Self-similar shock wave solutions

for heat conductions In solids and
for non-Ilinear Maxwell equations
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/ 14 t O d Uuc t i orl (physically relevant solutions for PDESs)

M O t 1va t 101 (infinite propagation speed with the diffusion/heat equation)

Summary




Important kind of solutions
for non-Ilinear PDEs

- Travelling waves: arbitrary wave fronts
u(x,t) ~

gives back the Gaussian for heat
conduction




Ordinary diffusion/heat
conduction equation

OU(x, t)

= —kVU(x,t), Vq=—» N
O

U(x,t) temperature distribution
Fourier law + conservation law

u(x,t) — ktlge(2,t) =0 —c0o < <00, 0<t<o0 ) :
parabolic PDA, no time-reversal sym.

the fundamental solution.
general solution is:

ulz,0)=glz) for—o00<r <0 and <t

Problem from a long time &

el T ."3'
But have self-similar solution © LRI fx/t7)




Our alternatives

Way 1

Def. new kind of time-dependent Cattaneo law (with
physical background)

new telegraph-type equation
with self-similar and compact solutions ©

Way 2
instead of a 2" order parabolic(?) PDA
use a first order hyperbolic PDA system with 2 Egs.

non-continuous solutions shock
waves




Cattaneo heat conduction
eqgul.

,f’j+q _kVT(z.t) Cattaneo heat conduction law,
- new term [

Energy conservation law

T(Xx,t) temperature distribution
g heat flux
PT(r.t) 10T(x.1 k effective heat conductivity
Fran +: o =CV(z Bl heat capacity
| | relaxation time
Telegraph equation(exists in Edyn.,
/ k/77 is the sound of the transmitted heat wave Hydrodyn.)




General properties of the
telegraph eq. solution

a) TELEGRAPH ? decaying travelling waves
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2) oscillations, T<0 ?
maybe not the best eq.

Figure 1. Behaviors in wavenumber space
a) Telegraph equation
b) Wave equation
¢} Diffusion equation




Self-similar, non-continous
shock wave behaviour for heat-

propagation

kI (r,t) i
~ = "o general Cattaneo heat conduction law,
dq(r.t)  qlrt) + cylindrically symmetric conservation

r law

heat conduction coefficient (temperature dependent e.q. plasmas)
relaxation time also temperature dependent (e.q. plasma phys.)

using the first oder PDA system (not second order)
looking for self-similar solutions in the form




Way to the solutions

The following universality relations are hold:

Form of the solutions:
Note the dependence
representing

The ODE system for the shape
functions.

The second eq. can be
Integrated getting the relation.




The solutions

The final ODE reads.

JUSt putting.

Getting:
which is linear in y

y =8+ [(z —2)/2]"/?[c; — 8In(Va + VI —2)]
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The direction field of the solutions for y and
for the inverse function for eta

Arrow shows how the inverse function were defined CUT and O solution




How the shock propagates
In time
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The solutions

The second case 1s for w =

The corresponding ODE :

solution for the shape function:

Returning to original variables:

And the final




Summary of the solutions

w < —1 unphysical regime (negative flux etc.)
w # —1 forbidden value

—1 < w < —1/2 continuous solutions

w = —1/2 critical exponent

—1/2 < w shocks always appear




The second example

/dea 1s similar:

Iinstead of the second order wave equation

we investigate the two coupled first-order Maxwell
PDES In one dimension

with a non-linear power-law

material or constitutive equation

depending on the exponent

Having continous or shock wave solutions




The Maxwell equations &
non-linearity

The field equations
of Maxwell

The constitutive Egs +
differential Ohm’s Law

Our consideration, power law:

p(H) = aH? ¢(E) = bE"

constrain ¢ = “l‘

o(E)=hE” a,b h,p,r qare Real

u(H) = aHY

e(H) =

1

cla'H9




Geometry & Applied Ansatz

For the sake of simplicity we consider the following one dimensional problem

E=(0E,(zt),0) H=(0,00H.(z.t))

Electric Field is in the XZ Plane

OE,  OH.

or Ot

cof (55) =t s )

A r 4 \
t ‘5‘1( ) =1t"g(n)

—8(g+1) (H—l(

g7 (n)]

""2(1"11‘5‘7""(;”‘7(71)]'(1])] + ]rl‘"('(p'+'l)f"""(r]). n = .1‘/1"5




The final ordinary
differential equations

a(g+ 1)[6g"" — ¢7¢'nA] ' means derivation with
L.,[{q +1)gf +qlg+1)g" 'g'"fy+ (¢g+1)g?f'n| respect to eta
ac=

Universality relations among

the parameters:

The first equ. is a total difference so

. f=alqg+ 1)ng?*!
can be integrated :

Remaining a simple ODE with one
parameter g (material exponent):
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Non-compact solutions
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Compact solutions

for g<-1




Physically relevant solutions

We consider the Poynting vector which
gives us the energy flux (in W/m”"2) in
the field

S=ExH=1t"""fg=a(qg+1)ng"*?
Note that for ¢ < —2 the ﬁ;~-..z Sdrn is finite which is a good reason.

Unfortunatelly, there are two
contraversial definition of the Poynting
vector In media, unsolved problem
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Summary

we presented physically important,
self-similar solutions for various PDESs
which can describe shock waves

as a first example we investigated a genaralized one
dimensional Cattaneo-\Vernot heat conduction problem

as a second example we investigated the 1 dim.
Maxwell equations (instead fo the wave equation) closing
with non-Ilinear (power law) constitutive equations

In both cases we found shock-wave solutions for
different material constants







