Ionisation of helium in positron impact

K. Tőkési 1,2 , I. F. Barna 2 and J. Burgdörfer 2

 ¹ Institute of Nuclear Research of the Hungarian Academy of Science (ATOMKI), H-4001 Debrecen, PO Box 51, Hungary
 ²Institute for Theoretical Physics, Vienna University of Technology, A-1040, Vienna, Austria

The Classical Trajectory Monte Carlo method

- Newton's classial non-relativistic equations for 3 and 4 particles
- 3-body CTMC: He²⁺, e⁻ and e⁺ [1] the projectile-electron and the projectile-core interactions are model potential of the form [2]:

$$V(r) = -[(Z - 1)\Omega(r) + 1]/r$$

with $\Omega(r) = [Hd(e^{r/d} - 1) + 1]^{-1}$ Z is the effective charge, d and H parameters from [3]

• 4-body CTMC:

four particles are characterised by mass and charges all interactions Coulombic the interaction between the two active electrons are neglected

• microcanonical ensemble were taken for initial conditions

The Coulomb distorted wave Born approximation model

• our model [4] is defined by the Hamiltonian:

$$H = -\frac{1}{2}\nabla_p^2 + H_{He} + V_{p-He}$$

• the unperturbed helium Hamiltonian:

$$\hat{H}(\vec{r}_1, \vec{r}_2)_{He} = -\frac{\vec{\nabla}_1^2}{2} - \frac{\vec{\nabla}_2^2}{2} - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

• the projectile-electron interaction:

$$V_{p-He} = \frac{2}{R} - \frac{1}{|\mathbf{R} - \mathbf{r}_1|} - \frac{1}{|\mathbf{R} - \mathbf{r}_2|}$$

• coupled channel expansion:

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{R}) = \sum_{\mathbf{n}} \varphi(\mathbf{R}_{\mathbf{n}}) \Phi_{\mathbf{n}}(\mathbf{r}_1, \mathbf{r}_2,)$$

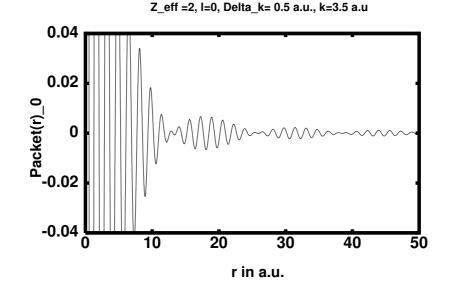
• the angular-differential cross section:

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= |f_n(\theta, \vartheta)|^2 = \frac{4\pi^2 \mu^2 k_0}{k_n} \int \int \int d\mathbf{r}_1 d\mathbf{r}_2 d\mathbf{R} \\ &\sum_n \varphi_n^*(\mathbf{R}) \Psi_n^*(\mathbf{r}_1, \mathbf{r}_2) [V_{p-He} - 2/R] \\ &\times \varphi_0(\mathbf{R}) \Psi_g(\mathbf{r}_1, \mathbf{r}_2) \end{aligned}$$

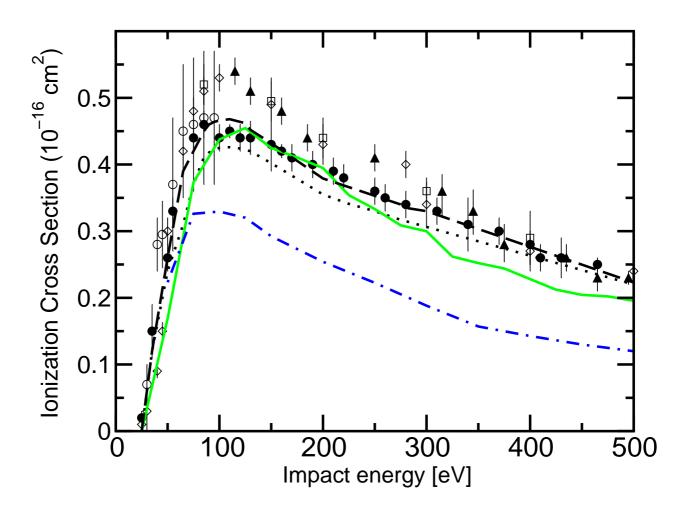
The wave function of the helium atom

Configuration Interaction expansion of $\Phi_j(\mathbf{r_1}, \mathbf{r_2})$ in terms of two-particle basis functions f_{μ}

$$\Phi_j(\mathbf{r_1},\mathbf{r_2}) = \sum_{\mu} \mathbf{b}^{\mathbf{j}}_{\mu} \mathbf{f}_{\mu}(\mathbf{r_1},\mathbf{r_2}).$$


where $f_{\mu}(\mathbf{r_1},\mathbf{r_2})$ are symmetric (S=0) products of

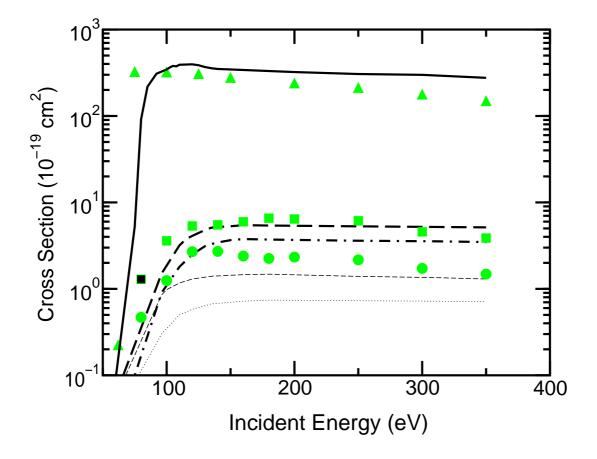
• Slater-type orbitals:


$$\chi_{n,l,m,\kappa}(\mathbf{r}) = C(n,\kappa)r^{n-1}e^{-\kappa r}Y_{l,m}(\theta,\varphi)$$

• regular Coulomb wave packets:

• $\eta = \tilde{Z}/k'$, $\rho = k'r$, \tilde{Z} effective charge • $N(k, \Delta k)$, $C(n, \kappa)$ normalisation constants

Results for total ionisation


Positron impact ionization cross sections of helium.

Experimental data: (◊) Knudsen et al. [5]; (▲) Moxom et al. [6];
(●) Fromme et al. [7]; (◊) Mori and Sueoka [8];
(□) Jacobsen et al. [9].

The solid line presents **3B-CTMC** and the dash-dotted line stands for **4B-CTMC** results. The dashed curve shows our distorted wave results and the dotted line presents the work of Campeanu *et al* [10].

Results for partial ionisation

$$e^{+} + He(1s1s) \rightarrow He^{+}(1s) + e^{+} + e^{-}$$
 (A)
 $e^{+} + He(1s1s) \rightarrow He^{+}(2s) + e^{+} + e^{-}$ (B)
 $e^{+} + He(1s1s) \rightarrow He^{+}(2p) + e^{+} + e^{-}$ (C)

Ionisation cross sections of helium where the helium ion is in a well defined state Eq. (A-C). The three full symbols stand for our **3B-CTMC** results, \blacktriangle for (A), \blacksquare for (C) and (\bullet) for (B). The thick lines represent our distorted wave results. The solid line is for (A), dashed line for (C) and the dash-dot-dashed line is for (B). The dotted thin line shows the results of Moores [11] for (B) and the thin dashed line stands for (C).

Summary

- we presented a comparative study for ionisation of helium in positron impact
- our **3B-CTMC** and Coulomb distorted wave Born model are in good agreement with experimental data
- our **4B-CTMC** model gives 60 percent smaller results than the experimental data, this is due to screening effects
- partial ionisation cross sections are also presented and compared with different theoretical results
- we hope that our work stimulates experimentals to measure the processes mentioned above

References

- [1] R.E. Olson and A. Salop, *Phys. Rev. A* **16** 531 (1977)
- [2] A.E.S. Green, Adv. Quantum Chem. 7 221 (1973)

[3] R.H. Garvey, C.H. Jackman and A.E.S. Green, *Phys. Rev.A* **12** 1144 (1975)

- [4] I.F. Barna, Eur. Phys. J. D. **30** 5 (2004)
- [5] H. Knudsen, L. Brun-Nielsen, M. Charlton and M.R. Poulsen, J. Phys. B: At. Mol. Opt. Phys. 23 3955 (1990)
- [6] J. Moxom, P. Ashley and G. Lariccia, Can. J. Phys. 74 367 (1996)
- [7] D. Fromme, G. Kruse, W. Raith and G. Sinapius, *Phys. Rev. Lett.* **57** 3031 (1986)
- [8] S. Mori and O. Sueoka, J. Phys B: At. Mol. Opt. Phys. **27** 4349 (1994)
- [9] M.F. Jacobsen, N.P. Frandsen, H. Knudsen, U. Mikkelson and D.M. Schrader, J. Phys. B: At. Mol. Opt. Phys. 28 4691 (1995)
- [10] R.I. Campeanu, R.P. McEachron and A.D. Stauffer, *Nucl. Instrum. Methods. B* **192** 146 (2002)
- [11] L.D. Moores, Nucl. Instrum. Methods. B 179 316 (2001)