and Donchin showed that
300 based communication is possible for subjects suffering
rom ALS. The research also showed that communication is
ossible in the visual, auditory, and combined auditory-visual
odality. However, as in the work of Piccione et al., the achieved

lassification accuracy and communication rate were low when
ompared to state of the art results. This can again be ascribed
o the small number of electrodes, the small number of different
timuli, and long ISIs.

In the present work, a six-choice P300 paradigm is tested
sing a population of five disabled and four able-bodied sub-
ects. Six different images were flashed in random order with an
SI of 400 ms. Electrode configurations consisting of 4, 8, 16 and
2 electrodes were tested. Bayesian Linear Discriminant Analy-
is (BLDA) and Fisher’s Linear Discriminant Analysis (FLDA)
ere tested for classification. For four of the disabled subjects

nd for all the able-bodied subjects communication rates and
lassification accuracies were obtained that are superior to those
f Piccione et al. (2006) and Sellers and Donchin (2006). Fac-
ors that are possibly important for obtaining good classification
ccuracy in BCI systems for disabled subjects are discussed.

Additionally, to stimulate further research on data anal-
sis techniques for P300-based BCI systems and to enable
ther researchers to reproduce results, the datasets and some
f the algorithms used in the present work are made avail-
ble for download on the website of the EPFL BCI group
http://bci.epfl.ch/p300).

The layout of the paper is as follows. In Section 2, the subject
opulation, the experiments that were performed, and the meth-
ds used for data preprocessing and classification are described.
esults are given in Section 3. A discussion of the results fol-

ows in Section 4. A description of FLDA and BLDA is given
n Appendices A and B.

. Materials and methods

.1. Experimental setup

Users were facing a laptop screen on which six images were
isplayed (see Fig. 1). The images showed a television, a tele-
hone, a lamp, a door, a window, and a radio. The images were
elected according to an application scenario in which users can
ontrol electrical appliances via a BCI system. The application
cenario served however only as an example and was not pursued
n further detail.

The images were flashed in random sequences, one image at
time. Each flash of an image lasted for 100 ms and during the

ollowing 300 ms none of the images was flashed, i.e. the ISI
as 400 ms.
The EEG was recorded at 2048 Hz sampling rate from 32
lectrodes placed at the standard positions of the 10–20 inter-
ational system. A Biosemi Active Two amplifier was used
or amplification and analog to digital conversion of the EEG
ignals.

http://bci.epfl.ch/p300
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ig. 1. The display used for evoking the P300. Images were flashed, one at a
ime, by changing the overall brightness of images.

Signal processing and machine learning algorithms were
mplemented with MATLAB. The stimulus display and the
nline access to the EEG signals were implemented as dynamic
ink libraries (DLLs) in C. The DLLs were accessed from MAT-
AB via a MEX interface.
.2. Subjects

The system was tested with five disabled and four healthy
ubjects. The disabled subjects were all wheelchair-bound but

able 1
ubjects from which data was recorded in the study of the environment control syste

S1 S2

iagnosis Cerebral palsy Multiple sclerosis

ge 56 51
ge at illness onset 0 (perinatal) 37
ex M M
peech production Mild dysarthria Mild dysarthria
imb muscle control Weak Weak
espiration control Normal Normal
oluntary eye movement Normal Mild nystagmus
ience Methods 167 (2008) 115–125 117

ad varying communication and limb muscle control abilities
see Table 1). Subjects 1 and 2 were able to perform simple,
low movements with their arms and hands but were unable to
ontrol other extremities. Spoken communication with subjects
and 2 was possible, although both subjects suffered from mild
ysarthria. Subject 3 was able to perform restricted movements
ith his left hand but was unable to move his arms or other

xtremities. Spoken communication with subject 3 was impos-
ible. However the patient was able to answer yes/no questions
ith eye blinks. Subject 4 had very little control over arm and
and movements. Spoken communication was possible with
ubject 4, although a mild dysarthria existed. Subject 5 was
nly able to perform extremely slow and relatively uncontrolled
ovements with hands and arms. Due to a severe hypophony

nd large fluctuations in the level of alertness, communication
ith subject 5 was very difficult.
Subjects 6–9 were Ph.D. students recruited from our labora-

ory (all males, age 30 ± 2.3). None of subjects 6–9 had known
eurological deficits.

.3. Experimental schedule

Each subject completed four recording sessions. The first two
essions were performed on one day and the last two sessions
n another day. For all subjects the time between the first and
he last session was less than two weeks. Each of the sessions
onsisted of six runs, one run for each of the six images. The
ollowing protocol was used in each of the runs.

(i) Subjects were asked to count silently how often a prescribed
image was flashed (for example: “Now please count how
often the image with the television is flashed”).

ii) The six images were displayed on the screen and a warning
tone was issued.

ii) Four seconds after the warning tone, a random sequence of
flashes was started and the EEG was recorded. The sequence
of flashes was block-randomized, this means that after six
flashes each image was flashed once, after twelve flashes
each image was flashed twice, etc. The number of blocks

was chosen randomly between 20 and 25. On average 22.5
blocks of six flashes were displayed in one run, i.e. one
run consisted on average of 22.5 target (P300) trials and
22.5 × 5 = 112.5 non-target (non-P300) trials.

m

S3 S4 S5

Late-stage
amyotrophic
lateral sclerosis

Traumatic brain
and spinal-cord
injury, C4 level

Post-anoxic
encephalopathy

47 33 43
39 27 37
M F M
Severe dysarthria Mild dysarthria Severe hypophony
Very weak Weak Very weak
Weak Normal Normal
Normal Normal Balint’s syndrome
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iv) In the second, third, and fourth session the target image was
inferred from the EEG with a simple classifier.5 At the end of
each run the image inferred by the classification algorithm
was flashed five times to give feedback to the user.

v) After each run subjects were asked what their counting result
was. This was done in order to monitor performance of the
subjects.

The duration of one run was approximately one minute and
he duration of one session including setup of electrodes and
hort breaks between runs was approximately 30 min. One ses-
ion comprised on average 810 trials, and the whole data for one
ubject consisted on average of 3240 trials.

.4. Offline analysis

The impact of different electrode configurations and machine
earning algorithms on classification accuracy was tested in an
ffline procedure. For each subject four-fold cross-validation
as used to estimate average classification accuracy. More

pecifically, the data from three recording sessions were used
o train a classifier and the data from the left-out session was
sed for validation. This procedure was repeated four times so
ach session served once for validation.

.4.1. Preprocessing
Before learning a classification function and before valida-

ion, several preprocessing operations were applied to the data.
he preprocessing operations were applied in the order stated
elow.

(i) Referencing. The average signal from the two mastoid
electrodes was used for referencing.

(ii) Filtering. A sixth order forward–backward Butterworth
bandpass filter was used to filter the data. Cut-off fre-
quencies were set to 1.0 Hz and 12.0 Hz. The MATLAB
function butter was used to compute the filter coefficients
and the function filtfilt was used for filtering.

(iii) Downsampling. The EEG was downsampled from
2048 Hz to 32 Hz by selecting each 64th sample from the
bandpass-filtered data.

(iv) Single trial extraction. Single trials of duration 1000 ms
were extracted from the data. Single trials started at stim-
ulus onset, i.e. at the beginning of the intensification
of an image, and ended 1000 ms after stimulus onset.
Due to the ISI of 400 ms, the last 600 ms of each trial
were overlapping with the first 600 ms of the following
trial.
(v) Windsorizing. Eye blinks, eye movement, muscle activity,
or subject movement can cause large amplitude outliers in
the EEG. To reduce the effects of such outliers, the data
from each electrode were windsorized. For the samples

5 The classifier was trained from the data recorded in the first session. The
lgorithm described in Hoffmann et al. (2006) was used for preprocessing and
he algorithm described in Hoffmann et al. (2004) was used for classification.
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from each electrode the 10th percentile and the 90th per-
centile were computed. Amplitude values lying below the
10th percentile or above the 90th percentile were then
replaced by the 10th percentile or the 90th percentile,
respectively.

(vi) Scaling. The samples from each electrode were scaled to
the interval [−1, 1].

(vii) Electrode selection. Four electrode configurations with
different numbers of electrodes were tested. The electrode
configurations are shown in Fig. 2.

viii) Feature vector construction. The samples from the
selected electrodes were concatenated into feature vec-
tors. The dimensionality of the feature vectors was
Ne × Nt, where Ne denotes the number of electrodes and
Nt denotes the number of temporal samples in one trial.
Due to the trial duration of 1000 ms and the downsam-
pling to 32 Hz, Nt always equalled 32. Depending on the
electrode configuration Ne equalled 4, 8, 16, or 32.

.4.2. Machine learning and classification
Classifiers and the percentile values used for windsorizing

ere trained on the data from three sessions and validated on the
eft-out fourth session. Training data sets contained 405 target
rials and 2025 non-target trials and validation data sets consisted
f 135 target and 675 non-target trials (these are average values
f. Section 2.3). Bayesian Linear Discriminant Analysis (BLDA)
as used to learn classifiers (see Appendix B). To compare

he performance of BLDA with a standard algorithm, in a sec-
nd set of experiments classifiers were computed with Fisher’s
inear Discriminant Analysis (FLDA) (see Appendix A). Both
lgorithms were fully automatic, i.e. no user intervention was
equired to adjust hyperparameters, and the computation of clas-
ifiers took less than 1 min on a standard PC.

After the classifiers had been trained, they were applied to
alidation data in the following way. For each run in the valida-
ion session, the single trials corresponding to the first twenty
locks of flashes were extracted using the preprocessing oper-
tions. Then the single trials were classified. This resulted in
wenty blocks of classifier outputs. Each block consisted of six
lassifier outputs, one output for each image on the display. To
ecide which image the user was concentrating on, the clas-
ifier outputs were summed over blocks for each image and
hen the image with the maximum summed classifier output was
elected. Different tradeoffs between the time needed to take a
ecision and the classification accuracy were simulated by vary-
ng the number of summed classifier outputs, i.e. the number of
locks.

. Results

.1. General observations
In Fig. 3, classification accuracy averaged over sessions and
he corresponding bitrates are plotted against the time needed
o take a decision. Electrode configuration (II) in conjunction
ith BLDA as classification method was used for the graphs in
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Fig. 2. Electrode configurations used in the experiments. From left to right: Configuration I (4 electrodes), configuration II (8 electrodes), configuration III (16
electrodes), and configuration IV (32 electrodes).
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ig. 3. Classification accuracy and bitrate plotted vs. time. The panels show th
veraged over four sessions (circles) and the corresponding bitrate (crosses), fo

ig. 36 and the bitrates were computed by applying the definition
f Wolpaw et al. (2002) to the average accuracy curves. The
itrates for all possible combinations of electrode configuration
nd classification algorithm are listed in Table 2.

Data for subject 5 are not included in Fig. 3 and in Table 2
ecause classification accuracies above chance level could not
e obtained. During the experiments a speech therapist helped to
ommunicate with subject 5. However, it was not clear if the sub-
ect understood the instructions given before the experiments.
urthermore, the level of alertness of the subject fluctuated
trongly and rapidly during experiments.

All of the subjects, except for subjects 6 and 9, achieved an
verage classification accuracy of 100% after 12 or more blocks

f stimulus presentations were averaged (i.e. after 28.8 s). Sub-
ect 6 reported that he accidentally concentrated on the wrong
timulus during one run in session 1. This explains the lower

6 Electrode configuration (II) was chosen for plotting because it represents a
ood tradeoff between classification performance and practical applicability of
BCI system. To keep the plots uncluttered, the curves for FLDA, which for

lectrode configuration (II) are very similar to those of BLDA, are not shown.

3
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sification accuracy obtained with BLDA and the eight electrode configuration,
bled subjects (S1–S4) and able-bodied subjects (S6–S9).

verage classification accuracy for this subject. In all other runs
he average classification accuracy after more than 12 blocks
as 100% for subject 6. The somewhat lower performance for

ubject 9 is restricted to session 4, i.e. in sessions 1–3 subject
always reached 100% classification accuracy. The reason for

he lower performance in session 4 might be fatigue.
The best performance was achieved by subject 8. Subject 8

as highly concentrated and motivated during the experiments.
t is known that motivation and arousal in general increase P300
mplitude (Carrillo-de-la Pena and Cadaveira, 2000). One pos-
ible explanation for the very good performance of subject 8
ight thus be the fact that the subject was very motivated.

.2. Differences between disabled and able-bodied subjects

The differences that can be observed between disabled and
ble-bodied subjects depend on the performance measure used.
f maximum classification accuracy is used as performance

easure no differences can be found between able-bodied and

isabled subjects. This is shown for classification with BLDA
nd the eight electrodes configuration in Fig. 3. The same
ehavior was found for the other combinations of classifier and
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Table 2
Maximum average bitrate per minute

Subject BLDA-4 BLDA-8 BLDA-16 BLDA-32 FLDA-4 FLDA-8 FLDA-16 FLDA-32

S1 8.8 8.8 7.7 13.0 6.2 7.1 5.0 6.5
S2 6.8 10.8 11.4 11.2 6.8 13.0 6.3 6.3
S3 21.9 24.7 24.7 21.9 24.7 28.0 28.0 19.3
S4 14.9 19.3 21.9 29.8 13.1 17.0 19.0 14.9
S6 25.9 25.9 25.9 34.1 22.3 22.3 17.0 13.1
S7 22.3 22.3 38.7 38.7 19.0 19.3 21.9 19.3
S8 38.7 49.4 56.0 64.6 43.8 56.3 49.9 38.7
S9 17.0 19.3 22.3 17.0 8.0 13.0 14.9 13.0

Average (S1–S4) 13.1 ± 6.8 15.9 ± 7.5 16.4 ± 8.2 19.0 ± 8.6 12.7 ± 8.6 16.3 ± 8.8 14.6 ± 11.0 11.7 ± 6.5
Average (S6–S9) 26.0 ± 9.2 29.3 ± 13.7 35.7 ± 15.2 38.6 ± 19.7 23.3 ± 15.0 27.6 ± 19.3 25.8 ± 16.0 21.0 ± 12.1
A 28.8 ± 17.6 18.0 ± 12.6 22.0 ± 15.2 20.2 ± 14.1 16.4 ± 10.3

B mbinations of classification algorithm and electrode configuration. Mean bitrate and
s subjects (S6–S9), and all subjects.
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verage (all) 19.5 ± 10.2 22.6 ± 12.5 26.1 ± 15.3

itrates were computed from average accuracy curves and are shown for all co
tandard deviations were computed for disabled subjects (S1–S4), able-bodied

lectrode configuration (not shown). If bitrate is used as perfor-
ance measure, differences between disabled and able-bodied

ubjects can readily be observed. Able-bodied subjects achieved
igher maximum bitrates than disabled subjects. This was the
ase for all combinations of classifier and electrode configu-
ation (see Table 2). Closely linked to maximum bitrate is the
lassification accuracy for small numbers of blocks of presen-
ations. For this measure of performance, differences between
ble-bodied and disabled subjects can also be observed. The
lassification accuracy of disabled subjects (especially of sub-
ects 1 and 2) increases more slowly than that of the able-bodied
ubjects (see Fig. 3).

.3. Electrode configurations and classification methods

Using different electrode configurations in conjunction with
LDA yielded the performance curves shown in Fig. 4. The per-

ormance curves obtained with FLDA are shown in Fig. 5. For

oth figures, classification accuracy was averaged over sessions
nd over all subjects. For both classification methods a strong
ncrease in classification accuracy can be observed between the
lectrode configurations consisting of four and eight electrodes.

ig. 4. Classification accuracy obtained with BLDA, averaged over all subjects
nd sessions, plotted against time, for all electrode configurations.
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ig. 5. Classification accuracy obtained with FLDA, averaged over all subjects
nd sessions, plotted against time, for all electrode configurations.

sing more than eight electrodes yielded only relatively small
ncreases in performance for BLDA and resulted in a decrease
f performance for FLDA (cf. Figs. 4 and 5; Table 2). For the
onfigurations consisting of four and eight electrodes, the classi-
cation accuracy and bitrates obtained with BLDA were slightly
etter than those obtained with FLDA. For the configurations
onsisting of more than eight electrodes the performance of
LDA was clearly better than that of FLDA. For all electrode
onfigurations the differences in accuracy between BLDA and
LDA were strongest when only a small number of blocks was
sed, i.e. in the range 0–20 s. (cf. Figs. 4 and 5).

.4. Averaged waveforms

Detecting the target image from a sequence of EEG tri-
ls relies on differences between the waveforms of target and

on-target trials. To visualize these differences the averaged
aveforms at electrode Pz are plotted in Fig. 6.7 As expected,
isabled subjects and able-bodied subjects show a P300-like

7 Electrode Pz was chosen for plotting because it typically shows the largest
300 amplitude.
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Fig. 6. Top: Average waveforms at electrode Pz for disabled subjects (S1–S4).
Bottom: average waveforms at electrode Pz for able-bodied subjects (S6–S9).
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hown are the average responses to target stimuli (solid line) and non-target
timuli (dashed line) from all four sessions. A prestimulus interval of 100 ms
as used for baseline correction of single trials.

eak in the target condition which is not present in the non-target
ondition. The latency of the P300 is higher for the disabled
ubjects (around 500 ms) when compared to the one from able-
odied subjects (around 300 ms). The amplitude at the P300
eak is smaller for the disabled subjects (around 1.5 �V) than
or the able-bodied subjects (around 2 �V).

. Discussion

.1. Differences to other studies

Compared to other P300-based BCI systems for disabled
sers, the classification accuracy and bitrate obtained in the cur-
ent study are relatively high. In the work of Sellers and Donchin
2006), the best classification accuracy for the able-bodied sub-
ects was on average 85% and the best classification accuracy for
he ALS patients was on average 72% (values taken from Table 3
n Sellers and Donchin (2006)). In the present study, the best clas-
ification accuracy for the able-bodied subjects was on average
lose to 100% and the best classification accuracy for disabled
ubjects was on average 100% (see Fig. 3). Bitrates in bits/min
ere not reported in the study of Sellers and Donchin. In the
ork of Piccione et al. (2006) average bitrates of about 8 bits/min
ere reported for both disabled and able-bodied subjects. In the
resent study the average bitrate obtained with electrode con-
guration (II) was 15.9 bits/min for the disabled subjects and
9.3 bits/min for the able-bodied subjects.

Due to differences in experimental paradigms and subject
opulations the classification accuracy and bitrate obtained in

he two studies described above cannot be compared directly to
hose obtained in the present study. Nevertheless, several factors
hat might have caused the differences can be identified. These
actors are described below.
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Number of choices
In the present study, a six-choice paradigm was used,

whereas in the experiments of Sellers and Donchin and
Piccione et al. four-choice paradigms were used. As a con-
sequence the target stimulus occurred with a probability of
0.25 in the experiments of Sellers and Donchin and Piccione
et al., whereas in the present work it occurred with a probabil-
ity of 0.16. Smaller target probabilities correspond to higher
P300 amplitudes (Duncan-Johnson and Donchin, 1977), thus
the P300 in our system might have been easier to detect.

In general, when designing a P300-based BCI, one has to
take into account that disabled subjects might suffer from
visual impairments. Systems such as the P300 speller in which
users have to focus on a relatively small area of the display
might thus not be appropriate for disabled subjects. Reducing
the number of choices enlarges the area occupied by one item
on the screen and thus facilitates concentration on one item.
This might be particularly important for subjects who have
little remaining control over their eye-movements. Such sub-
jects might use covert shifts of visual attention (Posner and
Petersen, 1990) to control a P300-based BCI, which should
be easier when a small number of large items is used.

Interstimulus interval
Several factors have to be kept in mind when choosing an ISI

for a P300-based BCI system. Regarding classification accu-
racy, longer ISIs theoretically yield better results. This should
be the case because longer ISIs (within some limits) cause
larger P300 amplitude. On the other hand, a consequence of
long ISIs is a longer overall duration of runs. Disabled subjects
might have difficulties to stay concentrated during long runs
and thus P300 amplitude and classification accuracy might
actually decrease for longer ISIs.

Regarding bitrate, the factors described above have to be
considered together with the fact that for a given classifica-
tion accuracy higher bitrates are obtained with shorter ISIs.
Additionally one has to consider that if the ISI is made
too short, subjects with cognitive deficits might have prob-
lems to detect all target stimuli and classification accuracy
might decrease. Given the complex interrelationship of sev-
eral factors an optimal ISI for P300-based BCIs can only be
determined experimentally. Here, we have shown that an ISI
of 400 ms yields good results. Sellers and Donchin have used
an ISI of 1.4 s, and Piccione et al. have used an ISI of 2.5 s.
The results obtained in their studies seem to indicate that these
ISIs are too long.

.2. Electrode configurations

The electrode configuration used in a BCI determines the
uitability of the system for daily use. Clearly, systems that use
nly few electrodes take less time for setup and are more user
riendly than systems with many electrodes. However, if too few
lectrodes are used not all features that are necessary for accu-

ate classification can be captured and communication speed
ecreases.

For P300-based BCI systems different electrode configura-
ions have been described in the literature. Good results have



1 roscie

b
P
e
t
f
e
o
P
(

s
B
t
a
e
m
p
a
t
r
p
c

fi
c
c
T
t
i

i
c
a
f

4

o
t
a
t
u

b
(
I
2
o
u
b
T
s
m
f
p
b

u
t
n

t
T
b
f
A
a
a
f
i

w
t

5

s
a
s
t

s
i
a
n
p

A

t
a
E
A
m

A

t
c
c
a
n
i
C

22 U. Hoffmann et al. / Journal of Neu

een reported using only three or four midline electrodes (Fz, Cz,
z, Oz) (Serby et al., 2005; Sellers and Donchin, 2006; Piccione
t al., 2006). Krusienski et al. (2006) described an eight elec-
rode configuration consisting of the midline electrodes and the
our parietal-occipital electrodes PO7, PO8, P3, and P4. Kaper
t al. (2004) employed a ten electrode configuration consisting
f the midline electrodes, the parietal-occipital electrodes PO7,
O8, P3, P4 and the central electrodes C3, C4. Thulasidas et al.
2006) used a set of 25 central and parietal electrodes.

Here, we have tested different electrode configurations, con-
isting of 4, 8, 16, and 32 electrodes, in combination with the
LDA and FLDA classification algorithms. The results show

hat for both algorithms a significant increase in classification
ccuracy can be obtained by augmenting the set of four midline
lectrodes with the parietal electrodes P7, P3, P4, and P8. For
ost of the subjects, inspection of the average waveforms at the

arietal electrodes showed that in target trials there was a neg-
tive peak with a latency of about 200 ms which was weaker in
he non-target condition. This N200-like component probably is
esponsible for the increase of classification accuracy when the
arietal electrodes are included. Further research is needed to
larify the possible functional significance of this component.

With the BLDA algorithm a small further increase in classi-
cation accuracy could be obtained by using the configurations
onsisting of 16 or 32 electrodes. With the FLDA algorithm,
lassification decreased when more than 8 electrodes were used.
his probably happened because the FLDA algorithm is unable

o deal with training data sets in which the number of features
s large compared to the number of training examples.

In summary, regardless of the classification algorithm that
s used, the eight electrode configuration represents a good
ompromise between suitability for daily use and classification
ccuracy and seems to capture most of the important features
or P300 classification.

.3. Machine learning algorithms

Many of the characteristics of a BCI system depend critically
n the employed machine learning algorithm. Important charac-
eristics that are influenced by the machine learning algorithm
re classification accuracy and communication speed, as well as
he amount of time and user intervention necessary for setting
p a classifier from training data.

A simple and efficient algorithm that has relatively often
een used in P300-based and other BCI systems is FLDA
Pfurtscheller and Neuper, 2001; Bostanov, 2004; Kaper, 2006).
n a comparison of classification techniques (Krusienski et al.,
006) for P300-based BCIs, FLDA was among the best meth-
ds in terms of classification accuracy and ease of use. However,
sing FLDA becomes impossible when the number of features
ecomes large, relative to the number of training examples.
his is known as the small sample size problem. The small
ample size problem occurs because the between-class scatter

atrix used in FLDA becomes singular when the number of

eatures becomes large. In the present study the solution to this
roblem was to use the Moore–Penrose pseudoinverse of the
etween-class scatter matrix (see Appendix A). This allows to

w

J
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se FLDA, even if the number of features is high. However, with
his approach the performance of FLDA deteriorated when the
umber of electrodes was increased.

In BLDA, the small sample size problem, and more generally
he problem of overfitting are solved by using regularization.
hrough a Bayesian analysis, the degree of regularization can
e automatically estimated from training data without the need
or user intervention or time consuming cross-validation (see
ppendix B). With the datasets used in this work, the BLDA

lgorithm is superior to FLDA in terms of classification accuracy
nd bitrates, especially if the number of features is large. A
urther advantage, which was however not exploited in this work,
s that the BLDA algorithm yields probabilistic outputs.

In summary, BLDA is an interesting alternative to FLDA
hich offers good classification accuracy and does not constrain

he practical applicability of a BCI system.

. Conclusion

In this work, an efficient P300-based BCI system for disabled
ubjects was presented. We have shown that high classification
ccuracies and bitrates can be obtained for severely disabled
ubjects. Due to the use of the P300, only a small amount of
raining was required to achieve good classification accuracy.

Future improvements to the work presented here might con-
ist in testing the system with completely locked-in patients and
n defining useful BCI applications adapted to the needs of dis-
bled users. Also it might be useful to perform studies with larger
umbers of subjects in order to confirm the results found in the
resent work.
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ppendix A. Fisher’s LDA

The goal in Fisher’s linear discriminant analysis (FLDA) is
o compute a discriminant vector that separates two or more
lasses as well as possible. Here, we consider only the two-class
ase. We are given a set of input vectors xi ∈RD, i ∈ {1, . . . , N}
nd corresponding class-labels yi ∈ {−1, 1}. Denoting by N1 the
umber of training examples for which yi = 1, by C1 the set of
ndices i for which yi = 1, and using analogous definitions for N2,

2, the objective function for computing a discriminant vector
D
∈R is

(w) = (μ1 − μ2)2

σ2
1 + σ2

2

, (A.1)
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here

k = 1

Nk

∑
i ∈ Ck

wTxi, σ2
k =

∑
i ∈ Ck

(wTxi − μk)
2
. (A.2)

his means that one is searching for discriminant vectors that
esult in a large distance between the projected means and small
ariance around the projected means (small within-class vari-
nce). To compute directly the optimal discriminant vector for a
raining data set, matrix equations for the quantities (μ1 − μ2)2

nd σ2
1 + σ2

2 can be used. We first define the class means mk.

k = 1

Nk

∑
i ∈ Ck

xi (A.3)

ow we can define the between-class scatter matrix SB and the
ithin-class scatter matrix SW.

B = (m1 − m2)(m1 − m2)T (A.4)

W =
2∑

k=1

∑
i ∈ Ck

(xi − mk)(xi − mk)T (A.5)

ith the help of these two matrices the objective function for
LDA can be written as a Rayleigh quotient.

(w) = wTSBw

wTSWw
(A.6)

y computing the derivative of J and setting it to zero, one
an show that the optimal solution for w satisfies the following
quation:

∝ S−1
W (m1 − m2). (A.7)

potential problem in FLDA is that the within-class scatter
atrix SW can become singular, and the inverse of SW can

ecome ill-defined. In particular, this happens when the num-
er of features D becomes larger than the number of training
xamples N. A simple solution for this problem is to replace the
nverse S−1

W by the Moore–Penrose pseudo-inverse S†
W (Tian et

l., 1988).
The optimal solution for w then reads:

∝ S†
W(m1 − m2). (A.8)

he output of FLDA given an input vector x̂ is simply the prod-
ct wTx̂. In the P300-based BCI described in the present study,
he output of FLDA was summed over trials and the image cor-
esponding to the maximum of the summed output values was
hen selected (cf. Section 2.4.2).

ppendix B. Bayesian LDA (BLDA)

BLDA can be seen as an extension of Fisher’s Linear Dis-
riminant Analysis (FLDA). In contrast to FLDA, in BLDA
egularization is used to prevent overfitting to high dimensional

nd possibly noisy datasets. Through a Bayesian analysis the
egree of regularization can be estimated automatically and
uickly from training data without the need for time consuming
ross-validation.

a
i
u

ience Methods 167 (2008) 115–125 123

We have obtained very good results with BLDA and we
hink that the BLDA algorithm might be of general interest
o the BCI community. A MATLAB implementation of BLDA
an be downloaded from the webpage of the EPFL BCI group
http://bci.epfl.ch/p300). Algorithms that are closely related to
he method presented below are the Bayesian least-squares
upport vector machine (Van Gestel et al., 2002) and the algo-
ithm for Bayesian non-linear discriminant analysis described
y Centeno and Lawrence (2006). BLDA is also closely related
o the so-called evidence framework for which detailed accounts
re given by MacKay (1992) and Bishop (2006).

As a starting point for the description of BLDA we use the
act that FLDA is a special case of least squares regression. Least
quares regression is equivalent to FLDA if regression targets are
et to N/N1 for examples from class 1 and to −N/N2 for examples
rom class −1 (where N is the total number of training examples,
1 the number of examples from class 1, and N2 the number of
xamples from class −1). A proof for the equivalence between
east squares regression and FLDA can be found in the book
f Bishop (2006). Given the connection between regression and
LDA, our approach for BLDA is to perform regression in a
ayesian framework and set target values as mentioned above.

The assumption in Bayesian regression is that targets t and
eature vectors x are linearly related with additive white Gaus-
ian noise n.

= wTx + n (B.1)

iven this assumption, we can write down the likelihood func-
ion for the weights w used in regression:

(D|β, w) =
(

β

2π

)N/2

exp(−β

2
||XTw − t||2). (B.2)

ere, t denotes a vector containing the regression targets, X
enotes the matrix that is obtained from the horizontal stacking
f the training feature vectors, D denotes the pair {X, t}, β

enotes the inverse variance of the noise, and N denotes the
umber of examples in the training set. It is assumed that the
eature vectors contain one feature which always equals one;
he bias term which is commonly used in regression can thus be
mitted.

To perform inference in a Bayesian setting we have to specify
prior distribution for the latent variables, i.e. for the weight

ector w. The expression for the prior distribution is:

(w|α) =
( α

2π

)D/2( ∈
2π

)1/2
exp

(
−1

2
wTI′(α)w

)
, (B.3)

here I′(α) is a square, D + 1 dimensional, diagonal matrix

′(α) =

⎡
⎢⎢⎢⎢⎣

α 0 . . . 0

0 α . . . 0
...

...
. . .

...

⎤
⎥⎥⎥⎥⎦ , (B.4)
0 0 . . . ∈
nd D is the number of features. The prior for the weights thus
s an isotropic, zero-mean Gaussian distribution. The effect of
sing a zero-mean Gaussian prior for the weights is similar to

http://bci.epfl.ch/p300
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he effect of the regularization term used in ridge regression and
egularized FLDA. The estimates for w are shrunk towards the
rigin and the danger of overfitting is reduced. The prior for the
ias (the last entry in w) is a zero-mean univariate Gaussian.
etting ∈ to a very small value, the prior for the bias is practi-
ally flat. This expresses the fact that a priori we do not make
ssumptions about the value of the bias parameter.

Given likelihood and prior the posterior distribution can be
omputed using Bayes rule.

(w|β, α, D) = p(D|β, w)p(w|α)∫
p(D|β, w)p(w|α) dw

(B.5)

Since both prior and likelihood are Gaussian, the posterior is
lso Gaussian and its parameters can be derived from likelihood
nd prior by completing the square. The mean m and covariance

of the posterior satisfy the following equations.

= β(βXXT + I′(α))
−1

Xt (B.6)

= (βXXT + I′(α))
−1

(B.7)

By multiplying the likelihood function (Eq. (B.2)) for a new
nput vector x̂ with the posterior distribution (Eq. (B.5)) followed
y an integration over w, we obtain the predictive distribution,
.e. the probability distribution over regression targets condi-
ioned on an input vector:

(t̂|β, α, x̂, D) =
∫

p(t̂|β, x̂, w)p(w|β, α, D) dw. (B.8)

The predictive distribution is again Gaussian and can be char-
cterized by its mean μ and its variance σ2.

= mTx̂ (B.9)

2 = 1

β
+ x̂TCx̂ (B.10)

n the P300-based BCI described in the present study, only the
ean value of the predictive distribution was used for taking

ecisions. More precisely, mean values were summed over trials
nd the image corresponding to the maximum of the summed
ean values was then selected (cf. Section 2.4.2).
In a more general setting, class probabilities could be

btained by computing the probability of the target values used
uring training. Using the predictive distribution from Eq. (B.8)
nd omitting the conditioning on β, α, D we could use:

(ŷ = 1|x̂) = p(t̂ = N1/N|x̂)

p(t̂ = N1/N|x̂) + p(t̂ = −N2/N|x̂)
. (B.11)

Both the posterior distribution and the predictive distribu-
ion depend on the hyperparameters α and β. We have assumed
bove that the hyperparameters are known, however in real-
orld situations the hyperparameters are usually unknown. One
ossibility to solve this problem would be to use cross-validation
o determine the hyperparameters that yield the best predic-

ion performance. However, the Bayesian regression framework
ffers a more elegant and less time-consuming solution for the
roblem of choosing the hyperparameters. The idea is to write
own the likelihood function for the hyperparameters and then

P

P

nce Methods  167 (2008) 115–125

aximize the likelihood with respect to the hyperparameters.
he maximum likelihood solution for the hyperparameters can
e found with a simple iterative algorithm which we do not dis-
uss in detail here, but which is described by MacKay (1992)
nd Bishop (2006).
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