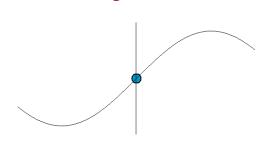

BIOPHYSIK

11. Vorlesung


Physikalische Grundlagen der medizinischen Anwendung des Ultraschalls, Sonnographie

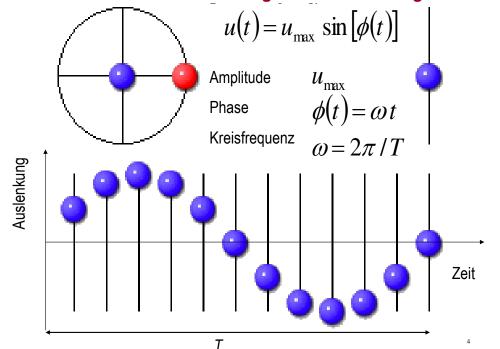
Wiederholung von 6. Vorlesung 5.

periodische Bewegungen: Schwingung und Welle

Schwingungsbewegung, "nur" zeitliche Periodizität

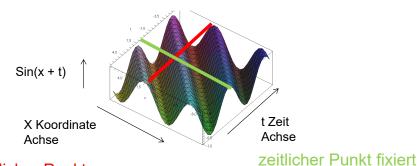
- zeitliche Periode, Periodenzeit, Schwingungsdauer, T
- Kehrwert: 1/*T*=*f*, Frequenz

$$u(t) = u_{\text{max}} \sin \left[\phi(t)\right]$$

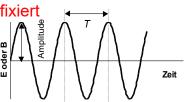


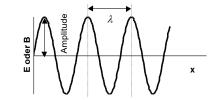
Frage in einer Kneipe: Wieviel wein befindet sich in dem Fass? Ist es bis zum rand voll, halb gefüllt oder fast leer? Medizinische Frage: Wieviel Luft befindet sich in der Lunge?

Josef Leopold Auenbrugger (Mediziner, Sohn eines Gastwirtes, Graz, 1761): **Perkussion:** Untersuchung von Luftgehalt der hohlen Organe



Wiederholung von 6. Vorlesung

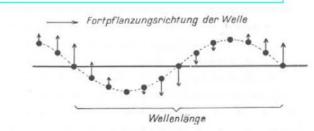



Zeitliche und räumliche Periodizität

Eine Sin(x + t) Welle, eine Funktion von 2 Variablen —— eine Oberfläche

räumlicher Punkt

Einleitung


Momentbild einer fortschreitenden

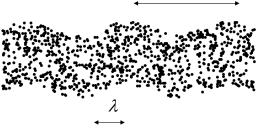
Transversalwelle

Querwellen (transversale Wellen):

Wellenberge und Wellentäler laufen über das Trägermedium. Die Schwingungsrichtung der einzelnen Oszillatoren steht senkrecht zur Ausbreitungsrichtung der Welle.

Wiederholung von 6. Vorlesung

Wellenbewegung


Ausbreitung eines Schwingungszustandes in einem schwingungsfähigen Medium. Räumlich und zeitlich periodische Vorgang

-

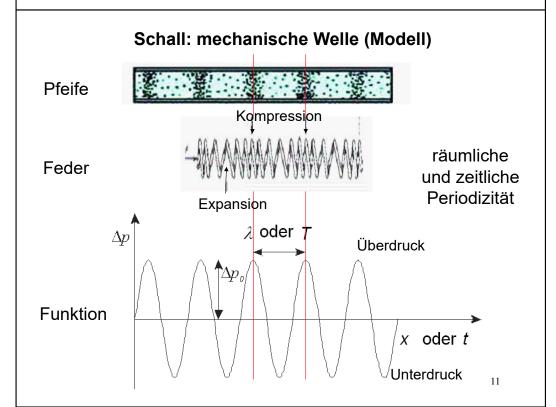
λ

transversale Welle:

Schwingungsrichtung sehnkrecht zur Ausbreitungsrichtung EM Welle

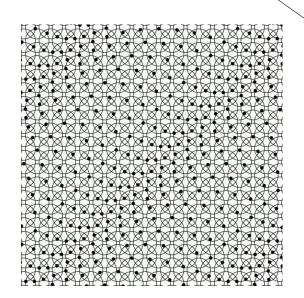
longitudinale Welle:

Schwingungsrichtung parallel zur Ausbreitungsrichtung (Druckwellen)


U

Beispiel Animation für eine transversale Welle

Ausbreitungsrichtung



Einleitung Längswellen (longitudinale Wellen): Verdichtungen und Verdünnungen (d.h. Druckschwankungen gegenüber dem Normaldruck) laufen über das Trägermedium. Die Schwingungsrichtung der einzelnen Oszillatoren ist parallel zur Ausbreitungsrichtung der Welle. Fortpflanzungsrichtung der Welle Wallenlänge Momentbild einer fortschreitenden Longitudinalwelle

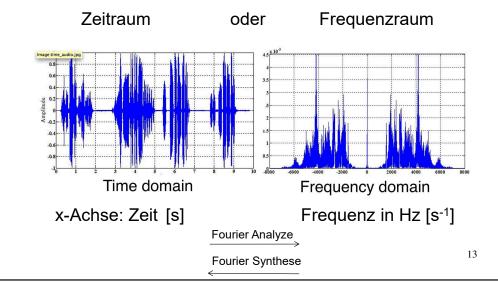
Beispiel Animation für eine longitudinale Welle

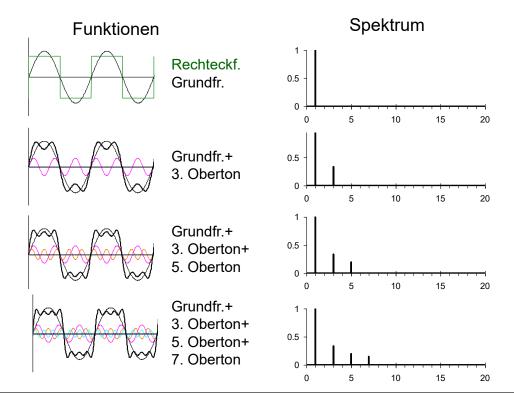
Ausbreitungsrichtung

10

Longitudinalwelle (in der Flüssigkeit und in Gase nur diese)

Transversalwelle

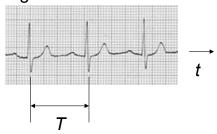

hydrostatischer Druckveränderung, Druck Schalldruck


$$p_{\text{gesamt}} = p_{\text{hydrostat}} + \Delta p$$

Druck DC + AC Amplitude Phase
$$\Delta p(t,x) = \Delta p_{\text{max}} \sin \left[2\pi \left(\frac{t}{T} - \frac{x}{\lambda} \right) \right]$$
$$c \cdot T = \lambda, \quad c = f \cdot \lambda$$

Über Signalverarbeitung

Es gibt zwei äquivalente Darstellung von Signalen/Tonen:



Über Signalverarbeitung

Fourier-Theorem für **periodische** Funktionen (Signale): Jede periodische Funktion kann durch eine Summe von Sinus- (harmonischen) Funktionen (Grundfrequenz + Obertöne) hergestellt werden.

periodische Funktion: es gibt eine Periode(nzeit), *T*

14

1/T=f, wo f ist die Frequenz

f ist die Frequenz der Sinusfunktion: **Grundfrequenz**

(Grundschwingung)

Funktionen

2f, 3f, 4f, ...: **Obertöne** (Oberschwingungen)

Grundfr.+

3. Oberton+

9. Oberton

Grundfr.+

3. Oberton+

11. Oberton

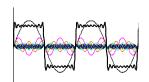
Grundfr.+

+...+

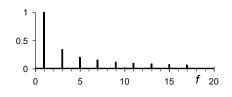
3. Oberton+

13. Oberton

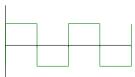
Grundfr.+


3. Oberton+

15. Oberton

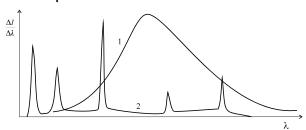

(Linienspektrum)

Funktionen

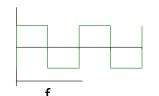

Spektrum

Grundfr.+ 3. Oberton+ +...+ 17. Oberton

Grundfr.+ 3. Oberton+



17


Fourier-Theorem für aperiodische Funktionen (Signale): Jede Funktion kann durch eine Summe von Sinus-(harmonischen) Funktionen hergestellt werden. Das Spektrum: kontinuierliches Spektrum.

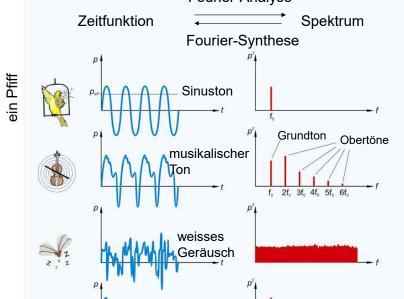
vgl. Emissionsspektren

Ergänzungsmatterial

Die Formel von Rechteck Funktion

$$egin{aligned} x_{ ext{square}}(t) &= rac{4}{\pi} \sum_{k=1}^{\infty} rac{\sin{(2\pi(2k-1)ft)}}{2k-1} \ &= rac{4}{\pi} \left(\sin(2\pi ft) + rac{1}{3} \sin(6\pi ft) + rac{1}{5} \sin(10\pi ft) + \cdots
ight) \end{aligned}$$

Saegezahn


$$x_{
m sawtooth}(t) = rac{A}{2} - rac{A}{\pi} \sum_{k=1}^{\infty} (-1)^k rac{\sin(2\pi k f t)}{k}$$

Dreieck

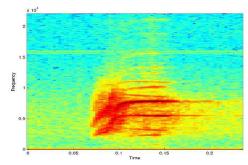
$$egin{align*} x_{
m triangle}(t) &= rac{8}{\pi^2} \sum_{k=0}^{\infty} (-1)^k rac{\sin(2\pi(2k+1)ft)}{(2k+1)^2} \ &= rac{8}{\pi^2} \left(\sin(2\pi ft) - rac{1}{9} \sin(6\pi ft) + rac{1}{25} \sin(10\pi ft) - \cdots
ight) \end{aligned}$$

Fourier-Analyse

Dröhnen

diskrete Spektren

Banden-


19

Schöne Prüfungsfrage.

Ein reeles Beispiel das Rufsignal von Meise

(Vogelsang ist kein Pfiff!)

Kohlmeise (Parus major)

Figure 4: Call sound of Great Tit (Parus major). Some elements of the sound are not in

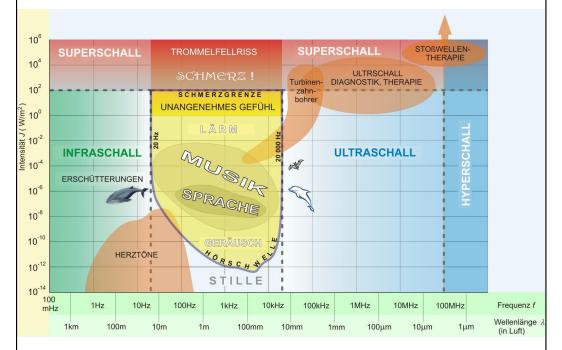
Acoustics and physical models of bird sounds Seppo Fagerlund HUT, Laboratory of Acoustics and Audio Signal Processing

21

Ergänzungsmatterial

Menschliche Wirkung des Infraschalls:

https://de.wikipedia.org/wiki/Infraschall "Auch wenn Menschen Infraschall kaum ohne Hilfsmittel hören können, ist er bei hohen Schalldrücken wahrnehmbar, eines unangenehmen Empfindens, Beklemmung, Unbehagen, extremer Traurigkeit, Reizbarkeit verbunden mit Übelkeit oder Furcht, einem Kalt den Rücken runterlaufen"


Natürliche Infraschallquellen:

bei Erdbeben, der Donner bei Gewittern, Vulkaneruptionen, Meteoritenfall, Polarlichtern oder durch hohen Seegang entstehen, können sich in der Luft über große Entfernungen bis zu mehreren tausend Kilometern ausbreiten.

Künstliche Infraschallquellen:

Raketenstart, Orgelpfeilen, Überschallknall von Flugzeugen, Windkraftanlagen (aber minimal)

Intensität und Frequenzbereiche der mechanischen Welle

Die Rolle des elastischen Mediums

$$\kappa = \frac{-\Delta V/V}{\Delta p}$$

Kompressibilität,

relative Volumenverminderung

geteilt durch Druck

$$c = \frac{1}{\sqrt{\rho\kappa}}$$

Fortpflanzungsgeschwindigkeit

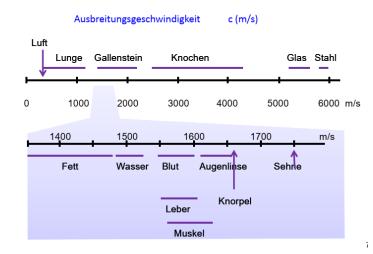
$$Z = \frac{p}{v} = \frac{p_{\text{max}}}{v_{\text{max}}}$$

akustische Impedanz, Wellenwiderstand

(Definition)

$$Z_{\text{elektrische}} = \frac{1}{2}$$

$$Z = c\rho = \sqrt{\frac{\rho}{\kappa}}$$


akustische Impedanz (nützliche Form)

Fortpflanzungsgeschwindigkeit des Ultraschalls in verschiedenen Medien (Organen, Geweben)

In Diamant 20 km/s

25

Intensität des Ultraschalls

$$J = \frac{1}{2Z} \Delta p_{\text{max}}^2$$
 Intensität = Energie-Strom Stärke

$$J = \frac{1}{Z} \Delta p_{\text{eff}}^2$$
 effektiver Wert:
 $\Delta p_{\text{eff}}^2 = \Delta p_{\text{max}}^2/2$

$$P_{\rm el} = \frac{1}{Z_{\rm el}} U_{\rm eff}^2$$
 elektrische Analogie

Fortpflanzungsgeschwindigkeit des Ultraschalls und der Wellenwiderstand in verschiedenen Medien

ρ Dichte [kg/m3]	κ Kompressibilität [1/GPa]	c Geschwindigkeit [m/s]	Z akustische Impedanz [kg/(m²s]	α/(f x) spezifische Dämpfung [dB/(cm MHz)]
1,3	7650	331	0,00043 · 10 ⁶	1,2
400	5,92	650	0,26 · 10 ⁶	-
925	0,51	1470	1,42 · 10 ⁶	0,63
998	0,45	1492	1,49 · 10 ⁶	0,0022
1025	0,42	1530	1,56 · 10 ⁶	0,85
1060	0,40	1540	1,63 · 10 ⁶	0,3-1,7
1060	0,38	1560	1,65 · 106	0,94
1040	0,40	1560	1,62 · 10 ⁶	1,0
1060	0,39	1566	1,64 · 10 ⁶	-
1060	0,40	1568	1,63 · 10 ⁶	1,3-3,3
1060	0,38	1570	1,61-1,66 · 10 ⁶	0,18
1140	0,34	1620	1,84 · 10 ⁶	2,0
970	0,36	1700	1,65 · 10 ⁶	-
1380	0,08	3000	2,2-2,9 · 10 ⁶	-
1700	0,05	3600	6,12 · 10 ⁶	20,0
2700	0,009	6400	17,28 · 10 ⁶	-
-	-	-	6,5 · 10 ⁶	-
	1,3 400 925 998 1025 1060 1060 1060 1140 970 1380 1700 2700	[kg/m3] [1/GPa] 1,3 7650 400 5,92 925 0,51 998 0,45 1025 0,42 1060 0,40 1060 0,38 1040 0,40 1060 0,39 1060 0,40 1060 0,38 1140 0,34 970 0,36 1380 0,08 1700 0,05 2700 0,009	[kg/m3] [1/GPa] [m/s] 1,3 7650 331 400 5,92 650 925 0,51 1470 998 0,45 1492 1025 0,42 1530 1060 0,40 1540 1060 0,38 1560 1040 0,40 1560 1060 0,39 1566 1060 0,40 1568 1060 0,38 1570 1140 0,34 1620 970 0,36 1700 1380 0,08 3000 1700 0,05 3600 2700 0,009 6400	[kg/m3] [1/GPa] [m/s] [kg/(m² s] 1,3 7650 331 0,00043 · 106 400 5,92 650 0,26 · 106 925 0,51 1470 1,42 · 105 998 0,45 1492 1,49 · 106 1025 0,42 1530 1,56 · 106 1060 0,40 1540 1,63 · 106 1060 0,38 1560 1,65 · 106 1040 0,40 1560 1,62 · 105 1060 0,39 1566 1,64 · 106 1060 0,40 1568 1,63 · 106 1060 0,40 1568 1,63 · 106 1060 0,38 1570 1,61-1,66 · 106 1140 0,34 1620 1,84 · 106 970 0,36 1700 1,65 · 106 1380 0,08 3000 2,2-2,9 · 106 1700 0,05 3600 6,12 · 106 2700 0,009 6400 17,28 · 106

Tabelle II.4.

11

Intensität und Gewebeschädigung

Die Schallintensität bei Diagnostik $\bar{I} = 0.01 \text{ W/cm}^2 = 10 \text{ mW/cm}^2 < 100 \text{ mW/cm}^2$

Druckschwankung in Muskel: effektiv ~0,13fache, maximum ~0,2fache des Atmospherendruckes

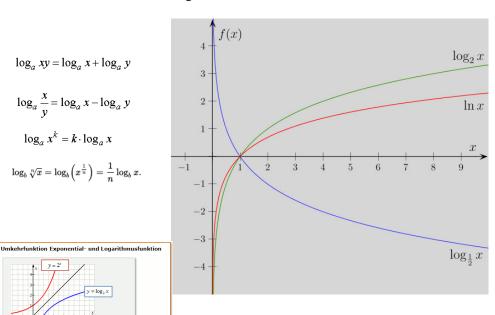
Die Schallintensität bei der Therapie $\bar{I} = 2,5 \text{ W/cm}^2$

Druckschwankung in Muskel:
effektiv ~2fache,
maximum ~3fache des Atmospherendruckes

Vergleich: Hörshwelle $J_0 = 10^{-12} \text{ W/m}^2$ Schmerzgrenze $J = 10 \text{ W/m}^2$ Grösse (und Einheit), die für die Vergleichung der Maße der Signale verwendet wird:

Bel-Zahl: *n* (nach A. Bell)

Einheit von n: Bel (B)


$$n = \lg \frac{P_2}{P_1} B = \lg \frac{I_2}{I_1} B = \lg \frac{E_2}{E_1} B$$

Zehnerlogaritmus des Quotienten von zwei Leistungen (oder Intensitäten, oder Energien)

29

31

Die Logaritmusfunktion

Vgl. Bogenmass

 $\Theta = \frac{\text{Bogenlänge}}{\text{Radius}}$

 $\left[\Theta\right] = \frac{m}{m} = \text{rad} = 1$

Radius Bogenlänge Vgl. pH (power of Hydrogen)

 $pH = -lg \frac{\left[H^{+}\right]}{1M}$

zB.: $[H^+] = 10^{-7} M$ $\Rightarrow pH = -lg10^{-7} = -1 \cdot (-7) = 7$

(10d = 1)

30

Anstatt der Bel-Zahl die benützte Grösse: **Dezibel-Zahl** oder Pegel

$$n = 10 \cdot \lg \frac{P_2}{P_1} dB$$

charakteristische Grösse: Leistung (o. Intensität/ Energie), technische Grösse: (elektrische) Spannung

Zusammenhang zwischen der Leistung und der Spannung:

$$P = U \cdot I = U^2 / R$$
 (Ohm: $U = R \cdot I$)

Dezibel Zahl mit Spannungsverhältnis

$$\boxed{n = 10 \cdot \lg \frac{P_2}{P_1} dB = 10 \cdot \lg \frac{U_2^2 / R_2}{U_1^2 / R_1} dB = 10 \cdot \lg \frac{U_2^2}{U_1^2} dB}$$

$$= 10 \cdot \lg \frac{U_2^2}{U_1^2} dB = 20 \cdot \lg \frac{U_2}{U_1} dB$$

$\frac{P_2}{P_1} = 2 \Leftrightarrow 10 \lg 2 dB =$
$= 10 \cdot 0.3 dB = 3 dB$

$$\frac{P_2}{P_1} = \frac{1}{2} \Leftrightarrow -3dB$$

vgl. Halbwerts-Zeit/Dicke

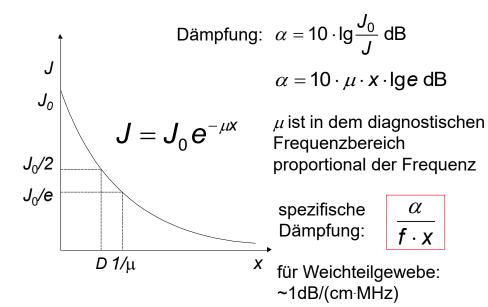
$$\frac{P_2}{P_1} = 10 \Leftrightarrow 10 \lg 10 dB =$$
$$= 10 \cdot 1dB = 10dB$$

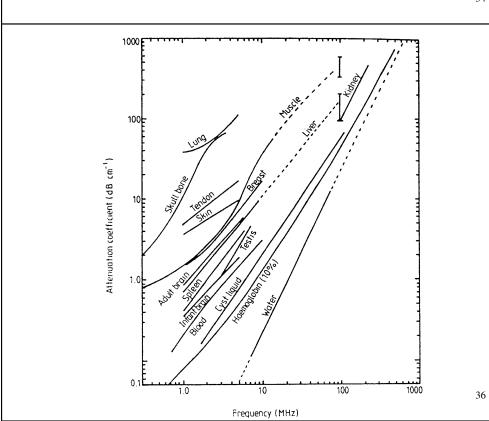
$$\frac{P_2}{P_1} = 100 \Leftrightarrow 10 \lg 100 dB =$$
$$= 10 \cdot 2 dB = 20 dB$$

U_2/U_1	P_2/P_1	dB
1,414	2	3
2	4	6
	8	9
3,16	10	10
	20	13
10	100	20
	1000=10 ³	30
100=10 ²	10000=10 ⁴	40
1000=10 ³	10 ⁶	60
		•

33

Die Schwächung

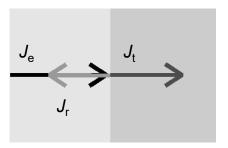

Schwächungsgesetz $J = J_o \cdot e^{-\mu x}$


$$\mu = \frac{\ln 2}{D} = \frac{0,693}{D}$$

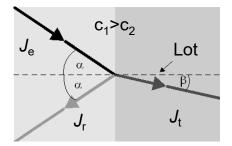
$$\mu = \mu(f)$$

Stoff	D in cm bei f=0,9 MHz	D in cm bei f=2,5 MHz
Fett	7,7	2,8
Knochenmark	7,7	2,8
Muskel	2,7	1,0
Gehirn	3,6	1,3
Knochen	0,2	0,1
Wasser (distilliert)	500	180

Energieverlust während der Fortpflanzung (Absorption)



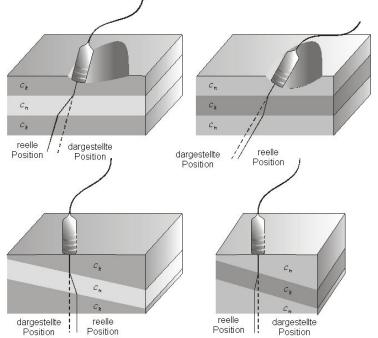
Erscheinungen an der Grenzflächen


senkrechter Einfall

schräger Einfall

$$J_{\text{einfallende}} = J_{\text{t}} + J_{\text{reflektierte}}$$

Reflexion und Transmission


$$\frac{\sin\alpha}{\sin\beta} = \frac{c_1}{c_2}$$

Snellius-Descartes

Wiederholung von Vorlesung 5/7

39

Schräger Einfall bzw. schräge Grenzfläche

Reflexion (für senkrechten Einfall)

Reflexionskoeffizient:

$$R = \frac{J_{\text{reflektierte}}}{J_{\text{einfallende}}} = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2$$

Grenzfläche	R
Muskel/Blut	0.0009
Fett/Leber	0.006
Fett/Muskel	0.01
Knochen/Muskel	0.41
Knochen/Fett	0.48
Weichteilgewebe/Luft	0.99

Muscle

-30-

Fluid

Distance (cm)

"totale" Reflexion:

$$Z_1 << Z_2, R \approx 1$$

optimale Kopplung:

$$Z_{\text{Kopplungsm}} \approx \sqrt{Z_{\text{Quelle}} Z_{\text{Haut}}}$$

38

Absorption und reflexion

je später/tiefer kommt die Reflexion zurück, desto schwacher ist die Reflektierte Intensität

reflexionszeitabhängige/ bildtiefenabhängige elektronische Verstärkung

TGC: time gain compensation

DGC: depth gain compensation (Tiefenausgleich)

		Z1	Z2	R	R	10lgR	Т	Т	10lgT
		g/(cm2*s)	g/(cm2*s)		%	dB		%	dB
Muskel	Fett	1.63E+05	1.42E+05	0.004741	0.474066	-23.24	0.995	99.53	-0.021

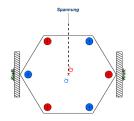
Muscle Bone

Erzeugung des Ultraschalls

- In zwei Schritten:

- a. Erzeugung sinusförmiger elektrischer Spannung mit hoher Frequenz f > 20 kHz
 - Sinusoszillator
- b. Umwandlung der elektrische Schwingung in mechanische Schwingung

- Wandler (Transducer)


Piezoelektrischer Effekt

Erzeugung des Ultraschalls. Erzeugung von US: reziproker ~ Detektierung von US: direkter ~

Hochtöner

elektrische Signalquelle (Sinusoszillator)+ Wandler а (Piezoelektrischer Kristall)

(a) Die Schwerpunkte der negativen und positiven Ladungen zusammenfallen.

(b) und (c) Wegen des Druckes die Schwerpunkte wird getrennt, entsteht eine

Spannung.

zu Hause: Gasanzünder

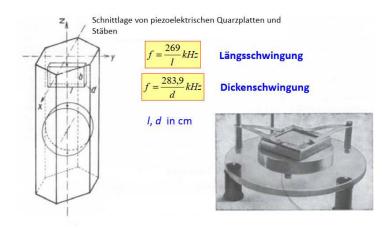
С

Erzeugung des Ultraschalls. Piezoelektrischer Effekt

Wandler

Brüder Curie, 1881:

Bei Kristallen mit polaren Achsen (Turmalin, Quarz) treten durch Druck oder Dehnung in bestimmten Richtungen elektrische Ladungen an den Enden der polaren Achsen auf.

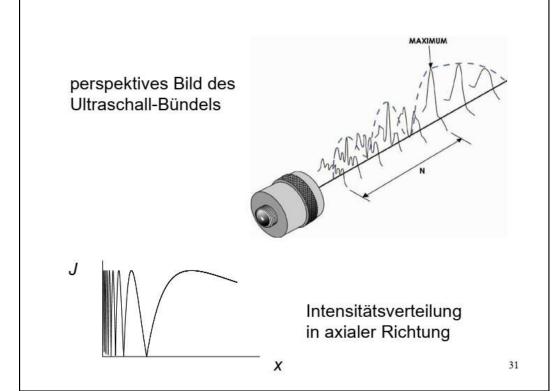

> mechanische Schwingung ightarrow elektrische Schwingung piezoelektrischer Effekt

> elektrische Schwingung → mechanische Schwingung reziproker piezoelektrischer Effekt

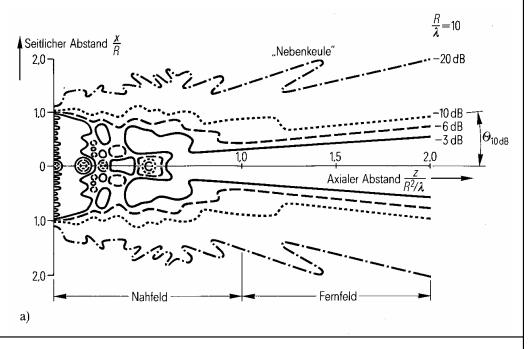
Erzeugung des Ultraschalls. Piezoelektrischer Effekt

Wandler: Schwingquarz

elektrische Schwingung → mechanische Schwingung reziproker piezoelektrischer Effekt



Aufbau des Ultraschall-Wandlers geerdete Elektrode Piezokristall Dämpfungs-Kopplungselement einheit Richtung des aktive $\lambda/4$ λ/2 Elektrode ausgesendeten Ultraschalles grosse kleine Ζ Ζ


45

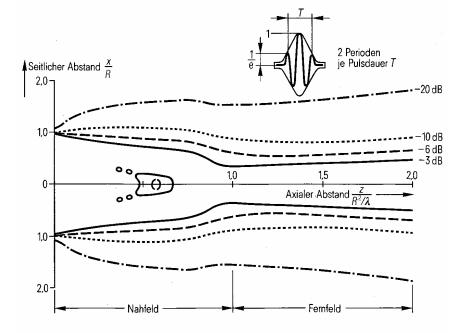
Bündelform des Ultraschalls (vereinfachtes Bild) D All Nahfeld Fernfeld (Fresnel-Bereich) (Fraunhofer-Bereich)

Charakteristiken der Ultraschall-Impulse Transducer/Umwandler: Sender und Empfänger dieselbe Einheit zeitliche Trennung – anstatt der kontinuierlichen Welle nur **Impulse** Wiederholungszeit Fortpflanzungsder Impulse geschwindigkeit von US Skin Pulse Repetition Time: 1 ms Sound Velocity 1540 m/s Pulse Repetition Rate: (in soft tissue) 1000/second Impulswiederholungsfrequenz Transducer 0.8-15 MHz sound frequency pulse duration Ultraschallfrequenz Impulsdauer

Konturlinien gleicher Druckamplituden für einen ebenen, runden Wandler bei kontinuierlicher Anregung

Auflösungsgrenze: die kleinste auflösbare Entfernung **Auflösungsvermögen**: Kehrwert der Auflösungsgrenze

Die axiale Auflösungsgrenze (in Richtung der Strahlachse) hängt von der Impulslänge.

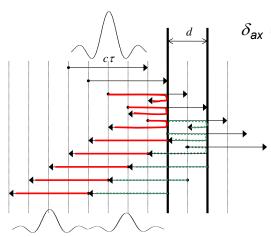

Die Impulslänge ist umgekehrt proportional zur Frequenz.

Die laterale Auflösungsgrenze (in Richtung senkrecht zur Strahlachse) hängt von dem Durchmesser des Ultraschallbündels.

Übliche Werte

Frequenz (MHz):	2	15
Wellenlänge (in Muskulatur) (mm):	0.78	0.1
Eindringtiefe (einfach) (cm):	12	1.6
laterale Auflösungsgrenze (mm):	3.0	0.4
axiale Auflösungsgrenze (mm):	8.0	0.15

Konturlinien gleicher Druckamplituden für einen ebenen, runden Wandler bei pulsförmiger Anregung

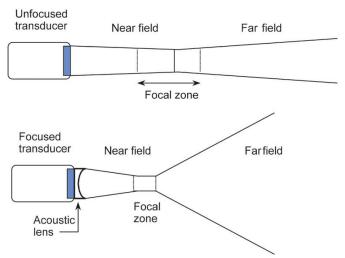

Frequenzabhängigkeit der Ultraschallreichweite

Frequenz fin Mhz	Eindringtiefe <i>x</i> in cm	Untersuchungsgebiet
1	50	
2–3,5	25–15	Fetus, Leber, Herz, Veterinärmedizin (Großtiere)
3,5	15	Niere, Veterinärmedizin (große Hunde)
5	10	Gehirn, Veterinärmedizin (mittelgroße Hunde)
7,5	7	Schilddrüse, Brustdrüse, oberflächliche Gefäße, Veterinärmedizin (kleine Hunde, Katzen)
8–9	6	Prostata (endoskopisch)
10	5	
11–12	4–3	Pankreas (intraoperativ)
7,5–15	7–2	Brustdiagnostik
20	1,2	
21–24	1,1–0,9	Auge, Haut
40	0,6	Haut, Gefäße

Axiale Auflösungsgrenze

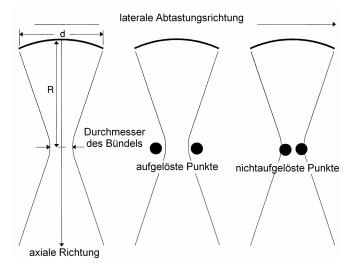
 τ : Impulsdauer

 $c_1 \tau \cong c_2 \tau = c \tau$ Impulslänge


$$\delta_{ax} = d = \frac{c\tau}{2}$$
 Auflösungsgrenze

Die Auflösungsgrenze ist gleich der Hälfte der Impulslänge, weil es keine Überlappung der Echosignale (roter Pfeil und grüner Pfeil) gibt.

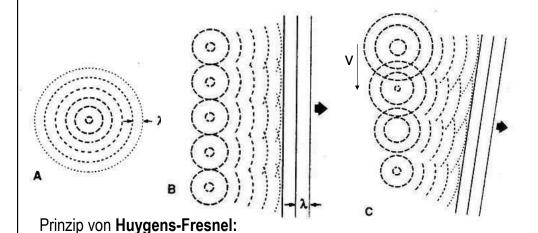
$$\tau \sim T = \frac{1}{f}$$


53

Fokussierung

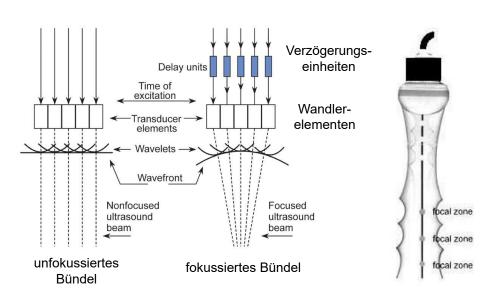
Bei der Fokussierung vergrössert sich die Divergenz des Bündels im Fernfeld und die **Schärfentiefe** verschlechtet.

Laterale Auflösungsgrenze

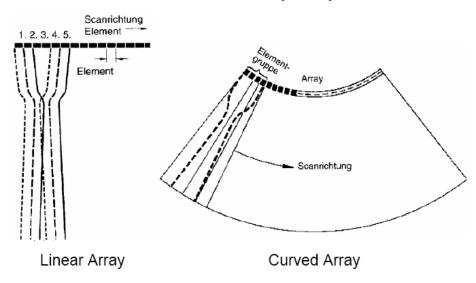


$$\delta_{\text{lat}} \sim \frac{R}{d} \cdot \lambda = f \# \cdot \lambda$$

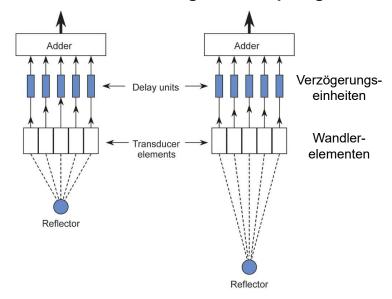
f# = f-Zahl: Verhältnis derBrennweite und desDurchmessers von Wandler 54


Huygens Prinzip

Wiederholung von Vorlesung 6

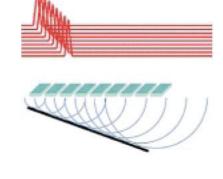

Jeder Punkt einer Wellenfläche ist der Ausgangspunkt einer Elementarwelle. Die äussere Einhüllende solcher Elementarwellen bildet wieder eine neue Wellenfläche der vom primären Erregungszentrum ausgehenden Welle.

Elektronische Fokussierung beim Senden

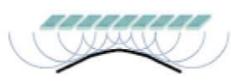


57

Elektronische Abtastprinzipien

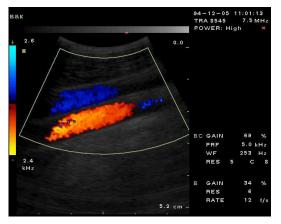


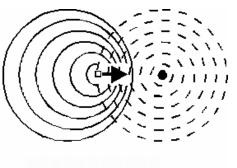
Elektronische Fokussierung beim Empfängen


58

Abtastung und Fokussierung

zeitverzögerte Anregung und Wellenfront für Winkeleinschallung (angle beam scanning)

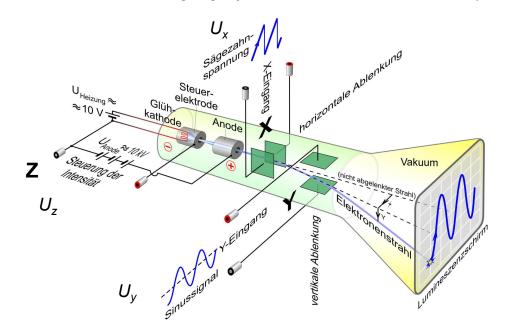


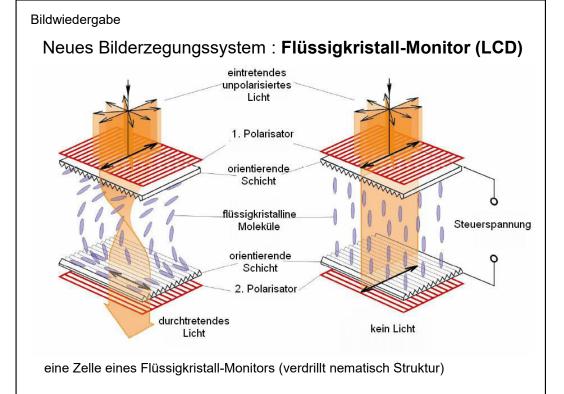

zeitverzögerte Anregung und Wellenfront für Fokussierung

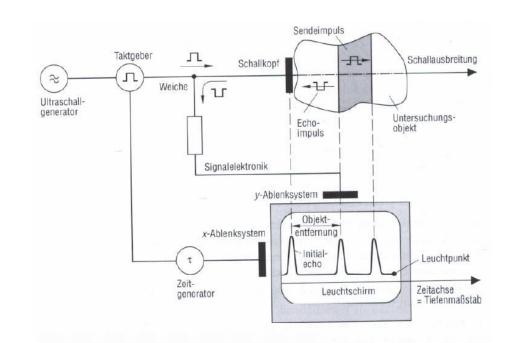

Fransducer	Bandwidth	Applications	Maximum Depth	Modes	Biopsy Kit Available?
	7L3 Linear Array	Presets: Arterial Breast Carotid Dialysis Access Musculoskeletal Testes Thyroid Vascular Access Venous	13cm	B-Mode M-Mode Power Doppler Directional Power Doppler Color Doppler Pulsed Wave Doppler Triplex	Yes
	12L5 Linear Array	Presets: Arterial Breast Carotid Dialysis Access Musculoskeletal Testes Thyroid Vascular Access Venous	8cm	B-Mode M-Mode Power Doppler Directional Power Doppler Color Doppler Pulsed Wave Doppler Triplex	Yes
	12HL7 Linear Array	Intraoperative	6cm	B-Mode M-Mode Power Doppler Directional Power Doppler Color Doppler Pulsed Wave Doppler Triplex	-

61

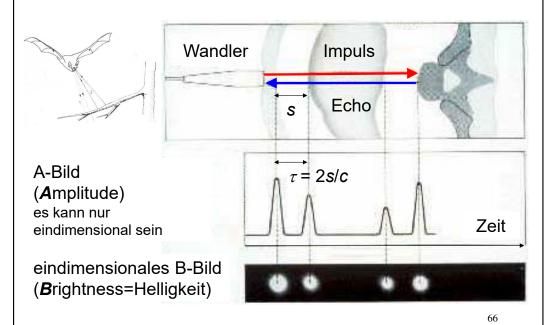
Sonographie, A-, B- und M-Bilder. Doppler-Methode. US-Therapie

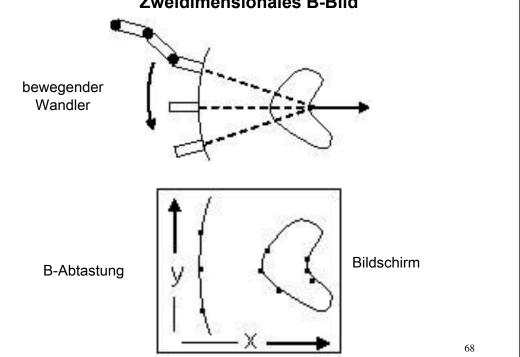


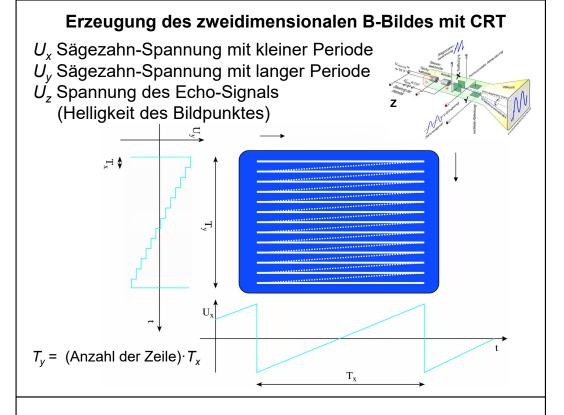



Bildwiedergabe

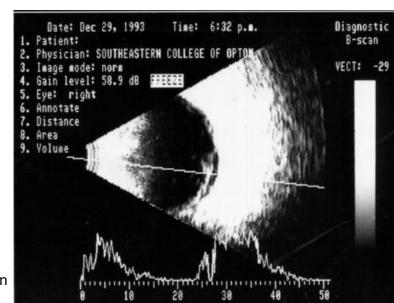
Herkömliches Bilderzegungssystem: Kathodenstrahlröhre (CRT)

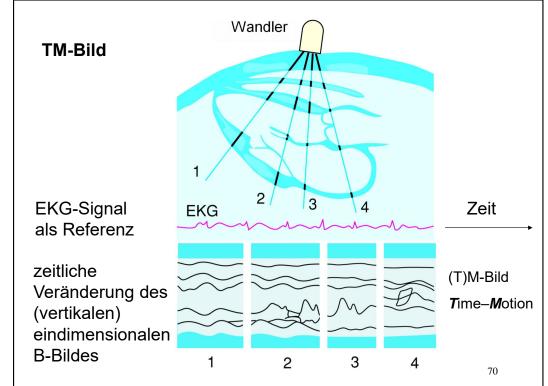


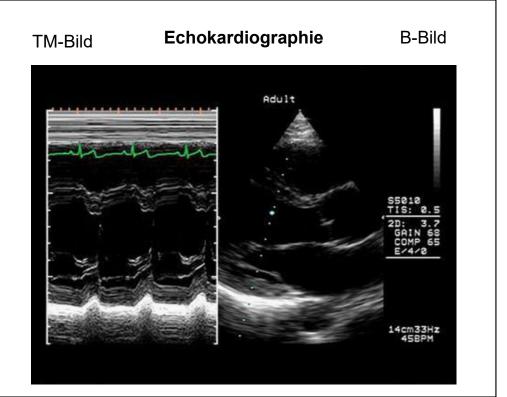

Grundschaltplan eines Echo-Impulsgeräts



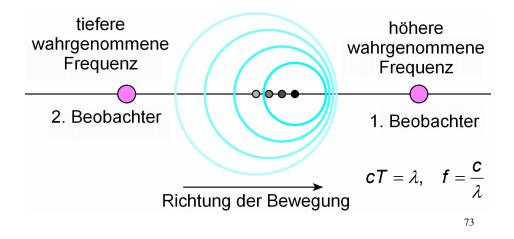
Echo-Prinzip, US-Bilder






Zweidimensionales B-Bild und A-Bild (ophtamologische Anwendung)

B-Bild (**B**rightness= Helligkeit)


A-Bild (Amplitude) es kann nur eindimensional sein

Der Doppler Effekt

Nähern sich Beobachter und Quelle einander, so erhöht sich die Frequenz, im umgekehrten Fall verringert sich die Frequenz. Ein Beispiel ist die Tonhöhenänderung des Martinshorns eines Krankenwagens. (C. Doppler, 1842)

wenn v_i , $v_R << c$ (i=B oder Q)

Umformung von (a) die Doppler-Frequenzverschiebung (Doppler-Frequenz, f_D)

$$\Delta f = f_{\mathsf{D}} = \pm \frac{v_{\mathsf{i}}}{\mathsf{c}} f$$

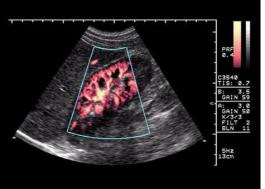
Umformung von (d) die Doppler-Frequenzverschiebung (Doppler-Frequenz, f_D)

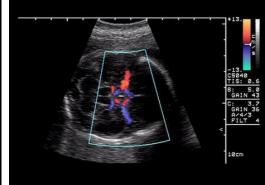
$$\Delta f = f_{\rm D} = \pm 2 \frac{v_{\rm R}}{c} f$$

wenn v und c sind nichtparalelle, dann anstatt von v die Projektion der Geschwindigkeit $v \cos\Theta$ ist gültig

- (a) Signalquelle in Ruhe, Beobachter bewegt
 - +: Beobachter annähert sich zur Quelle
 - Beobachter entfernt sich von der Quelle
- (b) Signalquelle bewegt, Beobachter in Ruhe,(wenn v_O<<c, dann gleich wie (a))
- (c) Signalquelle bewegt, Beobachter bewegt
- (d) bewegende Reflexionsobjket/-fläche, (wenn $v_R << c$)

$$f' = f \left(1 \pm \frac{V_{\rm B}}{c} \right)$$


$$f' = \frac{f}{1 \mp \frac{V_{Q}}{c}}$$


$$f' = f \frac{1 \pm \frac{V_{B}}{c}}{1 \mp \frac{V_{Q}}{c}}$$

$$f' = f \left(1 \pm \frac{2v_{R}}{c} \right)$$

Farbkodierung

rot: Blutströmung mit Richtung auf den Wandler hin blau: Blutströmung vom Schallwandler weg

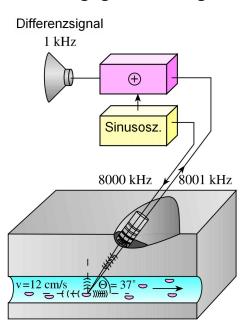
BART: Blue Away Red Towards

Rotblutzellen als Streuungszentren. CW Doppler Gerät für die Messung des Durchströmungsgeschwindigkeit

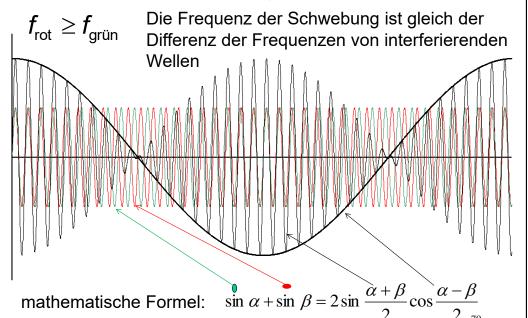
CW: kontinuierliche Welle, Sender und Empfänger getrennt

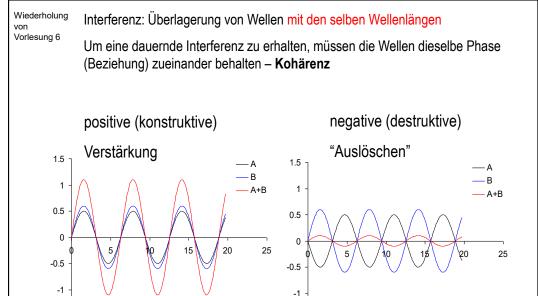
$$\left| f_{\rm D} \right| = 2 \frac{v_{\rm R} \cos \theta}{c} f$$

zB. F = 8000 kHz = 8 MHz


Radiowelle ist nicht hörbar

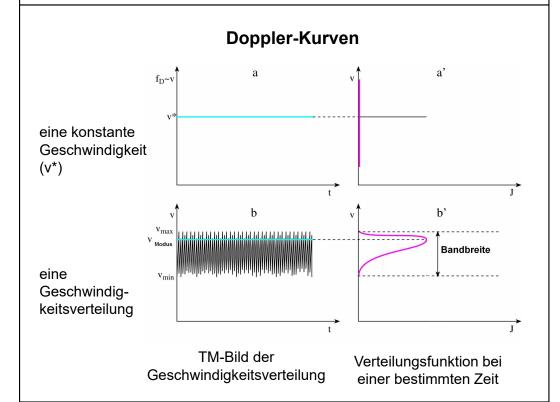
v=12 cm/s

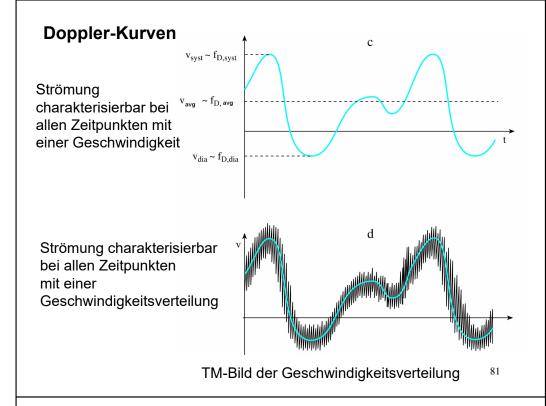

c=1600 m/s

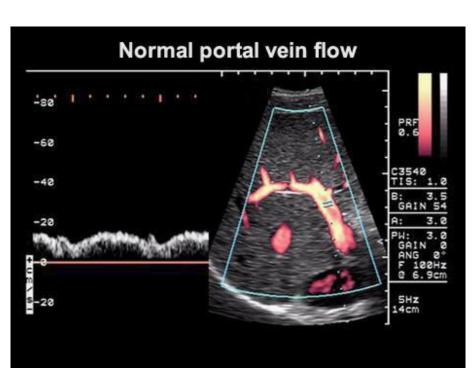

 Θ = 37°

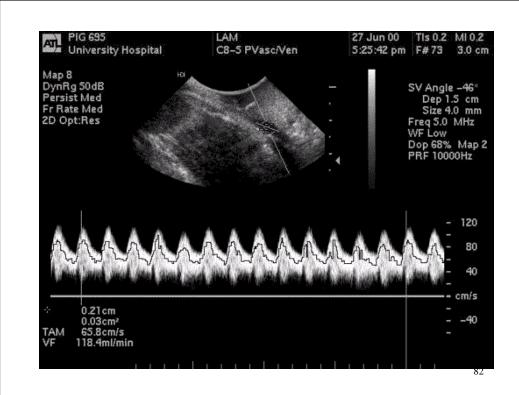
 $\Rightarrow f_D = 1 \text{ kHz}$ (Schwebung)

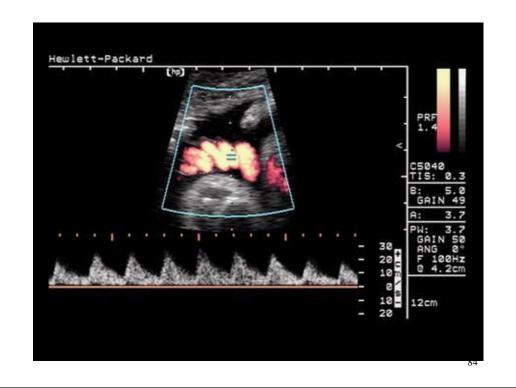
Schwebung: Überlagerung von Wellen mit verschieden Wellenlängen oder Frequenzen

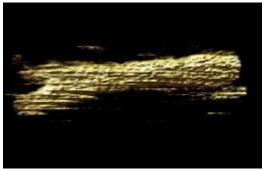


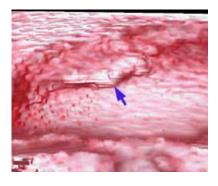

 $\Delta = \lambda/2$, $3\lambda/2$, $5\lambda/2$, ... =


 $= (2k+1)*(\lambda/2)$, wo k=0, 1, 2, 3, ...


 Δ =0, λ , 2λ , 3λ , ... =


 $=k^*\lambda = 2k^*(\lambda/2)$, wo k=0, 1, 2, 3, ...)





3D Rekonstruktion

Halsarterie

Harnblase

Beispiel:

+300 kPa

1 MHz. 1 W/cm²

p: verändert sich

zwischen -100 und

in Muskel 200 kPa: $\Delta p(!)$

US-Therapie

mechanische und/oder Wärmewirkung

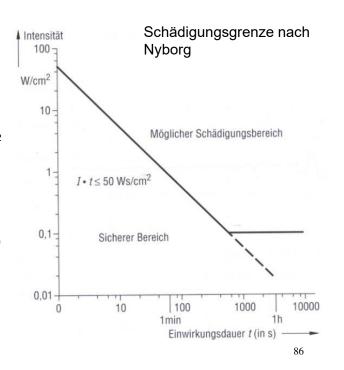
kleine Intensität: Mikromassage

grossere Intensität: zerstört Gewebe, Moleküle (entstehen freie Radikale, DNS Brechungen)

Hypertermie (Tumortherapie)
US-Absorption – Energie wird ins Wärme umgewandelt

Kavitation (Entstehung von Hohlräumen/Gasbläschen)

Zahnheilkunde: Entfernung von Zahnstein (20-40 kHz)

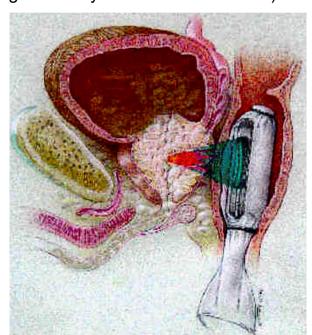

Intensität

in der Diagnostik: 10 mW/cm² = =100 W/m²

vgl. Schmerzgrenze: 10 W/m²

in der Therapie: 1 W/cm²

spatial average temporal average (SATA) intensity; spatial peak temporal peak (SPTP) intensity; spatial peak temporal average (SPTA) intensity; spatial peak pulse average (SPPA) intensity spatial average pulse average (SAPA) intensity

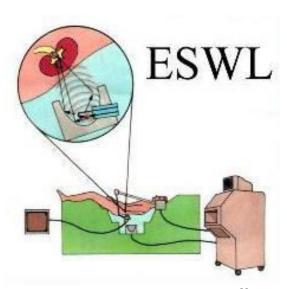


HIFU- Therapie (High Intensity Focussed Ultrasound)

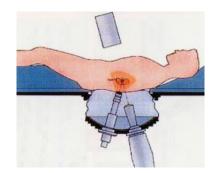
Hoch-Intensivierter Fokussierter Ultraschall

Kavitation,
Wärmewirkung und
Zellenzerstörung nur
im Fokalbereich

Prostatakrebs-Therapie: US-Sender im Enddarm



Lithotripsie, Extrakorporale Stosswellentherapie (nicht US!) ESWL (Extracorporeal Schockwave Lithotripsy)


Nicht-invasives Zertümmern von Nieren-(und andere) Steine durch Druckimpuls

Die Stosswellen werden durch Funkenentladungen unter Wasser erzeugt und in einem Brennpunkt fokussiert.

gleichzeitige Nachfolge mit Röntgen und/oder US

89

90

Zusammenfassung

Physikalische Grundlagen der medizinischen Anwendung des Ultraschalls, Sonnographie

Videos von Youtube:

Physik: Longitudinale und transversale Wellen https://www.youtube.com/watch?v=o1H2hdhAgr8

Ultraschall - Sonographie

https://www.youtube.com/watch?v=r8kx6C7j9so

Sono Basics - Grundlagen der fokussierten Sonographie | David Purkarthofer | Late Summer School 2019 https://www.youtube.com/watch?v=IEHFDjatEt0

Der Piezoelektrische-Effekt

https://www.youtube.com/watch?v=20-NEGAwuA4

Piezoelektrischer Effekt

https://www.youtube.com/watch?v=IOD-ps2I5BU

Vielen Dank für ihre

92.