Nanoszerkezetek és biomarkerek a gyógyítás szolgálatában

Dékány Imre MTA r.tagja

MTA SZTE Szupramolekuláris és Nanoszerkezetű Anyagok

Kutatócsoport

SZTE AOK Orvosi Vegytani Intézet

Szeged, Dóm tér 8.

Tartalmi összefoglaló

- SPR 2D technológia alkalmazása az adszorpció kvantitativ mérésére: aminosavak és proteinek
- Hatóanyagok és toxikius molekulák megkötése funkcioanlizált Au felületeken
- Au nanorészecskék lipid membránokban
- Au plazmonikus csatolás biomolekulákkal
- Hatóanyagok nanokapszulázása

Au és Ag nanorészecskék optikai tulajdonságai

Surface plasmon resonance (SPR) ⇒ These phenomena occur when electromagnetic field interacts with conduction band electrons and induces the coherent oscillation of electrons.

Plasmon bands of spherical gold and silver nanoparticles

Az SPR mérés kísérleti elrendezése

The prism coupling (Kretschmannconfiguration) in SPR technique

Schematic representation of Kretschmann-configuration

SPR mérések és adszorpciós izotermák

The plasmonic curves of adsorption of (a) ibuprofen and (b) dopamine on gold surface at different concentrations (0.5, 1, 2, 4, 6, 10 mmol/dm³ aqueous solutions)

The adsorption isotherm of (a) ibuprofen and (b) dopamine from aqueous solution on gold surface

Adszorpció és felületi orientáció

SPR mérések: Au-cisztein- ibuprofen rendszer

The plasmonic curves of adsorption of ibuprofen on *L*-cysteine functionalized gold surface from aqueous solutions (at 0.5, 1, 2, 4, 6, 10 mmol/dm³ concentrations)

Table 1. The monolayer adsorption capacities (G_{mono}) and molecular cross section areas (a) on gold surface for different bioconjugated systems as obtained from adsorption isotherms

Molecules on gold surface	Monolayer capacity, Γ _{m.} /nmol cm ⁻² Eq. (5)	Cross sectional area, a _{m.} /nm² Eq. (6)	a _m /a _{m,calc}	Calculated cross sectional area * a _{m,calc} /nm ²	Surface orientation
L-Cysteine	0.325	0.513	1.425	0.360	parallel
L-Glutathion	0.135	1.234	1.505	0.820	parallel
Ibuprofen	0.330	0.505	0.789	0.640	parallel
Dopamine	0.860	0.194	0.359	0.540	perpendicular

Molecules on functionali sed gold surface	Adsorptio ncapacity, Γ _{m.} /nmol cm ⁻² Eq. (5)	Cross sectional area, a _{m.} /nm ² Eq. (6)	a _m /a _{m,calc}	Calculated cross section area, *a _{m,calc} /nm ²	Surface orientation
L-Cyst- Ibuprofen	0.325	0.513	0.801	0.640	parallel
L-Glut- Ibuprofen	0.180	0.926	1.447	0.640	parallel
L-Cyst- Dopamine	0.640	0.260	0.481	0.540	perpendicular
L-Glut- Dopamine	0.580	0.287	0.531	0.540	perpendicular

Arany nanoszenzorok aflatoxinok kimutatására

UV-Vis plazmonikus spektrumok

The changes of plasmon bands of aminoldextran reduced gold nanodispersion and AuSHβCD gold nanodispersions(164 mg/ml; 0.5 mM Au) registered by UV-Vis spectroscopy.

UV-Vis mérések

Attachment of Aflatoxin B1 molecules to cyclodextrin modified gold surface and βcyclodextrin on gold crystal surface (111).

The changes of plasmon bands of AuSHβCD gold nanodispersions (164 mg/ml; 0.5 mM Au) added AfB1 (in concentration range 3-33 ng/ml AfB1 and 1.7-8.3 ng/ml AfB2) to the solution are also registered by UV-Vis spectroscopy in dilute acetonitril solution.

Fig. 7. Results of SPR measurements: AfB solution (0.167-32ng/ml) to gold surface.

SH modified β CD (β CD-SH) molecules

Fig. 8. Results of SPR measurements: β CD-SH (0.5-3 mg/ml) to gold surface.

4) AuNPs with β CD-SH (β CDAuNPs)

Results of SPR measurements: AuSHβCD gold nanodispersions (0-10 ng/ml Au).

SZTE-MTA Lendület Foldamer Kutatócsoport

- 4. Lépés: Aβ oligomer 100 nM
- 5. Lépés: A β oligomer 1 μ M

A plazmonikus csatolás lehetőségei

Schematic figures of the prepared AuNP samples (a) AuNP(Trp), (b) AuNP(CysTrp), (c) AuNP(Lys) and (d) the plasmonic coupling effect

Fluoreszcencia spekrtumok Au-lizozim rendszereken

HRTEM images of the (a) AuNP(CysTrp) and (b) AuNP(Lys) samples with the ratio of $m_{Lys}/m_{Au} = 5$

XRD mérések

(A) XRD pattern of (a) bulk gold, (b) AuNP(cit), (c) AuNP(Lys) and (d) AuNP(Cys) samples (B) The SAXS curve of (a) AuNP(Lys) sample (c_{Lys} =1 mg/ml) and the calculated SAXS curve (GNOM fit)

(A) The SAXS curve of the AuNP(Lys) nanoparticles in Kratky representation (B) calculated pair distance distribution function of the AuNP(Lys) samples $m_{Lys}/m_{Au} = 5$ (C) the SAXS curves of Porod representation $m_{Au}/m_{Lys} = 1:5$ (a), 1:15 (b), 1:20 (c)

Langmuir monoréteg vizsgálatok

Surface pressure – area isotherms of the model membrane materials: DPPC and asolectin

DPPC: dipalmytoil-phosphatidylcholine pure phospholipid

asolectin: mixture of phospholipids and fatty acids

Au nanorészecskék beépülése a lipid membránba

1. Preparation of phospholipid monolayer at liquid/air interface

Schematic representation of the nanoparticles penetration into lipid membrane

- 1. Preparation of phospholipid monolayer at liquid/air interface
- 2. Compression
- 3. Penetration of functionalized nanoparticles into membrane

A monomolekulás réteg átvitele szilárd felületre

Langmuir-Blodgett method Solid supported monolayer membrane with Au NPs incorporated පපපපපපපපපපප පපපපපපපපපප

Au- cisztein beépülése monoréteges membránba

incorporation

Change in the surface pressure of the monolayer during the incorporation

Au - glutation beépülése a monoréteges memránba

incorporation

Change in the surface pressure of the monolayer during the incorporation

Biofunkcionalizált Au NR beépülése a DPPC membránba

Penetration of the biofunctionalized Au NPs into the different model membranes at different compactnesses (eg. initial surface pressures)

Biofunkcionalizált Au NR és a phospholipid monoréteg

TEM image of the 10 nm spherical Au NPs and UV-Vis absorbance spectra of different sized, bioconjugated Au NPs.

TEM image of the Au nanorods, UV-Vis absorbance spectra of the aqueous dispersions of the Au NRs.

Maximum insertion pressure (MIP) and synergy values obtained for the different sized, shaped, surface functionalized nanoparticles with DPPC membrane.

ZnO-Au plazmonikus csatolás

Au és ZnO nanohibrid filmek

Au-ZnO nanoszerkezetek fotolumineszcenciája

Mag-héj kompozitok

BSA maggal előállított mag-héj kompozitok

BSA/IBU/PSS/Chit TEM képe

BSA, BSA/IBU, BSA/IBU/PSS valamint a BSA/IBU/PSS/Chit infravörös spektruma, valamint a másodlagos szerkezet változása az amid I sáv eltolódása alapján

> BSA/IBU/PSS/Chit fénymikroszkópos képe

Hatóanyag leadás vizsgálata

IBUPROFEN meghatározása:

BSA mag jelenlétében: 264 nm, 272 nm

Szilika mag jelenlétében: 222 nm, 264 nm, 272 nm

<u>Mérés:</u> Foszfát pufferben (PBS, pH=7,4)

HANSON cellavertikális diffúzió cella

Két kamrából áll: donor and receiving (fogadó) chambers

Membrán :Dialysis tubing cellulose membrane

Cella térfogata: 4ml, de a pontos térfogatot meg kell határozni

Keverés sebességet állandó értéken kell tartani a mérés során.

Elsőrendű Sebességi Modell a kioldódás mechanizmusára

Mezopórusos szilika maggal előállított mag-héj kompozitok

SIL/IBU/PEI TEM képe

A szilika, valamint a mag-héj kompozitok infravörös spektruma

A szilanol csoportok, valamint az ibuprofen karboxil csoportjai közt létrejött Hkötések a szilika pórusaiban

Elsőrendű Sebességi Modell a kioldódás mechanizmusára

"Hollow spheres" előállítása biokompatibilis poliszacharidokból

•kitozán, alginát - biokompatibilis, biodegradábilis,

-alkalmazhatóságát széleskörűen vizsgálják hatóanyagok és vakcinák szállítására nyálkahártyán keresztül

•CaCO₃ -nem toxikus,

-mérete és morfológiája szabályozható,

- -könnyen eltávolítható,
- •CMC -összekapcsolódik a Ca⁺ ionokkal, ezáltal szabályozza a képződő CaCO₃ részecskék méretét,
 -úgy viselkedik mint egy "ragasztó", összefogja a nanorészecskéket egymással és gömb alakú mikrorészecskéket formál.

(a) Kitozán, (b) Na-alginát és (c) karboximetil-cellulóz (CMC) szerkezeti képlete

Kitozán alginát "hollow spheres" előállítása

0.05% kitozán (0.5M NaCl, pH=5) CaCO₃(CMC) + n ×

0.1% alginát(0.5M NaCl, pH=5)

CaCO₃(CMC)-(chit-alg)₃ (Fénymikroszkópos felvétel)

CaCO₃(CMC) templát (Fénymikroszkópos felvétel)

CaCO₃(CMC)-(chit-alg)₃ (TEM felvétel)

CaCO₃(CMC)/(Chit-Alg)₃ – Rhodamin B fénymikroszkópos felvétele + 1% Glutáraldehid + 0.2M EDTA

(chit-alg)₃ hollow spheres fénymikroszkópos felvétele

Munkatársak

MTA-SZTE Szupramolekuláris és Nanoszerkezetű Anyagok Kutatócsoport

Juhászné Dr. Csapó Edit

Dr. Benkő Mária

Dr. Majzik Andrea

Garabné Ábrahám Nóra

Juhász Ádám

Dr. Janovák László

Tallóssy Szabolcs

Szalmáné Ménesi Judit

Veres Ágnes

Dr. Sebők Dániel

Varga Noémi

Köszönöm a megtisztelő figyelemet!

