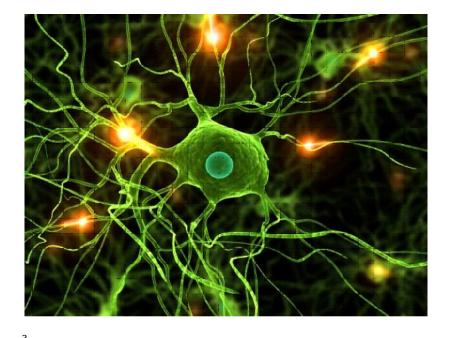
From Single Neurons to Brain-Computer Interfaces

Dorottya Cserpán

Complex Systems and Computational Neuroscience Group Wigner Research Centre for Physics, Hungarian Academy of Sciences

August 7, 2015



¹http://ergonomicsindesign.hfes.org:8084/wordpress/ergonomics-illustrated-creativity/

List of unsolved problems in neuroscience

- ➤ Consciousness: What is the neuronal basis of subjective experience, cognition, wakefulness, alertness, arousal, and attention? Is there a "hard problem of consciousness"? If so, how is it solved? What, if any, is the function of consciousness?
- ► **Perception:** How are the senses integrated? What is the relationship between subjective experience and the physical world?
- ► Learning and memory: Where do our memories get stored and how are they retrieved again? How can learning be improved? What is the difference between explicit and implicit memories? What molecule is responsible for synaptic tagging?
- Neuroplasticity: How plastic is the mature brain?
- Free will

- ► **Sleep:** What is the biological function of sleep? Why do we dream? What are the underlying brain mechanisms? What is its relation to anesthesia?
- ► Cognition and decisions: How and where does the brain evaluate reward value and effort (cost) to modulate behavior?
- ► Language: How is it implemented neurally? What is the basis of semantic meaning?
- ► **Diseases:** What are the neural bases (causes) of mental diseases?
- ► **Movement:** How can we move so controllably, even though the motor nerve impulses seem haphazard and unpredictable?
- ► Computational theory of mind: What are the limits of understanding thinking as a form of computing?

 3 http://blog.targethealth.com/?m=201001

Brain vs Computer

Number of units Connections/unit Total connections Wiring	1 mm³ of cortex	I mm² of a CPU I million transistors 2 2 million 0.002 km of wire
	Whole brain	Whole CPU
Weight	1.3 kg	~0.4kg
Power	20 W	27 W
Units	10 ¹¹ neurons	10 ⁸ transistors
connections	I x 10 ¹⁵	2 × 109
wiring	8 million km of axons	2 km of wire

Why are neurons special?

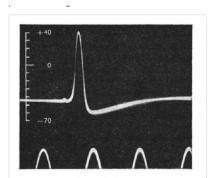


Fig.1: The action potential of squid giant axon recorded by Hodgkin and Huxley.

(Credit: Hodgkin, Alan L., and Andrew F. Huxley)

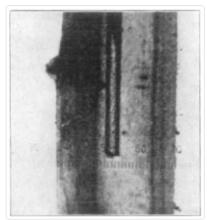
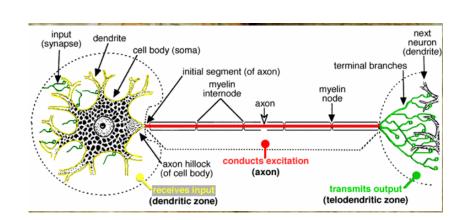
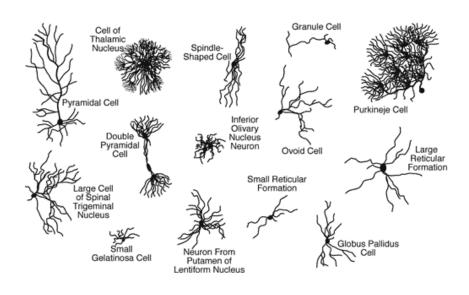




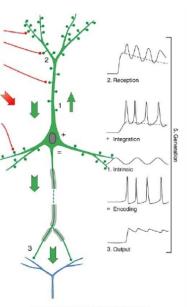
Fig.2: Photomicrograph of electrode inside giant axon.

(Credit: Hodgkin, Alan L., and Andrew F. Huxley)

Figure: Potentials recorded on the giant axon of the Atlantic squid,

 $^{^{5}}$ http://www.mind.ilstu.edu/curriculum/neurons;ntro/neurons;ntro.php

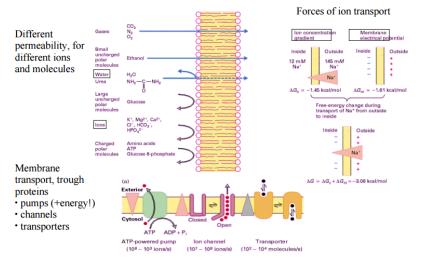
Elementary unit of the nervous system: The neuron

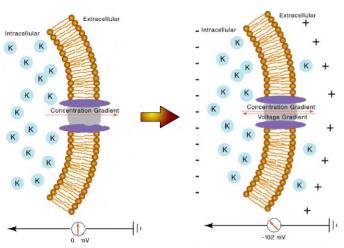

Parts of the neuron: dendrite soma nucleus axon initial segment terminal

synapse

glia myelin sheath Ranvier-nodes Function:
reception
integration
reproduction
transmission
encoding
output

communication


background speed up amplification

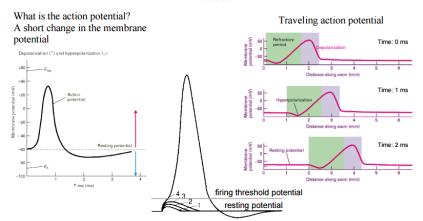

Modellek az idegrendszer-kutatásban - ELTE TTK, 2002 tavaszi félév http://www.rmki.kfki.hu/~lmate/kurz/

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Trough the cell membrane

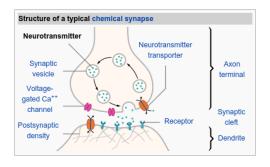
The generation of the resting potential

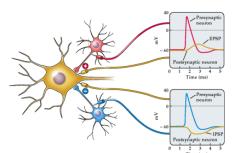
Copyright © 2002, Elsevier Science (USA). All rights reserved.


Modellek az idegrendszer-kutatásban - ELTE TTK, 2002 tavaszi félév http://www.rmki.kfki.hu/~lmate/kurz/

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Larry R Squire and others: Fundamental Neuroscience 2nd Edition., Academic Press, 2002 alapok / 12


The electric neuron: action potential


with electrode

The action potential is an 'all or none' phenomenon

Between Neurons: Synapse

Excitatory and inhibitory neurotransmitters

Glutamat

(information transmission)

Serotonin

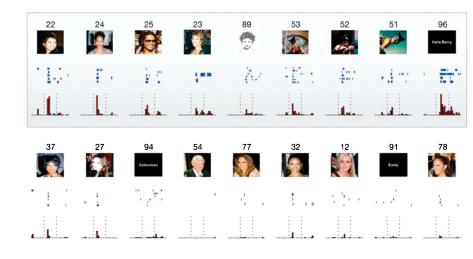
(mood, wake/sleep)

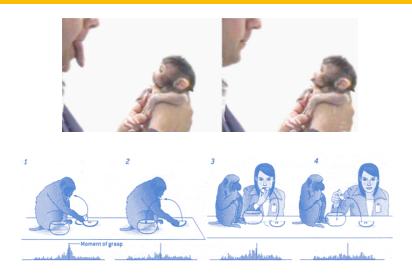
Acetlicholin

(neuromuscular junction)

Noradneraline (arousal)

(reward system, Parkinson disease, schizophrenia)


GABA-gamma aminobutyric acid (in the central neural system)


Glycine (in the periphery)

Halle Berry Neuron

Mirror Neuron

Possible roles: understanding intentions, learning facilitation, empathy... 7

7 https://en.wikipedia.org/wiki/Mirror_neuron

Grid and place cells

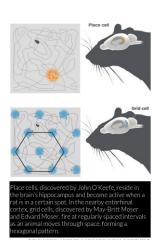


Figure : O'Keefe and the Mosers

Intracellular Recordings

- Voltage clamp
- Current clamp
- ► The patch-clamp technique
- Sharp electrode technique

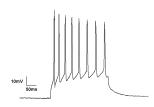


Figure: Current Clamp

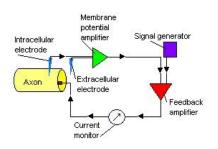


Figure : Voltage Clamp

Patch Clamp

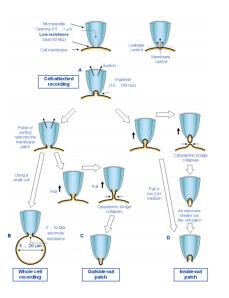
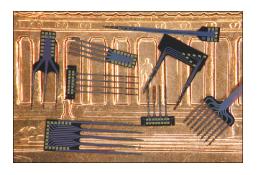
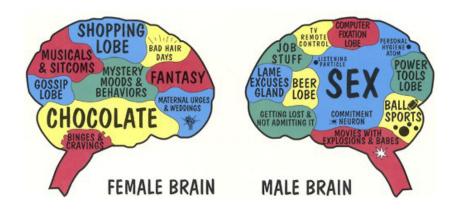
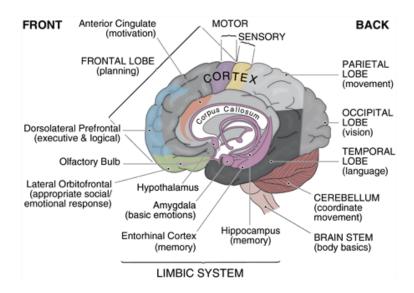
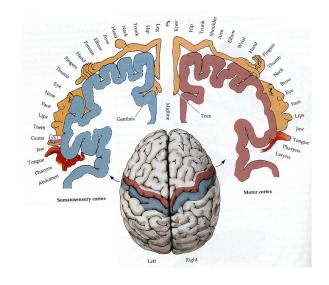


Figure : Clamping an ion channel

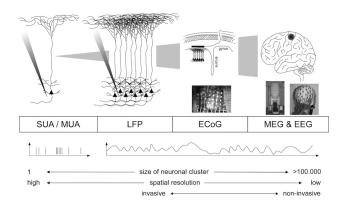
Extracellular Recordings

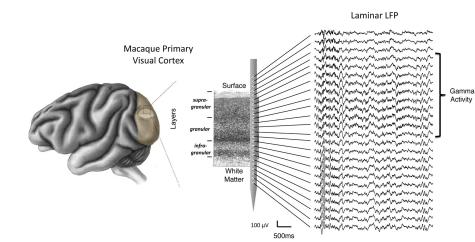
- ► Single-unit recording
- ► Field potentials (!)
- Amperometry
- ► Optical imaging (!) Link

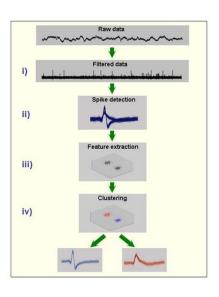




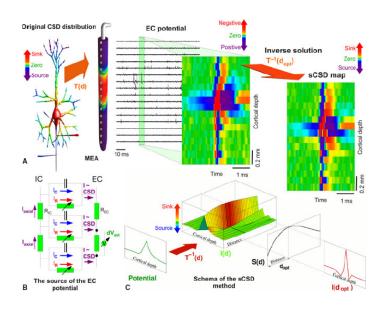

Figure : Several different probe designs shown on the back of a U.S. penny.

q


Brain Areas




Scales in recording from the brain


- SUA/MUA: "Single/Multi Unit Activity" LFP: "Local Field Potential"
- ECoG: "Electrocorticograph"

Spikes - > 300Hz

sCSD Method

Brain Rhythms

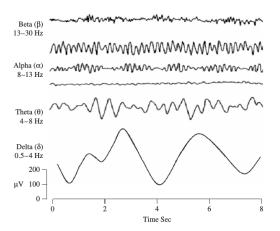
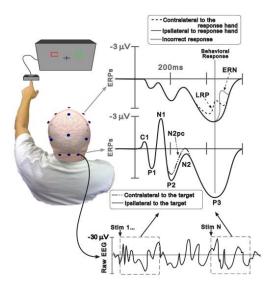
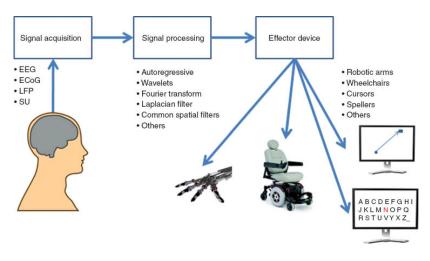



Figure: Four typical dominant brain normal rhythms, from high to low frequencies. The delta wave is observed in infants and sleeping adults, the theta wave in children and sleeping adults, the alpha wave is detected in the occipital brain region when there is no attention, and the beta wave appears frontally and parietally with low amplitude.

Event related potentials -stimulus

Respondnse to a specific sensory, cognitive or motor event.


			- carp		Tay potterine	
		(peak)	Distribution	Specificity	Process(es)	Reference
					Indexed	
Components				CNV	Anticipation,	(Brunia, van Boxtel, & Bocker, in press)
Preceding a				(O- & E-	Cognitive & Motor	
Stimulus				waves)	Preparation	
	C1	P/N50-			Sensory	(Pratt, in press)
		70			Processing	
	P1	P90-100			Sensory/Perceptual	(Pratt, in press)
					Processing	
	N1	N170-	Posterior	N170 for faces	Perceptual	(Hillyard, Vogel, & Luck, 1998; Rossion & Jacques, in press; Vogel &
		200	versus		Processing, Expert	<u>Luck, 2000</u>)
			Anterior N1		Recognition,	
					Visual	
					Discrimination	
	P2				Not Well	(Crowley & Colrain, 2004)
					Understood	
	N2	N225-			Object	(Folstein & Van Petten, 2008;
		250			Recognition,	Pritchard et al., 1991)
Components					Categorization	
Following a	N2pc		PCN		Deployment of	(<u>Luck, in press</u>)
Stimulus					Covert Attention	

Useful

Nomenclature Ordinal Latency Scalp Task/Stimulus Hypothesized

	P3	P300	P3a/P3b	P3a/P3b	Stimulus	(Polich, in press)
					Evaluation	
					Time,	
					Categorization,	
					Context (Working	
					Memory)	
					Updating,	
					Cognitive Load	
			SPCN	CDA	Maintenance in	(Perez & Vogel, in press)
					Visual Working	
					Memory	
				LRP	Response	(Smulders & Miller, in press)
					Preparation	
			Medial	ERN/Ne &	Error Processing,	(Gehring, Liu, Orr, & Carp, in press)
			Frontal	FBN	Reinforcement	
			Negativity		Learning or	
					Response	
Components					Conflict Signal	
Following a Response				Pe	Affective or	(Falkenstein et al., 2000)
reapolise					Conscious	
					Assessment of	
					Task	
					Performance	

Brain-Computer Interfaces

Monkey controlling robotic arm Link 15

 $^{^{12}} http://www.degruyter.com/view/j/revneuro.2013.24.issue-5/revneuro-2013-0032/graphic/revneuro-2013-0032_fig1.jpg$

Emotive Epoc

Neurogaming Link

Brain Imaging Technics

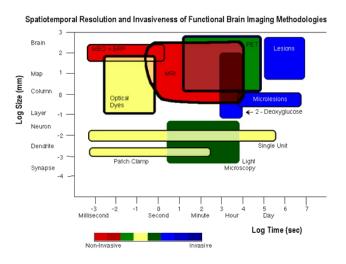
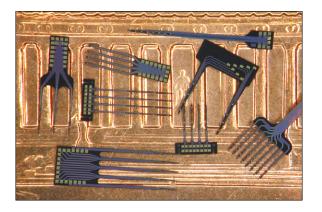


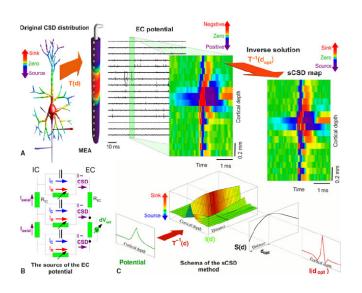
Figure : Spatial and temporal resolution of brain imaging technincs

Take home messages


?

Summary

- ► Single neuron morphology, signal propagation
- ► Single neuron imaging
- ► Neuron populations
- ► Population activity imaging


Multielectrode Probes

14

¹⁴Wise, K.D.; Sodagar, A.M.; Ying Yao; Gulari, M.N.; Perlin, G.E.; Najafi, K., "Microelectrodes, Microelectronics, and Implantable Neural Microsystems," Proceedings of the IEEE, vol.96, no.7, pp.1184,1202, July 2008

Previous approaches - sCSD method

<u>15</u>

¹⁵Somogyvári Z, Cserpán D, Ulbert I, Érdi P 2012