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Abstract
For the heat flux q and temperature T , we introduce a modified Fourier–
Cattaneo law qt +lq/(t+τ) = −kTx. The consequence of it is a non-autonomous
telegraph-type equation. This model already has a typical self-similar solution
which may be written as a product of two traveling waves modulo a time-
dependent factor and might play a role of intermediate asymptotics.

PACS numbers: 44.90.+c, 02.30.Jr

It is well known that the heat equation propagates perturbations with infinite velocity. For
this contradiction a possible answer is the telegraph equation which is ‘obviously hyperbolic’.
Generally, other fundamental properties of the parabolic heat equations are forgotten: the
existence of self-similar solutions (e.g. the Gaussian kernel or the fundamental solution) and
the attracting nature of these special solutions (intermediate asymptotics).

Is is easy to show that the telegraph equation—see (3)—has no self-similar solutions e.g.
solutions of the form t−αf (x/tβ) and that even asymptotic self-similarity property is lacking:
no solutions of the form g(t) · f (x/w(t)) with g ∼ t−α and h ∼ tβ for t � 1.

Since the telegraph equation (possibly with reaction terms) supposed to be relevant not
only in heat conduction but also in various diffusion processes, the lack of self-similarity
might be a bad sign for the adequacy of the model. Furthermore, in diffusion and heat theory
various physical quantities—like fluxes—have to be continuous; therefore, the solutions of
this equation cannot be ‘too bad’.

According to Gurtin and Pipkin [1–3], the most general form of the flux in linear heat
conduction and diffusion is related to the flux q expressed in one space dimension via an
integral over the history of the temperature gradient

q = −
∫ t

−∞
Q(t − t ′)

∂T (x, t ′)
∂x

dt ′, (1)

where Q(t − t ′) is a positive, decreasing relaxation function that tends to zero as t − t ′ → ∞
and T(x, t) is the temperature distribution.
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There are two notable relaxation kernel functions: if Q1(s) = kδ(s), where δ(s) is a
Dirac delta ‘function’, then we will get back the original Fourier law.

If we define the kernel as Q2(s) = k
τ

e−s/τ , where s = t − t ′ and k is the constant of the
effective thermal conductivity, we get back to the well-known Cattaneo [4] heat conduction
law. The energy conservation law

∂q

∂x
= −γ

∂T (x, t)

∂t
, (2)

where γ is the heat capacity, gives the heat equation with Q1 and the telegraph equation with
Q2:

∂2T (x, t)

∂t2
+

1

τ

∂T (x, t)

∂t
= c2 ∂2T (x, t)

∂x2
, (3)

where c = √
k/τγ is the propagation velocity of the transmitted heat wave. The flux q satisfies

the same equation.
The thermal diffusivity κ = k/γ can be defined as the ratio of the effective thermal

conductivity k and the heat capacity γ . The key quantity in this equation is the physically
well-defined relaxation time τ . This positive number has a distinct physical meaning, namely
the time constant of an exponential return of a system to the steady state (whether of
thermodynamic equilibrium or not) after a disturbance.

The relaxation time is—however somehow connected to the mean-time collision time
tc of the particles—responsible for the dissipative process, oftentimes erroneously identified
with it. In principle, they are different since τ is (conceptually and many times in practice) a
macroscopic time, although in some instances it may correspond just to a few tc. Unfortunately,
no general formula linking tc and τ exists; their relationship depends (in each case) on the
system under consideration.

The telegraph equation (3) can be derived in various transport systems, see [2, 3, 5–9].
In the present paper we introduce a new kernel which interpolates the Dirac delta and the

exponential kernel having the main properties of both. Q(s) = 1/sl is such a function which
is singular at the origin and has a short range of decay for l > 1. Let us consider the following
relaxation kernel:

Q(t − t ′) = kτ l

(t − t ′ + ω)l
, (4)

where k is the effective thermal conductivity, τ is relaxation time and l > 1 is a parameter,
and −t ′ + ω is just a time shift which is necessary to regularize the expression.

Using the general form of heat flux (1),

q = −
∫ t

−∞

kτ l

(t − t ′ + ω)l

∂T (x, t)

∂x
dt ′. (5)

Derivating (5) with respect to t,

∂q

∂t
= −k

( τ

ω

)l ∂T (x, t)

∂x
+ l

∫ t

−∞

1

t − t ′ + ω

kτ l

(t − t ′ + ω)l

∂T (x, t ′)
∂x

dt ′. (6)

A formal application of the integral mean theorem to the second term on the right-hand side
and the definition of q leads to a new phenomenological law:

∂q

∂t
= −k

( τ

ω

)l ∂T (x, t)

∂x
− l

t − t ′′ + ω
q. (7)

The additional energy conservation law is valid, and from (2) and (7) this equation can be
obtained:

γ

k

(ω

τ

)l ∂2T (x, t)

∂t2
+

γ

k

(ω

τ

)l l

t − t ′′ + ω

∂T (x, t)

∂t
= ∂2T (x, t)

∂x2
. (8)
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For a better transparency, let us call ε = γ

k

(
ω
τ

)l
and a = γ

k

(
ω
τ

)l · l. The physical meaning
of ε is still the thermal diffusivity multiplied by a scaling constant which is the renormalized
relaxation time (the ratio of an ordinary time shift ω and a well-defined relaxation time τ ).
The exponential l is a real number which describes the non-locality in time which can be
called memory effects of the heat conduction phenomena. Larger l means shorter memory.
The physical meaning of a is approximately the thermal diffusivity multiplied by another
time-scaling factor. In the following one can see that the role of a, ε or l will be crucial
in the structure of the solutions. A new time variable is introduced as t = t − t ′′ + ω. Now the
telegraph-type equation reads

ε
∂2T (x, t)

∂t2
+

a

t

∂T (x, t)

∂t
= ∂2T (x, t)

∂x2
. (9)

Note that the a/t factor appearing in front of the first time derivative makes the equation time
reversible, which cannot be true for diffusion or heat propagation processes, at the same time
when the a/t factor makes the equation irregular at the origin. To avoid these problems the
singularity was shifted to a negative time a/(t + τ) where τ still can be any kind of relaxation
time with well-founded physical interpretation. Physically it is clear that if a process has
a well-defined time-scale, then the reverse process cannot run back in time more than the
physically relevant time. Now, in this sense, for the positive time (t > 0) the equation can
be used to describe diffusion-like processes. Below we see that no self-similar solution of (9)
exists for at−γ with γ �= 1.

In the classical telegraph equation (3), the diffusion in a sense takes over after some time,
although not uniformly. In the presented case, the 1/t factor in front of diffusion inhibits
the diffusive effect in long times in comparison with the hyperbolic effect: the existence
of the self-similarity is exactly a manifestation of the fact that propagation and diffusion are
on the same footing, so they will coexist at all times.

Wave properties (like dispersion phenomena) can be investigated if equation (9) is
considered as a nonlinear wave equation.

Inserting the standard plain wave approximation T (x, t) = ei(k̃x+ω̃t) into (9), the dispersion
relation and the attenuation distance can be obtained. These are the followings:

vp = ω̃

Re(k̃)
=

√
2

ε
ω̃

⎛
⎝1 +

√
1 +

(
l

t

)2
⎞
⎠

−1/2

(10)

α̃ = 1

Im(k̃)
= 2t

εl

1

vp

. (11)

Equation (9) is time dependent; hence both the dispersion relation and the attenuation distance
have a time dependence. Note that vp has a very weak time dependence, basically only till
t � l. The properties of the attenuation distance is even more interesting; it is divergent in
time and has a 1/ω̃ angular frequency. However, if the angular frequency and the time go
infinite with the same speed, then the attenuation distance has a strong decay. This is like the
skin effect when high frequency electrons can only propagate on the surface of a metal. The
solution of (9) is of the form

T (x, t) = t−αf
( x

tβ

)
:= t−αf (η). (12)

The similarity exponents α and β are of primary physical importance since α represents the
rate of decay of the magnitude T(x, t), while β is the rate of spread (or contraction if β < 0)
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Figure 1. Equation (19): thick solid line is for l = 6.2 and the thin dashed line is for l = 4.1.

of the space distribution as time goes on. Substituting this into (9),

f ′′(η)t−α−2[εβ2η2] + f ′(η)ηt−α−2[εαβ − εβ(−α − β − 1) − βa]

+ f (η)t−α−2[−εα(−α − 1) − aα] = f ′′(η)t−α−2β, (13)

where prime denotes differentiation with respect to η.

One can see that this is an ordinary differential equation (ODE) if and only if α+2 = α+2β

(the universality relation). So it has to be

β = 1, (14)

while α can be any number. The corresponding ODE is

f ′′(η)[εη2 − 1] + f ′(η)η(2εα + 2ε − a) + f (η)α(εα + ε − a) = 0. (15)

In pure heat conduction–diffusion processes—no sources or sinks—the heat mass is
conserved: the integral of T(x, t) with respect to x does not depend on time t. For T(x, t) this
means ∫

T (x, t) dx = t−α

∫
f

(x

t

)
dx = t−α+1

∫
f (η) dη = const (16)

if and only if α = 1. This case is investigated only. Clearly, (15) can be written as

(εf η2 − f )′′ = a(ηf )′, (17)

which after integration and supposing f (η0) = 0 for some η0 gives
df

f
= aη dη

εη2 − 1
. (18)

From this equation two qualitatively different solutions are obtained. The first solution is
globally bounded and positive in the domain {(x, t) : 1 − εη2 > 0} and has the form

f = (1 − εη2)
a
2ε

−1
+ , (19)

where (f )+ = max(f, 0). See figure 1.
The corresponding self-similar solution is

T (x, t) = 1

t

(
1 − ε

x2

t2

) a
2ε

−1

+

. (20)
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Figure 2. Solution (20) for the parameter l = 6.2.

(This figure is in colour only in the electronic version)

This solution is positive in the cone t2 > εx2 and is zero outside it, see figure 2. Note that
only the x > 0 and t > 0 quarter of the plane is presented because of its physical relevance.

On the (x, t) plane there are two fronts x(t) = ± t√
ε

separating these domains. Because
the function T(x, t) does not always have continuous derivatives entering to (9), we have to
make clear what we mean by ‘solution’. With the physical background in mind, we ask the
continuity of Tt , Tx, qt and qx so that in (2) and (3) all functions were continuous.

In our case this means that

a

2ε
− 1 = l − 2

2
(21)

has to be greater than 1, i.e. a/ε = l > 4, which we will suppose further on. In the case
of 4 � l � 6 the second derivatives entering into (9) are not continuous. If we multiply (9)
by a test function ϕ(x, t) and integrate it by parts (which is possible because Tx and Tt are
continuous and we can see that (20) is a well-defined weak solution to (9)).

If l > 6, the solution is classical. In figure 1, we compare the solutions with l = 4.1
and l = 6.2. The thick solid line represents the solution for l = 6.2 and the thin dashed line
however shows the solution for l = 4.1.

Remark 1. Solution (20) is of source type, i.e. limt→0 T (x, t) = Kδ(x), where δ is the
Dirac measure, K > 0. One can calculate the second initial condition limt→0 Tt (x, t) too.

Remark 2. One can write (20) in the form of theproduct of two traveling waves propagating
in opposite direction (divided by a time factor):

T (x, t) = 1

t l−1
(t − √

εx)
l
2 −1
+ (t +

√
εx)

l
2 −1
+ , (22)

which is a new type of purely hyperbolic wave; the typical solution of the wave equation is
the sum of two such waves: g(x − ct) + g(x + ct).
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It is known that another possible answer to contradiction connected with the infinite
speed of propagation is the nonlinear Fourier law (τ = 0, k = k0T

m−1 in (2)), which leads to
a nonlinear heat equation:

Tt = (T m)xx, m > 1. (23)

Zeldovich and Kompaneets [11] have found the fundamental solution T1 of this equation which
we write in the following form:

T m−1
1 = t−α(m−1)(A2 − B2x2t−2β)+ = 1

t
(Atβ − Bx)+(Atβ + Bx)+, (24)

where A is constant and

α = β = 1

m + 1
, B2 = m − 1

2m(m + 1)
. (25)

One can see that this solution has bounded support in x for any t > 0, which is a hyperbolic
property. Using the comparison principle for such equations one can show this finite speed
property for any initial condition having compact support. However, the fronts are not straight
lines: x(t) = ±A

B
tβ , β < 1, so the speed of propagation ẋ(t) goes to zero if t goes to infinity.

One can also see that T1 is of source type: T1(x, 0) = K1δ(x).

The most intrinsic property of T1 is that it plays the role of intermediate asymptotic: any
solution of (23) corresponding to the initial data t (x, 0) with

∫
t (x, 0) dx = K1 converges to

T1 as t → ∞. This was conjectured earlier but was shown only in 1973 by Kamin, see [10].
It would be important and interesting to understand whether or not our special solution

T(x, t) had this attractive property. If ‘yes’, in what sense: we recall that there is a second
initial condition too.

In summary, we introduced a new phenomenological law for heat flux which in some
sense ‘interpolates’ between Fourier and Cattaneo laws. The consequence of it is a non-
autonomous model, a telegraph-type partial differential equation. It already has, unlike the
classical telegraph equation, self-similar solutions, the presence of which is desirable in the
theory of heat propagation free from sources and absorbers.
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