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Abstract

We investigate the three dimensional compressible Navier-Stokes and the continuity equations

in Cartesian coordinates for Newtonian fluids. The problem has an importance in different fields

of science and engineering like fluid, aerospace dynamics or transfer processes. Finding an analytic

solution may bring a considerable progress in understanding the transport phenomena and in

the design of different equipments where the Navier Sotkes equation is applicable. For solving

the equation the polytropic equation of state is used as closing condition. The key idea is the

three-dimensional generalization of the well-known self-similar Ansatz which was already used for

non-compressible viscous flow in our former study. The geometrical interpretations of the trial

function is also discussed. We compared our recent results to the former non-compressible ones.

PACS numbers: 47.10.ad, 47.40.-x
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I. INTRODUCTION

In the process of understanding the environment there is a need of a knowledge of their

features. The surrounding world of beings or even certain life mechanisms of them is strongly

related to the phenomena of gaseous or liquid phase. The notion of fluid tries to connect

relevant properties of these two phases. The study of fluid means finding a basic equation

of it based on mechanical and conservation laws. The fundamental equation is the Navier-

Stokes (NS) equation, which in a quite wide range of velocity describes the behavior of the

fluid. By this the equation becomes applicable in biophysics, meteorology, and aerospace

dynamics. Once the equation is settled appears the need of solving it. The NS system

is sufficiently complex to give certain difficulties in the attempts which go for a solution.

Certain steps has been made for a better understanding of the NS equation by finding quasi-

conservation laws [1]. Practical aspects regarding chemical reactions in a Navier-Stokes flow

can be found in [2]. Applications and transfer phenomena [3] may require solutions for NS

equation as general as possible. With the help of certain numerical methods one tries to

shed lights on the evolution of flow fields determined by the equation [4, 5]. An interesting

review has been realized in Ref. [6], where one may find discussions about possible ways,

which may lead to a solution of the three dimensional incompressible Navier Stokes equation.

Regarding the present work we focus on the compressible NS equation and we will try to

find a solution of it. The study involves mathematical techniques, which for certain type of

systems of partial differential equations have been successfully applied.

To study the dynamics of viscous compressible fluids the compressible Navier-Stokes (NS)

partial differential equation (PDE) together with the continuity equation have to be inves-

tigated. In Eulerian description in Cartesian coordinates these equations are the following:

ρt + div[ρv] = 0

ρ[vt + (v∇)v] = ν14v +
ν2
3
grad div v −∇p+ a (1)

where v, ρ, p, ν1,2 and a denote respectively the three-dimensional velocity field, density, pres-

sure, kinematic viscosities and an external force (like gravitation) of the investigated fluid.

To avoid further misunderstanding we use a for external field instead of the letter g which

is reserved for a self-similar solution. In the later we consider no external force, so a = 0.

For physical completeness we need an equation of state (EOS) to close the equations. We
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start with the polytropic EOS p = κρn, where κ is a constant of proportionality to fix the

dimension and n is a free real parameter. (n is usually less than 2) In astrophysics, the Lane

−Emden equation is a dimensionless form of the Poisson’s equation for the gravitational po-

tential of a Newtonian self-gravitating, spherically symmetric, polytropic fluid. It’s solution

is the polytropic EOS which we use in the following. The question of more complex EOSs will

be concerned shortly later on. Now ν1,2, a, κ, n are parameters of the flow. For a better trans-

parency we use the coordinate notation v(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))

and for the scalar density variable ρ(x, y, z, t) from now on. Having in mind the correct

forms of the mentioned complicated vector operations, the PDE system reads the following:

ρt + ρxu+ ρyv + ρzw + ρ[ux + vy + wz] = 0

ρ[ut + uux + vuy + wuz]− ν1[uxx + uyy + uzz]−
ν2
3
[uxx + vxy + wxz] + κnρn−1ρx = 0

ρ[vt + uvx + vvy + wvz]− ν1[vxx + vyy + vzz]−
ν2
3
[uxy + vyy + wyz] + κnρn−1ρy = 0

ρ[wt + uwx + vwy + wwz]− ν1[wxx + wyy + wzz]−
ν2
3
[uxz + vyz + wzz] + κnρn−1ρz = 0. (2)

The subscripts mean partial derivations. Note, that the formula for EOS is already applied.

There is no final and clear-cut existence and uniqueness theorem for the most general

non-compressible NS equation. However, large number of studies deal with the question

of existence and uniqueness theorem related to various viscous flow problems. Without

completeness we mention two works which (together with the references) give a transparent

overview about this field [7, 8].

According to our best knowledge there are no analytic solutions for the most general

three dimensional NS system even for non-compressible Newtonian fluids.

However, there are various examination techniques available in the literature with analytic

solutions for the restricted problem in one or two dimensions. Manwai [9] studied the N-

dimensional (N ≥ 1) radial Navier-Stokes equation with different kind of viscosity and

pressure dependences and presented analytical blow up solutions. His works are still 1+1

dimensional (one spatial and one time dimension) investigations. Another well established

and popular investigation method is based on Lie algebra. There are other numerous studies

available. Some of them are for the three dimensional case, for more see [10]. Unfortunately,

no explicit solutions are shown and analyzed there. Fushchich et al. [11] construct a complete

set of G̃(1, 3)-inequivalent Ansätze of co-dimension one for the NS system, they present 19

different analytical solutions for one or two space dimensions.
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Recently, Hu et al. [13] presents a study where symmetry reductions and exact solutions

of the (2+1)-dimensional NS are calculated. Aristov and Polyanin [14] use various methods

like Crocco transformation, generalized separation of variables or the method of functional

separation of variables for the NS and present large number of new classes of exact solutions.

Sedov in his classical work [15] derive analytic solutions for the tree dimensional spherical

NS equation where all three velocity components and the pressure have only polar angle

dependence (θ). Even this kind of restricted symmetry leads to a non-linear coupled ordinary

differential equation system with a very rich mathematical structure. Additional similarity

reduction studies are available from various authors as well [16–18]. A full three dimensional

Lie group analysis is available for the three dimensional Euler equation of gas dynamics, with

polytropic EOS [19] unfortunately without any kind of viscosity. Analytical solutions of the

Navier-Stokes equations for non-Newtonian fluid is presented for one radial and one time

dimension by [20].

In our study we apply the physically relevant self-similar Ansatz to system (2).

The form of the one-dimensional self-similar Ansatz is well-known [15, 21, 22]

T (x, t) = t−αf
( x

tβ

)
:= t−αf(η), (3)

where T (x, t) can be an arbitrary variable of a PDE and t means time and x means spatial

dependence. The similarity exponents α and β are of primary physical importance since

α represents the rate of decay of the magnitude T (x, t), while β is the rate of spread (or

contraction if β < 0 ) of the space distribution fort > 0. The most powerful result of this

Ansatz is the fundamental or Gaussian solution of the Fourier heat conduction equation (or

for Fick’s diffusion equation) with α = β = 1/2. These solutions are exhibited on Figure 1.

for time-points t1 < t2. This transformation is based on the assumption that a self-similar

solution exists, i.e., every physical parameter preserves its shape during the expansion. Self-

similar solutions usually describe the asymptotic behavior of an unbounded or a far-field

problem; the time t and the space coordinate x appear only in the combination of f(x/tβ).

It means that the existence of self-similar variables implies the lack of characteristic lengths

and times. These solutions are usually not unique and do not take into account the initial

stage of the physical expansion process.

There is a reasonable generalization of (3) in the form of T (x, t) = h(t) · f [x/g(t)], where

h(t), g(t) are continuous functions. The choice of h(t) = g(t) =
√
T − t is called the blow-up
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FIG. 1: A self-similar solution of Eq. (3) for t1 < t2. The presented curves are Gaussians for

regular heat conduction.

solution, which means that the solution goes to infinity during a finite time duration.

Leray [23] in his pioneering work in 1934 at the end of the manuscript put the question

whether it is possible to construct self-similar solutions to the NS system in R3 in the form

of p(x, t) = 1
T−1

P (x/
√
T − t) and v(x, t) = 1√

T−t
V(x/

√
T − t). In 2001 Miller et al. [24]

proved the non-existence of singular pseudo-self-similar solutions of the NS system in the

above form. Okamato has given an exact backward finite-time blow-up self-similar solution

via Leray’s scheme.[25]

Unfortunately, there is no any direct analytic calculation for the three dimensional self-

similar generalization of this Ansatz in the literature.

The applicability of Eq. (3) is quite wide and comes up in various transport systems

[15, 21, 22, 26–28]. This Ansatz can be generalized for two or three dimensions in various
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ways. One is the following

u(x, y, z, t) = t−δg

(
F (x, y, z)

tβ

)
= t−δg(η), (4)

where F (x, y, z) can be understood as an implicit parametrization of a two dimensional

surface. One of the most simple function (which we use in the following) is F (x, y, z) =

x + y + z = 0 which represents a plane passing through the origin. It can be easily shown

than even a more general plane, like ax + by + dz + 1 = 0 makes the remaining ODE

system much more complicated. (The second term in the NS equation on the right hand

side (grad div v term) creates distinct a2, b2, c2 terms which cannot be transformed out, and

a coupled system of three equations remain.)

At this point we can give a geometrical interpretation of the Ansatz. Note that the

dimension of F (x, y, z) still has to be a spatial coordinate. With this Ansatz we consider the

velocity field (vx = u) - where the sum of the spatial coordinates lies on a plane - as a new

entity. We are not considering all the R3 velocity fields but a plane of the vx coordinate

as an independent variable. This is the trick of the Ansatz. The NS equation which is

responsible for the dynamics maps this kind of velocities which are on this plane surface to

another more complex geometry. In this sense we can investigate the dynamical properties

of the NS equation in details.

II. SELF-SIMILAR SOLUTION

Now, we concentrate on the first Ansatz Eq. (4) and search the solution of the Navier-

Stokes PDE system in the following form:

ρ(x, y, z, t) = t−αf

(
x+ y + z

tβ

)
= t−αf(η), u(η) = t−δg(η),

v(η) = t−εh(η), w(η) = t−ωi(η), (5)

where all the exponents α, β, δ, ε, ω are real numbers. (Solutions with integer exponents

are called self-similar solutions of the first kind and can be obtained from dimensional

argumentation as well.) According to Eq. (2), we need to calculate all the first time

derivatives of the velocity field, all the first and second spatial derivatives of the velocity

field and the first spatial derivatives of the pressure. All these derivatives are not presented

in details. More technical details of such a derivation is presented and explained in our
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former study [29]. To get a final ODE system which depends only on the variable η, the

following universality relations have to be hold

α = β =
2

n+ 1
& δ = ε = ω =

2n− 2

n+ 1
, (6)

where n 6= −1. Note, that the self-similarity exponents are not fixed values thanks to the

existence of the polytropic EOS exponent n. (In other systems e.g. heat conduction or

non-compressible NS system, all the exponents have a fixed value, usually +1/2.) This

means that our self-similar Ansatz is valid for different kind of materials with different kind

of EOS. Different exponents represent different materials with different physical properties

which results different final ODEs with diverse mathematical properties.

At this point we have to mention that a NS equation even with a more complicated EOS

like p ∼ f(ρlvm) can have a self-similar solution. The investigation of such problems will be

performed in the near future but not in the recent study.

Our goal is to analyze the asymptotic properties of Eq. (5) with the help of Eq. (6).

According to Eq. (3) the signs of the exponents automatically dictates the asymptotic

behavior of the solution at sufficiently large time. All physical velocity components should

decay at large times for a viscous fluid without external energy source term. The role of α

and β was explained after Eq. (3). Figure 2 shows the α(n) and δ(n) functions. There are

five different regimes:

• n > 1 all exponents are positive - physically fully meaningful scenario - spreading and

decaying density and all speed components for large time - will be analyzed in details

for general n

• n = 1 spreading and decaying density in time and spreading but non-decaying velocity

field in time - not completely physical but the simplest mathematical case

• −1 ≤ n ≤ 1 spreading and decaying density in time and and spreading and enhancing

velocity in time - not a physical scenario

• n 6= −1 not allowed case

• n ≤ −1 sharpening and enhancing density and sharpening and decaying velocity in

time, we consider it an non-physical scene and neglect further analyzis.

The corresponding coupled ODE system is:
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FIG. 2: Eq. (6) dotted line is α(n) = 2/(n+ 1) and solid line is δ(n) = 2− 4/(n+ 1).

α[f + f ′η] = f ′[g + h+ i] + f [g′ + h′ + i′],

f [−δg − αηg′ + gg′ + hg′ + ig′] = −κnfn−1f ′ + 3ν1g
′′ +

ν2
3
[g′′ + h′′ + i′′],

f [−δh− αηh′ + gh′ + hh′ + ih′] = −κnfn−1f ′ + 3ν1h
′′ +

ν2
3
[g′′ + h′′ + i′′],

f [−δi− αηi′ + gi′ + hi′ + ii′] = −κnfn−1f ′ + 3ν1i
′′ +

ν2
3
[g′′ + h′′ + i′′], (7)

where prime means derivation with respect to η. The first (continuity) equation is a total

derivative (if α = β) so we can integrate automatically getting αfη = f [g+h+ i]+c0, where

c0 is proportional to the mass flow rate. Now, we simplify the NS equation with introducing

only a single viscosity ν = ν1 = ν2. There are still too many free parameters remain for the

general investigation.

We consider the c0 = 0 from now on. Having in mind that the density of a fluid should

be positive so f 6= 0, we get αη = g+h+ i. With the help of the first and second derivatives

of this formula Eq. (7) can be reduced to the next non-linear first order ODE

−3κnfn−1f ′ +

(
4n− 4

(n+ 1)2

)
ηf = 0. (8)

Note, that it is a first order equation, so there is a conserved quantity which should be a

kind of general impulse in the parameter space η. We can also see that this equation has no
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contribution from the viscous terms with ν just from the pressure and from the convective

term. The general solution reads

f(η) = 3
−1
n−1

(
2η2[n− 1]

κn[n+ 1]
+ 3c1

) 1
n−1

. (9)

Note that for {n;n ∈ Z\{−1}} exists n different solutions for n > 0 (one of them is the

f(η) = 0) and n-1 different solutions for n < 0 these are the n or (n-1)th roots of the

expression. For {n : n ∈ R\{−1}} there is one real solution. Note, that for fixed κ, c1 > 0

when n and η tend to infinity, the limit of Eq. (9) tends to zero. This meets our physical

intuition for a viscous flow, we get back solutions which have an asymptotic decay. (In

the limiting case n = 1 (which means the δ = 0) we get back the trivial result f = const

which has no relevance.) For the n = 2, the least radical case f(η) = η2/(27κ) + c1 which

is a quadratic function in η however, the density function ρ = t−2/3[(x + y + z)2/t4/3] =

(x+ y + z)2/t2 has a proper time decay for large times.

All the three velocity field components can be derived independently from the last three

Eqs. (7). For the v = t−δg(η) the ODE reads:

−3νg′′ +

(
2n− 2

n+ 1

)
gf − κnfn−1f ′ = 0. (10)

Unfortunately, there is no solution for general n in a closed form. However, for n = 2 the

solutions can be given inserting f(η) = η2/(27κ) into Eq. (10). These are the Whittaker W

and Whittaker M functions [30]

g =
c̃1√
η
M

− c1
√

2κ

4
√

ν
, 1
4

(√
2η2

9
√
νκ

)
+

c̃2√
η
W

− c1
√
2κ

4
√

ν
, 1
4

(√
2η2

9
√
νκ

)
+

2

3
η, (11)

where c̃1 and c̃2 are integration constants. The M is the irregular and the W is the regu-

lar Whittaker function, respectively. These functions can be expressed via the Kummer’s

confluent hypergeometric functions M and U in general (for details see [30])

Mλ,µ(z) = e−z/2zµ+1/2M(µ− λ+ 1/2, 1 + 2µ; z);

Wλ,µ(z) = e−z/2zµ+1/2U(µ− λ+ 1/2, 1 + 2µ; z). (12)

Is some special cases when κ = ν/2 the Whittaker functions can formally be expressed with

other functions (e.g. Bessel, Err) when {c1 : c1 ∈ N\{−2,−4}}. It can be shown with

the help of asymptotic forms that the velocity field u ∼ t−1/3[MorW (·, ·; t−4/3)] decays for
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sufficiently large time which is a physical property of a viscous fluid. (Just to mention, we

found additional closed solutions only for n = 1/2 and for n = 3/2 from Eq. (9-10) for the

density and velocity field which contain the HeunT functions, in a confusingly complicated

expression.)

At this point we compare our recent results to the former non-compressible ones. In the

non-compressible case of the three dimensional NS equation, all the exponents have the 1/2

value - like in the regular diffusion equation - except the decaying exponent of the pressure

field which is 1. For non-compressible fluids the x component of the velocity field is described

with the help of the Kummer functions

g̃(η) = c1U

(
−1

4
,
1

2
,
(η + c)2

6ν

)
+ c2M

(
−1

4
,
1

2
,
(η + c)2

6ν

)
+

c

3
− 2a

3
, (13)

where c1 and c2 are the usual integration constants. The viscosity is ν the external field is

a and the c is the non-zero integration constant from the continuity equation - which can

be set to zero. We showed in our former study than only one of the velocity components

can be written in the following form, the other two component do not have a closed form.

Additional properties of this formula was analyzed in our last study[29] in depth.

Figure 3 compares the regular parts of the solutions of Eq. (11) and Eq. (13) with the

same viscosity value ν = 0.1 and for c̃1 = 1, c̃2 = 1, c1 = 0. The compressible parameters

are κ = 1 and n = 2. Note that the shape function of velocity of the compressible flow

has a maximum and a quick decay, the incompressible velocity shape function has no decay.

However, these are the reduced one dimensional shape functions, and the total thee dimen-

sional velocity fields have proper time decay for large time as it should be. The c1 in the

Whittaker function cannot be negative because it comes from the density equation. If it is

zero or any other positive number plays no difference in the form of the shape function.

Figure 4 presents how the regular part of the solution Eq. (11) depends on the com-

pressibility for a well defined viscosity. Note, the higher the compressibility the lower the

maximum of the top speed of the system.

As a second case study Figure 5 presents how the regular part of the solution Eq. (11)

depends on the viscosity for a well defined compressibility. Higher the viscosity the higher

the maximal reached speed and the range of the system. In our investigation the role of

the two viscosities cannot be separated from each other therefore this effect cannot be seen

more clearly.
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FIG. 3: Comparison of the regular solutions for the non-compressible (solid line) Eq. (13) and the

compressible case(dashed line) Eq. (11). The viscosities have the same numerical value µ = 0.1.

Note, that Eq. (11) is not a direct limit of Eq. (13) just a very similar one. Therefore

this is the maximum what we could learn from the system.

Our long range aim is to study the properties of non-Newtonian fluids or fluids with

various heat conduction mechanisms.

III. SUMMARY

In our study we investigated the compressible three dimensional Navier-Stokes equation

with the self-similar Ansatz. The existence of the polytropic EOS for the compressibility

makes the calculations more complicated than for the non-compressible case. There is no

general closed form self-similar solution available for the density and the velocity fields for

any kind of material. There are different scenarios available, some materials n < 1 dictate

non-physical exploding solutions for n > 1 both density and velocity fields show a decay

property for large times which is the only reasonable solutions for dissipative systems. There

is a special case for n = 2 where both fields can be expressed with the help of closed formulas

which is our mayor result. We could compare the velocity fields of the compressible and

non-compressible fluids. The formulas show some kind of similarity which was analyzed

in details. In the future we plan to analyse non-Newtonian fluids with the same kind of
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FIG. 4: The compressibility dependence of the regular solution of Eq. (11) for n = 2 and for

ν = 0.1 viscosity. The solid line is for κ = 0.1 the dotted line is for κ = 1 and the dashed line is

for κ = 2 .

FIG. 5: The viscosity dependence of the regular solution of Eq. (11) for n = 2 and κ = 1. The

solid line is for ν = 0.05 the dotted line is for ν = 0.1 and the dashed line is for ν = 0.5 .
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