Self-similar solutions for classical heat-conduction mechanisms

Imre Ferenc Barna  ${}^1$  & Robert Kersner  ${}^2$ 

 KFKI Atomic Energy Research Institute of the Hungarian Academy of Sciences
 University of Pécs, PMMK Department of Mathematics and Informatics





# Outline

- Motivation (infinite propagation speed with the diffusion/heat equation)
- A Way-OUT (Cattaneo equ. OR using a hyperbolic first order PDE system
- Derivation of a self-similar telegraphtype equation & analysing the properties
- Non-continuous solutions for the hyperbolic system for heat propagation
- Summary

# Ordinary diffusion/heat conduction equation

$$\mathbf{q} = -k\nabla U(x,t), \quad \nabla \mathbf{q} = -\gamma \frac{\partial U(x,t)}{\partial t}$$

*U(x,t) temperature distribution Fourier law + conservation law* 

 $\begin{cases} u_t(x,t) - ku_{xx}(x,t) = 0 & -\infty < x < \infty, \quad 0 < t < \infty \\ u(x,t=0) = \delta(x) \end{cases}$ 

parabolic PDA, no time-reversal sym.

- strong maximum principle ~ solution is smeared out in time
- the fundamental solution:
- general solution is:

$$u(x,t) = \int \Phi(x-y,t)g(y)dy$$

$$\Phi(x,t) = \int \frac{1}{\sqrt{4\pi kt}} exp\left(-\frac{x^2}{4kt}\right)$$

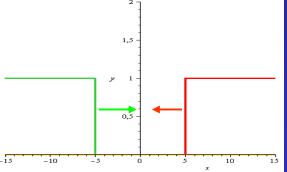
$$u(x,0) = g(x) \quad for - \infty < x < \infty \quad and \quad 0 < t < \infty$$

- kernel is non compact = inf. prop. speed
- Problem from a long time ⊗
- But have self-similar solution ©

$$u(x,t)=t^{-\alpha}f(x/t^{\beta})$$

# Important kind of PDA solutions

- Travelling waves: arbitrary wave fronts u(x,t) ~ g(x-ct), g(x+ct)
- Self-similar solutions

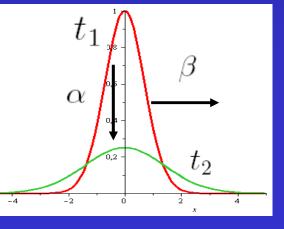


 $u(x,t)=t^{-lpha}f(x/t^{eta})~~$  Sedov, Barenblatt, Zeldovich

 $\alpha$  and  $\beta$  are of primary physical importance

 $\alpha$  represents the rate of decay

 $\beta$  is the rate of spread (or contraction if  $\beta < 0$  )





# Cattaneo heat conduction equ.

$$\tau \frac{\partial \mathbf{q}}{\partial t} + \mathbf{q} = -k \nabla T(x, t)$$

$$\nabla \mathbf{q} = -\gamma \frac{\partial T(x,t)}{\partial t}$$

 $\mathcal{H}^2$ 

c

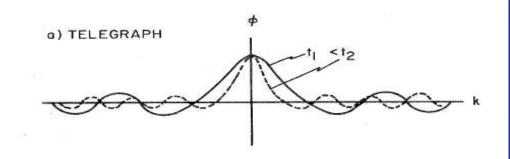
Cattaneo heat conduction law, new term  $\tau \frac{\partial \mathbf{q}}{\partial t}$ Energy conservation law

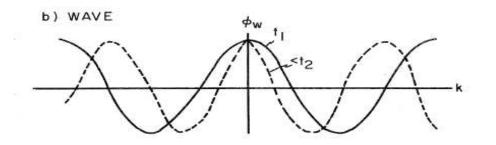
$$\frac{1}{\tau} + \frac{1}{\tau} \frac{\partial T(x,t)}{\partial t} = c^2 \nabla^2 T(x,t)$$
  
k effect  
heat  
T heat  
T relax

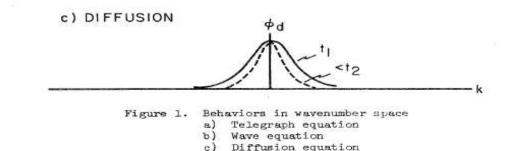
T(x,t) temperature distribution q heat flux k effective heat conductivity heat capacity relaxation time Telegraph equation(exists in Edyn., Hydrodyn.)

$$=\sqrt{k/\tau\gamma}$$
 is the sound of the transmitted heat wave

# General properties of the telegraph eq. solution







### decaying travelling waves

 $T(x,t) \propto e^{-\lambda t} f(x-ct)$ 

$$T(x,t) = e^{-\lambda t} I_0 \left( \frac{\lambda}{2c} \sqrt{(c^2 t^2 - x^2)} \right)$$

**Bessel function** 

Problem: 1) no self-similar diffusive solutions  $T(x,t) = t^{-\alpha}f(\eta) \eta = \frac{x}{t^{\beta}}$ 

oscillations, T<0?</li>
 maybe not the best eq.

# **Our alternatives**

- Way 1
- Def. new kind of Cattaneo law (with physical background)
  - new telegraph-type equation
  - with self-similar and compact solutions 😊
- Way 2

instead of a 2<sup>nd</sup> order parabolic(?) PDA use a first order hyperbolic PDA system with 2 Eqs. these are not equivalent!!!

non-continuous solutions and also self-similar

# General derivation for heat conduction law (Way 1)

$$\tau \frac{\partial \mathbf{q}}{\partial t} + \mathbf{q} = -k \nabla T(x,t)$$

### Cattaneo heat conduction law, there is a general way to derive

$$q = -\int_{-\infty}^{t} Q(t - t') \frac{\partial T(x, t')}{\partial x} dt'$$

#### T(x,t) temperature distribution q heat flux

Joseph D D and Preziosi L 1989 *Rev. Mod. Phys.* **61** 41 Joseph D D and Preziosi L 1990 *Rev. Mod. Phys.* **62** 375

$$Q(t - t') = \frac{k\tau^l}{(t - t' + \omega)^l}$$

### the kernel can have microscopic interpretation

$$\epsilon \frac{\partial^2 T(x,t)}{\partial t^2} + \frac{a}{t} \frac{\partial T(x,t)}{\partial t} = \frac{\partial^2 T(x,t)}{\partial x^2}$$

telegraph-type time dependent eq. with self sim. solution

$$T(x,t)=t^{-\alpha}f(\eta) \ with \ \eta=\frac{x}{t^{\beta}}$$



There are differential eqs. for  $f(\eta)$  only for  $\alpha = \beta = +1$ or for  $\alpha = -2$  and  $\beta = +1$ 

 $\alpha = \beta = +1$  a total difference = conserved quantity

$$\epsilon(\eta^2 f(\eta))'' - a(\eta f(\eta))' = f''(\eta)$$

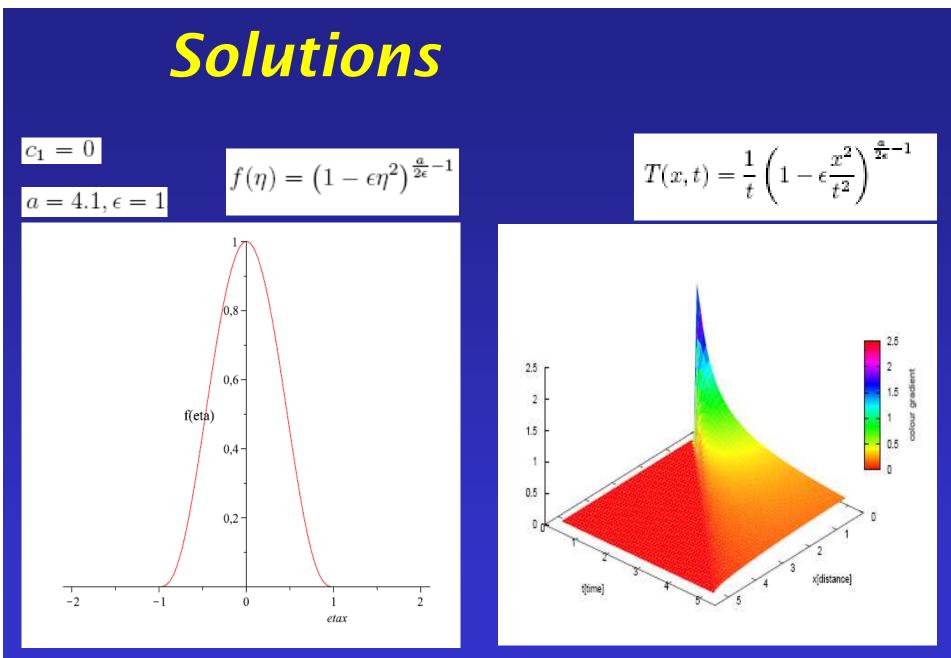
 $\epsilon(\eta^2 f(\eta))' - a\eta f(\eta) = f'(\eta) + c_1$ 

### There are two different solutions:

 $c_1 = 0$ 

physically relevant solution, compact support with vanishing derivatives at the boarders I.F. Barna and R. Kersner, http://arxiv.org/abs/1002.099 J. Phys. A: Math. Theor. 43, (2010) 375210

 $c_1 \neq 0$ . Not so nice  $\otimes$ 



## **Solutions**

#### $c_1 \neq 0.$

$$\begin{split} f(\eta) = & (\epsilon \eta^2 - 1)^{\frac{a}{2\epsilon} - 1} \left[ c_1 \{ signum(\epsilon \eta^2 - 1) \}^{\frac{a}{2\epsilon} - 1} \{ -signum(\epsilon \eta^2 - 1) \}^{\frac{a}{2\epsilon} - 1} \\ & \eta F(1/2, a/2/\epsilon; 3/2; \epsilon \eta^2) + c_2 ] \end{split}$$

where F(a,b;c;z) is the hypergeometric function

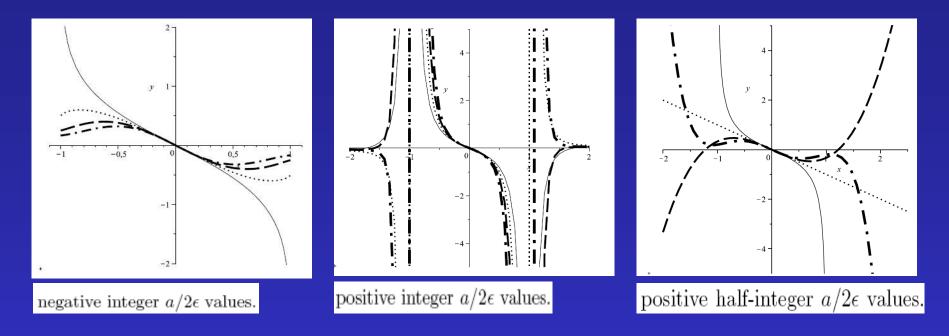
$$F(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!} \qquad a, b, c, z \quad \epsilon C$$

$$(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)} \qquad (a)_0 = 1, \quad (a)_n = a(a+1)\cdots(a+n-1) \qquad n = 1, 2, 3, ...$$

- some elementary functions can be expressed via F
- In our case if <sup>a</sup>/<sub>2</sub> is Integer or Half-Integer are important the 4 basic cases:

$$\frac{a}{2\epsilon} = 0, \quad F\left(0, \frac{1}{2}; \frac{3}{2}; \epsilon\eta^2\right) = 1 \qquad \frac{a}{2\epsilon} = 1, \quad F\left(1, \frac{1}{2}; \frac{3}{2}; \epsilon\eta^2\right) = \frac{1}{2\sqrt{\epsilon\eta}} \ln\left(\frac{1+\sqrt{\epsilon\eta}}{1-\sqrt{\epsilon\eta}}\right)$$
$$\frac{a}{2\epsilon} = \frac{1}{2}, \quad F\left(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}; \epsilon\eta^2\right) = \frac{\arccos(\sqrt{\epsilon\eta})}{\sqrt{\epsilon\eta}} \qquad \frac{a}{2\epsilon} = \frac{3}{2}, \quad F\left(\frac{3}{2}, \frac{1}{2}; \frac{3}{2}; \epsilon\eta^2\right) = \frac{1}{(1-\epsilon\eta^2)}$$

# **Solutions**



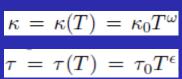
not-so-nice solutions, non-compact no-finite derivatives just have a rich mathematical structure

I.F. Barna and R. Kersner http://arxiv.org/abs/1009.6085 Adv. Studies Theor. Phys. 5, (2011) 193

# Self-similar, non-continous shock-wave behaviour for heat-propagation (Way 2)

| $\frac{\partial q(r,t)}{\partial t}$     | = | $-\underline{q} - \underline{\kappa} \frac{\partial T(r,t)}{\partial r}$ |                             |
|------------------------------------------|---|--------------------------------------------------------------------------|-----------------------------|
| $c_0 \frac{\partial t}{\partial T(r,t)}$ | = | $-\frac{\tau}{\frac{\partial q(r,t)}{\partial q(r,t)}}$                  | $\frac{\partial r}{q(r,t)}$ |
| $\partial t$                             |   | $\partial r$                                                             | r                           |

general Cattaneo heat conduction law, + cylindrically symmetric conservation law



heat conduction coefficient temperature dependent (e.q. plasmas)

<sup>6</sup> relaxation time also temperature dependent (e.q. plasmas)

using the first oder PDA system (not second order) looking for self-similar solutions in the form

$$T(r,t) = t^{-\alpha} f\left(\frac{r}{t^{\beta}}\right), \quad q(r,t) = t^{-\delta} g\left(\frac{r}{t^{\gamma}}\right)$$

$$\begin{split} \delta g(\eta) + \beta \eta g'(\eta) &= f^{-\epsilon}(\eta) g(\eta) + f^{\omega-\epsilon}(\eta) f'(\eta) \\ c_0[\alpha f(\eta) + \beta \eta f'(\eta)] &= g'(\eta) + g(\eta)/\eta \end{split}$$

## **Properties of the model**

originaly there are 5 independent parameters, exponents  $\alpha, \beta, \delta \in \omega$ only one remained independent, we fixed omega

$$\alpha = \frac{1}{\omega - 1}, \quad \beta = \frac{1}{2(\omega - 1)} \quad \delta = \frac{\omega - 1/2}{\omega - 1}, \quad \epsilon = 1 - \omega.$$

#### the parameter dependence of the solutions is now dictated

$$T(x,t) = t^{-\alpha} f\left(\frac{r}{t^{\beta}}\right) = t^{\frac{-1}{\omega-1}} f\left(\frac{r}{t^{\frac{1}{2(\omega-1)}}}\right), \qquad q(x,t) = t^{-\delta} g\left(\frac{r}{t^{\beta}}\right) = t^{\frac{\omega-1/2}{\omega-1}} g\left(\frac{r}{t^{\frac{1}{2(\omega-1)}}}\right)$$

#### heat conduction and relaxation time terms are also known

$$\kappa = \kappa_0 \cdot T(x,t)^{\omega} = \kappa_0 t^{\frac{-\omega}{\omega-1}} f^{\omega} \left( \frac{r}{t^{\frac{1}{2(\omega-1)}}} \right), \qquad \tau = \tau_0 \cdot T(x,t)^{\epsilon} = \kappa_0 t^{\frac{1-\omega}{\omega-1}} f^{1-\omega} \left( \frac{r}{t^{\frac{1}{2(\omega-1)}}} \right)$$

## **Properties of the solution**

$$f'\left[\frac{1}{2(\omega-1)}\eta^2 - 2a(\omega-1)f^{2\omega-1}\right] + \eta f\left[\frac{2\omega}{2(\omega-1)} - \frac{f^{\omega-1}}{\tau_0}\right] = 0$$

first order non-linear ODE (no analytic solution) **BUT** -Variable transformations,  $y = \eta^2$  and  $x(y) = f(\eta)$  and considering the inverse of the first derivative **term** linear inhomogeneous ODE

$$\frac{dy}{dx} = \frac{y}{x[bx^{\omega-1}-\omega]} - \frac{4a(\omega-1)^2x^{2\omega-2}}{bx^{\omega-1}-\omega} \qquad \frac{a = \frac{\kappa_0}{\tau_0 c_0}}{b = (2\omega-1)/2}$$

### can be integrated

$$y = 4a(\omega - 1)^2 \left[ x^{-\frac{1}{\omega - 1}} (-2\omega x^{\omega} + x^{\omega} + x\omega)^{\frac{1}{\omega(\omega - 1)}} \right] \left( \int x^{\frac{2\omega^2 - 3\omega + 2}{\omega - 1}} (-2\omega x^{\omega} + x^{\omega + x\omega})^{\frac{-\omega^2 + \omega - 1}{\omega(\omega - 1)}} dx + c \right)$$

general solution of the homogeneous equation times the particular solution of the inhomogeneous one, there is only one parameter dependence

# **Properties of the inverse solution**

it is not singular for  $2(\omega - 1)x^{\omega - 1} - \omega \neq 0$  so for  $f(\omega) = \left(\frac{\omega}{2\omega - 1}\right)^{\frac{1}{\omega - 1}} 0 < \omega \le 1/2$ 

different  $\omega$  means different kind of solutions

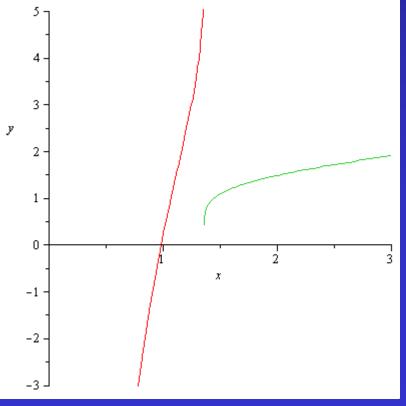
 $1/2 < \omega$  blow up solution at  $x = \left(\frac{\omega}{2\omega - 1}\right)^{\frac{1}{\omega - 1}} \bullet$ 

 $\omega \neq 1$  fordbidden value

 $\omega = 1/2$  solution:  $y(x) = 1 + c/x^2$ 

 $0 < \omega < 1/2$  non-compact solution with a maxima, can be invert  $\omega = 0$  solution: $(-4Ei(1, -x) + x)e^{-x}$  no positive domain  $-1 < \omega < 0$  singular in origin, have a max and can be inverted f

 $\omega \leq -1$  two distinct solutions with a cut in between  $\bullet$ 



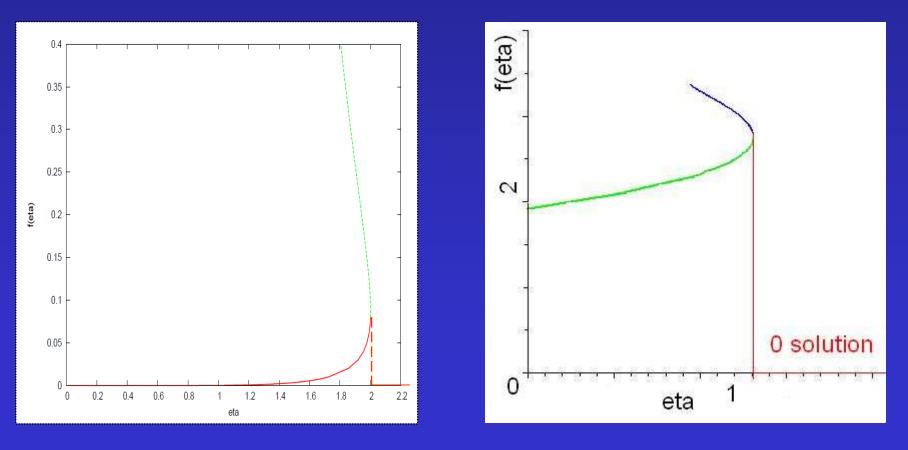
# Non-continous solutions of PDE

### applying the back-transformation (inversion + square root)

 $0 < \omega < 1/2$  non-compact solution with a maxima, can be inverted  $[0..\infty]$ 

 $-1 < \omega < 0$  singular in origin, have a maxima and can be inverted in positive x domain

principal value have to be fixed!!



we may define zero solutions outside this eta domain

## Summary and Outlook

we presented the problem of the heat conduction eq. defined two possible way-outs

As a new feature we presented a new telegraph-type equation with self-similar solutions It has both parabolic and hyperbolic properties

As a second point we use a hyperbolic system to investigate heat conduction, can have non-continuous solutions



#### Questions, Remarks, Comments?...